
V Y S O K É U Č E N I T E C H N I C K E V B R N E
BRNO UNIVERSITY O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY O F INFORMATION T E C H N O L O G Y

DEPARTMENT O F INFORMATION S Y S T E M S

SAP HANA PLATFORM

BAKALÁRSKA PRACE
BACHELOR'S THESIS

AUTOR PRÁCE MICHAL UHLÍŘ
AUTHOR

BRNO 2014

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY O F INFORMATION T E C H N O L O G Y

DEPARTMENT O F INFORMATION S Y S T E M S

PLATFORMA SAP HANA
SAP HANA PLATFORM

BAKALÁŘSKÁ PRÁCE
BACHELOR'S THESIS

AUTOR PRÁCE MICHAL UHLÍŘ
AUTHOR

VEDOUCÍ PRÁCE Doc. Ing. JAROSLAV ZENDULKA, CSc.
SUPERVISOR

BRNO 2014

Abstrakt
Tato p r á c e p o j e d n á v á o d a t a b á z i pracuj íc í v p a m ě t i n a z ý v a n é S A P H A N A . D e t a i l n ě popisuje
architekturu a nové technologie, k t e r é tato d a t a b á z e využ ívá . V dalš í čás t i se z a b ý v á
p o r o v n á n í m rychlosti p roveden í v k l á d á n í a v y b í r á n í z á z n a m ů z d a t a b á z e se s távaj íc í použí
vanou re lační d a t a b á z í M a x D B . P r o účely tohoto t e s tován í jsem vy tvoř i l jednoduchou ap
l ikaci v jazyce A B A P , k t e r á umožňu je testy p r o v á d ě t a zobrazuje jejich výsledky. T y jsou
shrnuty v pos ledn í kapitole a ukazuj í S A P H A N A jako j e d n o z n a č n ě rychlejší ve v y b í r á n í
dat, avšak srovnatelnou, či pomale j š í p ř i v k l á d á n í dat do d a t a b á z e . P ř í n o s m é p r á c e v id ím
v s h r n u t í p o d s t a t n ý c h z m ě n , k t e r é s sebou data u ložená v p a m ě t i p ř ináš í a n á z o r n é s rovnán í
rychlosti p roveden í zák ladn ích t y p ů d o t a z ů .

Abstract
This thesis discusses the in-memory database called S A P H A N A . It describes i n detail
the architecture and new technologies used i n this type of database. The next section
presents a comparison of speed of the inserting and selecting data from the database wi th
existing relational database M a x D B . For the purposes of this testing I created a simple
application i n A B A P language, which allows user to perform and display their results.
These are summarized in the last chapter and demonstrate S A P H A N A as clearly faster
during selection of data, but comparable, or slower when inserting data into the database.
I see contr ibution of my work in the summary of significant changes that come wi th data
stored in the main memory and brings comparison of speed of basic types of queries.

Klíčová slova
S A P , S A P Hana , A B A P , D a t a b á z e pracuj íc í v p a m ě t i , V ý k o n o s t n í t e s tován í , Slovníkové
kódování

Keywords
S A P , S A P Hana , A B A P , In-Memory Database, Performance testing, Dic t ionary encoding

Citation
M i c h a l Uhl í ř : S A P H A N A Pla t form, b a k a l á ř s k á p ráce , Brno , F I T V U T v B r n ě , 2014

SAP H A N A Platform

Declaration
I declare that this thesis in my own work that has been created under the supervision of
Doc . Ing. Jaroslav Zendulka, C S c , and al l sources and literature that I have used during
elaboration of the thesis are correctly cited wi th complete reference to the corresponding
sources.

M i c h a l Uhl í ř
M a y 21, 2014

Acknowledgements
I would like to thank to my supervisor Doc . Ing. Jaroslav Zendulka, C S c , who supported
me throughout my work on this thesis, you have been a tremendous mentor for me. I would
especially like to thank to employees of S A P Brno for their t ime spent w i th me discussing
S A P Hana and A B A P development. Furthermore I would also like to thank my parents
and girlfiend for their endless love and support dur ing my study.

© M i c h a l Uhl í ř , 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 5

2 Mot ivat ion 6
2.1 Enterprise Comput ing 6
2.2 Current Approach 6

2.2.1 On-l ine Transaction Processing (O L T P) 6
2.2.2 On-line Ana ly t i c a l Processing (O L A P) 7

2.3 Examples of new requirements 7
2.3.1 Sensors 8
2.3.2 Combina t ion of Structured and Unstructured D a t a 8
2.3.3 Social Networks and Search Terms 8

2.4 Combin ing O L T P and O L A P 8
2.5 Hardware Changes 9

3 Architecture 11
3.1 D a t a Storage in M a i n M e m o r y 11
3.2 D a t a layout i n main memory 11

3.2.1 Row D a t a Layout 11
3.2.2 Columnar D a t a Layout 12
3.2.3 H y b r i d D a t a Layout 12

3.3 Consequences of C o l u m n Orientat ion 13
3.4 Compression of data i n memory 13
3.5 Act ive and Passive D a t a 15
3.6 Architecture Overview 15

3.6.1 Differential buffer and Merge 15
3.6.2 Logging and Recovery 16

3.7 S A P H A N A P la t form 17

4 Basic operations 18
4.1 Database Operators 18

4.1.1 DELETE 18
4.1.2 INSERT 18
4.1.3 SELECT 19

4.2 Mater ia l iza t ion strategy 21
4.3 Hash Jo in 21
4.4 Aggregation Example 22

1

5 Test application J 4

5.1 A B A P - Advanced Business App l i ca t ion Programming 24
5.2 S A P L I N K and abap2xlsx 25
5.3 Used systems and R F C connection 25
5.4 D a t a 2 5

5.5 Implementation 2 ^
5.5.1 Get t ing data and insertion to database 27
5.5.2 Test execution 2 7

5.5.3 Expor t i ng data 2 8

5.5.4 Execute own query 28

6 Test results 3 1

6.1 Size of tables 3 2

6.2 Inserting into tables 33
6.3 Selection tests 3 3

6.3.1 Test 1 3 4

6.3.2 Test 2 3 4

6.3.3 Test 3 3 5

6.3.4 Test 4 3 6

6.3.5 Test 5 3 6

6.3.6 Test 6 3 7

6.3.7 Test 7 3 8

6.3.8 Test 8 3 9

6.4 Tests summary 4 9

6.5 Performance stabil i ty 4 0

6.6 Execut ion plans 4 2

7 Conclusion 4 ^

A Content of C D 4 8

2

List of Figures

2.1 A four level pyramid model of different types of Information Systems based on
the different levels of hierarchy i n organization (source: www.en.wikipedia.org) 7

2.2 O L T P and O L A P accessing [8] 9
2.3 M e m o r y hierarchy [8] 10

3.1 M e m o r y accesses for row data layout [8] 12
3.2 M e m o r y accesses for column data layout [8] 12
3.3 M e m o r y accesses for hybr id data layout [8] 13
3.4 Example of Dic t ionary Encoding [8] 13
3.5 Defini t ion of example table of the world populat ion [8] 15
3.6 Schematic architecture of SanssouciDB [8] 16
3.7 The concept of merge operation [8] 17

4.1 Example of DELETE operation. [8] 19
4.2 Example of INSERT operation. [8] 19
4.3 Example of SELECT operation. [8] 20
4.4 Compar ison between early and late material izat ion. [8] 22
4.5 Aggregation example. [8] 23

5.1 R F C connection in application 26
5.2 Structure of database 27
5.3 F i rs t screen of applicat ion 29
5.4 Test execution control screen 29
5.5 D a t a export screen 30
5.6 Execute own query screen 30

6.1 Size of tables 32
6.2 Insert into database 33
6.3 Results of Test 1 34
6.4 Results of Test 2 35
6.5 Results of Test 3 35
6.6 Results of Test 4 36
6.7 Results of Test 5 37
6.8 Results of Test 6 37
6.9 Results of Test 7 38
6.10 Results of Test 8 39
6.11 INSERT execution 41
6.12 SELECT execution 41
6.13 Execut ion plans of Test 1 42

3

http://www.en.wikipedia.org

6.14 Execut ion plans of Test 2 42
6.15 Execut ion plans of Test 3 43
6.16 Execut ion plans of Test 4 43
6.17 Execut ion plans of Test 5 43
6.18 Execut ion plans of Test 6 44
6.19 Execut ion plans of Test 7 44
6.20 Execut ion plans of Test 8 45

4

C h a p t e r 1

Introduction

The topic of my thesis is S A P H A N A platform, a revolutionary approach to databases,
developed by S A P under the leadership of prof. Hasso Plat tner . This platform is based on
a database running in the main memory, promising users on the fly processing of their data
and a single data source. However, it also brings a lot of new options for the treatment of
data in the database.

Even while s tudying faculty of information technologies i n Brno , I was very interested in
databases introduced in Database Systems course. In the second year, I got a unique chance
to work as a tester i n the S A P company, branch Brno . The most commonly used word in
internal newsletters, or dur ing the conversations wi th colleagues was H A N A . So I started
wi th research, what does H A N A mean and what so revolutionary is h iding behind this
word. Combined wi th my interest in the database, I presented my plan to prof. Zendulka,
who offered me his cooperation very will ingly.

The ma in goal of my work is to present the current si tuation in the processing of
data from the database and the possibil i ty of change that brings rapid development of
technology. The following is a description of the architecture of in-memory database and
technological changes needed for this architecture. One of the advantages is to store data in
a columnar layout and the abil i ty to encode data using the dict ionary encoding. M y job was
also to create a test application that compares the performance of M a x D B , the underlying
relational database and newly promoted S A P H A N A database. This applicat ion is wri t ten
in A B A P and allows user to export test results into the prepared E x c e l file. These results
are described i n detail i n last chapter.

5

C h a p t e r 2

Motivation

Computer science is reaching a new age. Companies need to preserve more data i n database
and to perform real t ime analytic operations wi th them. Very popular is storing unstruc
tured data i n database or just using tablets and smart phones to operate wi th our in
formation system on a business t r ip, customer meeting or in public transport. In this
chapter I would like to introduce enterprise computing, talk about new requirements for
enterprise computing, analyze todays data management systems and describe changes of
modern hardware performance.

2.1 Enterprise Computing

Enterprise computing is sold to business corporations as a complex solution of their cor
porate governance. Ent i re platform can be applied as packages wi th in each area. These
are accounting, business intelligence, human resource management, content management
system or customer relationship management. Customers can choose from those packages
and customize them for their use. Tha t means, the entire company uses one information
system wi th their own or rent database to store data.

2.2 Current Approach

Nowadays i n enterprise computing exist two approaches. E a c h company has two databases.
Fi rs t one is opt imized for inserting data and servicing many transactions at one time. D a t a
is always actual and a lot of users can access them. Second one is created by regular copying
of the first database and opt imized for analyt ical processing. That means joining, selecting
and aggregating through comprehensive tables. It is not important to keep data always up
to date in this type of database. O n Figure 2.1, you can see levels of hierarchy i n companies.

2.2.1 O n - l i n e T r a n s a c t i o n P r o c e s s i n g (O L T P)

O L T P is opt imized for large number of short on-line transactions. D a t a is operational and
stored i n original source. The main emphasis put on these systems is maintaining data
integrity i n multi-access environments and very fast query processing. Tuples are arranged
in rows which are stored in blocks. T y p i c a l usage is concurrent inserts and updates, full row
operations and simple queries w i t h smal l result sets, used to create sales orders, invoice,
accounting documents or to display customer master data. O L T P is represented by bot tom
layer of pyramide (Transaction Processing Systems) on Figure 2.1. [7]

6

Figure 2.1: A four level pyramid model of different types of Information Systems based on
the different levels of hierarchy i n organization (source: www.en.wikipedia.org)

2.2.2 O n - l i n e A n a l y t i c a l P r o c e s s i n g (O L A P)

O L A P system is adapted for analyt ical processing of large amounts of data. It comes into
system as predefined subset of the transactional data. D a t a is reproduced at regular inter
vals which causes the occasional outdated information for very complex queries, involving
aggregations. The downside of O L A P is also very frequent data redundancy. The most
common use is planning, forecasting and reporting, pract ical ly for operational reporting
(list open sales orders, accounts receivables) or t r i a l balance. O L A P is represented by top
three layers (Management Information Systems, Decision Support Systems, Execut ive In
formation Systems) on Figure 2.1. We can also th ink of the data i n a fact table as being
arranged i n a mult idimensional cube. Very common in O L A P applications is storing data
in a star schema wi th a fast table i n the center and dimension tables radiat ing from it . In
O L A P systems, new operations like d r i l l down or ro l l up can be performed. []

2.3 Examples of new requirements

Our systems can store a lot of data, but their processing is really t ime consuming. Our
applications collect structured data from sensors, web pages or information systems and
unstructured data from end users. People feed our datacenter w i t h their photos, feelings
or just when browsing the web, our web browser stores information for next analysis.

7

http://www.en.wikipedia.org

2.3.1 Sensors

For sensors data catching, I found very nice example i n a book from prof. P la t tner []. Th is
small example is about moni tor ing Formula 1 car performance. Mechanics need to know
a lot of information about technical condit ion of tires, breaks, shock absorbers or engine.
Each car has about 600 sensors and each sensor records mult iple events per second. Each
event means one insert to database. Y o u are the person, who is responsible for car during
the race. Y o u r task is to command the driver to go to pit stop to fill fuel or change tires.
W h a t you really need is real t ime analytics of the data provided by car. If the response
t ime of system take more than few seconds, you can use it only for analyses after the race.

2.3.2 C o m b i n a t i o n of S t r u c t u r e d a n d U n s t r u c t u r e d D a t a

D a t a is structured, i f we can store them in a format, which is automatical ly processed by
computers. Structured data is represented by tables, arrays or tree structures. Secondly,
unstructured data cannot be easily analyzed automatically. Mus ic , videos, photos or docu
ments can be stored i n a text format i n databases, w i th meta data for searching purposes.
W i t h in-memory database technology, we w i l l be able to process unstructured data without
meta data and to search entire document. [8]

2.3.3 Soc ia l N e t w o r k s a n d Search T e r m s

Very popular web pages are social networks. They started wi th sharing activities and photos
between friends. Then the word „fr iend" has changed its meaning and nowadays they are
used for branding, recruit ing and marketing. Another example for extracting business
relevant information from the Web is monitor ing search terms. The search engine Google
analyzes regional and global search trends and according to the results, it can recognize for
example symptoms of epidemic.

2.4 Combining OLTP and OLAP

Today's data management systems are opt imized either for transactional or analyt ical work
loads. Professor Hasso Pla t tner w i th his team checked several existing systems, customer
systems w i t h data, focused pr imar i ly on workload of write and read operations [8]. In
Figure 2.2 you can find the result of their research.

W h e n you go into the details, you w i l l find out the systems usage is very similar, so
there is no justification for different databases. The main benefit of the combination is that
transactional and analyt ical queries can be executed on the same machine using the same
set of data. The greatest benefit is undoubtedly the t ime spent for copying data from one
database type (O L T P) to another (O L A P) . If data is stored in one place, there is no need to
handle how to replicate data between two system types. This combinat ion w i l l provide the
management w i th current data and allow us to instantly analyze the data i n the database
and send a proper set of information to end users. The redundancy of data is very low,
because we have only one database. We do not need complicated E T L process, used for
copying data from O L T P to O L A P .

8

1
o

100%
90 %
80 %
70 %
60 %
50 %
40 %
30 %
20 %
10 %
0 To-

Write:
• Delete
• Modification
• Insert

Read:
• Range Select
n Table Scan
^ Lookup

OLTP O L A P

Figure 2.2: O L T P and O L A P accessing [8]

2.5 Hardware Changes

For this thesis is very important to have brief overview of the changes made i n hardware.
Our modern C P U can digest 2 M B of data per mill isecond []. W i t h ten cores, we can
scan 20 M B per mill isecond and i f there are ten nodes per core, then we get already 200
G B per second scanning speed. For this hardware configuration, it is very difficult to write
an algori thm which needs more than one second for execution. In Figure 2.3 the basic
knowledge about memory hierarchy is described. The slowest part of our memory is hard
disk. It is very cheap and offers a lot of space for data. F la sh memory is faster than hard
disk seek operations, but it works on same software principles as hard disk. That means
the same block oriented methods which were developed more than 20 years ago for disks
can be s t i l l used i n a flash disk. Next part of pyramid is the main memory, which is directly
accessible. Th is memory has reached rapid development i n last years and now it can provide
more storage space. The penultimate layer is reserved for the C P U caches L 3 , L 2 , L I w i th
different characteristics. F r o m L I cache, information goes directly into C P U register. A l l
operations, like calculat ing are carried out here.

The bottleneck of the current approach are a l l hard disk operations. In this context,
bottleneck means the layer of the pyramid on Figure 2.3, where transaction data is delayed
most. Let me mention latency numbers of each layer []:

• L I cache reference: 0.5 nanoseconds

• M a i n memory reference: 100 nanoseconds

• Disk seek: 10,000,000 nanoseconds

9

Figure 2.3: M e m o r y hierarchy []

Those three numbers are very important . Us ing simple calculation we find out, that i f
we store data i n main memory only and ma in memory w i l l be our new bottleneck, we can
speed up our data processing wi th factor 100,000. W i t h this innovation, we have to cope
wi th fact, that main memory is volatile. If we unplug the power, we lost a l l data. Th is
is solved wi th non-volatile memory, most often wi th S S D disk, where we can store passive
data (history) and snapshots for logging and recovering. Those concepts w i l l be described
in the subsequent sections.

The speed of networks for connecting nodes increases. Current nodes are connected in
general w i th 10 G b Ethernet network, but on the market we can find 40 G b connections and
switch manufacturers are ta lk ing about 100 G b Infiniband. [] They develop also switching
logic allowing smart computations, improving joins of tables, where calculations often go
across mult iple nodes.

10

C h a p t e r 3

Architecture

In this chapter, the SanssouciDB is described. It is a prototypical database system for uni
fied transactional and analyt ical processing and S A P H A N A database is based on knowledge
of this prototype. [] Th is concept was developed at the Hasso Pla t tner Institute in Pots
dam as an S Q L database and it contains similar components as other databases. Query
builder, meta data, p lan executer, transaction manager, etc. Understanding this prototype
is important to explore how databases can become more complex and faster. Changes
are mainly i n storage technique, data layout i n memory and distribute data to active and
passive section. The end of this chapter contains brief overview, how logging and recovery
works and what means merge operation.

3.1 Data Storage in Main Memory

Todays databases mostly use disks to store data and a ma in memory to cache data before
processing them. In SanssouciDB, data is kept permanently i n a ma in memory, but we s t i l l
need non-volatile data storage for logging and recovery which is discussed at the end of this
chapter. Us ing main memory as the pr imary storage leads to a different organization of
data that only works if the data is always available i n memory. For this case, a l l what is
necessary is pointer ari thmetic and following pointer sequences to retrieve data.

3.2 Data layout in main memory

D a t a stored i n tables, we can s imply imagine as two-dimensional, but memory i n todays
computers has s t i l l linear address layout. In this section, I w i l l consider three ways, how to
represent table in memory using row layout, columnar layout and a combinat ion of these,
a hybr id layout.

3.2.1 R o w D a t a L a y o u t

In a row data layout, data is stored tuple-wise. This brings low cost for reconstruction, but
higher cost for sequential scan of a single attribute. In Figure 3.1, you can see how data
is accessed for row and column based operations. Th is approach is always faster when we
need al l tuples, but - as mentioned below - in enterprise scenario we usually use only few
attributes of tables.

11

Column Operation
A B c A B c A B c A B C

Row Row Row

Row Operation

A B c A B c A B c A B c

Row low Row Row

Figure 3.1: M e m o r y accesses for row data layout [8]

3.2.2 C o l u m n a r D a t a L a y o u t

W h e n we use columnar data layout, data is stored attribute-wise, as you see in Figure
3.2. For this approach is typica l acceleration of sequential scan-speed i n main memory, but
when we reconstruct tuples, it becomes expensive. There are many advantages speaking in
favor of columnar layout usage in an enterprise scenario. [] For example, using the columnar
layout allows us to use dict ionary encoding in combinat ion wi th other techniques. It also
enables very fast column scans allowing on the fly calculations of aggregates, so we do not
need pre-calculated aggregates i n the database anymore. This w i l l minimize redundancy in
database.

Column Operation

A A A A B B B B C C c c

Column Column
v

Column

Row Operation

A A A A B B B B C C C C

Column Column Column

Figure 3.2: M e m o r y accesses for column data layout []

3.2.3 H y b r i d D a t a L a y o u t

H y b r i d data layout is a combination of previous layouts. Th is layout depends mostly on
specific table requirements. The ma in idea of having columnar and row layout mixed is
that i f the set of attributes are processed together, it makes sense to store them physically
together. Advantage of using this layout depends greatly on the programmer. For better
understanding see Figure 3.3.

12

CoJumn Operation
/>/>/>

A A A A B C B C B C B C

Column Row Row Row Row

Row Operation

A A A A B C B C B C B C

Column Row Row Row Row

Figure 3.3: M e m o r y accesses for hybr id data layout [I]

3.3 Consequences of Column Orientation

C o l u m n oriented storage has become used i n specific O L A P database systems. A n advan
tage of this data layout is clear i n case of sequential scanning of single attributes and set
processing. Enterprise applicat ion analysis showed that there is actually no application
using a l l fields of a tuple. For example, in dunning only 17 needed attributes are queried
instead of the full tuple represented by 300 attributes. For programmers, it is very impor
tant to avoid „SELECT *" statement and focus on selecting only min ima l set of data needed
for applicat ion. The difference in runtime between selecting specific fields or a l l tuples in
row oriented storage is insignificant, but i n case of column orientation storage, the penalty
for „SELECT *" statement is very expressive.

W h e n a database stores data i n columns instead of rows, it is more complicated for write
access workloads. Due to this issue, the differential buffer was introduced. This differential
storage is opt imized for inserts and data is merged into ma in store i n regular intervals.
More details about the differential buffer and merge process is provided i n section 3.6.

W i t h the column store, we can reduce the number of database indices, because every
attr ibute can be used as an index (integer value) and the scanning speed is s t i l l high enough.
For further speedup, dedicated indices can s t i l l be used.

3.4 Compression of data in memory

Dictionary for "fn;
waluelD

Attribute Vector for "fname"

Figure 3.4: Example of Dic t ionary Encoding []

If we want to store data i n main memory, we have to consider the size and how we need
to process them. B y analyzing enterprise data, special data characteristics were identified.
Most interestingly, many attributes of a table are not used and table can be very wide.

13

55% of columns are unused on average per company and tables w i th up to hundreds
of columns exist [8]. M a n y columns that are used have a low cardinali ty of values. Fur
ther, i n many columns N U L L or default values are dominant, so the entropy (information
containment) of these column is very low. To reduce size of this type of data we can use
Dict ionary Encoding . [] Dic t ionary Encod ing is based on a very simple principle. Each
column is split into a dict ionary and attribute vector. In dictionary, we store a l l distinct
values wi th their va lue lD. At t r ibu te vector contains only valuelDs, which correspond to
the valuelDs i n the dictionary. This brings possibil i ty to store a l l information as integers
instead of other, larger data types, and to perform operations directly on compressed data.
Example of Dic t ionary Encod ing can be seen i n Figure 3.4. To achieve better performance,
it is necessary to sort data i n dictionary. Then a binary search is possible to find values,
but we have to change principle of inserting data as discussed i n the next chapter.

For better understanding of this very important basics of reducing data size, I choose
an example of world populat ion wi th 8 bi l l ion tuples from [8]. Lets look i n detail i n Figure
3.5.
For column Last names, we need to represent 8 mi l l ion distinct values.

\og2{&milion) = 23

Size of attr ibute vector itself can be reduced to

milion • 23bit = 21A2GB.

Dict ionary needs to reserve

50Byte • Smillion = 0 . 3 8 G S .

P l a i n size can be calculated like

milion • 50Byte = 372.5GB.

Now, we can calculate compression factor

uncompressed size 372.5 GB — 1 7
compressed size ~ 21.42 GB + 0.38 GB ~ '

W i t h Dic t ionary Encoding , we need only 6% of the in i t i a l amount of main memory. Re
garding Figure 3.5, we can calculate next attributes i n our table in the same way. Tota l
plain size is 1,525,880 M B . Size of Dic t ionary encoded data is 87,446 M B . D i v i d i n g these
numbers, we get factor of compression 17 for entire table. This helps us to use main memory
as a storage for our data. Compression rate depends on the size of the in i t i a l data type and
on column's entropy - a measure which shows how much information is contained in column.
C o l u m n entropy can be calculated as ratio of column cardinali ty and table cardinality.

• C o l u m n cardinality is number of distinct values i n one column.

• Table cardinality is number of tuples i n a relation.

14

Column Column
Cardinality

Entropy Item Size Plain Size Size with Dictionary
(Dictionary + Column)

First names 5 million
23 bit

6.25 x 10̂ » 49 Byte 365.10 GB
= 373,840 MB

234 MB + 21.42 GB
= 22,168 MB

Last names 8 million
23 bit

1 x 10 3 50 Byte 372.5 GB
= 381,470 MB

381 MB + 21.42 GB
«22,316 MB

Gender 2
lbit

2.5 x 10 1 0 1 Byte 7.45 GB
~ 7,630 MB

2 Byte + 0.93 GB
= 954 MB

City 1 million
20 bit

1.25 x 10" 49 Byte 365.08 GB
= 373,840 MB

46.73 MB + 18.62 GB
» 19,120 MB

Country 200
8 bit

2.5xl0r8 49 Byte 365.08 GB
= 373,840 MB

6.09 KB + 7.45 GB
= 7,629 MB

Birthday 40,000
16 bit

5 x 10"6 2 Byte 14.90 GB
= 15,260 MB

76.29 KB + 14.90 GB
» 15,259 MB

Figure 3.5: Defini t ion of example table of the world populat ion []

3.5 Active and Passive Data

The data in SanssouciDB is separated into active and passive data. Passive data is stored
in a slower storage and queried less frequently. Ac t ive data is stored i n ma in memory and
this dis t r ibut ion of data reduces the amount of main memory needed to store the entire
data set.

Storing data i n main memory has one very nice feature. M a i n memory accesses depend
on t ime deterministic processes i n contrast to seek time of disk, that depends on mechanical
parts. Th is mean, that response t ime of in-memory database is smooth, always the same,
and response t ime of disk is variable because of disk seeks.

3.6 Architecture Overview

The architecture shown in Figure 3.6 provides an overview of the components of SanssouciDB
This database is split into three logical layers. The Dis t r ibu t ion Layer provides the commu
nication wi th applications, Metadata , and creates Query Execut ion plans. The M a i n Store,
Differential Store and Indexes are located in a M a i n M e m o r y layer at Server. Content of
the th i rd layer: Logs, Snapshots and Passive D a t a are stored i n a Non-Vola t i le memory.
A l l these concepts w i l l be described i n subsequent sections.

3.6.1 Di f ferent ia l buffer a n d M e r g e

W h e n a new tuple comes in , it does not go into the main storage, but into a differential
buffer. In this buffer we also keep data in a column store format, but its dict ionary is much
smaller then ma in storage dict ionary and it does not need to be resorted, so inserting into
differential buffer is always faster. A l l insert, update and delete operations are performed
on the differential buffer. D u r i n g query execution, a query is logically split into a process
in the compressed main par t i t ion and i n the differential buffer. After the results of both

15

Interface Services and Session Management

Query Execution Metadata TA Manager Distribution Layer
at Server;

Active Data

Main Store

C

8 8 88
E E 3 E
2 2 E2

Differential
Store

c c c c
E E 3 E
3 3 E3
8 8 88

Indexes

Inverted

Data
aging Ö

Time
travel Logging

Main Memory
at Server;

Recovery

Passive Data (History) Snapshots

Log Non-Volatile
Memory

Figure 3.6: Schematic architecture of SanssouciDB []

subsets are retrieved, they must be combined to bu i ld a full va l id result representing the
current state of the database.

To guarantee op t imal performance, the differential buffer needs to be merged periodi
cally w i th the main store. This process has three phases. Preparat ion, attr ibute merge and
commit . For better understanding of merge operations, you can see the details i n Figure
3.7. Before starting the merge operation, we have ma in store and differential buffer for
data modifying operations. W h e n we start the merge process, we have to create new main
store and new differential buffer, because the system is s t i l l prepared for another read or
insert operation and we achieve asynchronous merge. In the last step, the commit phase,
our ma in memory contains new main store and new differential buffer w i th operations, that
come during second step of merge.

3.6.2 L o g g i n g a n d R e c o v e r y

Databases need to provide durabi l i ty guarantees (as part of A C I D 1) to be used i n productive
enterprise applications. To provide these guarantees, fault-tolerance and high availabil i ty
have to be ensured. The standard procedure to enable recovery is logging. D a t a is wri t ten
into log files, which are stored in a persistent memory. Infrastructure of SanssouciDB
logging has three parts: snapshot of ma in store, value logs and dict ionary logs. Snapshot is
ideally wri t ten after each merge process and changes in the differential buffer are logged in
log files. Values and database dict ionary are stored i n different files because we can replay
it i n parallel and not i n one sequence. In addi t ion to logging, SanssouciDB logs meta data
to speed up the recovery process.

1 A C I D is Atomicity, Consistency, Isolation, Durability. These properties guarantee reliability for
database transactions and are considered as the foundation for reliable enterprise computing.

16

Before

Data
Modifying

Operations

Table

Main
Store ential

Buffer

Read Operations

During the M e r g e P r o c e s s

Merge Operation

Tabl

Data
Modifying

Operations

Main
Store

Differ
ential
Buffer

Main
Store
(new)

r Differential
Buffer
(new)

Read Operations

After

Data
Modifying

Operations

Table

Main
Store
(new)

/Differ
ential
Buffer

U n e w W

Read Operations

Figure 3.7: The concept of merge operation []

W h e n a server fails, it may have to be rebooted and restored. It can be caused by
blackout or internal issue on server. W h e n the recovery of our system starts, we need
first to read meta data for table sizes, latest snapshots etc. After we gather a l l needed
information, we can perform next steps i n parallel processing:

• Recover main store from snapshot

• Recover dict ionary of delta store by replaying dict ionary logs

• Recover va lue lD vectors of delta store

After the import of log files, the second run over the imported tuples is performed. This
is caused by the dict ionary encoded logging, which only logs changed columns. A t the end,
the imported tuples have to be checked for empty attributes and they have to be completed.
This is done by i terating over a l l versions of the tuple, as recorded i n a val idat ion flag.

3.7 SAP H A N A Platform

S A P H A N A platform is not only in-memory database based on SanssouciDB prototype,
called H D B . This platform also contains an Ecl ipse based tool developed especially for
S A P H A N A development, called S A P H A N A Studio. This tool is very useful for creating
applications on S A P H A N A , modeling and visual izing the data. I d id not use this tool to
create my application, because I need to get access into M a x D B .

17

C h a p t e r 4

Basic operations

In this chapter, basic database operations in S A P H A N A database are described i n detail .
Storing the data i n columns is also related to several changes i n the implementat ion of
database management. Process used to provide the same data interfaces as known from
row stores i n column store is called material izat ion and it is described at the end of chapter.
For int roduct ion to the basic principles of S A P H A N A I also recommend the book []. Basic
characteristics of S A P H A N A is also well described i n article [6].

4.1 Database Operators

Due to the use of dict ionary encoding described in 3.4, the implementat ion of ind iv idua l
operations must be changed. See description below, how each operator works.

4 . 1 . 1 D E L E T E

DELETE operation basically cancel the val idi ty of given tuple. I.e. it allows us to say that
certain i tem i n the database is no longer val id . This operation can either be the physical or
logical operation. The physical deletion removes a tuple from the database and it cannot
be retrieved anymore. The logical deletion only terminates the val idi ty of this i tem in the
dataset, but the tuple is s t i l l available and could be used for example for historic queries.
Example of DELETE operation can be explained wi th Figure 4.1.

In this case, we want to delete Jane Doe from database. If we look at our dict ionary
encoded table, we can see that we have dict ionary for first name, for last name and corre
sponding attr ibute vectors. F i r s t we have to identify va lue lD for Jane (23) and Doe (18).
Now we have to look at the attr ibute vector w i th posit ion of these values. For this exam
ple it is recID 41, which i d deleted and al l subsequent tuples are adjusted to mainta in a
sequence without gaps. Th is makes the implementat ion of deletion very expensive. The
value remains i n the dict ionary for furher use.

4 . 1 . 2 I N S E R T

Compared to row oriented database, the insert i n a column store is a bit more complicated.
In row oriented database, new tuple is s imply appended to the end of the table. A d d i n g
a new tuple to a column means to check the dict ionary and add a new value if necessary.
Afterwards, the respective value of the dict ionary entry is added to the attribute vector.
Considering that the dict ionary is sorted, adding a new tuple has three different scenarios.

18

Dictionary "fname"

valuelD

Attribute Vector "fname"

recID

Dictionary "Iname"

valuelD

17

18

19

20

21

value

Brown

Doe

Miller

Schmidt

Smith

Attribute Vector "Iname"

recID

38

39

40

44

41

42

valuelD

19

21

17

4S

18

20

Figure 4.1: Example of DELETE operation. [8]

• INSERT w i t h o u t N e w D i c t i o n a r y E n t r y The best si tuation occurs, when our
dictionary already contains inserted value. In this case, we s imply append its va lue lD
at the end of attr ibute vector w i th maintaining the sequence.

• INSERT w i t h N e w D i c t i o n a r y E n t r y w i t h o u t r e s o r t i n g t h e d i c t i o n a r y In this
case, value is appended into dict ionary and rest of the operation is similar to the
previous case.

• INSERT w i t h N e w D i c t i o n a r y E n t r y w i t h r e s o r t i n g t h e d i c t i o n a r y Regading
Figure 4.2, we want to add value K a r e n into column. For this example, we have to
perform following steps:

1. A p p e n d value K a r e n at the end of our dictionary.

2. Re-sort the dictionary.

3. Change al l valuelDs i n attr ibute vector.

4. A p p e n d new va lue lD to new attribute vector.

AV D

2 0 Anton

3 1 Hanna

1 2 Martin

0 3 Michael

4 4 Sophie

5 Karen

D (new)

Michael
Sophie

AV (new)

0

1

2

3

4

A V D

3 0 Anton

. 4 1 Hanna

1 2 Karen

• 3 Martin

5 4 Michael

3 2 5 Sophie

Figure 4.2: Example of INSERT operation. [8]

4.1.3 S E L E C T

In most applications, SELECT is a commonly used command. It presents a declarative
description of the result requested from database. To extract the data from the database,
an ordered set of execution steps is required. It is called query execution plan. For each
query, mult iple execution plans can exist that deliver the same results, but w i th different
performance. To calculate cost of different query execution plans, query optimizers are

19

used. Task of the query optimizer is to choose the most efficient plan. The main goal is to
reduce the size of the result set as early as possible. This goal can be achieved by applying
selections as early as possible, w i th ordered sequential selections (most restrictive selections
are executed first) or w i th ordered joins corresponding to their tables (smallest tables are
used first).

Figure 4.3 shows execution of statement SELECT fname, lname FROM population WHERE
country = 'Italy' AND gender = 'm'. This operation is executed i n the following steps:

1. Para l le l scan of country and gender dictionaries for Va lue lDs .

2. Para l le l scan of attribute vector for positions.

3. Logica l A N D operation on positions of both country and gender attributes.

4. F i n a l list of positions that we want to select.

Value ID Dictionary
for "country"

0 Algeria

1 France

2 Germany

3 Italy

4 Netherlands

E H fname lname country gender

2394 Gianluigi Buffon 3 1

3010 Lena Gercke 2 0

3040 Mario Balotelli 3 1

3949 Manuel Neuer 2 1

4902 Lu kas Podolski 2 1

20102 Klaas-Jan Hunteiaar 4 1

coun t ry = 3 ("Italy")

Value Dictionary
ID for

"gender"

0 f

1 m

gender = 1 ("m")

Figure 4.3: Example of SELECT operation. [8]

This example can be executed also sequentially. In this case it is always better to get
subset of values by scanning column country and then scan this subset for column gender,
because gender has only two distinct values.

20

4.2 Materialization strategy

Part of SELECT operation is material izat ion in order to provide the same data interfaces as
known from row stores. The returned results have to be transformed into tuples i n a row
format. For this operation we know two different material izat ion strategies. E a r l y and late
material ization. B o t h of them can be superior depending on the storage techniques.

In a nutshell, early material izat ion decompresses and decodes data early and then oper
ates wi th strings (in this case), while late material izat ion operates on integers and columns
as long as possible. Very i l lustrat ing comparison of both strategies can be shown i n Figure
4.4 for statement SELECT c i t y , C0UNT(*) FROM population WHERE gender = 'm' AND
country = 'GER' GROUP BY city. For dict ionary encoded, columnar data structures, late
material izat ion strategy is mostly used. In early materialization strategy, a l l required
columns are materialized first. For our example, in the left side of Figure 4.4 we have to
perform these steps:

1. Scan for constraint on gender.

2. Scan for constraint on country and add it to the result.

3. Look up ci ty values i n dictionary.

4. A d d the city attr ibute vector to the result.

5. Group and count.

In late materialization strategy, the lookup into the dict ionary for material izat ion is
performed in the very last step before returning the result. In the right side of Figure 4.4,
you can follow the steps of late material ization:

1. Look up constraint values in dictionary.

2. Scan for constraint i n attr ibute vector.

3. Logica l A N D .

4. F i l t e r attr ibute vector by GROUP BY.

5. Look up values from the dictionary.

4.3 Hash Join

The hash-join is typica l jo in known from relational databases, based on a hash function,
which allows access i n a constant t ime. This function allows to map variable length values
to fixed length keys. The hash jo in algori thm consists of two phases: hash phase and probe
phase. Dur ing the hash phase, the jo in attr ibute of the first jo in table is scanned and a
hash map is produced where each value maps to the posit ion of this value in the first table.
In the second phase, the second jo in table is scanned on the other jo in attr ibute and for
each tuple, the hash map is probed to determine i f the value is contained or not. If the
value is contained, the result is wri t ten.

21

{(ValCity^AggGly)}

^ firoup^OJntj Group by: ValCity

Add-Anrihure
— • f —
{VaiCitv)

t|pos,vaiCCPUntry,Vaie5nder)J

K Add Attr bjtc
predicate irGER" ~̂

{VaI Country]

Lockup

Deity ĉountry I
ĉountry

flpas^UalGender,)

] C Lookup

Values
Position

predicate:
{VaiGender] „ra*

«ValCib/, AggCity)}

—*4 Lookup

[(ValuelD, AggCrtyH

Group (count) "|< Group by: VallD

Pos-5can Pos-5can

predicate: „m" predicate:

Deo jnt-v

Figure 4.4: Compar ison between early and late material izat ion. [8]

4.4 Aggregation Example

Let us consider an example for the use of the COUNT function. Input table and steps of
execution are included i n Figure 4.5. The goal is to count a l l citizens per country using this
SELECT statement:

SELECT country, COUNT(*) AS citizens
FROM worlcLpopulation
GROUP BY country

Firs t , the system runs through the attribute vector for the country column. For each
new encountered va lue lD, an entry wi th in i t i a l value „ 1 " is added to the result map. If
the encountered va lue lD already exists, the entry is incremented by one in the result map.
After this process, the result map contains the valuelDs of each country and its number of
occurrence. F ina l ly , the result is materialized. The countries are fetched from the dict ionary
using the valuelDs and the final result of the COUNT function is created. F i n a l result of this
operation is table which contains a pair of country names and the number of occurrences
in the source table, which corresponds to the number of citizens. Th is pattern is similar
for other aggregate functions (SUM, AVG, MAX, MIN) [8].

22

reel D fhame Iname Bender city country birthday

D John Smith m Chicago USA 12.03.1954

1 Mary Brown f London UK 12.05.1954

2 Jane Doe f Palo Alto USA 23.04.1976

3 John Doe m Palo Alto USA 17.06.1952

4 Peter Schmidt m Potsdam GER 11.11.1975

. . . -
Attr ibute V e c t o r for "count ry"

44 43 44 44 42 _

Result M a p

44 1

43 1

42 1

_

country Dict ionary

valuelD

42
43
44

Result
country citíľens

USA 3

UK 1

GER 1

_ _

Figure 4.5: Aggregation example. [

23

C h a p t e r 5

Test application

M y task is to create simple test application to compare performance of standard S A P system
running on usual database wi th H A N A database. Thanks to cooperation wi th S A P , I have
access to S A P performance systems as a developer. It allows me to create local database
objects and develop my own executable program. M y applicat ion is developed in A B A P
programing language and the very inspir ing literature to develop my application was [9] by
James W o o d . In this chapter I also describe implementat ion of the test application, source
of data for testing and direction for use applicat ion. H D B is an acronym of S A P H A N A
database.

5.1 A B A P - Advanced Business Application Programming

A B A P is a programming language designed to develop applications for S A P system. F r o m
the last version, it is object-oriented programming language. A B A P has very similar pro
gramming constructions like C O B O L or S Q L , when working wi th database tables. To edit
programs, A B A P Workbench is available where you can take care about your code. There
are several types of programs:

• Executable programs:

— Reports: Report is a single program, which takes some input parameters from
user and shows results, mostly i n a table view. In a report, you can also define
screen w i t h text fields, buttons or subscreens. I use this type of program for my
application, because more complex programming is not required in my case.

— M o d u l e pools: Modu le pools define more complex programming wi th screens
and their flow logic.

• Non-executable programs:

— I N C L U D E modules: In I N C L U D E , you can define part of code which is
repeated; programmers use it to subdivide very large programs.

— Subroutine pools: If you want to create a method, you can enclose your code
in F O R M / E N D F O R M statements and i f needed, invoke it by P E R F O R M .

— Function groups: Funct ion group is a k ind of l ibrary of functions. Funct ion
code is enclosed in F U N C T I O N / E N D F U N C T I O N statements and executed wi th
statement C A L L F U N C T I O N . In a function group, you can define functions and

24

call them remotely from another system. This feature really helps me to have
my applicat ion only on one system, w i t h access to M a x D B system.

— Object classes: Object class is a set of methods and attributes. It is used for
object oriented programming.

— Interfaces: Interface contains method definitions.

— T y p e pools: In a Type pool , you can define data types and constants.

5.2 SAPLINK and abap2xlsx

Saplink is an opensource project that provides transport of A B A P object between systems.
W i t h saplink you can choose which object you want to transport and program generates a
text file in the x m l format. Y o u can upload this file to another system. It is very helpful,
when you create local objects without using S A P transport ing solutions. I use this tool to
copy my objects between systems. Some programmers use this tool to share their A B A P
developments. Saplink can be used for name refactoring of objects. [1]

Abap2xlsx is also an opensource project allowing you to create your own E x c e l spread
sheet. The source code can be installed v i a S A P L I N K . I use this tool to export results of
my test into E x c e l file for further processing. []

5.3 Used systems and RFC connection

To perform my tests, I got access to S A P internal development systems named Z K U and
Z P U . Z K U is uses M a x D B , which is an A N S I SQL-92 compliant relational database man
agement system from S A P A G . [] Z P U is based on the H D B database, which is part of
S A P Hana platform. O n both systems, component version E H P 7 is installed for S A P E R P
6.0. A test application can be run only from Z P U system.

R F C (Remote Funct ion Cal l) is interface for communicat ion between S A P Systems or
w i th other external systems using T C P / I P or C P I - C connections. I use this interface to
execute functions on Z K U system and to take over results i n my application placed in
system Z P U . O n Z K U I created function group ZMURFCS, that contains required functions.
O n Z P U I defined R F C connection to Z K U and then I can cal l remote functions wi th
parameter DESTINATION, which is my defined R F C connection. How R F C is used in test
application can be seen in Figure 5.1.

5.4 Data

One of important things of my task is to find an appropriate source of data. To achieve
relevant results, I need more than one table w i th mil l ions of tuples. I t r ied to ask my
colleagues from S A P responsible for performance, especially S A P Hana testing, but nobody
could provide me this k ind of testing data. So I had to find my own free source and create
tables. Benefit for me is fact, that I can have exactly the same data on both testing systems.

A s source of data for my application, I have chosen GeoNames geographical database.
This database is available from www.geonames.org and you can download text file w i th basic
information about cities around the world. Th is download was free of charge, because it is
under a Creative Commons A t t r i b u t i o n license. There is also possibil i ty to use GeoNames
web services to get relevant data. I use file allCountries.zip from download server. Th is

25

http://www.geonames.org

ZPU ZKU
(HDB) (MaxDB)

RFC

User Interface y s e r

^ ^ ^ ^

Figure 5.1: R F C connection i n application.

file contains allCountries.txt w i th 8,567,146 tuples. Because I do not need so much
tuples, I cut first 5,000,000 of tuples. I also use file timezones.txt w i th information about
t ime zones.

Originally, the source database has 19 attributes. I decided to use only a few of them,
because it contains lot of nu l l values. The structure of the database that I use i n experiments
is shown i n Figure 5.2. F i e l d populat ion contains originally lot of zero values so when my
application is fetching data from file and populat ion is nul l , it s imply add random number.
This allows me to test aggregate functions through a l l tuples. A l l attributes could be
included in one table, but I need more tables to perform jo in operations ibnr my tests.

Table ZMUCITY has 7 attributes. For unique identification is attrbiute ID. NAME stands
for name of the city, C0UNTRYC0DE identifies country in which the ci ty is situated. At t r ibu te
POPULATION indicates the number of inhabitants, ELEVATION is distance above sea level,
M0DIFDATE is date of last modification and TIMEZ0NEID is refference value to table wi th
informations about t ime zones called ZMUTIMEZ0NES. Th is table contains C0UNTRYC0DE, GMT
(Greenwich M e a n Time) and DST (Daylight Saving T i m e) . In last table ZMUP0SITI0N the
posit ion informations LATITUDE and LONGITUDE are stored.

5.5 Implementation
In this section, I w i l l describe implementat ion and how my application can be used. This
application is wri t ten i n A B A P language wi th standard A B A P Workbench wi th very useful
debugging tool .

In a nutshell, this application contains four screens. F i rs t one, w i th controls of data
in tables, second one wi th test execution controls - from this screen you can continue to
execute own query or export ing data into E x c e l spreadsheet for further processing. Test
application can be executed v i a transaction SE38 (standard S A P transaction for A B A P
Edi tor) w i th program name ZMUTESTREPORT from ZPU.

26

+ ID <PK>
+ NAME
+ COUNTRYCODE
+ POPULATION
+ ELEVATION
+ MODIFDATE
+ TIMEZONEID

•

M H-
+ ID <PK>
+ LATITUDE
+ LONGITUDE
-

+ TIMEZONEID<PK>
+ COUNTRYCODE
+ GMT
+ DST

Figure 5.2: Structure of database

5.5.1 G e t t i n g d a t a a n d insert ion to database

O n the first screen, captured in Figure 5.3, user can manage tables. Tables ZMUCITY and
ZMUPOSITTON are filled from one file and table ZMUTIMEZONE is filled from another file. Tha t
is the reason, why I create two rows. In the first row, there is an output field w i th number
of rows of table ZMUCITY and two buttons. If you click on „Fil l table" button, you w i l l be
asked to find input file on your disk „ O p e n " but ton on this screen w i l l start inserting the
data into database. This screen contains also two display fields w i th durat ion of the last
insertion. This t ime is also inserted into table ZMUINSERT after each fill table execution.
B u t t o n „ E m p t y table" w i l l start deletion of a l l tuples in table. In the second row, you
can do the same operations for table ZMUTIMEZONES. There are also two navigation buttons
„ N e x t " , which w i l l redirect you to next screen wi th test execution, and „ E x i t " , which you
can use to finish your work wi th application.

To choose file from hard drive I use method f ile_open_dialog. This allows user to
find the right destination of file to be uploaded. This destination is passed to method
gui_upload. Th is method uploads file into the server for next processing. B o t h methods
are part of class cl_gui_f rontend_services.

5.5.2 Test execut ion

From the first screen, you can continue to the Test execution screen, which can be seen in
Figure 5.4. For each test, there is a row wi th controls and text execution times. O n l y wi th
„ E x e c u t e A L L " but ton, test results are saved i n table ZMUSELECT. If you execute tests one
by one, you cannot save it into E x c e l spreadsheet. For next navigation, four buttons are
available. „ E x i t " to exit application, „ B a c k " to show the first screen, „ E x e c u t e own query"
can be used in case you want to type own query, and but ton „ E x p o r t to E x c e l file" switches
to settings of the result export.

27

5.5.3 E x p o r t i n g d a t a

W h e n users finish test execution, it is possible to export data into predefined E x c e l spread
sheet. De ta i l of this screen is i n Figure 5.5. There are two ways to run this feature.
C a l l transaction SE38 and execute program ZMUABAP2XLSX or use navigation but ton from
screen wi th test execution control. A s input file i n first input field, please choose file R E
S U L T S - T E M P L A T E . x l s x on your disk. In output options you can choose from actions
below before you click on „ E x e c u t e " button.

• Save to frontend Th is option requires path on disk, where final document R E
S U L T S .xlsx w i l l be stored.

• Save to backend This option allows you to store document on applicat ion server.
This file can be processed v ia standard S A P transaction ALII.

• Direct display If you want to check the file before saving, or sending v ia e-mail.

• Send via email Wr i te down the e-mail of recipient into input field and file w i l l be
sent v ia e-mail.

5.5.4 E x e c u t e o w n q u e r y

This screen is showed in Figure 5.6. The functionality can be accessed from test execution
screen or v i a transaction SE38, program name ZMUEXECQUERY. Into input field, you can type
your own dynamic S Q L query, for example SELECT * from ZMUCITY and after execution,
you w i l l see execution times. In this report, object oriented programming is used, because
I need to use existing A B A P methods to work wi th own query. Here is also handled
exception of query execution, so i f user makes a mistake in his/her query, error message is
raised.

28

SAP NANA Performance test: Tables contra/

MaxDB Database HANA Database
Number of entries: Row store [ms]: Row store [ms]: Column store [ms]:

Table city and position 5000000 b Fill table IK Empty table 209.400 149.9S8 287.079
Table titnezones 4 IS [B Fill table [M Empty table

|Q Hext I |<gi Exit I

Figure 5.3: F i r s t screen of application.

SAP HANA Performance test: Testing control

MaxDB Database HftNA Database
Row store [ms]: Row store [ms]: Column store [ms]:

Testl: 1® Execute 48.725 12.676 22.626
Test 2: i» Execute 129.215 27.341 45.007
Test 3: 1* Execute 6.531 3.029 2.131
Test 4: 1® Execute 23.189 3.594 2.255
Tests: |ft Execute 4.345 848 75
Test 6: 1® Execute 36.014 1.902 2.808
Test 7: Hft Execute 8.127 214 125
Testa: Execute 41.902 392 144

1% Execute own query | |(Ĵ Execute ALL 1 |E>] Export to Excel file
[<J3 Bäck |® Exit |

Figure 5.4: Test execution control screen.

29

RESULTS.xlsx

Input options:

Choose input file: Lr5\I0796e&\Dropbox\BPVEXCEL\RESULTS_TEMPLATE.xlsx| j3

Output options

•'••jSave to frontend

(^Save to backend

' Direct display

O'Send via email

Frontend-path to download to C:\Users\I079688\Documents\SAP\SAP GUI

\<P Back I g Execute

Figure 5.5: D a t a export screen.

SAP

Your SQL query:

Type your query he re: |

MaxDB row [ms]: \o_

HDB row[ms]: fo

HDB column [ms]: to"

* Back g » Execute query

Figure 5.6: Execute own query screen.

30

file://C:/Users/I079688/Docu

C h a p t e r 6

Test results

In this chapter, I describe my experiments. A t first I focused to insertion t ime into dif
ferent types of database. M a i n part of my testing was SELECT operation. F i rs t four tests
are focused to row operations and next four tests are focused to column operations wi th
aggregate functions. How much space consumes each table is also presented i n this chapter.

To upload 5,000,000 tuples into tables, I split source file into ten parts w i th 500,000
tuples each. These files were uploaded one by one, so I got ten execution times.

Then I ran a l l tests (Test 1 - Test 8) also ten times, because i n this chapter I discuss
stabil i ty differences betweeb M a x D B and H D B .

A t the end of testing, I exported data into predefined E x c e l spreadsheet. For comparing
values, I used the average value of each measurement. For each test I also captured execution
plan, because it helps me to explain differences between type of databases or storage types.
Execut ion plans are captured from H D B system, first one for row layout and second one for
column layout. E a c h test is executed on different systems or w i th different storage type:

• M a x D B database wi th row store layout.

• H D B database wi th row store layout.

• H D B database wi th column store layout.

In system w i t h M a x D B database, it is also possible to select a checkbox to create table
wi th column store, but this checkbox has no influence to layout type changes. I think, this
could be confusing for programmers.

31

6.1 Size of tables

Char t i n Figure 6.1 shows how much space consumes each table. M a x D B allocates memory
for a l l attributes of tuple. If a value of some attribute is nul l , database allocates a free
space for this value, which can be inserted i n the future. Th is type of storing data brings
a big difference i n memory consumption between M a x D B and H D B database.

In this chart, there is also very a noticeable difference between row and column layout
of data in memory. W i t h dict ionary encoding we can save more space i n memory thanks to
lot of same values i n attributes timezoneid and countrycode. In table ZMUCITY I achieved
compression rate 5, but I have to mention one more thing. H A N A database uses non
volatile memory to store data and it is important to have another disk to store backup
of database. Unfortunately, I could not get information about space needed for backups
in H A N A database, but due to decreasing prices of hard disks this information loses its
importance.

MaxDB Roiv[Mb]

HDB Row[Mb]

HDB Colurnn[Mh]

Z M U P O S - ON

Figure 6.1: Size of tables.

32

6.2 Inserting into tables

Insertion into database is really t ime consuming process. The best potency for insertions
has H D B wi th row storage layout. Values in chart shown i n Figure 6.2 are calculated using
average value of a l l measurements. Insertion into column store is two times slower than
row store insertion i n this case, but it is s t i l l very good performance, if we consider a l l
the operations that are carried out w i th dict ionary encoding. This measurement does not
include the t ime that is needed for merge process, but this process runs in background and
al l queries can be executed.

i5C

• MaxDB Row[s] • HDB Row[s] • HDB Column^]

Figure 6.2: Insert into database.

6.3 Selection tests

The ma in part of this thesis is the test result. For testing, I prepared four queries focused to
tuple reconstruction and four queries focused to column operations wi th aggregate functions.
For these tests, I expect that queries focused on row operations w i l l be faster w i th row
oriented layout and column operations w i l l be much faster w i th column oriented layout.
M y next expectation is, that H D B w i l l be always faster than M a x D B because of using
memory w i t h shorter access t ime. This comparison should show the difference between
database bottlenecks that I discuss in chapter 6.4. In sections below, I introduce each test
w i th its SELECT statement. I also discuss the results of test shown in chart and differences
in execution plans of row and column oriented layout i n H D B . Execut ion plan of each test
is included at the end of this chapter for better clari ty of document.

33

6.3.1 Test 1

SELECT *
FROM zmucity

This command select everything from table w i th ci ty informations.
Fi rs t test is focused on reconstruction of a l l tables selecting a l l attributes tuple per

tuple. F r o m Figure 6.3 is obvious, that best storage for table reconstruction is definitely
H D B wi th row oriented layout. The same layout of data on M a x D B and H D B , but different
type of storage caused, that the second one is four times faster. Execut ion plan i n Figure
6.13 shows the late material izat ion as the main reason, why the column oriented layout of
data in memory is slower than row oriented one, because data must be encoded.

6 0 000

5 0 243
5 0 000

4 0 000

3O0O0

2 0 000

occ

I - 251

12 733

1 MaxDB Row[ms] • HDB Raw[ms] • HDB Colum n[ms]

Figure 6.3: Results of Test 1.

6.3.2 Test 2

SELECT *
FROM zmucity JOIN zmuposition
ON zmucity.id = zmuposition.id

This command jo in ci ty informations wi th posit ion informations about cities on their ID .
This test is very similar to the first one, but it contains JOIN condit ion to jo in two

tables. Execut ion times shown in Figure 6.4 are more than two times slower than times in
Test 1, because both tables has 5,000,000 tuples and the database selects them al l . W h a t is
really interesting, is the execution plan i n Figure 6.14. In row store layout, table ZMUCITY is
scanned, then joined wi th ZMUPOSITION using index jo in . In contrast, optimizer in column
store layout first scans both tables and then joins them together.

34

iccccc

so coo

6 0 000

40 000

1Z zcz

c
• MaxDB Row[ms] • HDBRow[nn5] • HDB Column[nns]

Figure 6.4: Results of Test 2.

6.3.3 Test 3

SELECT *
FROM zmucity
WHERE countrycode = 'CA' OR countrycode = 'CO'

Select only cities w i th country code C A for Canada and C O for Colombia .
In this test, simple WHERE condit ion is added and column store is becoming faster.

Results can be seen in Figure 6.5. Execut ion plans in Figure 6.15 are very similar. To
answer the question, why reconstruction part of table defined wi th condit ion is faster in
column layout, I have to go deep i n the dict ionary encoding. In dict ionary encoded column,
the dict ionary is scanned for value defined in WHERE condit ion and va lue lD is found for these
values. Then the attr ibute vector is scanned for va lue lD comparing integers. The result
of this operation is list of posi t ionlDs and late material izat ion is the last step. In contrast
i n non encoded column, each row must be compared string by string and this operation
is more expensive than comparing integers. There would be really interesting to see, how
much time consumes filtering i n each data layouts, because from previous tests we know,
that material izat ion is prolongs significantly the run time.

sooo
7 0 0 0

6 zzc

5 000

- CDC

3 ZZC

1 ZZC

1 0 0 0

0

• MaxDB Rowfms] • HDB Row[nns] • HDB Columnfnns]

Figure 6.5: Results of Test 3.

113 24-3

7 039

35

6.3.4 Test 4

SELECT zmucity.id, zmucity.name, zmuposition.latitude, zmuposition.longitude
FROM zmucity JOIN zmuposition
ON zmucity.id = zmuposition.id
WHERE latitude BETWEEN 20 AND 50 AND
longitude BETWEEN 30 AND 60

Select ci ty ID , name, lati tude and longitude only from cities where lati tude is between
20 and 50 and longitude is betweeb 30 and 60.

Result of this test in Figure 6.6 looks very similar to test 3, but there is one question,
you might have. W h y is column layout faster even i f i n WHERE condit ion we compare integers
wi th integers and string comparison is not slowing down selection anymore?

The answer can be found i n chapter 3.2. In column store, data is stored attribute-wise
so during the scan, the column memory is accessed byte per byte, but in row store, data is
stored tuple-wise and we have to read few bytes and then skip to read next required bytes.

14 000

x :
11 993

x :

x :

a o x

6 o x

4- o x
Ei S72

4- o x
2 3 0 1

2 o x

0 0

• MaxDB Rt>w[ms] • HDB Row[nns] • HDB Calumn[nns]

Figure 6.6: Results of Test 4.

6.3.5 Test 5

SELECT SUM(latitude)
FROM zmuposition

Select summary of lati tude value. This command is nonsense i n real life, but it tests
single column operation.

Next four tests are focused on column operations. This one is a simple SELECT using
aggregate function to compute summary of one attribute. A s shown in Figure 6.7, for this
type of query is H A N A database wi th columnar layout the most suitable. M a x D B is more
than 60 times slower. Mater ia l iza t ion is not used, because this type of query returns only
one number.

36

5 000

4 500
4 440

4 000

3 500

3 000

2 500

2 000

1 500

1 000 824

500

0
72 500

0

• MaxDB Row[ms] • HDB Row[nns] • HDB Culumn[nns]

Figure 6.7: Results of Test 5.

6.3.6 Test 6

SELECT AVG(population)
FROM zmucity
GROUP BY population
HAVING population > 2000

This test results in Figure 6.8 shows, that w i th GROUP BY and HAVING condit ion, the dif
ference between row and column layout is not significant. If you follow execution plan in
Figure 6.18, at first, table is filtered by condit ion i n clause HAVING, then rows are grouped,
aggregated and prepared for output. How the aggregation works is explained i n chapter 4.4.

37

6.3.7 Test 7

SELECT SUM(gmt)
FROM zmucity JOIN zmutimezones
ON zmucity.timezoneid = zmutimezones.timezoneid
WHERE population > 3000 AND
zmutimezones.countrycode = 'CA' AND
zmutimezones.countrycode = 'AZ'

This command returns summary of gmt for cities, where populat ion is over 3000 and country
code is C A (Canada) and A Z (Azerbaijan).

This test is focused to jo in table wi th almost 500 tuples w i th table wi th 5,000,000 tuples.
In contrast to test 8 (see below), this jo in has big difference on M a x D B , but the difference
on H A N A database is not too big as shown i n Figure 6.9. Th i s test also confirms my
hypothesis, that column store is faster than row store.

Interesting i n this test is execution plan i n Figure 6.19. If you look into the detail ,
the ways how to execute one SELECT statement could be very different depending on the
storage technique. For row store, smaller table is scanned first w i th filter, then bigger table
is scanned, hash jo in (explained i n chapter 4.3) is applied wi th addi t ional filtering and the
result is aggregated. For column store, tables are scanned in the same order, then joined
and before aggregation addi t ional filtering is performed. In my opinion, it would be faster
to apply condit ion POPULATION > 3000 dur ing table ZMUCITY scan in second step and then
jo in filtered tables.

1 ooo

900

sec
7CC

500

500

i C C

300

2CC

c

• M a x D B Row[ms] • HDB R<_™[ms] • HDB Column[ms]

Figure 6.9: Results of Test 7.

38

6.3.8 Test 8

SELECT AVG(latitude)
FROM zmucity JOIN zmuposition
ON zmucity.id = zmuposition.id
WHERE population > 3000 AND
countrycode = 'CA' AND
countrycode = 'AZ'

In this case we ask for average lati tude of cities w i th populat ion over 3000 and country
code C A (Canada) and A Z (Azerbaijan).

In last test, I reached the biggest gap between M a x D B and H D B . This gap is obvious in
Figure 6.10 Execut ion t ime on H D B columns store is more than 280 times shorter then on
M a x D B . This query joins tables, bo th wi th 5,000,000 tuples, and filters values wi th three
conditions. F r o m this subset, average value is calculated.

Also in this test, the execution plans are very different. In a row store layout, table
ZMUCITY is scanned and filtered by conditions, then joined wi th table ZMUPOSITION and
average value is calculated at the end. In column store layout, tables change order, so
ZMUPOSITION is scanned first, then ZMUCITY is scanned and filtered, inner jo in is applied
and aggregation runs also at the end. In this case, first two steps can be executed in
parallel, but I think, that this is future for H D B , or it is already running in parallel, but
unfortunately, the execution plan does not contain this information.

• MaxDB Rowfrrs] "HDB Row[ms] • HDB CQlumn[ms]

Figure 6.10: Results of Test 8.

39

6.4 Tests summary

Summing up my measurements, it is really obvious, that M a x D B cannot compete wi th
H A N A . Mig ra t i on of storage into main memory provides much faster database, enabling
us to have one source of data for O L T P and O L A P operations and to execute them on the
fly. Th i s was the main reason, why prof. P la t tner started to th ink about a new concept of
database.

O n the other hand, the non-volatile storages are s t i l l needed and hard disks are gradually
replaced by solid state disks wi th faster access. Th is type of storage is used for database
backups and logging of recent changes. Unfortunately, it is not in my competence to test
how reliable is process of database recovery after fail , or after blackout which is described
in detai l i n chapter 3.6.2

In section I said, that only wi th change hard disk wi th main memory we can achieve
100,000 times faster access into database and my tests are not fulfill this. The ma in reason
is, that also M a x D B uses ma in memory to cache data. So, data is loaded into cache wi th
first test execution and then processed through the cache.

The last th ing I would like to mention, is that it is very difficult to decide, which type
of layout of data i n main memory is better. If I sum up results of my tests, column store
takes less space in memory and most of my tests run faster using the column store. Table
definition i n A B A P workbench offers developers both options, so the development team
w i l l always determine which storage type w i l l provide better table usage performance. The
default storage type for tables i n H A N A database is column store. I found official recom
mendation for S A P developers, stating which layout should be used i n which cases [3].

Reasons why a table should be in row store:

• Very huge O L T P load in the table (huge rate of single updates / inserts / deletes).

Reasons why a table must be i n column store:

• Tables wi th the new data types T E X T , S H O R T T E X T , A L P H A N U M must be in
column store because this functionality is not (yet) available in row store.

• Tables wi th fulltext index.

• Tables wi th many rows (more than mult iple 100,000) because of better compression
in a column store.

• Table is used i n analyt ical context and contains business relevant data.

6.5 Performance stability

A t the end of this chapter, I would like to mention one interesting thing. A s I wrote at
the beginning of this chapter, I performed ten measurements and then I calculated average
value. In chart shown i n Figure 6.11, ind iv idua l values can be seen from insertion into
database and i n chart shown i n Figure 6.12 values of Test 4.

It is really obvious, that the lines of M a x D B (red) are not direct, but curved and for
H D B w i t h column layout (blue) of data the line is curved too. The reason of instable
M a x D B is its storage. This database uses hard disk to store data and durat ion of the
movement of its mechanical parts cannot be calculated. In contrast, the ma in memory

40

scan of H A N A database is undoubtedly deterministic and always wi th same durat ion. B u t ,
why the insertion into H D B s column store is also not stable when compared to H D B s row
store? I hope, that the answer is already known from section 6.2, but i f not, the answer is
dict ionary encoding.

HZ

41

6.6 Execution plans

This section contains execution test plans for each test. In each figure, first plan is for row
oriented tables and second one is for column oriented tables stored i n H D B .

-- ZMKirY. iD . Z H K H T . I W C . owciir .weHTRYCc«, o e K i T Y . n n u r i w ,
i r t i f in .ELEsaTKM, u i i c m . h f i M r m i i , M K i i i M t i e j e f i E i D

7«VE KU»

Exteutlwi Flui

OfciEcc r.bse

»U1MB STARCH • B C m C . I D , JMIKITTCT.1UW, IMDrmr.aMKTRItOMB,
aaciTYic.KiroLiiii*. ryonrsc.ELEviTiiif, j w c i n c - w i w r a i T E .
ZMDCITTC .TIMZZOWID (LUE MUmU.[LUIOH>

7.::.vy:r : ; ; : F : a u : i n c

Figure 6.13: Execut ion plans of Test 1.

Pix rumCH ? . : D , F . u n t u M , s .Ls s s inn t , c.mxr.. C.CMHBIQaDE, C . K J E C L M I M .
C.ElEVillOK, C.HODIrWE, C.TIXZOmiD

fPBTRM IKIOt .' ü o o i S U M ; _srs_TKEE_M_*ne«7e_*a_iP(;, IUDEX OXfDTTIOK: C I D • P.1D

UklLE SOUS

s o u ™ 9 E u c i C I D . P.LA1IIODE, P.LOMGiniGC, C.HIHZ, C.COOHTRICODE, C. POPOIMIOH,
CELEVATIOBT. C.KJDinAIC. C.IIffilOKEID <IME HilLiliLIUlTIOB!

WIK COHOITJOS: IIHHERt C I O - J.IB

(TCLTTMf TABLE

Figure 6.14: Execut ion plans of Test 2.

42

EKKUtlen PUB

ROM 5EAftCS a n c i n f . i a , raxnv.mra:, w i K m . M o m i i i c w f , a f f l tm.popou iKW,
Z M K I T Y . E l c r a T K M . ZHKlTI.X»ltVm, ZHtKlTt.TPCKVUD

n u n w m i T i t w : jwrcirr-OTTOnrcore - ' c v OR s n a T T . c o n n n c M i c - U t t t l

Ezccutlaa Plan

Operation D o d a u ; L-1 ^ r l n sue

C 0 U M 8 S L A K E I M J C I I Y C . I D , Z H D C I T Y C . K U Z , i w c m c . c o a r n i r c o « .
züpriiyr.?-:rjiAT:::;r ix<:::T,:T.LLrvxT::MJ ẑ riTYC.Kiiin«::,
IKKIIYC.riHEZMIID <UII MTEMXLI EU ICH)

rilTER W B M I B f l : i l 'AS . ID | « m t « K] 1 EKVCITlfCCCnniü'CCK - ' C A ' ZHDCTTYC

Figure 6.15: Execut ion plans of Test 3.

EKtcutlen P:a=i

EH* SEJkKB e.ie, e .Kua, J . I M I T O D E . r .Losairot t

c f a i a t i i m c c TOW I K W X K H K : _ M J _ 1 K t _ R 3 _ « « i e w _ # 5 _ t f « , IRBGC CWDITIOW: 7.10 - C I D M C I H

3CAS ntTEB CWBITIOK: P .LÄI I IUDC >- ' 2 9 ' H<3 P.LffllC-ITKC >- ' J J ' AHD

Execution m s

If.:.:: r.f WJtCT._ri*=*

C. ID R C.:iAKZJ F . l A 7 I 7 L ~ E r P. UQttGITTJÜE |LMT£ 3 M E R I A I i tAIlCS]

M l K W ! : J I P S : HIBHEIH C I O - T . I B

count) -.isiz

c a u s a TABLE n i n e , c i i is i i ios i : I . L M I M K >- 's«' UID SMJSHSITOW >- I M : SDHSSITlOtt?
P . 1 A T I I Ü K • : - 'W W D ? - 1 0 S 5 I I T O <- " M "

Figure 6.16: Execut ion plans of Test 4.

eptMtion. OPT IdDi
KOfi SLftRCE

fcSGftZGÄTIOK: SOmMrKMniÜä.lAlITOK]

EKCU -L ion Finn

Cperatlaa CptiODO Cbjtct a u c

C 3 U M 3 SURJCF! ^^EHrKä lTIONC.UI in rKr [LUE HATERIALIUlI OS]

AMREGATICKt SOX l ZKCWaniOBC. LATinmt^

CCLQMH 7 M L £ awiosiTicnc

Figure 6.17: Execut ion plans of Test 5.

43

Execution Pl ia

ESi 5 [ARCH HTO(7S_MfIHU,(flfi)Cirii.P0njLkII(BtH

SuMIMMS: IrfKITlf .KKIlATKM, ißSBtfiiTIflHi
»vi; (TO.WCIMIU. «zwreirr. fapjuwiuwh)

D H C r i l l « M s t i n « : a e f m . » r a i A i i f i t i > JOOO

CKCULlQr. Plan

äperat lan Stnect U K

SEJUKH jLVSLia_HKMMkL[U(IKITVf.nF3UTI01lh] «LUE KAlER:AlIEiT::K)

C M a W > äHOClTUC.MmMlOfi. AGKUKAliSS:

ZClüWH TRE1£ rzITES zan i r io i r : z.TJCiTifC-poromriKt s Joes zr:z:-;:

Figure 6.18: Execution plans of Test 6.

I x e c t t t t » f l u

£peratlaD object none

HON t u n nmx.a i i l

M a n a m a) : smtT.tKi]
E1EH JDIB scii:<: SIJICT, ^::;r c::r::::::;: C.TIKEICWEID - 7 . T I M Z H I E I Z Ä ! "

(c, popouiioH > 3509 uro ' a 1 - i.cwimrcccK en - i.cwsniifcoiJC)

IJkiLE Sill] m m

IJkiLE SOU riLlER flSlilTiaH: l.cffljTfflUffiOE* - -CX- Oft T.«UlfrR¥«M - < « • iHnihtröits

iTtfflTTllHl I-.!:.

Open:

mW[I.OflJ <LME tBTDUJUJUIIOtl]

FILTER C.PSCTUTIStl > JC3C- Hfi) - T.C~JSTfV:;iE CH w -
i.«c5ftHY«iiniTA»_iB { t u u i r . E H n i t c i a c s c . c a n m t c o M])

-JOIN «IIS TOJTJITWS! (INÜERh C.TIHEäOHID - T.TIHtHWEID

I U I E aexrine

r : L T E J :c:r::r:::;: : ."\":r:? -i™c:i - n 'ZA'j ZE ii.czcirrR^ozrE - r.'ÄZ") ZKCrEIKEZCOTLSZ

Figure 6.19: Execution plans of Test 7.

44

Extern n i e
DJMlor'J

AVfitfS MClHillf .LAlIlnM]»
iSSRISÄT Ifti: (13_MCIh*L H P .LM lltJM] »

:-i-;is: iscex ::::: ::nac MÄHE: _ s r s _ i H : E : j u _ n n m « _ (|) _ » M . , L Ö T « C M M I I « ! cid - f.iD 2HDFQS1TICH

TS3LI K Ä S 7ILTER D O H P I T I C B ; C-?OmATI<J» > 3VW KtO C.COTKRTOODC - 'CT' « ;>r:::TV

EKKUti« H i n

i r r - - - - ' "• f e l o n s

i c o a r m i i o « : A\raiio_i*eiHikL[P.i>iirtmEM

» a JUIH CKOITICir: [IHKERJ C I S - F.ID

r : L T E i : : : ; : : r : : : r : i {-.POFJLXXIW > 3000] AHD ^ - C O T H T H V C D E C - a'CA"]> ; ^ : : : : v :
OH {COOOTTRTCOK -

Figure 6.20: Execut ion plans of Test 8.

45

C h a p t e r 7

Conclusion

S A P H A N A is undoubtedly a new technology that w i l l be used i n the future mainly due
to the spread between the customers of S A P . In my testing, I found that the difference
between the performance of S A P H A N A and M a x D B is very evident, but it is very good
for a potential customer to consider, whether it is really necessary for his /her need to
have such a powerful database. The S A P developers have a difficult task to optimize their
modular system to run on H A N A , because a poorly wri t ten code can increase the execution
time. To exploit the full potential , it is also imperative that developers understand the basic
principles of in memory database and uti l ize the gained knowledge dur ing the development
process.

I would like to apply the knowledge gained i n this thesis in my master thesis. M y
goal w i l l be to become familiar w i th the development tool S A P H A N A S T U D I O , based on
Eclipse and wi th S A P U I 5 library. Th is also requires to get knowledge on O D a t a service,
which provides data from database. To get pract ical experience w i t h these tools, I would
like to create an application, which needs to run wi th an in-memory database.

46

Bibliography

[1] Saplink. [online], 2010. D o s t u p n Ä S z: h t tps : / /www.code.google .eom/p/sapl ink/ . [cit.
06.03.2014].

[2] abap2xlsx. [online], 2012. D o s t u p n Ä S z: h t tp : / / ivanfemia .g i thub. io /abap2xlsx/ . [cit.
08.04.2014].

[3] R o w store vs. column store, [online], 2013. D o s t u p n Ä S z:
h t tps : / /wik i .wdf . sap .corp /wik i /d i sp lay /ngdb/Row+Store+vs .+Column+Store . [cit.
09.04.2014].

[4] Bjarne B E R G and S i lv ia P E N N Y . SAP HANA: An Introduction. S A P P R E S S , 2012.
I S B N 978-1-59229-434-3.

[5] Andre B Ö G E L S A C K , Stephan G R A D L , Manue l M A Y E R , and Helmut K R C M A R .
SAP MaxDB Administration. B o n n : Gal i leo Press, 2009. I S B N 978-1-59229-299-8.

[6] Franz F Ä R B E R , Sang K y u n C H A , J ü r g e n P R I M S C H , Chr is tof B O R N H Ö V D , Stefan
S I G G , and Wolfgang L E H N E R . Sap hana database. ACM SIGMOD Record, 40:45-51,
2012. D o s t u p n Ä S z: http:/ /dl .acm.org/citation.cfm?doid=2094114.2094126.

[7] Michae l K I F E R , A r t h u r B E R N S T E I N , and P h i l i p M . L E W I S . Database Systems.
Boston: Addison-Wesley, 2005. I S B N 03-212-6845-8.

[8] Hasso P L A T T N E R . A Course in In-Memory Data Management. Springer, 2013.
I S B N 978-3-642-36523-2.

[9] James W O O D . ABAP cookbook: programming recipes for everyday solutions. Boston:
Gali leo Press, 2010. I S B N 978-1-59229-326-1.

47

https://www.code.google.eom/p/saplink/
http://ivanfemia.github.io/abap2xlsx/
https://wiki.wdf.sap.corp/wiki/display/ngdb/Row+Store+vs.+Column+Store
http://dl.acm.org/citation.cfm?doid=2094114.2094126

A p p e n d i x A

Content of CD

• source - .NUGG files, to instal l applicat ion (reports, tables, table types) to system

— ZKU_RFCs - source codes of each R F C functions have to be installed manually

• thesis - source files for WFftKof this thesis

— img - figures

48

