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Abstrakt

Tato práce si stanovila dva ćıle. Prvńım je odvozeńı modifikované verze Biotova

systému parciálńıch diferenciálńıch rovnic pro oblast s redukovanou puklinou. Daľśım

z ćıl̊u je aproximace a numerické řešeńı tohoto modelu. Model je implemento-

vaný pomoćı softwarové knihovny FEniCS. Aplikaćı implementovaného modelu na

konkrétńı problém jsou vytvořeny dvě numerické simulace. Na základě výsledk̊u,

které poskytly tyto simulace, je posouzena funkčnost odvozeného modelu.

Kĺıčová slova: poroelasticita, hydraulické štěpeńı, diskretńı puklina, FEniCS,

numerické řešeńı, simulace
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Abstract

This work has two main objectives. The first one is connected to modified version

of Biot’s system of partial differential equations for reduced fracture domain. The

other one is approximation and numerical solution of this model. The model is

implemented through the FEniCS software library. Two numerical simulations are

made by application of the implemented model to a specific problem. The model

functionality has been evaluated on the base of results obtained by the simulations.

Key words: poroelasticity, hydraulic fracturing, discrete fracture, FEniCS, nu-

merical solution, simulation
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Poděkováńı v

Abstrakt vi

Abstract vii

List of Figures ix

List of Symbols x

1 Introduction 1
1.1 Hydraulic fracturing . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Biot poroelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Bibliography review . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Biot model 8
2.1 Reduced model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Weak form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Numerical solution 25
3.1 Time and space discretization . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Space discretization . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Time discretization . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 FEniCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Summary 41

Bibliography 43

Appendix 44

viii



List of Figures

1.1 Hot Dry Rock scheme. . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 The domain Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Conforming meshing, (Left): Two-dimensional domain Ω with a

simplex mesh. (Right):The one-dimensional reducted fracture γ is

meshed with the line segments. . . . . . . . . . . . . . . . . . . . . . 26

3.2 The components of FEniCS. . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Geometry of computational domain. . . . . . . . . . . . . . . . . . . 33

3.4 (Left):Boundary conditions (Dirichlet), (Right): Meshed domain for

Simulation 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 (Left):Boundary conditions (Dirichlet), (Right): Meshed domain for

Simulation 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Pressure field progress in time t = 50∆t, 200∆t. . . . . . . . . . . . 37

3.7 Pressure field progress in time t = 300∆t, 500∆t. . . . . . . . . . . . 38

3.8 Displacement field progress in time t = 50∆t, 200∆t.. . . . . . . . . 39

3.9 Displacement field progress in time t = 300∆t, 500∆t.. . . . . . . . . 40

ix



List of Symbols

A general tensor of anisotropy

C elasticity tensor

d fracture width

f, F source

g gravitional constant

g, G source

I identity tensor

K hydraulic conductivity

N number of time steps

n normal vector

p pressure

P average pressure in fracture

q Darcy flux

S specific storage coefficient

u displacement

U average displacement in fracture

α Biot coefficient

Γ domain boundary

x



γ reduced fracture domain

∆t time step

ε strain tensor

κ permeability
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Chapter 1

Introduction

In present days, when the reserves of fossil fuels are decreasing and pollution of

enviroment influents human health, the demands for alternative energy sources is

rising. One of such source is the deep geothermal energy exploited in so-called

Hot Dry Rock (HDR) systems. The construction as well as operation of HDR is

a challenging task. In this work we focus on mathematical modelling of hydraulic

fracturing, a process largely influencing the performance of HDR systems.

This work consists of three chapters. In the first one, we list a couple of industry

applications where hydro-mechanical interaction in porous media (poroelasticity)

takes place. We also describe the Biot system of poroelasticity which will be used

in this work. We mention a few publications, which are related to for this work.

The second chapter is the essential part of this work, here we modify the original

Biot equations for the case when the physical domain contains a thin fracture. In

this chapter, we also derive variational formulation of our model.

The last chapter focuses on the numerical solution of our model. We use the Fi-

nite element method together with the implicit Euler timestepping for the approx-

imation. Our model is implemeted by help software library FEniCS. We compute

numerical simulations for two cases. The geometry, initial and boudary condi-

tions are common for both of simulations. A single difference betweem them is in

meshing. At the end of the chapter we comment on the parameters which have

important impact to quality of simulations.
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1.1 Hydraulic fracturing

We would like to describe the creation and expansion of fractures during the process

of hydraulic fracturing. It is very important to control composed fractures because

of possible cracks into adjacent layers which can contain water. The hydraulic

fracturing technique is being used e.g. in extraction of minaral oils. The oil can

contaminate drinking water resources and mixture of oil and water is extremly hard

to separate. It means that this technique can have potential harmful consequences

on the environment. The method of hydraulic fracturing is not new. The first

hydraulic fracturing experiment was performed in 1947 at the Hugoton gas field

in Grant County of southwestern Kansas. Till 1970s, water-based fluids were not

typically used as a fracturing fluid. Nowadays, the term hydraulic fracturing is

usually connected only to the process of fracturing rock formation with water-

based fluid.

A hydraulic fracture is formed by pumping the fracturing fluid under high

pressure into a wellbore. If fluid pressure rate overcomes the rock strenght then

fluid helps to open or enlarge fracture in the geological formation. The fracture

fluid has to contain proppend, which is an additional grainy material such as sand.

Its function is to keep fracture from closing when pumping pressure releases. After

that, the fracture fluid is drained back to the surface. Fractures of different width,

lenght and direction can occur in geological formation but only certain types of

fractures are suitable for particular industry applications. Driving of hydraulic

fracturing is a complex problem with many unknowns. It is possible to partly

influent cracking into only one type or direction. This selection is made by changes

of pressure or a kind of the fracture fluid.

In the past, the main application of hydraulic fracturing was fracking. It is

an unconventional method of oil extraction. Nowadays, hydraulic fracturing is

used not only in oil and gas industry, but also in a number of other applications,

such as injection of liquid nuclear waste into deep geological formation for isolation

and disposal, using water or CO2 as injection fluid to create fracture to circulate

water in enhanced geothermal system (HDR), creating horizontal fracture as a

means of enhancing pump-and-treat, soil vapor extraction, and in situ enviromental

remediation in shallow soil, for pollutants such as heavy metals and hydrocarbon

waste or spills and stimulating groundwater production by connecting naturally

occuring fractures in rock formation [10].
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Figure 1.1: Hot Dry Rock scheme.

The hydraulic fracturing technique now takes a different aim - instead of cre-

ating a single, large fracture from a vertical well, it aims at the creation of a large

number of shorter, closely spaced and interconnecting fractures from a horizontal

well. The technique allows the production from the unconventional reservoir such

as shale gas formation, also known as tight gas reservoir. ”Tight” means very low

permeability such that production using conventional technique is not economically

feasible. The fracking technology opens the door for production of the vast reserve

of shale gas and shale oil, thus extending the world’s energy prospect. The practice

of fracking, however is controversial as it creates many environmental concerns [10].

The main motivation for creation of this work is to improve the hydraulic frac-

turing process for better utilization of geothermal energy by HDR technique. In

present days, hydrothermal technology Hot Wet Rock (HWR) is being widely used.

HWR technique operates with a hot water found naturally in the bed-rock. Disad-

vatage of this technology is its geographically limited application. There are only

a few places where the water is in the reachable depth and it is possible to use

HWR.

In opposition, many dry places exist in terrestrial crust, which are reachable

by drilling, and acumulate a huge amount of heat. These places can be used

for HDR. The principle of HDR is pumping of a cool water under high pressure

through a well into the deep fracture reservoir, where the cool water is heated above
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boiling temperature (see Figure 1.1). After that the hot water is taken back to the

surface throughout another well to flash to steam in an electricity generating plant.

Commonly it is necessary to create a much more extensive fracture system like it

is usually created naturally. Also, we have another demands for fracture reservoir,

such as vastness. It is very important to create connected network of fractures.

These artificial fracures are made by hydraulic fracturing technique.

1.2 Biot poroelasticity

Our model of hydro-mechanical interactions will be based on Biot’s theory of poroe-

lasticity. In 1941, Belgian-American applied physicist Maurice Anthony Biot intro-

duced a first general 3-dimensional theory of elastic deformation in saturated solid

medium [3]. It was a great progress from earlier Terzaghi theory [16] that operated

with the assumption of incompressible constituents. But the new Biot’s theory

still had some restrictions, since it was derived only for the isotropic case. During

1950s, Biot extended his original theory to general anisotropic case [4] (1955) and

also derived an equation for dynamic response of porous media [5] (1956). The

linear theory introduced by Biot was modified in 1969 by Verruijt. He made the

theory more suitable for using in solid mechanics problems [17]. Until thtr year

1973, all Biot’s theories had been operating with assumption of linear elasticity. In

that time, Biot again made his theory more complex and general. He integrated a

possibility of non-linear elasticity [6].

We consider a medium that consists of solid skeleton hereafter called matrix

and of pore fluid. Change of the whole domain depends on matrix deformation and

fluid behaviour. We assume that the liquid phase is incompressible and the solid

phase is compressible in our model. The theory is connecting two physical laws.

The first one is the semi-empiric Darcy law for fluid flow in porous medium:

q = −κ
µ
∇p, (1.1)

where κ is a permeability of medium, viscosity is defined by µ, p refers to total

pressure drop (from atmospheric pressure). Vector q is called Darcy flux or Darcy

velocity and describes discharge per unit area. In later application there will be
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permeability κ substituted by hydraulic conductivity defined as:

K =
κρg

µ
A

where A is a general tensor of anisotropy, ρ is the density of the fluid and g is the

gravitational constant. The second material law included in Biot’s theory is the

Hook law of linear elasticity :

σ = Cε, (1.2)

where σ is a second order stress tensor, ε refers to second order strain tensor and

C is a fourth order elasticity tensor also called stiffness tensor.

Biot’s theory gets out of the presumption of an internal stress decomposition for

saturated porous medium. The whole internal stress can be divided into two parts.

One part causes deformation of matrix, this behaviour describes the equation of

balance of forces in rock:

−∇ · σ + α∇p = g, (1.3)

where −∇·σ represents internal pressure, which is well known as an effective stress.

The pore pressure is involved in the expression α∇p and g refers to a volume force.

The second part causes the change of pore-pressure and it subsequently activates

fluid flow. The fluid behaviour is defined by the law of conservation of mass in

fluid:

∂t(Sp+ α∇ · u)−∇ · q = f, (1.4)

where the first term is the temporal increment of the fluid content, the changes of

Darcy flux are decribed by ∇ ·q and f is a volume source. The PDE system (1.3),

(1.4) with the constiitutive relations (1.1), (1.2) is called the Biot system.

1.3 Bibliography review

Many specialized publications have been dedicated to modeling of flow in a porous

material with fractures in last decade. [13] is one of the most cited articles. Model

domain introduced in that paper is composed of two subdomains which are sep-

areted by an interface. The authors use the fact that fractures have in general
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negligible its width in comparison with their lenght. Computational domain is

made of two bulk spaces with the difference in permeability and the fracture which

is treated as interface between these bulk spaces. The authors show that it is possi-

ble to derive the Darcy equation separately for each of subdomains and sequatially

couple them by appropriate boundary conditions. The boundary conditions for

fracture interface are defined with the help of the normal part of vector unknowns

from equations for bulk spaces. The vector unknowns are divided into normal and

tangential part for this reason.

Elder simulation needed to redefine mesh for every change in computational

domain e.g. when a fracture was spreading. In modern numerical modeling of

crack growth processes, the eXtended Finite Element Method (XFEM) is often used,

which enriches the discrete function spaces by the functions locally reproducing the

discontinuity along the fracture and the stress singularities at the crack tip. XFEM

overcomes the need to adapt the mesh to the discontinuities and singularities of

the solution. In the article [11], the authors work with a model domain which

consists of porous medium with single fracture subdomain. The fracture does not

have to proceed through the whole domain, fracture start and tip can be within

the domain. Equations for bulk and fracture domain are coupled by the equality

of pressures on the boundary between them and by continuity of normal fluxes

through this boundary. Presented numerical solution is a combination of XFEM

for matrix (skeleton) changes and lower dimensional finite elements for fluid flow.

Ruijie Liu in his disertation thesis [12] focused on the derivation of Discontin-

uous Galerkin method for poroelasticity problem and on the comparison of Con-

tinue Galerkin (CG) and Discontinuous Galerkin (DG) finite element method for

poromechanics, elastic and poroelastic problem. Majority of current available com-

mercial programs solve these problems by CG FEM. But in solutions given by these

programs nonphysical oscillations can occur in low permeability zones. CG also is

not able to correctly simulate problems, where discontinuity jumps are in pressure

or temperature field. Because CG always gives a smooth solution. Liu studied

stability analysis of CG for poroelastic problem. The author tried to abolish this

numerical problem with help of DG FEM. Local mass and momentum conservation

are also added to DG. This properties can be key for elimination of the oscilations

and correct simulation of the jumps in fields.

Our work is mainly motivated by these theree publications. We use similar

reduction of fracture like is present in [13] and [11]. But we extend the theory

6



presented in [13] also to elasticity. Our model is also distinguished from Hanowski

and Sander’s model, we do not use XFEM and we also use only linear model, but

we solve the nonstationary problem.
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Chapter 2

Biot model

2.1 Reduced model

For the modelling of hydro-mechanical interaction in porous media we will use the

Biot system:

∂t(Sp+ α∇ · u)−∇ · (K∇p) = f in (0, T )× Ω, (2.1)

−∇.(Cε(u)− αpI) = g in (0, T )× Ω. (2.2)

Here Ω is a bounded domain in Rn, n = 2 or 3 and (0, T ) is a finite time interval.

Symbols u, p are the unknown displacement and pressure, respectively, S is the

specific storage coefficient (inverse of the Biot modulus M), α stands for the Biot

coefficient, K is the tensor of hydraulic conductivity, C is the fourth-order elastic

tensor, I denotes the unit second-order tensor and f , g is the source and body force,

respectively. The symbol ε(u) stands for the symmetric part of the displacement

gradient:

εkl(u) :=
1

2

[
∂uk
∂xl

+
∂ul
∂xk

]
.

On the external boundary we shall assume for simplicity the homogeneous Dirichlet

conditions:

p = 0 on (0, T )× ∂Ω,

u = 0 on (0, T )× ∂Ω.
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Ω1
Ω2

γ

Γ1

Γ2

n=n1=−n2
n2

d

γ 1

γ 2

Figure 2.1: The domain Ω.

For completeness, we also need the initial condition for the pressure

p (0, ·) = p0 in Ω.

Equations (2.1) and (2.2) describe the flow and linear elasticity in a saturated

porous medium. In what follows, we will adapt (1)-(2) to a domain containing

a fracture. We will therefore assume that the domain Ω, where Biot’s model is

considered, can be divided into 3 parts (see Figure 2.1):

Ω = Ω1 ∪ Ω2 ∪ Ωf . (2.3)

The symbol Ωf denotes the fracture which separates two subdomains Ω1 and Ω2.

We shall further assume that the fracture can be written as follows:

Ωf =
{
x+ an; a ∈ (−d/2, d/2), x ∈ γ

}
,

where γ is a (n−1)-dimensional manifold representing the center of the fracture, n

is the unit normal vector to γ pointing from Ω1 to Ω2 and d denotes the cross-section

of the fracture. We define the lateral boundaries γ1, γ2 of the domain Ωf :

γi = ∂Ωi ∩ ∂Ωf .
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To distinguish between the functions defined in Ω1, Ω2, Ωf , we shall use the no-

tation ui := u|Ωi
, pi := p|Ωi

, i = 1, 2, f. The boundary conditions, which decribe

pressure and displacement on γi are the following ones:

pi = pf ,
(
K∇pi · n

)
|Ωi

=
(
K∇pf · n

)
|Ωf
, (0, T )× γi, i = 1, 2,

ui = uf ,
(
Cε(ui)n− αpin

)
|Ωi

=
(
Cε(uf )n− αpfn

)
|Ωf
, (0, T )× γi, i = 1, 2,

(2.4)

We will consider a few assumptions for our model parameters. The first of our

assumptions is that hydraulic tensor K, parameters α, S and the elastic tensor C
are constant in the bulk spaces Ω1, Ω2. All of these model parameters are also

constant in the fracture domain Ωf but its numeric value is different from the

bulk domain. We will use notation Kf , Sf , αf ,Cf for restriction of parameters on

fracture domain (for example Kf = K|Ωf
). The second assumption is that tensor

Kf is possible to divide into normal and tangential part Kf = k (n⊗n) +Kf

(
I−

n⊗n
)
. Finally, we assume that the fracture is filled by an isotropic elastic medium

i.e.:

Cfε(uf ) = 2µfε(uf ) + λf tr(ε(uf ))I = 2µfε(uf ) + λf (∇ · uf )I. (2.5)

Following the approach of [Martin et al. (2005)], we will replace the thin domain

Ωf by γ and derive a modified system of equations for the averaged displacement

and pressure in γ.In Ωf , equation (2.1) reads:

∂t(Sfpf + αf∇ · uf )︸ ︷︷ ︸
A

−∇ · (Kf∇pf )︸ ︷︷ ︸
B

= f︸︷︷︸
C

. (2.6)

We start by integrating (2.6) across the fracture. For x ∈ γ we define∫ d
2

− d
2

a(x)dn :=
∫ d

2

− d
2

a(x + tn)dt. Let vn := (v · n)n, vτ := v − vn denote the

normal and tangential part of a vector v, respectively. For a tensor A we define

An := A(n ⊗ n) and Aτ := A − An. Also, we define the tangential and normal

10



divergence and gradient as follows:

∇τ · v := ∇ · vτ ,

∇n · v := ∇ · vn,

∇τq := (∇q)τ ,

∇nq := (∇q)n
∇τv := (∇v)τ ,

∇nv := (∇v)n,

∇n · A := ∇ ·
(
(n⊗ n)A

)
=
(
∇(ATn)

)
n,

∇τ · A := ∇ · A−∇n · A.

Splitting the divergence ∇ · uf into the tangential and normal part,

∇ · uf = ∇τ · uf +∇n · uf , (2.7)

and integrating A across the fracture we obtain:

∫ d
2

− d
2

Adn =

∫ d
2

− d
2

Sfpf + αf (∇τ · uf +∇n · uf )dn

= Sf

∫ d
2

− d
2

pfdn+ αf

∫ d
2

− d
2

∇τ · ufdn+ αf

∫ d
2

− d
2

∇n · ufdn.

The integral
∫ d

2

− d
2

∇n · ufdn can be expressed as follows:

∫ d
2

− d
2

∇n · uf = (uf,n|γ2 − uf,n|γ1) · n = (u2|γ2 − u1|γ1) · n (2.8)

and hence we get:

∫ d
2

− d
2

Adn = Sf

∫ d
2

− d
2

pfdn+ αf∇τ ·
∫ d

2

− d
2

uf,τdn+ αf (u2|γ2 − u1|γ1) · n

= SfdP + αfd∇τ ·U + αf (u2|γ2 − u1|γ1) · n,
(2.9)

where

U :=
1

d

∫ d
2

− d
2

ufdn and P :=
1

d

∫ d
2

− d
2

pfdn,
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represent the average displacement and the average pressure in the fracture. Our

next step is to integrate B:

∫ d
2

− d
2

Bdn = −∇ ·
∫ d

2

− d
2

Kf (∇τpf +∇npf )dn

= −∇ ·

(
Kf,τ

∫ d
2

− d
2

∇τpfdn+ Kf,n(pf,n|γ2 − pf,n|γ1)

)
,

where pf,n := pfn is the normal part of pressure vector in the fracture. Using P ,

we can rewrite the last expression into the form

∫ d
2

− d
2

Bdn = −∇ ·

(
d Kf,τ∇τP −Kf,n(pf,n|γ2 − pf,n|γ1)

)
. (2.10)

In (2.10), we will use an approximation of the pressure gradient on the borders

of the fracture, which represents the flow between surrounding and the fracture

through the borders. Expressions with pressure gradient will be approximated as

follows:

∇n · (Kf,n pf |γ2n) ≈ Kfn · n︸ ︷︷ ︸
k

p2|γ2 − P
d
2

,

∇n · (Kf,n pf |γ1n) ≈ Kfn · n︸ ︷︷ ︸
k

P − p1|γ1
d
2

.

(2.11)

Consequently,

∫ d
2

− d
2

Bdn = −k
(p2 − P

d
2

− P − p1

d
2

)
−∇ · d Kf,τ∇τP. (2.12)

The last part of equation (2.6) is on the right side. Introducing F := 1
d

∫ d
2

− d
2

fdn

we obtain: ∫ d
2

− d
2

Cdn =

∫ d
2

− d
2

fdn = d F. (2.13)

After joining expressions (2.9), (2.12) and (2.13) we get the averaged Darcy equa-
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tion in γ:

∂t

[
Sf d P + αf d ∇τ ·U + αf

(
u2|γ2 − u1|γ1

)
· n

]
− ...

...− k
(p2 − P

d
2

− P − p1

d
2

)
−∇τ ·

(
d Kf,τ∇τP

)
= F d,

(2.14)

which, after rearrangement, has the final form:

d

(
∂t

[
Sf P + αf∇τ ·U

]
−∇τ · (Kf,τ∇τP )

)
+ ...

...+ αf∂t(u2|γ2 − u1|γ1) · n−
2∑
i=1

2

d
k (pi|γi − P ) = F d.

(2.15)

Now, move our attention on the second equation (2.2) from the Biot’s model

−∇ · (Cfε(uf )− αfpfI) = g in (0, T )× Ωf . (2.16)

Here, multiplication of elasticity tensor C and deformation tensor ε is defined by

the expression (2.5). When we use (2.5) in the equation (2.16) then we get:

−∇ ·
(
2µfε(uf )

)
−∇(λf∇ · uf ) +∇(αf pf ) = g. (2.17)

Again, we divide the divergence and the gradient into the normal and tangential

direction. We also start by integrating (2.17) across the fracture.

∫ d
2

− d
2

−(∇n ·+∇τ ·)
(
2µfε(uf )

)
dn−

∫ d
2

− d
2

(∇n +∇τ )(λf tr(ε(uf ))− αfpf )dn =

∫ d
2

− d
2

gdn.

(2.18)

For better orietation we will divide the equation into several terms which will be

13



treted separately.

−
∫ d

2

− d
2

∇n ·
(
2µfε(uf )

)
dn︸ ︷︷ ︸

A1

−
∫ d

2

− d
2

∇τ ·
(
2µfε(uf )

)
dn︸ ︷︷ ︸

A2

−
∫ d

2

− d
2

∇τ
(
λf tr(ε(uf )− αfpf

)
dn︸ ︷︷ ︸

B1

−
∫ d

2

− d
2

∇n
(
λf tr(ε(uf )− αfpf

)
dn︸ ︷︷ ︸

B2

=

∫ d
2

− d
2

gdn.

(2.19)

After using definition of deformation tensor εkl, the identity tr(ε(uf )) = ∇ · uf
and also assumption λf = constant, in the equation (2.19) we obtain:

B1 =

∫ d
2

− d
2

∇τ

(
λf∇ · uf − αfpf

)
dn

=

∫ d
2

− d
2

∇τ
(
λf∇ · uf

)
− αf∇τpf dn

= λf

∫ d
2

− d
2

∇τ (∇τ ·+∇n·)ufdn− αf∇τ
(∫ d

2

− d
2

pf dn
)
.

In this equation we again use (2.8) and replace integrals by P and U :

B1 = λf

∫ d
2

− d
2

∇τ
(
∇τ · uf

)
dn+ λf

∫ d
2

− d
2

∇τ
(
∇n · uf

)
dn− αfd∇τP

= λfd∇τ
(
∇τ ·U

)
+ λf∇τ

(
(u2|γ2 − u1|γ1) · n

)
− αfd∇τP.

(2.20)

We continue with part B2:

B2 =

∫ d
2

− d
2

∇n
(
λf tr(ε(uf ))− αfpf

)
dn

= λf

∫ d
2

− d
2

∇n
(
∇ · uf

)
dn+ αf

∫ d
2

− d
2

∇npfdn

= λf

∫ d
2

− d
2

∇n(∇ · uf )dn− αf (p2|γ2 − p1|γ1)

= λf (∇ · uf |γ2 −∇ · uf |γ1)n− αf (p2|γ2 − p1|γ1)

= λf (∇n · uf |γ2 −∇n · uf |γ1)n+ λf
(
∇τ · (u2|γ2 − u1|γ1)

)
n− αf (p2|γ2 − p1|γ1),
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where we have to approximate parts with divergence of displacement in normal

direction:

∇n · uf |γ2 ≈
(u2|γ2 −U) · n

d
2

,

∇n · uf |γ1 ≈
(U − u1|γ1) · n

d
2

.

After substitution of the approximations we obtain the final form of B2 part:

B2 ≈λf

(
(u2|γ2 −U) · n

d
2

− (U − u1|γ1) · n
d
2

)
n+ ...

...+ λf

(
∇τ · (u2|γ2 − u1|γ1)

)
n− αf (p2n|γ2 − p1n|γ1).

(2.21)

Now we can focus on A1:

A1 = 2µ

∫ d
2

− d
2

∇n · ε(uf )dn

= 2µ

∫ d
2

− d
2

∂

∂x

〈
∂ux
∂x

,
1

2

(∂ux
∂y

+
∂uy
∂x

)
,
1

2

(∂ux
∂z

+
∂uz
∂x

)〉
dn.

(2.22)

In the last equation we rewrote ∇n · ε(uf ) by the components, assuming that

n =
〈
1, 0, 0

〉
. Now we can divide the vector into part with ∂x and without it:

A1 = 2µ

∫ d
2

− d
2

∂

∂x

(
1

2

∂uf
∂x

+
1

2

〈∂ux
∂x

, 0, 0
〉

+
〈

0,
1

2

∂ux
∂y

,
1

2

∂ux
∂z

〉)
dn

= 2µ

∫ d
2

− d
2

∂

∂x

(
1

2
∇nuf +

1

2
(∇n · uf )n+

1

2
∇τ (uf · n)

)
dn

This division is important because differentation in ”x − axis” direction is not

defined in γ. We can use the same approximation of parts with normal divergence

and normal gradient like in the case of B2. Expressions with tangential divergence
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we just integrate.

A1 ≈ 2µf

(
1

2

u2|γ2 −U
d
2

− 1

2

U − u1|γ1
d
2

+
1

2

(u2,n|γ2 −Un)
d
2

− 1

2

(Un − u1,n|γ1)
d
2

+ ...

...+∇τ u2|γ2 · n
2

−∇τ u1|γ1 · n
2

)

We already obtain the final form of A1:

A1 ≈ µf
2

d

(
(u2|γ2 −U)− (U − u1|γ1)+(u2,n|γ2 −Un)− (Un − u1,n|γ1) + ...

...+
d

2
(∇τu2|γ2 · n)− d

2
(∇τu1|γ1 · n)

)
.

(2.23)

We now begin with A2:

A2 = 2µf

∫ d
2

− d
2

∇τ · ε(uf )dn

= 2µf

∫ d
2

− d
2

∇τ ·
(∇τuf + (∇τuf )

T

2
+
∇nuf + (∇nuf )

T

2

)
dn

= 2µf
∇τ ·
2

∫ d
2

− d
2

∇τuf + (∇τuf )
Tdn+ 2µf

∇τ ·
2

∫ d
2

− d
2

∇nuf + (∇nuf )
Tdn

= µf∇τ · d∇τU τ + µf∇τ · d(∇τU τ )
T + µf∇τ ·

∫ d
2

− d
2

∇nuf + (∇nuf )
Tdn

= µf∇τ · d∇τU τ + µf∇τ · d(∇τU τ )
T + µf∇τ ·

(
(u2|γ2 − u1|γ1)⊗ n

)
+ ...

...+ µf

∫ d
2

− d
2

∇τ · (∇nuf )
T︸ ︷︷ ︸

= 0

dn,

so that

A2 = µf∇τ · d∇τU τ + µf∇τ · d(∇τU τ )
T + µf

(
∇τ · (u2|γ2 − u1|γ1)

)
n. (2.24)

Finally, we complete approximation of the second equation from Biot’s model (2.16)

for the fracture domain. The transformed equation is composed from parts (2.23),
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(2.24), (2.20), (2.21) and its final shape is:

− λf
(
∇τ (u2|γ2 − u1|γ1) · ni

)
−∇τ · 2dµfετ (U τ )− ...

...− µf
(
∇τ · (u2|γ2 − u1|γ1)ni

)
− λfd∇τ

(
∇τ ·U

)
+ αfd∇τP +

2∑
i=1

Qi = Gd,

(2.25)

where

ετ (U τ ) : =
∇τU τ + (∇τU τ )

T

2
, (2.26a)

G : =
1

d

∫ d
2

− d
2

g, (2.26b)

Qi : = µf
2

d

(
χi + χi,n

)
+ µf (∇τ (ui · ni)) + ...

...+ λf
2

d
(χi · ni)ni + λf (∇τ · ui)ni − αf (pini),

(2.26c)

χi : = (U − ui|γi),

χi,n : = (Un − ui,n|γi) i = 1, 2.
(2.26d)

It remains to replace the interface condition (2.4) in terms of P and U . Similary

as in (2.11) one can write:

K∇pi · ni ≈ k
P − pi|γi
d/2

:= Qi on (0, T )× γi, i = 1, 2, (2.27)

where ni denotes the normal vector on ∂Ωi pointing out of Ωi. The conditions for

the poroelastic stress read:

Cε(ui)ni − αpini ≈ Qi on γi i = 1, 2. (2.28)

We can write our approximated Biot’s system together with all boundary condi-

tions. Our system contains the following equations for the unknows (p1, p2, P,u1,u2,U):

∂t(Spi + α∇ · ui)−∇ · (K∇pi) = f in (0, T )× Ωi, i = 1, 2 (2.29a)

−∇.(Cε(ui)− αpiI) = g in (0, T )× Ωi, i = 1, 2 (2.29b)

17



d

(
∂t

[
S P + αf∇τ ·U

]
−∇τ · (Kf,τ∇τP )

)
+ ...

...+ αf∂t(u2|γ2 − u1|γ1) · n+
2∑
i=1

Qi = Fd in (0, T )× γ
(2.29c)

− λf∇τ
(
(u2|γ2 − u1|γ1) · n

)
−∇τ · 2dµfετ (U τ )− ...

...− µf
(
∇τ · (u2|γ2 − u1|γ1)

)
n− λfd∇τ

(
∇τ ·U

)
+ αfd∇τP + ...

...+
2∑
i=1

Qi = Gd in (0, T )× γ.

(2.29d)

Let us denote:

Γi := ∂Ωi ∩ ∂Ω, i = 1, 2.

Then we also consider the boundary conditions

pi = 0, ui = 0 on (0, T )× Γi, (2.29e)

P = 0, U = 0 on (0, T )× ∂γ (2.29f)

Cε(ui)ni − αpini = Qi on (0, T )× γi i = 1, 2, (2.29g)

K∇pi · ni = Qi on (0, T )× γi, i = 1, 2, (2.29h)

and the initial conditions

pi(0, .) = p0 in Ωi, i = 1, 2, (2.29i)

P (0, .) = P0 :=
1

d

∫ d
2

− d
2

p0dn in γ. (2.29j)

2.2 Weak form

We need to find the weak form of our system (2.29) which will be useful for later

numeric simulation. Our approximated system contains couple of equations, we

derive weak formulation separately for each of equations. Let us define the spaces:

H1
Γi

(Ωi) := {w ∈ H1(Ωi); w|Γi
= 0}, i = 1, 2,

H1
0 (γ) := {wf ∈ H1(γ); wf |∂γ = 0},

(2.30)
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where H1(M) stands for Sobolev space on domain M . We define the space V:

V := H1
Γ1

(Ω1)×H1
Γ2

(Ω2)×H1
0 (γ)× (H1

Γ1
(Ω1))n × (H1

Γ2
(Ω2))n × (H1

0 (γ))n. (2.31)

The weak solution of (2.29) is the sextuple (p1, p2, P,u1,u2,U) ∈ C1
(
[0, T ];V

)
,

continuosly differentiable in time with values in V, and satisfying the equations,

initial and boundary conditions in a weak sense. In what follows we derive the

appropriate linear and bilinear forms. We start with finding a weak form of Darcy’s

equation (2.29a) for the bulk spaces Ω1, Ω2. We multiply the equations by scalar

test functions wi ∈ H1
Γi

(Ωi), integrate and sum:

2∑
i=1

∫
Ωi

∂t(S pi + α∇ · ui)wi −
2∑
i=1

∫
Ωi

(
∇ · (Ki∇pi)

)
wi =

2∑
i=1

∫
Ωi

fiwi.

Applying the Green theorem to the second term we obtain:

2∑
i=1

∂t

∫
Ωi

(S pi + α∇ · ui)wi −
2∑
i=1

∫
∂Ωi

(
(Ki∇pi) · ni

)
wi + ...

...+
2∑
i=1

∫
Ωi

(Ki∇pi) · ∇wi =
2∑
i=1

∫
Ωi

fiwi.

(2.32)

We need to divide boundary of bulk spaces ∂Ω into four parts. The whole boundary

consists of exterior boundaries Γ1, Γ2 and the fracture boundaries γ1, γ2. Then

the boundary integral in (2.32) can be rewritten as follows:

2∑
i=1

∫
∂Ωi

(
(Ki∇pi) · ni

)
wi =

2∑
i=1

∫
Γi

(
(Ki∇pi) · ni

)
wi +

2∑
i=1

∫
γi

(
(Ki∇pi) · ni

)
wi.

On the exterior boundaries we have defined zero Dirichlet condition, then parts

which are integrated along Γ1, Γ2 can be skipped. The term on γi is replaced from

(2.29h), hence (2.32) becomes:

2∑
i=1

∂t

∫
Ωi

(S pi + α∇ · ui)wi −
2∑
i=1

∫
γi

Qiwi +
2∑
i=1

∫
Ωi

(Ki∇pi) · ∇wi =
2∑
i=1

∫
Ωi

fiwi,

(2.33)
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where Qi := Qi(pi, P ) is defined in (2.27). We introduce the following variational

forms:

D1(u1, p1, w1, P ) = −
∫
γ1

Q1w1 +

∫
Ω1

(K1∇p1) · ∇w1,

Dt,1(u1, p1, w1) = ∂t

∫
Ω1

(S p1 + α∇ · u1)w1

LD1(w1) =

∫
Ω1

f1w1.

D2(u2, p2, w2, P ) = −
∫
γ

Q2w2 +

∫
Ω2

(K2∇p2) · ∇w2,

Dt,2(u2, p2, w2) = ∂t

∫
Ω2

(S p2 + α∇ · u2)w2

LD2(w2) =

∫
Ω2

f2w2.

(2.34)

Now, we can move our attention on aproximated Darcy’s equation (2.29), which is

defined on reduced fracture space γ. We will use test function wf ∈ H1
0 (γ). After

using Green’s theorem, weak form of the equation (2.15) is:

d ∂t

∫
γ

(S P )wf + dαf ∂t

∫
γ

(∇τ ·U)wf − d
∫
∂γ

(Kf,τ∇τP · n)wf + ...

...+ d

∫
γ

(Kf,τ∇τP ) · ∇τwf + αf∂t

∫
γ

(
(u2|γ2 − u1|γ1) · n

)
wf −

2∑
i=1

∫
γ

Qiwf = d

∫
γ

Fwf

From the definition of the test function wf we know that it is zero on boundary

∂γ, then we obtain this expression for the weak form:

d ∂t

∫
γ

(S P )wf + d αf ∂t

∫
γ

(∇τ ·U)wf + d

∫
γ

(Kf,τ∇τP ) · ∇τwf + ...

...+ αf∂t

∫
γ

(
(u2|γ2 − u1|γ1) · n

)
wf +

2∑
i=1

∫
γ

Qiwf = d

∫
γ

Fwf

(2.35)
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The corresponding variational forms are:

Df (u1,u2, p1, p2, U, P, wf ) = d

∫
γ

(Kf,τ∇τP ) · ∇τwf +
2∑
i=1

∫
γ

Qiwf

Df,t(u1,u2, U, P, wf ) = d ∂t

∫
γ

(S P )wf + d αf ∂t

∫
γ

(∇τ ·U)wf + ...

...+ αf∂t

∫
γ

(
(u2|γ2 − u1|γ1) · n

)
wf ,

LDf (wf ) = d

∫
γ

Fwf .

(2.36)

Earlier, we mentioned that we need the weak form for all equations from system

(2.29). We already obtained full weak form of Darcy’s equation (2.1). Now, we

start to derive the weak form of the elasticity equation (2.29b) for the bulk spaces

Ω1, Ω2 with test functions ri ∈
(
H1

Γi
(Ωi)

)n
, i = 1, 2.

−
2∑
i=1

∫
Ωi

∇ ·
(
Cε(ui)− α(piI)

)
· ri =

2∑
i=1

∫
Ωi

gi · ri. (2.37)

We can again use the Green theorem and also we have to divide boundaries because

of boundary conditions. After using Dirichlet condition on boundaries Γ1, Γ2 we

gain this expression:

−
2∑
i=1

∫
γi

(
Cε(ui)ni

)
· ri +

2∑
i=1

∫
Ωi

(
Cε(ui)

)
· ∇ri + ...

...+ α

2∑
i=1

∫
γi

pini · ri − α
2∑
i=1

∫
Ωi

(piI) · ∇ri =
2∑
i=1

∫
Ωi

gi · ri.
(2.38)

It is possible to replace the first and the third expression of this equation on the

base of the boundary condition (2.29g):

−
2∑
i=1

∫
γi

Qi · ri +
2∑
i=1

∫
Ωi

(
Cε(ui)

)
· ∇ri − α

2∑
i=1

∫
Ωi

pi∇ · ri =
2∑
i=1

∫
Ωi

gi · ri.

(2.39)

Here Qi := Qi(ui,U , pi) is defined in (2.26c) We also define variational forms for
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equation of elasticity in bulk domains:

E1(u1, p1, r1,U) = −
∫
γ1

Q1 · r1 +

∫
Ω1

(
Cε(u1)

)
· ∇r1 − α

∫
Ω1

p1∇ · r1,

LE1(r1) =

∫
Ω1

g1 · r1,

E2(u2, p2, r2,U ) = −
∫
γ2

Q2 · r2 +

∫
Ω2

(
Cε(u2)

)
· ∇r2 −

∫
Ω2

p2∇ · r2,

LE2(r2) =

∫
Ω2

g2 · r2.

(2.40)

For obtaining the weak form of the elasticity equation in fracture we will need to

make little bit more effort. Multiplying (2.29d) by a test function rf ∈
(
H1

0 (γ)
)n

and integrating we get:

− λf
∫
γ

∇τ
(
(u2|γ2 − u1|γ1) · n

)
· rf︸ ︷︷ ︸

(I)

−2d µf

∫
γ

(
∇τ · ετ (U τ )

)
· rf︸ ︷︷ ︸

(II)

−...

...− µf
∫
γ

(
∇τ · (u2|γ2 − u1|γ1)

)
n · rf︸ ︷︷ ︸

(III)

−λfd
∫
γ

∇τ (∇τ ·U ) · rf︸ ︷︷ ︸
(IV )

+αfd

∫
γ

(∇τP ) · rf︸ ︷︷ ︸
(V )

+...

...+
2∑
i=1

∫
γ

Qi · rf = d

∫
γ

G · rf .

(2.41)

Like before, we can use Green’s theorem in the expressions (I − V ).

(I) =

∫
∂γ

(
(u2|γ2 − u1|γ1) · n

)
(rf · nγ)−

∫
γ

(
(u2|γ2 − u1|γ1) · n

)
(∇τ · rf )

(II) =

∫
∂γ

(
ετ (U τ )nγ

)
· rf −

∫
γ

ετ (U τ ) · ετrf

(III) =

∫
∂γ

(
(u2|γ2 − u1|γ1) · nγ

)
(rf · n)−

∫
γ

(u2|γ2 − u1|γ1) · ετ (rf · n)

(IV ) =

∫
∂γ

(∇τ ·U)(rf · nγ)−
∫
γ

(∇τ ·U )(∇τ · rf )

(V ) =

∫
∂γ

P (rf · nγ)−
∫
γ

P (∇τ · rf )

(2.42)

In (2.42), all integrals over ∂γ vanish due to the boundary condition (2.29f). The
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weak form of the elasticity equation in fracture is:

λf

∫
γ

(
(u2|γ2 − u1|γ1) · n

)
(∇τ · rf ) + 2dµf

∫
γ

ετ (U τ ) · ετrf + ...

...+ µf

∫
γ

(u2|γ2 − u1|γ1) · ∇τ (rf · n) + λfd

∫
γ

(∇τ ·U)(∇τ · rf )− ...

...− αfd
∫
γ

P (∇τ · rf ) +
2∑
i=1

∫
γ

Qi · rf = d

∫
γ

G · rf .

(2.43)

The corresponding forms are:

Ef (u1,u2, rf , P,U) = λf

∫
γ

(
(u2|γ2 − u1|γ1) · n

)
(∇τ · rf ) + 2dµf

∫
γ

ετ (U τ ) · ετrf + ...

...+ µf

∫
γ

(u2|γ2 − u1|γ1) · ∇τ (rf · n) + λfd

∫
γ

(∇τ ·U)(∇τ · rf )− ...

...− αfd
∫
γ

P (∇τ · rf ) +
2∑
i=1

∫
γ

Qi · rf

LEf (rf ) = d

∫
γ

G · rf .

(2.44)

Then the variational formulation is the following:

Weak formulation of (2.29)

Find a sextuple s := (p1, p2, P,u1,u2,U) ∈ C1
(
[0, T ];V

)
such that:

(i) (p1, p2, P )(0, ·) = (p0|Ω1 , p0|Ω2 , P0),

(ii) ∀t := (w1, w2, wf , r1, r2, rf ) ∈ V, ∀t ∈ (0, T ) :

at(s(t), t) + a(s(t), t) = l(t),

(2.45)
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where

at
(
(p1, p2, P,u1,u2,U), (w1, w2, wf , r1, r2, rf )

)
:= D1,t(u1, p1, w1

)
+ ...

...+D2,t(u2, p2, w2

)
+Df,t(p1, p2, P, wf ),

a
(
(p1, p2, P,u1,u2,U), (w1, w2, wf , r1, r2, rf )

)
:= D1

(
u1, p1, w1, P

)
+ ...

...+D2

(
u2, p2, w2, P

)
+Df (u1,u2, p1, p2,U , P, wf ) + ...

...+ E1(u1, p1, r1,U
)
+E2(u2, p2, r2,U

)
+ Ef (u1,u2, rf , P,U

)
,

l(w1, w2, wf , r1, r2, rf ) : = LD1(w1) + LD2(w2) + ...

...+ LDf (wf )+LE1(r1) + LE2(r2) + LEf (rf ).
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Chapter 3

Numerical solution

The aim of this chapter is to solve the system (2.29). Like almost all other systems

of PDEs, also for our modified Biot’s system the analytical solution is in general

impossible. Due to unknown analytical solution, we try to find a numerical solution,

at least.

3.1 Time and space discretization

Our numerical method requires discretization of the weak formulation of (2.29).

Our problem consists of 2 bulk subdomains Ω1, Ω2 what need to be discretized

and one line interface γ beetween them. We shall first describe the approximation

in space and later in time.

3.1.1 Space discretization

We try to find the numerical solution with help of the Finite element method

(FEM). It is a widespread method for simulation of various physical problems like

stuctural analysis, linear elasticity, etc. The base of FEM lies in dividing the

computational domain into many small pieces. On this subdivision we introduce

the finite element space of continuous piecewise polynomials of certain degree. In

the previous chapter, we mentioned that the domain Ω consists of 3 subregions,

see (2.3). We assume that the domains Ωi, i = 1, 2 are unions of finite number of

disjoint elements Ωi = ∪E∈Th,iE. Here Th,i is called a triangulation (mesh) of the

bulk domain (Ωi) and h is the diameter of the largest element in the sets Th,i, i =

1, 2. All elements E in the bulk domains are the simplexes. In what follows,
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we consider only two-dimensional problem, hence the elements will be triangles.

We also introduce a finite element approximation for the reduced subdomain γ =

∪E∈Th,fE. The cells (elements) in the interface γ have to be lower dimensional

simplices, in our case lines. We will use conforming meshes of Ω1, Ω2 and γ,

Ω1 Ω2
γ

γ
Γ1 Γ1

Γ2
Γ2

∂γ

∂γγ 1 γ 2

Figure 3.1: Conforming meshing, (Left): Two-dimensional domain Ω with a sim-
plex mesh. (Right):The one-dimensional reducted fracture γ is meshed with the line
segments.

i.e. such that the elements of Th,f are faces of some elements of Th,1 and of Th,2, see

Figure 3.1. We define the spaces Pkh,i and Pkh,f of continous piecewise polynomial

of degree k:

Pkh,i := {ϕ ∈ C(Ωi); ∀E ∈ Th,i, ϕ|E is polynomial of degree ≤ k}, i = 1, 2,

Pkh,f := {ϕ ∈ C(γ); ∀E ∈ Th,f , ϕ|E is polynomial of degree ≤ k}.

Let us define the discrete spaces

Wh,1 : =
(
H1

Γ1
(Ω1) ∩ Pkh,1

)
Wh,2 : =

(
H1

Γ2
(Ω2) ∩ Pkh,2

)
Wh,f : = (H1

0 (γ) ∩ Pkh,f
)
,

and the space for the finite element solution:

Vh := Wh,1 ×Wh,2 ×Wh,f ×
(
Wh,1

)n × (Wh,2)n × (Wh,f )
n.

Instead of solving the variational problem (2.45), we will solve Galerkin’s dicrete
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problem:

Find a sextuple sh := (ph,1, ph,2, Ph,uh,1,uh,2,Uh) ∈ C1
(
[0, T ];Vh

)
such that :

(i) (ph,1, ph,2, P )(0, .) = (p̃0|Ω1 , p̃0|Ω2 , P̃0),

where ˜ denotes the projection onto the respective finite element space.

(ii) ∀th (wh,1, wh,2, wh,f , rh,1, rh,2, rh,f ) ∈ Vh,∀t ∈ (0, T ) :

at(sh(t), th) + a(sh(t), t = l(l).

(3.1)

3.1.2 Time discretization

As before we divide time discretization of system the weak formulation of (2.29)

into several parts. We will discretize each equation separately using appropriate

linear and bilinear forms. We will divide the time interval [0, T ] to equidistant time

steps:

∆t =
T

N
, (3.2)

where ∆t refers to the length of the time step and N is the number of time steps.

Approximation of the time derivative ( ∂
∂t

) is made by the simple implicit Euler

method :

∂tΦ(t) ≈ Φ(t)− Φ(t−∆t)

∆t
. (3.3)

We start to approximate the weak form of the Darcy equation (2.33) for bulk

spaces. It means we replace the time derivative by a finite difference according to

(3.3) and we will find solution only for discrete time steps t = ∆t, 2∆t, 3∆t, ..., T .

Let the superscript j denote a quantity at time tj := j∆t, where j is an integer

counting time levels. For example, uj means u at time level tj. A finite difference

discretization in time first consists of sampling the PDE at some time level, say tj:

∂t

(
2∑
i=1

∫
Ωi

(S pi + α∇ · ui)wi

)j

−

(
2∑
i=1

∫
γi

Qiwi

)j

+ ...

...+

(
2∑
i=1

∫
Ωi

(Ki∇pi) · ∇wi

)j

=

(
2∑
i=1

∫
Ωi

fiwi

)j

.

(3.4)
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The time-derivative in (3.4) is replaced by simple backward difference:

(∫
Ωi

(S pi + α∇ · ui)wi
)j
≈

( ∫
Ωi

(S pi + α∇ · ui)wi
)j
−
( ∫

Ωi
(S pi + α∇ · ui)wi

)j−1

∆t
.

(3.5)

We assume that only functions pi, ui, Qi, f are time-dependent. In accordance

with to this assumption we can rewrite equation (3.4) into the form:

1

∆t

2∑
i=1

∫
Ωi

(S pji + α∇ · uji )wi −
1

∆t

2∑
i=1

∫
Ωi

(S pj−1
i + α∇ · uj−1

i )wi − ...

...−
2∑
i=1

∫
γi

Qj
iwi +

2∑
i=1

∫
Ωi

(Ki∇pji ) · ∇wi =
2∑
i=1

∫
Ωi

f ji wi.

(3.6)

We obtained an implicit scheme where the solution at the current time level (tj) is

computed from the previous level (tj−1). Now we continue with time discretization

of the weak form (2.35). This weak form of the Darcy equation in the fracture

domain contains several time-dependent unknows. Except for pi, ui, Qi, f, also

the new unknows U , P are time-dependent. At time level tj we have:

∂td

∫
γ

(S P j + αf∇τ ·U j)wf +

∫
γ

(Kf,τ∇τP j) · ∇wf + ...

...+ αf∂t

∫
γ

(
(uj2|γ2 − u

j
1|γ1) · n

)
wf +

2∑
i=1

∫
γ

Qj
iwf = d

∫
γ

F jwf .

Again, we use implicit Euler’s method for th approximation time-differentation:

d

∆t

∫
γ

(S P j + αf∇τ ·U j)wf +

∫
γ

(Kf,τ∇τP j) · ∇wf + ...

...+
d

∆t
αf

∫
γ

(
(uj2|γ2 − u

j
1|γ1) · n

)
wf +

2∑
i=1

∫
γ

Qj
iwf − ...

...− d

∆t

∫
γ

(S P j−1 + αf∇τ ·U j−1)wf − ...

...− d

∆t
αf

∫
γ

(
(uj−1

2 |γ2 − u
j−1
1 |γ1) · n

)
wf = d

∫
γ

F jwf .

(3.7)

Now, the time discretization of Darcy’s equation is done for all subregions.

The equations of elasticity (2.29b), (2.29d) are not time-dependent. We already
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discretized the whole system (2.29) in space and now also in time. Let us introduce

the following forms:

D∆t,i(ui, pi, wi) : =
1

∆t

∫
Ωi

(Spi + α∇ · ui)wi, i = 1, 2,

D∆t,f (u1,u2,U , P, wf ) : =
d

∆t

∫
γ

(SP + αf∇τ ·U)wf + ...

...+
d

∆t
αf

∫
γ

(
(u2|γ2 − u1|γ1) · n

)
wf .

Then the final form of the discrete problems reads:

Find the sequence {sj}Nj=0, s
j := (pj1, p

j
2, P

j,uj1,u
j
2,U

j) ∈ Vh such that :

(i) (p0
1, p

0
2, P

0) = (p0|Ω1 ,p0|Ω2 ,P 0)

(ii) ∀(r1, r2, rf ) ∈
(
Wh,1

)n × (Wh,2

)n × (Wh,f

)n
:

E1(u0
1, p

0
1, r1,U

0
)

+ E2(u0
2, p

0
2, r2,U

0
)

+ ...

...+ Ef (u
0
1,u

0
2, rf , P

0,U 0
)

= LE2(r2) + LEf (rf ),

(iii) ∀j = 1, 2, ..., N ∀t := (w1, w2, wf , r1, r2, rf ) ∈ Vh :

D∆t,1(uj1, p
j
1, w1) +D∆t,2(uj2, p

j
2, w2) +D∆t,f (u

j
1,u

j
2,U

j, P j, wf ) + ...

...+ a(sj, t) = l(t) +D∆t,1(uj−1
1 , pj−1

1 , w1) + ...

...+D∆t,2(uj−1
2 , pj−1

2 , w2) +D∆t,f (u
j−1
1 ,uj−1

2 ,U j−1, P j−1, wf ).

3.2 FEniCS

In what follows we describe the implementation of the discrete problem (2.29). We

chose Finite element (FE) programming in Python based on the software library

FEniCS [2], for our work. FEniCS is an open-source computing platform for solv-

ing PDE, which turns mathematical models to effective FE code. The beginnings

of the FEniCS project are dated to 2013 when the research cooperation between

University of Chicago and University of Chalmers started.

The software library FEniCS consists of a few core components. One of them

is DOLFIN. It is a C++/Python library offering the main user interface and pro-

viding a major part of FEniCS functionality, like definition of data structures and

algorithms. The solving environment for PDEs is also implemented in this library.

The generation of finite elements (e.g. Lagrange element, Raviart-Thomas ele-

ment) is provided by FIAT software, which is also in the FEniCS structure.
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Figure 3.2: The components of FEniCS.

FEniCS programs can be coded in C++/C and also in Python. The module

Instants is offering the possibility of using C++/C typing in Python enviroment.

And it makes FEniCS more flexible.

Very useful modules are UFC, a unified framework for FE assembly, and UFL.

UFL enables us to declare the FE discretization of the weak form. We also can

choose the FE space and define an expression for the weak form in mathematical

notation. AsCot, Dorsal, Syfi, Viper are remaining modules used in FEniCS. The

main benefit of solving PDE in FEniCS is the UFL module, which allows to solve

PDE’s equations only by using the weak formulation of a problem. There is no

need to assemble the algebraic system. It is automatically created from the weak

forms.

Currently, we adduce how similar is FEniCS typing to mathmatical notation.

The space Vh can be implemented as:

# Define function spaces

# pressure in domain

FE_p = FiniteElement(’DG’, triangle , 1)

# pressure in fracture

FE_pf = FiniteElement(’CG’, triangle , 1)

# displacement in domain
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VE_u = VectorElement(’DG’, triangle , 1)

#displacement in fracture

VE_uf = VectorElement(’CG’, triangle , 1)

# solution space

W = FunctionSpace(

mesh , MixedElement(FE_p , FE_pf ,VE_u , VE_uf) )

where the string CG defines a type of the element, in this case it is the Lagrange

element. There is also possible use Discontinous Galerkin (Lagrange) element and

in these cases the first parameter is not CG but DG. FEniCS is not able to define

functions which contain only situate/localized discontinuities. However, the trial

functions p, u have to be discontinuous on the fracture boundaries. We solved this

problem by using DG elements which are manually connected by penalization in the

bilinear forms. The second parameter selects the type of simplex e.g. triangle.

Of course, FEniCS supports all simplex element families. The third parameter

(e.g. 1) determines the degree of the FE.

In mathematical problems, there always has to be clear, where the solution and

test functions are defined (in which space). It is the same in FEniCS :

#unknows

(p, P, u, U) = TrialFunctions(W)

#test functions

(w, wf, r, rf) = TestFunctions(W)

The greatest advantage of using FEniCS is the natural defining of variational

forms. For example, we can take our E1 form, in mathematical notation written

as:

E1(u1, p1, r1,U) = −
∫
γ1

Q1 · r1 +

∫
Ω1

(
C1ε(u1)

)
· ∇r1 − α

∫
Ω1

p1∇ · r1.

In FEniCS it will be implemented as follows:

#Elasticity equation for the whole bulk domain Omega_1 ,2

E_omega = (

-inner(Q_1 ,r(’+’))*dS(region_frac )-\

inner(Q_2 ,r(’-’))*dS(region_frac )+\

inner(CE(u),epsilon(r))*dx-alfa*p*div(r)*dx

)
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The symbols dx and dS represent the integration of expressions over the bulk

domains Ωi and over the fracture domain γ.

Our model is an initial-boundary-value problem. We used Dirichlet (2.29d,

2.29e) and Neumann (2.29f, 2.29g) boundary conditions in our system (2.29). FEn-

iCS supports all types of boundary conditions (Dirichlet, Neumann, Robin, Mixed),

but only for Dirichlet, FEniCS has a special functionality. The other ones have

to be implemented by the user. For example, if we want to define this Dirichlet

boundary condition:

P = 0, U = 0 on (0, T )× Γi,

in FEniCS, we can do it as:

#pressure Dirichlet BC for the bulk boundary Gamma_7

bc_p_b = DirichletBC(

c_p , Constant (0), bc_regions , 7, ’geometric ’

)

#displacement Dirichlet BC for the bulk boundary Gamma_7

bc_c_b = DirichletBC(

c_u , Constant ((0,0)), bc_regions , 7 , ’geometric ’

)

The first parameter c_p is an unknown, which value is equal to the second

parameter Constant(0). The list of the boundaries can be defined as the third pa-

rameter bc_regions and the number 7 on the fifth position refers to the particular

boundary from the list. On the last position, we determine a type of algorithm to

decide whether a point lies on the boundary (e.g. ’geometric’).

As we mentioned before, the analytical solution of our problem is not known in

general. In this work, we defined a variational problem (2.45). If we want to find

a numerical solution with help of the FEniCS library, the notation of the problem

is closely similar.

#solution

solve(a == L, sol , bcs ,

solver_parameters ={’linear_solver ’: ’lu’})

We will use a built-in function solve(). First we have to define a variational

formulation of numerical problem (e.g. a == L), it is exactly like in the mathemat-
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ical notation. The variable sol hides a sextuple of solution functions. Obviously,

it is possible to extract a specific component of solution sextuple (e.g. pressure:

sol.sub(0)). The last necessary parameter bcs refers to a colection of boundary

conditions. These three parameters are compulsory. Next parameters identify a

solver. We use a linear LU solver (solver_parameters={’linear_solver’: ’lu’}).

Sparse LU decomposition is used by default to solve linear systems of equa-

tions in FEniCS programs. This is a very robust and easy to use method. But

for larger problems it can occupy really huge amount of PC memory. Large

problems is better to solve by using iterative solvers, which can be more effi-

cient in terms of both memory and computational time e.g. Krylov solver (

solver_parameters={’linear_solver’: ’gmres’}).

3.3 Simulations

Until now, we have presented only theoretical results of our work. Now, we move

on our attention to specific application of our model.
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(a) Mathematical domain.
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(b) FEniCS computational domain.

Figure 3.3: Geometry of computational domain.

This application has not ambition to simulate real processes in porous medium.

We wanted to create a computational domain, which is simple and also can capture

full functionality of our model. The computational domain is a 2-dimensional

square, see Figure 3.3. In Figure (3.3a), we can see that the computational domain

consists of 2 bulk subregions Ω1, Ω2 and a reduced fracture γ. Contrary of the

theoretical domain mentioned above (2.1), where the fracture divides the whole

domain Ω, here (3.3a) a fracture tip is located in the middle of the square domain.

We changed the fracture length for better visualization of our simulation results.
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There is another difference to theoretical Ω, simplification the bulk domains

Ω1, Ω2. We assume that the fracture is located inside the monolithic rock block.

This implies that Ω1, Ω2 are made of thesame material. Then we can consider only

1 bulk domain (Ω1), see Figure 3.3b.

p=0 u=0

u⋅n=0 P=106

Figure 3.4: (Left):Boundary conditions (Dirichlet), (Right): Meshed domain for
Simulation 1.

We computed two simulations. In both of simulations we used the same bound-

ary and initial conditions. On the top boundary ΓT we defined Dirichlet boundary

condition (BC) for displacement (u · n = 0), the movement in normal direction is

not allowed. In the middle of ΓT , where the fracture starts, the value of fracture

pressure was set to P = 106. This condition simulates impact of hight pressure of

fracture fluid, which is pumped to the well. On the right ΓR and left ΓL boundary

no BC was set, explicitly. When BC are not set, FEniCS implicitly assumes a

zero Neumann BC on these boundaries. This setting allows to simulate an ex-

pansion of fracture in tangential direction. On the bottom ΓB we defined a zero

Dirichlet BC for the pressure (p = 0) and also for the displacement (u = 0), see

Figure 3.4(Left).

Simulation 1 and Simulation 2 differ in meshing. The mesh in Simulation

1 is quite uniform and consists of 1034 elements, see Figure 3.4(Right). In the

Simulation 2 we created 3× finer mesh in the surrounding of the fracture start.

This mesh contains 1462 elements. All constants and parameters which are needed
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p=0 u=0

u⋅n=0 P=106

Figure 3.5: (Left):Boundary conditions (Dirichlet), (Right): Meshed domain for
Simulation 2.

to set in the simulation are noted in Table 3.1.

MODEL PARAMETERS

∆t 1000 number of time-
step

1000

d 0.1

S 10−5 Sf 10−5

α 1 αf 0.4

K1 10−6 Kf 10−2

µ 1 · 1010 µf 2 · 107

λ 2 · 1010 λf 1 · 107

f 0 F 0

g 0 G 0

Table 3.1: Model parameters (in [SI]).

As we mentioned above, the main function of our simulation is not prediction

of the processes in earth crust exactly, so tolerance of little imprecisions in setting

of model parameters and constants is allowed. Right setting of physical parameters
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would be a task for the geologists. All the constants and parameters used in our

simulations (Simulation 1−S1, Simulation 2−S2) are taken from a range of values

usually used in geomechanics and they are listed in Table 3.1. In postprocessing

we focus on comparing the pressure and displacement fields of S1 and S2, in times

t = (50∆t, 200∆t, 300∆t, 500∆t).

In Figures 3.6 and 3.7 we compare pressure fields. For both of simulations

S1 and S2, we observe gradual increase of pressure along the fracture. This ob-

servation corresponds with the fact, that the bulk domain is solid rock (K|Ω �
Kf , µ, λ � µf , λf ) and the fracture is a highly permeable and elastic material,

which is sequentialy filled up by the fracture fluid under high pressure.

In Figures 3.9 and 3.8, we can see the expansion of the fracture in time. Of

course, the measure of extension is not in absolute sizes. We enlarged it 1000 times,

due to demonstration of results.

The simulations S1, S2 offer almost identical results for pressure and also for the

displacement despite of finer mesh in S2. It is an important finding for us, because

we can avoid using of smaller elements in surroundig of the fracture, by applying

reduced fracure instead of conventional domain for the fracture. The discontinuity

observed on fracture line (see Figures 3.8a, 3.8c, 3.9a, 3.9c) was occured due to using

of DG elements. This problem can be fixed by adjusting of penalization constant.
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(a) p (S1), t = 50∆t (b) p (S2), t = 50∆t

(c) p (S1), t = 200∆t (d) p(S2), t = 200∆t

Figure 3.6: Pressure field progress in time t = 50∆t, 200∆t.
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(a) p (S1), t = 300∆t (b) p (S2), t = 300∆t

(c) p (S1), t = 500∆t (d) p (S2), t = 500∆t

Figure 3.7: Pressure field progress in time t = 300∆t, 500∆t.
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(a) u (S1), t = 50∆t.1000 (b) u (S2), t = 50∆t

(c) u (S1), t = 200∆t (d) u (S2), t = 200∆t

Figure 3.8: Displacement field progress in time t = 50∆t, 200∆t..
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(a) u (S1), t = 300∆t (b) u (S2), t = 300∆t

(c) u (S1), t = 500∆t (d) u (S2), t = 500∆t

Figure 3.9: Displacement field progress in time t = 300∆t, 500∆t..
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Summary

Since the work of Biot [3], many publications engaged in research into theory of

poroelasticity. Along the progress in computing technology, the dominant theme

of poroelastic literature has become the numeric modeling. The poroelasticity is

still an open topic and development of new methods steadily continues. This trend

is also ilustrated by the fact that the publications [13], [11], [12] where we found

the main source of inspiration for this work, were published in last two decades.

The most difficult and key part of this work was the derivation of the whole

PDE’s system for the reduced fracture model (2.29). The principle of reduction of

the fracture into lower dimension is not new but the contribution of this work would

be, that our model couples reduced elasticity equation and also it is nonstationary

in time.

This work also has an ambition to verify function of our model in specific prob-

lem through the use of numeric simulations. For the implementation of our model

we chose the software library FEniCS. The creation and debugging of FEniCS

program was quite difficult for a few reasons. FEniCS supports problems impe-

mentation (bilinear and linear forms) in notation highly similar to mathematical

formulation, what makes code comprendious and simple. But for the begginer in

FEniCS it is complicated to identify location and cause of bugs in code.

For the purpose of this work, we computed two simple simulations (S1, S2).

On the basis of results (pressure fields in Figures 3.6, 3.7 and displacement vector

fields in Figures 3.9, 3.8) offered by these simulations, we could judge that our

model works qualitatively properly. It is necessary to mention that mutual ratio

of parameters (d,K, Kf , µ, µf , λ, λf ) has a great impact on solution continuity.

In general, the model works more reliably for macroscopic fractures (d ≈ 10−2[m]).

However, if the difference between K, µ, λ and Kf , µf , λf is big enough, the model

also offers relatively satisfying results for the fractures of microscopic dimension

(d ≤ 10−3[m]).
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Appendix

Contents of CD

CD contains these files:

• Python (FEniCS) scripts:

– dg.py: special functions for saving solution,

– embedded_mesh.py: funcions for fracture mesh,

– fracture_model_WF.py: parameters settings,

– problem_well.py: model implementation, main functionality.

• Description of files for mesh and geometry:

– well.geo: geometry and region description,

– well.xml: mesh in FEniCS format,

– well_facet_region.xml: description of boundaries,

– well_physical_region.xml: description of bulk subdomains,

– well.msh: mesh in GMSH format.

Simulation run command:

python fractured_model_WF.py problem_well.py
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