
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
and Communication

BACHELOR'S THESIS

Brno, 2021 Daniel Štark

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

WEB APPLICATION ON ELLIPTIC CURVE
CRYPTOGRAPHY
WEBOVÁ APLIKACE KRYPTOGRAFIE ELIPTICKÝCH KŘIVEK

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Daniel Štark

SUPERVISOR
VEDOUCÍ PRÁCE

M.Sc. Sara Ricci, Ph.D.

BRNO 2021

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Bakalářská práce
bakalářský studijní program Informační bezpečnost

Ústav telekomunikací
Student: Daniel Štark ID: 211814
Ročník: 3 Akademický rok: 2020/21

NÁZEV TÉMATU:

Webová aplikace kryptografie eliptických křivek

POKYNY PRO VYPRACOVÁNÍ:

Nastudujte teorii eliptických křivek (tj. definici křivky, vlastnosti, operace nad eliptickou křivkou, kryptografické
protokoly využívající eliptické křivky). Výstupem práce bude implementace webové aplikace umožňující spuštění
operací nad eliptickou křivkou a základních kryptografických protokolů využívajících eliptických křivek (např.
Diffie-Hellmanův protokol). Jako výchozí bod lze využít programovací jazyk Sage. Webová aplikace může být
postavena na předchozí studentské práci (desktopová aplikace pro kryptografii eliptických křivek). Součástí práce
bude také manuál popisující funkcionalitu webové aplikace.

DOPORUČENÁ LITERATURA:

[1] Washington LC., “Elliptic curves: number theory and cryptography.” CRC press; 2008 Apr 3.

[2] Menezes AJ, Katz J, Van Oorschot PC, Vanstone SA. Handbook of applied cryptography. CRC press; 1996
Oct 16.

Termín zadání: 1.2.2021 Termín odevzdání: 31.5.2021

Vedoucí práce: M.Sc. Sara Ricci, Ph.D.

 doc. Ing. Jan Hajný, Ph.D.
předseda rady studijního programu

UPOZORNĚNÍ:
Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným
způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského
zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku
č.40/2009 Sb.

ABSTRACT
Elliptic Curve Cryptography is currently the most used form of public-key cryptography.
Theoretical part of this thesis is divided to two chapters. The first chapter describes
important topics from algebra and number theory, on which the Elliptic Curve Crypto-
graphy is built. This includes groups, finite fields, elliptic curves themselves and the
mathematical principles of two well-known and used protocols – ECDH and ECDSA.
The second chapter describes the tools, which were used for implementation of user-
friendly web application, capable of simulating fundamental operations on elliptic curves
and the aforementioned protocols. Key tools, which are introduced in this chapter, are
mathematics software system SageMath and framework Spring, used for implementation
of web applications in Java. The third chapter of this thesis describes the way the
introduced tools were used, ergo the implementation of the web application itself.

KEYWORDS
Elliptic Curve Cryptography, Web application, SageMath, Spring, ECDH, ECDSA

ABSTRAKT
Kryptografie na eliptických křivkách je v současné době nejpoužívanější formou asy-
metrické kryptografie. Teoretická část této práce je rozdělena na dvě kapitoly. První
kapitola vysvětluje vybraná témata z algebry a teorie čísel, na kterých je kryptografie
na eliptických křivkách postavená. Konkrétně se jedná o grupy, konečná tělesa, eliptické
křivky a matematické principy dvou známých a hojně používaných protokolů – ECDH a
ECDSA. Druhá kapitola se zabývá popisem nástrojů, které byly použity k implementaci
uživatelsky přivětivé webové aplikace, umožňující simulaci jak základních operací na elip-
tické křivce, tak i dvou výše zmíněných protokolů. Stěžejními nástroji, představenými v
této kapitole, jsou matematický systém SageMath a framework Spring, určený k tvorbě
webových aplikací v jazyce Java. Třetí kapitola této práce popisuje jak byly představené
nástroje použity, tedy samotnou implementaci webové aplikace.

KLÍČOVÁ SLOVA
Kryptografie na eliptických křivkách, Webová aplikace, SageMath, Spring, ECDH,
ECDSA

ŠTARK, Daniel. Web application on elliptic curve cryptography. Brno, 2021, 65 p.
Bachelor’s Thesis. Brno University of Technology, Faculty of Electrical Engineer-
ing and Communication, Department of Telecommunications. Advised by M.Sc. Sara
Ricci, Ph.D.

Typeset by the thesis package, version 4.00; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZŠÍŘENÝ ABSTRAKT
Tato bakalářská práce se zabývá kryptografií na eliptických křívkách. Cílem práce
je nastudovat a shrnout teorii eliptických křivek a následně znalost této teorie
využít k implementaci uživatelsky přívětivé webové aplikace, která umožní studen-
tům si rychle zkontrolovat správnost svých vlastních výpočtů základních operací
na eliptické křivce. Porozumění těmto operacím je klíčové pro pochopení prin-
cipu, na kterém je postavena kryptografie na eliptických křivkách. Webová aplikace
rovněž umožňuje simulaci dvou v praxi velmi používaných protokolů – Diffieho-
Hellmanova protokolu s využitím eliptických křivek (Elliptic Curve Diffie-Hellman,
dále jen ECDH) a protokolu digitálního podpisu s využitím eliptických křivek (Ellip-
tic Curve Digital Signature Algorithm, dále jen ECDSA). Hlavním přínosem této
aplikace je zpřístupnění výkonného matematického softwaru, který je velmi často
nepřehledný a uživatelský nepřívětivý, studentům, kteří se zajímají o kryptografii
na eliptických křivkách. Aplikace tedy umožňuje studentům soustředit se na to,
co je zajímá, a nemuset se zabývat složitým syntaxem a nepřehledným rozhraním
různých matematických systémů.

Teoretická část je rozdělena na kapitolu matematickou a kapitolu softwarovou.
V kapitole matematické jsou nejprve představeny grupy. Grupa je základní algre-
braická struktura, definována množinou prvků a jednou binární operací. Grupy jsou
důležité pro kryptografii na eliptických křivkách, protože samotná eliptická křivka
definovaná na konečném tělesu není nic jiného, než cyklická grupa. Zvláštní po-
zornost je věnována generátoru grupy, neboť se jedná o jeden z hlavních parametrů
asymetrických kryptosystému, včetně ECDH a ECDSA. Dále jsou v matematické
kapitole představeny konečná tělesa, algebraické struktury, na kterých jsou eliptické
křivky definovány. Nejdelší část kapitoly je věnována eliptickým křivkám samot-
ným. Představeny jsou dva nejpoužívanější tvary eliptických křivek – obecný Weier-
strassův (Generalized Weierstrass, dále jen GW) tvar a krátký Weierstrassův (Short
Weierstrass, dále jen SW) tvar. Zmíněna je také existence dalších méně známých
tvarů, jako příklad je uveden Barretův-Naehrigův (dále jen BN) tvar eliptické křivky.
Dále je detailně popsána binární operace sčítání, která charakterizuje grupu tvoře-
nou body na eliptické křivce, a z ní odvozená operace násobení, která je jádrem
kryptografie na eliptických křivkách. Výhodné vlastnosti násobení bodů na eliptické
křivce popisuje problém diskrétního logaritmu na eliptické křivce (Elliptic Curve
Discrete Logarithm Problem, dále jen ECDLP), na kterém je postavena bezpečnost
protokolů na eliptických křivkách. Matematická kapitola končí popisem dvou z
těchto protokolů, a to již zmíněných ECDH a ECDSA.

Druhá kapitola teoretické části popisuje sofwarové nástroje, které byly použity
k implementaci webové aplikace, hlavního výstupu této práce. Prvně jsou však
specifikovány vlastnosti, které má tato aplikace splňovat. Detailně je představen

5

open-source matematický systém SageMath, který je použit jako back-end webové
aplikace. Pozornost je věnována metodě, kterou předešlý student využil k propojení
jeho desktopové JavaFX aplikace s SageMath serverem, spuštěném na localhostu.
Zadání této práce doporučuje využití stejné metody k propojení webové aplikace
s SageMath back-endem. Dále jsou popsány dva moduly frameworku Spring, a
to Spring Web a Thymeleaf, které jsou použity k implementaci samotné webové
aplikace v jazyce Java. Softwarová kapitola končí představením volně dostupného
frameworku Bootstrap, jehož kaskádové styly jsou použity k zajištění uspokojivého
vzhledu webové aplikace.

Třetí kapitola se věnuje samotné implementaci webové aplikace. Nejprve je
zdůvodněno proč byl použit právě SageMath jako back-end webové aplikace. Poté
je krátce popsán pokus o využití SageMathCell jako back-endu webové aplikace,
v tomto přístupu však byly rychle odhaleny velké nedostatky. Dále je popsána
reimplementace již zmíněné metody, kterou použil jiný student k implementaci jeho
JavaFX aplikace, protože tato metoda se ukázala jako nejlepší možné řešení. Já-
dro třetí kapitoly tvoří detailní popis webové aplikace. Webová aplikace je nejprve
popsána obecným způsobem, princip fungování je pak pomocí množství screenshotů
popsán ještě jednou na praktickém příkladu sčítání bodů a výpočtu ECDSA na
SW eliptické křivce. Ostatní operace fungují velice obdobně, proto je není potřeba
popisovat zvlášť.

Výsledná webová aplikace podporuje křivky ve třech tvarech (SW, GW a BN),
avšak křivky všech tvarů je možno jednoduše vyjádřit v GW tvaru. Používání
aplikace je poměrně snadné a intuitivní. Uživatel si nejprve zvolí formu eliptické
křivky, na které chce provádět výpočty. Je mu zobrazena obecná rovnice formy,
kterou si vybral. Do této rovnice pak na vynechaná místa dosadí koeficienty, které
definují eliptickou křivku dané formy. Uživatel si tedy nemusí pamatovat značení jed-
notlivých koeficientů rovnice křivek, které je v připadě GW formy poměrně matoucí.
Dále uživatel zadá číslo charakterizující konečné těleso, na kterém má být eliptická
křivka definována. V případě, že uživatel zadá neplatné parametry (nesingulární
křivka nebo číslo, které necharakterizuje konečné těleso) je na tyto nedostatky up-
ozorněn a vyzván, aby zadal jiné parametry. V případě, že zadané parametry jsou
validní, je křivka načtena. Uživateli se zobrazí rovnice křivky, kterou zadal, její
řád a její body, přehledně roztříděné v tabulce podle jejich řádů. Uživatel si pak
může vybrat jednu z pěti operací, kterou chce provést. Body křivky, které chce
uživatel použít k nějakému výpočtu, jsou vybírány pomocí dropdown menu ze sez-
namu, tímto je zamezeno zadání neplatných bodů. Po dokončení operace a zobrazení
výsledku si uživatel může vybrat jestli chce provést tu stejnou operaci s jinými body,
provést jinou operaci nebo jestli chce změnit parametry křivky.

V případě protokolu ECDSA je implementováno jak vytváření, tak ověřování

6

pravosti digitálních podpisů. ECDSA je složitější než ECDH nebo základní operace
na křivce, proto je tato část aplikace opatřena dodatečnými vysvětlivkami, které
se mění v závislosti na výsledcích výpočtů protokolu. Například se může stát, že
uživatel během vytváření podpisu zvolí nevalidní soukromý klíč. Uživatel je o těchto
nedostatcích informován. Dále při ověřování podpisu aplikace rozlišuje mezi situací,
kdy je nevalidní zvolený veřejný klíč a kdy je nevalidní podpis, i o tomto je uživatel
informován.

Webová aplikace momentálně není spuštěna na žádnem serveru připojenému
k internetu, aplikaci si však lze vyzkoušet na předpřipraveném virtuálním stroji.
Návod jak aplikaci spustit z virtuálního stroje je součástí příloh této práce.

7

DECLARATION

I declare that I have written the Bachelor’s Thesis titled “Web application on elliptic curve
cryptography” independently, under the guidance of the advisor and using exclusively the
technical references and other sources of information cited in the thesis and listed in the
comprehensive bibliography at the end of the thesis.

As the author I furthermore declare that, with respect to the creation of this Bachelor’s
Thesis, I have not infringed any copyright or violated anyone’s personal and/or ownership
rights. In this context, I am fully aware of the consequences of breaking Regulation S 11
of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of
any breach of rights related to intellectual property or introduced within amendments to
relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009
Coll., Section 2, Head VI, Part 4.

Brno .
author’s signature

ACKNOWLEDGEMENT

I would like to thank my supervisor M.Sc. Sara Ricci, Ph.D for her great guidance, deep
knowledge, endless patience and optimistic disposition.

Contents

Introduction 15

1 Mathematical Background 16
1.1 Groups . 16
1.2 Fields . 17
1.3 Finite fields . 18
1.4 Elliptic curve . 20
1.5 Another forms of elliptic curves . 21
1.6 Point addition . 22

1.6.1 Addition of two distinct points 22
1.6.2 Addition of inverse points . 23
1.6.3 Addition of point at infinity 23
1.6.4 Addition of point to itself . 23
1.6.5 Scalar multiplication . 24

1.7 Elliptic curve discrete logarithm problem 25
1.8 Elliptic curve Diffie-Hellman protocol 26
1.9 Elliptic Curve Digital Signature Algorithm 29

1.9.1 Key generation . 29
1.9.2 Signature generation . 29
1.9.3 Public key verification . 30
1.9.4 Signature verification . 30

1.10 Summary . 30

2 Software Background 32
2.1 Goals of the web application . 32
2.2 Java . 32
2.3 EC Library candidates . 33
2.4 SageMath . 33

2.4.1 SageMath Console . 33
2.4.2 SageMath Notebook . 34
2.4.3 SageMath Shell . 35
2.4.4 SageMathCell . 35
2.4.5 SageMath server connection 36

2.5 Spring framework . 36
2.5.1 Spring framework generally 36
2.5.2 Spring Web . 37
2.5.3 Thymeleaf . 37

10

2.6 HTML5 and CSS . 38
2.7 Bootstrap . 38

3 Web Application 39
3.1 Implementation without dependence on existing libraries 39

3.1.1 Double-and-add . 40
3.1.2 Summary . 40

3.2 Implementation using library . 41
3.3 SageMath . 42
3.4 SageMathCell . 42
3.5 SageMath server connection . 44
3.6 Implementation of the Web Application 45

3.6.1 Initialization of Spring project 45
3.6.2 General scheme of the application 46
3.6.3 Point addition . 48
3.6.4 ECDSA . 54

Conclusion 58

Bibliography 59

List of symbols, quantities and abbreviations 62

A File contents 63

B Manual – Running the Application from provided VM 64

11

List of Figures
1.1 Elliptic curve 𝑦2 = 𝑥3 + 𝑥 + 2 over Q. 21
1.2 Elliptic curve 𝑦2 = 𝑥3 + 𝑥 + 2 over prime field F79. 21
1.3 Point addition on an elliptic curve [3]. 23
1.4 Point doubling on an elliptic curve [3]. 24
1.5 Elliptic curve Diffie-Hellman protocol. 28
2.1 Example of SageMath Console session. 34
2.2 SageMath in Jupyter Notebook. 35
2.3 Controller of simple Spring Web application. 37
3.1 Recursive double-and-add algorithm. 40
3.2 Source code of SageMathCell capable of printing points of elliptic curve. 43
3.3 SageMathCell capable of printing points of elliptic curve. 43
3.4 Test Spring web application capable of evaluating SageMath input. . 45
3.5 Simplified diagram of the application. 46
3.6 Handler method mapped on /index. 48
3.7 View rendered from index.html in browser. 49
3.8 Source code of the navigation bar, styled by Bootstrap CSS. 49
3.9 View rendered from swparam.html. The navigation bar at the top is

cropped off. 50
3.10 Source code of the handler method mapped on /swpoints. 51
3.11 Source code of the SageMessenger ’s method used for finding points

on a user-defined elliptic curve. 51
3.12 Source code of the SageMessenger ’s method used for filling hash map

pointsByOrder with lists of points based on their order. 52
3.13 View rendered from template swpoints.html. The navigation bar is

cropped. 53
3.14 Source code of the table. Thymeleaf engine is used to cycle through

the pointsByOrder hash map. 54
3.15 Dropdown menus of the View rendered from swadd.html, used for

picking points which are supposed to be added. 55
3.16 Result of the point addition. 56
3.17 View rendered from swecdsa.html. 56
3.18 View rendered from swecdsasign.html. 56
3.19 Computations of signature pair on View rendered from swecdsasign-

res.html. 57
3.20 Warning bar on View rendered from swecdsacheckres.html, caused by

inputting valid signer’s public key, but invalid signature. 57
B.1 SageMath server is ready. 65

12

B.2 Launching IntelliJ Idea. 65
B.3 Launching the application. 65

13

List of Tables
1.1 Addition and multiplication in prime field F7. 19
1.2 Additive and multiplicative inverses in prime field F7. 20
1.3 Comparison of key lengths in bits for same level of security of sym-

metric cryptosystems, standard Z*
𝑝 public-key cryptosystems and EC

cryptosystems [9]. 27
3.1 Library candidates. "User-defined" stands for curves whose parame-

ters can be explicitly defined by user. "Pre-defined" stands for forms
of built-in curves whose parameters are given by various standards.
Ed stands for Edwards curves. 41

14

Introduction
This thesis is devoted to Elliptic–Curve Cryptography (ECC), which has quickly
become the dominant approach for designing public-key cryptosystems. ECC offers
a partial solution to decrease of performance of public-key cryptosystems caused by
enormous key sizes. ECC can provide comparable level of security as the original
methods of public-key cryptography, but with significantly smaller key sizes. This
is caused by the fact that the mathematical problems, which are used for designing
one-way functions, are more complex and difficult to solve on elliptic curves than
on prime fields, which were used originally. This added complexity however comes
with a price. The operations on elliptic curves are slightly more abstract and could
be harder to grasp.

The main goal of this thesis is to provide students with a tool (in a form of a
web application), which will help them understand the ECC. The web application
should be capable of computing operations used in ECC and displaying results to
users, as well as simulating popular ECC protocols. The web application should
support elliptic curves with user-defined parameters, as the curves used in practise
are not suited to be used as a learning material. There is a great emphasis on the
application being user-friendly.

The thesis is divided to three chapters. Chapter 1 covers the mathematical back-
ground of elliptic curves, Chapter 2 describes the qualities of software tools, which
were explored during the implementation of the web application, and Chapter 3
provides author’s commentary on what was achieved with the introduced software
tools, including the implementation of the web application itself.

15

1 Mathematical Background
This chapter covers theoretical knowledge from several fields of mathematics which
finds its use in Elliptic Curve Cryptography.

1.1 Groups
A Group (𝐺, ·) [1] is a basic algebraic structure with some specific properties defined
on a non-empty set of elements and one binary operation. Groups are particularly
interesting to ECC, because an elliptic curve can be viewed as one, with its points
being the set of elements.

Definition 1 Group (𝐺, ·) is a set of elements 𝐺 with binary operation ·, that as-
sociates to each ordered pair (𝑎, 𝑏) of elements in G an element (𝑎 · 𝑏), such that the
following axioms are obeyed:

Axiom 1 Closure:

∀ 𝑎, 𝑏 ∈ 𝐺 : (𝑎 · 𝑏) ∈ 𝐺. (1.1)

Axiom 2 Associative:

∀ 𝑎, 𝑏, 𝑐 ∈ 𝐺 : (𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐). (1.2)

Axiom 3 Identity element:

∀ 𝑎 ∈ 𝐺 ∃ 𝑒 ∈ 𝐺 : 𝑎 · 𝑒 = 𝑒 · 𝑎 = 𝑎. (1.3)

Axiom 4 Inverse element:

∀ 𝑎 ∈ 𝐺 ∃ 𝑎−1 ∈ 𝐺 : 𝑎 · 𝑎−1 = 𝑎−1 · 𝑎 = 𝑒. (1.4)

Group is said to be Abelian (commutative), if it meets additional following axiom:

Axiom 5 Commutative:

16

∀ 𝑎, 𝑏 ∈ 𝐺 : 𝑎 · 𝑏 = 𝑏 · 𝑎. (1.5)

The order (cardinality) of a group is defined as the number of elements of the
group. Groups, whose order is finite, are called finite groups. Order of an elliptic
curve (which is a group) is a very important property, because the number of points
on the curve directly influences the safety of the EC cryptosystem.

Exponentiation on groups can be defined as repeated application of the groups
operation:

𝑎5 = 𝑎 · 𝑎 · 𝑎 · 𝑎 · 𝑎. (1.6)

Fact 1 Every element 𝑎 from group 𝐺, its inverse element 𝑎−1, identity element 𝑒

and every integer 𝑛 obey these equations:

𝑎0 = 𝑒, (1.7)

𝑎−𝑛 = (𝑎−1)𝑛. (1.8)

A cyclic group 𝐺 includes element 𝑔, such as every element 𝑎 of 𝐺 can be denoted
as a power of 𝑔 to 𝑛, where 𝑛 is an integer:

𝑔𝑛 = 𝑎. (1.9)

The element 𝑔 is said to generate the group 𝐺 and is called generator of group 𝐺.
Order of an element is described as the number of elements that can be generated
by its exponentiation. Therefore, order of a generator is equal to the order of its
group. Elements of 𝐺, that are not able to generate the entire group, are said to
generate a subgroup of 𝐺. Orders of elements divide the order of the group.

Points on an elliptic curve over finite field form a cyclic group. The generator of
the elliptic curve is very important since it is used as the publicly-known base point
of the cryptosystem.

1.2 Fields
Fields [2] are the algebraic structures over which the elliptic curves are defined. Fi-
nite fields in particular are important to cryptography, because they allow accessing
several mathematical problems, which can be used for designing trapdoor (one-way)
functions. Examples of such problems are discrete logarithm problem or integer
factorisation problem.

Definition 2 A field (F, +, ×) consists of a set F with two binary operations denoted
as + (addition) and × (multiplication) on F, satisfying the following axioms:

17

Axiom 6 (F, +) is an Abelian group with identity element 𝑒𝑎 = 0.

Axiom 7 The operation × is associative.

Axiom 8 (F, ×) \{0} is an Abelian group with identity element 𝑒𝑚 = 1, such that

𝑎 × 1 = 𝑎 = 1 × 𝑎, ∀𝑎 ∈ R. (1.10)

Axiom 9 Every element a ∈ (F \{0}, ×) has multiplicative inverse 𝑎−1, such as

𝑎 × 𝑎−1 = 𝑒𝑚 = 1. (1.11)

Axiom 10 The operation × is distributive over + . That is, for every 𝑎, 𝑏, 𝑐 ∈ R:

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐), (𝑏 + 𝑐) × 𝑎 = (𝑏 × 𝑎) + (𝑐 × 𝑎). (1.12)

For example, the rational numbers Q, the real numbers R and the complex numbers
C all form infinite fields. However, no element of the set of integers Z with the
exception of 1 and −1 suits the Axiom 9. Therefore the set of all integers Z does
not form a field.

However, the set of non-negative integers less than 𝑞, forms a finite field under
the usual operations × and + modulo 𝑞 if and only if 𝑞 is a prime number or a
power of a prime number [1]. Such field can be denoted as F𝑞 [2].

To summarize, a field is a set in which operations of addition and multiplication
can be performed without leaving the set. Moreover, subtraction can be defined
as the addition of opposite (additive inverse) and division as the multiplication by
multiplicative inverse:

𝑎 − 𝑏 = 𝑎 + 𝑏−1
𝑎 , (1.13)

𝑎 ÷ 𝑏 = 𝑎 × 𝑏−1
𝑚 , (1.14)

where 𝑏−1
𝑎 is additive inverse (opposite) of 𝑏 and 𝑏−1

𝑚 is multiplicative inverse of 𝑏.

1.3 Finite fields
As was stated in previous section, finite fields [2, 3] are crucial structures in public-
key cryptography, because of their very special properties. They are the core of
cryptosystems which rely on the difficulty of discrete logarithm problem, such
as ElGamal, Diffie–Hellman scheme and of course ECC.

18

Definition 3 A finite field is a field F which contains a finite number of elements.
The order of F is the number of elements in F.

Fact 2 For any prime 𝑝 and any positive integer 𝑚 there exists a finite field with
𝑞 = 𝑝𝑚 elements. This field is unique (up to isomorphism) and is denoted by F𝑞 or
GF(𝑞). GF stands for Galois field.

The main focus will be on finite fields with 𝑚 = 1, as they are widely used in ECC.
These fields are also called prime fields and can be denoted as F𝑝 or GF(𝑝), where
𝑝 is a prime number. To ensure the prime field F𝑝 obeys all the axioms stated in
previous text, both operations (+ and ×) have to be modulo 𝑝.

As an example, addition, multiplication and inverses for each element of F7 are
depicted in Tables 1.1 and 1.2. Note that multiplicative inverse of 0 does not exist.
This exception is covered in Axiom 9.

Tab. 1.1: Addition and multiplication in prime field F7.

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

× 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

19

Tab. 1.2: Additive and multiplicative inverses in prime field F7.

𝑎 −𝑎 𝑎−1

0 0 –
1 6 1
2 5 4
3 4 5
4 3 2
5 2 3
6 1 6

1.4 Elliptic curve
Elliptic curves [3, 4] are the central objects of ECC. Their points can be viewed
as a set of solutions of specific equation. These solutions together with an extra
point, called point at infinity also form an Abelian group under the operation of
point addition (+). Elliptic curves defined over finite fields allow accessing Elliptic
Curve Discrete Logarithm Problem (ECDLP) and use it to create so called
trapdoor function, core of any public-key cryptosystem.

Definition 4 An elliptic curve E over a field K is given by generalized Weierstrass
(GW) equation

𝐸 : 𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥 + 𝑎6, (1.15)

where coefficients 𝑎1, . . . , 𝑎6 ∈ 𝐾. We are going to assume 𝐾 is a prime field F𝑝

from now on. The equation of some curves can be transformed to short Weierstrass
(SW) form

𝐸 : 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵, (1.16)

if the characteristic of the field F𝑝, denoted char(F𝑝), is greater than 3. Note that
char(F𝑝) is equal to 𝑝, this implies that only elliptic curves defined on a prime field
with 𝑝 > 3 can be written in short Weierstrass form.

Elliptic curves are smooth (nonsingular), this means that their discriminant Δ
can not be equal to 0. Discriminant of an elliptic curve in short Weierstrass form
can be computed as

Δ = −16(4𝐴3 + 27𝐵2), Δ ̸= 0. (1.17)

Elliptic curves can have points in any field, such as R, Q and C. The main focus
will be on points in prime field F𝑝, as it is the one used in ECC. Figures 1.1 and 1.2
show points of an elliptic curve over Q and F79, respectively.

20

Fig. 1.1: Elliptic curve 𝑦2 = 𝑥3 + 𝑥 + 2 over Q.

Fig. 1.2: Elliptic curve 𝑦2 = 𝑥3 + 𝑥 + 2 over prime field F79.

1.5 Another forms of elliptic curves
As stated earlier, every curve can be expressed in generalized Weierstrass form.
Short Weierstrass form, the most used and best known representation of an elliptic
curve, is just a special case of GW form, where coefficients 𝑎1, 𝑎2 and 𝑎3 are left
equal to 0. Many more forms of elliptic curves can be derived from GW form in a
similar manner – for example if we leave all the coefficients but 𝑎6 equal to 0, we
get Barreto-Naehrig (BN) form of an elliptic curve:

𝐸 : 𝑦2 = 𝑥3 + 𝐵. (1.18)

Every form of elliptic curves has its distinct properties and usages, for example
Barreto-Naehrig elliptic curves are well suited to be used in pairing-based protocols.

21

1.6 Point addition
The main operation [3], which characterises the group of points located on the curve,
is called point addition and denoted by +. The point at infinity 𝑃∞ is the
identity element of the group. The result of point addition is computed differently
based on the properties of points on which the addition is performed on. There are
4 different cases of point addition, which are introduced in next sections.

1.6.1 Addition of two distinct points

Let 𝑃 = (𝑥1, 𝑦1) and 𝑄 = (𝑥2, 𝑦2) be two distinct points on an elliptic curve,
𝑃, 𝑄 ̸= 𝑃∞ and 𝑥1 ̸= 𝑥2. To evaluate 𝑃 + 𝑄 = 𝑅, we draw the line connecting
them. There is a third point of intersection with the curve, that is where −𝑅 is
located. Reflecting the point at the 𝑥-axis gives point 𝑅. This is shown in Figure
1.3.

The actual addition formulas can be derived from the provided geometric
definition. Let 𝑃 = (𝑥1, 𝑦1), 𝑄 = (𝑥2, 𝑦2) and 𝑅 = 𝑃 + 𝑄 = (𝑥3, 𝑦3) be three points
on an elliptic curve with 𝑥1 ̸= 𝑥2. The line intersecting points 𝑃 and 𝑄 has slope

𝜆 = 𝑦1 − 𝑦2

𝑥1 − 𝑥2
. (1.19)

The coordinates of point 𝑅 can be computed as

𝑥3 = 𝜆2 + 𝑎1𝜆 − 𝑎2 − 𝑥1 − 𝑥2, (1.20)

𝑦3 = 𝜆(𝑥1 − 𝑥3) − 𝑦1 − 𝑎1𝑥3 − 𝑎3, (1.21)

where 𝑎1, 𝑎2 and 𝑎3 are coefficients of the curve in generalized Weierstrass form.
The formulas for 𝑥3 and 𝑦3 can be simplified to

𝑥3 = 𝜆 − 𝑥1 − 𝑥2, (1.22)

𝑦3 = 𝜆(𝑥1 − 𝑥3) − 𝑦1, (1.23)

if the curve is given in short Weierstrass (or Barreto-Naehrig) form.
Note that operations subtraction and division are not defined in finite fields,

they have to be replaced by addition of additive inverse mod 𝑝 and multiplication
by multiplicative inverse mod 𝑝 respectively.

22

P

Q

−(P ⊕ Q)

P ⊕ Q

Fig. 1.3: Point addition on an elliptic curve [3].

1.6.2 Addition of inverse points

The sum of two different points, whose 𝑥-coordinates are equal, has to be calculated
in a different way, as the line connecting the points does not intersect the curve in
any other point. Instead, the product of 𝑃 + (−𝑃) = (𝑥1, 𝑦1) + (𝑥1, 𝑦2) is equal to
𝑃∞, the identity element. This case of point addition can be viewed as addition
of inverse element described in Formula 1.4.

1.6.3 Addition of point at infinity

The point at infinity 𝑃∞ is the identity element of the group. Addition of 𝑃∞ to
any other point (even to itself) always results in the other point: 𝑃∞ + 𝑃 = 𝑃 .

1.6.4 Addition of point to itself

Point doubling, denoted 2𝑃 , can be seen as adding point to itself. However,
as there are no two separate points to intersect with one line, a tangent to the
curve that intersects 𝑃 is used instead. Similarly to the first case of addition,
second intersection of the tangent with the curve gives point −2𝑃 , which has to be
reflected at the 𝑥-axis in order to find 2𝑃 . Point doubling is depicted in Figure
1.4.

23

The slope 𝜆 of the tangent line at point 𝑃 (𝑥1, 𝑦1) can be computed as

𝜆 = 3𝑥2
1 + 2𝑎2𝑥1 + 𝑎4 − 𝑎1𝑦1

2𝑦1 + 𝑎1𝑥1 + 𝑎3
, (1.24)

where 𝑎1, 𝑎2, 𝑎3 and 𝑎4 are coefficients of the curve in generalized Weierstrass form.
The formula for computing the slope 𝜆 of the tangent line can be simplified to

𝜆 = 3𝑥2
1 + 𝐴

2𝑦1
, (1.25)

if the curve is given in short Weierstrass form and 𝐴 is its coefficient. In case of
Barreto-Naehrig form, the formula can be further simplified to

𝜆 = 3𝑥2
1

2𝑦1
. (1.26)

Formulas for finding the coordinates of 2𝑃 (𝑥2, 𝑦2) are the same formulas used
for coordinates of point 𝑅 = 𝑃 + 𝑄, (Formulas 1.20 and 1.21) for curve in GW form
and (Formulas 1.22 and 1.23) for curve in SW and BN form.

P

[2]P

−[2]P

Fig. 1.4: Point doubling on an elliptic curve [3].

1.6.5 Scalar multiplication

Scalar multiplication, denoted 𝑛𝑃 , where 𝑛 ∈ N \{0}, is defined as repeated addition
of point 𝑃 to itself 𝑛 times:

𝑅 = 𝑛𝑃 = 𝑃 + 𝑃 + 𝑃 + . . . + 𝑃⏟ ⏞
𝑛

. (1.27)

24

This is the main operation used in ECC. In general scenario, 𝑅 is the public key,
𝑛 is the private key and 𝑃 is a generator of the group of points.

Computing scalar multiplication simply by adding 𝑃 to itself 𝑛 times is extremely
inefficient, because the scalar 𝑛 is usually a 256 bit number in real-world implemen-
tations. Performing multiplication in this manner would require 2256 −1 operations,
which is not feasible on today computers.

There are some algorithms, which can significantly reduce the number of opera-
tions needed to calculate the multiplication. One such algorithm is the double-
and-add algorithm [5]. This algorithm utilizes a combination of doublings and
additions to perform the multiplication. It is best explained by giving an example:
Let us say we want to multiply point 𝑃 by scalar 𝑛 = 19. The most obvious way to
do this is to add 𝑃 to itself 𝑛 − 1 = 18 times:

19 𝑃 = 𝑃 +𝑃 +𝑃 +𝑃 +𝑃 +𝑃 +𝑃 +𝑃 +𝑃 +𝑃 +𝑃 +𝑃 +𝑃 +𝑃 +𝑃 +𝑃 +𝑃 +𝑃 +𝑃.

Same computation with the use of the double-and-add algorithm can be reduced
just to 2 additions and 4 doublings:

19 𝑃 = 2 (2 (2 (2 𝑃)) + 𝑃) + 𝑃.

In the worst case scenario, the number of operations needed to perform multiplica-
tion using this algorithm is 2(log2 𝑠−1), opposed to 𝑠−1 operations using the naive
approach.

Example implementation of this algorithm is depicted in Figure 3.1. The down-
side [6] of this algorithm is its vulnerability to side-channel attacks, because the
value of scalar 𝑛 directly influences the number of operations needed to evaluate
the multiplication. The algorithm can be modified to require constant number of
operations.

1.7 Elliptic curve discrete logarithm problem
One of the key features of public–key cryptosystem is the inability to compute a
secret key from a public key. In terms of ECC, this means reversing the operation
of scalar multiplication: computing a scalar 𝑛 from given points 𝑃 and 𝑅 = 𝑛𝑃 .

Definition 5 The Elliptic Curve Discrete Logarithm Problem (ECDLP) [7] is: given
an elliptic curve 𝐸 defined over a finite field F𝑞, a point 𝑃 ∈ 𝐸(F𝑞) of order 𝑜, and
a point 𝑅 ∈ 𝐸(F𝑞) find the integer 𝑛 ∈ [0, 𝑜 − 1] such that 𝑅 = 𝑛𝑃 . The integer n
is called the discrete logarithm of 𝑅 to the base 𝑃 , denoted 𝑛 = log𝑃 𝑅.

25

𝑅 = 𝑛𝑃

𝑛 = ?

Computing discrete logarithm is very difficult problem with no effective algorith-
mic solutions, if the following conditions are met:

• order of the curve is big enough,
• order of the point 𝑃 is big enough (𝑃 is preferably the generator of 𝐸(F𝑞), so

its order is highest possible),
• scalar 𝑛 is big enough.
The most naive and simple algorithm for solving the ECDLP is brute-forcing

which lies in computing the sequence of points 𝑃, 2𝑃, 3𝑃, 4𝑃, . . . until 𝑅 = 𝑛𝑃 is
encountered. The run time of this algorithm is 𝑜 (order of the point 𝑃) operations
in the worst case scenario, 𝑜

2 on average. That means the order of the base point
𝑃 should be big enough to make the performance of 𝑜

2 operations unfeasible, 280 is
considered big enough.

There are however other more sophisticated algorithms for solving the ECDLP,
the combination of Pohlig-Hellman and Pollards rho algorithms being the most
effective. These algorithms require run time of √

𝑝 operations, where 𝑝 is the largest
prime divisor of 𝑜. To resist these attacks, largest prime divisor 𝑝 of the order 𝑜 of
the base-point 𝑃 should be larger than 2160.

The discrete logarithm problem is harder in the group of points on an elliptic
curve than in a multiplicative group Z*

𝑝. Because of this, elliptic curve cryptosystems
are able to function with significantly smaller key sizes while providing the same
level of security as their Z*

𝑝 counterparts. Smaller key sizes make the elliptic curve
cryptosystems faster than their predecessors. Table 1.3 compares key sizes of sym-
metric cryptosystems, standard Z*

𝑝 public-key cryptosystems and EC cryptosystems
for the same level of security. Today’s recommended key sizes are highlighted.

1.8 Elliptic curve Diffie-Hellman protocol
Diffie-Hellman key exchange [2] is a public-key cryptography protocol used for estab-
lishing secret symmetric key between two parties via insecure channel. The security
of this protocol rests on the intractability of the Diffie-Hellman problem, which
is closely related to discrete logarithm problem. Diffie-Hellman problem makes
the extraction of the secret symmetric key impossible even for eavesdroppers who

26

Tab. 1.3: Comparison of key lengths in bits for same level of security of symmetric
cryptosystems, standard Z*

𝑝 public-key cryptosystems and EC cryptosystems [9].

Symmetric Standard Z*
𝑝 EC

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 512

have access to full communication between the two parties. It finds its use for exam-
ple in protocol TLS (Transport Layer Security), which is used for securing internet
communication.

The Diffie-Hellman protocol can be carried out in any group in which the discrete
logarithm is hard problem, the most obvious one being the multiplicative group Z*

𝑝.
Protocol in Z*

𝑝 functions as follows:
1. prime 𝑝 and generator 𝑔 of Z*

𝑝 are selected and published
2. Alice chooses a random private key 𝑎 , computes public key 𝐴 = 𝑔𝑎 mod 𝑝,

sends 𝐴 to Bob via insecure channel.
3. Bob chooses a random private key 𝑏, computes public key 𝐵 = 𝑔𝑏 mod 𝑝, sends

𝐵 to Alice via insecure channel.
4. Alice computes 𝐵𝑎 = (𝑔𝑏)𝑎 mod 𝑝 = 𝐾, Bob computes 𝐴𝑏 = (𝑔𝑎)𝑏 mod 𝑝 = 𝐾.

𝐾 is the secret symmetric key they have established.
The Diffie-Hellman problem can be explained like this: given 𝑔𝑎 and 𝑔𝑏, compute

𝑔𝑎𝑏. Attacker would need to compute 𝑎 or 𝑏 from 𝑔𝑎 or 𝑔𝑏 first, but this would
mean solving the discrete logarithm problem in Z*

𝑝. This means that the Diffie-
Hellman problem and dicrete logarithm problem are very closely related.

Elliptic Curve Diffie-Hellman protocol (ECDH) works in a very similar man-
ner, but the nature of elliptic curves allows using smaller key lengths for the same
level of security. ECDH protocol functions as follows:

1. Elliptic curve 𝐸 over finite field (usually prime field) 𝐸(F𝑞) and generator 𝐺

of the group, which represents points of 𝐸, are selected and published.
2. Alice chooses a random private key 𝑎, which is a scalar. Then she computes

point 𝐴 = 𝑎𝐺, which serves as a public key and sends it to Bob via insecure
channel.

3. Bob chooses a random private key 𝑏, which is a scalar. Then he computes
point 𝐵 = 𝑏𝐺, which serves as a public key and sends it to Alice via insecure

27

channel.
4. Alice computes point 𝑎𝐵 = 𝑎𝑏𝐺 = 𝐾, Bob computes point 𝑏𝐴 = 𝑏𝑎𝐺 = 𝐾.

Secret symmetric key can be derived from point 𝐾 for example by taking its
𝑥-coordinate.

Fig. 1.5: Elliptic curve Diffie-Hellman protocol.

The relation between Elliptic Curve Diffie-Hellman problem and the Elliptic
Curve Discrete Logarithm Problem is identical to the relation of the Diffie-Hellman
problem and the Discrete Logarithm Problem in Z*

𝑝. The Elliptic Curve Diffie-
Hellman problem can be informally stated as: given points 𝑎𝐺 and 𝑏𝐺, compute
point 𝑎𝑏𝐺. Once again, the solution of the Elliptic Curve Diffie-Hellman problem
would be trivial, if it was possible to solve Elliptic Curve Discrete Logarithm Prob-
lem – compute 𝑎 from 𝑎𝐺 or 𝑏 from 𝑏𝐺.

28

1.9 Elliptic Curve Digital Signature Algorithm
Elliptic Curve Digital Signature Algorithm (ECDSA) [8] is the elliptic curve version
of the well-known Digital Signature Algorithm (DSA). The ECDSA offers better
performance compared to its predecessor, as the discrete logarithm problem, which
ensures the safety of both of these algorithms, is harder to solve in a cyclic group
which represents the points of an elliptic curve over finite field than it is in the
multiplicative groups, which are used in DSA. This implies that the relation between
ECDSA and DSA is exactly the same as ECDH and DH.

The ECDSA is a public-key cryptography protocol used for generation and veri-
fication of digital signatures. These signatures ensure the authenticity, integrity
and non-repudiation of the messages they are provided with.

1. Authenticity – message was sent by verified sender,
2. integrity – message was not changed in any way since it was signed,
3. non-repudiation – sender can not dispute authorship of a message signed with

his signature.

1.9.1 Key generation

The given domain parameters of ECDSA protocol consist of elliptic curve 𝐸 defined
over prime field F𝑝 and base point 𝐺 with sufficiently large prime order 𝑛. User 𝐴

can generate his own key pair associated with these domain parameters by following
these steps:

1. choose a random integer 𝑑, 𝑑 ∈ [1, 𝑛 − 1],
2. compute point 𝑄 = 𝑑𝐺,
3. 𝑑 and 𝑄 are 𝐴’s private and public keys respectively.

1.9.2 Signature generation

In order to sign a message 𝑚, user 𝐴 with key pair (𝑑, 𝑄) does the following:
1. generate a random integer 𝑘, 𝑘 ∈ [1, 𝑛 − 1],
2. compute point 𝑘𝐺 = (𝑥, 𝑦),
3. compute 𝑟 = 𝑥 mod 𝑛. If 𝑟 = 0, go to step 1.
4. Compute 𝑘−1 mod 𝑛,
5. compute hash of the message ℎ(𝑚) and convert it to integer 𝑒,
6. compute 𝑠 = 𝑘−1(𝑒 + 𝑑𝑟) mod 𝑛. If 𝑠 = 0, go to step 1.
7. 𝐴’s signature for the message 𝑚 is pair (𝑟, 𝑠).

29

1.9.3 Public key verification

To verify the validity of user 𝐴’s public key 𝑄, user 𝐵 needs to obtain the same
domain parameters and do the following:

1. check that 𝑄 ̸= 𝑃∞,
2. check that coordinates of 𝑄 are properly represented elements of F𝑝,
3. check that Q lies on an elliptic curve 𝐸,
4. check that 𝑛𝑄 = 𝑃∞.

If any check fails, the public key (and any signature associated with it) is not valid.

1.9.4 Signature verification

To verify 𝐴’s signature for the message 𝑚, user 𝐵 needs to obtain 𝐴’s public key 𝑄

and the same domain parameters 𝐴 used for the generation of his signature. User
𝐵 can verify the signature (𝑟, 𝑠) attached to message 𝑚 by following these steps:

1. verify 𝐴’s public key 𝑄,
2. check that 𝑟, 𝑠 ∈ [1, 𝑛 − 1],
3. compute hash of the message ℎ(𝑚) and convert it to integer 𝑒,
4. compute 𝑤 = 𝑠−1 mod 𝑛,
5. compute 𝑢1 = 𝑒𝑤 mod 𝑛 and 𝑢2 = 𝑟𝑤 mod 𝑛,
6. compute point 𝑋 = 𝑢1𝐺 + 𝑢2𝑄,
7. If 𝑋 = 𝑃∞, reject the signature. Otherwise compute 𝑣 = 𝑥1 mod 𝑛, where 𝑥1

is 𝑥-coordinate of point 𝑋.
8. Accept the signature if and only if 𝑣 = 𝑟 mod 𝑛.

1.10 Summary
This chapter covered several subjects from algebra and number theory, which all find
its use in elliptic curve cryptography. Groups were generally described, because
the elliptic curve can be viewed as one. Very important attribute of a group is its
generator, which in case of public-key cryptosystems is one of the main parame-
ters. Finite fields were introduced, as they are the structure the elliptic curves are
defined over. Then the elliptic curves themselves with their group law point addi-
tion were covered. Special cases of point addition – point doubling and scalar
multiplication were covered separately and in great detail. Then the elliptic curve
discrete logarithm problem, which ensures the safety of elliptic curve cryptosystems,
was introduced. To show an example of use of the elliptic curve cryptography, two
popular protocols were described–Elliptic Curve Diffie-Hellman key exchange

30

and Elliptic Curve Digital Signature Algorithm. Safety of both of these pro-
tocols is built upon Elliptic Curve Discrete Logarithm Problem. Both ECDH and
ECDSA are implemented in the practical part of this thesis.

31

2 Software Background
This chapter introduces the software tools which were researched and tested during
the implementation of the web application. Main goal of this chapter is to propose
software candidates, which are best suited for implementation of the web applica-
tion, and describe them from theoretical point of view. Chapter 3 covers author’s
comments on what was achieved with these tools. Note that these chapters cover
even tools, which were not used in the final implementation of the web application,
because they were deemed suboptimal during the testing in Chapter 3.

2.1 Goals of the web application
Before researching of any tools is started, it is mandatory to state what is needed
to achieve with them. The web application should mainly be used for education
of students. Application’s purpose is to allow students to quickly check whether
or not their pen-and-paper calculations (and therefore their understanding of the
ECC) are correct. The web application should be capable of fast and conve-
nient computation of basic EC operations (point addition, point doubling, and
scalar multiplication) described in Section 1.6 on user-defined curves of mul-
tiple forms, as well as commonly used cryptographic protocols on elliptic curves,
such as ECDH (Section 1.8) and ECDSA (Section 1.9). There is great emphasis
on the application being user-friendly since this quality is not present in popular
software solutions which are capable of performing operations on elliptic curves. In
other words, the main contribution of this application should be providing a way
to use powerful mathematical software without the need to first study the software
itself for an extensive amount of time.

2.2 Java
Java is high level object-oriented programming language. This properties make it
perfect for creating interactive web applications. Another great quality of Java is its
active community, which has created considerable amount of helpful freely available
content. In this thesis, Java is used in:

• experimental implementation of the mathematical back-end engine of the web
application, covered in Section 3.1,

• implementation of test web application, whose purpose is to test the compati-
bility between Spring web and SageMath server, covered in Section 3.5,

• implementation of the final web application, covered in Section 3.6.

32

2.3 EC Library candidates
One of the viable approaches for designing the mathematical back-end is to use a
library, which is able to perform operations on elliptic curves. A research on the
state-of-the-art EC libraries was conducted. Library PARI/GP (Pascal ARIthmetic/
Great Programmable calculator) [10] is best suited for implementing the mathemat-
ical back-end of the web application, as it supports GW curves. Full results of the
research are covered in Section 3.2 together with author’s comments.

2.4 SageMath
SageMath [11] is a Python-based mathematics software system which serves
as an interface to numerous open-source mathematical packages. SageMath’s main
goal is providing a software that can be used to explore and experiment with math-
ematical constructions in algebra, geometry, number theory, calculus, numerical
computation etc. to students, teachers and researchers. SageMath aims to be effi-
cient and fast, as it uses highly-optimized mature software like GMP (GNU Multiple
Precision arithmetic library), PARI/GP, GAP (Groups, Algorithms, Programming)
and NTL (Number Theory Library). SageMath’s components are also commonly
used in software engineering practise. SageMath’s source code is freely available
and readable, so users can understand what the system is really doing and more
easily extend it. SageMath is also flexible enough to run on Windows, Linux and
macOS alike.

After installation, there are four possible ways to use SageMath from our com-
puter:

1. SageMath Console.
2. SageMath Notebook.
3. SageMath Shell.
4. By writing interpreted and compiled programs in Sage language.

2.4.1 SageMath Console

Running SageMath Console starts a customized version of the IPython shell, and
imports many functions and classes, so they are ready to use from the command
prompt. After that, Console is ready to receive user’s input. Example of SageMath
Console session is depicted in Figure 2.1. This Figure depicts defining GW elliptic
curve 𝐸 over field F47, printing its order and coordinates of all points, addition of
two points, scalar multiplication of a point and transforming the curve to SW form.
Another student [12] tried to create a pipe that would pass the input to the console

33

from his Java desktop application, but he was not successful. He provided good
explanation why it did not work, so it was decided to not use the console as well.

Fig. 2.1: Example of SageMath Console session.

2.4.2 SageMath Notebook

This option launches Jupyter Notebook on localhost:8888. The main advantages [13]
of this Notebook are:

1. In-browser editing for code, with automatic syntax highlighting, indentation,
and tab completion/introspection.

2. The ability to execute code from the browser, with the results of computations
attached to the code which generated them.

3. Displaying the result of computation using rich media representations, such as
HTML, LaTeX, PNG, SVG, etc.

Figure 2.2 depicts Graphical User Interface of Jupyter Notebook. Notebook allows
users for example to conveniently plot an elliptic curve over finite field.

34

Fig. 2.2: SageMath in Jupyter Notebook.

2.4.3 SageMath Shell

This option starts a UNIX -like terminal capable of running Python scripts. The
Shell is only present in Windows version of SageMath, because Linux and macOS
are able to run the scripts directly from the Terminal.

2.4.4 SageMathCell

There are also several ways to use SageMath even without actually having to install
it locally. Examples of these services are CoCalc [11], which is basically an online
version of Jupyter Notebook, and SageMathCell [14]. SageMathCell can be used to
embed SageMath computations into HTML (Hyper Text Markup Language) code of
a web page. The web page would then send the generated input through the internet
to be executed in SageMathCell server. This seemed to be exactly something that
was needed. There is unfortunately major issue that was discovered during the
testing described in Section 3.4.

35

2.4.5 SageMath server connection

In the previous thesis [12] a Python script for SageMath Shell is used for starting
a SageMath server on localhost. The implemented Java desktop application then
generates an input based on user’s actions, sends the input to the SageMath server
and collects the results. The script was provided by one of the users [16] of the
SageMath forum. The assignment of this thesis suggests to use the same approach.

The SageMath server created by the script on localhost is capable of:
1. listening for SageMath input on given port,
2. evaluating the input
3. returning the output back to the client

Adopting this solution allows designing a web application which would operate in
following steps:

1. user submits his input via front-end of the web application,
2. input is formatted to SageMath code in back-end of the web application,
3. formatted input is sent to the SageMath server created by the python script,
4. input is executed and evaluated in SageMath,
5. SageMath output is sent back to the back-end of the web application,
6. output is parsed to user-friendly format and displayed via the front-end.

Sections 3.5 and 3.6 cover reimplementation of this connection in the web application
environment and building the web application itself.

2.5 Spring framework
Method, that could be used for connecting the web application to SageMath server,
was covered in previous section. The server can serve as the mathematical back-end
of the web application. Framework Spring, which will be used in implementation of
the web application itself, is introduced in this section.

2.5.1 Spring framework generally

Spring framework’s [17, 18, 19] maturity, power and high flexibility make it the
most popular web application development framework for enterprise Java. One of
the main advantages of the Spring framework is its layered architecture, which allows
users to select which of its modules they want to use. Only 2 out of the very high
amount of various available modules are used in terms of this thesis – Spring Web
and Thymeleaf. Blank Spring project can be initialized online at https://start.
spring.io/, where it is possible to declare which of the modules are needed and
automatically generate the Maven or Gradle dependencies. Blank project can be

36

https://start.spring.io/
https://start.spring.io/

imported to most popular Java IDEs (Integrated Development Environments). It
is possible to start a Tomcat server with the web application by pressing a single
button in the IDE. This makes testing the web application very convenient.

2.5.2 Spring Web

Spring Web [17, 20] is a module of the Spring framework which deals with the
Model-View-Controller pattern. It provides annotation-based programming ap-
proach. Classes with annotation @Controller are the core of the Spring Web appli-
cation, their purpose is preparing a model map with data and selecting a view to
be rendered. Its functionality is best showed on an example.

Figure 2.3 depicts the Controller of Hello World web application written in Spring
Web. The controller consists of one handler method, which is listening on address
/hello. After visiting this address, handler method called helloHandler will add
String greeting = "Hello World" to the Model of the application. Afterwards, tem-
plate file, from which the View is rendered, index.html is returned and the View is
rendered and displayed by user’s web browser. The attribute greeting can be ac-
cessed inside index.html via Thymeleaf to print out its value ("Hello World") in the
web browser.

Fig. 2.3: Controller of simple Spring Web application.

2.5.3 Thymeleaf

Thymeleaf [20] is a modern server-side Java template engine for both web and stan-
dalone environments. It makes the HTML (Hyper Text Markup Language) tem-
plates more dynamic, for example by accessing variables from the model of the
web application or sending user input to the model. It can even be used for imple-
menting loops and if-statements inside the HTML code.

37

2.6 HTML5 and CSS
Hyper Text Markup Language 5 is the newest version of standard markup language
for creating web pages. HTML code consists of tags surrounded with "<>", each tag
represents an element on a web page. These tags are processed by web browsers in
order to render the web page to the user. Cascading Style Sheets (CSS) are used for
styling of said HTML files, which usually only define the structure of the web page.
In other words, HTML defines the content of web pages, while CSS determine the
appearance of the page.

2.7 Bootstrap
Bootstrap [21] is one of the most popular frameworks for designing responsive
and clean front-ends of websites. It includes set of CSS style sheets and sev-
eral JavaScript libraries. Features like the grid system make the websites powered
by Bootstrap very clear and user-friendly. Another great quality of Bootstrap is the
fact that is is open-source and freely available under very permissive MIT license
(named after Massachusetts Institute of Technology).

38

3 Web Application
This chapter covers author’s commentary on what was achieved with the tools that
were introduced in the previous chapter. Note that not every tool has proven to be
useful. Three final sections cover the implementation of the web application, which
is the main goal of this thesis.

First major decision that had to be made concerned approach to designing back-
end mathematical engine for the application. The mathematical engine needed
to be capable of several crucial tasks:

1. Creating a curve based on user-defined parameters.
2. Finding points of such curve.
3. Performing point addition, doubling and scalar multiplication.
4. Running in reasonable runtime.

There were three possible approaches for implementing the mathematical engine
with varied level of viability:

1. Implementation without dependence on existing EC libraries.
2. Implementation using EC library.
3. SageMath software system.

3.1 Implementation without dependence on existing
libraries

First possible approach involved implementing the back-end in one of the available
programming languages without the use of external library. This was without ques-
tion the least optimal and fast approach, because solid implementation of elliptic
curve operations would require a lot of low-level programming in order to make it
competitive with already existing implementations mentioned in Table 3.1. This
however is out of the field of this thesis, as its main goal is to create user-friendly
web application that would operate only in numbers of relatively small size.

That being said, it was decided to shortly explore this approach and implement
basic functionalities of ECC anyway. The main reason for this was the fact that
there were no existing libraries which would allow user to define his own parameters
for curves other than those of SW and GW forms. For more details see Section
3.2. The language of choice is Java, as its high-level nature makes designing web
applications more convenient than C++ for example, which would possibly be used
if the goal was to make the computations as fast as possible. Author was able to
implement methods for:

39

1. Finding and printing points of SW GW and BN curves with user-defined pa-
rameters,

2. Checking whether or not is the curve singular,
3. Point addition and doubling based on formulas described in Section (1.6),
4. Scalar multiplication based on the recursive double-and-add algorithm [5].

3.1.1 Double-and-add

Figure 3.1 depicts the implementation of the double-and-add algorithm, described
in Section 1.6.5. The depicted method uses the recursive version of said algorithm.
Depending on the value of scalar, method either decides the multiplication is done
and returns resulting point, calls point addition and itself with the scalar decre-
mented by 1 (if the scalar is odd) or calls only itself with halved scalar (if the scalar
is even).

Fig. 3.1: Recursive double-and-add algorithm.

3.1.2 Summary

Author’s implementation has proven to be fully functional only for the SW and BN
curves, operations on GW curves behaved in an inconsistent manner for some spe-
cific inputs. Author was however able to deepen his understanding of the operations
on elliptic curves. This approach was dropped in favour of the other two.

40

3.2 Implementation using library
In this section, the state-of-the-art ECC libraries are researched. Based on the
results of this research, it is decided which one would serve the purpose of this
thesis the best. Note that the main qualities in terms of this thesis are:

1. Support for curves of various forms with user-defined parameters.
2. Printing points of a curve.
3. Performing point addition/multiplication.

The results of conducted research are displayed in Table 3.1. As expected, every
researched library is capable of performing basic points operations. Lack of this
feature would make usefulness of such library questionable. However, none of the
researched libraries is able to find and display the points of an elliptic curve. The
purpose of these libraries is to function in practical environments, where the order
of the curves must be big enough to ensure security of the encryption. Finding all
points of a curve with safe parameters is a difficult problem, which however does
not need to be solved in practical deployment.

Tab. 3.1: Library candidates. "User-defined" stands for curves whose parameters
can be explicitly defined by user. "Pre-defined" stands for forms of built-in curves
whose parameters are given by various standards. Ed stands for Edwards curves.

Library Language User–defined Pre–defined
libTomCrypt[22] C SW SW
Crypto++[23] C++ SW SW, Montgomery

Bouncy Castle[24] Java SW SW, Montgomery
AMCL[25] C None SW, Ed, Montgomery
TEPLA[26] C None BN
libecc[27] C SW SW

OpenSSL[9] C SW SW, Montgomery
PARI/GP[10] C GW GW

Relic[28] C None SW, Ed, BN

These facts make the ability to process user-defined curves main deciding fac-
tor. Based on the information in Table 3.1, it is evident that majority of libraries
are only capable of handling user-defined curves in SW form or do not support user-
defined curves at all. PARI/GP is an exception, as it works with curves defined in
GW form. This could prove useful, since all the other forms of elliptic curves can

41

be expressed in GW form. It is also the library SageMath uses for its calculations
on elliptic curves.

3.3 SageMath
It was decided to use SageMath as the back-end engine, because it allows the appli-
cation to access functionalities of PARI/GP and is more suited for deployment on
a web application written in Java, compared to working with C library directly. As
a bonus, SageMath already has a function which can find and display all points
on an elliptic curve.

There were two possible methods to use SageMath as the back-end engine of the
web application:

• embedding SageMathCell to HTML code, described in Section 2.4.4,
• reimplementing the SageMath server connection, described in Section 2.4.5.

3.4 SageMathCell
In order to test the SageMathCell, it was embedded on a simple HTML page. The
SageMathCell included a Python code, that would create an elliptic curve in SW
form based on users parameters and print out its points. The parameters were
inserted via sliders, which allowed the web page to restrict the user from inputting
invalid parameters, such as non-prime field.

Figure 3.2 depicts a source code of the Cell. The figure does not show the
declarations in HTML head, which are needed for the SageMathCell to work. The
annotation @interact is used to specify which method is handling users inputs.
The code is otherwise pretty self-explanatory: method curve creates SW elliptic
curve based on its 3 parameters. Method with annotation @interact collects these
3 parameters as an input from the user. The elliptic curve is then stored in variable
u. Variable u can then be used to access SageMath’s various functions for elliptic
curves, such as points(), which prints the points of an elliptic curve.

Figure 3.3 shows what does the Cell look like in a web browser. The results are
automatically reevaluated every time the user changes his input via sliders.

There is however a major issue, which will now be briefly described. According
to manual covering SageMathCells included in SageMath GitHub repository it is
possible to link more SageMathCells together [15]. This should make them share
the same SageMath Kernel, and therefore a variable declared in one Cell should be
accessible in another linked Cell. This does not seem to be the case for variables han-
dled inside the method with annotation @interact. For example, it was not possible

42

to access variable 𝑢, which stored the elliptic curve defined by users parameters, in
another SageMathCell which could serve for point addition on said curve. Because
of this, SageMathCell can not be used as the back-end engine of the application that
would function one step at time (choosing form of the curve → inputting the para-
meters of the curve → choosing an operation etc. The necessity to input everything
at once could overwhelm less experienced users.

Fig. 3.2: Source code of SageMathCell capable of printing points of elliptic curve.

Fig. 3.3: SageMathCell capable of printing points of elliptic curve.

Author tried to fix this problem using Spring Web and Thymeleaf. In short,
another HTML page with form in it was created, that would pass the user-given
parameters to the original HTML with the embedded SageMathCell. SageMathCell
would then create an elliptic curve based on those parameters and then the method
with the annotation @interact could be used to pick points for addition instead.
Unfortunately, SageMathCell seemed to not be compatible with Spring Web.

43

Therefore, it was decided to adopt the SageMath server option for implementing
the mathematical back-end, which was explored and documented in [12].

3.5 SageMath server connection
This section covers reimplementation of the SageMath server connection described
in Section 2.4.5. Another student [12] used this method to connect his JavaFX
desktop application with SageMath server running on localhost.

One of the main challenges of this thesis was to adopt this method and deploy
it on a web application. Accomplishing this would eliminate the major downside
of previous student’s application–the necessity to first install SageMath and the
desktop application itself on user’s computer. The web application developed as the
practical part of this thesis requires only connection to the Internet.

The web application also offers more functionalities, for example support of var-
ious forms of curves and ability to simulate ECDSA protocol.

Before the implementation of the main web application started, it was first
needed to test if it is even possible to connect the Spring web application with
the SageMath server in the same way as the desktop application. This was tested
by creating a very simple Spring web application with single HTML form. This
HTML form would take raw unformatted input, send it to the SageMath server for
evaluation and show server’s output. Note that the server has to be built first by
running sage-daemon.py [16] from SageMath Shell. After examination of the pre-
decessor’s source code, it was discovered that he has implemented method called
interactWithSage, which does exactly that – sends a string to the SageMath server
via socket and returns SageMath server’s output as another string. This method
was adopted unchanged, because there seems to be no other way of implementing
this method. HTML form on the test Spring web application was connected with
the interactWithSage method, by adding the method to the Controller of the web
application. The test web application that was created was working similarly to
CoCalc, online SageMath notebook. Form for submitting SageMath code of this
test web application is depicted on Figure 3.4.

The connection between SageMath server and Spring web application was work-
ing properly. Next task was creating the main web application and deploying the
connection there. The main web application should allow users to submit their
input in user-friendly format, the internal logic of the web application would
then translate the input to SageMath code and send it to the SageMath server for
evaluation.

44

Fig. 3.4: Test Spring web application capable of evaluating SageMath input.

3.6 Implementation of the Web Application
This section covers the implementation of the final web application, describes
its functionality and shows its appearance via numerous screenshots. The final
application is user-friendly and can be used as an education tool, which is its main
purpose. The application in its final state is capable of:

• handling three forms of user-defined elliptic curves (SW, GW and BN),
• finding points and displaying them to the user,
• finding orders of all points on the curve and displaying them to the user,
• calculating the order of the curve,
• performing addition of user-picked points,
• performing doubling of user-picked point,
• performing scalar multiplication of user-picked point,
• simulating ECDH key exchange protocol,
• generating ECDSA signature,
• verifying ECDSA signature.

3.6.1 Initialization of Spring project

The first step of implementation was generating a blank Spring project at https:
//start.spring.io/. The project was generated with these settings:

• Gradle as the build automation tool,
• Spring version 2.4.0,
• Java 11,
• Spring Web and Thymeleaf modules dependencies.

Spring Web and Thymeleaf are crucial for making the web application work as
intended. These two modules were introduced in previous chapter. Other settings
are based on personal preference, the implementation of the web application would
be the same even if for example some other version of Spring was used.

45

https://start.spring.io/
https://start.spring.io/

3.6.2 General scheme of the application

The web application operates in cycles based on the Model-View-Controller
pattern. Simplified diagram of such cycle is depicted in Figure 3.5. The general
diagram will be explained in next few paragraphs, next two sections describe process
of evaluating point addition and ECDSA, where the cycles will be explained in
practise.

Fig. 3.5: Simplified diagram of the application.

The cycle starts with user making a request. This request carries information
based on the user’s previous actions, such as variables he put in via forms, and
address of his next destination on the website.

Controller

Class annotated @Controller is the core of the Spring web application. It consists
of handler methods, each mapped on different address. The Controller reads
the address in the request and invokes the corresponding handler method. Handler
method then sends instructions to the SageMessenger object, which executes all the
computations, based on the variables stored in the request. SageMessenger object
can directly make requests to the SageMath server, created by the script. After the
computations, SageMessenger object (which also stores the results) is added to the
Model, so the View can be rendered based on SageMessenger ’s contents. Handler
method then returns name of the HTML template, which will be used for rendering
the next View.

SageMessenger class

Everything math-related is handled inside this class. It includes a method called
interactWithSage, which was introduced in previous section. Purpose of this method
is to send input to SageMath server and store its response to a String. Note that

46

the SageMath server has to be launched first by running the script sage-daemon.py
in SageMath Shell.

SageMessenger class also contains several variables (curve parameters, lists of
points, scalar for multiplication, etc.), which are used for storing user input as well as
storing results. The results returned by SageMath server are not in an ideal format,
so they have to be processed by several formatting methods first. For example
method makeSagePointLookPrettier transforms projective point representation of
SageMath (which is "(x : y : z)") to affine representation of "[x, y]", which is more
user-friendly.

Another part of the class are methods [29, 30, 31] for solving several mathematical
problems, which do not require help from the SageMath server. For example method
findDivisors is used for finding all divisors of a number. This is needed for sorting
points of an elliptic curve to lists based on their order. Finding the divisors of the
order of the curve is equal to finding all possible orders of the points.

Last part of the SageMessenger class are methods used for generating input for
interactWithSage method. These methods take the user-defined parameters and
translate them to the SageMath syntax. These methods handle the computations
on elliptic curves, which can not be handled by Java alone.

HTML templates

Last part of the web application is a collection of HTML templates (one for each
handler method in Controller), which are used for rendering Views. Thymeleaf
engine enables these HTML templates to access the SageMessenger object stored in
the Model and read the variables inside. Thymeleaf even allows embedding some
basic algorithms into the HTML files, like cycling through a list or a hash map.
This is for example used for rendering a table of points from a hash map called
pointsByOrder, which is stored in the SageMessenger object. This hash map uses
possible orders of the points as a key and list of points of that exact order as a value.
This allows the website to render a table of points sorted by their orders.

The layout of the web page generally consists of 4 components:
1. navigation bar at the top, which allows user to either return to home page or

start computations on a new curve,
2. information about the curve, which is currently being processed,
3. table of points of said curve,
4. the computations part, where user can either put in his input via forms or see

the results.
The forms for user input are designed in a way that allows as little user error as

possible. For example coordinates of points, which will be used for computations,

47

are selected from a dropdown menu of viable points. This prevents the user from
choosing a point that is not located on the currently processed curve.

The HTML templates are styled by Bootstrap´s CSS style sheets. The overall ap-
pearance of the web application is very simple and minimalistic, which complements
its educative purpose.

3.6.3 Point addition

This section covers all the processes that lead to evaluation of point addition. The
purpose of this section is to explain functionality of the application to the reader
on practical example, with screenshots of the application and samples of the source
code. Note that the other operations function very similarly, the basic principles
are the same across the application.

Homepage

Homepage of the application can be found on address /index. After visiting this
address, a very first request is made and sent to the Controller. Controller finds the
corresponding handler method for address /index and calls it. This handler method
is depicted in Figure 3.6. The handler just returns name of the template, which is
index.html, there is no further internal logic involved. This is due to the fact that
homepage of the web application is always the same, there are no variables to be
computed or displayed. Template index.html is then used to render a View of the
homepage in user’s web browser.

Fig. 3.6: Handler method mapped on /index.

The template index.html consists of navigation bar, which is also present on every
other page of the application, big main header and short info about the application.
Homepage of the application is depicted in Figure 3.7.

User can pick a form of the curve via the navigation bar at the top. The nav-
igation bar can also be used later to reset all the computations and start a new
computation on a new curve. Figure 3.8 depicts the source code of the navigation

48

Fig. 3.7: View rendered from index.html in browser.

bar. As shown in the figure, the user can be redirected to 3 different addresses from
the navigation bar.

Fig. 3.8: Source code of the navigation bar, styled by Bootstrap CSS.

Choosing parameters of SW Curve

Let us assume the user has chosen Short Weierstrass form for his new computation.
He is redirected to /sw, another request is made and sent to the Controller and
handled by the corresponding handler method. Finally, the template swparam.html
is returned by the handler method and new View is rendered from it. The View
rendered from swparam.html is depicted on Figure 3.9. As shown in the figure,

49

purpose of this page is to collect the parameters of the curve user would like to
perform computations on. In case the parameters provided by the user are not
valid, error page is invoked and user is notified about this flaw.

Fig. 3.9: View rendered from swparam.html. The navigation bar at the top is
cropped off.

Finding points of the curve

After pressing "Go", user is redirected to /swpoints and another request is made.
This time the request carries the parameters, which the user typed in. Handler
method mapped on /swpoints is called. Source code of this method is depicted in
Figure 3.10. The method initializes object of the SageMessenger class and calls
various methods within the object:

1. method fixInfinity declares a variable O inside the SageMath server. This
allows us to refer to point at infinity as O, instead of SageMath’s default (0 :
1 : 0).

2. Method findPointsGW generates the input readable by SageMath based on
the user-provided parameters of the curve and sends the request to Sage-
Math server via interactWithSage method. The server’s response (unformat-
ted string of all the points of the curve in SageMath’s default representation)
is then stored in the variable points. Source code of this method is depicted
in Figure 3.11.

3. Method findOrder sends request to the SageMath server to find order of an
elliptic curve and stores it in one of the SageMessenger ’s variables.

4. Method populateListOfPoints creates new object of Point class for each point
stored in String points (see method findPointsGW) and stores them in an

50

array list called listOfPoints. Class Point has three integer variables inside –
𝑥-coordinate, 𝑦-coordinate and the order of the point.

5. Method findOrdersOfAllPoints sends input to SageMath server to find order
of each point stored in listOfPoints.

6. Method sortPointsByOrder first finds divisors of the curve’s order and then fills
hash map pointsByOrder with array lists and keys equal to the pre-computed
divisors. Lists inside the hash map then get filled with Point objects from the
original array list listOfPoints. This results in each list inside the hash map
pointsByOrder storing points of one exact order. Method sortPointsByOrder
is depicted in Figure 3.12.

Fig. 3.10: Source code of the handler method mapped on /swpoints.

Fig. 3.11: Source code of the SageMessenger ’s method used for finding points on a
user-defined elliptic curve.

Finally, the handler method mapped on /swpoints adds object SageMessenger to
the Model of the application, so the variables inside it can be accessed from template
swpoints.html, which is used for rendering the next Model.

Template swpoints.html as well as all the next templates consists of 5 parts:
1. the navigation bar at the top,
2. parameters of the user-defined elliptic curve,
3. order of the curve,
4. table of points sorted by their order (generated from the pointsByOrder hash

map,

51

Fig. 3.12: Source code of the SageMessenger ’s method used for filling hash map
pointsByOrder with lists of points based on their order.

5. buttons used for choosing desired operation.
View rendered from the swpoints.html template is depicted in Figure 3.13. Source
code of the table is depicted in Figure 3.14. Tags "th:" are processed by Thymeleaf.

Choosing points for addition

Let us assume the user wants to compute point addition on the curve he has submit-
ted. Clicking the "Point addition" button redirects him to /swadd and corresponding
handler method, which returns template swadd.html, is called. The already known
parameters (𝑎, 𝑏, 𝑓𝑖𝑒𝑙𝑑. . .) are stored in the request as hidden form parameters.
However, this method is able to store only strings and integers in the request – hash
map pointsByOrder can not be stored in the request. Instead, the points of the
curve are stored in the request as the string variable points (unformatted SageMath
output, see Figure 3.11). The hash map is then filled again from the contents of this
variable. This is definitely not the most optimal solution, however, filling the hash
map pointsByOrder is not too computationally demanding, compared to finding the
coordinates of the points (which is done by the SageMath server) for example.

Template swadd.html consists of several parts, most of them are the same as in
the previous template:

52

Fig. 3.13: View rendered from template swpoints.html. The navigation bar is
cropped.

1. the navigation bar at the top,
2. parameters of the user-defined elliptic curve,
3. order of the curve,
4. table of points sorted by their order (generated from the hash map),
5. two dropdown menus, where the user can select the desired points for addition.

Figure 3.15 depicts the dropdown menus, which are used for selecting points for
points addition. Note that the menus are situated below the table of points.

Displaying results of the addition

Clicking "Go" redirects the user to /swaddres (short Weierstrass addition result).
User-picked points are stored in the request. Object SageMessenger then creates
an input for the SageMath server based on the coordinates of the points user has
picked. SageMath server then returns result of the addition and it is stored inside
one of the many variables of the SageMessenger object. Template swaddres.html
is used to render the View with the result of the addition. This View is depicted
on Figure 3.16. User can choose his next destination on the application via the
provided buttons.

53

Fig. 3.14: Source code of the table. Thymeleaf engine is used to cycle through the
pointsByOrder hash map.

3.6.4 ECDSA

This section showcases the way the web application computes ECDSA protocol.
After successfully loading a curve and choosing the ECDSA via the corresponding
button (see Figure 3.13), the user is redirected to /swecdsa. The bottom part of
the View he sees is depicted in Figure 3.17. As shown in the figure, user can choose
whether he wants to generate a signature or verify a signature. Either way, he has
to choose a generator 𝐺 of prime order 𝑛 and put in the integer 𝑒, which represents
the hash of the message. The dropdown menu, from which the user chooses the
generator, is filled only with points of prime order. User is asked to input the
hash directly, because the purpose of the application is to allow students to check
their pen-and-paper computations. The possible assignment of student’s exercise
on ECDSA would certainly provide the message in this format, because computing
hash only on paper is very challenging task.

Let us suppose the user has chosen signature generation. He is redirected to
/swecdsasign, where he is asked to input 2 additional parameters, which are specific
only to the generation of signature. These parameters are his private key 𝑑 and
random integer 𝑘. The prime order 𝑛 of the generator 𝐺 is displayed to the user,
because both private key 𝑑 and random integer 𝑘 have to be in [1, 𝑛 − 1]. The
bottom part of the View rendered from template swecdsasign.html is depicted in
Figure 3.18.

54

Fig. 3.15: Dropdown menus of the View rendered from swadd.html, used for picking
points which are supposed to be added.

After clicking "Go", user is redirected to /swecdsasignres, where the results of
the computations described in Section 1.9.2 are displayed. These computations are
depicted in Figure 3.19. In case the user inputs invalid 𝑑 or 𝑘 or the generated
signature is not valid (𝑟 or 𝑠 is equal to 0), the green success bar turns red and
warns the user about these flaws.

Signature verification operates in a very similar manner, the application can
distinguish between three results:

1. signature, which the user put in, is valid,
2. public key of the signer is not valid,
3. public key of the signer is valid, but the signature is not.

All three of these results alter the success/warning bar accordingly, so the user can
know exactly where the issue is. Example of such warning bar is depicted in Figure
3.20.

55

Fig. 3.16: Result of the point addition.

Fig. 3.17: View rendered from swecdsa.html.

Fig. 3.18: View rendered from swecdsasign.html.

56

Fig. 3.19: Computations of signature pair on View rendered from swecdsasign-
res.html.

Fig. 3.20: Warning bar on View rendered from swecdsacheckres.html, caused by
inputting valid signer’s public key, but invalid signature.

57

Conclusion
The main contribution of this thesis is building web application, which provides
students with user-friendly interface to powerful mathematical software, which is by
design difficult to work with.

Three possible approaches for designing the mathematical back-end engine of
the web application were proposed. Using SageMath has proven to be best option,
because it enables using PARI/GP library, which is best suited for the cause. Sage-
Math is also much more convenient to work with in the web application environment,
compared to using a library written in C directly.

All the possibilities SageMath provides were carefully explored. It was decided
that the best way to use SageMath is to build a server, which would process the
requests sent by the web application.

The application that was built using Spring framework is capable of performing
point addition, doubling and multiplication on GW, SW and BN elliptic curves of
custom parameters. Two very popular and used protocols are also implemented.
Thus, the requirements of the assignment seem to be fulfilled.

The application’s appearance is minimalistic and clean, thanks to CSS styles of
the Bootstrap framework. The web application is very easy to navigate, only basic
understanding of the ECC is required. The mechanisms, which restrict the user from
inputting invalid parameters, enhance the user-friendliness of the application even
further. The application appears to run smoothly with little to no bugs. However,
the code of the application could be more clean and better optimized, if the author
was more experienced in implementing web applications. Another downside of the
application is the lack of some sort of Wiki, which would explain the very basics of
the ECC. However, the user can always resort to the first chapter of this thesis.

The application is currently not deployed on a server connected to the Internet,
but it can be launched from a provided virtual machine. Manual on how to use the
virtual machine is enclosed in the appendices of this thesis.

58

Bibliography
[1] STALLINGS, William. Cryptography and network security principles and prac-

tices, 4th edition. ISBN: 978-0-13-187319-3. Prentice Hall, 2005.

[2] MENEZES, Alfred J.; VAN OORSCHOT, Paul C.; VANSTONE, Scott A.
Handbook of applied cryptography. ISBN: 978-0-84-938523-0. CRC press, 2018.

[3] COHEN, Henri, et al. Handbook of elliptic and hyperelliptic curve cryptography.
ISBN: 978-1-58488-518-4. CRC press, 2005.

[4] SILVERMAN, Joseph H. An Introduction to the Theory of Elliptic Curves.
In: Computational Number Theory and Applications to Cryptography [online].
2006. Available at https://www.math.brown.edu/johsilve/Presentations/
WyomingEllipticCurve.pdf

[5] PANTŮČEK. Dominik. Elliptic curves: double and add. In: trustica.cz [online].
May 3, 2018. [cit. 2020-10-26]. Available at https://trustica.cz/en/2018/
05/03/elliptic-curves-double-and-add/.

[6] FAN, Junfeng, et al. State-of-the-art of secure ECC implementations: a survey
on known side-channel attacks and countermeasures. In: 2010 IEEE Interna-
tional Symposium on Hardware-Oriented Security and Trust (HOST). IEEE,
2010. p. 76-87.

[7] HANKERSON, Darrel.; MENEZES, Alfred.; VANSTONE, Scott. Guide to El-
liptic Curve Cryptography. ISBN 0-387-95273-X. Springer–Verlag New York,
Inc., 2004.

[8] JOHNSON, Don.; MENEZES, Alfred.; VANSTONE, Scott. The elliptic curve
digital signature algorithm (ECDSA). In: International journal of information
security. January 1, 2001. p. 36-63.

[9] Elliptic Curve Cryptography. In OpenSSL Wiki. Available at https://wiki.
openssl.org/index.php/Elliptic_Curve_Cryptography.

[10] Elliptic curves. In Catalogue of Functions for the GP/PARI CALCULATOR
Version 2.12.1. Available at https://pari.math.u-bordeaux.fr/dochtml/
html/Elliptic_curves.html.

[11] SageMath Documentation. The Sage Development Team, 2020 [cit. 2020-11-10].
Available at https://doc.sagemath.org/.

59

https://www.math.brown.edu/johsilve/Presentations/WyomingEllipticCurve.pdf
https://www.math.brown.edu/johsilve/Presentations/WyomingEllipticCurve.pdf
https://trustica.cz/en/2018/05/03/elliptic-curves-double-and-add/
https://trustica.cz/en/2018/05/03/elliptic-curves-double-and-add/
https://wiki.openssl.org/index.php/Elliptic_Curve_Cryptography
https://wiki.openssl.org/index.php/Elliptic_Curve_Cryptography
https://pari.math.u-bordeaux.fr/dochtml/html/Elliptic_curves.html
https://pari.math.u-bordeaux.fr/dochtml/html/Elliptic_curves.html
https://doc.sagemath.org/

[12] JANOUT, Vladimír. Application for Elliptic Curve Cryptography. Brno, 2020.
Bachelor’s Thesis. Brno University of Technology, Fakulta elektrotechniky a
komunikačních technologií, Ústav telekomunikací. Advised by M.Sc. Sara Ricci,
Ph.D.

[13] Jupyter Notebook Documentation. Jupyter Team, 2015 [cit. 2020-11-16]. Avail-
able at https://jupyter-notebook.readthedocs.io/en/latest/notebook.
html.

[14] GROUT, Jason.; HANSON, Ira.; JOHNSON, Steven.; KRAMER, Alex.;
NOVOSELTSEV, Andrey.; STEIN, William. About SageMathCell. Available
at https://sagecell.sagemath.org/static/about.html.

[15] Sage Mathematical Software System, GitHub Repository. The Sage Devel-
opment Team, 2020 [cit. 2020-11-17]. Available at https://github.com/
sagemath.

[16] WOODGNOME. Running Sage from other languages with high(er)
performance?. In: ask.sagemath.org [online]. July 21, 2014. [cit. 2020-
11-18]. Available at https://ask.sagemath.org/question/23431/
running-sage-from-other-languages-with-higher-performance/

[17] Spring tutorial. Baeldung, 2020 [cit. 2020-11-18]. Available at https://www.
baeldung.com/spring-tutorial.

[18] Spring framework tutorial. Java2Blog, 2020 [cit. 2020-11-18]. Available at
https://java2blog.com/introduction-to-spring-framework/.

[19] Spring tutorial. Tutorialspoint, 2020 [cit. 2020-11-18]. Available at https://
www.tutorialspoint.com/spring/index.htm.

[20] Thymeleaf documentation. The Thymeleaf Team, 2020 [cit. 2020-12-01]. Avail-
able at https://www.thymeleaf.org/documentation.html.

[21] Bootstrap documentation. The Bootstrap team, 2021 [cit. 2020-05-24].
Available at https://getbootstrap.com/docs/5.0/getting-started/
introduction/.

[22] ST DENNIS, Tom. LibTomCrypt Developer Manual. LibTom Projects. Avail-
able at https://www.co.tt/files/libTomCryptDoc.pdf.

[23] Elliptic Curve Cryptography. In Crypto++ Wiki. Available at https://www.
cryptopp.com/wiki/Elliptic_Curve_Cryptography.

60

https://jupyter-notebook.readthedocs.io/en/latest/notebook.html
https://jupyter-notebook.readthedocs.io/en/latest/notebook.html
https://sagecell.sagemath.org/static/about.html
https://github.com/sagemath
https://github.com/sagemath
https://ask.sagemath.org/question/23431/running-sage-from-other-languages-with-higher-performance/
https://ask.sagemath.org/question/23431/running-sage-from-other-languages-with-higher-performance/
https://www.baeldung.com/spring-tutorial
https://www.baeldung.com/spring-tutorial
https://java2blog.com/introduction-to-spring-framework/
https://www.tutorialspoint.com/spring/index.htm
https://www.tutorialspoint.com/spring/index.htm
https://www.thymeleaf.org/documentation.html
https://getbootstrap.com/docs/5.0/getting-started/introduction/
https://getbootstrap.com/docs/5.0/getting-started/introduction/
https://www.co.tt/files/libTomCryptDoc.pdf
https://www.cryptopp.com/wiki/Elliptic_Curve_Cryptography
https://www.cryptopp.com/wiki/Elliptic_Curve_Cryptography

[24] Bouncy Castle 1.66 API Specification. Available at https://javadoc.io/doc/
org.bouncycastle/bcprov-jdk15on/latest/overview-summary.html.

[25] Apache Milagro Crypto Library Overview. Available at https://milagro.
apache.org/docs/amcl-overview.html.

[26] TEPLA Manual. Laboratory of Cryptography and Information Security, Uni-
versity of Tsukuba, 2013. Available at http://www.cipher.risk.tsukuba.ac.
jp/tepla/doc/tepladoc1_0_0e.pdf.

[27] BENADJILA, Ryad.; EBALARD, Arnaud.; FLORI, Jean-Pierre. Libecc Project
Readme. Available at https://github.com/ANSSI-FR/libecc.

[28] ARANHA, D. F.; GOUVÊA, C. P. L.; MARKMANN T.; WAHBY, R. S.;
LIAO, K. RELIC Readme. Available at https://github.com/relic-toolkit/
relic.

[29] ANKUR. Modular multiplicative inverse. In: geeksforgeeks.org [online]. April
21, 2021. [cit. 2021-05-20]. Available at https://www.geeksforgeeks.org/
multiplicative-inverse-under-modulo-m/.

[30] Check If a Number Is Prime in Java. In: baeldung.com [online]. Jan-
uary 15, 2020. [cit. 2021-05-19]. Available at https://www.baeldung.com/
java-prime-numbers.

[31] Find Factors of a Number and Save to an Array in Java. In:
stackoverflow.com [online]. November 16, 2015. [cit. 2021-05-19].
Available at https://stackoverflow.com/questions/33744408/
find-factors-of-a-number-and-save-to-an-array-in-java.

61

https://javadoc.io/doc/org.bouncycastle/bcprov-jdk15on/latest/overview-summary.html
https://javadoc.io/doc/org.bouncycastle/bcprov-jdk15on/latest/overview-summary.html
https://milagro.apache.org/docs/amcl-overview.html
https://milagro.apache.org/docs/amcl-overview.html
http://www.cipher.risk.tsukuba.ac.jp/tepla/doc/tepladoc1_0_0e.pdf
http://www.cipher.risk.tsukuba.ac.jp/tepla/doc/tepladoc1_0_0e.pdf
https://github.com/ANSSI-FR/libecc
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://www.geeksforgeeks.org/multiplicative-inverse-under-modulo-m/
https://www.geeksforgeeks.org/multiplicative-inverse-under-modulo-m/
https://www.baeldung.com/java-prime-numbers
https://www.baeldung.com/java-prime-numbers
https://stackoverflow.com/questions/33744408/find-factors-of-a-number-and-save-to-an-array-in-java
https://stackoverflow.com/questions/33744408/find-factors-of-a-number-and-save-to-an-array-in-java

List of symbols, quantities and abbreviations
ECC Elliptic–Curve Cryptography

GW Generalized Weierstrass Curve

SW Short Weierstrass Curve

BN Barreto-Naehrig Curve

ECDH Elliptic Curve Diffie-Hellman

TLS Transport Layer Security

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

HTML Hyper Text Markup Language

CSS Cascading Style Sheets

PARI/GP Pascal ARIthmetic/Great Programmable calculator

GMP GNU Multiple Precision arithmetic library

GAP Groups, Algorithms, Programming

NTL Number Theory Library

IDE Integrated Development Environment

MIT Massachusetts Institute of Technology

Ed Edwards Curve

62

A File contents
xstark04BT

ECC_Web_App_test..................... source code of the web application
sage-daemon.py................................launches SageMath server
manual.pdf manual on how to run the application from VM

63

B Manual – Running the Application from
provided VM

Running the application is not trivial, because a lot of prerequisites need to be
present (SageMath, Java, etc.). Ubuntu virtual machine with all the prerequisites
ready can be downloaded there:
https://drive.google.com/file/d/1k6zKwsdY3JFvcJhwz0leoroghGrD5Fl0/view?
usp=sharing. In order to run the app and test it yourself, please:

1. download the VM,
2. import the VM to VMware Workstation Player,
3. run the VM,

• user name: vut
• password: vut

4. launch the SageMath server:
• open Terminal (Ctrl + Alt + T),
• run command cd /opt/SageMath/ ,
• run command sudo ./sage sage-daemon.py (password: vut),
• successful launch of the SageMath server is depicted on Figure B.1.
• Do not close the Terminal!

5. Launch the Tomcat server with the application on localhost:8080 :
• open IntelliJ Idea as in Figure B.2,
• click on the green play button in top-right corner, as in Figure B.3,
• starting the server takes a few seconds, see console at the bottom for info.
• Do not close the IntelliJ Idea!

6. Open Google Chrome (Firefox is also an option, but the arrows for number
inputs are disabled there),

• the same way IntelliJ Idea was opened.
7. Visit http://localhost:8080 .

• Navigating through the application is simple, but it is recommended to
read the Chapter 1 of this thesis (especially for ECDSA).

64

https://drive.google.com/file/d/1k6zKwsdY3JFvcJhwz0leoroghGrD5Fl0/view?usp=sharing
https://drive.google.com/file/d/1k6zKwsdY3JFvcJhwz0leoroghGrD5Fl0/view?usp=sharing

Fig. B.1: SageMath server is ready.

Fig. B.2: Launching IntelliJ Idea.

Fig. B.3: Launching the application.

65

	Introduction
	Mathematical Background
	Groups
	Fields
	Finite fields
	Elliptic curve
	Another forms of elliptic curves
	Point addition
	Addition of two distinct points
	Addition of inverse points
	Addition of point at infinity
	Addition of point to itself
	Scalar multiplication

	Elliptic curve discrete logarithm problem
	Elliptic curve Diffie-Hellman protocol
	Elliptic Curve Digital Signature Algorithm
	Key generation
	Signature generation
	Public key verification
	Signature verification

	Summary

	Software Background
	Goals of the web application
	Java
	EC Library candidates
	SageMath
	SageMath Console
	SageMath Notebook
	SageMath Shell
	SageMathCell
	SageMath server connection

	Spring framework
	Spring framework generally
	Spring Web
	Thymeleaf

	HTML5 and CSS
	Bootstrap

	Web Application
	Implementation without dependence on existing libraries
	Double-and-add
	Summary

	Implementation using library
	SageMath
	SageMathCell
	SageMath server connection
	Implementation of the Web Application
	Initialization of Spring project
	General scheme of the application
	Point addition
	ECDSA

	Conclusion
	Bibliography
	List of symbols, quantities and abbreviations
	File contents
	Manual – Running the Application from provided VM

