
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Technologies

mi
Bachelor's Thesis

Development of Cooperative Applications

Dominic Senarsky

© 2022 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

BACHELOR THESIS ASSIGNMENT
D o m i n i c S e n a r s k y

Informatics

Thesis title

Development of Cooperative Applications

Objectives of thesis
The main objective of the thesis is to develop several versions of backend appl icat ions using different
approaches for handl ing multi-client access and evaluate and compare them based on the selected
cr i ter ia.
Partial objectives are:
- define a multi-user access scenario and the specif ic needs and requirements it presents
- develop different versions of backend parts of appl icat ions using the chosen approaches and
f rameworks
- measure per formance indicators of the created appl icat ions and evaluate their eff iciency in a given
scenario

Methodology

The methodo logy of the theoret ical part is based on analysis of available scientific informat ion sources. In
the practical part, several versions of backend appl icat ions wil l be deve loped using chosen programming
approaches. The per formance of these appl icat ions in a given scenario wi l l be measured and the i r overall
eff iciency wi l l be compared using mult ip le criteria decis ion analysis. Based on the synthesis of knowledge
obta ined in the theoret ical part and the results of the practical part, conclusions wil l be formula ted .

Official document * Czech University of Life Sciences Prague * Kamycka 129, 165 00 Praha - Suchdol

The proposed extent of the thesis
40-50

Keywords
cooperative applications, backend, html 5, programming frameworks, performance testing

Recommended information sources
Balbaert, I., St. laurent, S. (2019). Programming Crystal. USA: The Pragmatic Programmers, LLC.
Elman, J . , Lavin, M. (2014). Lightweight Django: Using REST, Web Sockets, and Backbone. California, USA:

O'Reilly Med ia , Inc.
Harron, D. (2018). Node.js Web Development - Fourth Edition. Birmingham, UK: Packt Publishing Ltd.
Juric, S. (2018). Elixir in Act ion, Second Edition. New York, USA: Manning Publications Co.

Expected date of thesis defence
2021/22 S S - F E M

The Bachelor Thesis Supervisor
Ing. Jan Pavlik

Supervising department
Department of Information Technologies

Electronic approval: 17. 8. 2021 Electronic approval: 5. 10. 2021

doc. Ing. Jiří Vaněk, Ph.D. Ing. Martin Pelikán, Ph.D.
Head of department Dean

Prague on 10. 03. 2022

Official document * Czech University of Life Sciences Prague * Kamycka 129,165 00 Praha -Suchdol

Declaration

I declare that I have worked on my bachelor thesis titled "Development of

Cooperative Applications" by myself and I have used only the sources mentioned at the end

of the thesis. As the author of the bachelor thesis, I declare that the thesis does not break any

copyrights.

In Prague on 15.03.2022

Acknowledgement

I would like to thank my supervisor Ing. Jan Pavlfk for his invaluable advice and

feedback throughout the duration of the project. His unwavering support and consistent

proactivity were crucial in overcoming any difficulties experienced during my research.

I would like to thank Tamas Kemeny for his feedback and discussions regarding

the research material and results.

I would like to give a special thanks to Nicholas Rakita for his support and

feedback throughout the duration of the project. Nicholas was a key motivator and

supporter of the research that I was aiming to understand and quantify in this thesis, he

provided invaluable advice on how to conduct formal research and be eloquent with my

thoughts in a programmatic environment.

Finally, I would like to thank my family back home and my loving partner for

giving me the drive to publish my best work in an academic setting - and for the unending

emotional support during difficult times.

Development of Cooperative Applications

Abstract

The purpose of this thesis is to identify and analyze various popular languages and

frameworks which utilize the WebSocket API. It is necessary to measure both quantitative

and qualitative sets of data and then compare them both subjectively and - when applicable

- objectively. Python, Elixir, Crystal, and JavaScript are the programming languages which

are used to test performance and gather analytical data for conducting research. By utilizing

these distinct languages, valuable information can arise regarding WebSocket client-server

communication.

The gathered data from each language's performance are analyzed using multi-criteria

decision analysis - quantitative and qualitative performance matrices compact the data and

provide a clear ranking of the optimal criteria based on weighted results. A l l the languages

and frameworks utilized in this thesis provide advantages and disadvantages depending on

the application criteria, and the decision for which to use in specific scenarios is emphasized

accordingly.

Keywords: cooperative applications, backend, frontend, programming frameworks,

WebSocket, performance testing

6

Vývoj Kooperativních Aplikací

Abstrakt

Cílem této bakalářské práce je identifikovat a analyzovat programovací jazyky a

frameworky, které využívají rozhraní Web Socket API. Je nutné zohlednit jak kvantitativní,

tak kvalitativní ukazele a následně je co nejvíce objektivně porovnat. Pro účely sběru

analytických dat je v této práci využito programovacích jazyků Python, Elixír, Crystal a

JavaScript. Využitím těchto odlišných jazyků lze získat cenné informace týkající se klient -

server komunikace přes Web Socket.

Shromážděná data o výkonu každého zvoleného jazyka jsou analyzována pomocí

multikriteriální rozhodovací analýzy - kvantitativní a kvalitativní výkonnostní matice

koncentrují data a poskytují jasné pořadí variant. Zvolené jazyky a frameworky použité v

této práci poskytují různé výhody či nevýhody a v závislosti na volbě vah kritériích, která

zohledňuje zamýšlené použití aplikace, je poté možné učinit rozhodnutí, které bude pro daný

scénář optimální.

Klíčová slova: kooperativní aplikace, backend, frontend, programovací frameworky,

WebSocket, testování výkonu

7

Table of Contents

1 Introduction 10

2 Objectives and Methodology 11
2.1 Objectives 11
2.2 Methodology 11

3 Literature Review 12
3.1 Web Applications Overview 12
3.2 WebSocket 13
3.3 WebSocket Use-Case 14
3.4 Programming Languages 15

3.4.1 JavaScript 16
3.4.2 Elixir 18
3.4.3 Python 21
3.4.4 Crystal 24

3.5 Multi-Criteria Decision Analysis 28
3.5.1 Selection of Criteria 29
3.5.2 Measured Criteria Options 30
3.5.3 Calculating Results and Sensitivity Analysis 30

4 Practical Section 32
4.1 Practical Overview 32
4.2 The Development/Testing Environment 32
4.3 Web Application Benchmarking Software 33
4.4 The WebSocket Backend Servers 34

4.4.1 JavaScript 35
4.4.2 Elixir 36
4.4.3 Python 38
4.4.4 Crystal 39

4.5 Server/Client Execution Master and Subscripts 39
4.6 Qualitative M C D A 40
4.7 Qualitative Decisions for Weights 43
4.8 Quantitative M C D A 44
4.9 Quantitative Decisions for Weights 47
4.10 M C D A Sensitivity Analysis 49

5 Results and Discussion 51

6 Conclusion 54

7 References 55

8

List of images
Image 1 - WebSocket browser compatibility 13

Image 2 - WebSocket connection client 14

Image 3 - Example of a single threaded program 22

Image 4 - Example of a multithreaded program 22

Image 5 - Implementation of a simple interpreter 26

Image 6 - M C D A detailed steps 29

Image 7 - k6 WebSocket client program 34

Image 8 - JavaScript WebSocket server 35

Image 9 - handler.ex program file - part of the WebSocket server 36

Image 10 - application.ex program file - part of the WebSocket server 37

Image 11 - Python WebSocket server 38

Image 12 - Crystal WebSocket server 39

Image 13 - Subscript for server ink/kill (Crystal 8-core section) 40

Image 14 - Min-max normalization program file 47

List of tables
Table 1 - Qualitative matrix, approximate rankings 42

Table 2 - Qualitative numeric matrix 42

Table 3 - Quantitative performance matrix 46

Table 4 - Sensitivity analysis matrix 50

9

1 Introduction

The purpose of this thesis is to identify and analyze various popular languages and

frameworks which utilize the WebSocket API. It is necessary to measure both quantitative

and qualitative sets of data and then compare them both subjectively and - when applicable

- objectively. Efficient communication on the Web is as common as ever, and with such a

wide variety of options to choose from in a software development situation, there is much to

consider when choosing a software stack. As this technology booms and WebSocket

development becomes more relevant for global platforms, developers are left questioning

what exactly to use in their various working environments regarding this technology. The

demand for web applications is at an all-time high, whether it be accessed on laptop/desktop

machines or on mobile devices.

There is a need for these Web applications to handle large amounts of concurrent users

and manage the various events on each instance of the client's application in conjunction

with the Web servers. Depending on the number of concurrent users and computations that

must be performed for each user, the developer must consider that any chosen language and

frameworks used for the development of a Web application adhere well to the necessary

performance criteria. Different computational requirements are present depending on the

potential userbase of the application as well as the number of processes that can occur for

each user. Different languages and frameworks will all perform better or worse depending

on the need for intense computation and user concurrency.

There is a lack of significant data regarding the performance of different programming

languages compared to each other for the varying aspects of WebSocket functionality. The

research conducted in this thesis should provide clarification of the criteria for a Web

application that can be optimally handled by each of the implemented languages. These

results are important as they provide a significant comparison for WebSocket client-server

communication performance among four unique languages.

10

2 Objectives and Methodology

2.1 Objectives

The main objective of the thesis is to develop several versions of backend applications

using different approaches for handling multi-client access and evaluate and compare them

based on the selected criteria. Partial objectives are:

• define a multi-user access scenario and the specific needs and requirements it

presents

• develop different versions of backend parts of applications using the chosen

approaches and frameworks

• measure performance indicators of the created applications and evaluate their

efficiency in a given scenario

2.2 Methodology

The methodology of the theoretical part is based on analysis of available scientific

information sources. In the practical part, several versions of backend applications will be

developed using chosen programming approaches. The performance of these applications in

a given scenario will be measured, and their overall efficiency will be compared using

multiple criteria decision analysis. Based on the synthesis of knowledge obtained in the

theoretical part and the results of the practical part, conclusions will be formulated.

11

3 Literature Review

3.1 Web Applications Overview

The internet as we know it is composed of a seemingly endless amount of web

applications developed for an incomprehensibly large amount of use cases. People use

applications that communicate over web protocols on their phones, computers, tablets,

TVs, and any type of smart technology devices. The industry of web application server and

client development is constantly growing and shaping how people live their daily lives.

Web applications allow us to simplify how we communicate, travel, make material

purchases, learn, enjoy recreational activities, and much more. By updating interfaces of

web applications centrally, users can always have up-to-date content on their personal or

enterprise devices. Depending on the type of web communication protocol used for the

developed applications, different features can be optimized for the benefit of the user base.

The web communications protocol that stands out in the modern era of web application

development is WebSocket. As WebSocket offers persistent bidirectional communication

between a server and client, it can manage and process requests and data extremely

quickly. This makes it an attractive technology to work with in web application

development environments, as it is the optimal choice for client applications that require

constant updates about state from a server. WebSocket is a ubiquitous contemporary

solution for implementing duplex connections in modern web applications. Therefore, this

thesis attempts to analyze several languages/frameworks allowing the use of WebSocket

connections regarding their usability and performance.

12

3.2 WebSocket

The WebSocket computer communications protocol is the foundation of the

technology that various programming languages and frameworks utilize, modify, and

optimize for faster client-to-server communication on the Web. It is important to note that

the WebSocket protocol is an IETF (Internet Engineering Task Force) standard, and the vast

majority of modern browsers support the use of the WebSocket API initialization with some

slight versioning and platform-dependent exclusions, as shown in the image below.

Web5ocket() constructor

©

Yes 12

0

10

o
o

Yes

tfj
CO

Yes

<

Yes

©

Yes

o
o

Image 1 - WebSocket browser compatibility, source: [1]

CO
o

CO

Yes

A WebSocket functions as an online event handler that manages a bi-directional

persistent and interactive TCP connection between a server and the connected clients (most

commonly accessed via a user's web browser) [2, p. 1]. This critical function of WebSocket

is called a full duplex system, which allows for any nodes on end devices and software to

receive and send data simultaneously [3]. Responses to data sent between the server and

clients are managed through event-driven interactions, which, unlike HTTP, do not require

constant polling of the server to instantiate and close connections when data is retrieved.

This allows for the management of data in real-time and promotes the usage of various event-

handling functions to sort data, send it where it needs to go, and in the format they need to

be in - whilst also simultaneously receiving said data and managing it to be sent again [3].

Mozilla's M D N Web Docs provide a simple overview of a WebSocket connection client, as

demonstrated below.

13

//Create WebSocket connection.

const socket = new WebSocket(fws://localhost:8080')

//Connection opened
socket.addEventListener('open', f u n c t i o n (event) {
socket.send('Hello S e r v e r ! ') ;

/ / L i s t e n f o r messages
socket.addEventListener('message', f u n c t i o n (event) {
console.log('Message from s e r v e r ' , event.data);
m

Image 2 - WebSocket connection client, source: [4]

The code snippet above covers what is fundamentally needed for creating/opening a

WebSocket connection and listening for messages from a WebSocket server.

3.3 WebSocket Use-Case

The WebSocket communications API is compatible with common platforms such as

iOS, Android, Web applications on-line, and locally executed desktop applications. Unlike

http where the connections are prefaced with http:// or https://, WebSocket is written as ws://

or wss:// [2, p. 14]. This technology is commonly used in the following example scenarios:

• Real-time social media feed applications which constantly update

• Multiplayer video games that require fast visual feedback and exceptional

performance

• Chat applications that require real-time message updates without loss of data or time

• Cryptocurrency price tracking and visual value updates in real time

• Geolocation live tracking

• Document and workspace live multi-client editing

There are many different multi-client situations and variables to consider when

developing software whilst integrating the WebSocket API. Situations arise where an

application will have a natural or strictly bounded maximum of x users using an application

14

concurrently, when in others there can be a theoretically unbounded number of users

accessing an application concurrently.

The frameworks and libraries for languages analyzed in this paper are all

optimized/designed for WebSocket communication, but likely vary greatly regarding their

individual performance. The Node.js implementation for JavaScript is used along with the

ws library, RiverSide for Elixir, the 'websockets' library for Python, and Kemal for

Crystal. The natural burdens or complete lack of WebSocket implementations in the

vanilla languages are generally ironed out by the listed frameworks. Every programming

language is designed with core concepts in mind that the languages should cater to. For

example, Elixir (a web-oriented language utilizing the Erlang VM) is designed with the

capacity for reliable and scalable multi-client communication. However, a language such

as JavaScript was designed for interactive website development, generally lacking in

comparison when it comes to multi-client server development. For this reason, Node.js was

created and now is used very commonly for developing multi-client applications in which

vanilla JavaScript suffers so heavily.

3.4 Programming Languages

The following sections focus on the general function and application of selected

programming languages - with a slight inclination towards features and examples of benefits

for the development of WebSocket multiclient web applications. Key positive and negative

aspects of the languages will be highlighted to clarify how a multi-client web application

would benefit from the technology. In addition, external frameworks that are optimized for

WebSocket implementation within native languages will be discussed and analyzed for their

all-round effectiveness. Each language is considerably different and contain differences in

their foundational programming paradigm, internal data structures, syntax, type system, and

implementation (system for executing programs on a computer [interpretation vs

compilation]).

It is important to mention that the concurrency and capacity for parallel processing

capabilities of all languages play a large role in their performance for web socket

communication, as having more processes executing in parallel allows for faster input

connection filtering and return responses from the server.

In the practical part of this assignment, the literary review of each language will play

a role in the analysis of language syntax, semantics, and the value provided by their

15

respective communities. Although the previously listed points cover the majority of

quantifiable and qualitatively measured aspects of a language, it should be noted that they

do not cover absolutely everything. Instead, the focus of the thesis work is placed on concepts

that can be measured at an intermediate-advanced level in an M C D A evaluation.

3.4.1 JavaScript

JavaScript is a widely used scripting language that is included in every modern web

browser and powers the interactive aspect of almost all web pages and web applications.

Initially released in 1995, it was created with the intent to enable complex frontend scripting

in the Netscape Navigator Browser [5, p. 5]. Applications written in this language span from

desktop computers to phones and tablets, in recreational and professional environments

alike. It is also commonly used for programming web servers, interactive controllers, video

games, and a wide range of other applications. JavaScript works together with H T M L and

CSS in a three-layer system for developing websites and interfaces [6]. Nowadays with

Node.js, JavaScript is used beyond frontend work as it supports both frontend and backend

development. Code can be reused between the frontend and backend and being able to use

JavaScript effectively for the full stack is a huge benefit [7, p. 2]. With the ability to

implement applications with the same language on the client and server side, developers can

work on both ends and migrate code between both structures very easily [7, p. 12]. In the

practical section of this thesis, the ability for an entirely JS backend/frontend system is

demonstrated by the fact that there is a Node.js WebSocket server which is communicating

with virtual clients generated by a JavaScript client implementation.

The runtime environment that will be used and analyzed for JavaScript is Node.JS.

Node.js was initially developed to simplify asynchronous input/output communication

(allowing for input/output processes) communication within the JavaScript language [5, p.

354]. This is highly necessary for JavaScript, as the ECMAScript standard does not include

I/O handling functionality [8]. As it is designed as a scripting language, the host environment

should tell the language what to do and should have full control of specifications and the

processes to run. Just as a web browser is a host environment for JavaScript, so is Node.js -

as it is a server-side host environment designed for primarily network I/O operations [8]. It

is necessary to evaluate the value that Node.js brings/adds to JavaScript WebSocket

programming interfaces.

16

JavaScript has a different execution method as opposed to the other languages tested

in the practical part of this thesis - the Just-In-Time (JIT) compiler of the run-time

interpreter. The JavaScript JIT compiler does not compile a program in one go and then

execute it, but instead will compile and recompile code as expressed and desired from the

written code. This JIT compiler within JavaScript contains a profiler, which watches code

that is being executed, and stores what object types are used and how many times various

parts of the code are run. The profiler will consider parts of code 'warm' or 'hot code', if it is

executed multiple times, then it is sent to be compiled and stored for further repeated use [5,

p. 392]. The compiler is optimizing code snippets to increase performance as the program is

executed.

JavaScript is dynamically typed, which means it assigns types to variables at runtime

- only values have types, but bindings can hold values of various types [5, p. 403]. The

compiler does not know anything about the specific property type that the source code is

attempting to access and needs to be ready to handle code that will be able to manage any

types. This process should be assisted by the user offering consistent types to run the code

faster [5, p. 404]. JavaScript is also weakly typed, meaning that the interpreter or compiler

can operate on data that are not given an explicit type, and will decide whether to do implicit

type conversions [5, p. 19]. This is a big annoyance for many developers as it can be difficult

to predict how the compiler will handle data. Accordingly, the ecosystem has sprouted many

languages that transpile into JavaScript and can elegantly handle such worrying features.

Regarding the functionality and desire of JavaScript as a language, some developers

complain about its design. Since the years of its release, the language has been updated in a

sort of bolted-on fashion - with changes and fixes being amended to match the quickly

growing needs of developers of web browsers and faster systems. There are various solutions

offered by languages that transpile into JavaScript. TypeScript is used to solve the issues

brought by dynamic typing [9]. It allows developers to specify types and avoid errors that

present themselves during runtime for vanilla JavaScript [10]. CoffeeScript is a lightweight

language that provides a wide range of syntactic sugars for JavaScript, improving the ease

of use of JavaScript from the top-down syntax point of view for developers [11].

The Node.js implementation of JavaScript is used by many large corporations for

building their web applications. When Netflix switched from its Java backend to Node.js in

2015, the business saw a 70% lower startup time for the web interface. In addition, since the

backend is in JavaScript for Node.js, the transition for developers to create the frontend was

17

greatly simplified [12]. Another corporation that is using Node.js at a grand scale is N A S A .

The business saw a 300% improvement in the access time to a database, granting users the

prompted data magnitudes faster than before. The architecture of Node.js also allowed for

N A S A to migrate old databases to the cloud and allow users to access them via APIs [12].

PayPal also moved from Java to Node.js as did Netflix and was handling twice the number

of requests in comparison to the old infrastructure [12].

JavaScript ranks as one of the industry leaders in community support and has plenty

of resources from various sources on topics one might need to search online. Although the

solutions for certain issues or questions can be vastly different depending on the developers'

responses, almost every solution to a query can be found quickly by searching online. The

'ws' library is used for JavaScript with Node.js to efficiently implement a WebSocket

interface. It is one of the most popular WebSocket libraries for Node.js and provides a

seamless implementation for developers to work with [13].

The capabilities of the Node.js provide immense potential for developers to make

attractive and fast web applications. The vanilla implementation does not offer as much use

for web application development in terms of efficient communication between the server

and client but is still a decent choice for different levels of developers due to its community

and available resources.

3.4.2 Elixir

Elixir is a fascinating language in many technical and aesthetic aspects; it was created

by Jose Valim in 2011 with the goal of modernizing and improving the Erlang programming

language [14]. Erlang is a highly scalable functional language designed in the 1980's

primarily by Joe Armstrong along with his colleagues Robert Virding, and Mike Williams

[15]. The initial design was built entirely around the concept of handling large-scale phone

switching [14]. This led to the language being principally used for high-uptime and

bandwidth systems such as those found in banking institutions, telecom industries, or instant

messaging applications [16]. It excels at being used to build fault-tolerant applications and,

due to its origins in the telecom industry, managed to support hundreds of thousands of users

in a massive telephone exchange at the founding company, Ericsson [17]. Erlang, despite its

unique and highly advantageous design principles, remains a rather niche language within

the mainstream web development community. However, the Erlang community is still

growing alongside Elixir's.

18

The Erlang V M (known as B E A M) is used for executing bytecode (.beam) - which is

generated by the Erlang Run-Time System (ERTS) - and scheduling Erlang processes to be

executed on the CPU. It creates a process scheduler on each core of a CPU, allowing

processes to achieve high levels of concurrency and run at the same time, in parallel [18].

These processes are fully isolated from each other and do not share memory, in this case

allowing a process to crash and not having it affect the rest of the system. The system then

initiates a new process to replace the one that failed previously [19, p. 214]. The language is

highly scalable due to the lack of any process locks such as the GIL covered in the Python

section below. This hindrance in the Python language is unknown to Erlang, which allows

processes to communicate asynchronously as separate concurrent groups of processes [19,

p. 4]. As Erlang was not designed for multi-core computers and could not properly perform

true symmetric multiprocessing until version R13b in 2019 - it is common to hear about

concurrency in the same technical scope as parallelism [18]. A l l these innate benefits allow

Erlang to excel in server-side systems. Erlang-built systems are scalable, responsive, fault

tolerant, concurrent, and distributed [19, pp. 5-6].

The following section will provide information on Elixir itself and how it builds off

Erlang. In the previous paragraph, Elixir was mentioned as the wonderchild of Erlang. It

provides all the amazing features of Erlang in a much more user-friendly and modern

programmatic style. It is open source and has more than 700 active contributors to the project

[19, p. 8]. Elixir borrows syntax from Ruby and is built to improve semantics and general

readability - a notable annoyance for many developers using Erlang. Saša Jurič states in his

book: "Personally, I find it much more pleasant to code in Elixir. The resulting code seems

simpler, more readable, and less burdened with boilerplate, noise, and duplication. At the

same time, you retain the complete runtime characteristics of pure Erlang code" [19, p. 13].

The creator of Elixir was a Ruby developer himself, and thus structured the Elixir

language to be aesthetically pleasing to programmers, sharing similar syntactical constructs

to Ruby. This borrowing of syntax from Ruby is seen commonly as well in the Crystal

language, providing insight on how both creators of these languages placed syntactic sugar

high on their priority list [20]. This is a big step forward in comparison to the dated and non­

standard syntax of Erlang, which was originally started as a modified Prolog, with the it

being highly syntactically resemblant [21]. Despite the friendlier syntax, Elixir has the same

powerful features that functional languages have, as it still utilizes the Erlang V M .

19

Functional programming languages offer advantages such as those listed below by

TutorialsPoint:

• State Free Programming - Functional programming does not support state, so there

are no side-effect results, and we can write error-free code.

• Efficient Parallel Programming - Functional programming languages have NO

Mutable state, so there are no state-change issues. One can program "Functions" to

work parallel as "instructions". Such codes support easy reusability and testability.

• Efficiency - Functional programs consist of independent units that can run

concurrently, and restart or trigger processes when other ones fail. As a result, such

programs are more efficient.

• [Supports Higher-Order Functions - Functional programming supports higher-order

functions.] [22]

The efficient parallel processing capabilities make Elixir stand out in comparison to the other

languages in this thesis, as none provide such seamless support for parallel processing.

The community for Elixir is not as large as JavaScript and Python but does have a

slightly more active community in comparison to the Crystal language. The Elixir language

has official documentation that is well explained and detailed for any necessary usage of the

core language, and like Crystal, will offer user support when inquired. Package/dependency

management in Elixir is an improvement in terms of simplicity to that of Erlang. Most of the

dependency management is integrated through the Mix dependency manager. Mix handles

not only dependencies for an application, but also the creation, compilation, and testing

process of the said application [23]. Hex is the package manager for Elixir that can be used

to utilize and build Hex packages. Hex integrates with Mix 's dependency handling to work

side by side for package and dependency management [24]. By having all the Elixir

application management covered by these tools, the process in the practical part for working

with Elixir libraries was very straightforward. The framework used for Elixir in this thesis

is RiverSide, which is a WebSocket server framework for Elixir. It consists of many libraries

available for Elixir which work in conjunction to allow for elegant WebSocket server

functionality [25]. Other frameworks are far too bloated or non-trivial to use for this thesis,

in comparison to RiverSide.

20

Elixir is used in large corporations for handling web transactions and client-server

communication. As an example of usage in a large corporation: "Bet365 switched from Java

to Erlang and Elixir, the betting site handles over 6 million HTTP requests and 500,000

database transactions per second" [26]. In addition, Discord has been using Elixir since it

was created as stated in the Discord blog: "From the beginning, Discord has been an early

adopter of Elixir. The Erlang V M was the perfect candidate for the highly concurrent, real­

time system we were aiming to build. We developed the original prototype of Discord in

Elixir; that became the foundation of our infrastructure today. Elixir's promise was simple:

access the power of the Erlang V M through a much more modern and user-friendly language

and toolset" [27]. Due to its prominent features as a modern functional programming

language, Elixir can be used comfortably and reliably for web application server-side

development.

3.4.3 Python

Python has been one of the most popular programming languages since its release in

1991 by Guido Van Rossum [28]. This open-source language is growing steadily in

popularity, especially among beginner developers. Due to its general syntactic simplicity

and shallow learning curve, it is used globally by beginners and professionals alike, also

adding to its growing adoption rates. It's applicability spans across many different types of

systems and applications from web development all the way to machine learning

applications, or even intensive data science research.

There is a large range of methods and modules that are built into the Python language

standard library, allowing for many basic functionalities to be available for developers.

This is a key feature of the language that generates its strong appeal, offering consistency

and ease-of-use to programmers of all levels. The documentation for the language is

abundant, and its community is one of the largest in the development world. The PEP

guidelines implemented as a form of standardizing the Python language make finding

solutions to issues much less confusing and scattered in comparison to a language such as

JavaScript [29].

Compared to the other languages researched and discussed in this paper, Python

(CPython) contains a Global Interpreter Lock (GIL) that allows only one thread to process

execution instructions during runtime. This GIL significantly improves single-thread

performance by reducing the number of thread locks necessary during program execution.

21

A thread lock manages and limits the assignment of resources to a single C P U thread so

that other threads cannot pull from the same pool of operating system resources. The GIL

introduced in Python (only in the CPython interpreter/compiler, the default implementation

of the Python programming language) prevents programs from running on threads in true

parallel, but only concurrently. If a user targets two different threads with python code, the

GIL will prevent these two threads from running in parallel and will execute using threads

concurrently [30]. Typically, asyncio is used to run Python coroutines concurrently and

decide when they start and end execution [31]. It can be understood by recalling that

multithreading involves concurrency, while multiprocessing is true parallelism. Below are

simple graphic displays of a program being executed using single threading vs.

multithreading:

Start WWW1 www2 www3

•2 BSCS +2 sees +2 sees

Processing
(very fast)

Total
i>= 6 sees

Time
Image 3 - Example of a single threaded program, source: [30]

Start

I
I

H -
I
I
I

www2 Processing
/ I (very fast)

r — \ www3

•2 na
Total

- 2 sees

Time
Image 4 - Example of a multithreaded program, source: [30]

22

It is apparent why the GIL in Python and languages that are strictly limited to single-

thread execution have a strong effect on large and scalable applications implemented

through WebSocket. If there is heavy real-time resource usage and requests sent to be

processed by the backend, then single threaded execution won't be fast enough to manage

all the requests.

The CPython interpreter includes its own compiler and virtual machine, which itself

interprets the bytecode of the source code once compiled. The first step in the execution of

a Python program takes part with the Python compiler, which compiles each statement in the

source code into .pyc byte code groups after parsing through and checking for syntax errors

(this helps with the speed at which files are loaded, once compiled). The Python virtual

machine (PVM) takes the byte code as input, as well as library modules, and converts the

byte code groups into machine code so that the processor can execute it through the P V M

[32]. By using an implementation such as PyPy, developers can program in Python and

execute using a JIT compiler. PyPy generally runs faster than CPython due to the JIT

compiler and is preferred for longer run time programs with many types. PyPy has limited

support for C extensions and runs them at slower speeds [33].

Python uses strong and dynamic typing. An object type cannot change without

explicit conversion, and object types can be changed freely during runtime [34, p. 344].

The dynamic nature of Python allows for better reuse of code and easier integrations of

interfaces without facing issues early on in implementations [34, p. 344]. Python's syntax

is very comfortable to use for many developers, as it looks like pseudocode [34, p. 441].

The library used for the development of WebSocket servers in Python is called

'websockets'. It is simply installed with pip and allows for WebSocket server setup in

cooperation with asyncio. The websockets library is very simply to use and required

minimal troubleshooting [35].

Python is not primarily used by companies to directly manage the handshakes web

application servers make, but to handle automation, scripts, machine learning, numerical

operations on data, and a wide range of additional tasks on the server side. For example,

Google has been using Python since its early days. The director of research at Google, Peter

Norvig, stated, "Python has been an important part of Google since the beginning and

remains so as the system grows and evolves. Today numerous Google engineers utilize

Python, and we're searching for more people having the skills of this language." The

23

company uses it due to its easy maintenance, simplicity, AI7ML capabilities, and capacity

for functionality in robotics projects [36]. Netflix also implements Python in their large

streaming service application ecosystem. The company has dynamic software written in

Python to strengthen the security of their infrastructure, examine and analyze data reports,

and listen for various alerts [36]. In addition to this, Netflix also uses Python for machine

learning to algorithmically sort and distribute films and shows to users, enhance and evolve

the streaming service, and pull images from videos to create the thumbnails seen for all video

content on the site [36]. Just as with Google, this goes to show that Python is highly utilized

for company security maintenance and operation, number crunching, data analysis, and for

creating and maintaining powerful machine learning models.

3.4.4 Crystal

Crystal is a relatively new language, with version 0.1.0 officially released in June 2014

[37]. The initial start of the project began in 2011 with Ary Borenszweig [38, p. 1]. The core

team consists of 8 developers and more than 450 contributors to the language [39]. Crystal

was designed to function as a high-performance version of Ruby. "Crystal brings much

greater performance in places where Ruby is in need of it" [38, p. 5]. This is in part due to

Crystal being statically typed and compiled, not interpreted like Ruby.

Crystal does support concurrency, but not in the standard format through threads and

thread locks and schedulers [40]. A fiber starts with a stack size of 4kb and can grow to a

maximum of 8MB, which is the standard memory usage for a thread. On a 64-bit machine,

millions of fibers can be spawned [38, p. 160]. As standard threads are preemptive (OS can

interrupt a thread and the scheduler will switch to another as needed without direct access

from the active thread), fibers are cooperative and can manually yield control and allow

various other threads to begin processing before these finish [41]. This is helpful as it reduces

the thread switching overhead. The runtime schedule within Crystal already has a group of

fibers ready for execution, an event loop fiber that checks for async communications to be

executed, and then fibers that are waiting to execute with the yield command. This provides

room for other fibers to execute if necessary while the aforementioned fibers yield [41]. As

of September 2019, Crystal implemented parallelism and fibers are able to be instantiated

on each core's threads and share memory, only requiring developers to synchronize state

among the fibers. This feature is still heavily in development and is not yet fully stable [42].

24

The capacity for multiprocessing is of great use for the practical part of this thesis, especially

for WebSocket communication I/O handling.

Crystal is a compiled language; the Crystal compiler is self-hosted, meaning that it

is written natively in the Crystal language itself. This allows for much easier understanding

of how it works behind the scenes, providing for quick debugging when necessary [38, pg.

4]. Crystal is statically typed and has type inference. This means that the compiler can infer

the type of a variable if not explicitly given, variables must always have inferred or explicitly

given types before run-time [43]. Crystal programs are compiled into native executable

binary code and executed immediately after this process is finished [38, p. 6]. Code is

compiled using the L L V M toolchain and is not interpreted or compiled through an abstract

machine such as a V M , compared to other languages [38 p. 7]. The smart compiler has many

built in functions to catch errors before the testing or production phase of a program. This

includes static type-checking, preventing nil pointer exceptions, and other predefined input

tests. For example, empty arrays will cause the compiler to return an error as it cannot

assume the type, and this needs to be strictly defined beforehand, unlike in Ruby. However,

there are many situations in which types are inferred for objects and don't need to be

explicitly set before runtime. The compiler prevents objects that would result in user error

when developing and not providing types, allowing for more efficient and robust code [38,

p. 24]. Crystal union types are used very commonly and allow instances of values to hold a

set number of types. This is important in Crystal for simplified exception handling and

debugging. Union types are powerful as they allow for expressions to hold multiple possible

types at runtime, the Crystal compiler checks that any method calls using the defined

expressions are valid within the range of union types in said expressions [38, p. 25].

25

Performance times and memory usage in Crystal are quite admirable when compared

to other languages; in the chart below are performance and lines of code statistics derived

from a study comparing the efficiency of several compiled languages adjacent to Crystal.

Language Timefs) Memory (Mb) Lines of code (LOG)

C++ 1.94 1.0 101

R j s t 2.42 4.B B6

Crystal 2.91 \.l 77

N i m 3.14 OA 9 8

Go •1.2 J 0.0 124

|ava 4.03 S 1 3 £ 1 3 6

Image 5 - Implementation of a simple interpreter, source: [38, p. 8]

In combination with Crystal, The Kemal Framework will be used to speed up and

optimize our code for WebSocket programming within Crystal. Kemal is an intuitive and

modular web framework architecture developed by Serdar Dogruyol [38, p. 175]. The

baseline requirements for Kemal to run have CPU and memory requirements listed at +/-

1MB. Considering how fast Crystal processes execute, these requirements are certainly

impressive. This framework provides a RESTful interface, which means that it was built to

adhere to the REST API specifications [38, p. 177]. Compared to the Ruby Sinatra

framework, Kemal can process approximately 28 times more requests per second. This is

very impressive considering the speed at which the Sinatra web framework can function, and

the large number of applications built with it in modern development.

The communities for both Crystal and Kemal are quite sparse in comparison to those

of the other languages and frameworks mentioned in this paper. As discovered in the

practical section, it has a community size similar to that of the Elixir language. This lack of

support is due both to the youngness of the language and to the rate at which it has been

adopted among developers worldwide. Both the Framework and the language do uphold an

actively updated documentation page and offer for users to send in questions if they need

assistance regarding the technical details of each system. Installing additional libraries or

frameworks in Crystal is very simple and only requires for the names of dependencies to be

26

added into a shards.yml file, and then be executed with the command 'shards install' [44].

The simplicity of this dependency manager proved to be very comfortable to work with in

the practical section.

A web server written with the Crystal standard library performs better than web

servers written in Node.js, Nim, Rust, and Scala [38, p. 9]. When paired with Kemal, we get

a performance output that exceeds that of Sinatra/Rails (Ruby), Pheonix (Elixir), and even

Martini/Gin (Go). A l l this information makes Crystal stand out in instances of web server

application programming. As visualized in the practical part of this thesis, Crystal ranked

extremely well in high-performance computations. As an example of the impressive

performance of this language, listed are examples of companies using Crystal at the

enterprise level even though it is such a young language, as stated by Ivo Balbaert and Simon

St. Laurent: "Some 15 companies, such as ProTel, Bulutfon, DuoDesign, Appmonit,

RainForest QA and Manas itself, already use it for production projects. Some of them, such

as ProTel and Bulutfon, experienced scaling problems with their Ruby server infrastructure.

For that reason, they rewrote their web service using the Kemal framework in Crystal. In

one instance at ProTel, 100 Unicorn workers could be replaced by a single Kemal process

to do the same amount of work" [38, p. 16].

Another example of Crystal being used in a company is provided in a discussion by

the founder and CEO of Red Panthers P. S. Hartsankar, a Ruby on Rails development studio

which builds web/mobile applications: "Our local dashboard for the previous POS system

was too slow: delay of seconds during a sale is not acceptable. The client required a better

response time at the local readers, so we rewrote it in Crystal and are now able to provide

a 10 to 15 micro-second response, a 200,000x improvement! We are a Ruby on Rails firm,

and i f Crystal hadn't existed, our client was leaning toward C++ or Go since we had also

worked in Go before. But using Crystal felt more natural for us as we already have parts of

the code written in Ruby. It helped us to easily port these to Crystal" [38, p. 16]. This shows

the potency of Crystal as a web application development language and how it can perform

at blazingly fast speeds, essentially providing a fast and comfortable alternative to C++.

27

3.5 Multi-Criteria Decision Analysis

The M C D A method is a globally used technique for weighting and scoring various

parts of some system or research to assist with higher-level decision making [45, pp. 9-10].

M C D A provides an ordering of options after the final sum of weighted totals are

calculated. This technique allows for a complex mixture of variable criteria to be analyzed

together, but in a modular way as that each criteria's results can provide valuable

information about itself and the other criteria it is being ordered against.

These separated parts of the studied and analyzed material can then be combined

with all the other parts and generalized to assist other readers in their decisions and

opinions of the referenced material. This thesis should not force others into a decision, but

rather guide them along gently to make their own informed decisions based off the context

provided. Weights and scores for the analyses need to be consistent across all variables, to

appear as objective as possible, and when the decisions are purely subjective, the evidence

for the scoring is backed up by evidence from practical experience [45, p. 46].

The image below provides a breakdown of the steps that will be generally followed

in the following practical section of this thesis, and a portion are described in further detail

further on as well.

28

1. Establish the decision context

1.1 Establish aims of the MCDA, and identify decision makers and other key players.

1.2 Design the socio-technical system for ton ducting the MCDA.

1.3 C o n sider t he context of the a ppraisa I.

2. Id entity the options to be appraised.

3. Identify objectives and criteria.

3.1 Identify criteria for assessing the consequences of each option.

3.2 Organise the criteria by clustering them under high-level and lower-level objectives in a hierarchy.

4. 'Scoring'. Assess the expected performance of each option against the criteria. Then assess, the
value associated with the consequences of each option for each criterion.

4.1 Describe the conseq Lie nces of th e opt ion s.

4.2 Score the options on the criteria.

4.3 Check the consistency of the scores on each criterion.

5. 'Weighting'. Assign weights for each of the criterion to reflect their relative importance to the
decision.

6. Combine the weights and scores for each option to derive an overall value.

6.1 Calculate overall weighted scores at each level in the hierarchy.

6.2 Calculate overall weighted scores.

7. Exam i ne the resu Its.

S. Sensitivity a n alysis.

8.1 Conduct a sensitivity analysis: do other preferences or weights affect the overall ordering of the
options?

8.2 Look at the advantage and disadvantages of selected options, and compare pairs of options.

8.3 Create possible new options that might be better than those originally considered.

8.4 Repeat the above steps until a 'requisite' model is obtained.

Image 6 - M C D A detailed steps, source: [45, p. 50]

3.5.1 Selection of Criteria

Criteria that will be aggregated and analyzed during the practical M C D A matrices are

decided upon after the completion of the backend servers and frontend client and are able

to change throughout the analyses. The selected criteria must be independent and

measurable so that they are able to be assessed in some qualitative setting when necessary.

A l l criteria must be measured against an objective that will lead to an ordered result of

criteria performance at the end of the analysis [45, p. 11].

Criteria weights are subjectively assigned based on a predefined valuation of the

categories that are scored in the M C D A matrices. These weights are used to prioritize the

value of different categories of performance scores and are used by multiplying them with

the relevant scores to provide a final weighted score. By assigning weights that are backed

up with evidence of specified priority, analysis of the scoring can be easily visualized to

29

assist with identifying the more/less important scores in analyses - providing a more

concrete and relevant final scoring for the analysis matrices.

Feedback about choices and performance of the selected criteria is crucial for

continuing the analysis and capturing more accurate data as it progresses by learning from

the existing results. Data from this thesis can be shared with colleagues and then

modified/improved based on the expressed subjective opinions of any involved party [45,

p. 13].

3.5.2 Measured Criteria Options

There is a quantitative and qualitative matrix populated with the necessary results

based on variables that are most relevant for these analyses. The justifications for the

weighting and the measured variables are clarified in the relevant sections below. The

qualitative analysis is included as a sort of complementary addition to the primary analysis

- the quantitative M C D A . There are key differences in how the qualitative and quantitative

matrices are populated and measured as listed below:

• Quantitative analysis consists of data measured purely objectively as a result of

output from the used system. The results are based on raw performance outputs and

are aggregated as such, with no subjective influence besides the final weighting of

scores.

• Qualitative analysis consists of primarily subjectively allocated numeric values

measured based on the experience and studies of the researcher conducting the

analysis. Decisions on scores can be derived from certain objective data gathered

through the research process but consist of a majority of subjective opinion.

Weights are subjectively decided upon, as with the quantitative analysis.

3.5.3 Calculating Results and Sensitivity Analysis

The results of both qualitative and quantitative matrices are normalized (if applicable)

and summed for a final performance score that provides a distinct ordering of the analyzed

criteria. Based on the resulting ordering of results, a discussion surrounding the results will

be formulated and evaluated to summarize the research performed and concluded. In the

case of min-max normalized performance scores, the lower final scores will be ranked as

30

the better potential outcomes whilst the higher will be ranked as the worse potential

outcomes. In the case of no normalization, the highest scores will be ranked as the best

potential outcomes, and the lower scores will be ranked as the worse potential outcomes.

A sensitivity analysis will be performed to expose the differences in results when the

weights for certain categories are modified differently from the optimal weighting

proposed for the criteria. This will highlight the differences in performance score ordered

results when priority is placed on different criterion. After the analysis is complete, the

results will be discussed and measured against each other in order to describe the situations

in which the different weighted categories would be advantageous or disadvantageous

regarding the resulting performance scores [45, pp. 99-101].

31

4 Practical Section

4.1 Practical Overview

The purpose of the following practical section is to benchmark each language and

ascertain which situations they perform best in. Backend WebSocket servers were

developed and then set up to interact with a frontend client which instantiates large

amounts of users connecting to the server. Load tests with varying numbers of users and

processes were triggered for each server to test how well each programming language's

server application could perform under different levels of stress. The development

environment was set up to mimic common intermediate developer environments, and the

frameworks/libraries chosen for WebSocket development in each language were those that

provide the most intuitive and streamlined functionality. M C D A matrices were modeled to

explore the various scores of selected criteria in both qualitative and quantitative settings

for the four languages. By having performed multiple rounds of testing at different levels

that imitate real-world web applications, a conclusion was formulated that derives the

advantages and disadvantages of each language in similar real-world situations.

4.2 The Development/Testing Environment

A l l server applications were written using the Atom text editor on a Windows 10

system. The Windows Subsystem for Linux was installed and utilized for scripting and

load testing purposes. The goal was to emulate an environment in which beginner-

intermediate developers would be most commonly desiring to study and develop their

applications.

The specifications of hardware/software that were actively utilized during development

and load testing are as follows:

• CPU: Ryzen 7 3700x

• R A M : 16GB 2400 MHz

• GPU: NVIDIA R T X 3070

• OS: Windows 10 Build 19044 with Ubuntu 20.04 and WSL version 1

32

Languages and Frameworks:

• Python 3.8.10 using the 'websockets' library

• Crystal 1.2.2 using the Kemal framework

• JavaScript using the Node.js 17.3.0 runtime environment with the 'ws' library

• Elixir 1.13.0 using the RiverSide framework

An interesting side note is that using bash in the Ubuntu console client vs. bash in C M D

results in a significant difference in web server performance. The Ubuntu console is

approximately 1.5 to 2 times slower, which makes it seem like the implementation is

slowing down the processes. This is not relevant for performance scores as the results

gathered were consistent across one system.

4.3 Web Application Benchmarking Software

Artillery was used as the first load testing client, and most of the existing tests were

performed with this software [46]. However, Artillery did not include the ability to

benchmark response times using actual data from the WebSocket connection. It only allowed

for measurements of the opening/closing connection; hence why an alternate tool was found.

The next-best tool was k6. The load testing tool k6 was used for the WebSocket

client-side virtual user (VU) instantiation and messages sent from said VUs. For the script

that was used, there were a set number of virtual users to create and how many iterations of

the exec function to process per V U [47]. When a WebSocket connection was initiated, it

would execute the code block of event handlers based on data sent form the server and wait

for a close request from any source. The JavaScript file with the configuration and socket

event handlers is seen in image 7.

33

import ws from 'k6/ws'j
import { check } from 'k6'j

export const options = {
discardResponseBodies: t r u e ,
s c e n a r i o s : {

c o n t a c t s : _ j
executor: ' p e r - v u - i t e r a t i o n s ' ,
vus: 1000,
i t e r a t i o n s : 100,
maxDuration: 'lh30m',

h
b

b
export d e f a u l t f u n c t i o n () {

const u r l = 'ws://localhost:3000';
const params = { tags: { my_tag: ' h e l l o ' } };

const res = ws.connect(url, params, f u n c t i o n (socket) {
socket.on('open', () => console.log('connected'));
socket.on('message', (data) => {console.log('msg r e c e i v e d ') ;

socket. c l o s e Q }) ;
s o c k e t . o n (' c l o s e ' , () => c o n s o l e . l o g (' d i s c o n n e c t e d ')) ;

});

check(res, { 'status i s 101': (r) => r && r . s t a t u s === 101 }) ;
}

Image 7 - k6 WebSocket client program, source: [47]

The script was run within the sub and master scripts, and once a server was started,

this connected to the servers over port 3000 and initiated the send and receive functions.

Meta-analysis was performed on all benchmark files and averaged then normalized to

obtain the final results, which are presented with the weighting applied.

4.4 The WebSocket Backend Servers

In the following section, there are code snippet examples of web servers that were

used for the necessary computational load testing. These are not the true variants used

during load testing but demonstrate how methods and events were written in each

language.

34

4.4.1 JavaScript

A version of the JavaScript WebSocket server can be seen in image 8 below.

const WebSocket = r e q u i r e (' w s ') ;

// C r e a t i n g a websocket i n s t a n c e , b i n d i n g t o port
const wss = new WebSocket.Server({port: 3000});
c o n s o l e . l o g (" D a v a S c r i p t server l i s t e n i n g on port 3000");

f u n c t i o n f i b (num) {
if(num <= 1) retur n 1;
re t u r n f i b o n a c c i (n u m - l) + fibonacci(num - 2) ;

}

// Handling when a WebSocket c l i e n t connection requests the i n i t i a l handshake
wss.on('connection', (ws) => {

f i b (35);

// Sends a message t o the connected c l i e n t
ws.send("");

// Event handling when c l i e n t sends data t o the server i n s t a n c e
ws.on('message', f u n c t i o n message(data) {

c o n s o l e . l o g (" ") ;
});

// On WebSocket c l i e n t connection c l o s e w r i t e disconnect message
ws.on('close', f u n c t i o n c l o s e Q {

c o n s o l e . l o g (' c l i e n t disconnected");
});

Yh
Image 8 - JavaScript WebSocket server, source: Own work

Creating the JavaScript backend was quite straightforward, and it functions as expected for

a WebSocket communication server.

35

4.4.2 Elixir

An example of two of the four necessary program files for the Elixir WebSocket server can

be seen in images 9 and 10 below.

Define event handler module
defmodule WebSocket.Handler do

use Riverside., otp_app: : websocket_server

def f i b (n) do
i f n<=l do

1
e l s e

f i b (n - l) + f i b (n - 2)
end

end

Decorator t o add R i v e r s i d e framework f u n c t i o n a l i t y t o below f u n c t i o n s
A l t e r n a t i v e l y , use (S>decorate_all <decorator> t o cover a l l f u n c t i o n s i n a

module
@impl R i v e r s i d e

Create WebSocket Instance c a l l b a c k f u n c t i o n , handler
def i n i t (s e s s i o n , s t a t e) do

f i b (3 5)

Send message t o c l i e n t
deliver_me("")
{:ok, s e s s i o n , s t a t e }

end

(Simpl R i v e r s i d e

P r i n t message on r e c e i v a l from c l i e n t and r e t u r n t o sender c a l l b a c k
f u n c t i o n

def handle_message(msg, s e s s i o n , s t a t e) do
10.puts msg
deliver_me(msg)
{:ok, s e s s i o n , s t a t e }

end

@impl R i v e r s i d e
def terminate(reason, s e s s i o n , s t a t e) do
Perform socket c l o s e cleanup f u n c t i o n a l i t y i f necessary
:ok

end
end

Image 9 - handler.ex program file - part of the WebSocket server, source: Own work

36

Define A p p l i c a t i o n module
defmodule WebSocket.Application do

A p p l i c a t i o n entry point
S p e c i f i e s s u p e r v i s o r behavior f o r R i v e r s i d e handler
use A p p l i c a t i o n

@impl t r u e
def s t a r t (_ t y p e , _args) do

10.puts " E l i x i r server l i s t e n i n g on port 3000"

Set c h i l d spec
[

{ R i v e r s i d e , [handler: WebSocket.Handler]}
]

S t a r t s the sup e r v i s o r with one-for-one s t r a t e g y
with the custom R i v e r s i d e handler
|> S u p e r v i s o r . s t a r t _ l i n k (
I f a c h i l d d i e s , only one w i l l be r e s t a r t e d , i n t h i s case only t h i s one
st r a t e g y : :one_for_one,
name: WebSocket.Supervisor

)

end
Image 10 - application.ex program file - part of the WebSocket server, source: Own work

The Elixir application was the most difficult to put together and understand functionally

due to the separation of program files and the necessity for a specific implementation as

required through the Riverside framework.

37

4.4.3 Python

A version of the Python WebSocket server can be seen in image 11 below.

import asyncio
import websockets
PORT = 3000

Used t o slow down speed of responses
def f i b (n) :

i f n <= 1:
ret u r n 1

re t u r n f i b (n - l) + f i b (n - 2)

Handler takes i n s t a n c e of websocket c l i e n t
async def handler(websocket):

f i b (3 5)
await websocket.send("")

Try used t o catch when c l i e n t connection i s closed
t r y :

async f o r message i n websocket:
p r i n t (" ")
await websocket.send(message + " <- message sent from c l i e n t ")

P r i n t WebSocket c l i e n t disconnect message on c l o s e , t r i g g e r e d by disconn
e r r

except websockets.exceptions.ConnectionClosed as e:
p r i n t (" C l i e n t disconnected")
p r i n t (e)

S t a r t the WebSocket server and take handler c o r o u t i n e , host, and port
ss = websockets.serve(handler, " l o c a l h o s t " , PORT)
p r i n t ("Python server l i s t e n i n g on p o r t : " + str(PORT))

Run s t a r t server once
a s y n c i o . g e t _ e v e n t _ l o o p () . r u n _ u n t i l _ c o m p l e t e (s s)

Continue event loop so t h a t server stays a l i v e
a s y n c i o . g e t _ e v e n t _ l o o p () . r u n _ f o r e v e r ()

Image 11 - Python WebSocket server, source: Own work

The Python server was not particularly difficult to create and understand functionally.

38

4.4.4 Crystal

A version of the Crystal WebSocket server can be seen in image 12 below.

r e q u i r e "kemal"

def f i b (n)
i f n <= 1

1
e l s e

f i b (n - l) + f i b (n - 2)
end

end

Create websocket handler, matches the port on l o c a l h o s t
ws "/" do I socket I

f i b (3 5)

Send message t o the connected c l i e n t
socket.send ""

on c l o s e returns c l i e n t disconnect message and c l i e n t socket PID
socket.on_close do |_|

puts " C l i e n t disconnected: #{socket}"
end

end

Kemal.run
Image 12 - Crystal WebSocket server, source: Own work

The Kemal structure implemented within Crystal was very straightforward and concise. A l l

project files including program files, master and sub-scripts, load testing results, and

required framework files for the thesis work were kept up to date on a private GitHub

repository for organization and versioning purposes.

4.5 Server/Client Execution Master and Subscripts

A set of scripts were written to ease the process of testing the servers with various load

sizes and programs. One master script executes the subscripts in a serial order that can be

modified for different testing approaches. A subscript exists for every individual

serial/concurrency load test and is executed in the order specified in the master script.

Below is an example (with the crystal server utilizing 8 cores) of how the separate

scripts initiate one server, run the load test k6 script, and then consequently shut down the

server and send data results to a file.

39

############# CRYSTAL
p u s h d C r y s t a l / c r y s t a l _ s e r v e r _ c o i i p u t e /
CRY5TAL_W0RK1ERS=8 . / c r y 5 t a l _ 5 e r v e r _ c o n p u t e 3 6 & # s e r v e r p r o c e s s sent to background to allow for other cmds
c r _ p i d = $!
p o p d
p u ^ h d J a v a S c r i p t / j a v a s c r i p t c l i e n t /
s l e e p 2 •# allow the s e r v e r to startj tahes longer with he/nal in crystal
fc6 r u n $ t e s t > t e s t r e s u l t s / c r y s t a l _ r e p o r t _ S . t x t
s l e e p .5
k i l l $ c r _ p i d # hill last s e r v e r r u n n i n g i n background
p k i l l - f ' c r y s t a l ' ffhill all cached crystal run processes
e c h o -e " \ n * * * * * * * A * * * A A * * A A * * * A * * * * * * C R Y S T A L _ 8 s\Jt™RY***************************\n\n\n" >> t e s t _ r e s u l t s / c r y s t a l _ r e p o r t _ B . t J c t
p o p d

Image 13 - Subscript for server init/kill (Crystal 8-core section), source: Own work

Each script sends the output of each individual client/server process concatenated into one

output file at the end of all processes. The resulting file is then used to succinctly analyze

the time performance results of each language's server. These outputted results were then

used to fill in the criteria results in the quantitative M C D A matrix.

4.6 Qualitative MCDA

This section is meant to be a short analysis on the languages used and their pros and

cons. It does not factor into the final decision of optimal criteria for cooperative application

development using WebSocket. It simply provides a succinct overview of the subjective

experience of programming in and learning about each language during the practical part.

Based on the experience and practical work performed with each language, a

qualitative analysis was performed to provide insight into the development process

throughout the duration of this thesis. The outcome of the qualitative analysis of the

languages does not have a high priority in fulfilling the objectives; however, it is important

for developers to work with a language that is comfortable and manageable for them. In the

results and discussion, the criteria results were analyzed and compounded along with the

quantitative results to provide a summary of which languages are optimal in different

situations. The selected criteria used to subjectively analyze all four languages are as

follows:

• Flexibility/Extendability: This criteria measures the capabilities of the language in

question to extend existing features or provide entirely new ones by writing code in

the language itself. Specifically, this criteria focuses on the ability to do this in a

way that makes the new/changed features look similar to existing language

40

constructs. Related concepts include: Macros, Reflection, Self-Modifying Code,

Monkey Patching, & DSLs

• Syntactic Sugar: Syntactic Sugar refers to the inclusion of superfluous language

constructs and expression forms that provide a more terse or expressive

representation for a given language feature. Some examples of Syntactic Sugar

include: List Comprehensions, Multiple Assignment, Augmented Assignment,

Block Arguments, Keyword Arguments, String Interpolation

• High Levelness: This criteria expresses the overall abstractness of the given

language, that is, how distant code written in the language is from its eventual

representation in executable machine code. High level languages provide many

facilities which abstract over the mechanics of their execution which help to

simplify programming, mitigate many types of bugs, and make code written in

these languages easier to reason about. Examples of High-Level features include:

Garbage Collection, Advanced Type Systems, Concurrency Models, Error

Handling Facilities, and Abstraction Paradigms (i.e. OOP or Function Level

programming)

• Language Documentation: This criteria measures the existence of basic

documentation resources for a given language including information on the usage

of built-in language features and constructs, along with indexes of Standard Library

Classes/Functions and examples/instructions on their use.

• Libraries/Modules: This metric represents the availability and extensiveness of 3rd

party codebases for a given language. This includes libraries and frameworks which

extend the functionality of the language or provide facilities for more elegant

expressions of frequently used code patterns.

• Communities/User Base: This criteria factors in all the existing communities and

size of the developer user base for the language. Search result hits and stack

overflow communities were analyzed to come up with a generalized result.

The table below factors in the above criteria and displays the results of each language with

low, average, or high rankings of the languages. Plus and minus signs are used to add or

diminish priority on the values. Table 2 provides a detailed analysis of table 1 and provides

numeric values which were weighted and totaled.

41

Criteria JavaScript Elixir Python Crystal

Flexibility/Extendability Average Low+ Average- High

Syntactic Sugar Low Average+ Average High-

High levelness High High High High-

Language Documentation High High- High High-

Libraries/Modules High Average High Low+

Community/User Base High- Low+ High Low

Table 1 - Qualitative matrix, approximate rankings, source: Own work

Criteria JavaScript Elixir Python Crystal Criteria

Weights

Flexibility/Extendability 8.0 6.5 7.5 10 .3

Syntactic Sugar 5.0 7.5 6.0 8.0 .05

High levelness 10 10 10 9.0 .05

Language Documentation 10 9.0 10 9.0 .2

Libraries/Modules 10 7.5 10 6.5 .2

Community/User Base 9.0 6.5 10 6.0 .2

Total Unweighted 52 47 53.5 48.5

Total Weighted 8.95 7.425 9.05 8.15

Table 2 - Qualitative numeric matrix, source: Own work

42

4.7 Qualitative Decisions for Weights

The weights shown in the previous M C D A matrix were constructed based on the results

and evidence listed below:

• Flexibility/Extendability: Highest weight due to the criticality of this metric in

regards to the subjective usage of a language. Extendability is the essence of a good

language, in that it enables the extension/addition of features not covered by the

core language. Because 3rd party frameworks/libraries were being used for

Websocket functionality, this metric is an important measure of usability for this

use-case.

• Syntactic Sugar: Lowest weight tied with high-levelness. Not essential in any way,

simply a measure of the amount of bells-and-whistles a language provides that

enhance usability.

• High-levelness: Important metric for language usability overall, however all the

languages included in this thesis were fairly high-level, and thus this this was an

insignificant criteria on which to compare them.

• Documentation: Important metric for language usability, in that without proper

documentation of the core language it is impossible to understand how to use the

language/STDLIB in the first place.

• Libraries: Important metric because without existing libraries/frameworks much

functionality would have to be re-invented for a language. This is especially

relevant regarding the topic of this thesis: WebSocket implementations.

• Community: Important metric that runs parallel to Documentation/Libraries.

Without a substantial community of users, a language will not have enough 3rd

party code or discussions of errors/features to be usable.

43

4.8 Quantitative MCDA

The quantitative analysis focused on testing criteria that can accurately generalize

real world scenarios of web application computational intensity. The Fibonacci algorithm

(starting from 1) was implemented naively to emulate a computation involving many

nested function calls and arithmetic. In terms of what the selected criteria are measuring -

10,100/100,1000 is serial testing and 100,10/1000,100 is concurrency testing. For the

former, testing was done with fewer concurrent VUs and more operations per V U . With

the latter, testing was done by instantiating more concurrent VUs but performing less

operations per each V U . It was necessary to focus on both concurrent and serial testing, as

with real applications these parameters vary greatly depending on the purpose and scope of

the application. The tests performed were sufficient to gather the necessary amount of

relevant data to fulfill the objectives of this thesis. The criteria chosen for testing client

virtual user handling and processes with the servers in each language are the following (the

first number denotes the number of virtual users and second how many serial processes to

execute for each virtual user. Comma separated values after the dash are separate load test

variants executed with the prefixed VU/processes parameters):

• 10, 100 - No Fibonacci, Fibonacci 20, and Fibonacci 36

• 100, 10 - No Fibonacci, Fibonacci 20, and Fibonacci 36

• 100, 1000 - No Fibonacci, Fibonacci 20

• 1000, 100 - No Fibonacci, Fibonacci 20

For the load testing, a total of 8 separate tests were run for the four languages which

make up the column criteria, and the speed at which each language performs the previously

described load tests is measured in seconds. For Crystal and Elixir, variants of the lowest

and highest number of cores possible to use will be declared for program executions. As

this is not possible for Python and JavaScript, they only have one possible program

execution configuration. Below are the criteria used for each of the languages:

• Crystal using 1 core

• Crystal using 8 cores

• Crystal using 1 core and compiled with -release

44

• Crystal using 8 cores and compiled with —release

• Elixir using 1 core

• Elixir using 8 cores

• Python

• JavaScript

Each available load testing script was run three times for each language and the mean

is derived in order to work with more accurate data. The scripts individually output data

results, and those results were then all concatenated into one file. These concatenated results

were originally outputted from the k6 load testing framework that returns the time of process

completion in seconds which is used for the results in the M C D A quantitative matrix below

(table 3). The memory test was performed by screen recording the resource monitor Private

(KB) memory counter and using the highest value reached during the trials. Table 3 displays

the quantitative performance matrix of load tests which were averaged over three runs each.

The Fibonacci sections measured results in seconds, and the R A M sections measured results

in the maximum number of megabytes reached for the language during load testing.

45

The superscript * denotes the original values prior to outlier modification

The superscript ** denotes that the performance results of JavaScript must be observed skeptically
Criteria JS Ex 1 core Ex 8 cores Py Cry 1 core Cry 1 core

Release

Cry 8 cores Cry 8

cores

Release

Criteria

Weights

Red lettering = Min/Max Normalized, Blue cells = Worst score, Green cells = Best score

NoFib

10, 100 1.00 1.087 1.60 1.348 1.50 1.304 0.80 1 2.80 1.870 1.50 1.304 3.10 11 1.40 1.261 0.092

100,10 0.70 1.111 1.20 1.667 1.40 1.889 0.60 1 1.20 1.61 1.20 1.667 1.50 11 1.50 11 0.092

100,1000 117.1 1 123.7 1.117 117.3 1.004 173.7 11 129.1 1.212 119.7 1.046 153.7 1.647 151.2 1.602 0.092

1000, 100 80.8 1.388 110.5 1.719 135.7 1 1 127.4 1.907 46.0 1 47.1 1.012 122.3 1.851 134.9 1.991 0.092

Fib20

10, 100 1.0 I 1.8 |.533 1.5 |.333 2.5 1 1.2 1.133 1.2 1.133 1.4 1.267 1.4 1.267 0.092

100,10 0.9 1 1.3 |.286 1.4 |.357 2.3 1 1 1.3 |.286 1.2 1.214 1.5 | . 429 1.5 | . 429 0.092

100,1000 117.4 1 0 137.0 1.171 127.6 1.089 232.2 1 1 137.8 1.178 136.3 1.165 158.6 1.359 155.3 1.330 0.092

1000, 100 83.2 1.352 98.8 1.511 146.6 11 79.2 1 50.2 1.014 48.8 |0 132.2 1.853 130.4 1.834 0.092

Fib36

10, 100 102.0 1.742 134.7 1 1 20.8 1.100 134.7 1 1

(2464.4)*
89.2 1.640 52.0 1.346 14.1 1.047 8.2 |0 0.092

100,10 101.9 |.748 133.6 11 20.2 1.100 133.6 1 1

(799.8)*
88.5 1.642 52.3 1.355 13.4 1.046 7.6 1 0.092

RAM max val.,

Fib20

100,1000 56.7 1.144 45.1 1.093 47.1 1.102 z 251.2|1 250.3 1.996 54.5 1.134 50.2 1.115 0.02

1000,100 69.1 1.162 70.8 1.171 56.2 1.089 z 189.1 |.836 218.3|1 164.1 1.696 116.4 |.428 0.02

RAM max val.,

NoFib

100,1000 56.2 1.069 44.2 1.043 48.5 1.052 24.8|0 255.0 1.507 478.8 1 1 35.5 1.024 48.1 1.051 0.02

1000,100 65.8 1.127 66.9 1.134 54.1 1.056 45.0 1 0 190.1 |.888 208.4 1 1 150.4 1.645 98.4 1.327 0.02

Normalized performance scores, totaled

Unweighted 2.93 5.793 4.475 7.218 6.873 6.238 6.998 5.635

Weighted 0.501 0.390 0.400 0.286 0.536 0.452

Table 3 - Quantitative performance matrix, source: Own work

A simple program was used with the NumPy library to quickly input load testing

data and return normalized values from 0 to 1 using min-max normalization.

46

import numpy as np
def norm(x):

min = np.min(x)
max = np.max(x)
range = max - min
re t u r n [(a - min) / range f o r a i n x]

x = [102.0, 134.7, 20. 8, 89.2, 52, 14.1, 8.2]
normX = norm(x)
roundNormX = [round(e, 3) f o r e i n normX]

print(roundNormX)
Image 14 - Min-max normalization program file, source: Own work

4.9 Quantitative Decisions for Weights

There are many varieties of web applications that fall into all three categories of

computations which were tested. Due to this, the full-scale quantitative M C D A

performance matrix is used when the weightings are equal for all computation categories.

The fib36 Python computation results were made equivalent to the second worst

performer, as the outlier minimizes the normalized result of all other criteria. This method

was chosen as it doesn't significantly affect the resulting performance scores for all tests.

The three various types of load testing completed include a simple message send and

receive with no computation, the server computing naive Fibonacci 20 on message

receival, and the server computing naive Fibonacci 36 on message receival. These three

cases were implemented to mimic scenarios in the real world of cooperative application

development. The naive Fibonacci algorithm was chosen because it is a good synthetic test

of numeric computation and many nested function calls. This being said, the results should

still be taken with a grain of salt as this test is highly artificial compared to the diverse

range of potential algorithms computed in real life instances.

Weights were initially set to be equal for all categories of computations in order to

gather information on the best performers for all scales of computational difficulty. It is

likely that the computation required for Fibonacci 20 would be the most representative of

real-world use case web server computations. However, due to the vast number of

applications that also do very little computation or very high levels of computation, it

cannot be assumed that there is any case that is the most relevant for this level of research,

47

and thus all three computation categories were analyzed equally in the M C D A sensitivity

analysis section.

As a reference, below are some examples of what types of web application might fall

into each of the tested computation categories:

Situations where little to no computation might be performed (ĽO performance) such as

with no Fibonacci computation:

• Web applications which pull from and push data into a database

• Web applications which are formatting data such as rendering an H T M L page or

simple data organization on a website

• Simple web app games or mobile games which are synchronizing states between

the server and connected clients

Situations where computations similar to Fibonacci 20 might be performed (standard

algorithms):

• Document editors/manipulators which perform sorting/typing/simple mathematical

algorithms on text

• Ranking algorithms on social media sites or forums for various criteria

• IOT applications which are monitoring real life sensory feedback and reacting as

necessary

• Online or mobile games with pathfinding and additional AI calculations

Situations where computations similar to Fibonacci 36 might be performed (high

performance computing [HPC], numeric crunching):

• Applications that perform image/video/audio processing; files are converted into

different formats

• Map based applications monitoring traffic and conditions or finding optimal routing

paths for calculating directions

48

By weighting all categories equally for initial performance scores and then

conducting a sensitivity analysis, a generalized group of results were used to make

informed decisions on the proficiency and use cases of each language for each

computational category.

4.10 MCDA Sensitivity Analysis

In addition to presenting an equal weighting for all computational load test criteria,

three variants were presented for the sensitivity analysis of the weighting for the

quantitative performance matrix. By clearly prioritizing each of the relevant load testing

categories, the stability and robustness of the matrix for the criteria weights were

discovered. Variance in performance was different when different weightings were

prioritized - but not by too grand of a scale. Additionally, the modifications of weights

changed the behaviors of the optimal solutions of the model. The following weights were

applied (Memory usage weights were left unchanged):

• Prioritizing NoFib

• Prioritizing Fib20

• Prioritizing Fib36

Table 4 presents all three of the additional weighting variants with the final results (in

seconds) and colorized cells for identifying optimal and least optimal performers.

49

The superscript ** denotes that the performance results of JavaScript must be observed skeptically

Computation Type

NoFib Fib20 Fib36 R A M Fib20 Ram NoFib

10,

100

100,

10

100,

1000

1000,

100

10,

100

100,

10

100,

1000

1000,

100

100,

1000

1000,

100

100,

1000

1000,

100

100,

1000

1000,

100

Weights - NoFib Priority

0.115 0.115 0.115 0.115 0.0575 0.0575 0.0575 0.0575 0.115 0.115 .02 .02 .02 .02

Performance Scores with Weights Applied and Summed

Jf

0.26

Ex 1 core Ex 8 cores Cry 1 core Cry 1 core

Release

Cry 8 cores Cry 8 cores

Release

Jf

0.26 9** 0.538 0.384 0.448 0.308 0.553 0.454

Weights - Fib20 Priority

0.0575 0.0575 0.0575 0.0575 0.115 0.115 0.115 0.115 0.115 0.115 .02 .02 .02 .02

Performance Scores with Weights Applied and Summed

JS Ex 1 core Ex 8 cores Cry 1 core Cry 1 core

Release

Cry 8 cores Cry 8 cores

Release

0.256** 0.518 0.36 0.72 0.383 0.279 0.461 0.396

Weights - Fib36 Priority

0.0575 0.0575 0.0575 0.0575 0.0575 0.0575 0.0575 0.0575 0.23 0.23 .02 .02 .02 .02

Performance Scores with Weights Applied and Summed

JS Ex 1 core Ex 8 cores py Cry 1 core Cry 1 core

Release

Cry 8 cores Cry 8 cores

Release

0.407** 0.662 0.495 0.33 0.362 0.289

Table 4 - Sensitivity analysis matrix, source: Own work

50

5 Results and Discussion

Based on the literature review and the performance data from the criteria provided

during the practical load tests, the objectives of the thesis were achieved. Practical

performance results and optimal rankings of languages were gathered to fulfill the goals of

the thesis. Qualitative features were documented to provide insight into the advantages and

disadvantages of working with of each of the languages.

Python was the language that was easiest to learn and work with during the duration

of this thesis, and JavaScript followed closely after. This was expected due to the

community size and the available online documentation for troubleshooting and

programmatic inquiries. Both have many frameworks and libraries online which create

opportunities to work on a wide range of applications. Crystal was very pleasant

syntactically, and overall comfortable to learn how to use from the official documentation.

Elixir proved to be the most difficult language to learn and work with practically, due to it

being functional and not primarily OOP like other languages. A l l in all, all of the

programming languages were manageable to work with and had abundant community

support and more than adequate official documentation. A l l the languages used are

recommended for use at any level of application development. Python and JavaScript are a

better choice for beginners, and Elixir and Crystal are ideal for more experienced

developers - although none are too simple or difficult to be neglected for projects of any

scope.

JavaScript performed the best as seen in the final performance scores of the

quantitative M C D A matrix, however, there is an issue with the way JavaScript was

performing the naive Fibonacci computations. From the extensive testing within the scope

of the WebSocket application, any sequence calculated below Fibonacci 37 by the V8

compiler was seemingly automatically caching the previous Fibonacci function results -

making it difficult to test JavaScript performance accurately against the other languages.

When monitoring the runtimes of the Fibonacci numbers 37 and higher, the results seemed

to be consistently sporadic in terms of performance timings, and thus no performance

results would be better in comparison to Fibonacci 36. This makes it appear like the V8

compiler was memoizing results automatically even when prompted to explicitly perform

the function in the naive exponential time complexity Fibonacci program. There were

attempts to disable compiler optimization to fairly test the language against the others, but

51

all were unsuccessful. Due to the unknown optimizations that occur with the JavaScript JIT

compiler, the quantitative results for the language were not acceptable. The optimizations

JavaScript utilizes do still give it value in this research, as the algorithm was implemented

identically to the others, but V8 was performing memoization from the JIT compiler, and

not explicitly from the written code. This provides evidence that JavaScript may often

output unpredictable results with many different types of algorithms and execute them

contrary to how the developer would expect them to be executed.

After accounting for the results of the sensitivity analysis, the supplementary models

provided an overview of results when pivoting the priority weights to different scales of

load tests. A total of four quantitative matrices were created and scored, ranked by

best/worst performance, and analyzed to provide a final overview of how each of the

languages perform.

JavaScript using Node.js performed well based on how it was computing the

algorithms but could not be reliably tested at lower computation levels. At the highest

computation level, JavaScript struggled to keep up with Elixir or Crystal, thus leaving it as

an optimal choice for developing applications without intensive number crunching. The

ability to easily learn the language and find information on how to develop with it from the

large community makes it a solid contender for developing WebSocket applications.

However, it would not be recommended to be used on its own in larger projects with more

intensive demands, due to the typing system, how the JIT compiler automatically optimizes

functions, and the pace at which it performs for larger number crunching/nested function

computations.

Factoring in the JavaScript memoization issue, the next-best performer during the

sensitivity analysis for serial and concurrency testing was the Crystal programming

language. Both the 1-core and 8-core executions of the Crystal program computations had

high overall rankings. The results indicated that Crystal performs very well under light,

midline, and heavy computational loads. The recent addition of parallelism to the Crystal

language provided a significant amount of value to its performance for intense

computations - whilst during lighter computations it performed tremendously well with its

original single core implementation. The Crystal language alongside the Kemal framework

is strongly recommended to be used for WebSocket application development.

Elixir performed similarly to Crystal, the variance in performance scores was

dependent on the type of computation and intensity of numeric computation. The

52

difference being that when utilizing eight cores, elixir consistently performed better than

when it was executing on one core. This is implied since Elixir was natively designed to be

using all available cores on machine during its execution. Overall, it was the next best

contender to Crystal after reviewing the outcomes calculated during the sensitivity

analysis. It is strongly recommended to use Elixir for developing applications with

rigorous computational and function management demands, particularly with large

amounts of concurrent users.

Python ranked the lowest in all final outcomes of the quantitative performance score

matrices. It was the best performer during the NoFib computation tests, but only at the

lowest level of serial and concurrent computation. This was an expected outcome due to

Python being a purely interpreted language and being thread-locked by the GIL. It is not

recommended to use CPython for WebSocket application development under any scenario,

besides very specific cases (small applications, learning to program with WebSockets, as a

supplementary language for non-web-based communication functions). The better

alternative would likely be to use an implementation of Python such as PyPy due to the JIT

compiler, when it is applicable.

Random-access memory usage of each of the languages showed that all languages

besides Crystal were allocating a similar amount of maximum Private memory to their run­

time processes. During multiple rounds of testing, Crystal was the only language that

suffered from a memory leak on one occasion, hitting a peak of 2GB at its peak. This was

experienced on the 8-core execution and is likely a fault due to how young the

implementation of parallel processing is in Crystal. Overall, memory readings did not

significantly impact the review of each language.

53

6 Conclusion

The primary aim of this thesis was to determine which languages and relevant

frameworks would perform the best when set up as WebSocket servers handling various

levels of computational loads from multiple clients. Each level of load testing was

implemented to mimic the computational use-cases of existing developed web

applications. A proposed sample of virtual users that connect to the servers - as well as

how many computations were performed for each virtual user - were defined and tested

against.

In the theoretical part of the thesis, the four chosen programming languages and their

respective frameworks/libraries were described in terms of functionality, characteristics

and structure, history, benefits/setbacks, and general development performance.

Information and details on programming languages were constructed from extensive

literature review.

In the quantitative practical part of the thesis, comparisons were made using serial

and concurrency load tests at different scales, and then the performance results were

consequently analyzed using multi-criteria decision analysis. The qualitative analysis

proved useful for identifying features and setbacks of languages and providing insight on

the practical experience with each. It is important to understand the comfort and options of

working with a programming language when beginning projects of any scale and

complexity. The necessary program files and master/sub-scripts were developed in order to

test the practical application of each language's function in the scope of WebSocket

communication with a client. The optimal language for WebSocket performance at an

average computational load was identified based on the performance of all selected

criteria. After the review of the weighting priority sensitivity analysis, distinctions were

made for performance advantages/disadvantages among languages depending on the

intensity of arithmetic computation.

54

7 References

1. M D N CONTRIBUTORS. WebSocket() - web apis: M D N . mdn web docs [online].
6 March 2022. [Accessed 10 August 2021]. Available from:
https://developer.mozilla.org/en-
US/docs/W eb/APFWebSocket/W ebSocket#browser_compatibility

2. FETTE, Ian and M E L N I K O V , Alexey. RFC 6455 - the websocket protocol.
Document search and retrieval page [online]. December 2011.
[Accessed 2 August 2021]. Available from:
https://datatracker.ietf.org/doc/html/rfc6455

3. Half duplex and full duplex. Study CCNA [online]. 30 July 2021.
[Accessed 4 August 2021]. Available from: https://study-ccna.com/half-duplex-
and-full-duplex/

4. M D N CONTRIBUTORS. WebSocket - web apis: M D N . Web APIs \ MDN
[online]. 3 July 2021. [Accessed 10 August 2021]. Available from:
https ://developer.mozilla.org/en-US/docs/W eb/API/WebSocket

5. H A V E R B E K E , Marijn. Eloquent javascript: A modern introduction to
programming. San Francisco, C A : No Starch Press, 2019. ISBN 978-1-59327-950-
9

6. JavaScript Tutorial. JavaScript tutorial [online]. 2022.
[Accessed 20 November 2021]. Available from: https://www.w3schools.com/js/

7. HERRON, David. Node.js web development server-side development with node 10
made easy. Birmingham : Packt Publishing, 2018. ISBN 978-1-78862-685-9

8. M D N CONTRIBUTORS. A re-introduction to JavaScript (JS tutorial) - javascript:
M D N . JavaScript \ MDN [online]. 18 February 2022.
[Accessed 21 December 2021]. Available from: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/A_re-introduction_to_JavaScript

9. SENGSTACKE, Peleke. JavaScript transpilers: What they are and why we need
them. DigitalOcean [online]. 15 September 2020. [Accessed 18 December 2021].
Available from: https://www.digitalocean.com/community/tutorials/javascript-
transpilers

10. What is typescript? Type Script Tutorial [online]. 14 April 2021.
[Accessed 12 December 2021]. Available from:
https://www.typescripttutorial.net/typescript-tutorial/what-is-typescript/

11. CoffeeScript: Introduction. GeeksforGeeks [online]. 15 March 2021.
[Accessed 13 December 2021]. Available from:
https://www.geeksforgeeks.org/coffeescript-introduction/

55

https://developer.mozilla.org/en-
https://datatracker.ietf.org/doc/html/rfc6455
https://study-ccna.com/half-duplex-
https://www.w3schools.com/js/
https://developer.mozilla.org/en-
https://www.digitalocean.com/community/tutorials/javascript-
https://www.typescripttutorial.net/typescript-tutorial/what-is-typescript/
https://www.geeksforgeeks.org/coffeescript-introduction/

12. K A N E R I Y A , Tejas. 15+ popular companies using Node.js in 2022. Insights on
Latest Technologies - Simform Blog [online]. 25 February 2022.
[Accessed 3 March 2022]. Available from:
https://www.simform.com/blog/companies-using-nodejs/

13. Websockets/WS: Simple to use, blazing fast and thoroughly tested websocket client
and server for node.js. GitHub [online]. 7 February 2022.
[Accessed 5 January 2022]. Available from: https://github.com/websockets/ws

14. DREIMANIS, Gints. What is elixir and why should you use it? Serokell Software
Development Company [online]. 15 April 2020. [Accessed 25 November 2021].
Available from: https://serokell.io/blog/introduction-to-elixir

15. PETIT, Charles. A brief history of Erlang and elixir. A brief history ofErlang and
Elixir [online]. 30 January 2019. [Accessed 10 November 2021]. Available from:
https://www.welcometothejungle.com/en/articles/history-erlang-elixir

16. Index - erlang/OTP. Erlang.org [online], n.d. [Accessed 6 November 2021].
Available from: https://www.erlang.org/

17. CASSEL, David. Why Erlang? Joe Armstrong's legacy of fault-tolerant computing.
The New Stack [online]. 19 December 2021. [Accessed 23 November 2021].
Available from: https://thenewstack.io/why-erlang-joe-armstrongs-legacy-of-fault-
tolerant-computing/

18. Learn you some Erlang. The Hitchhiker's Guide to Concurrency \ Learn You Some
Erlang for Great Good! [online], n.d.. [Accessed 23 November 2021]. Available
from: https://learnyousomeerlang.com/the-hitchhikers-guide-to-concurrency

19. JURIČ Saša. Elixir in action. Shelter Island, N Y : Manning, 2019. ISBN
9781617295027

20. SCHUINDT, Fernando. Elixir vs ruby: How switching to elixir made our team
better. Foxbox Digital [online], n.d. [Accessed 24 November 2021]. Available
from: https://www.foxbox.com/blog/elixir-vs-ruby

21. 10 academic and historical questions. Erlang [online], n.d.
[Accessed 14 November 2021]. Available from:
https://www.erlang.org/faq/academic.html

22. Functional Programming - Introduction, tutorialspoint [online], n.d.
[Accessed 7 February 2022]. Available from:
https://www.tutorialspoint.com/functional_programming/functional_programming_
introduction.htm

23. Introduction to mix. elixir [online], n.d. [Accessed 7 February 2022]. Available
from: https://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html

56

https://www.simform.com/blog/companies-using-nodejs/
https://github.com/websockets/ws
https://serokell.io/blog/introduction-to-elixir
https://www.welcometothejungle.com/en/articles/history-erlang-elixir
http://Erlang.org
https://www.erlang.org/
https://thenewstack.io/why-erlang-joe-armstrongs-legacy-of-fault-
https://learnyousomeerlang.com/the-hitchhikers-guide-to-concurrency
https://www.foxbox.com/blog/elixir-vs-ruby
https://www.erlang.org/faq/academic.html
https://www.tutorialspoint.com/functional_programming/functional_programming_
https://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html

24. The package manager for the Erlang ecosystem. Hex [online], n.d.
[Accessed 8 February 2022]. Available from: https://hex.pm/

25. L Y O K A T O . Lyokato/Riverside: Elixir library: Simple websocket server
framework. GitHub [online]. 11 December 2021. [Accessed 14 December 2021].
Available from: https://github.com/lyokato/riverside

26. LE.CKI, Bartosz. 10 companies that use elixir in production. NetGuru [online]. 17
June 2021. [Accessed 8 March 2022]. Available from:
https://www.netguru.com/blog/10-companies-use-elixir

27. VISHNEVSKIY, Stanislav. How discord scaled elixir to 5,000,000 concurrent
users. Discord Blog [online]. 17 September 2021. [Accessed 8 March 2022].
Available from: https://blog.discord.com/scaling-elixir-f9b8ele7c29b

28. What is Python? Python institute [online], n.d. [Accessed 10 July 2021]. Available
from: https://pythoninstitute.org/what-is-python/

29. Python enhancement proposals. The Python Programming Language [online], n.d.
[Accessed 12 July 2021]. Available from: https://www.python.org/dev/peps/

30. Python concurrency tutorial. INE [online]. 28 October 2020.
[Accessed 16 July 2021]. Available from: https://blog.ine.com/python-
concurrency-tutorial

31. Asyncio - asynchronous I/O. asyncio - Asynchronous I/O - Python 3.10.2
documentation [online], n.d. [Accessed 16 July 2021]. Available from:
https ://doc s .python, org/3/library/asyncio. html

32. RAVI , Shalini. How does python code run: Cpython and python difference. C#
Corner [online]. 14 February 2020. [Accessed 20 July 2021]. Available from:
https://www.c-sharpcorner.com/article/why-learn-python-an-introduction-to-
python/

33. Differences between PyPy and CPython. Differences between PyPy and CPython -
PyPy documentation [online], n.d. [Accessed 22 July 2021]. Available from:
https://doc.pypy.org/en/latest/cpython_differences.html

34. R A M A L H O , Luciano. Fluent python: Clear, concise, and Effective Programming.
Sebastopol, C A : O'REILLY MEDIA, INC, USA, 2015. ISBN 978-1-491-9-46008

35. Getting started, websockets 10.2 documentation [online], n.d.
[Accessed 25 July 2021]. Available from:
https://websockets.readthedocs.io/en/stable/intro/index.html

57

https://hex.pm/
https://github.com/lyokato/riverside
https://www.netguru.com/blog/10-companies-use-elixir
https://blog.discord.com/scaling-elixir-f9b8ele7c29b
https://pythoninstitute.org/what-is-python/
https://www.python.org/dev/peps/
https://blog.ine.com/python-
https://www.c-sharpcorner.com/article/why-learn-python-an-introduction-to-
https://doc.pypy.org/en/latest/cpython_differences.html
https://websockets.readthedocs.io/en/stable/intro/index.html

36. PATEL, Jeel. 7 popular tech companies that use python in 2022. Monocubed
[online]. 9 March 2022. [Accessed 11 March 2022]. Available from:
https://www.monocubed.com/blog/companies-that-use-python/

37. Blog - Release Notes. The Crystal Programming Language [online], n.d.
[Accessed 3 September 2021]. Available from: https://crystal-
lang.org/blog/#release_notes

38. B A L B A E R T , Ivo and L A U R E N T , Simon St. Programming Crystal: Create high-
performance, safe, concurrent apps. Raleigh, NC : The Pragmatic Bookshelf, 2019.
ISBN 978-1-68050-286-2

39. Crystal team. The Crystal Programming Language [online], n.d.
[Accessed 10 September 2021]. Available from: https://crystal-lang.org/team/

40. GASKTNS, Jamie. Enabling crystal's new Multicore Support. DEV Community
[online]. 25 September 2019. [Accessed 16 September 2021]. Available from:
https://dev.to/jgaskins/enabling-crystal-s-new-multicore-support-414g

41. Concurrency. The Crystal Programming Language [online], n.d.
[Accessed 25 September 2021]. Available from: https://crystal-
lang. org/reference/guides/concurrency .html

42. W A J N E R M A N , Juan and CARDIFF, Brian J. Parallelism in Crystal. The Crystal
Programming Language [online]. 6 September 2019.
[Accessed 25 September 2021]. Available from: https://crystal-
lang.org/2019/09/06/parallelism-in-crystal.html

43. Type inference. The Crystal Programming Language [online], n.d.
[Accessed 27 September 2021]. Available from: https://crystal-
lang.org/reference/L3/syntax_and_semantics/type_inference.html

44. The shards command. The Crystal Programming Language [online].
[Accessed 2 March 2022]. Available from: https://crystal-
lang.org/reference/L3/the_shards_command/index.html

45. DEPARTMENT FOR COMMUNITIES A N D L O C A L GOVERNMENT:
LONDON. Multi-criteria analysis: A Manual. London : Crow, 2000. ISBN 978-1-
4098-1023-0

46. Testing websockets: Artillery. Artillery Docs [online], n.d.
[Accessed 14 January 2022]. Available from:
https://www.artillery.io/docs/guides/guides/ws-reference

47. WebSockets. k6 Docs [online], n.d. [Accessed 15 January 2022]. Available from:
https://k6.io/docs/using-k6/protocols/websockets/

58

https://www.monocubed.com/blog/companies-that-use-python/
https://crystal-
https://crystal-lang.org/team/
https://dev.to/jgaskins/enabling-crystal-s-new-multicore-support-414g
https://crystal-
https://crystal-
http://lang.org/2019/09/06/parallelism-in-crystal.html
https://crystal-
http://lang.org/reference/L3/syntax_and_semantics/type_inference.html
https://crystal-
http://lang.org/reference/L3/the_shards_command/index.html
https://www.artillery.io/docs/guides/guides/ws-reference
https://k6.io/docs/using-k6/protocols/websockets/

