
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT O F INFORMATION SYSTEMS

PŘEKLADAČ JAZYKA S UŽIVATELSKY DEFINOVANÝMI
SYNTAKTICKÝMI KONSTRUKCEMI
COMPILER OF A LANGUAGE WITH USER-DEFINED SYNTAX FOR NEW CONSTRUCTS

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE Be. LUKÁŠ KUKLÍNEK
AUTHOR

VEDOUCÍ PRÁCE Doc. Dr. Ing. DUŠAN KOLÁŘ
SUPERVISOR

BRNO 2013

Abstrakt
Tato práce si klade za cíl navrhnout a implementovat experimentální programovací jazyk
s podporou uživatelsky definovaných syntaktických konstrukcí. Nový jazyk je kompilován
do nativní binární podoby a vyžaduje statickou typovou disciplínu v době překladu. Jazyk
se skládá ze dvou hlavních komponent. První z nich je minimalistické jádro založené na
principech zásobníkově orientovaných jazyků. Druhou částí je mechanismus pro definici
nových syntaktických konstrukcí uživatelem. Poté jsou shrnuty poznatky nabyté při návrhu
a experimentování s prototypem překladače tohoto jazyka.

Abstract
This project aims to design and implement an experimental programming language. The
main feature of the language shall be the ability of the user to define new syntactic con­
structs. The language shall be statically typed and compiled to a native binary form. The
language consists of two parts. The first part is a minimalistic core based on the princi­
ples of stack-oriented languages. The second part is a mechanism that lets users define
new syntactic constructs. Then we elaborate on findings that have risen from design and
experiments performed with the prototype implementation of the language.

Klíčová slova
programovací jazyky, překladače, syntaktická analýza, rozšiřitelná syntax, metaprogramování

Keywords
programming languages, compilers, syntax analysis, extensible syntax, metaprogramming

Citace
Lukáš Kuklínek: Compiler of a Language with User-Defined Syntax for New Constructs,
diplomová práce, Brno, F IT V U T v Brně, 2013

Compiler of a Language with User-Defined Syntax
for New Constructs

Prohlášení
Prohlašuji, že jsem tuto magisterskou diplomovou práci vypracoval samostatně pod vedením
pana Doc. Dr. Ing. Dušana Koláře.

Lukáš Kuklínek
22. května 2013

© Lukáš Kuklínek, 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakultě in­
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 6
1.1 Syntactic Sugar 6
1.2 Domain-Specific Languages 7

2 Prior Art 9
2.1 Source Preprocessors 9
2.2 C preprocessor 10
2.3 C++11 user-defined literals 11
2.4 camlp4 12
2.5 Haskell user-defined operators 13
2.6 Template Haskell and Quasi-Quotes 13
2.7 Agda mixfix operators 15
2.8 Factor 15
2.9 SugarJ 16

3 Background theory 18
3.1 Context-free Grammars 18

3.1.1 Ambiguity 19
3.1.2 Attribute Grammars 20

3.2 Haskell Categorical Classes for Parsing 21
3.2.1 Functor 21
3.2.2 Applicative Functor 21
3.2.3 Monad 22

3.3 Type systems 23
3.3.1 Simply Typed Lambda Calculus 23
3.3.2 Polymorphism and Unification 24
3.3.3 Row Polymorphism 24

3.4 Concatenative Programming Languages 24
3.4.1 Examples 25
3.4.2 Typing Concatenative Programs 26

4 Technologies for Compiler Design 27
4.1 Parser generators 27
4.2 Parsec 28
4.3 Attribute Grammar Compiler 29
4.4 Code Pretty Printers 30
4.5 libgc 31
4.6 L L V M Compiler Infrastructure 31

1

5 Language Design 33
5.1 Design Goals 33
5.2 The Core 35

5.2.1 Type System 36
5.3 Extension Mechanism 37

5.3.1 Primitive Parsers 38
5.4 Built-in Functions and Standard Library 38

6 Implementation 39
6.1 Modules 39
6.2 Runtime Organization 40
6.3 Command Line Compiler Driver 41

7 Examples 42
7.1 Bootstrapping E E L 42
7.2 Structured E E L 43
7.3 Meta Extensibility 44
7.4 Encoding Brainfuck 45
7.5 DSL for Cellular Automata 45

8 Conclusion 47
8.1 Achievements 47
8.2 Limitations and Shortcomings 48

8.3 Future Directions 48

Bibliography 49

A E E L Built-in Functions 52

B E E L Help 54

C C D - R O M Contents 55

2

List of Figures

3.1 Context-free grammar ambiguity 19
3.2 Typing rules for simply-typed A-calculus 23
3.3 Unification algorithm 24

5.1 E E L Core abstract syntax 35
5.2 E E L Core data types summary 36
5.3 E E L typing rules 36
5.4 Partial ordering on phase types 37
5.5 E E L parsing algorithm overview 38

6.1 Overview of the E E L compiler driver pipeline 41

7.1 E E L syntactic extensions metalanguage 44

3

Listings

2.1 C with regex extension 10
2.2 C with regex extension after preprocessor expansion 10
2.3 C++ preprocessor-based syntactic extension 11
2.4 Syntactic extension in the form of variadic C++ templates and user-defined

literals 11
2.5 camlp4 extension definition 12
2.6 camlp4 extension use 12
2.7 A user-defined implication operator in Haskell 13
2.8 Routing DSL in Yesod example 14
2.9 If-then-else as Agda mixfix operator 15
2.10 Infix expressions extension in Factor 16
2.11 Idiom brackets in SugarHaskell 16
4.1 Parenthesis language in applicative style in Parsec 28
4.2 Parenthesis language in monadic style in Parsec 28
4.3 Metaparsing with Parsec 29
4.4 U U A G C example 29
4.5 Sample Pretty-Printer definition 30
4.6 Sample Pretty-Printer output 30
4.7 L L V M IR example 32
7.1 Alternative function definition syntax 43
7.2 Alternative function definition use 43
7.3 List constants extension 44
7.4 Rule 110 definition in the C A DSL 46
7.5 Rule 110 in operation 46
B . l E E L command-line options 54
B.2 E E L interactive interpreter commands 54

4

List of Abbreviations

A G Attribute Grammar

A S T Abstract Syntax Tree

C A Cellular Automaton

C F G Context-Free Grammar

DSL Domain-Specific Language

E D S L Embedded Domain-Specific Language

E E L Experimental Extensible Language

G H C Glasgow Haskell Compiler

I /O Input / Output

IDE Integrated Development Environment

IR Intermediate Representation

QQ Quasi Quote

R P N Reverse Polish Notation

SSA Static Single Assignment

T H Template Haskell

U U A G C Utrecht University Attribute Grammar Compiler

5

Chapter 1

Introduction

In most widely used programming languages today, the extensibility is limited to the possi­
bility to define user-specified functions and data structures. The textual representation of
programming language constructs is usually fixed by the grammar definition of the language.
The ability of the programmer to enrich the programming language with new constructs
might help to close the semantic gap between ideas of a programmer or a domain expert
and the source code that needs to be written to encode the ideas.

Possible language extensions can be roughly divided into two main groups. The first
group contains various general-purpose syntactic sugar to ease the development process,
for example a new loop statement. The other group consists of Domain-Specific Languages
(or DSLs) that are designed to perform a highly specialized task using a set of constructs
specifically tailored for the task. The following sections introduce a few motivating examples
of both types of syntax extensions.

1.1 Syntactic Sugar

Many languages offer constructs that do not add anything to their overall expressive power.
Such constructs are good for convenience and code readability. For example, the for loop
in C / C + + can be expressed in terms of whi le loop (which can itself be in turn expressed
in terms of goto statements). There are many examples of such fundamentally redundant
but useful constructs in programming languages.

Taking Haskell [15, 25] as an example:

1. Any function (f a b = e) can be transformed into its definition using A-abstraction
(f = \ a b -> e). Abstractions with multiple arguments can be further turned into
A-abstractions with a single argument through currying (f = \ a -> \b -> e).

2. The infix function call (a 'f b) is equivalent to (f a b).

3. The list syntax ([a, b , c]) can be de-sugared into a cons-based expression (a: b: c: []).

4. Sequences ([1 . .9]) are replaced by function calls (enumFromTo 1 9).

5. Any operator (a+b) can be expressed as function application ((+) a b).

6. List comprehensions are converted into the corresponding monadic form.

6

7. do notation for monads is replaced with corresponding calls to functions defined by
the Monad type class (return, (» =) , (») , f a i l) .

8. Special syntax for Applicative Functors has been proposed [26].

9. Special syntax for Arrows can be turned on via G H C option.

10. String literals are just a neater way to express lists of Unicode characters.

The list above is not complete. In addition to that, Haskell constantly evolves and new
features are being added all the time.

The Ruby 1 programming language is known to provide handful of convenience syntactic
constructs as well. Many of them deal with easy construction of various data structures
such as strings, sets, lists, hash tables, or regular expressions. A particularly elegant one is
string the interpolation that allows to substitute the results of expression evaluation into
string literals using the #{} construct, for example:

"The square of #{x} i s #{x*x}."

1.2 Domain-Specific Languages

Another kind of syntax extensions are so-called Domain-Specific Languages (DSLs) [13].
These languages are designed to solve a specific task. They exhibit a great expressive
power within their domain while leaving out the unnecessary clutter.

DSLs come in three main flavours that are relevant for this project:

1. External DSLs come with their own interpreter or compiler as stand-alone tools.

2. Generative DSLs also come with a tool to process the DSL, but their output is a source
code of another (usually general-purpose) programming language. The resultant code
is in turn compiled by the target language compiler and linked with the rest of the
project.

3. Embedded DSLs employ the expressive power of a general-purpose language to define a
highly-specialized set of routines to perform a specific task. Embedded DSLs (EDSLs)
usually come as libraries for the host language. The more syntax extensibility features
the host language offers, the closer can the DSL match the problem domain.

One of the possible outcomes of this project might be to make the former two (especially
the second one) unnecessary as they could be defined in terms of modifiable syntax of the
host language.

The area of domain-specific languages is huge. The following list provides just a tiny
sample of their capabilities. Standalone DSLs are particularly widespread in the U N I X
world [37] (tools typeset in verbatim in the following list).

• Regular expressions specified as a string and compiled at run time to match against
other strings can be viewed as a kind of a degenerate EDSL.

• Resource compilers are used to embed arbitrary data into executable binaries. They
take a list of resources, such as strings, icons, images and other files as input, and
generate a C file or an object file as output.

xhttp://www.ruby— lang.org/en/

7

http://www.ruby�

• Faust [30] is a declarative language specialized in digital signal processing.

• Qt's Q M L [1] is a declarative language used primarily for the design of fluid interactive
user interfaces. Q M L adds several syntactic extensions on top of the JavaScript engine
and is tightly integrated with Qt written in C++. Qt itself uses a custom preprocessor
to add features to C++, such as reflection and a signal-slot mechanism.

• awk and sed are tools specialized to text file processing utilizing pattern matching
and substitution.

• m4 is another text processing language, this time based on macro expansion. It is
heavily used as a pre-processor in G N U autotools.

• G N U make is a rule-based system for automated build management.

• Database query languages, such as SQL, can be used both as embedded or standalone
languages specialized in describing, querying and manipulating structured data.

• Many languages provide a command-line argument processing E D S L as a library.
Option specification for C function getopt_long is a rather poor man's version of
such E D S L .

• yacc is a so-called parser generator. Given a context-free grammar in E B N F form, it
generates a C implementation of a parser for the grammar.

Tighter integration of the techniques and tools mentioned above with the host language
compiler brings several advantages. Syntax errors in regular expressions can be reported
at compile time rather than run time. Mismatches between the identifiers in the generated
parser and the host code can be localized more precisely - that is in the grammar specifi­
cation code rather than in the generated C code. Last but not least, once the tools (such
as syntax highlighters and IDEs) contain the support for user-defined syntax, the user gets
the support of the tool for his DSL virtually for free.

8

Chapter 2

Prior Art

This chapter reviews existing approaches to provide syntactic extensions in various program­
ming languages. Each system is briefly described, an example of its usage is demonstrated
and its properties, advantages and disadvantages are evaluated.

The approaches vary in several different ways:

• The degree of integration with the target programming language.

• The complexity of the constructs, by which the target language can be extended.

• Guarantees about the correctness of the code generated by the extension to the syntax.

2.1 Source Preprocessors

Source preprocessors take input source in a target language with some additional constructs,
and produce the source with the constructs being replaced with equivalent constructs in
the plain target language.

New constructs can be to some degree added to any language using a general purpose
macro preprocessor (such as m4) or a template engine. These tools usually perform textual
search-and-replace based on a user-defined set of rewriting rules, often called macros.

Example

In this example, we consider adding regular expressions to the C language. Regular ex­
pressions are enclosed between two slash characters (Perl-inspired syntax). They are trans­
formed into raw C strings and passed to a regex compilation function. The sed tool [37] is
used to perform the transformation, and the program reads as follows:

sed ' s : / \ ([~*] [V] * \) / \ ([miu] *\) : r e c o m p i l e (" \1" , "\2"):g> $CFILE
A sample input can be seen in listing 2.1 and the corresponding output is in listing

2.2. Several problems with this approach can be spotted straight away. First of all, the
replacement takes place even in comments and string literals. That is probably not the
desired behaviour. If the regex contains a double quotation mark ("), the generated source
will probably not even be a lexically valid C source. Also, the regex itself is not checked
for syntactic correctness, for example parentheses need to be balanced. Some of these
shortcomings can be at least partially solved by a more elaborate regular expression passed
to the sed command, but many cannot.

9

vo id main(int argc , char** argv)
{

i f (r e_match(/ [a - zO-9 .]+ @ [a - z O - 9 .] + \ . [a - z] + / i , a r g v [l]))
p r i n t f (" O K \ n ") ;

else p r i n t f ("Bad e—mail\n") ;
}

Listing 2.1: C with regex extension

vo id main(int argc , char** argv)
{

i f (re_match(re_compile (" [a-zO-9.]+ @[a-zO - 9.]+ \ . [a-z]+" , "i"), argv [1]))
p r i n t f (" O K \ n ") ;

else p r i n t f ("Bad e—mail\n") ;
}

Listing 2.2: C with regex extension after preprocessor expansion

Evaluation

Most of the time, a general preprocessor is a particularly inelegant solution with numerous
disadvantages. It adds complexity to the build process. As the macro expansion step
can produce an invalid input for the host compiler, the error elimination process involves
inspection of the generated code, which is usually rather unreadable for the programmer.
Also, the new constructs usually do not play well with IDEs used for source code editing.
The use of a general-purpose preprocessor is also inappropriate for extending syntax of
a layout-sensitive programming language, such as Python. Most of the disadvantages are
caused by lack of any integration with the target language what so ever.
Specialized Preprocessors Some of the limitations of text-based preprocessors might
be overcome using a specialized preprocessor. B y a specialized preprocessor, we mean any
preprocessor that is to some degree integrated with the target language. Examples of such
systems include the C preprocessor (section 2.2), OCaml's camlp4 (section 2.4, page 12).
Some preprocessors extend the target language with a fixed set of features. For example
U U A G C (briefly discussed in section 4.3 on page 29) adds support for attribute grammars
to the Haskell programming language.

2.2 C preprocessor

The C preprocessor can be used for somewhat limited syntactic extensions as well. It is
based on a simple search-and-replace over C / C + + tokens, unlike character-based matching
of a general-purpose preprocessor. The preprocessor is distributed in one package with the
C compiler and forms an inseparable part of the C tool-chain.

Example

Take the new FOREACH loop as an example of a loop iterating over a C++ container. The
loop expands to a regular C++ for loop. Sadly, the implementation in listing 2.3 depends
on the new C++11 auto keyword semantics. Without it, the macro definition would have
to be much more convoluted.

10

#define FOREACH (i , c) for (auto i = (c) . b e g i n O ; i != (c) . e n d () ; ++i)

vo id func (s td : :vec tor< in t>& array)
{

FOREACH(it , array)
s t d : : c o u t << "The element is " « * i t << s t d : : e n d l ;

}

Listing 2.3: C + + preprocessor-based syntactic extension

Evaluation

The C preprocessor has a couple of advantages over general-purpose preprocessors. First, it
takes the lexical structure of the C language into account avoiding accidentally fused tokens
and other possible lexical errors. Second, IDEs and tools are aware of the preprocessor,
so they are able to guide the programmer (usually in a somewhat limited way) through
the code even in the presence of macros. On the other hand, the C preprocessor ignores
C / C + + syntax and can yield invalid constructs resulting in relatively incomprehensible
error messages. Also names introduced by macros can clash with other identifiers in the
program. Expressions have to be parenthesized to avoid unexpected behaviour due to oper­
ator precedence. Another disadvantage is that the expansion of multiple macro parameters
can lead to duplication of side effects and thus unexpected behaviour of the program .

2.3 CH—user-defined literals

The new version of the C++ standard called C++11 features several additions to the lan­
guage that open new possibilities for implementing EDSLs [42]. Extensible user-defined
literals can be processed character-by-character by variadic templates and constant expres­
sions at compile time.

Example

Listing 2.4 shows an example of an extension of the C++ language with binary literals
processed at compile time.

template <char . . . > s t r u c t B i n ;
t e m p l a t e o s t r u c t Bin<> { enum { v a l = 0 }; };
template < char . . . t a i l > s t r u c t Bin< '0 ', t a i l . . . >

{ enum { v a l = B i n < t a i l . . . > : : v a l }; };
template < char . . . t a i l > s t r u c t Bin< ' 1 ', t a i l . . . >

{ enum { v a l = (1 << s i z e o f . . . (t a i l)) + B i n < t a i l . . . > : : v a l }; };

template <char . . . s tr> int operator"" _b() {
r e t u r n Bin< s t r . . . > : : v a l ;

}

int main(void) {
s t d : : c o u t << 10110_b << s t d : : e n d l ; / / p r i n t s 22

}

Listing 2.4: Syntactic extension in the form of variadic C++ templates and user-defined
literals

11

Although not explicitly supported by the standard, there are ways to turn user-defined
string literals into template arguments and process the string at compile time. It can be
used to embed DSLs, such as regular expressions, into C++ as string literals with compile-
time syntax checking.

Evaluation

The error messages reported on a syntax error in the DSL can be very convoluted. This can
be partially remedied by providing custom error messages via s t a t i c_asse r t . The DSL
defined this way must be fully self-contained, it cannot reference outer lexical environment.
Therefore, features like string interpolation cannot be implemented by this techniques.
Other disadvantages are very cluttered syntax of templates, and the complexity of their
implementation - with many unexpected corner cases to be taken into account causing hard
very debugging.

2.4 camlp4

Camlp4 [8] stands for Pre-Processor Pretty Printer (hence the p4) for OCaml. It is tightly
integrated with the OCaml compiler. It can be used to introduce many language features,
such as local operator overloading, syntax for exception handling, syntax sugar for monads,
convenient building of data structures, regular expressions, loading of data from external
files to OCaml data structures, DSL implementation and so on and so forth.

Example

A n example of a syntax extension for an if-then-else operator similar to the C ternary
operator is defined in listing 2.5 and used in listing 2.6.

It is a simple extension to a grammar rule. Productions are bound to variables c, t, e
and the resultant piece of the abstract syntax tree is constructed by means of the expr
quasi quotation - with the condition, the if-part and the else-part expression variables
interpolated.

EXTEND
GLOBAL: Pcaml.expr ;

Pcaml.expr : LEVEL "simple" I
["{"; c = Pcaml.expr ; "?"; t = Pcaml.expr ; " ; " ; e = Pcaml.expr ; "} " ->

<:expr< i f c then t else e >>
]

]

END ; ;

Listing 2.5: camlp4 extension definition

p r i n t _ e n d l i n e { 3 > 5 ? "foo" : "bar" >;;

Listing 2.6: camlp4 extension use

The EXTEND clause introduces a grammar extension. We are extending expression syntax
as indicated by the Pcaml. expr label. The LEVEL indicates the priority of the operator
(priorities are named). Terminals in the new grammar rule are indicated by double quotes.
Results of non-terminals (in this case subexpressions) are bound to local variables, which

12

are in turn used on the right-hand side of the rule indicating what OCaml construct is the
new syntax mapped to.

Evaluation

Camlp4 is tightly integrated with the OCaml compiler. It is able to report the location
of errors inside a source code with an extended syntax. The compiler can be instructed
to load syntax extension files, avoiding direct invocation of the preprocessor. The syntax
extension definition file has to be processed and compiled. As a consequence, the build
process is considerably more complicated when compared to the usage of plain OCaml.

2.5 Haskell user-defined operators

Haskell [25] is a pure functional language. The prominent role of functions in a pure func­
tional language implies that many more constructs can be expressed by function application
instead of brand new language constructs. Higher-order functions, such as fmap and fold,
provide useful loop abstractions that are hard to express in an imperative language in any
other way than by a built-in statement.

Haskell provides a limited user-defined syntax capability. Users can introduce new infix
operators via fixity declaration where they specify priority, associativity (left, right, or
none), and the operator symbol itself.

Example

For example a logical implication operator can be seen in listing 2.7.

i n f i x 1 -->
(-->) : : Bool -> Bool -> Bool
a --> b = not a I I b

test = [(a , b , a —> b) I a <- f t , b <- f t]
where f t = [F a l s e , True]

Listing 2.7: A user-defined implication operator in Haskell

Evaluation

User-defined operators with higher-order functions together with type classes form a pow­
erful mechanism for E D S L creation. Although this approach has some limitations, it is
often possible to match the domain quite closely. Because no "real" syntax extensions are
actually added to the host language, generated error messages are as readable as with the
usual function applications. Only binary operators can be introduced, therefore only the
expression syntax can be altered this way.

2.6 Template Haskell and Quasi-Quotes

Quasi-Quotes (QQ) and Template Haskell (TH) are extensions of the Haskell programming
language implemented in the Glasgow Haskell Compiler 1. This powerful combination of

xhttp://www.haskell.org/ghc/

13

http://www.haskell.org/ghc/

extensions can be used to extend Haskell's syntax far beyond capabilities of user-defined
operators. But they come with their own set of shortcomings.

Template Haskell is Haskell's take on compile-time metaprogramming [40]. It allows the
user to write functions that generate Haskell AST, execute them at compile time, and splice
their output into the A S T being built by the compiler. The function can be called at the
top level to generate new declarations or definitions, such as new data types or functions.
Alternatively, the resulting A S T subtree is attached to the global tree at the position of
the $(thFunc a b) construct, for example inside expressions.

Quasi-Quotes [23] are pieces of code enclosed in square-bar brackets [qql . . . |] , where
qq is the name of the Quasi-Quoter used to parse the content between the vertical bars.
Arbitrary Haskell code with required type signature may be used to parse the quasi quote
contents, including Parsec (see page 28). Template Haskell can be used to generate the
resultant A S T that will be placed in the position of the original quote. The splice syntax
$ (. . .) can be made available inside the quasi quoter too.

Example

Yesod web framework [41] makes a heavy use of both T H and QQs to implement DSLs on
a number of different places:

• Specifying mapping from URLs to page handler functions and vice versa (routing).
When using this system, it is guaranteed that no invalid U R L to the pages of the
website being developed are ever generated by the framework. Listing 2.8.

• Specifying database layout in a simple DSL is used to access the database in a type-
safe manner, to automate database schema creation and migrations, and to abstract
the user away from a particular database implementation.

• Number of DSLs for templating the HTML/CSS/JavaScr ip t ensure that all variables
used in the templates are present and type correct at compile time.

mkYesod " T e s t A p p l i c a t i o n " [parseRoutesI
/ HomeR GET
/about AboutR GET
/b log /#Pos t Id PostR GET POST

•
Listing 2.8: A n example of the Yesod's routing DSL. Entries come in the following order:
U R L template (variables are prefixed with a hash mark), resource name, and a list of
available H T T P methods for the resource.

Evaluation

The combination of Quasi-Quotes and Template Haskell is a very expressive way to extend
the language syntax. Any string can be put into a quasi-quote. T H makes it possible to
load external files with arbitrary syntax, for which a parser can be written, and incorporate
them into the project. Possible use cases include extending Haskell with new constructs as
well as parsing embedded and external DSLs.

Although the ability to use arbitrary code to parse the input is really powerful, it causes
several problems. The possibilities of how the language grammar can be analyzed suffer

14

significantly. As a consequence, it is possible to generate an A S T that contains semantic
errors. The compiler cannot infer the exact location of the error, so it reports the whole
quasi-quote as containing an error. Creating extensions this way is not on-line: The Quasi-
Quoter and Template Haskell definitions have to be compiled in a separate module from
the one they are used in.

2.7 Agda mixfix operators

Agda [29] is a research programming language with dependent types. From the syntactic
extensibility point of view, it introduces an interesting concept called mixfix operators, as
opposed to Haskell's ability to define only binary operators. The underscore (_) character
acts as a place-holder for operands, everything else is a part of the operator. The parser
builds a directed acyclic precedence graph, which is used to efficiently parse the code with
mixfix operators [7].

Example

As an example, we take the if—then-else construct. It is not a built-in operator in Agda.
Instead, it is defined as a mixfix operator. See listing 2.9.

i f_ then_e l se_ : {A : Set} -> Bool -> A -> A -> A
i f true then x e lse y = x
i f f a l s e then x e lse y = y

Listing 2.9: If-then-else as Agda mixfix operator

Evaluation

The concept of mixfix operators seems to be quite powerful, especially in a declarative
language where almost everything is an expression, so it is enough to have just a single
non-terminal, expressed as the underscore. As with Haskell's user-defined operators, top-
level declaration cannot be extended this way, only expressions can. It is not possible to
change the lexical syntax either.

2.8 Factor

Factor is a dynamic concatenative programming language designed by Sviatoslav Pestov
[33]. By default, it uses Reverse Polish Notation (or RPN) to describe expressions and
algorithms. The parser uses a fixed lexical analysis stage which breaks the source code into
a series of white-space separated tokens. Almost everything else can be changed. Special
parsing words can be used to bypass the built-in parsing mechanism and replace it locally
with a custom one.

Example

For example, the i n f i x 2 vocabulary (library) uses this mechanism to introduce the abil­
ity to write expressions with infix operators and traditional syntax for function applica­
tion with parentheses f(xi,X2,---)- Such expressions are enclosed in special brackets:

2 http://docs.factorcode.org/content/article-infix.html

15

http://docs.factorcode.org/content/article-infix.html

[i n f i x . . . i n f i x] . A n example of the usage is shown in listing 2.10, the sample evalua­
tion of myHypot (3 .0 ,4 .0) yields 5.0. The : : symbol introduces a new word (function).
USING: i n f i x l o c a l s math . funct ions ;
: : myHypot (x y - - z) [i n f i x s q r t (x * x + y * y) i n f i x] ;
[i n f i x myHypot(3.0, 4.0) i n f i x] .

Listing 2.10: Infix expressions extension in Factor

Evaluation

The extension mechanism in Factor is very powerful with a broad class of possible syn­
tactic extensions. Strong metaprogramming capabilities make complex compile-time code
transformations possible [32]. Changing lexical syntax is somewhat limited but it does not
seem to be a problem as lexical analysis can be bypassed to some degree, and it is already
very liberal in what it accepts. Being a dynamic language, Factor does not do many san­
ity checks during the compile-time and possible semantic problems may be harder to spot
through the enriched syntax.

2.9 Sugar J

The SugarJ project3 aims to provide library-based syntactic extensibility. Originally, the
project was Java-centric [11] but it has recently been extended to support multiple host
languages, including Haskell [12]. It is essentially a preprocessor that interprets language
extensions written in a context-free and/or layout sensitive syntactic rules and expands
them into a de-sugared form. A specialized DSL called Stratego [45] is used to perform
term transformations between source and target trees.

Example

Listing 2.11 demonstrates a use of a syntax extension that introduces so called idiom brack­
ets [27] for applicative functors (see section 3.2.2, page 21) in SugarHaskell. Wi th this exten­
sion, (| f a b |) is desugared to much longer combinatoric version pure f <*> a <*> b.
The example implements a parser for the balanced brackets language that returns the max­
imum bracket nesting depth in an input string (provided the string is in the language).
De-sugared version would look similar to the Parsec example in listing 4.1.

import Text . Parsec
import C o n t r o l . A p p l i c a t i v e
import C o n t r o l . A p p l i c a t i v e . I d i o m B r a c k e t s

parens = (I max (I inc (char ' [') parens (char '] ') I) parens I)
<l> (I 0 I)

where inc _ p l depth _p2 = depth + 1

Listing 2.11: Idiom brackets in SugarHaskell

Evaluation

Using SugarHaskell feels quite similar to using Template Haskell with a Quasi Quoter but
offers more free-form syntax (no actual quasi quoter brackets are needed in the source file).

3http://www.student.informatik.tu-darmstadt.de/"xx00seba/projects/sugarj/index.html

16

http://www.student.informatik.tu-darmstadt.de/%22xx00seba/projects/sugarj/index.html

It makes it possible to define a broad range of composable syntactic extensions that fit
well the general Haskell syntax and can be freely mix-and-matched. It also offers some
integration with the Eclipse I D E 4 .

However, its preprocessor nature prevents the compiler from locating semantic errors
in the source code, the location is given in terms of the expanded de-sugared code. Also,
newly introduced syntax cannot be used in the file where it is defined.

4http://www.eclipse.org/

17

http://www.eclipse.org/

Chapter 3

Background theory

This chapter contains the 10,000 feet overview of the necessary theoretical background to
facilitate further discussion. The text on following pages assumes that the reader is familiar
with basic concepts and terminology of these areas:

• Discrete mathematics: sets, relations, functions, trees, morphisms, monoids, logic

• Formal language theory: alphabet, strings, languages

• Haskell: higher-order functions, type definitions, type classes (or equivalent concepts
in a similar programming language) + lambda calculus

3.1 Context-free Grammars

Context-free grammars [28] are one of the fundamental foundations for defining program­
ming language syntax. The concept of C F G is easily understandable and forms a good base
for user-defined syntactic extensions.

Definition 1 (Context-free grammar). Context-free grammar is a quadruple G = (N, T,,P,S),
where

• N is a finite set of non-terminals

• E is a finite set of terminals, N n E = 0

• P is a finite binary relation P C N x (N U E)*, members of the set are also called
production rules

• S is the start symbol, S <E N

A n ordered pair (A, (3) G P is usually denoted as A —>• j3. A —>• j3\ | 02 is an abbreviation
for two rules A —>• j3\, A —>• •

Definition 2 (Rewriting relation). Rewriting rule application is a binary relation over
strings u, v G (NUT,)*, u => v iff^A ->• f3 € P, u\, 112 € (N U E)* : u = U1AU2/W = U\j3u2.

Transitive and reflexive closure of is denoted as =^>*.

Definition 3 (Context-free language). L(G) is a context-free language iff exists a context-
free grammar G such that L{G) = {w\w G E * , 5 =̂>* w}. L(G) is said to be a language
generated by grammar G.

18

3.1.1 Ambiguity

A parse tree of a string w captures the syntactic structure of the string according to
a context-free grammar G. It is an n-ary tree with ordered branches. Intermediate nodes
are labelled with non-terminals and leafs are labelled with terminals. For any intermediate
node labelled A with children a G (N U £)* , there must be a production rule i ^ a e P .
Labels of leaf nodes in the post-order traversal order make up the string w.

Definition 4 (Ambiguous C F G) . A context-free grammar G is said to be ambiguous iff
there exists a string w G L(G) and at least two distinct G-based parse trees for w.

Ambiguity Example Let Gx = {{E}, {a, b, c, +, *}, {E -> E + E \ E * E \ a \ b | c}, E} be
a context-free grammar. String a + b * c can be generated by two parse trees as shown
in figure 3.1. Both parse trees correctly indicate that a + b * c G L(G\). However if the
E non-terminal is interpreted as a (sub) expression of a language of arithmetic expressions
with addition and multiplication, the semantics implied by the two parse trees is different,
as (a + 6) * c ^ a + (6 * c).

Figure 3.1: Context-free grammar ambiguity

Implications for Extensible Syntax In the presence of user-defined syntactic con­
structs, ambiguity causes a severe problem. It is easy to define an ambiguous grammar by
accident, as grammar rules may be scattered among several source files.

Furthermore, it is not generally possible to detect such ambiguity at the time of the
grammar definition, because the problem of determining whether a C F G is ambiguous
or not is known to be undecidable [28]. The decision has to be made partially, and/or
postponed until the parser is presented with a string. Alternatively, the grammar can be
disambiguated in some other way, such as by introducing an ordered choice operator or
by fixing the order in which rewriting rules are applied (e.g. always expand the leftmost
non-terminal as in the L L parsing). One way or another, any such restriction changes the
class of languages that can expressed with the grammar, sacrificing the conceptual clarity
and simplicity of CFGs.

19

3.1.2 Attribute Grammars

Attribute grammars were introduced by Donald E . Knuth as an extension to context-free
grammars [19] for formalizing semantics of context-free languages. The abstract syntax
tree of a context-free language is annotated with attributes [43, 44]. Production rules of
the grammar are extended to provide attribute definitions in terms of functions of other
attributes, called semantic functions.

Let G = (N,E,P,S) be a C F G . For any production rule X -> X1,X2,...,Xn G P
let S(Xi) and I(Xi) denote the set of synthesised and inherited attributes respectively.
A(Xi) = S(Xi) U I(Xi) is the set of all attributes of Xi for 1 < i < n. Attribute a of node
X is denoted X.a.

Synthesized attributes For synthesized attributes, data flow bottom-up the syntax
tree. Semantic functions for S(X) depend on A(Xi), 1 < i < n. On the bottommost level,
the values of synthesised attributes of terminal nodes are determined as functions of type
E —>• Ta, where Ta is the type of the attribute.

Synthesised attributes can be used for the tracking of positions of grammatical con­
structs in the source code, for the performation of the type checking and/or type inference
where the type of a compound expression depends on types of its sub-expressions, or for
partial evaluation.

Inherited attributes Inherited attributes flow from the root node towards the leafs in
a top-down fashion. Inherited attribute value for I(X{) depends on values of A(X). Initial
values for synthesised attributes for the root node have to be provided explicitly.

Inherited attributes are useful for passing the environment, such as the symbol tables
and data type definitions. They can also be used to pass the aggregate values computed
by the synthesised attributes back down the tree.

Example Take the normalization by average of leafs L in A S T generated by grammar
G2 = {{L, R, N}, {x | 0 < x < 10}, {L ->• 0 11 | . . . 110, N ->• NN \L,R-> N}, R}:

1. Count and partial sums of leafs are passed upwards as synthesised attributes

(a) For L —>• x, 0 < x < 10: L.sum = x, L.count = 1

(b) For N —>• L: N.sum = L.sum, N.count = L.count

(c) For N —>• N1N2: N.sum = N\.sum + N2-sum, N.count = N\.count + N2-count

2. The average is computed at the root and passed as an inherited attribute through the
tree all the way down to the leafs.

(a) For R —>• iV: N.avg = N.sum/N.count

(b) For N ->• NxN2: Nx.avg = N2.avg = N.avg

3. Leafs subtract the average from their initial value to compute the result attribute.

(a) For N —>• L: L.result = L.sum — N.avg

20

3.2 Haskell Categorical Classes for Parsing

In this section, we examine three of the most ubiquitous categorical structures in Haskell
with a special emphasis on the parsing use case. They are represented in terms of Haskell
type classes. In addition to that, they shall obey certain laws in order to preserve the
expected semantics. The three structures are functors, applicative functors (augmented
with alternatives) and monads. Rather than diving deeply into theory and full generality
of the structures, they are presented from a practical parser-programming standpoint.

3.2.1 Functor

Definition 5. Functor is a type constructor F of kind * —>• * together with the mapping
operation fmap : (a —>• 6) —>• (F a —>• F b), subject to these laws:

1. Identity: fmap id = id

2. Composition: fmap f o fmap g = fmap (/ o g)

Functors generalize the map function over lists. Intuitively, using fmapf applies the
function / independently to all elements of some greater structure of type F a, transform­
ing it into a structure of type F b. Categorically, Haskell functors are considered to be
endofunctors [4].

In the context of parsing, F a = Parser a, where Parser a is a parser which after
possibly consuming some input yields a result of type a, e.g. an Abstract Syntax Tree.
The parser combines several monadic effects, namely the possibility of failure, state for
tracking the input stream, and sometimes non-determinism. Applying fmap f to a parser
just transforms the result of a parser without causing any further effects. This is enforced
by the functor laws. Parser is a functor.

3.2.2 Applicative Functor

Definition 6. Applicative functor F is a functor with these operations:

• pure : a —>• F a

• © : F (a ->• b) -> (F a -> F b)

Subject to these laws:

1. Identity: pure id® x = x

2. Composition: pure (o) © / © g © x = f © (g © x)

3. Homomorphism: pure f © pure x = pure (/ x)

4- Interchange: u © pure v = pure (Xf i-> / v) ®u

Applicative functors [26] are more powerful than plain functors. While the list func­
tor represents mapping an unary function over a list, its applicative counterpart can be
seen as combinatorially mapping an arbitrary number of n-ary functions of the same type
over n lists. Functor fmap operation can be reconstructed from applicative methods as
fmap f x = pure f © x. Applicative functor laws make sure that functor laws hold.

21

In the context of parsing, it is possible to convert rules in the X —> Y1Y2 .. .Yn form
to an applicative expression px = pure f © pyx © py2 © ... © pyn • The pjy term stands
for a parser for a non-terminal N, assuming we have a family of parsers chara for each
0 6 S that consume terminal symbols and return them. The results of partial parsers are
combined using the function / . Thus, building an A S T can be done by representing the
A S T as an algebraic data type and using a constructor as / in the production rule parsers.
The pure x function represents a parser that does not consume any input and immediately
yields value x.

Yet, the applicative interface itself does not allow to model alternatives. That is when
there is more than one production rule for a single non-terminal on the left hand side of
the rule. Extending an applicative functor with a monoid gives an Alternative functor:

Definition 7. Applicative functor with alternatives F is an applicative functor with an
additional constant and an additional operation:

• empty : F a

• 0 : Fa^Fa^Fa

Subject to these laws:

1. Identity: empty 0 p = p = p 0 empty

2. Associativity: (a 0 6) 0 c = a 0 (b 0 c)

Parsing-related semantics of the empty constant is a parser that always fails. The 0
implements the choice operator. Grammar rule X —> /?i | /?2 I • • • | Pn c a n be translated
as px = P/3i 0 P/32 0 • • • 0 Ppn • Sometimes, parsers implement the ordered choice operator
returning just the result of the first parser that matches the input violating the associativity
law.

3.2.3 M o n a d

Definition 8. Monad M is a functor together with these two operations:

• return : a —>• M a

• bind : M a -> (a -> M b) -> M b

Let f © g = Xx i-> (bind (bind x g) f) be the monadic composition operator (analogous
to function composition) of type (b —>• M c) —>• (a —>• M 6) —>• (a —>• M c). Monad M is
subject to these laws:

1. Identity: return ©/ = / = /© return

2. Associativity: (f © g) © h = f © (g © h)

In Haskell, the bind operation is denoted as an infix operator » = . Monad is the most
powerful structure discussed so far. Monads can be used to model many effects, including
non-determinism, mutable state, or communication with the outside world [34].

Looking at the bind operation from the parsing point of view, it can be used to replace
the © operation for sequencing of parsers. X —>• Y\Yi • • • Yn becomes:
(bind PY1 (Aai i-> bind py2 (Aa2 (bind pyn (Xan i-> return (f a\ a<i • • • a„))))))

22

As can be seen from the above statement, subsequent parsers can be determined by the
results of preceding parse. That is exactly what is needed for extensible syntax implemen­
tation. Take the expression (bind PA (Aa i-> if pred a then px else py)) as an example.
Here, the way to parse the rest of the output depends on whether the result of parser PA
matches given predicate pred. The predicate can be an arbitrarily complex computation.

3.3 Type systems

This chapter briefly introduces type systems on the language of lambda calculus [35]. Task
of the type system is to prevent certain class of programming errors from occurrence by
restricting sets of possible values that can be computed by any phrase of the programming
language in question. Type system for our new programming language will be discussed
later on.

Let us introduce A-terms first.

Definition 9 (A-term). Any X-term t can be generated by repeatedly applying the following
rules one at a time a finite number of times:

1. t = v (t is a variable)

2. t = Xx.ti, where x is a variable and t\ is a X-term (abstraction)

3. t = t\ti, where t\,t2 are X-terms (application)

Semantics of evaluation of a A-term t is briefly and rather informally described as follows:

1. If t = (Xx.ti)t2, the resultant term is t\ with all occurrences of variable x in t\ bound
by the header of the A-abstraction being replaced by ti in such a way that no free
variable in £2 becomes bound (variable renaming might be needed).

2. Otherwise, the term t is not reducible.

3.3.1 Simply T y p e d Lambda Calculus

Simple types extend the untyped A-calculus in a number of ways. Most notably, types r
are introduced. The first type to deal with is the function type denoted n —>• T2, where
T i , T 2 are types. The set of all types with function types only is empty, so the simple type
system is usually further enriched by either the boolean type or the naturals. To simplify
the type-checking, each variable bound by an A-abstraction is explicitly annotated with its
type: Ax : r.t specifies the type of variable x to be r .

(x, T) e r r u { (x , r i) } h t : r 2 r h h : r 2 -)• n r h £2 : T2

" r u V A R ^TT\ 7\ 1— A B S
 R 1 • • A P P

1 h x : T 1 h (Ax : T\.t) : T\ —>• T2 1 r t\ti • T\

Figure 3.2: Typing rules for simply-typed A-calculus

Typing relation h: is a ternary relation between an environment T, a term t, and a type
r . Relation r h t : r reads as: given the environment T, term t has type r . The environment
maps free variables to their types. Any well-typed term is provable from typing rules in
figure 3.2 plus used extensions. The listed rules deal only with function types, rules for
typing any extensions (such as booleans or naturals) are not included.

23

3.3.2 Polymorphism and Unification

Polymorphism is introduced by adding type variables to the mix. In this section, we restrict
ourselves to universally quantified type variables. For all valid types, the substitution of
the type for any type variable has to be well-typed. Wi th type polymorphism, a A term
really represents a family of functions.

Type reconstruction also called type inference, relaxes the need for type annotations
in A-abstractions. Take an application of function / : T2 —>• T\ to x : T3 as an example:
fx generates a constraint T2 = T3. The constraint follows from the typing rule A P P from
figure 3.2. Then, unification takes place to make T2 and T3 equal. The result of unification
is a mapping from type variables to type terms which can be applied to T\ to get the final
type of the term fx : unify{T2,Tz){ji).

Figure 3.3 shows the basic skeleton of the unification function. The o symbol is used as
a substitution composition symbol capturing the notion of substitution transitivity: if c is
substituted for b and b is substituted for a then c is substituted for a. Type constructors
other than function are unified analogously to them. Note that the algorithm may fail which
means the generated constrain is not satisfied meaning that the term is not well typed.

unify(Ti,T2)

{v ->• r 2 }
unify(T2,Ti]

unify(a(Tlb]

fail

if T I = r 2

if v = T\ is a type variable
if T2 is a type variable

1 0-(T 2b)) OO if T i = T i a ->• T i b

and r 2 = r 2 a ->• r 2 b

and a = unify(Tla, r 2 a)

otherwise

Figure 3.3: Unification algorithm

3.3.3 Row Polymorphism

Row polymorphism was originally introduced by Didier Remy for typing record types [38].
A row type variable does not represent just a single type, it can be unified with a whole row
of types. Consider a record r with labels li, l2, where r : {l\ : T I , l2 : T 2 \ V}. Here, v is the
row variable. Record of this type can be unified with any other row polymorphic record if
all labels are distinct. In the process of unification, the row variable v unifies with all the
fields of the record r it is being unified with.

The concept of row polymorphism has been later extended to accommodate sum types
(tagged unions) [22] and ordered products (tuples) [10].

3.4 Concatenative Programming Languages

Concatenative programming, described by some as "An Overlooked Paradigm in Functional
Programming" [14], is a way to write computer programs using composition of functions
[46]. Most concatenative languages are stack-based: all the functions map a stack to a stack.

The programs (= functions) are constructed as follows:

1. Any pre-defined built-in program is a program.

24

2. If pi and P2 are programs, then p\ P2 is a program. This is the program composition
and has the semantics of P2 opi- In a concatenative language, data flow from left to
right, whereas in the mathematical notation it is the other way around.

3. If p is a program then [p] is a program that pushes p onto the stack as an anonymous
function. This construct is called quotation. Higher-order functions can be modelled
this way.

Functions with n arguments take n topmost values from the stack, compute the results
and push them onto the stack. Constants are just miliary functions that push the value of
the constant onto the stack.

Concatenative programming has several interesting properties:

• Programs do not need parentheses to specify operation priority, the programs are
written in the Reverse Polish Notation (also called Postfix Notation).

• Programs are completely point-free, no variables are used anywhere.

• Function can naturally return multiple values just by pushing them all onto the stack.

• Expressive power of the language can be partially regulated by choice of built-in
combinators e.g. by allowing only linear recursion combinator, preventing other kinds
of recursion [18].

• The syntax is very minimalistic and the semantics is reasonably simple.

• Both syntax and semantics form a monoid. The syntactic monoid is the set of strings
with concatenation (associative) and empty string as the neutral element. The seman­
tic monoid is the set of functions from a stack to a stack with function composition
(associative) and the identity function as the neutral element. Compilation can be
seen as homomorphism from the syntactic monoid to the semantic monoid [46].

In presence of static typing, the semantic monoid turns into a semantic category as the
totality requirement is not satisfied. That is due to the fact that some syntactically
correct terms are being ruled out by the type system.

3.4.1 Examples

Following examples demonstrate some of the features of concatenative programs. The
traditional functional equivalent is given on the right hand side of the = sign.

• 5 8 add =13 — Adding two constants.

• [1 add] map = map (Ax i-> x + 1) — List-based map function.

• [5 mul] dip — Combinator dip applies the quotation one level under the top of the
stack. If applied to the stack [7,1, 3, 2), the program will transform it to [7,1,15, 2)
(top of the stack is on the right, mul is multiplication).

• dup mul = A i H - 1 2 — The item on the stack is duplicated and then multiplied with
itself, implementing the square function.

25

• qot dip — Swaps two topmost items on the stack. The qot combinator adds one level
of quotation to the topmost item x, turning it into [x]. It is then unquoted underneath
the top by the dip combinator.

• [dup mul] map sum sqrt — Computes the length of a vector. Notice that there is
a subprogram equivalent to the previous example. The absence of variables makes
subprograms somewhat independent on the surroundings turning some simple refac-
toring tasks into just search-and-replace.

3.4.2 Typing Concatenative Programs

There are ways to introduce types to concatenative programs [10] as has been done for the
Cat programming language [9]. Each function reads just a few top-most elements of the
stack. The rest of the stack can contain an arbitrary number of elements. Hence, functions
need to be polymorphic in the rest of the stack. This is modelled using row polymorphism
(section 3.3.3). Otherwise, the type system is based on similar concepts as the simply typed
lambda calculus.

26

Chapter 4

Technologies for Compiler Design

This chapter reviews existing techniques, technologies and tools that support design process
and (semi-)automatic implementation of compilers. Compilation process can be divided into
several phases. Various tools aim to ease development of different phases of the compilation.

Traditional compiler design can be roughly divided into two main parts [2]:

1. Front-end

(a) Lexical analysis

(b) Syntax analysis

(c) Semantic analysis

2. Back-end

(a) Conversion to intermediate representation

(b) Optimizations

(c) Target code emission

The task of the front-end is to turn the textual representation of the language into
compiler internal representation. As syntax analysis takes place in the front-end, it is
the central subcomponent of focus for this project. The back-end converts the intermediate
representation into native machine code. The intermediate representation undergoes several
transformations such as optimization passes, before register allocation and target code
emission itself is performed.

When picking appropriate tools for for language design and implementation, unusual
special features of the language have to be kept in mind. Syntax extensibility definitely is
such a feature.

4.1 Parser generators

The idea of parser generators is to generate source code implementing syntax analysis from
a grammar definition usually encoded in E B N F form. The output is a static parser with
hard-coded constructs.

27

Yacc is a parser generator for C / C + + . The abbreviation stands for Yet Another Compiler
Compiler [37]. The output is a L A L R parser implemented in C. Yacc requires an external
lexical analysis routine such as hand-coded state machine or generated by a similar tool for
lexical analysis, e.g. lex. As C / C + + is not the implementation language of choice, yacc
is mentioned here just as one of the most prominent examples of parser generators.

Happy is a parser generator for Haskell [24] and as such is more relevant for this project
than yacc. It features integrated lexical analysis, integration with arbitrary monad, and
support for attribute grammars [19].

Evaluation

One way to use a parser generator for a language with user-defined syntax would be to
parse just a skeleton of the language, leaving some parts tokenized but not parsed. The
unparsed parts would be processed during the second pass utilising user-provided grammar
rules. This approach possesses several limitations such as the inability to extend the syntax
arbitrarily. Overall, it seems to be better to employ a more dynamic tool than a parser
generator.

4.2 Parsec

Parsec [21] is a parser combinator library for Haskell. It is a library providing a set of
simple parsers and a set of combinators to compose simpler parsers into more complex
ones. It is designed as a monad transformer which allows Parsec to trigger other effects,
such as interaction with outer world via 10 or logging of compilation process, while parsing.
Parsec is predictive by default causing the order of operands of the choice operator to be
significant. Parsec is primarily designed as a scanner-less parser: it does not distinguish
between lexical and syntactic analysis.

Example

Parsers can be expressed in monadic or applicative form (section 3.2, page 21). Listings
4.1 and 4.2 show the language of nested parentheses in Parsec expressed in applicative and
monadic style respectively. Both parsers return maximal depth of parentheses. Applicative
style is more compact and arguably more readable while it has less expressive power.

parens = max <$> (inc <$> char ' (' <*> parens <*> char ') ') <*> parens
<I> pure 0

where inc _ p l depth _p2 = depth + 1

Listing 4.1: Parenthesis language in applicative style in Parsec

parens = par <|> r e t u r n 0
where par = do

char ' ('
a <- parens
char ') '
b <- parens
r e t u r n $ max (a + 1) b

Listing 4.2: Parenthesis language in monadic style in Parsec

28

Parsec also features user-defined state, which can be used to keep track of a symbol table.
It could be also employed to store user-defined syntax rules and extract them on-demand
via monadic binding.

Evaluation

Monadic parsing offers enough expressive power to build parsers dynamically as the parser
to be used for consuming subsequent input can depend on results from parsing preceding
input. Listing 4.3 shows a parser that uses the parseGrammarDef i n i t i o n parser to dynam­
ically generate a parser that is used to parse a subsequent chunk of code. The example is
given both in the do-notation and in combinatoric style.

import Text . Parsec

parseGrammarDef i n i t i o n : : Stream s m t => P a r s e d s u m (P a r s e d s u m a)
parseGrammarDef in i t ion = undef ined - - we leave t h i s u n s p e c i f i e d for now

loadGrammarAndRun = do
dynamicParser <- parseGrammarDef in i t ion - - load a grammar
dynamicParser - - and run i t s parser

loadGrammarAndRun' = parseGrammarDef in i t ion >>= i d

Listing 4.3: Metaparsing with Parsec

4.3 Attribute Grammar Compiler

The Utrecht University Attribute Grammar Compiler1 (UUAGC) [43] is a preprocessor that
augments bare Haskell with support for Attribute Grammars [31] which were described in
section 3.1.2. U U A G C has been used to implement a brand new Haskell compiler U H C 2 ,
a compiler of the Tiger language and it has been also used to bootstrap itself.

U U A G C introduces a few new keywords, most notably a t t r which declares an attribute
annotated with the its type (the most common types are syn for synthesised attributes and
inn for inherited ones), and sem which defines the semantics of an attribute.

Example

data Tree
I Node l e f t , r i g h t : : Tree
I T ip value : : Int

a t t r Tree
syn sum : : Int

sem Tree
I Node lhs .sum = @left . sum + Oright . sum
I T ip lhs .sum = Ovalue

Listing 4.4: U U A G C example

xhttp://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
2http://www.cs.uu.nl/wiki/bin/view/Ehc/WebHome

29

http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/bin/view/Ehc/WebHome

The example in listings 4.4 shows how to use U U A G C to annotate nodes of a tree with
a synthesised attribute representing the sum of all its descendants. The definition is very
straightforward. To mix attribute grammars with plain Haskell, the Haskell code has to
be enclosed in curly braces and special generated functions have to be used to extract the
attributes bound to particular data structures

Evaluation

U U A G C is a very useful tool for language and compiler implementation. The notion of
attribute grammars matches the problem domain very well. It is particularly well suited
for doing semantic analyses over the abstract syntax tree of a program. On the other hand,
the preprocessing stage complicates the build process a little bit.

While it is certainly possible to express syntax extensions with attribute grammars due
to their ability to encode any Turing-complete computation [31], it does not seem to be an
overwhelmingly elegant solution.

4.4 Code Pretty Printers

Many compilers produce assembly language or other textual code rather than target ma­
chine binary. In order for it to be easier to inspect by humans, it is desirable that it is
nicely formatted. Several software tools have been developed to perform the task.

Standard Haskell distribution, the Haskell Platform 3 , comes with a pretty-printer library
designed by John Hughes and improved by Simon Peyton Jones [17]. The library exports
many combinators to compose textual layouts and render them into a character string in
a number of different ways. Limiting the output width, indentation, enclosing in braces
and parentheses are all well supported.

Example

Although the example pretty-printer definition in listing 4.5 is much larger than corre­
sponding output in listing 4.6, it has defined several re-usable functions and demonstrates
document composability the library provides.
fhead ret fname args = text ret <+> text fname <> fargs
fargs args = parens . sep $ punctuate comma args '

where args ' = [text ty <+> text name I (ty , name) <
f c a l l fname args = text fname <> parens args ' <> semi

where args ' = sep $ punctuate comma args
fbody body = lbrace $+$ nest 4 body $+$ rbrace

main = p u t S t r L n . show $
fhead "int" "main" [(" i n í " , "argc"), {"char**", "argv")l
$+$ fbody (f c a l l "puts" [text "argv" <> brackets (in t 0)])

Listing 4.5: Sample Pretty-Printer definition

int main(int argc , char** argv)
{

p u t s (a r g v [0]) ;
}

Listing 4.6: Sample Pretty-Printer output

3http://www.haskell.org/platf orm/

args

- args]

30

http://www.haskell.org/platf

Evaluation

If a compiler has a textual output, using a pretty printer can save many lines of code
dealing with low-level string manipulation while maintaining a nice and readable output
formatting. Pretty-printer coming with the Haskell Platform is a well-designed piece of
software that fits our use case of generating L L V M IR well.

For alternative pretty-printing library designs, see [3], [47] and [43, chap. 4].

4.5 libgc

The gc library 4 provides a conservative garbage collector. The conservativeness property
implies it can be safely used with languages that have not been designed with garbage col­
lecting in mind such as C and C++ [5]. In most cases, switching from manual deallocation
to a libgc-based one is just a matter replacing all malloc calls with calls to GC_malloc
and linking l i b g c to the binary.

It can also be used for automatic deallocation of objects in runtime environment of
other languages when linked as a library.

Evaluation

Automatic garbage collection is one of the most common memory management schemes
in programming languages with high degree of abstraction. Plug-and-play technology for
automatic memory deallocation is an extremely useful tool when implementing such a high-
level language.

4.6 L L V M Compiler Infrastructure

L L V M compiler infrastructure [20] is a language agnostic set of libraries and tools suitable
for use as a back-end of a programming language. It includes many pre-made optimization
passes, register allocator and binary generation for many target platforms.

The Intermediate Representation (IR) has several features that make it simple for it to
be generated automatically from an abstract syntax tree. Main characteristics of the IR
include:

• Pre-defined instruction set. Instruction invocations are grouped into basic blocks,
each block is introduced by a label and terminated by a terminating instruction (such
as jump or function return).

• Unlike most assembly languages, L L V M IR has an explicit notion of a function.

• Based on register machine with an infinite supply of read-only registers and unlimited
read/write memory. Registers are statically typed though unsafe casts are possible.

• Each register is assigned only once adhering to the Static Single Assignment (SSA)
form [6] simplifying the code analysis. When a register shall be assigned a value from
either of several different variables coming from different basic blocks, the special ph i
instruction has to be used.

4http://www.hpl.hp.com/personal/Hans_Boehm/gc/

31

http://www.hpl.hp.com/personal/Hans_Boehm/gc/

Example

The example in listing 4.7 shows hand-coded L L V M IR for a program computing and print­
ing 1 + n2 for 0 < n < 10. It shows many features of L L V M IR including declarations of
external functions, function definitions, constructing loops with branching and ph i instruc­
tions, and loading global data from memory.

dec lare double Ollvm . sqrt . f 64 (double °/,Val)
dec lare i32 @ p r i n t f (i 8 * , . . .) ;
0 . f mt = p r i v a t e unnamed_addr constant [4 x i8] c " °/,f \0 A\00"

def ine double @len(double °/,x , double 7,y) {
7,x2 = fmul double °/,x , °/,x
7,y2 = fmul double 7.y , 7.y
7,len2 = fadd double 7,x2 , 7,y2
y.len = c a l l double Ollvm . sqrt . f 64 (double 7,len2)
ret double 7,len

}

define i32 @main(i32 7,argc , i32** 7,argv) {
entry :

br l a b e l 7,loop
loop :

7,n = ph i i32 [0, gentry] , [7,nnext , 7,body]
7.1el0 = icmp s i t i32 7,n, 10
br i l y.lelO , l a b e l 7,body , l a b e l 7.exit

body :
7.nd = s i t o f p i32 7,n to double
7.z = c a l l double @len(double 7,nd , double 1.0)
7.fmt = gete lementptr [4 x i 8] * 0. f mt , i64 0, i64 0
c a l l i32 (i 8 * , . . .) * @ p r i n t f (i 8 * V.fmt , double 7,z)
7,nnext = add i32 7,n, 1
br l a b e l 7,loop

ex i t :
ret i32 0

}

Listing 4.7: L L V M IR example

Evaluation

L L V M is an advanced and stable backend used in several production-ready compilers. It
offers many optimization passes and code transformations as well as some sanity checks
of its input. It abstracts the designer of a natively-compiled programming language from
many details of the target platform such as concrete instruction set or register file layout.
It seems to be a suitable part of the backend of our toy language.

32

Chapter 5

Language Design

In this chapter, we propose the Experimental Extensible Language, or E E L . The design
consists of two main parts:

1. Minimalistic declarative core language

2. Way to extend and modify the language syntax

Syntax extensions are defined by means of mapping the newly introduced constructs to
the core language. The core representation is in turn type-checked and ultimately trans­
formed to a native binary executable via series of intermediate steps.

5.1 Design Goals

First several criteria will be set up. These have to be kept in mind while designing and
implementing the language itself. The main focus of the language being proposed is practical
research on syntax extensibility. Following criteria either immediately follow from that main
idea or narrow down the specification. Some of them refer to concrete implementation rather
than design of the language itself.

Syntax Extensibility

The central focus of E E L is the ability to let the user define new syntax. The syntax
extension mechanism shall be:

1. Easy to understand: The mechanism of defining new syntax shall be based on (a mod­
ification of) Context-Free Grammars with semantic annotations attached to the rules.
Context-Free Grammars are a part of common knowledge of most programmers so
the syntax extension system should not be too hard to grasp.

2. User-friendly: Semantic errors, such as type errors, encountered during core repre­
sentation analysis shall be propagated back and point to a specific position in the
original source code.

3. Meta-extensible: The syntax for definition of syntax extensions shall itself be exten­
sible.

33

Core Minimalism

The core language acts as a target language for syntax extension translation mechanism.
It is a declarative, functional in nature, and statically-typed programming language.

The core specification shall be stripped down to the bare minimum:

1. In terms of syntax: Any additional useful syntactic constructs can be introduced by
the syntax extension mechanism. Concatenative languages seem to be a good match
as they have only three syntactic constructs: functions, function composition, and
quotations.

2. In terms of semantics: A simple but demonstrative type system inspired by simply-
typed lambda calculus with a few extensions. Several built-in data types.

3. In terms of number of built-in functions: A minimal set of combinators that form
a base for Turing-complete computations together with a minimal set of functions
manipulating built-in data types.

Static Type Safety

E E L shall feature static strong type discipline. The same discipline must apply for all
the user-defined syntax extensions as well. Newly introduced constructs and dialects must
exhibit at least the same degree of safety guarantees as the core language.

Transparency

Being an experimental language, it is desirable to be able to examine the internals of its
compiler. It should be possible to print out the outputs of various passes of the compilation
process as a human-readable text file. The philosophy is similar to L L V M , where the
intermediate representation can be turned into a human-readable format so the effects of
various optimization passes and other transformations can be easily assessed by a human
investigator. This is design objective of the compiler rather than the language itself.

Other Features

Other nice features that are not a big concern with respect to the primary research goal on
syntax extensibility include:

1. Native Compilation: The result of the compilation process is a native binary that can
be executed on real hardware.

2. Library Design: Make various translation stages separable so that they can be reused
in external utilities or IDEs.

These features are also a matter of concrete compiler design and implementation rather
than being intrinsic to the language.

34

Experimentation

Finally, E E L is a research prototype language and its primary goal is experimentation. This
implies several non-goals:

1. Simple type system: The type system of E E L does not aim to be all-expressive. It
may be complex just enough to demonstrate the typing preservation of the syntax
extensions on several not overly complicated examples but not more. Advanced fea­
tures such as type classes or subtyping will be left out, user-defined types might be
disallowed.

2. Limited interaction with outer environment: To demonstrate its capabilities, the lan­
guage does not need to be full-featured in terms of interaction with the operating
system. Basic stdin/stdout console 10 should be just enough.

3. Other common features: Some features that are common in practical programming
languages may be very limited or not present at all. These include module system,
explicit symbol name spaces etc.

4. Limited paradigm support: Although a support for some language paradigms could
be added by a well thought-out mix of higher-order functions and syntax extensions,
the type system can be a limiting factor here.

5. Performance: Performance of either the compiler itself or the generated executable
is not considered very important.

The points mentioned above just limit the scope of this project and they can be revised
in the future. If the language was intended to become a practically useful one, addressing
these issues would be more than appropriate.

E E L Core is a stack-based concatenative programming language. There are good reasons
to use this paradigm minimalism being the most important one. Stack code is also one
of common intermediate code representations used in compilers and interpreters. Using
a similar language as a target platform for translation of high-level user-defined syntactic
constructs seems to be a good match.

The core uses a strict evaluation strategy making the runtime simpler and eventual
possible debugging easier. It also makes side effects hurt less when mixed with the pure
code. Subprograms are executed in order. E E L is not a pure functional language. One can
freely mix pure and side-effecting, the type system does not enforce any kind of isolation
between the two.

5.2 The Core

F

£

name
F F

invocation of function name
function composition
anonymous function (quotation)
empty function (identity)

Figure 5.1 E E L Core abstract syntax

35

Syntax of the Core matches the common syntax of other concatenative languages as
described in section 3.4 on page 24 and summarized in figure 5.1.

E E L Core pushes the idea of concatenative programming to the limit. Even function
definitions use postfix notation. This concept makes it possible to treat runtime expres­
sions and function definitions uniformly from the point of view of user-defined syntactic
extensions. The square function would be defined as follows: [dup mul] "square" def.
Here, the def is just a function that defines a new named function from a quotation. The
def function is only available at the compile time.

5.2.1 Type System

E E L uses polymorphic type system with fake row variables heavily inspired by [9, 10]. A l l
type variables are treated as if they were universally quantified, existentials are missing.
Available types are summarized in figure 5.2.

r ::= int | char | float built-in atomic types
U unit type
r + r sum type (tagged union)
T X T product type (ordered pair)
r —> T exponential type (function)
[r] list type
var type variable

Figure 5.2: E E L Core data types summary

E E L does not support any form of user-defined types or type annotations, types of
all terms are inferred by the compiler. Recursion patterns are supported only via the
fixed-point built-in combinator f i x , list is the only type exhibiting structural recursion.
Any other term that would require recursive types to be typeable, such as an attempt to
perform a self-application dup apply, will be rejected by the type checker.

The stack is modelled as a series of nested pairs. The left component of the most deeply
nested pair is the fake row variable. For example function add takes two in t s from the
stack and returns one integer result. Its type is ((r x int) x int) 4 (r x int). Not supporting
user type annotations simplifies matters a lot as otherwise the fake row variable r would
have to be of a different kind from ordinary type variables.

The lack of recursive types forces us to use dynamic typing at the compile time. A l l
safety guarantees for generated target code remain intact as all functions to be emitted by
the backend are type-checked statically. Summary of the typing rules for basic syntactic
categories is shown in figure 5.3.

E P S (* , T) € r p u N c r h t : ^ fresh(r2) fresh(vr) ^
r h e : T - ^ T T \- x : T T h [t] : T 2 T 2 x n

r H / : T\ ^> r 2 r h g : r 2 r 3 7r = TT\ A 7r 2

F I- / g : Ti ->• T 3

C O M P

Figure 5.3: E E L typing rules

36

Phase Distinction As it has been already mentioned, some functions can be performed
during the compile time only. Such functions are marked with a plus sign (+). On the other
hand, there are functions that can be performed only in the run time, namely functions
executing I /O operations, marked with a minus sign (—). Furthermore, to provide syntactic
extensions, there are a few primitive parsers marked with an asterisk (*).

The phase any function operates in is captured by the type. Type of function from n
to T2 operating in phase TT is denoted T\ —> T<I- Functions can be polymorphic in phase.
Unification of phases is resolved according to partial ordering among phase annotations
which is shown in figure 5.4. The top represents phase-polymorphic functions, the bottom
is a type error. The phase annotations can be viewed as a simple effect system [36, chap. 3].

T

+

1

Figure 5.4: Partial ordering on phase types

5.3 Extension Mechanism

The mechanism of user-defined syntactic extensions in E E L is inspired by monadic parser
combinator libraries. Separation of parsers from the rest of the functions is enforced by
phase types, not an explicit notion of a monad. When it comes to the expressive power,
the two are equivalent.

The Core offers a function that introduces a new rule: defrule . It takes a string name
of the non-terminal to extend, an integer priority, and the right-hand-side of the rule. The
right-hand-side is a function composed of primitive or user-defined parsing combinators or
invocations of parsers for other non-terminals.

The priority together with ordered choice is our way to deal with ambiguity. The priority
levels are tried in descending order. If one priority level fails, the parser backtracks and
tries the next lower priority level. If all priority levels fail, the parse of the non-terminal
definitely fails. Rules with the same priority do not backtrack: if one consumes any output,
the parser is 'committed' to the alternative. If there are several matching rules of the same
priority, the one that has been defined last applies. This makes it possible to override
parts of the syntax defined by previously introduced rules. The parsing algorithm itself is
captured in figure 5.5

This two-stage disambiguation mechanism of a set of parsers with backtracking each
composed from a set of parsers without backtracking has been chosen because it fits well
the implementation with Parsec. In order to provide more freedom in user-defined grammar
extensions, the E E L parser is a scanner-less one. Tokens are individual characters of the
input sequence. Parsec intended to be used as a scanner-less parser too, so with this respect
it fits our needs well.

E E L supports special 'dotted' non-terminals. Non terminals starting with a dot are
used to parse files with the matching extension. For example, if the E E L compiler is about

37

parse(N):

1. Find all parsers for non-terminal iV and group them by priority i. Let RN be the set
of parsers (rules) for non-terminal N. Pi = {p G RN \ priority(p) = i } , i £ Z .

2. For each i in descending order:

• For each p £ Pi in the reverse order to the order of the definition of the parser
(most recently defined comes first):

— If p matches any input (single character is enough):
(a) If p fails, continue with the next priority group Pi-\.
(b) If p succeeds, return its result.

3. If none of the parsers succeeds, parsing of N fails

Figure 5.5: E E L parsing algorithm overview

to process a file named h e l l o . x m l , it will use the non-terminal with name .xml to parse
the file.

5.3 .1 Primitive Parsers

In order to be able to build production rules, the core has to offer primitive parsers which
can be used to build more complicated ones. The minimal set of such parsers is defined by
two built-ins:

• ppchar Takes a predicate which is a function from char to book If the next character
in sequence matches the predicate, it is consumed and parsing proceeds. Otherwise,
the primitive parser fails.

• p p f a i l Parser that always fails with given error message. It can be used to check
advanced properties of the input such as checking whether opening and closing tag
names in a X M L fragment match.

5.4 Built-in Functions and Standard Library

The list of all built-in functions is available in the appendix A . The built-ins are relatively
low-level, so they are used to build up a standard library of other often used functions called
prelude.eel. The standard library is automatically available in all translation units unless
the user specifies otherwise.

38

Chapter 6

Implementation

Prototype compiler of E E L has been implemented in Haskell with Parsec used to build the
parser on-the-fly and subsequently consume input code. In this chapter, several interesting
implementation details are discussed.

6.1 Modules

The source tree is broken down into several modules, each having a few sub-modules. Here,
the top level modules of the hierarchy are described.

Parser The parser module uses Parsec as its underlying library. User-supplied state is
defined here. It consists of a symbol table, a grammar rule definitions table, and current
evaluation stack for the compile-time interpreter. Several convenience functions for querying
and manipulating the state are provided.

Definition of the Core syntax lies in this module too. In addition to that, representation
of user-defined syntax rules and an algorithm building a parser from the rules is present.

The top-level Parser module takes care of bootstrapping the initial state of the parser
and calls semantic checks after it is done. It is a convenient interface for building different
EEL-based tools.

Sema This module defines Abstract Syntax Tree representation of E E L functions. Rep­
resentation of E E L data types and type inference algorithms live in this module.

B u i l t i n s The Builtins module enumerates all the built-in functions along with their types.
The Eval sub-module implements the compile-time interpreter for the E E L built-ins. Much
of the heavy lifting is done here.

Backend The backend consists of three parts. The first one is a somewhat generic pretty-
printer for the text representation of L L V M IR based on the Text. P r e t t y P r i n t module
that comes with standard Haskell distribution.

The second one generates the preamble: a piece of L L V M code that is the same for all
E E L programs. The preamble contains external function definitions, a function to convert
a C string to an E E L string, and trampoline functions for quotations and closures. There
is also C-based main function that converts command-line arguments to the list of E E L

39

strings, initializes the stack, runs the E E L main function, extracts the result value and
returns it as an exit code of the program.

Finally, the third part walks the A S T and generates L L V M IR code for encountered
syntactic categories and built-in functions.

Main The main module contains a compiler driver, a read-evaluate-print interactive in­
terpreter, and a command-line option parser. This module is described in more detail in
section 6.3.

6.2 Runtime Organization

Runtime environment is kept as simple as possible because code generation is not our
research objective. E E L stack is represented as a simple linked list with a pointer-sized
data field and a next pointer. Functions pass over a pointer to the top of the stack.

Atomic types (floats, integers, chars, and units) are stored unboxed. Compound types
(sums, products, lists, functions) are represented as pointers to actual values (boxed [39]).
In case of sums, it is the tag-data pair, lists are represented in the same way as stacks.
Boxed representation greatly simplifies code generation for polymorphic functions.

Anonymous functions (quotations) in the code are emitted as proper L L V M functions
with an auto-generated name. Functions (quotations) on the stack are represented using
triples with two data fields and a function pointer to be executed when the quotation is
executed (unquoted). When the quotation is about to be executed, the two data fields
together with current stack are passed to the function pointer stored with the quotation.
The function pointer can point to three different functions:

• Oeelrun.func — This trampoline treats the first data field as a pointer to function
and applies it to the current stack. This type of quotation is generated if it appears
in the code as an anonymous function.

• Oeelrun.data — This trampoline treats the first data field as an data item to be
pushed onto the stack. This type of quotation is introduced by the qot built-in that
adds a layer of quotation to the topmost item on the stack.

• Oeelrun. comp — This trampoline implements function composition as introduced
by the cat built-in function. It treats the two data fields as another quotations and
executes them in sequence.

A l l boxed values and E E L stack frames are allocated on a garbage-collected heap man­
aged by l i b g c 1 .

Generated L L V M code is not very nice mainly due to frequent typecasts. That is because
values of all data types are represented uniformly. Furthermore, L L V M in its recent versions
lacks unions (untagged sum types). The names of local variables (registers) generated by
the code generator contain a hint of the semantics of the variables. For example variables
with a name starting with °/0stk are all pointers to the top of the stack.

Generated code is not very efficient and it is quite a nice garbage-collector stress test
because of the constant stack shuffling. A l l data in E E L are immutable, so the SSA form
is generated directly without using stack allocation instructions.

xhttp://www.hpl.hp.com/personal/Hans_Boehm/gc/

40

http://www.hpl.hp.com/personal/Hans_Boehm/gc/

6.3 Command Line Compiler Driver

E E L compiler driver is operated from the command line. First, it loads the input files
specified on the command line and passes them to the E E L compiler implementation. The
resultant L L V M code is saved into a temporary file which is in turn presented to the L L V M
compiler binary 11c. The result is a temporary assembly file, which is passed to gcc. We
use gcc as both, assembly language compiler and linker. Three additional libraries are
linked to the resulting binary:

• l i b c — C standard library provides I /O operations

• l ibm — C mathematical library implements some built-ins (sin,pow,...)

• l i b g c — conservative garbage collector

Overview of the whole process can be seen in figure 6.1. The compiler driver can be
instructed to keep any of the temporary files generated during the compilation process via
command line options. For the full list of available options, see appendix B .

Figure 6.1: Overview of the E E L compiler driver pipeline

Interactive interpreter E E L also provides an interactive interpreter. It is invoked by
specifying the - i option on the command line. The list of commands implemented by the
interactive interpreter is in appendix B as well.

41

Chapter 7

Examples

In this chapter, syntactic extensibility of E E L is demonstrated on several simple examples.
Methods for adjusting the language syntax for specific needs are presented. Towards the
end of the chapter, it is shown how to use the extensibility capabilities to process external
domain specific languages.

7.1 Bootstrapping EEL

First, we have to deal with the fact that by default, the core E E L language is not extensi­
ble. To provide this feature to the core, its syntax has to be bootstrapped. In other words,
grammar definition of E E L core itself will be provided in terms of a syntactic extension.
Files ending with .eee l (notice the extra 'e') will be parsed using the bootstrapped syntac­
tic analyser. Bootstrapped syntax allows new syntactic extensions to be defined on-the-fly,
they take effect right after the definition.

Grammar Definition

The grammar definition is mostly equivalent to the built-in one. One difference is that
the bootstrapped E E L syntax supports negative integer constants out of the box. When it
comes to extending the syntax even further, it is necessary to know the names and meanings
of the non-terminals. The most important ones defined by the bootstrap module follow:

• s k i p l — Used for skipping white space and comments. Extend this non-terminal to
add a new kind of comment.

• atom — Used to parse atomic functions. Can be used to introduce new syntax for any
kind of function ranging from nicer constants or specifying parts of a computation
in a different format (e.g. a regular expression) to a completely different approach
to a part of a computation (e.g. using a monadic composition instead of the plain
function composition). The result of this parser shall be a quotation with the resulting
function.

• prog — Function composed from atomic functions.

• escseq — This non-terminal can be used to specify new escape sequences that appear
after a backslash inside a string literal.

The bootstrap grammar definition lives in l i b / b o o t . ee l .

42

Demonstration

As E E L compiler does not have any clever module system, files with all the required defi­
nitions have to be specified on the command line explicitly:
. / e e l -o output_binary l i b / b o o t . e e l samples / tes t .eee l

The samples/test .eee l file is a simple E E L core source with a few functions. Due to
the file extension, it is recognised as a bootstrapped E E L core file and as such it is parsed
using a dynamically built parser. It also contains a simple grammar extension so it already
demonstrates something that cannot be done with just plain core.

7.2 Structured EEL

Although the fact that function definitions are using the same syntax as everything else
has a nice feel of regularity, it is not very natural nor common in programming languages.
Especially having function name specified after its body might look quite unnatural. We
present a grammar extension that changes the syntax of top-level structure of the source
code file. We call it "Structural E E L " and the sources using this extension can be recognised
by the file extension . see l .

The function definition syntax changes as follows:
define function_name { function_body }

Grammar Definition

The grammar builds on top of the bootstrap. It introduces a new top-level non-terminal that
rewrites into series of definitions represented by the d e f i n i t i o n non-terminal. Introduction
of the define construct itself is in listing 7.1. The _eelkey function is the parser for E E L
keywords: any pre-determined sequence of characters followed by white space or a non-
alphanumeric character. The tok does the same for other kinds of tokens. Function _prog
is a shortcut for "prog" invoke which just invokes regular E E L core function composition
parser from the bootstrap.

' d e f i n e ' c o n s t r u c t : f u n c t i o n d e f i n i t i o n
[

"define" _eelkey # ' d e f i n e ' keyword
_symbol _skip # f u n c t i o n name
"{" _tok # opening brace

_prog # f u n c t i o n body
"1" _tok # c l o s i n g brace
swap def # def ine the f u n c t i o n

] " d e f i n i t i o n " 0 d e f r u l e

Listing 7.1: Alternative function definition syntax

Demonstration

The demonstration in listing 7.2 shows that even top-level constructs can be replaced and/or
extended in E E L .

define v e c t o r _ l e n g t h { [square] lmap sum }
core way to do t h i s : [[square] lmap sum] "vector_ length" def

Listing 7.2: Alternative function definition use

43

7.3 Meta Extensibility

A function definition is not the only top-level construct in E E L . The other one are extensions
to the syntax of the language. It would be nice to have a convenient syntax for them too.
Here, we introduce a syntactic extension for writing syntactic extensions.

The new top-level clause grammar contains a list of production rules. The left hand side
of the rules specify a non-terminal to rewrite. The right hand side of the rules is a sequence
of elements specifying what is the non-terminal rewritten to. Each element is of one of
three types:

1. Invocation of another non-terminal simply by spelling out its name.

2. Literate keyword specified in double quotes. Keywords are parsed as tokens, the
trailing white space is skipped automatically. This behaviour can be suppressed using
the caret symbol.

3. Semantic action enclosed in square brackets as a piece of E E L core program.

Grammar Definition

In abstract terms, the syntactic extension for extending grammar is specified in figure 7.1.
The actual implementation in E E L is quite a bit longer.

D
G
R
T

grammar { G } syntactic extension
R G | e list of rules
name —> T non-terminal for name
name T non-terminal invocation
"string" T literate keyword string
[P] T semantic action, P is the prog non-terminal from the bootstrap
; end of rule

Figure 7.1: E E L syntactic extensions metalanguage

Demonstration

This extension is a part of the Structured E E L module s e e l . e e l . E E L core lacks a con­
venient way to describe list constants. Listing 7.3 shows a way to introduce them, n i l
and cons are the list constructors. Non-terminal atom expects a function, not a literal list.
Hence the call to qot.
grammar {

l i s t constants
atom —> "$[" l i s t c o n t 11] " [qot] ;
l i s t c o n t --> [n i l] ; # empty l i s t
l i s t c o n t --> l i s t e n t r y l i s t c o n t l [cons] ; # non-empty
l i s t c o n t l --> [n i l] ; # end of l i s t
l i s t c o n t l --> " , " l i s t e n t r y l i s t c o n t l [cons] ; # l i s t cont inued
l i s t e n t r y --> func [i] ; # l i s t element

}
the te s t below r e s u l t s i n $[6, - 9 , 0]
def ine tes t { $[$[1, 5] , $ [-8 , 1, - 2] , $[]] [sum] lmap }

Listing 7.3: List constants extension

44

7.4 Encoding Brainfuck

Brainfuck is a minimalistic esoteric programming language designed for amusement rather
than serious computing. It has been chosen as an example because it is a simple but
self-contained Turing-complete programming language. Quite different from E E L yet its
grammar definition and representation in terms of E E L core is straightforward.

Brainfuck interprets only eight characters from the whole ASCII range. Its runtime
environment is an array of bytes together with a pointer pointing to the 'current' cell in
the array. The instructions are '+' and ' - ' for incrementing/decrementing the current cell,
'<' and '>' for shifting the pointer to the left/right, ' . ' writes a character to the output, ' , '
reads a character from the input, and [] is a simple looping construct. Any other character
is treated as a comment.

In E E L we represent the Brainfuck memory array as a zipper [16]. The array is split
into two parts represented by two lists. One is the region before the pointer and the other
is the region past the pointer. The lists are grown on demand.

Grammar Definition Remarks

To define the translation from Brainfuck to E E L core, we define Brainfuck instructions as
E E L functions first. Defining the rules is straightforward afterwards. The top-level rule for
parsing Brainfuck source code files . bf generates the main function that first initialises the
zipper, then generates the actual Brainfuck code, and finally extracts the value of the cell
where the execution has suspended and uses it as an exit code of the program.

A n extension to the bootstrapped E E L core has been defined as well. When loaded,
pieces of Brainfuck code can be used for some sub-computations in a larger E E L program.

7.5 DSL for Cellular Automata

In this section, we present a simple Domain Specific Language for specifying cellular au­
tomata [48]. We restrict ourselves to one-dimensional Cellular Automata. Cellular Au­
tomaton is a regular grid, or in our ID case a vector, of cells. The next state of each
cell depends on the previous state of itself and its neighbourhood. A l l the cells operate in
locksteps, they are updated synchronously.

Specification of the D S L

We choose to represent states of the cells as a subset of ASCII character set. C A specification
language is based on a sequence of pattern rules. The first matching rule applies. The
special '? ' symbol can be used as a wild-card pattern.

The rules have the following basic format: pa t te rn : next_state. The pattern con­
tains expected previous states of the current cell and its neighbourhood with the current
cell being enclosed in square brackets. The format is as follows: l e f t [X] r i g h t . The X
is the previous state of the current cell, l e f t and r i g h t is the previous state of its left-
/right neighbourhood. The neighbourhood patterns can be arbitrarily long, although most
"classical" cellular automata use the neighbourhood range of one.

xhttp://esolangs.org/wiki/Brainfuck

45

http://esolangs.org/wiki/Brainfuck

Grammar Definition Remarks

The grammar definition itself is quite simple, the runtime support and pattern matching
the DSL translates to is much more complicated. It would be easy to extend the next-state
part with an arbitrary E E L computation with previous states of some cells being passed
to it. Such an extension might be convenient but it does not add any anything to the
expressive power of the DSL.

Source code files of the C A DSL are recognised by the file extension of . ca.

Demonstration

The source distribution comes with several demo C A definitions. One of the canonical
examples is the Rule 110. The important part of its definition is in listing 7.4.

To compile it, run:
. / e e l -o r u l e l l O l i b / b o o t . e e l s a m p l e s / c e l l u l a r . e e l samples/rule110.ca

The resulting binary expects two command line arguments: number of iterations of the
C A to perform, and the initial state of the C A . The sample invocation can be seen in listing
7.5.

r u l e 110 - the 0 case
?[_]_ : _
a [a] a :

otherwise ®
[?] : a

Listing 7.4: Rule 110 definition in the C A DSL

Listing 7.5: Rule 110 in operation

46

Chapter 8

Conclusion

Provision of syntax extensibility is not a common feature in mainstream programming
languages. Some can get closer than others via greater expressiveness, ability to define new
operators, specialized preprocessors or compile-time string processing. Our language E E L
takes a fundamentally different approach. It is designed to support syntactic extensibility
from ground up.

The E E L compiler is still an experimental prototype rather than a production-ready
tool. Its primary goal is to explore the design space in the area of languages with user-
extensible syntax. Therefore, the scope of this project is narrowed and the design of the
core language is kept as simple as possible while keeping the possibility of extensions to the
grammar of the language in mind.

8.1 Achievements

The prototype E E L compiler has proven its value for experimentation with extensible pro­
gramming languages. Output of most compilation stages, ranging from A S T and L L V M
IR to generated assembly, is relatively easy to inspect. The interactive interpreter makes
testing of various features and prototyping new functions very fast. Ability to select a dif­
ferent parser based on file extension makes it convenient to process external file formats
using E E L .

E E L Core is already quite a nice language with a distinctive set of features even without
any syntactic extensibility. The combination of the concatenative paradigm with static typ­
ing, native compilation, and uniform representation of compile-time and run-time functions
with phase types is to our best knowledge very unique.

Syntactic extensions mostly work, including meta-extensions, i.e. introducing a new
syntax for defining new syntactic constructs. Extensions have been tested both by adding
new features to the core language and by defining simple self-contained domain-specific
programming languages.

Stack-based core has been shown to be a viable option to translate higher level language
constructs into. Mostly due to its simple semantics and context-independence. Unifying the
representation of compile-time and run-time operations makes the core more regular. As
a consequence, defining a new construct is easier and the result tends to be more reusable.

47

8.2 Limitations and Shortcomings

By no means do we pretend that E E L is a perfectly designed and implemented programming
language, quite the contrary. Proper identification of problems with current design is crucial
for success of future development.

The types of the compile-time functions are not sound. To check for errors, we rely on
dynamic typing at the compile time postponing the error detection to the function execution
time rather than keeping it in the function definition time. This can be partially solved
by introducing proper recursive types. But not entirely because some of the functions do
non-trivial things such as symbol table lookups. To assign a type to such a function, the
type would have to encode the symbol table in some way. This applies only to compile-time
(and parse-time) functions. A l l the functions that make their way to the resultant binary
are type-checked properly.

Introducing the possibility to declare local variables would make the language with
syntactic extensions a great deal more expressive and useful. However, it would require
significant changes to the current code base.

In some cases, parsing with syntactic extensions is currently quite slow. Although some
optimizations have been attempted, many layers of interpretation and excessive backtrack­
ing make the time complexity of the current parsing algorithm rather unattractive.

Also meta-data tracking such as propagating exact location of semantic errors is quite
complicated with current design and the results could be better.

The last two problems can be largely attributed to the presence of full-blown monadic
parsing used in production rule definitions. A bit more restricted parsing model would
increase our ability to analyse grammar rules and together with a smarter parsing algorithm
could yield a much better performance. Monadic parsing is still useful (if not required) for
implementation of a language with extensible syntax itself.

8.3 Future Directions

In order to make E E L usable for real-world use, the obvious direction for future improvement
is removal of the shortcomings mentioned in the previous section. Next step would be
dropping the intentional limitations defined on page 35.

We estimate that properly typing the compile-time functions and user-defined grammar
rules would require a significant amount of theoretical research. Also, formalization of the
very concept of extensible (self-modifying) grammar would be nice. However in the end, it
might be worth the effort.

A more practical direction would be implementing support for extensible syntax in an
IDE, including syntax highlighting and code completion. This would probably require an
incremental extensible parser with much more elaborate analysis of user-defined grammar
rules. Design of such a parser poses a significant technical challenge.

48

Bibliography

[1] Introduction to Qt Quick, online, 2012. Accessed jan 2013, modified may 2012.
U R L : h t tp : / / q t -p ro j ec t . o rg /wik i / In t roduc t ion_ to_Qt_Quick .

[2] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. Compilers:
principles, techniques, & tools, volume 1. Pearson/Addison Wesley, 2007.

[3] Pablo Azero and Doaitse Swierstra. Optimal pretty-printing combinators, 1998.

[4] Michael Barr and Charles Wells. Category theory for computing science, volume 10.
Prentice Hall New York, 1990.

[5] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative
environment. Software: Practice and Experience, 18(9):807-820, 1988.

[6] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth
Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems
(TOPLAS), 13(4):451-490, 1991.

[7] Nils Anders Danielsson and Ulf Norell. Parsing mixfix operators. In Implementation
and Application of Functional Languages, pages 80-99. Springer, 2011.

[8] Daniel de Rauglaudre. Camlp4 - reference manual, online, 2003. Accessed jan 2013,
modified sep 2003.
U R L : h t tp : / / caml . in r i a . f r /pub /docs /manua l -camlp4 / index .h tml .

[9] Christopher Diggins. Cat: A typed functional stack-based language. 2007.

[10] Christopher Diggins. Simple type inference for higher-order stack-oriented languages.
Technical report, 2008.

[11] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann.
SugarJ: Library-based syntactic language extensibility. ACM SIGPLAN Notices,
46(10):391-406, 2011.

[12] Sebastian Erdweg, Felix Rieger, Tillmann Rendel, and Klaus Ostermann.
Layout-sensitive language extensibility with SugarHaskell. In Proceedings of the 2012
symposium on Haskell symposium, pages 149-160. A C M , 2012.

[13] Debasish Ghosh. DSLs in action. Manning Publications Co., 2010.

[14] Dominikus Herzberg and T im Reichert. Concatenative programming - an overlooked
paradigm in functional programming. Proceedings of ICSOFT, 2009, 2009.

49

http://qt-project.org/wiki/Introduction_to_Qt_Quick
http://caml.inria.fr/pub/docs/manual-camlp4/index.html

[15] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of
haskell: being lazy with class. In Proceedings of the third ACM SIGPLAN conference
on History of programming languages, H O P L III, pages 12-1-12-55, New York, N Y ,
USA, 2007. A C M .

[16] Gerard Huet. The zipper. Journal of functional programming, 7(5):549-554, 1997.

[17] John Hughes. The design of a pretty-printing library. In First International Spring
School on Advanced Functional Programming Techniques-Tutorial Text, pages 53-96,
London, U K , U K , 1995. Springer-Verlag.

[18] Brent Kerby. The theory of concatenative combinators, 2002.

[19] Donald E . Knuth. The genesis of attribute grammars. In Attribute Grammars and
their Applications, pages 1-12. Springer, 1990.

[20] C. Lattner. Introduction to the llvm compiler system. In Proceedings of
International Workshop on Advanced Computing and Analysis Techniques in Physics
Research, Erice, Sicily, Italy, 2008.

[21] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators for
the real world. Technical report, 2001.

[22] D J P Leijen. First-class labels for extensible rows. UU-CS, (2004-051), 2004.

[23] Geoffrey Mainland. Why it's nice to be quoted: quasiquoting for haskell. In
Proceedings of the ACM SIGPLAN workshop on Haskell workshop, pages 73-82.
A C M , 2007.

[24] Simon Marlow. Happy: The parser generator for Haskell. online, 2010. Accessed jan
2013, modified jun 2010. U R L : h t tp : / /www.haskel l .org/happy/ .

[25] Simon Marlow. Haskell 2010 language report, 2010.
U R L : h t tp : / /www.haske l l .o rg /on l ine repor t /haske l l2010 / .

[26] Conor Mcbride and Ross Paterson. Applicative programming with effects. J. Fund.
Program., 18(1):1—13, January 2008.

[27] Conor McBride and Ross Paterson. Functional pearl: Applicative programming with
effects. Journal of functional programming, 18(1):1—13, 2008.

[28] Alexander Meduna. Automata and Languages: Theory and Applications. Springer
Verlag, 2005.

[29] Ulf Norell. Dependently typed programming in Agda. In In Lecture Notes from the
Summer School in Advanced Functional Programming, 2008.

[30] Y . Orlarey, D. Fober, and S. Letz. Syntactical and semantical aspects of Faust. Soft
Comput., 8(9):623-632, September 2004.

[31] Jukka Paakki. Attribute grammar paradigms—a high-level methodology in language
implementation. ACM Computing Surveys (CSUR), 27(2):196-255, 1995.

50

http://www.haskell.org/happy/
http://www.haskell.org/onlinereport/haskell2010/

[32] Sviatoslav Pestov. A survey of domain-specific languages in Factor, online, sep 2009.
U R L : h t tp : / / fac tor - language .b logspot .com/2009/09/
survey-of-domain-spe c i f i c-language s - i n . h t m l .

[33] Sviatoslav Pestov, Daniel Ehrenberg, and Joe Groff. Factor: A dynamic stack-based
programming language. In Acm Sigplan Notices, volume 45, pages 43-58. A C M , 2010.

[34] Simon L Peyton Jones and Philip Wadler. Imperative functional programming. In
Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 71-84. A C M , 1993.

[35] Benjamin C Pierce. Types and programming languages. The M I T Press, 2002.

[36] Benjamin C Pierce. Advanced topics in types and programming languages. The M I T
Press, 2005.

[37] Eric Steven Raymond. The Art of Unix Programming. Addison-Wesley, 2003.
U R L : h t tp : / /www.ca tb .o rg /es r /wr i t ings / t aoup /h tml / .

[38] Didier Remy. Typing record concatenation for free. In Proceedings of the 19th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
166-176. A C M , 1992.

[39] Zhong Shao and Andrew W Appel. A type-based compiler for Standard ML,
volume 30. A C M , 1995.

[40] T im Sheard and Simon Peyton Jones. Template meta-programming for haskell. In
Proceedings of the 2002 ACM SIGPLAN workshop on Haskell, pages 1-16. A C M ,
2002.

[41] Michael Snoyman. Developing Web Applications with Haskell and Yesod. O'Reilly
Media, Inc., 2012.

[42] Bjarne Stroustrup. C++11 - the new iso C++ standard, online, 2012. Accessed jan
2013, modified oct 2012. U R L : http://www.stroustrup.com/C++HFAQ.html.

[43] S Doaitse Swierstra, Pablo R Azero Alcocer, and Joao Saraiva. Designing and
implementing combinator languages. In Advanced Functional Programming, pages
150-206. Springer, 1999.

[44] Wouter Swierstra. Why attribute grammars matter. The Monad.Reader, September
2005.

[45] Eelco Visser. Program transformation with Stratego/XT. In Domain-Specific
Program Generation, pages 216-238. Springer, 2004.

[46] Manfred von Thun. Mathematical foundations of Joy. online, 1994.
U R L : ht tp: / /www.kevinalbrecht .com/code/ joy-mirror / j02maf.html .

[47] Philip Wadler. A prettier printer. The Fun of Programming, Cornerstones of
Computing, pages 223-243, 2003.

[48] Stephen Wolfram. A new kind of science, volume 5. Wolfram media Champaign,
2002.

51

http://factor-language.blogspot.com/2009/09/
http://www.catb.org/esr/writings/taoup/html/
http://www.stroustrup.com/C++HFAQ.html
http://www.kevinalbrecht.com/code/joy-mirror/j02maf.html

Appendix A

EEL Built-in Functions

Here, the built-in functions are listed and briefly described. The type signatures contain
several shortcuts. The 'maybe' type r? stands for (r + unit), bool stands for (unit + unit),
string stands for [char]. The product type operator x is assumed to be left-associative, the
top of the stack is on the right hand side. For better readability, p is used to denote the
fake row variables and ir for phase variables.

E E L built-ins are:

1. Fundamental combinators and stack manipulation

(a) id : p ^> p J The identity function.

(b) id2 : p X T X T ^ - p X T X r / Also identity function, but forces the two topmost
stack items to have equal types. Can be used as a poor man's type coercion.

(c) dip : p\ x T x (pi ^> P2) —> P2 x r / Run a function one level deep into the stack.

(d) zap : p x r ^> x r / Pop the top item from the stack.

(e) dup : p X T ^ - p X T X T J Duplicate the top item.

(f) qot : p x T ^> p x (pi —l-+ p\ x T) / Quote the topmost item.

(g) cat : p x (pi —k~ P2) x (p2 —l-t pz) —± p x (pi —k- p%) / Quotation composition.

(h) fix : p\ x (p\ x (p\ ^> P2) P2) —> P2 I Fixed point combinator.

(i) unit : p —>• p x unit / Push a unit constant onto the stack.

2. Compound type (de-)constructors

(a) pair : p x T\ X T2 ^> p x (T\ X T2) / Construct a pair.

(b) unpair : p x (n x T2) —> p x n x T2 / De-construct a pair.

(c) i n a : p x T\ ^ p x (T\ + T2) / Sum type case A injection.

(d) inb : p x T2 p x (T\ + T2) / Sum type case B injection.

(e) sel : pi x (n + T2) x (pi x n —> P2) x (pi x T2 ^> P2) —> P2 / Sum type de-
constructor applies one of the two functions depending on the tag of the sum.
This is the only built-in that encodes branching.

(f) listu : p x [T] ^ p x (T x [T])! / Unwrap a list: returns either a pair of list head
and tail or nothing if the list is empty.

(g) listw : p x (T x [T])! ^ p x [T] / Wrap a list: take either a pair of head and tail
to make a constructed list or nothing to create an empty list. Inverse of listu.

52

3. Arithmetics

(a) add, sub, mul, div : p x int x int ^> p x int / Binary integer functions.

(b) fadd, fsub, fmul, fdiv, fpow : pxfloat xfloat —> pxfloat / Binary floating-point
functions.

(c) fsin, flog : p x float —> p x float / Unary floating-point functions.

(d) cmp : p x int x int —>• p x bool?, fcmp : p x float x float —> p x bool? / Comparison
operations return nothing if the operands are equal, just true if the first operand
is less than the second operand, and just false otherwise.

(e) float : p x int —> p x float, floor : p x float —>• p x int / int float conversion.

(f) c/jar : p x int —» p x char, ord : p x char —> p x int / int f-> char conversion.

4. Input / Output

(a) putchar : p x char —» p / Write a character to the standard output.

(b) getchar : p —» p x char? / Read a character from the standard input. Returns
either the character that has been read or nothing on the end-of-file or if an error
occurred.

5. Compilation-related functions

(a) def : p x (pi P2) x string p / Function definition.

(b) promote : p x string —>• p x (pi —> P2) / Lookup a function by a string. If the
function does not exist, it is a compilation error.

(c) def rule : p x (pi —>• P2) x string x int —>• p / Define a production rule for given
non-terminal with given priority.

6. Built-in parsers

(a) invoke : p\ x string —> p2 / Invoke the parser for given non-terminal.

(b) ppchar : pi x (pi x char —> P2 x bool) —> p2 / Parse a character matching given
predicate.

(c) ppfail : p i x string —> p2 / Parser that always fails with given error message.

(d) pponeof : p x [char] A p / Parse one of the characters specified or fail.

(e) ppnotof : p x [char] —> p / Parse a character not specified in the list or fail.

Remark: Types of the compile-time and parse-time functions are mostly unsound, we
rely on dynamic type checking at the compile time to catch the remaining errors.

53

Appendix B

EEL Help

Usage:
ee l [OPTIONS] [SOURCES. . .]

Opt ions:
-o F I L E , - -ou tput FILE

generate output b inary f i l e named FILE
- L F I L E , - - l l v m FILE

generate LLVM IR text f i l e named FILE
-S F I L E , --asm FILE

generate assembly source f i l e named FILE
- v , - -verbose

increase output v e r b o s i t y
- i , - - i n t e r a c t i v e

launch i n t e r a c t i v e r e a d - e v a l - p r i n t i n t e r p r e t e r
- P , - - n o - p r e l u d e

do not load the prelude l i b r a r y a u t o m a t i c a l l y
-e EXPR , - - e v a l EXPR

evaluate g iven EXPRession i n EEL core
-M NAME, - -main NAME

spec i fy the name of the main f u n c t i o n
- h , - - h e l p

show t h i s help message

Listing B . l : E E L command-line options

A v a i l a b l e commands:
EXPR

?
evaluate the EXPR
show t h i s help message

q qui t
t EXPR p r i n t type of an express ion
d EXPR dump AST of an express ion
g EXPR generate LLVM code for EXPR
i NAME dump AST of an u s e r - d e f i n e d f u n c t i o n
x c l e a r the stack
s show current stack
1 l i s t def ined func t ions

Listing B.2: E E L interactive interpreter commands

54

Appendix C

CD-ROM Contents

The C D - R O M accompanying this technical report contains the following principal files and
folders:

• eel/ — E E L source tree

— doc/ — Haddock-generated source code documentation.

— lib/ — Directory containing the standard library prelude.eel and E E L language
syntax definition boot.eel.

— samples/ — Sample source files in E E L language and dialects.

— src/ — Source codes of the E E L compiler.

— R E A D M E — Brief instructions on how to build and run the E E L compiler and
examples.

• report/ — DTgXsources of this report

• report.pdf — Electronic version of this report

55

