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Abstract
Emotion recognition from handwriting is a challenging and interdisciplinary task that can
provide insights into the psychological and emotional aspects of the writer. In this study,
we developed and evaluated a machine learning model that can predict the emotional state
of a writer from their handwriting samples. We utilized the EMOTHAW dataset, which
consists of handwriting and drawing samples from subjects whose emotional states are mea-
sured by the DASS test, which gives a score for depression, anxiety, and stress and the CIU
Handwritten database for verification and experimentation. We extracted a large number
of features that are inspired by the standard graphology work, as well as features that are
specific to online data. We used ANOVA to select statistically significant features and nor-
malized the data using Z-Score, MinMax, IQR or Log. We reduced the dimensionality of
the features using Principal Component Analysis (PCA) and Linear Discriminant Analysis
(LDA). We employed a meta approach Ensemble learning that seeks to reduce the errors
of a single model by exploiting the diversity and complementarity of multiple models. The
structure of our classifier is dependent on multiple arguments resulting in over 300,000
different configurations. We optimized arguments using argument freezing. We found the
best classifiers for binary and trinary classification for each emotion, resulting in six optimal
models. We evaluated our models using different metrics, such as accuracy, precision, recall,
and F1-score. Our models reached adequate results in all metrics. In addition to finding
the classifiers, this thesis explored the importance of each extracted feature, providing a
sorted list of the most significant features used for emotion recognition from handwriting.
We also enhanced the EMOTHAW database by identifying tasks that are more indicative
of specific emotions, thereby reducing the need for a full task battery for emotional analysis.

Abstrakt
Rozpoznávání emocí z rukopisu je náročný a interdisciplinární úkol, který může poskytnout
vhled do psychologického a emočního stavu pisatele. V této diplomové práci byl vyvinut
a vyhodnocen model strojového učení schopný predikovat emoční stav pisatele na základě
vzorků jeho rukopisu. Byl využit dataset EMOTHAW, který obsahuje vzorky rukopisu a
kreseb od subjektů, jejichž emoční stavy byly změřeny pomocí testu DASS, který hodnotí
úroveň deprese, úzkosti a stresu, a CIU Handwritten databázi pro ověření a experimen-
tování. Bylo extrahováno množství příznaků inspirovaných standardní grafologií, stejně jako
příznaky specifické pro online data. Pomocí ANOVA byly vybrány statisticky významné
příznaky, které byly normalizovány pomocí Z-Score, MinMax, IQR nebo logaritmické trans-
formace. Dimenzionalita příznaků byla snížena pomocí analýzy hlavních komponent (PCA)
a lineární diskriminační analýzy (LDA). Pro klasifikaci byl použit meta-přístup Ensemble
learning, který se snaží snížit chyby jednoho jednoduchého modelu využitím rozmanitosti a
doplňkovosti více modelů. Struktura klasifikátoru závisí na mnoha argumentech, což vede
k více než 300 000 různým konfiguracím. Optimální argumenty a tudíž optimální struktura
byla hledána pomocí zamrazování argumentů. Byly identifikovány nejlepší klasifikátory
pro binární a trinární klasifikaci každé emoce, což vedlo k šesti optimálním modelům. Tyto
modely byly hodnoceny pomocí různých metrik, jako jsou accuracy, precision, recall a F1
Skóre, a dosáhly adekvátních výsledků ve všech metrikách. Kromě nalezení klasifikátorů
tato práce zkoumala význam každého extrahovaného příznaku, čímž byl vytvořen seznam
nejvýznamnějších příznaků použitých pro rozpoznávání emocí z rukopisu. Dále tato práce
rozšiřuje databázi EMOTHAW identifikací úkolů, které jsou více indikativní pro specifické
emoce, čímž se snižuje potřeba kompletní baterie úkolů pro emoční analýzu.
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Rozšířený abstrakt
V rámci této diplomové práce se zaměřujeme na rozpoznávání emocí z rukopisu, což je

interdisciplinární oblast na pomezí psychologie, grafologie a strojového učení (ML). Emoce
mají klíčový význam v našem každodenním životě a jejich analýza může přinést přínos v
mnoha aplikacích, od diagnostiky duševního zdraví až po zlepšení uživatelské interakce s
počítačovými systémy. Hlavním cílem práce je prozkoumat a rozšířit možnosti ML v analýze
rukopisu a vyvinout model schopný s vysokou přesností identifikovat specifické emoce, jako
jsou deprese, úzkost a stres.

K dosažení tohoto cíle jsme využili dvou datasetů, konkrétně EMOTHAW a CIU Hand-
written databáze. Všech sedm úkolů z databáze EMOTHAW bylo použito jako náš hlavní
trénovací a validační zdroj dat, zatímco CIU Handwritten databáze sloužila především na
validaci a další experimentování. Pro extrakci příznaků byly použity speciálně vyvinuté
knihovny v Pythonu, díky nimž jsme mohli analyzovat rukopis z různých úhlů pohledu a
získat tak přes 500 příznaků, které jsme následně podrobili důkladné statistické analýze.
Tyto příznaky obsahovaly jak klasické grafologické příznaky jako je zkosení, šířka, smyčky,
mezery, ale také příznaky extrahovatelné pouze za pomocí speciálního tabletu. Mezi tyto
příznaky patří například tlak, sklon pera, rychlost, atd.

Jelikož tyto příznaky popisují velmi rozdílné faktory, mají tak i velmi rozdílné hodnoty.
Aby nedošlo k dominanci příznaků s vysokými hodnotami, je zapotřebí hodnoty příznaků
normalizovat. Normalizace dat byla provedena s využitím několika metod, aby bylo možné
data správně zpracovat a připravit pro další fáze analýzy. Implementovaná je normalizace
Z-Score, MinMax, IQR (Mezi kvartilové rozpětí) a Log. Jelikož výběr normalizační metody
neměl velký význam na klasifikaci, bylo využito především normalizace MinMax.

Výběr použitých příznaků byl klíčovým krokem našeho výzkumu. Ve většině pročtené
literatury se výběrem příznaků nikdo příliš nezabývá a příznaky se tak vyberou podle
grafologických standardů. Množství takových příznaků není mnohdy vysoké a nemusí tedy
předávat dostatečné množství informace. V naší práci jsme přistoupili k postupu, kdy
extrahujeme mnohonásobně větší množství příznaků a automatizujeme proces výběru těch
signifikantních. Pomocí analýzy rozptylu (ANOVA) jsme identifikovali příznaky s největším
potenciálem pro rozpoznávání emocí. Jednotlivé příznaky byly ohodnoceny a seřazeny po-
dle jejich p hodnoty. ANOVA označuje příznak za statisticky signifikantní pokud tato
p-hodnota klesne pod 5 %. Díky tomuto kroku můžou jednotlivé klasifikátory vyžadovat i
proměnlivý počet příznaků. Pro zamezení nedostatečného počtu příznaků jsme zavedli ar-
gument minimum_features který zajistí, aby bylo vybráno alespoň minimum nejsignifikant-
nějších příznaků. Tento krok byl velmi důležitý, jak jsme zjistili v sekci experimentování.

Pro snížení dimensionality dat jsme podle nastudované literatury použili transformační
matice Analýzy hlavních komponent (PCA) a Lineární diskriminační analýzy (LDA). Imple-
mentovali jsme čtyři možnosti pro tento krok, a to využití pouze PCA transformační matice,
využití pouze LDA transformační matice, využití obou PCA i LDA transformačních matic
v tomto pořadí a nebo kompletní vynechání tohoto kroku.

Jádrem našeho přístupu bylo využití Ensemble learning, což je meta přístup pro klasi-
fikaci za pomocí strojového učení. Ensemble learning umožnilo kombinovat síly jednotlivých
jednoduchých klasifikátorů a dosáhnout tak vyšší přesnosti a robustnosti. Díky tomu jsme
mohli prozkoumat různé struktury našeho modelu a optimalizovat je pro konkrétní úkoly
rozpoznávání emocí. Ensemble learníng nabízí 3 metody, a to bagging, boosting a stacking.
Bagging (bootstrap aggregating) je metoda která trénuje ten samý model vícekrát na jiném
subsetu trénovacích dat. Tyto subsety jsou vytvořeny postupným náhodným výběrem s
nahrazením. Výsledná predikce tohoto modelu je pak získána hlasováním většiny. Boosting



je metoda, která připojuje sekvenčně další model, zaměřující se na chybové případy jeho
předchůdce. Počáteční model je trénován a ohodnocen na trénovací sadě, kde všechna data
mají stejnou váhu při hodnocení. Následně je seznam vah změněn podle predikcí tohoto
klasifikátoru. Trénovací dataset s novými vahami je pak vstupem do následujícího modelu.
Tento proces je opakován podle inicializovaného počtu vnitřních modelů. Stacking (stacked
generalization) využívá na rozdíl od předchozích metod více různých klasifikačních mod-
elů. Každý z těchto vnitřních modelů je natrénován na subsetu trénovacích dat a jejich
výsledné predikce jsou pak vstupem do meta modelu. Tento meta-model je pak trénován
na rozeznávání kombinací predikcí vnitřních modelů. Tento přístup se snaží kombinovat
silné stránky různých modelů.

Pro široký výběr možností jsme pro ensemble klasifikátory vybrali 25 modelů strojového
učení, které mohou hrát roli jak vnitřních modelů, tak roli meta-modelu.

Díky těmto krokům máme velmi dynamický klasifikační model. Jeho konfiguraci popisu-
jeme pomocí několika argumentů, jejichž kombinace pak tvoří různé klasifikátory. Na výběr
jsou 3 emoce (deprese, úzkost, stres), 7 různých úkolů, 4 varianty redukce dimensionality,
3 metody Ensemble (bagging, boosting, stacking), 25 možných vnitřních/meta modelů, 25
možných počtů vnitřních modelů a výběr binárního, či trinárního klasifikátoru. Přes 300
000 kombinací.

Abychom nemuseli zkoumat všechny kombinace, využili jsme pro nalezení vhodných
argumentů techniku zmražování. Postupně jsme zamrazili všechny argumenty až na jeden
na stejné hodnotě a pouze ten jediný jsme měnili a sledovali, jak kvalitní klasifikátory
generujeme, jakmile najdeme ideální hodnotu argumentu, zamrazíme ho a iterujeme přes
ostatní argumenty.

Výsledky naší práce jsou povzbudivé. Podrobná analýza a optimalizace vnitřní konfig-
urace vedly k vývoji šesti klasifikátorů, které dosahují vysoké přesnosti a dalších metrik
jako je precision, recall a F1 skóre. Našli jsme tři binární a tři trinární klasifikátory pro
klasifikaci jednotlivých emocí.

Kromě nalezených klasifikátorů jsme přišli na několikerá zjištění, jako je například to,
že k finální klasifikaci celého datasetu stačí jen některé ze sedmi úkolů, jelikož některé
úkoly mají větší význam při klasifikaci určité emoce. Dále jme sestrojili seřazený seznam
příznaků, které nejvíce napomáhají klasifikaci emocí z rukopisu. Tento seznam byl vytvořen
na základě frekvence, s jakou ANOVA jednotlivé příznaky vybrala do klasifikátoru.

Závěrem lze říci, že naše práce přináší nové poznatky do oblasti rozpoznávání emocí z
rukopisu a otevírá dveře pro další výzkum. Představuje komplexní metodologii, která může
být aplikována v různých oblastech a nabízí solidní základ pro budoucí studie zaměřené na
další rozvoj této fascinující disciplíny.
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Chapter 1

Introduction

Emotions are complex and dynamic phenomena that affect human behavior, cognition,
and communication. Emotions can be expressed and perceived through various modalities,
such as facial expressions, vocal tones, body gestures, and or written texts. Among these
modalities, handwriting is a unique and rich source of information that can reveal the
emotional state of the writer. Handwriting is influenced by various factors, such as the
writer’s personality, mood, intention, and context. Therefore, analyzing handwriting can
provide insights into the psychological and emotional aspects of the writer.

Emotion recognition from handwriting is a challenging and interdisciplinary task that
requires the collaboration of different fields, such as psychology, graphology, computer vi-
sion, and machine learning. Emotion recognition from handwriting can have various ap-
plications, such as personality assessment, mental health diagnosis, forensic analysis, and
human-computer interaction. However, emotion recognition from handwriting is also a rel-
atively new and under-explored domain, which poses many difficulties and limitations, such
as the lack of standardized and reliable datasets, the diversity and subjectivity of emotions
and handwriting styles, and the complexity and variability of handwriting features and
classifiers.

The main goal of this study is to develop and evaluate a machine learning model that
can predict the emotional state of a writer from their handwriting. The emotions that
we are trying to recognize are depression, anxiety, and stress, which are common and
important mental health issues that affect many people. We used the EMOTHAW dataset,
which is one of the most comprehensive and reliable datasets for emotion recognition from
handwriting, as well as the CIU Handwritten database for verification of our results and
other experiments.

In this thesis, we employed fundamental machine learning techniques due to their sim-
plicity, speed, and interpretability. These methods are particularly well-suited for scenarios
with limited data and computational resources, unlike deep learning models which require
extensive data and processing power. Additionally, the transparency of traditional machine
learning algorithms facilitates a clearer understanding of model decisions. We implemented
Ensemble learning meta approach to reduce the errors of a single model. We focused on
the preprocessing and feature extraction steps, which are essential for transforming the raw
data into meaningful and relevant representations that can capture the emotional informa-
tion. We used various features that are inspired by the standard graphology work, such
as slant, baseline, size, pen-pressure, spacing, margins, strokes, loops, etc. We also used
some features that are specific to online data, such as speed, acceleration, jerk, curvature,
etc. We used statistical tests to select statistically significant features. For dimentionality
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reduction we further converted the data using Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA).

Our model’s performance is assessed using a suite of metrics—accuracy, precision, sen-
sitivity, specificity, and F1-score—to provide a comprehensive evaluation of its strengths
and limitations. By addressing the research gap in metric diversity and feature selection,
and employing an ensemble learning strategy, this thesis contributes a novel perspective to
the field of emotion recognition from handwriting.

The structure of this thesis unfolds as follows: a literature review that contextualizes
our work within the field, a detailed methodology proposal, the implementation of this
methodology, a series of experiments to test our hypotheses, and the presentation of our
results. We conclude with a discussion on the implications of our findings and suggestions
for future research directions.

Our contributions are manifold. We have developed six classifiers with robust confusion
matrices for binary and trinary classification of depression, anxiety, and stress. We have
enhanced the EMOTHAW database by identifying tasks that are more indicative of specific
emotions, thereby reducing the need for a full task battery for emotional analysis. Further-
more, we have ranked a comprehensive list of 525 potential features by their significance in
emotion recognition, paving the way for future explorations in this domain.

In summary, this thesis not only advances the understanding of emotion recognition
from handwriting but also offers practical tools and methodologies that can be applied in
various psychological and computational contexts.
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Chapter 2

Literature review

2.1 Emotions
Emotions are reactions that human beings experience in response to events or situations.
According to the Oxford Learner’s Dictionaries, emotion is: ”A strong feeling such as love,
fear or anger; the part of a person’s character that consists of feelings“ [25]. Emotions
have a strong influence on our daily lives and choices. However, emotions are not simple
or static phenomena. They are shaped by culture, language, and context. They also vary
across time and space. Therefore, understanding emotions and how they are recognized is
a challenging and fascinating task for researchers from different disciplines [28].

The history of emotions dates back to ancient times, when philosophers such as Plato,
Aristotle, and Seneca tried to define and classify emotions, and to understand their causes
and effects. They also proposed different methods for regulating and expressing emotions,
such as reason, rhetoric, and ethics. In the Middle Ages and the Renaissance, emotions were
often associated with the passions of the soul, and were influenced by religious and moral
doctrines [27]. In the Enlightenment and the Romantic era, emotions were seen as natural
and individual expressions of the self, and were valued as sources of creativity and inspi-
ration. In the modern and contemporary period, emotions became the subject of scientific
inquiry, and were studied by psychologists, sociologists, anthropologists, and neuroscien-
tists, among others. They also became the object of artistic and literary representation,
and of political and social manipulation.

The recognition of emotions is the process of identifying and interpreting the emotional
states of oneself and others. It is a crucial skill for human communication and social
interaction. However, it is not always easy or accurate, as emotions can be subtle, complex,
or ambiguous. Different methods and techniques have been developed and used for emotion
recognition, such as facial expressions, body language, voice, text, and physiological signals.
Each of these methods has its own advantages and limitations, depending on the context and
the purpose of the recognition [10, 32, 31, 15]. In this thesis, we will focus on one specific
method: emotion recognition from handwriting. We will review the existing literature
on this topic, and propose a novel approach based on artificial intelligence and machine
learning.

2.1.1 Handwriting analysis

Handwriting analysis, also known as graphology, is a scientific way of determining, assess-
ing, and comprehending personality traits and emotional states based on the strokes and
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patterns revealed by handwriting. Graphologists claim that handwriting can reveal vari-
ous aspects of one’s psychological and emotional condition, such as mood, stress, anxiety,
depression, honesty, or intelligence [22]. Handwriting analysis is used for various purposes,
such as personality assessment, career guidance, forensic examination, and health diagno-
sis [1]. However, handwriting analysis is not a standardized or widely accepted method,
and its validity and reliability are often questioned by critics and researchers. Some of the
challenges and limitations of handwriting analysis include the lack of empirical evidence,
the influence of external factors, the subjectivity of interpretation, and the ethical and legal
issues [12].

2.2 Databases
One of the main challenges in the field of emotion recognition from handwriting is the
acquisition of data that reflects the emotional states of the writers. Emotions are complex
and dynamic phenomena that are not easy to produce or control on demand. Therefore,
different methods have been proposed to elicit, measure or detect emotions in handwriting
experiments.

2.2.1 Methods for Obtaining Handwriting Data

In order to perform emotion recognition from handwriting, it is essential to have a reliable
way of obtaining the ground truth labels for the handwriting samples. The literature
review reveals that there are different methods that have been used for this purpose. These
methods can be broadly divided into two main categories, depending on how the emotions
are elicited and measured in the participants [21, 3].

Inducing emotions

One of the methods is to induce a certain emotion in a subject and measure it’s effectiveness
[3]. The most common approach is to use emotion-oriented media, such as videos, music,
images, etc., to induce the desired emotion on the subject before or during the handwrit-
ing task. This method requires careful selection of the media stimuli that can effectively
influence the majority of the subjects in the intended way. The media stimuli can vary
in type, intensity, duration, and timing, depending on the research design and the target
emotion. The handwriting task can also vary in complexity, content, and modality, such
as drawing shapes, copying words, or writing sentences. The handwriting task is usually
performed several times, with different media stimuli and different emotions, to capture the
changes in the handwriting features that are related to the emotional state of the writer.
Some datasets also incorporate a survey for subjective emotion response score, which is a
self-report measure of the emotion experienced by the subject after the handwriting task.
This measure helps to verify if the media stimuli had the intended effect on the subject and
to label the handwriting samples according to the corresponding emotion.

Measuring emotional state

A different method to collect data for emotion recognition from handwriting is to assess the
current emotional state of a large number of subjects without manipulating their emotions
[21]. Usually, some kind of psychological test is used to evaluate the emotional state or the
intensity of each emotion. For example, the Depression Anxiety Stress Scales test (DASS
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test) is a self-report measure of depression, anxiety, and stress, which can be taken and
evaluated without a professional psychologist present [21].

With this method, the subjects are not exposed to any emotion-oriented media, but it is
assumed that the dataset covers a range of emotional states. This method has the drawback
of having skewed emotions in the dataset, because some emotions are more frequent or
more easily reported than others. The advantage of this method is that it can capture the
complexity and diversity of emotions, as one subject can have multiple emotions at the
same time. The final evaluation of one’s emotional state is a set of scores of all assessed
emotions.

2.2.2 Handwriting Data Types

The next crucial step is to collect the data that reflects subjects handwriting or drawing
performance. There are two main data types when it comes to handwriting; offline and
online data.

Offline data

One of the methods of collecting the written data is offline data collection. This method
involves performing the handwriting tasks on normal paper, and then converting the paper
documents into digital images. This can be done by scanning or photographing the paper
documents. The digital images are then processed as a series of pixels. The only other data
point that is available is the evaluation of the emotional state of the writer. This method
is simpler and more accessible than online data collection, but it does not capture a lot
of crucial information that is related to the handwriting process, such as the duration of
the task, the sequence of strokes, the pen pressure, and so on. The benefit of this method
is that it can enable a classifier to predict emotions from any texts, even historical ones,
without requiring any special equipment [4, 18].

Online data

Online data collection is another method of obtaining the written data. This method
involves using a special electronic tablet and pen, that record the written data in real time.
The data consists of a stream of information points, such as the pen position, orientation,
pressure, and so on. The captured data is determined by the used tablet. According to
Doctor Bay’s article [3], the writing experience of the subject influences the validity of the
data. Therefore, most newer research papers use tablets that can be covered with a normal
sheet of paper and pens that can write on the paper as well as collect all the data. This
way, the subject can have a natural human experience while writing [21, 29].

2.2.3 Available Datasets

Emotion recognition from handwriting is a complex task that requires suitable datasets to
perform. However, there are not many publicly available datasets for this purpose, due to
the difficulty of obtaining them. Table 2.1 shows some of the datasets that are available for
this study. The most common choice is EMOTHAW [21], which consists of 129 subjects
(71 female, 58 male) who performed writing and drawing tasks. Their emotional state was
measured 2.2.1 by the DASS test, which gave a score for depression, anxiety, and stress.
Another dataset is the CIU Handwritten database, which was used in Doctor Bay’s article
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[3]. This dataset differs from EMOTHAW in that it uses emotion induction in subjects 2.2.1
by showing them happy and sad media, and simulating stress by imposing a time limit for a
task. The last dataset presented is the Personality prediction dataset [11], which is a simple
offline dataset of images of student’s handwriting, evaluated by a Big five personality test.

Table 2.1: Datasets for emotion recognition from handwriting
Name Category Emotions No. subjects
EMOTHAW online depression, anxiety, stress 129
The CIU Handwritten DB offline/online happy, sad, stress 134
Personality prediction DB offline Big Five personality traits ±110

2.2.4 Conclusion on Datasets

In this section, we reviewed the available datasets for emotion recognition from handwriting.
We found that EMOTHAW is the most comprehensive and reliable dataset, as it contains
both writing and drawing samples from a large number of subjects, and measures their
emotional state using a validated psychological test. Based on the analysis of the datasets,
we decided to use basic machine learning methods instead of deep learning methods for our
study of emotion recognition from handwriting. We will discuss the classification method in
detail later in the thesis 3.3. We justified this decision by considering the following factors:

• Data availability - Deep learning methods require a large amount of labeled data
to train and test the models, while basic machine learning methods can work with
smaller datasets. The datasets that we reviewed are not sufficient to support deep
learning methods, as they have limited samples, labels, and features. Even with
data augmentation techniques, such as rotation and scaling, we would not be able to
generate enough data for deep learning methods to perform well.

• Data quality - Basic machine learning methods are more robust and can handle noise
and outliers in the data, while deep learning methods are sensitive to them. The
datasets that we reviewed are not very consistent, as they have variations in hand-
writing styles, emotions, and tasks. Moreover, some of the labels are subjective and
unreliable, such as the personality test scores, which may not reflect the true emotions
of the subjects.

• Computational complexity - Deep learning methods require a lot of computational
resources and time to train and test the models, while basic machine learning methods
are simpler and faster. The computational resources that we have for our study are
limited. Therefore, we opted for basic machine learning methods that can run on our
personal computers and laptops.

• Interpretability - Basic machine learning models, especially those based on algorithms
like decision trees or linear regression, offer clear insights into how input variables are
associated with the output. This transparency allows researchers and practition-
ers to understand and trust the decisions made by the model. In contrast, deep
learning models, often described as “black boxes,” provide limited insight into their
decision-making processes, making them less desirable in fields where understanding
the rationale behind predictions is crucial. Given the importance of interpretability in
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emotion recognition from handwriting, where deciphering subtle nuances is essential,
basic machine learning methods present a more suitable choice for our research.

2.3 Data Preprocessing and Feature Extraction
Data preprocessing is a critical phase in data analysis and machine learning, designed
to transform raw data into structured and interpretable information suitable for further
processing. This stage encompasses a variety of tasks, such as dimensionality reduction,
which simplifies the data by focusing on the most relevant features. Noise removal and
outlier detection are employed to enhance data quality by eliminating irrelevant or erroneous
data points. Error correction and handling of missing values are also integral to ensure the
completeness and accuracy of the dataset [6].

Normalization is a particularly important preprocessing step, especially in the context of
handwriting analysis, where it ensures that no single feature disproportionately influences
the outcome due to its scale. This process adjusts the features to a common scale, allowing
for a balanced evaluation of all attributes. Error correction and handling of missing values
are equally crucial, as they address inaccuracies and gaps that could otherwise lead to
biased or incorrect model predictions [6].

Once the features are preprocessed, dimensionality reduction techniques such as Princi-
pal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) can be applied.
PCA reduces the feature space by identifying the principal components that capture the
most variance, simplifying the data while retaining essential information. LDA, in contrast,
aims to maximize class separability, which can be particularly beneficial for distinguishing
between different emotional states in handwriting [24, 2].

2.3.1 Offline data features

As discussed in Section 2.2.2, offline data refers to the data that is obtained after the
handwriting task is completed, such as the scanned image of the paper. This resembles the
traditional graphologist way of analyzing handwriting. Therefore, the extracted features
are inspired by the standard graphology work. In [5] paper, Bhattacharya explains how
certain features indicate different emotions. These features include Slant, Baseline, Size,
Pen-pressure, Spacing, Margins, Strokes, Loops, ‘t’-bar, ‘i’-dots, etc. These features can
be computed using image processing techniques, such as edge detection, segmentation,
thinning, etc. However in our study, we mainly focus on online data features, which can
provide more information than offline data features.

2.3.2 Online data features

As mentioned in Section 2.2.2, online data can provide much more information than offline
data, as it captures the dynamic aspects of handwriting. Therefore, it is very important
to simplify this data and extract relevant features. Because of the real-time capture of the
data, we can also reconstruct the written image, and extract similar features as for offline
data, such as Slant, Baseline, Size, etc. Moreover, we can extract additional features that
are specific to online data, such as Speed, Acceleration, Jerk, Curvature, etc. These features
can be computed using mathematical and statistical methods, such as differentiation, inte-
gration, smoothing, etc. For example, the dataset EMOTHAW from article [21] captures
for each time stamp an xy-coordinate of the pen tip, pen status (if it’s touching the paper
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or not), the pressure and tilt and azimuth of the pen. These data points can be used to
compute various features that can be used for emotion recognition.

2.4 Classification methods
The final step in emotion recognition from handwriting is the classifier, which is a machine
learning model that can predict the emotional state of the writer based on the extracted
features from the handwriting samples. However, there is no single optimal classifier for
handwriting samples, as different classifiers may have different strengths and weaknesses
depending on the data and the task. In my research, We reviewed many papers that
attempted to classify emotions from handwriting using simple and generic classification
methods, which are widely used in machine learning. The most common methods were
Support Vector Machine (SVM) [24, 13], K-Nearest Neighbors algorithm (KNN)
[3, 13], Repeated Incremental Pruning to Produce Error Reduction (JRIP) [3, 13],
Random Forest [3, 2] and more.

2.5 Related work
In this section we will summarize some previous works on similar topic that served as a
study material and a reference for comparison with my findings.

Recognition of Emotional State Based On Handwriting Analysis and Psycho-
logical Assessment

In this article [18], Dr. Kedar et al. present one of the first attempts to recognize emotions
from handwriting using a machine learning approach. The authors use a Convolutional
Neural Network (CNN), which is a type of deep learning model that can learn from im-
ages, to assign emotions to handwriting samples. The dataset they use is similar to the
EMOTHAW database [21], which consists of handwriting and drawing samples from sub-
jects whose emotional states are measured by the DASS test. Detecting negative emotion
such as depression, anxiety and stress and their combinations. The dataset contains 1600
samples from different participants, who were asked to write on the A4 paper. The authors
evaluated their model with accuracy, precision and recall, which are metrics that measure
the quality of the predictions. They report the average accuracy of 91.25%, which is a high
score for this task. They also show the precision-recall values for each emotion in Table
2.2. This paper is one of the few that depicts these metrics, which are very important for
evaluating the performance of the model.
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Table 2.2: Precision-Recall results from [18] by Dr. Kedar et al. for anxiety-stress, depres-
sion, depression-anxiety, depression-anxiety-stress, moderate anxiety, normal and severe
anxiety classification.

Class Name Precision Recall F1-score
AS 1.00 0.90 0.95
D 0.83 0.83 0.83

DA 1.00 0.92 0.96
DAS 0.77 1.00 0.87
MA 0.92 0.85 0.88
N 0.92 1.00 0.96
SA 1.00 0.91 0.95

Emotional State Prediction From Online Handwriting and Signature Biometrics

In this article [3], Doctor Bay et al. introduce a novel database 2.2.3 of offline and online
handwriting and signature biometrics, which contains emotional status labels (happy, sad,
and stress) and demographic information (age, gender, handedness, education level, and
nationality) of the writers. The database comprises 134 participants with 804 handwriting
and 8040 signature biometric samples. The article also describes experiments on predicting
the emotional state of the writers from their biometrics, using different thresholds. The
article reports high accuracy for stress detection from handwriting and happiness detec-
tion from signature. The article argues that handwriting and signature biometrics provide
more information than identity recognition and verification, and can be used for personal
characteristics estimation. The article aims to demonstrate the potential of handwriting
and signature biometrics for various applications. The emotion prediction model employs
11 features that are commonly used in signature and handwriting processing as hown in Ta-
ble 2.3. For classification, three classification methods are used and compared (K-Nearest
Neighbor (KNN), JRIP and Random Forest). Several experiments are conducted to analyze
and demonstrate the emotion prediction accuracy. The resulting accuracy for stress detec-
tion from handwriting is 82.52% (KNN), 89.32% (Jrip) and 92.23% (Random Forest).
No further metrics than accuracy were provided.

Table 2.3: Features extracted by Doctor Bay in [3].
F1 Average pen velocity in x
F2 Average pen velocity in y
F3 Maximum pen velocity in x - Average pen velocity in x
F4 Maximum pen velocity in y - Average pen velocity in y
F5 Maximum pen velocity in x - Minimum pen velocity in y
F6 Average pen acceleration in x
F7 Average pen acceleration in y
F8 Azimuth
F9 Altitude
F10 Pressure
F11 The number of times pen passes though the midline of the signature/handwriting
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Mood State Detection in Handwritten Tasks Using PCA–mFCBF and Auto-
mated Machine Learning

In this article [24] Dr. Juan Arturo Nolazco-Flores et al. present a novel method to detect
the mood state of a user from their handwriting or drawing. The method uses various
features extracted from the sensor data, such as temporal, kinematic, statistical, spectral
and cepstral features. The method selects the best features using Principal Component
Analysis (PCA) and modified Fast Correlation–Based Filtering (mFCBF), which reduce
the dimensionality and redundancy of the features. The method uses automated machine
learning to train and test different classifiers, both plain and ensembled, on the EMOTHAW
database. The method achieves 100% accuracy for detecting two mood severities (normal
and abnormal), and high accuracy for detecting three mood states.

Emotion Detection from Handwritten Text using Agglomerative Clustering

This paper [4] presented a novel method for emotion detection from offline handwritten text
images. The method employs agglomerative hierarchical clustering, a type of unsupervised
learning, to assign each image pixel to one of the five predefined emotions: anger, sadness,
depression, happiness, and excitement. The clustering is based on the distance between the
pixel and the cluster centroid, which is determined by a threshold value. The paper claims
that the method achieves an accuracy above 75% for each emotion, without requiring any
annotated data.

Unveiling Emotions through Handwriting: A Data Analysis Approach

This paper [2] applies feature engineering, correlation analysis, and dimensionality reduction
techniques, such as Linear Discriminant Analysis (LDA) and Principal Component Analy-
sis (PCA), to extract and select the most relevant handwriting features from EMOTHAW
writing samples. We can see extracted features in Table 2.4. The paper employs a Ran-
dom Forest model to predict emotional states from handwriting features, and evaluates
the model using accuracy and confusion matrix. The paper attains promising accuracy in
binary emotion detection. The accuracies indicate that PCA yields the best result for de-
pression and anxiety (76.53%, 96.59%), while LDA produces the best result for depression
(84.9%). The confusion matrix wasn’t included.

Table 2.4: Features extracted by Azmi in [2].
F1 Time spent performing the task while in the air
F2 Total time spent performing task on paper
F3 Duration of the entire task
F4 The count of strokes used to complete the task on the paper

Identifying Dominant Emotional State Using Handwriting and Drawing Sam-
ples by Fusing Features

This paper [29] proposes a novel technique to identify the dominant emotional state (de-
pression, anxiety, or stress) of a person from their handwriting and drawing samples. The
authors combine temporal, spectral, and Mel Frequency Cepstral Coefficient (MFCC) meth-
ods to extract features from the signals, as well as spatial features from the velocities of
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the pen movements. A BiLSTM network is employed to classify the features into the emo-
tional states. The technique is evaluated on the EMOTHAW dataset [21] and compared
with several baseline approaches, such as SVM, KNN, and CNN. The results show that
the technique outperforms the baseline approaches on all emotional states and tasks. The
fusion of temporal, spectral, and cepstral features improves the accuracy significantly. The
recorded accuracy can be seen in Table 2.5.

Table 2.5: Accuracy results from [29] by Atta Ur Rahman & Zahid Halim
Drawing Writing Both

Depression 83.28 89.21 87.11
Anxiety 76.12 74.54 80.03
Stress 75.39 75.17 74.38

2.6 Chapter summary
One of the main challenges in emotion recognition is to evaluate the performance of different
models and methods. As shown in Table 2.6, the state-of-the-art models can achieve high
accuracy in classifying emotions from various sources of data. However, accuracy alone is
not a sufficient metric to measure the effectiveness of emotion classifiers, especially when
dealing with imbalanced or noisy data. Therefore, in this paper, we will also consider other
evaluation metrics, such as precision, sensitivity, specificity, F1-score and more. These met-
rics can provide more insights into the strengths and weaknesses of different approaches.
Precision measures the proportion of correctly predicted positive instances among all pre-
dicted positive instances, sensitivity measures the proportion of correctly predicted positive
instances among all actual positive instances, specificity measures the proportion of cor-
rectly predicted negative instances among all actual negative instances, and F1-score is the
harmonic mean of precision and sensitivity. These metrics can help us to assess how well
a model can identify the relevant emotions and avoid false positives or false negatives. In
this paper, we will ensure that all of these metrics are high and reflect the good quality of
our model.

Another challenge in emotion recognition is to select and process the appropriate data
for training and testing the models. In the literature, we can observe that the most com-
mon dataset used for emotion recognition is EMOTHAW or its variants. However, relying
on a single dataset poses some risks, such as overfitting, bias and generalization issues.
Therefore, we need to be careful about the validity and reliability of the annotations, the
representativeness and diversity of the samples, and the comparability and reproducibility
of the results.

Due to the limitations of the datasets and their sizes, we decided not to use deep
learning methods for emotion recognition. Deep learning methods, such as convolutional
neural networks (CNNs) and recurrent neural networks (RNNs), have shown impressive
results in various domains, such as computer vision, natural language processing and speech
recognition. However, these methods require large amounts of data, high-quality data and
high computational resources to achieve their full potential. In contrast, our datasets are
relatively small, noisy and heterogeneous, which makes them unsuitable for deep learning
methods. Therefore, we opted for a basic machine learning method, which is simpler, faster
and more transparent.
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Based on the related works, we identified that the most important step in emotion
recognition is preprocessing, feature extraction and feature selection. Preprocessing and
feature extraction are essential for transforming the raw data into meaningful and relevant
representations that can capture the emotional information. Using a higher number of
features, along with algorithms that orthogonalize the data and reduce dimensionality, can
lead to better results than using a powerful classifier with few feature inputs. Therefore, in
this paper, we will focus on developing and evaluating different preprocessing and feature
extraction techniques.

Table 2.6: Comparative Analysis of Related Studies. Note: An ‘x’ denotes that the result
was either not mentioned or not calculated in the respective study.

Title DB Algorithm Feature
extraction Acc Prec Sens Spec F1

Recognition of Emotional State
Based On Handwriting Analysis and
Psychological Assessment 2.5

personal Convolutional Neural
Network (CNN)

Convolutional
feature maps 91.25% 91.52% 91.87% x 91.34%

Emotional State Prediction From
Online Handwriting and Signature
Biometrics 2.5

The CIU
Handwrit-

ten DB

KNN, JRIP, Random
Forest 11 features 2.3 92.23% x x x x

Mood State Detection in Handwrit-
ten Tasks Using PCA–mFCBF and
Automated Machine Learning 2.5

EMOTHAW AutoML 30 features [24]
(PCA, mFCBF) 100% x x x x

Emotion Detection from Handwrit-
ten Text using Agglomerative Clus-
tering 2.5

personal Agglomerative
Hierarchical Clustering

Binary image
512x512 75% x x x x

Unveiling Emotions through Hand-
writing: A Data Analysis Approach
2.5

EMOTHAW Random forest 4 features 2.4 86.01% x x x x

Identifying Dominant Emotional
State Using Handwriting and Draw-
ing Samples by Fusing Features 2.5

EMOTHAW BiLSTM MFCC 81.54% x x x x

17



Chapter 3

Proposed Methodology

In this chapter, we will present the general approach that we will follow to implement an
automated system for emotion recognition from handwriting using machine learning. We
will describe the main steps and components of our system, such as data analysis and
preprocessing, feature extraction and selection, machine learning models and evaluation
metrics.

3.1 Proposed Databases
The availability of comprehensive datasets for automated emotion detection from hand-
writing is limited, as discussed in Section 2.2.4. Therefore, we selected the EMOTHAW
database [21], which is widely used in this field, to train our model. This database contains
samples of 7 handwriting tasks performed by 129 subjects, as shown in Table 3.1.

The distribution of emotion levels in the EMOTHAW dataset can be seen in Figure
3.1. The database measured the emotional state of the subjects using the DASS test, as
explained in Section 2.2.1.

To verify the validity and interchangeability of this emotion measuring technique with
the emotion inducing technique, we will also apply our model to the CIU Handwritten
database, which evaluates the written samples based on happy, sad, and stress levels.

The CIU Handwritten database consisted of 134 subjects who completed 4 handwriting
tasks, as described in Section 3.2. In addition, the subjects wrote 15 signatures after each
task. The subjects rated their emotional state on a scale from 1 (lowest) to 10 (highest)
after each task. We concentrated on task 4, where the subjects were exposed to a stress-
ful situation. We aimed to investigate whether our model, which was trained to detect
depression, anxiety, and stress, could also identify stress in these samples.
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Table 3.1: Tasks performed by subjects in the EMOTHAW dataset.
T1 Copy of a two-pentagon drawing
T2 Copy of a house drawing
T3 Writing of four Italian words in capital letters (BIODEGRADABILE,

FLIPSTRIM, SMINUZZAVANO (to crumble), CHIUNQUE (anyone))
T4 Loops with left hand
T5 Loops with right hand
T6 Clock drawing test
T7 Writing of the following phonetically complete Italian sentence in cursive letters:

I pazzi chiedono fiori viola, acqua da bere, tempo per sognare
(Crazy people are seeking for purple flowers, drinking water and dreaming time)

Figure 3.1: The scatter of the emotion levels of subjects in the EMOTHAW database.

Table 3.2: Tasks performed by subjects in the CIU handwritten dataset.
T1 Copy a predefined text in a neutral emotion state:

The communication method: subroutine call or method invocation will not exit
until the next invoked computation has been terminated. Asynchronous message
passing, by contrast, can result in a response arriving a significant time after
the request message has been sent through the net.

T2 Watch media conveying a positive/happy message and write some text with your
own cues.

T3 Watch media conveying a negative/sad message and write some text with your
own cues.

T4 Copy a predefined text under 10𝑠 time limit to convey stressful environment:
All questions asked by five watch experts amazed the judge

3.2 Proposed Data Preprocessing, Feature Extraction and
Feature Selection

As mentioned in Section 2.3, preprocessing and feature extraction are a way how to turn
raw data into a workable dataset. Because of the EMOTHAW and the CIU handwritten
databases captured their data with a similar INTUOS WACOM tablet, the data has the
same content and similar structure. In both cases we have to work with the online data
type 2.2.2.
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3.2.1 Dataset modifications

To use the same algorithm for extracting features, we want our datasets to have the same
structure. As we will discuss later in Section 3.2.2, we want our data to have the following
structure. Each task is captured in a separate SVC file, where the first line represents the
number of captured datapoints and the rest of the file are lines representing the states of
the tablet in each capturing time. The tablet state is represented as 7 values, which are
the x coordinate of the pen tip, the y coordinate of the pen tip, the time stamp, the pen
status (1 - touching / 0 - not touching the tablet), azimuth, altitude and pressure. The
capture should start with the first contact of the pen on the paper. An example of desired
data structure can be seen in Figure 3.2. We will develop a converter script capable of
converting the CIU handwritten database into this file structure. This simplifies the next
step of extracting features from dataset.

Figure 3.2: The example of the SVC data structure ready for feature extraction.

3.2.2 Library for extracting features

In the domain of feature extraction, an open-source Python library was provided by doc.
Ing. Jiří Mekyska, Ph.D. [14]. This library, installable via PyPi, offers a user-friendly and
contemporary approach for extracting a diverse array of handwriting features. It primarily
focuses on kinematic, dynamic, spatial, and temporal analyses of online handwriting and
drawing. The foundation of this library is the Handwriting Sample package [23], which
facilitates straightforward class-based manipulation of online handwriting data. This library
was designed to process the EMOTHAW database, which means there is no need to modify
that database. To ensure comprehensive information retrieval from our dataset, we advocate
for the utilization of this library to extract the maximal range of possible features. The
libraries have been slightly modified; therefore, the revised versions are included in the
submission folder until the original BDALab libraries are updated.

Acquirable features

The library in question possesses the capability to extract an extensive suite of features,
subsequently presenting them through various statistical measures such as the mean, me-
dian, maximum, minimum, interquartile range, and the slope of the linear regression, among
others. This process culminates in a total of 525 distinct feature values. Our objective is to
harness the full potential of this library by extracting each feature. Subsequently, we will
apply feature selection methodologies to discern which features are most informative for
the purpose of classification. An exhaustive list of features extractable from our databases
is delineated below.

1. Kinematic features

• Velocity - The speed of the writing movement.
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• Acceleration - The rate of change of velocity of the writing movement.
• Jerk - The rate of change of acceleration of the writing movement.

2. Dynamic features

• Azimuth - The angle of the pen relative to the horizontal axis of the paper (see
Figure 3.3).

• Tilt - The angle of the pen relative to the paper (see Figure 3.3).
• Pressure - The amount of force exerted by the writing instrument on the paper.

3. Spatial features

• Stroke length - The distance covered by pen on the paper in one stroke.
• Stroke height - The vertical distance between the highest and lowest points of

one stroke.
• Stroke width - The horizontal distance of one stroke from left to right.
• Writing length - The total distance covered by the pen on the paper in the whole

writing sample.
• Writing height - The vertical distance between the highest and lowest points of

the whole writing sample (see Figure 3.4).
• Writing width - The horizontal distance of the whole writing sample from left to

right (see Figure 3.4).
• Number of intra-stroke intersections - The number of times a stroke crosses

itself within the same stroke. For example, the letter “e” has one intra-stroke
intersection (see Figure 3.4).

• Relative number of intra-stroke intersections - The number of intra-stroke inter-
sections divided by the time duration of the stroke.

• Total number of intra-stroke intersections - The sum of intra-stroke intersections
for all strokes in the writing sample.

• Relative total number of intra-stroke intersections - Total number of intra-stroke
intersections divided by the duration of the whole writing sample.

• Number of inter-stroke intersections - The number of times a stroke crosses
another stroke in the writing sample (see Figure 3.4).

• Relative number of inter-stroke intersections - The number of inter-stroke inter-
sections divided by the duration of the whole writing sample.

• Vertical peaks indices - The indices of the points where the pen reaches the
maximum height in a loop.

• Vertical valleys indices - The indices of the points where the pen reaches the
minimum height in a loop.

• Vertical peaks values - The height values of the points where the pen reaches the
maximum height in a loop.

• Vertical valleys values - The height value of the points where the pen reaches
the minimum height in a loop.

• Vertical peaks velocity - The values of the velocity at the vertical peaks in loops.
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• Vertical valleys velocity - The values of the velocity at the vertical valleys in
loops.

• Vertical peaks distance - The distance covered by the pen from the previous
vertical peak to the current one.

• Vertical valleys distance - The distance covered by the pen from the previous
vertical valley to the current one.

• Vertical peaks duration - The time elapsed from the previous vertical peak to
the current one.

• Vertical valleys duration - The time elapsed from the previous vertical valley to
the current one.

4. Temporal features

• Stroke duration - An array of durations of each on-surface or in-air stroke.
• Ratio of stroke durations (on-surface/in-air strokes) - An array of ratios of each

on-surface stroke duration divided by the upcoming in-air stroke duration.
• Writing duration - The total time spent on-surface or in-air of the whole writing

sample.
• Writing duration overall - The time elapsed from the start to the end of the

whole writing sample.
• Ratio of writing durations (on-surface/in-air writing) - Writing duration on-

surface divided by writing duration in-air.
• Number of interruptions - The number of times the pen changed form on-surface

to in-air and vice versa in the whole writing sample.
• Number of interruptions relative - The number of interruptions divided by the

writing duration overall.

5. Composite features

• Writing tempo - The ratio of the writing length to the writing duration.
• Writing stops - An array of durations of in-air strokes.
• Number of changes in x profile - The number of times the sign of the first

derivative of the x coordinate changes in the writing sample.
• Number of changes in y profile - The number of times the sign of the first

derivative of the y coordinate changes in the writing sample.
• Number of changes in azimuth - The number of times the sign of the first deriva-

tive of the azimuth angle changes in the writing sample.
• Number of changes in tilt - The number of times the sign of the first derivative

of the tilt angle changes in the writing sample.
• Number of changes in pressure - The number of times the sign of the first deriva-

tive of the pressure changes in the writing sample.
• Number of changes in velocity profile - The number of times the sign of the first

derivative of the velocity changes in the writing sample.
• Relative number of changes in x profile - The number of changes in x profile

divided by the writing duration.
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• Relative number of changes in y profile - The number of changes in y profile
divided by the writing duration.

• Relative number of changes in azimuth - The number of changes in azimuth
divided by the writing duration.

• Relative number of changes in tilt - The number of changes in tilt divided by
the writing duration.

• Relative number of changes in pressure - The number of changes in pressure
divided by the writing duration.

• Relative number of changes in velocity profile - The number of changes in velocity
profile divided by the writing duration.

Figure 3.3: Depiction of Azimuth and Tilt of the pen.

Figure 3.4: Depiction of Writing width, Writing height, Intra-stroke intersections and Inter-
stroke intersections.
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3.2.3 Normalization of Features

Normalization is an indispensable process that follows the extensive feature extraction de-
tailed in Section 3.2.2. It addresses the challenge of feature heterogeneity, where each
feature possesses its unique scale and measurement units. Without normalization, classi-
fication algorithms could become biased towards features with larger numeric ranges. To
counter this, we implement a normalization procedure that aligns all feature values to a uni-
form scale, typically between 0 and 1, ensuring equitable contribution to the classification
results.

For a range of options we implement four principal normalization techniques, each with
its mathematical formulation and purpose:

Z-score Normalization

The Z-score normalization centers the features around the mean with a unit standard
deviation, enabling comparison across different scales. It is mathematically represented as:

𝑥z-score =
𝑥− 𝜇

𝜎
(3.1)

where 𝑥 is the original feature value, 𝜇 is the mean, and 𝜎 is the standard deviation of the
features within the normalization group.

Min-Max Normalization

Min-Max normalization rescales the feature values to a fixed range of [0, 1], maintaining
the original distribution of the data. The formula is given by:

𝑥minmax =
𝑥− min

max − min (3.2)

where min and max are the minimum and maximum values of the features, respectively.

Interquartile Range (IQR) Normalization

The IQR normalization is robust to outliers, focusing on the central 50% of the data. It is
expressed as:

𝑥iqr =
𝑥−𝑄1

𝑄3−𝑄1
(3.3)

where 𝑄1 and 𝑄3 represent the first and third quartiles, respectively.

Logarithmic Normalization

Logarithmic normalization is particularly effective for data with heavy-tailed distributions.
The computation is as follows:

𝑥log = log(𝑥− min + 1) (3.4)

This ensures positivity of the input 𝑥 by adjusting for the minimum value and avoiding the
logarithm of zero.

24



3.2.4 Feature Selection via ANOVA

Feature selection is pivotal in enhancing model interpretability and reducing overfitting. To
identify the most informative features, we will employ the Analysis of Variance (ANOVA)
statistical method. ANOVA is instrumental in determining the features that exhibit the
most significant mean differences across various groups, which is indicative of their discrim-
inative power. By focusing on features with the highest F-values, we can isolate those that
contribute most substantially to class separation.

3.2.5 Dimensionality Reduction Techniques

Dimensionality reduction is a fundamental step in the preprocessing of high-dimensional
data, serving to simplify the dataset while retaining its most informative aspects. By re-
ducing the number of features, we can alleviate issues related to computational complexity,
storage requirements, and potential overfitting. Two prominent techniques for dimensional-
ity reduction are Principal Component Analysis (PCA) and Linear Discriminant Analysis
(LDA), each with its unique approach to preserving essential data characteristics [17, 2].
Both PCA and LDA will be implemented to assess their individual and combined effective-
ness in reducing dimensions while preserving the most salient features for classification.

PCA

Principal Component Analysis (PCA) is an unsupervised method renowned for its effec-
tiveness in capturing the maximum variance within a dataset. By transforming the original
features into a new orthogonal basis, PCA identifies principal components that are linear
combinations of the initial features. The first principal component accounts for the largest
variance, followed by subsequent components explaining progressively smaller portions of
the variance. This technique enables the reduction of data dimensionality by retaining only
those principal components that contribute significantly to the total variance. Beyond di-
mensionality reduction, PCA is also utilized for purposes such as data visualization, noise
reduction, and feature extraction.

LDA

Linear Discriminant Analysis (LDA) is a supervised dimensionality reduction technique
that excels in classification tasks. It operates under the assumption that each class’s data
is distributed according to a multivariate Gaussian model with a shared covariance matrix
but distinct mean vectors. LDA aims to discover linear discriminants that optimize class
separability by maximizing between-class variance and minimizing within-class variance.
The transformation of original features into linear discriminants, which are adept at class
differentiation, allows for a reduction in data dimensionality. LDA retains only those dis-
criminants with the highest discriminatory power and is also applied in data visualization,
feature extraction, and regularization.

3.3 Proposed Classification Method
After selecting significant features and applying PCA or LDA for dimensionality reduction,
we need to choose a suitable classification method for our problem. There are many possible
models to choose from, such as Artificial Neural Networks, Support Vector Machines (SVM),
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Decision Trees, K-Nearest Neighbor (KNN), etc. However, it is difficult to know which
model will perform the best on our data, as each model has its own strengths and limitations.
Moreover, using a single model may not be sufficient to capture the diversity and complexity
of the data. Therefore, we decided to use an ensemble learning approach, which combines
the predictions of multiple models to obtain a better predictive performance than any of
the individual models alone.

Ensemble learning is a general meta approach to machine learning that seeks to
reduce the errors of a single model by exploiting the diversity and complementarity of
multiple models. There are three main types of ensemble learning methods: bagging,
boosting, and stacking. Each of these methods has a different way of generating and
combining the models. We will briefly describe each of these methods[30, 26, 8].

Bagging

Bagging, which stands for bootstrap aggregating, is an ensemble learning method that aims
to reduce the variance of a single model by averaging the predictions of multiple models
trained on different subsets of the data. The subsets are obtained by sampling the data
with replacement, which is called bootstrapping. Each model is trained independently and
in parallel on a different subset. The final prediction is obtained by taking the majority
vote for classification of the individual predictions. The process of bagging ensemble can
be seen in Figure 3.5.

Bagging is useful for reducing the overfitting of models that have high variance, such as
decision trees. By averaging the predictions of multiple models, bagging reduces the effect
of noise and outliers in the data. However, bagging may not be very effective for reducing
the bias of models that have low variance, such as linear models. Moreover, bagging does
not take into account the performance or the diversity of the individual models, which may
lead to suboptimal results.

Figure 3.5: Diagram of Bagging ensemble model [8].

Boosting

Boosting is an ensemble learning method that aims to reduce the bias of a single model by
sequentially adding models that correct the errors of the previous models. The models are
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trained on weighted versions of the data, where the weights are updated based on the errors
of the previous models. The final prediction is obtained by taking a weighted average of
the individual predictions, where the weights reflect the performance of the models. The
process of boosting ensemble can be seen in Figure 3.6.

Boosting is useful for improving the accuracy of models that have high bias, such as weak
learners. A weak learner is a model that performs slightly better than random guessing. By
sequentially adding models that focus on the hard-to-classify instances, boosting increases
the complexity and the expressiveness of the ensemble. However, boosting may also increase
the variance of the ensemble, as it is more prone to overfitting the data. Moreover, boosting
requires careful tuning of the learning rate and the number of models, which may affect the
performance of the ensemble.

Figure 3.6: Diagram of Boosting ensemble model [8].

Stacking

Stacking, which stands for stacked generalization, is an ensemble learning method that aims
to combine the predictions of multiple models by learning a meta-model that maps the
individual predictions to the final prediction. The models are trained on different subsets
of the data, which are obtained by splitting the data into multiple folds. The predictions
of the models on the validation folds are used as the input for the meta-model, which is
trained on the target variable. The final prediction is obtained by applying the meta-model
on the predictions of the models on the test fold. The process of stacking ensemble can be
seen in Figure 3.7.

Stacking is useful for combining the predictions of models that have different strengths
and weaknesses, such as heterogeneous models. A heterogeneous model is a model that
uses a different learning algorithm or a different representation of the data. By learning
a meta-model that optimizes the combination of the individual predictions, stacking can
achieve better performance than any of the individual models alone. However, stacking
may also introduce more complexity and computational cost, as it requires training multiple
models and a meta-model. Moreover, stacking may suffer from overfitting the meta-model,
especially if the number of models is large.

In the realm of ensemble stacking, a diverse range of models are employed as base
learners. These models, each with their unique strengths and capabilities, contribute to the
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robustness and predictive power of the ensemble. The following models are among the most
commonly used in stacking ensembles due to their proven effectiveness across a variety of
tasks and datasets [9]:

• Artificial neural network (ANN): A nonlinear model that can learn complex
patterns and features from the data using multiple layers of neurons.

• Support vector machine (SVM): A linear model that can learn a maximum mar-
gin hyperplane that separates the data into different classes.

• Decision tree (DT): A non-parametric model that can learn a hierarchical structure
of rules that split the data based on the values of the features.

• K-nearest neighbor (KNN): A lazy model that can classify a new instance based
on the majority vote of its k closest neighbors in the data.

These models have been selected for their complementary advantages and potential to
enhance ensemble accuracy and robustness. For instance, while the ANN is adept at learn-
ing complex nonlinear relationships, it may be prone to overfitting and require extensive
training time. Conversely, the SVM excels at identifying linear decision boundaries but may
struggle with nonlinearities and memory consumption. The DT offers simple, interpretable
rules but can be subject to high variance and instability. The KNN is effective at capturing
local patterns but may be adversely affected by noise and outliers.

In addition to these models, our methodology will incorporate a variety of other models
to create a versatile and comprehensive ensemble. This approach allows us to leverage the
distinct advantages of a broader set of models, enhancing the ensemble’s overall perfor-
mance. By evaluating a wide spectrum of models, we can select the most effective ones
after training, ensuring that our ensemble is not only robust but also highly adaptable to
various data characteristics.

Figure 3.7: Diagram of Stacking ensemble model [8].

3.4 Model Training and Evaluation
In light of the dataset’s limited scope, the initial proposition was to employ the entirety of
the dataset for the training phase, complemented by a 10-fold cross-validation method for
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classifier validation. This methodology aimed to capitalize on every available data point for
both training and validation, thereby optimizing data utilization. The underlying premise
was to augment the ensemble’s learning capacity by exposing it to the full spectrum of data
variations.

However, as delineated in the experimental findings section of this thesis 5.4, this ap-
proach inadvertently led to data leakage and subsequent model overfitting dew to the LDA
and PCA preprocessing. In response to these challenges, a revised methodology was pro-
posed, entailing the segregation of the dataset into distinct training and validation subsets.
The validation subset, comprising 26 files, will be reserved exclusively for classifier evalua-
tion and remain unseen during the training phase, which will involve 123 files.

The evaluation of each classifier will be conducted using the validation subset, with key
performance metrics such as accuracy, precision, recall, and F1-score meticulously recorded
to ascertain the efficacy of the models.

3.5 Quality metrics
As we discussed in the dataset summary in Section 2.6, the biggest gap in the state of the
art is the lack of all the metrics necessary for a good model. This thesis will concentrate
on improving the quality of the confusion matrix and the derived metrics of Precision,
Sensitivity, Specificity and F-1 score.

Confusion matrix

A confusion matrix is a table that summarizes the performance of a classifier by comparing
the actual and predicted labels of the test data. For a binary classification problem, the
confusion matrix has four cells: true positive (TP), false positive (FP), true negative (TN)
and false negative (FN). These cells represent the number of instances that belong to each
combination of actual and predicted classes. A confusion matrix can provide more insight
into the strengths and weaknesses of a classifier than a single accuracy score [19, 7].

Precision

Precision is a metric that quantifies the number of correct positive predictions made by
the classifier. It is calculated as the ratio of TP to the sum of TP and FP 3.5. Precision
indicates how reliable the classifier is when it predicts a positive label. A high precision
means that the classifier rarely makes false positive errors, but it does not necessarily mean
that it covers all the positive instances in the data.

Sensitivity

Sensitivity (or recall) is a metric that quantifies the number of correct positive predictions
made out of all the positive instances in the data. It is calculated as the ratio of TP to the
sum of TP and FN 3.6. Sensitivity indicates how complete the classifier is when it predicts
a positive label. A high sensitivity means that the classifier captures most of the positive
instances in the data, but it does not necessarily mean that it avoids false positive errors.
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Specificity

Specificity is a metric that quantifies the number of correct negative predictions made by
the classifier. It is calculated as the ratio of TN to the sum of TN and FP 3.7. Specificity
indicates how well the classifier can identify true negatives and avoid false positives. A
high specificity means that the classifier rarely makes false positive errors, but it does not
necessarily mean that it covers all the negative instances in the data.

F-1 score

F-1 score is a metric that combines both precision and sensitivity. It is calculated as the
harmonic mean of precision and recall 3.8, which gives more weight to low values. F-1 score
reaches its best value at 1 and worst value at 0. F-1 score balances the trade-off between
precision and recall, and it is useful when the data is imbalanced or when both types of
errors are equally important.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3.5)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3.6)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(3.7)

F-1 𝑠𝑐𝑜𝑟𝑒 =
2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛× 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
(3.8)

3.6 Chapter summary
In this chapter, we outlined a structured pipeline for classifier training, beginning with
feature extraction from the EMOTHAW database using a designated library. The extracted
features are then normalized using one of four techniques: Z-score, Min-Max, IQR, or
logarithmic scaling, to identify the most effective normalization method.

ANOVA is applied to the normalized data to rank features based on their statistical
significance for specific tasks and emotions. Features with a p-value less than 0.05 are
selected for classification. To address potential issues of insufficient feature selection, a
parameter was introduced to ensure a minimum number of features are retained, prioritizing
those ranked highest by ANOVA.

Dimensionality reduction is considered with PCA and LDA, as well as the possibility of
combining these methods, to evaluate their impact on efficiency. The classifier’s structure
is built using an ensemble approach, examining various configurations and techniques to
determine the optimal model.

To prevent overfitting, the initial proposal included using the entire dataset for 10-
fold cross-validation. However, to avoid data leakage from PCA/LDA, we propose a split
into training and validation sets, with the validation set reserved exclusively for model
performance evaluation.

A visual representation of the pipeline, incorporating each step in Figure 3.8, concludes
this summary, providing a clear overview of the proposed methodology.
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Figure 3.8: The proposed pipline for training a classification model for one emotion.
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Chapter 4

Implementation

4.1 Dataset Preprocessing
In the Section on datasets 2.2.4, we concluded that the most comprehensive and reliable
dataset for our purposes was the EMOTHAW database [21]. This dataset served as the cor-
nerstone for our primary training and testing regimen. Additionally, we wanted to use The
CIU Handwritten database for experimenting with our trained classification model. Both
datasets were procured using an INTUOS WACOM digitizing tablet, capturing identical
types of online data 2.2.2. Both datasets needed specific adjustments to ensure compatibil-
ity with our feature extraction library introduced in Section 3.2.2, as delineated in Section
3.2.1.

• EMOTHAW database: The SVC files utilized by the EMOTHAW database were
already in the required format for our feature extraction. However, a visual inspection
of the data revealed that it was rotated 90° to the right, likely due to the portrait
orientation of the task paper, resulting in the tablet being turned. To correct this,
we employed a Python script, convert_emothaw.py, to transpose the x and y axes.
This operation inadvertently mirrored the data horizontally, which we rectified by
inverting the sign of the new x values and translating them to positive coordinates.

• CIU Handwritten database: This dataset recorded an excess of data points and
employed a disparate saving format. We utilized a Python script, convert_ciu.py,
to discard superfluous data and reformatted the pertinent data to meet our speci-
fications. Moreover, we cropped each data point from the beginning to the initial
pen-paper contact, aligning it with the format applied to the EMOTHAW database,
thereby ensuring maximal consistency between the datasets.

4.2 Feature Extraction
In Section 2.6, we underscored the pivotal role of feature extraction in emotion classification.
Indeed, this step is arguably the most critical in our entire process. For our research, we
deliberately pursued an expansive approach by extracting as many features as possible. This
strategic decision aimed to enrich the potential of our classification model. The specifics of
our feature selection process will be elaborated upon in subsequent sections.

The actual feature extraction process is facilitated by two Python scripts called: fea-
ture_extraction_emothaw.py and feature_extraction_ciu.py. These scripts share similar
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functionalities but are fine-tuned for extracting features from each dataset separately. Now,
let’s delve into the intricacies of the features themselves.

The features that can be extracted form a SVC data file can be seen in Section 3.2.2.
Features such as Writing Width or Writing Duration are represented by a single value. How-
ever, features that vary over time, like Pressure, can be extracted with multiple statistical
representations such as mean, standard deviation, median, first quartile, third quartile, etc.
Moreover, certain features, like Velocity or Acceleration, are inherently directional. For
these, we can extract information from the entire 2D sample or isolate it to just the x-axis
or y-axis. Additionally, some features can differentiate between the pen being in contact
with the paper or when the pen is in the air.

We consider each possible combination as one separate feature. By employing this
method, we generate a robust set of 525 unique feature values for each data file, providing
our classification model with a rich dataset to analyze the nuances of emotional expression
through writing. These feature values are saved in CSV format for future use.

4.3 Feature Normalization
The normalization of features, as conceptualized in Section 3.2.3, was implemented through
a Python script, normalization.py. This script was designed with flexibility in mind, al-
lowing for the application of normalization techniques based on specified arguments during
execution.

The script accepts arguments that determine the normalization technique to be applied.
It is capable of processing all four normalization methods in a single run, generating four
separate CSV files for each method. This feature enhances the efficiency of the normaliza-
tion process, providing a comprehensive set of normalized data for comparative analysis.

An additional functionality of the script is its ability to recognize pre-existing normalized
files. If a file corresponding to a particular normalization technique already exists, the script
intelligently skips the normalization calculation for that file, thereby saving computational
resources and time.

Upon execution, the script processes each CSV file, which contains features extracted
from individual tasks performed by subjects. For each feature, the script aggregates the
same feature values from other CSV files within the ’normalization group’—a collection of
files from the same task category—to maintain contextual integrity.

The script stores essential parameters such as the mean, standard deviation, minimum,
maximum, and quartiles for each feature. These parameters are crucial for normalizing
future unseen data.

The output of the script includes new CSV files with normalized values, which are then
used for training and testing our classification models.

4.4 Feature Selection
The dimensionality of our feature space, comprising 525 distinct features, presents a chal-
lenge when employing basic machine learning algorithms as opposed to deep learning meth-
ods. High-dimensional data can lead to model overfitting, where the model learns the noise
in the training data rather than the actual signal. Moreover, not all features contribute
equally to the prediction task; some may be redundant or irrelevant, potentially obscuring
the significant patterns that are crucial for accurate emotion classification.
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To address this, we have implemented the Analysis of Variance (ANOVA), a statistical
method that assesses the impact of one or more factors by comparing the means of different
groups and determining if the observed differences are significant [20, 16]. ANOVA helps
in identifying features that have a strong statistical relationship with the emotional states
we aim to classify.

Our script, anova.py, automates this process by calculating the p-values for each fea-
ture. The p-value measures the probability of observing the given data, or something more
extreme, under the null hypothesis, which in this context is the assumption that the fea-
ture has no effect on the emotion classification. A low p-value suggests that the feature is
significant and should be retained for model training.

The classification of emotions is based on the Depression Anxiety Stress Scales test
(DASS test), with thresholds defined for binary and trinary classifications as shown in
Table 4.1, adapted from the work of Nolazco-Flores et al. [24]. We compute separate p-
values for each emotion, considering the DASS score thresholds to determine the relevance
of features for each emotional state.

Employing a significance level of 5%, denoted by the threshold 𝛼 = 0.05, we identify
features with p-values less than this threshold as statistically significant. These features
are likely to have a meaningful contribution to the classification of specific emotions and
are selected for inclusion in the model.

Despite the effectiveness of ANOVA in feature selection, subsequent experiments in
Section 5.4 indicated that ANOVA might select a suboptimal number of features. To
address this, we introduced a new parameter, minimum_features, ensuring that at least
this minimum number of features is selected. Consequently, our script anova.py not only
performs the ANOVA test but also saves the p-values of each feature into a CSV file, sorted
by the p-value. This allows us to choose a broader set of features beyond those strictly
under the 𝛼 = 0.05 threshold, prioritizing the most statistically significant ones for model
training.

Binary Trinary Depression Anxiety Stress
Normal Normal 0–9 0–7 0–14

Above normal Mild 10–13 8–9 15–18
Above mild 14+ 10+ 19+

Table 4.1: DASS score thresholds for binary and ternary classification of emotional states
from the work of Nolazco-Flores et al. [24].

4.5 Dimensionality Reduction
The application of ANOVA in feature selection does not ensure a predetermined number
of statistically significant features. To accommodate the variability in feature quantity,
dimensionality reduction techniques such as Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA) are considered within our ensemble.py script, which
will be further elaborated on in Section 4.6.

The dimensionality reduction step is configurable; it is not a compulsory component of
the preprocessing pipeline but is available for use depending on the specific requirements
of the dataset and the classifier. The script is parameterized to allow the selection of PCA,

34



LDA, both PCA and LDA in sequence, or neither, yielding four distinct preprocessing
pathways.

For PCA, we have set a threshold to retain 80% of the variance. This level of reduction
is applied when the PCA option is selected, aiming to reduce the feature space effectively
while maintaining a substantial proportion of the data’s variance.

Similarly, LDA can be applied to the features to maximize the separability between
the different classes of emotions. When both PCA and LDA are applied, PCA serves as
a preliminary step to reduce dimensionality before LDA further refines the feature set to
enhance class discrimination.

The script ensures that any transformation matrices generated during PCA or LDA are
saved for future use, allowing the classifier to apply the same transformations to new data.

If a matrix already exists, the script is designed to bypass the saving process, thus
avoiding unnecessary duplication.

4.6 Ensemble Classification
In accordance with the ensemble learning approach delineated in Section 3.3 and the pipeline
visualized in the comprehensive diagram in Figure 3.8, the script ensemble.py was devel-
oped. This script is adept at executing various ensemble methods, with stacking as the
primary technique, while also providing support for bagging and boosting as alternative
strategies. The choice of ensemble method is governed by the -et argument, allowing for
flexibility in the model building process.

4.6.1 Ensemble Method Selection

The choice of ensemble method—stacking, bagging, or boosting—is dictated by the user
through the -et argument. For stacking, the script evaluates a set of 25 models, selecting
the best performers based on individual classification efficacy to serve as inner models.
The number of models included in the ensemble is specified by the -nm argument. For
bagging and boosting, the -fm argument determines the base model, with the -nm argument
indicating the number of estimators.

4.6.2 Meta-Classifier and Base models

In stacking, the meta-classifier, chosen via the -fm argument, integrates the predictions from
the inner models. This meta-classifier is crucial, as it consolidates diverse predictions into
a final decision. For bagging and boosting, where a single model is used, the script adapts
the -fm model as the base model and utilizes the -nm argument to define the ensemble’s
structure.

4.6.3 Normalization and Feature Selection

The script offers all four normalization methods, z-score, Min-Max, IQR, and Log nor-
malization as shown in Section 4.3, selectable through corresponding arguments. Feature
selection is conducted via ANOVA, with a conventional threshold of 𝑝 < 0.05 for statisti-
cal significance. If the -mf argument is set, the script ensures that at least the specified
minimum number of features is selected, even if it requires including features with higher
p-values to meet this criterion as explained in Section 4.4.
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4.6.4 Data Splitting and Transformation

The dataset is split into training and validation sets, maintaining the same ratio of clas-
sified groups as the full dataset. The training set is then subjected to PCA and/or LDA
transformations if indicated by the -pca and -lda arguments, respectively. These trans-
formations are applied solely based on the training data to prevent data leakage, with the
derived matrices subsequently used to transform the validation set.

4.6.5 Ensemble Training and Evaluation

Upon preparing the data, the script proceeds to construct the ensemble classifier according
to the selected method and trains it using the training set. The validation set is then em-
ployed to assess the classifier’s performance on unseen data, with metrics such as accuracy,
precision, recall, and F1-score being recorded. The results, along with the utilized argu-
ments, are systematically documented in a CSV files for ease of analysis. Additionally, the
trained classifier is serialized in pickle (.pkl) format, facilitating future deployment.

4.6.6 Result Documentation and Classifier Deployment

The performance of various classifiers and argument configurations is manually reviewed
using the CSV file records. The pickled classifier is intended for standalone use, with a
dedicated script that will process new data by extracting features, normalizing, selecting,
and classifying, as per the trained model’s specifications.

4.7 Deployment
The deployment of our models is orchestrated by the script classifier.py, which serves as the
operational core for applying the trained classifiers to new data. This process is streamlined
through the use of two dedicated directories: data for incoming data and models for the
serialized classifiers.

4.7.1 Model and Data Association

Each model is named with a comprehensive set of arguments that encapsulate its training
context, such as emotion, task, normalization group, thresholding method, preprocessing
steps, ensemble technique, meta/base model, number of models, and minimum number
of features. This naming convention ensures that each piece of data in the data folder is
classified by the appropriate model. Data filenames include task identifiers (e.g., task_5 ) to
link with corresponding task-trained classifiers. In the absence of a task identifier, data is
considered generic and is processed by all classifiers. Additionally, DASS scores embedded
within the data filenames enable the script to determine the ground truth for performance
evaluation.

4.7.2 Feature Extraction

The script iterates over each classifier, identifying the ’linked’ data based on task relevance.
It consults the anova_features.csv file, which lists all features in descending order of their
statistical significance as determined by ANOVA. This ordered list acts as a master key,
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unlocking the necessary features required by each classifier. Features required for classi-
fication are extracted, and processed, ensuring that the input vector for classification is
complete and robust against missing or erroneous values.

4.7.3 Normalization

The normalization process begins with the retrieval of task-specific parameters from the
normalization_values.csv file. This file is a repository of critical statistics—mean, standard
deviation, minimum, maximum, first and third quartile values—calculated for each feature
across different tasks. These statistics are pivotal for the subsequent z-score, Min-Max,
IQR or Log normalization methods applied to the data.

4.7.4 Data Transformation and Classification

For data requiring PCA or LDA transformations, the script fetches the corresponding ma-
trices from lda_matrices or pca_matrices directories. These matrices are meticulously
tailored to each model’s specifications, considering factors such as emotion, task, normal-
ization group, thresholding, and minimum number of features. Once the data is normalized
and transformed, the script employs the classifier to predict the group classification.

4.7.5 Performance Metrics and Manual Experimentation

Performance metrics such as accuracy, precision, sensitivity, specificity, F1-score, and AUC
are calculated for each classifier based on the ’linked’ data’s classification results. This
granular approach allows for an in-depth assessment of each model’s efficacy. The deploy-
ment phase also facilitates manual experimentation, providing a sandbox environment for
exploratory analysis and further refinement of models.
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Chapter 5

Experiments

This chapter presents the comprehensive suite of experiments conducted to evaluate the
performance of various classification models. It also includes two failed experiments 5.4
performed before our main experiments shoed in this sectrion. These failed experiments
showed weak pints in our proposed methodology that had to be rectified before continuing
in experimenting.

5.1 Argument Search
As previously discussed in Section 4.6, the script ensemble.py is designed to generate a
classification model based on the supplied arguments. The selection of these arguments is
critical, as they significantly influence the performance of the classifier, yielding results that
range from suboptimal to highly precise models.

Given the multitude of arguments, each with its own set of possible values, the task of
identifying the ideal combination is non-trivial. The total number of unique classifiers that
can be constructed from the argument permutations is substantial to illustrate:

• Task: 7 distinct tasks for classification.

• Emotion: 3 different emotions to classify: depression, anxiety, stress.

• Thresholds: 2 grouping methods for data: binary or trinary classification.

• Ensemble Type: 3 ensemble techniques: bagging, boosting, and stacking.

• Meta/Base Model: 25 model types for the final ensemble.

• Number of Models: 25 settings for the quantity of models in the ensemble.

• Preprocessing: 4 preprocessing options; LDA, PCA, both, or none.

• Minimum number of features: ±10 setting values for feature sellection.

This results in 7×3×2×3×25×25×4×10 = 3, 150, 000 different argument configurations
and, consequently, 3,150,000 potential classifiers.

To expedite the search process, we employed a technique of argument freezing, where all
but one argument are held constant to determine the most effective value for the unfrozen
argument. This approach is iteratively applied to each argument in succession.
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A dedicated script, argument_experiment.py, was developed to automate this process.
It invokes ensemble.py as a subprocess with varying arguments, systematically iterating
through all possible combinations. The outcomes of these experiments, including accuracy,
precision, recall, and F1-score, are meticulously recorded in a arguments_results.csv files.
This data repository enables us to discern and eliminate inefficient arguments from the
search space.

5.1.1 Adaptation to failed experiments

In light of the accuracy bias identified in Failed Experiment 2 5.4, we introduced a new
argument, minimum_features, to our classification model pipeline. This experiment was de-
signed to determine the optimal minimum number of features for feature selection required
for effective classification.

Experiment 1: Minimum number of features

Classifiers were trained on each of the seven tasks with both binary and trinary thresholds,
employing all three ensemble techniques—bagging, boosting, and stacking—and the three
meta/base models: Logistic Regression, K-Nearest Neighbors (KNN), and Random Forest.
The number of inner models was varied among 5, 10, 15, or 20, and preprocessing was
conducted using all combinations.

As we can see in Figure 5.1, the range of minimum_features was set to include 0, 20,
30, 40, 60, 80, 100, 125, 150, and 200. Notably, a peak in accuracy was observed at 30
features, indicating an optimal balance between too few and too many features. This peak,
while not pronounced, was aligned with the average number of features selected prior to
the introduction of the minimum_features argument.

By ensuring a baseline number of features, we have mitigated the risk of underfitting
due to an insufficient number of features while also avoiding the complexity introduced by
an excessive feature set. The result is an enhanced overall effectiveness of our models, as
evidenced by the improved accuracy metrics.
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Figure 5.1: The graph showcases the comparative accuracy of classifiers utilizing a different
minimum number of features used for feature selection step. We can see that 30 features is
our optimal choice for further argument search.

5.1.2 Binary classifier

The next phase of experimentation, conducted via the argument_experiment.py script,
was concentrated on binary classifiers. This phase is dedicated to refining the selection of
arguments, which are instrumental in the construction of robust classification models. Our
initial focus was directed towards the preprocessing techniques, as they play a crucial role
in shaping the input data for optimal classifier performance.

Experiment 2: Data preprocessing

The initial experiment encompassed all seven tasks, simplifying the meta/base model se-
lection to three established algorithms: Logistic Regression, K-Nearest Neighbors, and
Random Forest. We incorporated all three ensemble techniques, varying the number of
inner models between 5, 10, 15, and 20.

The execution of ensemble.py with these parameters, alongside diverse preprocessing
methods, aimed to assess the influence of LDA and PCA transformations, both individually
and combined, as well as their absence, on model accuracy. The outcomes, as visualized
in Figure 5.2, underscore the enhanced performance of models preprocessed with PCA and
the PCA-LDA pipeline, leading to their adoption as preferred preprocessing methods.
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Figure 5.2: The graph compares the accuracy of binary classification models under different
preprocessing methods, highlighting the superior performance achieved through PCA and
the PCA-LDA pipeline.

Experiment 3: Task-Specific Input Data

Investigating the premise that certain tasks may possess greater discriminative power for
emotion classification, we evaluated classifiers using PCA and PCA-LDA preprocessing
across all three ensemble techniques. The ensemble configurations, consistent with Experi-
ment 2 5.1.2, included the same three potential meta/base models and varied the number
of inner models from 5 to 20. Data was segmented based on input tasks to determine their
specific impact on classifier efficacy.

Figure 5.3 encapsulates the insights from this analysis, revealing how task-specific data
differentially affects emotion classification success. Notably, task 1 data significantly en-
hances depression classification, with task 6 as a secondary contributor. For anxiety, tasks
2 and 7 prove most effective, while tasks 2 and 3 lead in stress classification.

The findings from this experiment suggest that within the EMOTHAW database [21],
not all tasks carry equal weight in the context of emotion detection. For instance, high-
quality binary classifiers for stress and anxiety can be developed using data solely from
Task 2, whereas Task 1 is paramount for depression.

In light of these findings, future experiments will leverage the top-performing task inputs
for each emotion to streamline our argument search space.
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Figure 5.3: This graph presents the accuracy of classifiers for each emotion, showcasing the
distinct influence of task-specific input data on model performance.

Experiment 4: Number of Inner Models

In this experiment, we investigated the optimal number of inner models for binary classifiers,
with a distinct focus on each ensemble learning technique. We utilized tasks 1 and 6 for
depression, tasks 2 and 7 for anxiety, and tasks 2 and 3 for stress applying all 25 possible
meta/base models and preprocessing with PCA and PCA-LDA. We observe the impact of
5, 10, 15, 20, 25, 40, 50, 60, and 100 inner models.

• Bagging Variant - Figure 5.4 demonstrates that, within the bagging ensemble, an
optimal classification accuracy is achieved with approximately 10 inner models.

• Boosting Variant - When employing the boosting ensemble, the performance peaked
with approximately 50 inner models, as shown in Figure 5.5, suggesting a preference
for a higher number of inner models within this technique.

• Stacking Variant - With stacking, the analysis revealed that a minimal number
of inner models is sufficient, with 5 inner models being adequate for a high-quality
classifier, as evidenced by Figure 5.6.

These findings will inform the fine-tuning of our model complexity, allowing us to opti-
mize the classifiers for performance and computational efficiency across different ensemble
techniques.
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Figure 5.4: Accuracy trends of binary classifiers with varying inner model counts using
bagging, highlighting 10 as the optimal number.
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Figure 5.5: Accuracy trends of binary classifiers with varying inner model counts using
boosting, highlighting 50 as the optimal number.
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Figure 5.6: Accuracy trends of binary classifiers with varying inner model counts using
stacking, highlighting 5 as the optimal number.

Experiment 5: Ensemble Technique

The next experiment in binary classification sought to evaluate the performance differences
among various ensemble techniques. For this purpose, we trained classifiers using tasks 1
and 6 for depression, tasks 2 and 7 for anxiety, and tasks 2 and 3 for stress. We applied PCA
and PCA-LDA preprocessing and assessed all 25 meta/base models with their corresponding
optimal number of inner models.

The results, as visualized in Figure 5.7, did not conclusively favor any single ensemble
technique over the others. We will consider all ensemble techniques when searching for
optimal classifiers.
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Figure 5.7: The graph compares the accuracy of binary classifiers using different ensemble
techniques, showing negligible differences in their performance.
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Experiment 6: Meta/Base Model Evaluation

In our sixth experiment, we sought to determine the most effective meta/base model for
our classifiers. Each of the 25 models was evaluated for depression, anxiety, and stress
classification, using the same arguments as in the previous experiments.

The bar graph, in Figure 5.8, summarized the performance of each model. While some
models exhibited marginally better performance, the differences were not substantial enough
to draw a definitive conclusion.

Figure 5.8: The bar graph illustrates the performance of each meta/base model for classi-
fying emotions, with no single model demonstrating clear superiority.

5.1.3 Trinary Classifier

The exploration of trinary classifiers is a natural extension of our binary classification work.
This section presents a series of experiments designed to adapt the binary classification
framework to the nuances of trinary classification.

Experiment 7: Data Preprocessing

Replicating the binary classification’s Experiment 2 5.1.2, we assessed the impact of dif-
ferent preprocessing techniques on trinary classification. Although the differences between
preprocessing methods were less pronounced as shown in Figure 5.9, the PCA and PCA-
LDA pipeline still proved to be the most effective. Therefore, we will continue to employ
these methods in our trinary classification experiments.
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Figure 5.9: The graph compares the accuracy of trinary classification models under different
preprocessing methods, highlighting the superior performance achieved through PCA and
the PCA-LDA pipeline.

Experiment 8: Task-Specific Input Data

Following the approach of Experiment 3 5.1.2, we conducted a similar analysis for trinary
classification. The results in Figure 5.10 indicated that specific tasks correlate with specific
emotions. For depression, tasks 1 and 7 were most indicative, with task 6 also showing
relevance. Anxiety was best classified using tasks 2 and 6, with task 7 closely behind. For
stress, tasks 2 and 7 were chosen. Henceforth, these tasks will be used as inputs for their
respective emotions in trinary classification.

Depression Anxiety Stress
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Comparison of models based on the input task for each emotion.

Task
1
2
3
4
5
6
7

Figure 5.10: This graph presents the accuracy of classifiers for each emotion, showcasing the
distinct influence of task-specific input data on model performance in trinary classification.
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Experiment 9: Number of Inner Models

In this experiment, we explored the optimal number of inner models for each ensemble
method in trinary classification, akin to the binary classification’s Experiment 4 5.1.2.

• Bagging Variant - Lower numbers of inner models, such as 5, 10, and 15, demon-
strated slightly better performance in trinary classification as shown in Figure 5.11.

• Boosting Variant - Results from Figure 5.12 were consistent across the board, with
a notable bump at 50 inner models. This, coupled with insights from the binary
classification, led us to select 50 as the optimal count for boosting.

• Stacking Variant - A trend of decreasing accuracy with an increasing number of
models was observed, with the best results around 15 inner models as shown in Figure
5.13.
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Figure 5.11: Accuracy trends of trinary classifiers with varying inner model counts using
bagging, highlighting the optimal lower numbers.
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Figure 5.12: Accuracy trends of trinary classifiers with varying inner model counts using
boosting, indicating 50 as the optimal number.
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Figure 5.13: Accuracy trends of trinary classifiers with varying inner model counts using
stacking, showing a peak at 15 models.

Experiment 10: Ensemble Technique

This experiment aimed to compare the performance of different ensemble techniques in
trinary classification. While all techniques yielded similar results as shown in Figure 5.14,
stacking exhibited a broader range of accuracies, producing both superior and inferior clas-
sifiers compared to the other techniques. Among bagging and boosting, bagging demon-
strated a slight edge in performance.
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Figure 5.14: The graph compares the accuracy of trinary classifiers using different ensemble
techniques, indicating a broader range of results for stacking and a slight advantage for
bagging over boosting.

Experiment 11: Meta/Base Model Evaluation

In our final experiment, we evaluated the effectiveness of different meta/base models for
trinary classification. Similar to Experiment 6 5.1.2, each of the 25 models was assessed.
The results highlighted that some models performed significantly worse than others in the
context of trinary classification. We can see the different models performance in Figure
5.15.

Figure 5.15: The bar graph illustrates the performance of each meta/base model for classify-
ing emotions in trinary classification, with some models showing notably poor performance.

5.2 Feature Importance Analysis
This section delves into the significance of individual features in emotion recognition from
handwriting. Utilizing the file anova_features.csv from the ’model’ folder, we conduct a
series of experiments to identify key features that consistently demonstrate importance
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across various conditions. The analysis focuses on the average position of features in the
ANOVA sorted list and their selection frequency, providing insights crucial for researchers
and practitioners in the field.

Experiment 12: Top Features by Average ANOVA Position

In this experiment, we examine the positions of features in the ANOVA sorted list to
determine their significance. With 7 different tasks, 3 emotions and the choice of binary
or trinary data grouping, we have 42 different rankings of our 525 extracted features. We
employed a script feature_experiment.py that records the position of each feature in all 42
rankings. The average position is then presented in a sorted list. The top 10 features with
the best average position out of 525, are as follows:

• ratio_of_writing_durations: 147.0

• writing_tempo_on_paper: 159.0

• acceleration_on_paper_y_slope_of_linear_regression: 165.4

• vertical_valleys_duration_iqr: 169.4

• acceleration_in_air_y_median: 175.8

• jerk_on_paper_y_cv_parametric: 176.1

• stroke_length_on_paper_iqr: 182.0

• relative_number_of_changes_in_velocity_profile: 183.5

• jerk_on_paper_xy_cv_parametric: 184.4

• vertical_peaks_values_slope_of_linear_regression: 189.5

Experiment 13: Top Features by Selection Frequency

In this experiment, we continue with the feature importance analysis. However, unlike Ex-
periment 12, we score the features in alignment with our feature selection method explained
in Section 3.6. Here, we consider not only the position of each feature but also whether it
was selected for classification or not. We take in account the argument minimum_features
that modifies the number of selected features and set it to 30 in this experiment, as was
suggested in Experiment 1 5.1.1. The top 10 most frequently selected features are:

• acceleration_on_paper_y_slope_of_linear_regression: 14/42 (33.3%)

• ratio_of_writing_durations: 12/42 (28.6%)

• stroke_length_on_paper_mean: 11/42 (26.2%)

• stroke_length_on_paper_percentile_95: 10/42 (23.8%)

• jerk_on_paper_y_cv_parametric: 10/42 (23.8%)

• writing_tempo_on_paper: 10/42 (23.8%)

• stroke_length_on_paper_median: 10/42 (23.8%)
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• stroke_duration_in_air_slope_of_linear_regression: 10/42 (23.8%)

• stroke_width_in_air_slope_of_linear_regression: 10/42 (23.8%)

• relative_number_of_changes_in_velocity_profile: 10/42 (23.8%)

Experiment 14: Top Merged Base Features by Selection Frequency

In this experiment we posed the same question as in Experiment 13 5.2 with the difference
being that we merged our features back to their base form. In Section 3.2.2 we mentioned
that some features can create multiple values based on the orientation, pen status, various
statistical measures. Throughout our search for the best classifier we treated each value
as its own feature, but in this experiment, we merge them back together and explore how
frequently they were selected. The top 10 most frequently selected base features are:

• ratio_of_writing_durations: 12/42 (28.6%)

• relative_number_of_changes_in_velocity_profile: 10/42 (23.8%)

• relative_number_of_changes_in_y_profile: 6/42 (14.3%)

• relative_number_of_intra_stroke_intersections: 63/462 (13.6%)

• vertical_valleys_velocity: 63/462 (13.6%)

• writing_tempo: 11/84 (13.1%)

• relative_number_of_changes_in_azimuth: 5/42 (11.9%)

• relative_total_number_of_intra_stroke_intersections: 5/42 (11.9%)

• writing_stops: 54/462 (11.7%)

• ratio_of_stroke_durations: 49/462 (10.6%)

5.3 Comparative Analysis of Induced and Measured Stress
This section evaluates the performance of our best-performing binary classifier for stress
detection when applied to a different dataset, the CIU Handwritten database. The CIU
database differs from the EMOTHAW dataset in that the stress emotion was induced by
imposing a time limit on the task as explained in Section 2.2.1, whereas in EMOTHAW,
stress was measured based on the DASS test scores as explained in Section 2.2.1.

Experiment 15: Evaluation of CIU Database

The experiment employed our binary classifier, which had previously reported an accuracy
of 88%, to classify samples from task 4 of the CIU database, which was the timed task as
can be seen in Section 3.1. Participants in the CIU study were asked to write a sentence
and self-evaluate their level of stress while writing on a scale from 0-10. For our analysis,
we considered values greater than 8 as indicative of stress and values less than 8 as not
stressed, excluding the value 8 to broaden the gap between groups as suggested by the
Article [3].
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Upon applying our classifier to the CIU data, the following metrics were observed:

• Accuracy: 0.29

• Precision: 0.16

• Sensitivity : 0.76

• Specificity: 0.19

• F1 Score: 0.27

The classifier demonstrated significant challenges in accurately classifying the CIU
dataset, with a marked decrease in performance metrics compared to the EMOTHAW
dataset. This suggests that the input data must be highly precise and consistent across
datasets for the classifier to maintain its performance. The disparity in tasks between the
datasets likely contributed to the reduced effectiveness of the classifier.

5.4 Failed Experiments
This section is dedicated to the experiments that did not yield the expected results or
contribute new insights to our primary research outcomes. However, these unsuccessful
attempts were far from futile; they played a crucial role in refining our methodology and
steering the research towards more fruitful avenues. By examining the shortcomings and
missteps, we gained valuable lessons that ultimately guided us to our successful strategies.
For those interested in the granular details of these experiments, a comprehensive account
is provided in the appendix in Section A.

Failed Experiment 1: Overfitting

The initial set of experiments, aimed at optimizing the argument selection for our classi-
fication models, encountered a critical issue of overfitting. This was identified when the
models, trained using 10-fold cross-validation on the entire dataset, achieved implausibly
perfect classification results.

The overfitting was traced back to the data preprocessing step, where LDA and PCA
were applied. The transformation matrices, derived from the entire dataset, inadvertently
introduced information about the whole dataset into each fold of the cross-validation. This
led to data leakage, where the training folds contained ”hidden“ information from the
validation folds, thus compromising the integrity of the validation process.

To rectify this, we altered our approach by ensuring that the transformation matrices
for LDA and PCA were computed solely based on the training set. The validation set
remained untouched during this preprocessing step, thereby preventing any data leakage
and ensuring a more robust and genuine evaluation of the model’s performance. The new
approach is detailed as our main pipeline in previous Sections 3.8. The comprehensive
details of this failed experiment are documented in the appendix in Section A.

Failed Experiment 2: Minimum Number of Features

During the argument search from Experiment 5.4, in addition to discovering the overfitting
issue, we also observed an accuracy bias for classifiers trained on certain tasks. Closer
inspection revealed the issue lay within the feature selection process. We found that ANOVA
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does not select the same amount of features for every classifier; it selects only the statistically
significant features. This meant that sometimes ANOVA selected as few as just two features,
which were insufficient for classification.

To address this, we implemented a new argument called minimum_features, which
ensures that at least a minimum number of features are selected. ANOVA then selects the
best features up to the defined minimum, as detailed in previous Sections 3.6. The full
account of this failed experiment is available in the appendix in Section A.
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Chapter 6

Results

This chapter presents the culmination of the extensive research and experimentation con-
ducted throughout this study. It is here that we translate the intricate processes and
methodologies of our experiments into tangible outcomes. We will showcase the optimal
arguments for constructing both binary and trinary classifiers, derived from the rigorous
testing of various configurations. Furthermore, this chapter will detail the specific classifiers
that emerged as the most effective, along with their respective performances. By dissecting
the results of our experiments, we aim to provide a clear and comprehensive understanding
of the factors contributing to the success of our classification models. The insights gained
from this analysis are not only pivotal for the current study but also serve as a valuable
reference for future research in the field.

6.1 Optimal Arguments for Classifier Search
This summary encapsulates the optimal arguments derived from the comprehensive experi-
ments 2-11 conducted for both binary and trinary classifiers. The findings are instrumental
in guiding the construction of robust classification models.

6.1.1 Binary Classifier Arguments

• Preprocessing: Employ the PCA or PCA-LDA pipeline for data preprocessing.

• Tasks for Emotions:

– Depression: Utilize tasks 1 and 7.
– Anxiety: Utilize tasks 2 and 7.
– Stress: Utilize tasks 2 and 3.

• Number of Inner Models:

– Bagging: Approximately 10 inner models.
– Boosting: Approximately 50 inner models.
– Stacking: Approximately 5 inner models.

• Ensemble Techniques: Implement all ensemble techniques.

• Meta/Base Models: Explore all 25 meta/base models to identify the best classifier.
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6.1.2 Trinary Classifier Arguments

• Preprocessing: Consistently use the PCA or PCA-LDA pipeline.

• Tasks for Emotions:

– Depression: Utilize tasks 1 and 7.
– Anxiety: Utilize tasks 2 and 6.
– Stress: Utilize tasks 2 and 7.

• Number of Inner Models:

– Bagging: Around 10 inner models.
– Boosting: Maintain 50 inner models as optimal.
– Stacking: Optimal results with approximately 15 inner models.

• Ensemble Techniques: Include all techniques in the search for the optimal classifier.

• Meta/Base Models: Assess all 25 meta/base models for the most effective trinary
classification.

6.2 Performance of Optimal Classifiers
Following the identification of optimal arguments for classifier construction, we evaluated
the performance of the best classifiers for each emotion under binary and trinary data
separation. This section presents the configurations and performance metrics of the six
classifiers that emerged as the most effective.

6.2.1 Classifier Performance Metrics

Table 6.1: Performance Metrics of Best Classifiers
Classifier Configuration Accuracy Precision Recall F1 Score
Binary classification of Depression 0.89 0.93 0.79 0.73
Binary classification of Anxiety 0.85 0.89 0.83 0.73
Binary classification of Stress 0.85 0.84 0.84 0.73
Trinary classification of Depression 0.85 0.91 0.75 0.73
Trinary classification of Anxiety 0.73 0.83 0.80 0.73
Trinary classification of Stress 0.73 0.70 0.71 0.73

Each classifier’s configuration, which includes the preprocessing method, input task, en-
semble technique, meta/base model and number of inner models can be seen in the Table
6.2:
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Table 6.2: The Configurations of Best Classifiers
Classifier
Config.

Task Preproces.
Method

Ensemble
Technique

Meta/Base
Model

No. Inner
Models

Binary D 1 PCA-LDA Bagging Random Forest 5
Binary A 2 PCA Stacking Random Forest 5
Binary S 2 PCA Boosting Bernoulli NB 5
Trinary D 1 PCA-LDA Bagging QDA 10
Trinary A 6 PCA-LDA Boosting AdaBoost 15
Trinary S 2 PCA Boosting Perceptron 25

The performance metrics reveal that while all classifiers perform well, binary classifier
for depression classification exhibits the highest accuracy, precision, and F1 score. The con-
sistent F1 score across classifiers suggests a balance between precision and recall, indicating
that the classifiers are well-tuned to their respective tasks.

Conclusion: The results demonstrate the effectiveness of the selected configurations
in classifying emotions from handwriting data. The use of PCA or PCA-LDA preprocess-
ing methods, in conjunction with various ensemble techniques and meta/base models, has
proven to be successful. The number of inner models also plays a crucial role, with different
optimal numbers for bagging, boosting, and stacking ensembles. These findings contribute
valuable insights into the development of robust classifiers for emotion recognition in hand-
writing and can guide future research in the field.

6.3 Feature Importance in Emotion Classification
The exploration of feature importance in handwriting analysis, as detailed in Experiments
12, 13, and 14 has yielded significant insights into the characteristics that most influ-
ence emotion classification. This section discusses the key features that have consistently
emerged as top indicators of emotional states, regardless of whether they are considered
individually or as merged base features.

6.3.1 Key Features for Emotion Classification

The comparison between Experiments 13 and 14 reveals a set of features that are particu-
larly relevant for emotion classification:

• Ratio of Writing Durations: The ratio of writing duration on-surface to in-air
is a critical indicator. It reflects the time spent on the paper versus above it, sug-
gesting that the length of pauses between strokes is a significant factor in emotion
classification.

• The Slope of Linear Regression of Vertical Acceleration on Paper: The
slope of linear regression for acceleration in the y-direction indicates how quickly
acceleration changes when moving up and down on the paper, providing insights into
the dynamic aspects of writing that relate to emotional states.

• Stroke Length on Paper (Mean): The average length of each stroke offers infor-
mation about the extent of pen movement before lifting, which can be indicative of
the writer’s emotional condition.
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• Stroke Length on Paper (Percentile 95): Interestingly, not only the average
stroke length but also the length of the longest strokes (top 5%) plays a role in
distinguishing emotions, pointing to the importance of extremes in writing behavior.

These features, among others listed in the tables of Experiments 12, 13, and 14, highlight
the multifaceted nature of handwriting analysis in the context of emotion recognition. The
detailed explanation of each feature can be seen in Section 3.2.2.

Conclusion: The consistent selection of certain features across different analytical ap-
proaches underscores their potential as robust markers for emotion classification. By under-
standing these key features, researchers and practitioners can better interpret handwriting
data to assess emotional states. The longer list of features and their detailed analysis are
available in the appendix for further exploration in Section B.

6.4 Conclusion on the Comparative Analysis of Stress
The comparative analysis conducted in Experiment 15 5.3 provides a critical evaluation of
our classifier’s performance on the CIU Handwritten database. The stark contrast in re-
sults when compared to the EMOTHAW dataset underscores the challenges in generalizing
classifiers across datasets with varying conditions for stress induction.

6.4.1 Implications of the Results

The observed metrics indicate a significant decline in the classifier’s accuracy and precision,
despite high sensitivity. This discrepancy can be attributed to the fundamental differences
in how stress was induced and measured in the CIU and EMOTHAW datasets, respectively.
The CIU dataset’s induced stress, created by a time constraint, may manifest differently in
handwriting compared to the measured stress from the DASS test scores in EMOTHAW,
which could explain the classifier’s reduced specificity.

6.4.2 Future Directions

To enhance the classifier’s applicability and reliability across diverse datasets, future re-
search should focus on the following aspects:

• Consistency in Task Design: Ensuring that the tasks used for inducing or mea-
suring stress are consistent across datasets to minimize variability in stress represen-
tation.

• Robust Training: Incorporating a broader range of data that includes both induced
and measured stress conditions to train classifiers that can adapt to different stress
manifestations.

• In-Depth Feature Analysis: Conducting a thorough analysis of the features that
contribute to successful stress classification, particularly those that may be sensitive
to the method of stress induction.

6.4.3 Potential for Merging Stress Conditions

The potential to merge induced and measured stress conditions into a unified classification
framework remains an open question. The findings from this experiment suggest that
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achieving this integration requires a classifier trained on tasks that are identical or highly
similar in nature. Such a classifier would offer a more convincing comparison and could
potentially lead to a robust solution capable of detecting stress across various conditions.

6.5 Task Effectiveness in Emotion Classification
In this section, we delve into the effectiveness of individual tasks in the classification of emo-
tions. Our experimentation has revealed that certain tasks are more conducive to analyzing
specific emotions. This overview provides a comparative analysis of task performance for
both binary and trinary classifiers, highlighting the tasks that are most indicative of each
emotional state.

6.5.1 Binary Classification Task Effectiveness

Table 6.3: Task Effectiveness for Binary Classification
Emotion Task Ranking (Best to Least)
Depression 1, 6, 7, 4, 2, 5, 3
Anxiety 2, 7, 1, 6, 5, 4, 3
Stress 3, 2, 7, 6, 1, 5, 4

For binary classification we can observe in Figure 5.3, tasks 1 and 6 are optimal for depres-
sion, with task 1 being the most effective. Anxiety is best classified using tasks 2 and 7,
while stress classification benefits most from tasks 3 and 2.

6.5.2 Trinary Classification Task Effectiveness

Table 6.4: Task Effectiveness for Trinary Classification
Emotion Task Ranking (Best to Least)
Depression 1, 7, 6, 3, 2, 4, 5
Anxiety 2, 6, 7, 1, 4, 5, 3
Stress 2, 7, 3, 6, 1, 5, 4

In the context of trinary classification we can see in Figure 5.10, task 1 stands out as the
most effective for depression, with task 7 also being considerable. For anxiety, tasks 2 and
6, and potentially task 7, are most indicative. Stress is best analyzed by task 2, with task
7 also being a viable option.
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Chapter 7

Conclusion

This thesis has embarked on a comprehensive journey through the landscape of emotion
classification from handwriting, guided by a thorough literature review that identified exist-
ing approaches and best practices. Our investigation revealed significant gaps in the state
of the art, particularly the lack of sufficient metrics beyond accuracy and the use of an
inadequate number of input features for robust model evaluation.

We chose the EMOTHAW dataset as the cornerstone of our research, proposing a novel
approach that involved extracting a vast array of features and employing ANOVA to rank
their statistical significance. This method allowed us to focus on the most impactful fea-
tures for emotion classification. We implemented normalization techniques and preprocess-
ing methods, specifically LDA and PCA. Notably, PCA demonstrated high efficacy as a
standalone method and also when combined with LDA in a sequential pipeline, enhancing
the emotion classification process.

In our quest to mitigate the errors of individual machine learning models, we embraced
ensemble learning—a meta approach that amalgamates bagging, boosting, and stacking
techniques with various structures and models. This strategy led to the discovery of mul-
tiple argument configurations for our classifiers, enabling us to identify the most effective
classifiers for each emotion under both binary and trinary classifications.

The classifiers we developed demonstrated commendable performance metrics, fulfilling
our objective of creating reliable tools for emotion classification. Throughout this thesis,
we conducted a series of experiments that not only refined our understanding but also
allowed us to compile a list of the most significant features, laying the groundwork for
future research endeavors.

However, our classifiers exhibited sensitivity to specific tasks, which became apparent
when we attempted to apply our model to the CIU dataset. The results were less than sat-
isfactory, raising questions about whether the discrepancy was due to the different methods
of stress induction or the variation in tasks. This area remains ripe for further exploration.

A pivotal discovery in our research was the occurrence of data leakage during preprocess-
ing with validation data. This served as a cautionary tale for others in the field, emphasizing
the importance of preventing information leakage in cross-validation processes. Addition-
ally, we learned the criticality of setting a minimum number of features when dealing with
dynamic feature selection to ensure enough information for the classifier.

In conclusion, this thesis has not only contributed to the field of emotion classification
from handwriting by developing effective classifiers and identifying key features but has
also highlighted areas for future research. The lessons learned from both our successes and
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setbacks have provided valuable insights that will undoubtedly benefit subsequent studies
in this domain.

As we close this chapter, we acknowledge the iterative nature of scientific research—a
path marked by both triumphs and tribulations, each equally important in the pursuit of
knowledge.
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Appendix A

Detailed Account of Unsuccessful
Experiments

This chapter provides an in-depth look at the initial phase of experimentation that ulti-
mately did not yield the desired results, leading to significant changes in our approach. The
experiments detailed here were pivotal in highlighting the limitations of our initial methods,
particularly concerning overfitting and insufficient feature selection.

A.1 Argument Search Using Cross-Validation
As referenced in Failed Experiment 1 and Failed Experiment 2 5.4, our initial experimenta-
tion phase began without the incorporation of the minimum_features argument and relied
on 10-fold cross-validation. This approach, while standard in many machine learning prac-
tices, proved to be inadequate for our specific application.

The following sections provide a comprehensive breakdown of these early experiments,
outlining the methodologies employed, the challenges encountered, and the lessons learned
that informed the subsequent adjustments to our experimental design.

A.1.1 Binary classifier

The initial phase of experimentation, conducted via the argument_experiment.py script,
was concentrated on binary classifiers. This phase is dedicated to refining the selection of
arguments, which are instrumental in the construction of robust classification models. Our
initial focus was directed towards the preprocessing techniques, as they play a crucial role
in shaping the input data for optimal classifier performance.

Experiment 1: Data preprocessing

Our first experiment commenced with the whole dataset encompassing all seven tasks. To
streamline the complexity, we narrowed the choice of the final meta-model to three well-
established algorithms: Logistic Regression, K-Nearest Neighbors, and Random Forest. We
adopted stacking as our ensemble learning strategy, with a variation in the number of inner
models set at either five or fifteen.

The execution of ensemble.py was carried out with these specified arguments, alongside
varying preprocessing methods. Our aim was to evaluate the impact of LDA transformation,
PCA transformation, the absence of both preprocessing techniques, and the combined effect
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of a PCA-LDA pipeline on the model’s accuracy. The results of this comparative study
are visually represented in Figure A.1, which clearly illustrates the superior performance of
models preprocessed with LDA, particularly in the classification of anxiety and depression.
The findings from this experiment have led us to adopt LDA as our preprocessing method
of choice, given its significant contribution to enhancing model accuracy.
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Figure A.1: The graph showcases the comparative accuracy of binary classification models
utilizing a stacking ensemble approach. The models, which include either five or fifteen
inner models, are evaluated with a meta-model consisting of KNN, Logistic Regression,
or Random Forest. The accuracy is measured across different preprocessing techniques,
highlighting the effectiveness of LDA in improving model performance.

Experiment 2: Ensemble Technique

With the preprocessing method fixed to Linear Discriminant Analysis (LDA), we embarked
on a comparative study of three prominent ensemble techniques: stacking, bagging, and
boosting. The objective was to ascertain which technique would yield the most accurate
classification models.

In this experiment, the ensemble techniques were scrutinized under similar conditions
as in previous experiment A.1.1, using all seven tasks, three possible meta models and ei-
ther 5 or 15 inner models. The graphical representation detailed in Figure A.2, revealed
a nuanced landscape of performance metrics. While no technique emerged as a definitive
leader, stacking achieved marginally superior accuracy, with boosting trailing closely be-
hind. Bagging, on the other hand, demonstrated the least favorable results, suggesting its
exclusion from future consideration.

The results indicate that while stacking stands out as the preferred technique due to
its slightly higher accuracy, the difference is not substantial enough to disregard boosting
entirely. Therefore, we conclude that stacking will be our primary ensemble method
moving forward, but we remain open to further exploration of boosting in subsequent
phases of our research.
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Figure A.2: The graph showcases the comparative accuracy of binary classification models
employing different ensemble techniques. Stacking, bagging, and boosting were analyzed
under uniform conditions. The models, which include either five or fifteen inner models, are
evaluated with a meta-model consisting of KNN, Logistic Regression, or Random Forest.
Stacking showing a slight edge in performance.

Experiment 3: Task-Specific Input Data

This experiment probes the hypothesis that certain tasks may yield more potent discrimi-
native power for the classification of specific emotions.

We conducted an evaluation of classifiers employing LDA preprocessing and a stacking
ensemble technique. The ensemble was configured with all 25 potential meta-models, and
the number of inner models was set to either 5 or 15. The data was partitioned based on
the input task to ascertain the impact of task-specific data on classifier performance.

The insights gleaned from this experiment are encapsulated in Figure A.3, which eluci-
dates the differential impact of tasks on the efficacy of emotion classification. A discernible
pattern emerges from the analysis: certain tasks significantly bolster the classifier’s ability
to detect particular emotions. For instance, when classifying depression, input data from
task 1 outperforms others, with task 3 following suit. Similarly, for anxiety, task 1 stands
out as the most effective, with task 2 as a secondary contributor. In the case of stress, while
the results are more homogenous, tasks 3 and 6 emerge as the most promising sources of
input data.

The findings from this experiment suggest that within the EMOTHAW database [21],
not all tasks carry equal weight in the context of emotion detection. A high-quality binary
classifier for depression and anxiety can be achieved predominantly with data from Task
1, whereas for stress, Task 3 is the most informative. As delineated in Table 3.1, these
tasks pertain to the drawing of two pentagons and the clock drawing test, respectively.
Despite these revelations, our endeavor to construct the most accurate classifier persists, as
we continue to refine models for each emotion using data from all tasks, ensuring versatility
and robustness in our classification approach.
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Figure A.3: The graph presents the accuracy achieved by classifiers for each emotion,
highlighting the varying impact of task-specific input data on model performance.

Experiment 4: Number of inner models

In this experiment we focus on the number of inner models used in our classifier. We
compared classifiers employing LDA preprocessing and a stacking ensemble technique with
all 25 possible meta-classifiers. The input data used was from all 7 tasks. We compared
classifiers with 5, 10, 15, 20 and 25 inner models.

As we can see in Figure A.4, the difference between different number of inner models
doesn’t influence the resulting accuracy that much. There is a slight decline of accuracy
with growing number of models, but this is almost negligible difference.

The fourth experiment in our series investigates the influence of the number of inner
models within our classifier’s architecture. We employed LDA preprocessing and a stack-
ing ensemble technique, incorporating all 25 possible meta-classifiers. The dataset again
comprised input data from all seven tasks.

We scrutinized classifiers configured with varying quantities of inner models: 5, 10, 15,
20, and 25. This range was selected to cover a spectrum from a minimal ensemble to a
substantially large one, allowing us to observe any trends associated with the number of
models.

The results, as depicted in Figure A.4, indicate a subtle trend. Contrary to expectations,
the variation in the number of inner models does not significantly impact the accuracy of the
classifiers. There is a marginal decrease in accuracy as the number of models increases, but
this decline is minimal and does not suggest a strong correlation between model quantity
and classifier performance.
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Figure A.4: The graph illustrates the relationship between the number of inner models and
the accuracy of the classifiers. It highlights the minimal impact that increasing the number
of inner models has on the overall accuracy.

Experiment 5: Meta-Model Selection

The final experiment in this chapter scrutinizes the impact of the meta-model selection
within our stacking ensemble framework. This experiment was conducted using a stacking
ensemble with 15 inner models, coupled with LDA preprocessing. The tasks selected for
input data were those previously shown in Section A.1.1 with the highest efficacy for each
emotion: Task 1 for depression and anxiety, and Task 3 for stress.

The classifiers for each emotion were evaluated using every possible meta-model to
determine the extent to which the choice of the final model affects the results.

The analysis, as inferred from the Figure A.5, indicates that the differences among
the meta-models are minimal, with some variations dipping slightly lower but without
significant deviation.
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Figure A.5: The graph displays the performance of classifiers across different meta-models,
highlighting the negligible differences in accuracy, suggesting the need for further explo-
ration of all meta-models.

A.1.2 Trinary Classifier

This section extends the exploration of argument effects to classifiers trained on trinary
data separation. The DASS value thresholds for trinary classification are detailed in Ta-
ble 4.1. The experimental approach mirrors that of the binary classifiers, utilizing the
argument_experiment.py script once more.

Experiment 6: Data Preprocessing

The initial trinary experiment evaluated the effectiveness of LDA and PCA preprocessing
techniques. Employing the same parameters as before—stacking ensemble with 5 or 15
inner models and a meta-model chosen from KNN, Logistic Regression, or Random For-
est—we processed input data from each task with trinary evaluation. Four combinations
of preprocessing techniques were tested.

Figure A.6 demonstrates a significant increase in accuracy when using LDA, reaffirming
its selection as our primary preprocessing method.
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Figure A.6: The graph illustrates the accuracy improvements achieved through LDA pre-
processing in trinary classification.

Experiment 7: Ensemble Technique

This experiment highlights the differences in ensemble techniques when applied to trinary
data. We conducted runs with data from all tasks preprocessed using LDA. Classifiers with
5 or 15 inner models employed Logistic Regression, KNN, or Random Forest as the meta-
model. As depicted in Figure A.7, the mean values suggest stacking’s superiority in every
case. However, focusing on maximum values for depression, bagging yielded a few superior
results. Conversely, for stress, bagging generally underperformed. Stacking remains our
primary technique for further argument testing, but we will revisit bagging and boosting
in future explorations.
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Figure A.7: The graph compares the performance of different ensemble techniques on tri-
nary data, indicating stacking as the most consistent performer.
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Experiment 8: Task-Specific Input Data

We revisited the significance of task-specific input data on classification outcomes. All
classifiers were evaluated using a stacking ensemble with 5 or 15 inner models across the 25
meta-models. LDA-preprocessed data from each task was examined separately for resulting
accuracy. Figure A.8 presents surprising contrasts to binary classification results. For
depression, Task 1 remains the clear leader, while for anxiety, Task 7 surpasses with Task 1
closely behind. For stress, Task 3 maintains its lead, with Task 1 now as a strong secondary
option.
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Figure A.8: The graph reveals task-specific input data’s impact on trinary classification
accuracy, showing distinct preferences for different emotions.

Experiment 9: Number of Inner Models

Mirroring the binary classification experiments, we examined the impact of the number of
inner models. Stacking ensemble classifiers with any of the 25 meta-models were evalu-
ated using all tasks preprocessed with LDA. Figure A.9 indicates a slight trend across all
emotions, where increasing the number of inner models correlates with a minor drop in
accuracy.
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Figure A.9: The graph depicts the subtle effect of varying inner model quantities on the
accuracy of trinary classifiers.

Experiment 10: Meta-Model Selection

The concluding trinary experiment assessed the influence of different meta-models. Stacking
ensemble models with 15 inner models were evaluated, with input data tailored for each
emotion and preprocessed using LDA: Task 1 for depression, Task 7 for anxiety, and Task
3 for stress. The findings in Figure A.10 echo the binary data results, showing that the
choice of meta-model has a minimal effect on accuracy. Similar dips in performance were
observed for certain models.
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Figure A.10: This graph compares the accuracy of trinary classifiers across various meta-
models, highlighting the overall minimal impact on performance.
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A.2 Concluding Remarks on Preliminary Experiments
Reflecting on the initial phase of experimentation, we observed significant fluctuations in
performance metrics, particularly in the Task-Specific Input Data sections. For instance,
Figure A.3 illustrates notable declines in accuracy for task 5 when classifying anxiety and
stress in the binary classification setting. A similar trend was evident in the trinary classifi-
cation, as depicted in Figure A.8, where tasks 3, 4, and 5 for anxiety, task 7 for depression,
and tasks 5, 6, and 7 for stress exhibited subpar performance. These inconsistencies were
attributed to an insufficient number of features, a challenge we addressed by introducing
the minimum_features argument.

Towards the conclusion of the binary experimentation phase, detailed in Section A.1.1,
our models began to achieve exceptionally high metrics, reaching 100% accuracy, precision,
recall, and F1 score. While these results may initially appear promising, they raised con-
cerns about overfitting. Recognizing this, we ceased further experimentation with these
configurations to prevent our models from learning the noise and idiosyncrasies in our
training data rather than the underlying patterns.
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Appendix B

Feature Importance for
Classification

In this chapter, we provide detailed lists of features for emotion classification, organized by
their significance. These lists rank features based on their average ranking in the ANOVA
feature selection process as explored in Experiment 12, selection frequency shown in Exper-
iment 13, and the selection frequency of merged base features from Experiment 14 5.2. The
tables are designed to provide a clear and concise overview of the data without excessive
length.

B.1 Features by Average ANOVA Position

Feature Name Average
Position

ratio_of_writing_durations 147.0
writing_tempo_on_paper 159.0
acceleration_on_paper_y_slope_of_linear_regression 165.4
vertical_valleys_duration_iqr 169.4
acceleration_in_air_y_median 175.8
jerk_on_paper_y_cv_parametric 176.1
stroke_length_on_paper_iqr 182.0
relative_number_of_changes_in_velocity_profile 183.5
jerk_on_paper_xy_cv_parametric 184.4
vertical_peaks_values_slope_of_linear_regression 189.5
tilt_in_air_slope_of_linear_regression 190.7
vertical_valleys_velocity_quartile_3 190.7
vertical_peaks_duration_iqr 193.0
velocity_on_paper_y_slope_of_linear_regression 193.3
acceleration_on_paper_xy_slope_of_linear_regression 194.1
velocity_in_air_xy_percentile_5 195.8
stroke_height_in_air_percentile_5 196.5
relative_number_of_changes_in_azimuth 197.2
vertical_valleys_velocity_std 197.9
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Feature Name Average
Position

stroke_length_on_paper_quartile_3 199.3
pressure_slope_of_linear_regression 200.7
number_of_interruptions 200.8
vertical_valleys_velocity_percentile_95 201.2
stroke_height_on_paper_slope_of_linear_regression 202.3
acceleration_on_paper_xy_median 202.5
relative_number_of_changes_in_tilt 202.6
vertical_valleys_distance_quartile_3 203.1
jerk_in_air_xy_cv_nonparametric 205.3
writing_stops_mean 205.7
vertical_peaks_duration_mean 206.2

B.2 Features by Selection Frequency

Feature Name Selection
Frequency

acceleration_on_paper_y_slope_of_linear_regression 14/42 (33.3%)
ratio_of_writing_durations 12/42 (28.6%)
stroke_length_on_paper_mean 11/42 (26.2%)
stroke_length_on_paper_percentile_95 10/42 (23.8%)
jerk_on_paper_y_cv_parametric 10/42 (23.8%)
writing_tempo_on_paper 10/42 (23.8%)
stroke_length_on_paper_median 10/42 (23.8%)
stroke_duration_in_air_slope_of_linear_regression 10/42 (23.8%)
stroke_width_in_air_slope_of_linear_regression 10/42 (23.8%)
relative_number_of_changes_in_velocity_profile 10/42 (23.8%)
vertical_valleys_duration_iqr 9/42 (21.4%)
tilt_in_air_slope_of_linear_regression 9/42 (21.4%)
ratio_of_stroke_durations_percentile_5 9/42 (21.4%)
velocity_in_air_xy_percentile_5 9/42 (21.4%)
relative_number_of_intra_stroke_intersections
cv_nonparametric

9/42 (21.4%)

number_of_intra_stroke_intersections_cv_nonparametric 9/42 (21.4%)
number_of_intra_stroke_intersections_quartile_3 9/42 (21.4%)
number_of_intra_stroke_intersections_iqr 9/42 (21.4%)
relative_number_of_intra_stroke_intersections_iqr 9/42 (21.4%)
relative_number_of_intra_stroke_intersections_quartile_3 9/42 (21.4%)
relative_number_of_intra_stroke_intersections_median 9/42 (21.4%)
velocity_in_air_y_quartile_1 9/42 (21.4%)
writing_stops_median 8/42 (19.0%)
writing_stops_mean 8/42 (19.0%)
stroke_duration_on_paper_mean 8/42 (19.0%)
jerk_on_paper_xy_cv_parametric 8/42 (19.0%)
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Feature Name Selection
Frequency

writing_stops_iqr 8/42 (19.0%)
vertical_peaks_indices_cv_nonparametric 8/42 (19.0%)
vertical_valleys_velocity_quartile_3 8/42 (19.0%)
vertical_valleys_velocity_percentile_95 8/42 (19.0%)

B.3 Merged Base Features by Selection Frequency

Merged Feature Name Selection
Frequency

ratio_of_writing_durations 12/42 (28.6%)
relative_number_of_changes_in_velocity_profile 10/42 (23.8%)
relative_number_of_changes_in_y_profile 6/42 (14.3%)
relative_number_of_intra_stroke_intersections 63/462 (13.6%)
vertical_valleys_velocity 63/462 (13.6%)
writing_tempo 11/84 (13.1%)
relative_number_of_changes_in_azimuth 5/42 (11.9%)
relative_total_number_of_intra_stroke_intersections 5/42 (11.9%)
writing_stops 54/462 (11.7%)
ratio_of_stroke_durations 49/462 (10.6%)
stroke_length 94/924 (10.2%)
writing_height 8/84 (9.5%)
vertical_valleys_duration 43/462 (9.3%)
stroke_width 84/924 (9.1%)
vertical_peaks_duration 42/462 (9.1%)
pressure 47/546 (8.6%)
number_of_interruptions 7/84 (8.3%)
stroke_height 67/924 (7.3%)
relative_number_of_changes_in_x_profile 3/42 (7.1%)
relative_number_of_changes_in_tilt 3/42 (7.1%)
relative_number_of_changes_in_pressure 3/42 (7.1%)
number_of_interruptions_relative 3/42 (7.1%)
relative_number_of_inter_stroke_intersections 3/42 (7.1%)
tilt 66/1008 (6.5%)
jerk 169/2772 (6.1%)
vertical_peaks_velocity 28/462 (6.1%)
total_number_of_intra_stroke_intersections 5/84 (6.0%)
vertical_valleys_distance 27/462 (5.8%)
acceleration 151/2772 (5.4%)
velocity 205/3780 (5.4%)

Each table provides a detailed account of the features’ performance across the experi-
ments, offering insights into their relative importance. For further details on the method-
ology behind feature selection and the implications for emotion classification, please refer
to Section 3.2.2.
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