
Generation, Transformation, and Application 
of Quantum States of Photons: 

Quantum Entanglement, Quantum 
Coherence, and Oblivious Transfer 

a Ph.D. thesis 

by 

Nikola Horová 

Faculty of Science I Palacký University 

Olomouc 
2024 



Abstract 

This dissertation presents experimental tools for quantum information pro­
cessing at the level of individual photons and their use for information transmis­
sion and processing. We study the generation of entangled photons emitted by 
quantum dots. We deal wi th the problem of broken circular symmetry of the 
quantum dot leading to the generation of distinguishable photons. We apply 
triaxial stress in the plane to change the shape of the quantum dot electronic 
structure. This process enables restoring the broken symmetry and generating 
entangled photon pairs. 

We further deal with quantum coherence, which is closely related to quan­
tum entanglement. We introduce the resource theory of coherence as we in­
vestigate the protocol for assisted quantum coherence enhancement for a qubit. 
We deterministically increase the coherence of the target system (one qubit) by 
reducing the coherence of the control system (multiple copies). We define the 
concept of mutual coherence and investigate the states that maximize it in dif­
ferent subspaces of the two-qubit Hilbert space. In the 3D subspace, we discover 
a non-trivial asymmetric state, which we prepare from two factorized photonic 
qubits. 

Finally, we present the specific cryptographic protocol called non-interactive 
X O R oblivious transfer (XOT). It is a protocol between two participants who do 
not trust each other. Here, the sender, Alice, has two bits and sends them to 
the receiver, Bob. He gets either the first bit, the second bit or their XOR. Bob 
should not learn anything more, and Alice should not know what information 
Bob received. For the protocol, we also determine the smallest possible cheating 
probabilities for dishonest parties using pure symmetric states. 

Keywords: photon, polarization encoding, quantum dots, quantum coherence, 
quantum protocol, entanglement, oblivious transfer, quantum tomography 
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Anotace 

Dizertační práce se věnuje rozvoji experimentálních nástrojů kvantového 
zpracování informace na úrovni jednotl ivých fotonů a jejich využití pro přenos 
a zpracování informace. Studována je generaci kvantově provázaných fotonů s 
využit ím zdroje založeného na kvantových tečkách. Zabýváme se problémem 
narušené kruhové symetrie kvantových teček, která vede ke generaci rozlišitel­
ných fotonů. Na kvantovou tečku aplikujeme tříosé napět í v rovině, abychom 
změnili tvar její elektronické struktury. Tento proces vede k obnovení její syme­
trie a následně ke generaci entanglovaných fotonových párů. 

Dále se práce zabývá kvantovou koherencí, která s kvantovou provázaností 
úzce souvisí. Jsou uvedeny definice zdrojové teorie koherence, protože zkoumáme 
protokol asistovaného vylepšení kvantové koherence u qubitu. Deterministicky 
navyšujeme koherenci cílového systému (jednoho qubitu) za pomoci snížení ko­
herence řídícího systému (více kopií). Definujeme pojem vzájemné koherence a 
zkoumáme stavy, které j i maximalizují v různých podprostorech dvouqubitového 
Hilbertova prostoru. Ve 3D podprostoru objevujeme netriviální asymetrický stav, 
který připravujeme ze dvou faktorizovaných fotonických qubitu. 

V neposlední řadě je v práci prezentován konkré tn í kryptografický protokol 
nazvaný neinterakt ivní X O R oblivious transfer, neboli XOT. Jedná se o protokol 
mezi dvěma účastníky, kteří si navzájem nedůvěřují. Zde odesílatel Alice má 
k dispozici dva bity a příjemce Bob získá bud první bit, d ruhý bit, nebo jejich 
XOR. Bob by se neměl dozvědět nic více a Alice by neměla vědět, jakou infor­
maci Bob obdržel. U protokolu také určujeme nejmenší možné pravděpodobnost i 
podvádění pro nepoctivé strany využívající symetrické čisté stavy. 

Klíčová slova: foton, polarizační kódování, kvantové tečky, kvantová koheren­
ce, kvantový protokol, kvantová provázanost , oblivious transfer, kvantová tomo­
grafie 
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Preface 

This thesis presents the results of my research during PhD studies at the Palacký 
University in Olomouc. It aims to present advances in experimental methods 
and their results in the field of quantum entanglement, quantum coherence and 
quantum protocols. This thesis is based on four publications denoted in Referen­
ces as [A1-A4] . 

A t the very beginning, I would like to note that the results written in this 
thesis are the efforts of the entire team of researchers. The necessary part of 
the experiments built in our laboratory was a photon source constructed by Ivo 
Straka [1]. A t the same time, I had some programs created by Robert Stárek, 
which were able to control the parts of our experiments. Robert Stárek and 
Michal Mičuda participated in the construction of experiments, data processing 
and writting manucripts. Our work was supervised by Prof. Jaromír Fiurášek, 
who participated in the theoretical parts of two publications focused on quantum 
coherence, checked the results achieved in the experimental parts, considered 
their improvement and participated in the creation of manuscripts. Prof. Radim 
Filip and Michal Kolář participated in the theoretical part and calculations of 
the deterministic enhancement of local quantum coherence protocol and also in 
writting its manuscript. Prof. Miloslav Dušek ensured all cooperation with col­
leagues from Great Britain led by Prof. Erika Andersson. He contributed to the 
theoretical part of the X O T protocol, checked the results of the experiment and 
participated in writ ing the manuscript. Now, let me share my contribution. 

The first mentioned publication [Al ] was the result of the research during a 
three-month internship when I visited the group of Prof. Rinaldo Trotta at La 
Sapienza University in Rome, Italy. As part of the internship, under the super­
vision of colleagues from Rinaldo's group, I learned to work with quantum dots. 
We measured the degree of linear polarization of the emitted photons by a quan­
tum dot and the lifetime of its quasiparticles. I learned to measure fine-structure 
splitting. Together wi th people from the group, we quantified entanglement be­
tween emitted photon pairs without influencing the quantum dot. We then ap­
plied voltage to the quantum dot and investigated when the fine-structure split­
ting is reduced and the effect on entanglement. The results in this thesis, thus, 
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come from my measurements in the laboratory of La Sapienza University 
The next two publications [A2, A3] are based on the experiments created in 

our laboratory at Palacký University In this laboratory, I learned to work wi th 
quantum bits (qubits), to encode information into the polarization degrees of free­
dom of photons. I managed to build more than one interferometer and ensure 
their stability I learned the importance of two-photon interference in the experi­
ment. I gained experience working with the source of plarization-entangled pho­
ton pairs based on spontaneous parametric down-conversion (SPDC) and wi th 
entanglement detection. Last but not least, I used the knowledge of quantum 
tomography to reconstruct the quantum state. During our experiments, I was 
responsible for building both experimental setups. Together wi th Robert Stárek 
and Michal Mičuda, we started both experiments, checked the correct settings, 
and measured and processed the data. Together wi th other authors, I contributed 
to the writing of the manuscript. 

The last mentioned publication [A4] arose from our collaboration wi th Erika 
Anderson's group in Edinburgh, Great Britain. This group provided the theo­
retical basis for our experiment regarding oblivious transfer. I participated in 
setting up the experiment, measuring the results and processing the data. I also 
helped with the correction of the manuscript. 

Olomouc 
February 2024 

Nikola Horová 
horovanikola@outlook.com 

mailto:horovanikola@outlook.com




Chapter 1 

Introduction 

The first thoughts about the quantum nature of light appeared around 1900 when 
Max Planck resolved the ultraviolet catastrophe by considering that the energy 
of light is absorbed and emitted in quanta - discrete packets of energy [2]. Then 
in 1905, Albert Einstein, motivated by Max Planck, published a theory of the 
photoelectric effect, in which he proposed the existence of energy quanta, later 
called photons [3, 4]. It was during these times when the importance of theory 
that would connect the wave and the particle nature of light began to emerge. 
These were the beginnings of quantum mechanics. 

Since then, there have been many breakthroughs. For example, photons were 
previously thought to be independent of each other. However, in 1956, Hanbury 
Brown and Twiss disproved this theory by an experiment in which they pro­
posed measuring the angular diameters of stars from correlations of intensities 
in the independent detectors [5]. They observed the bunching correlation for 
bosons. Later, other experiments were implemented, where fermions were used 
instead of bosons, and the antibunching effect was observed [6]. This effect has 
no analogue in classical mechanics. A fully consistent description of the Hanbury 
Brown and Twiss experiment (HBT) was given by Glauber in his quantum opti­
cal coherence theory [7]. It introduces multi-order correlation functions based 
on those introduced in classical optics. 

In the early days of quantum mechanics, there was another breakthrough 
when Einstein, Podolsky and Rosen introduced a thought experiment known as 
the EPR paradox [8]. Using this experiment, they tried to prove that the quan­
tum theory is incomplete. They considered a pair of particles prepared in such 
a quantum state that if, for example, the position (or momentum) of the first 
particle were measured, it would be immediately possible to predict the position 
(or momentum) of the second particle as well, which would contradict the the­
ory of relativity. Today, we know that it is possible to generate such states, and 
we call them entangled. Their existence can be proven, for example, by Bell's 
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inequalities violation [9]. A t the same time, these states do not contradict the 
theory of relativity since the detected information of one entangled particle can­
not be transmitted faster than the speed of light. Entangled states and Bell's work 
eventually found application in some quantum cryptography protocols [10, 11]. 
Entangled states are further used for quantum teleportation [12, 13] or in super-
dense coding [14]. 

This thesis aims to describe the experiments carried out during my PhD 
studies. These experiments represent advances in the fields of quantum dots, 
quantum coherence, and quantum protocols. In this Chapter, in Section 1.1, we 
present the contemporary state of research. Theory, methodological details and 
fundamental concepts are included in Chapter 2. Specifically, Section 2.1 intro­
duces the quantum bit or qubit, its characterization, and devices that perform 
logical operations on qubits. A t the same time, it explains information encoding 
using a qubit and describes two-photon interference, quantum state tomography 
and entanglement. Section 2.2 discusses the generation of entangled photons pro­
duced by spontaneous parametric down-conversion and by quantum dots. The 
description of quantum coherence as a resource theory is in Section 2.3. Subse­
quently, we introduce the concept of mutual coherence and explain the common 
traits of coherence and entanglement resource theories. In the last Section 2.4, 
we describe quantum key distribution and oblivious transfer. We discuss their 
differences, and we introduce the various protocols that are used to transmit in­
formation securely. 

Chapter 3 describes the generation of entangled photon pairs inside GaAs 
quantum dots and a strain tuning method. The generation is dependent on the 
circular symmetry of a quantum dot. If a quantum dot has reduced symmetry, 
an effect of fine-structure splitting occurs. The larger this effect is, the more 
we can distinguish the photons generated by the quantum dot, and thus, the 
less the photons emitted by a quantum dot are entangled. The purpose of the 
strain tunning method is the external strain field application, which makes it 
possible to improve the broken symmetry of the quantum dot. In Section 3.1, we 
characterize the GaAs quantum dot. We are interested in the degree of linear 
polarization of the generated photons, the lifetime of quasi-particles inside the 
quantum dot, from whose recombination we obtain the necessary photons, and 
last but not least, we are interested in the measurement of fine-structure splitting. 
In Section 3.2, we describe the application of voltage to the quantum dot using 
the strain tuning method to reduce the measured value of fine-structure splitting. 
Subsequently, in Section 3.3, we show the dependence of two entanglement mea­
sures on the fine-structure splitting. 

In Chapter 4, we investigate a remote control and enhancement of quantum 
coherence. In this protocol, we consider quantum coherence as a resource theory. 
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We experimentally demonstrate the quantum coherence enhancement using two 
qubits, one target and one control, wi th non-zero coherence. We let these two 
qubits interact in a setup enabling the control of their coupling strength. For a 
specific coupling strength, we manage to increase the coherence of the target 
qubit by using several copies of the control qubit. We use a partial SWAP gate 
(p-SWAP), described in Section 4.1.1, to control the coupling strength between 
the two qubits. The description of the experiment consisting of the p-SWAP gate 
is subsequently included in Section 4.1.2. 

We stay wi th quantum coherence as a resource theory in Chapter 5 and look 
at composite systems that consist of multiple qubits. In this case, it is possible 
to define coherence occurring in the composite system, which, however, is no 
longer contained in its individual subsystems. We call such a coherence mutual 
coherence. We investigate quantum states that maximize mutual coherence in 
various subspaces of the two-qubit Hilbert space. 

Finally, in Chapter 6, we describe and experimentally implement the pro­
posed non-interactive X O R quantum oblivious transfer protocol. It is a protocol 
between two participants, Alice and Bob, who do not trust each other. One of 
the participants sends messages to the other. The recipient should receive only 
one message without knowing the content of the others and without the sender 
knowing which message the recipient received. We are interested in all possible 
cases that may arise, more specifically, they both being honest or when Alice 
or Bob wants to get more information than they should have. We consider both 
variants, when Alice sends messages to Bob, as well as when Bob sends messages 
to Alice. 

1.1 Contemporary state of research 
Linear optics 
Linear optics is a powerful platform for quantum information processing which 
uses superposition states of photons or atoms for processing or sending infor­
mation (data). Linear optics is the only choice i f we want to connect several 
nodes of a network for the purpose of quantum communication or quantum com­
puting. It can be used to probe fundamental properties of quantum physics. In­
dividual photons are the carrier of information, and linear optical elements, such 
as (polarizing) beam splitters, half- and quarter-waveplates or mirrors, are used 
to transmit and process information. 

The importance of linear optics became first apparent in 1984 when the first 
quantum protocol for secure quantum communication was designed and im­
plemented by Bennett and Brassard [15]. In 2001, Kni l l , Laflamme, and M i l -
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burn showed that scalable quantum computation is possible with linear optics 
elements, single-photon sources, and detectors, i.e. without nonlinearity [16]. 
This scheme is an implementation of linear optical quantum computing (LOQC), 
which enables the creation of universal quantum computers. Even though this 
scheme is possible in principle, controlling photons moving at the speed of light 
was challenging at the time. This situation changed with the first experimental 
demonstrations of two- and three-qubit gates [17-19]. Not long after, there were 
already various experimental demonstrations of quantum computing [20-22]. 

Another approach implemented using linear optics that can solve problems 
beyond the capabilities of classical computers is boson sampling [23]. This me­
thod, while not considered universal, could demonstrate the power of quantum 
computing without realizing a quantum computer. Scalable boson sampling with 
time-bin encoding has already been implemented [24]. Subsequently, scientists 
demonstrated three-, four-, and five-boson sampling together with 12-photon 
entanglement [25] and Gaussian boson sampling on 216 squeezed modes entan­
gled wi th three-dimensional connectivity using a photonic processor called Bo-
realis [26]. 

Through boson sampling, we come to the fact that the framework of linear 
optics also allows the generation of entanglement [27], the associated violation 
of Bell's inequalities [28] and quantum teleportation [13]. W i t h the constant de­
velopment of technology, it is possible to realize quantum teleportation even on 
a photonic chip [29]. Integrated quantum photonics is increasingly used due 
to its advantages, such as more advanced manufacturing technologies, infor­
mation transmission and processing at room temperatures, stability and resis­
tance to decoherence. Scientists from Denmark and China managed to assemble 
a graph-theoretical programmable quantum photonic device in large-scale inte­
grated nanophotonic circuits integrating about 2.500 components fabricated on a 
silicon-on-insulator wafer [30]. It is also possible to implement an efficient SWAP 
gate on the chip, which deterministically swaps the photon's polarization qubit 
for its spatial momentum qubit [31]. A greater challenge in quantum-integrated 
photonics is the inclusion of (non-classical) light sources and detectors. One of 
the possible approaches in light sources integration on the chip is a laser cavity 
with a high-efficiency tunable noise suppression filter and a nonlinear micror-
ing for entangled photon pairs generation through spontaneous four-wave mix­
ing [32]. Another solution is using quantum dots, which allows generation of the 
spin-photon entanglement based on photon-scattering of a quantum dot [33]. As 
for the detectors, the researchers integrated a superconducting nanowire single-
photon detector [34] or mid-infrared photothermoelectric detectors enabling po­
larization detection [35]. 
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Entangled photon sources 
The most widespread way to generate photon entanglement is by spontaneous 
parametric down-conversion (SPDC). The conservation of energy and momen­
tum in this process leads to the creation of two entangled photons. This phe­
nomenon was first observed by Harris and colleagues in 1967 as parametric flu­
orescence inside a bulk nonlinear crystal [36]. This observation was followed 
by experiments generating entanglement in various degrees of freedom, such as 
polarization [37], time-frequency [38], orbital angular momentum [39], or their 
numerous combinations [40]. 

SPDC is not the only way to create entangled photon pairs. Other possi­
ble solutions are the use of two neutral atoms and the Rydberg blockade [41] 
or an entanglement filter, where unwanted states are eliminated, and the out­
puts are high-fidelity entangled states. The second mentioned procedure is done 
using strong and controllable photon-photon interaction enabled by Rydberg 
atoms [42]. 

Other important sources of entangled photon pairs are quantum dots. Their 
advantage over SPDC sources lies in the generation of photons "on-demand". In 
other words, it is not a probabilistic source, where we get the desired output wi th 
a certain probability, but a source that, under ideal conditions, creates a photon 
or entangled photon pairs deterministically when triggered by a laser or electri­
cal impulse. A quantum dot exhibits atom-like properties, such as discrete levels 
of energy. In a simple model, a quantum dot can be described as a three-level 
system with ground state, exciton level and biexciton level. Thanks to the Pauli 
exclusion principle, it is possible to excite a maximum of two electrons to the 
biexciton level. The recombination of these electrons from the biexciton level 
through the exciton level to the ground state under certain conditions creates an 
entangled photon pair. The use of quantum dots enables to generate time-bin 
entanglement [43, 44], polarization entanglement [45] even on a chip [46], or 
spatial-dependent quantum dot-photon entanglement [47]. 

Quantum coherence 
Quantum coherence is at the heart of quantum interference and quantum com­
puting and also is a necessary condition for entanglement. It was first described 
by Glauber [7], Sudarshan [48] in terms of phase space distributions and mul­
tipoint correlation functions. However, this theory can be generalized beyond 
optical fields. Quantum coherence can be present in the quantum superposition 
of states of quantum system of any type and can be considered an important 
resource. 
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A resource theory of quantum coherence was formulated in 2014 by Baum-
gratz, Cramer, and Plenio [49]. Coherence is a basis-dependent concept, so we 
must first choose the basis of a defined vector space. This basis can be chosen 
to suit existing constraints, such as the conditions in the laboratory or different 
conservation laws. For quantum coherence description, we further need to iden­
tify a set of incoherent states and a class of free (incoherent) operations. These 
operations have been discussed in publications by Chitambar and Gour [50-52]. 

Possible applications of quantum coherence are in quantum algorithms [53-
55]. In Ref. [53], the presented algorithm decides whether the boolean function is 
constant or balanced. If there is less coherence in this protocol, then the error of 
this decision increases. Other applications can be found in thermodynamics [56, 
57], metrology [58], or in quantum key distribution [59], where authors show 
that the secure key rate can be quantified by the coherence of the shared bipartite 
states. 

Protocols of quantum cryptography 
Quantum cryptography is a technique using principles of quantum mechanics 
for secret communication over an insecure channel. Its beginnings date back to 
1983 when Wiesner proposed using principles of quantum mechanics to create 
and validate unforgeable banknotes. There are several cryptographic methods 
including, for example, quantum key distribution (QKD), oblivious transfer (OT), 
quantum bit commitment [60] or password-based authentication [61]. 

Q K D protocols allow quantum-safe communication and quantum OT-(QOT) 
protocols allow quantum-safe computation. In QKD, the communication involves 
participants who trust each other, and thus, the security of the quantum commu­
nication channel is determined concerning an unwanted third party. Whereas 
with OT, even the communication participants do not trust each other, so the se­
curity of information transmission must be guaranteed even towards them. The 
first Q K D protocol was created in 1984, and it is the well-known BB84 protocol by 
Bennett and Brassard [15]. It uses polarization encoding into individual qubits to 
transmit information. Another Q K D protocol is the E91 protocol [10], which uses 
entanglement to determine the security of information transmission. Among the 
first OT protocols, we consider 1-2 oblivious transfer [62], 1-n OT [63]. 

Nowadays, scientists focus on improvements of the protocols security. They 
try to increase the secure key rate at ever greater distances and reduce the quan­
tum bit error rate (QBER) or cost. Existing Q K D and OT protocols work either 
with discrete variables (DV) [64, 65], where information is encoded into proper­
ties of photons, for example, polarization or phase, or protocols working with 
continuous variables (CV) [66, 67] using the quadrature of coherent or squeezed 
states of light. C V and D V approaches can also be combined [68]. However, 
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these different secure communication ways have their own advantages and dis­
advantages. For example, one of the advantages of C V compared to D V may be a 
higher secure key rate, but on the other hand, it has complex data processing. To 
transfer a secret key or message, we can use optical fibers [65, 69], communicate 
over a free space [70], or a combination of both [71]. Free space communication 
is affected by diffraction, atmospheric extinction, or turbulence. On the other 
hand, its advantages are easy mobility and simpler design. There are even pro­
tocols wi th entanglement [72] generated not only by SPDC source [73, 74], but 
also by quantum dots [75]. Scientists have even come up with satellite-to-ground 
Q K D [76] or (measurement) device-independent protocols [77, 78], where we no 
longer rely on our detection device being secure. 



Chapter 2 

Methods 

A l l the experiments presented in this work are based on linear optics and work 
with individual quantum bits (qubits). Therefore, this entire Chapter is devoted 
to qubits. We describe what a qubit is and what role it plays in quantum physics. 
We introduce the elementary quantum gates to demonstrate how we can ma­
nipulate qubits. We explain polarization and spatial encoding wi th qubits, two-
photon interference, and the principle of quantum tomography. Subsequently, 
we introduce the concept of polarization entanglement and present two possible 
ways to create it among qubits. A t the end of this Chapter, we mention quantum 
coherence and how it is related to entanglement. 

2.1 Quantum bits 
A quantum bit or a qubit is a two-level system and a basic unit of quantum infor­
mation. Mathematically, we can describe a qubit by a 2D Hilbert space % = C 2 , 
which is a complete vector space with a scalar product. The basis of the Hilbert 
space consists of two orthogonal states, which are written in Dirac notation as 
|0) and | l ) . While a classical bit can only be in one of the basis states, |0) or | l ) , a 
qubit can also be in a superposition of these two states a|0) + with complex 
coefficients satisfying \a\2 + \(3\2 = 1. 

A pure single qubit state can be expressed as 

| » ) = f ^ > . (2.1) 

The denominator arose from the condition that the state must be normalized, i.e., 

IW>I 2 = i 
Alternatively, a pure single-qubit state \ijf(6,4>)) can be interpreted as an eigen­

vector of an observable a{6,4>) wi th eigenvalue of 1. Operator a{6,4>) can be 
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expressed as 

<r(0,0) = sin 0 cos (f>ax + sin 0 sin <pay + cos 6az, 

where ov and a? are Pauli spin matrices. 

The <r(0,0) operator has a second eigenvector, which is perpendicular to the 
already mentioned eigenvector \ f(Q, $)) and has an eigenvalue equal to - 1 . Each 
of the Pauli matrices also has two eigenvectors with ± 1 eigenvalues 

ay\y±) = My*), 
az\z±) = ± |z±) , 

where | x ± ) = ^(|0> ± | y ± ) = ^(|0> ± \z+) = |0> and |z"> = 
The eigenvectors x~,y~ and z~ define the axes of a 3D sphere, called the 

Bloch sphere shown in Figure 2.1, therefore, a measurement in the az basis can 
be used as a synonym for projection measurement on a pair of orthogonal vectors 
|0) and | l ) . Similarly for measurements in the ax and ay bases. 

A single-qubit state can also be written using two angles 6,<p in spherical 
coordinates 

|^(0,0)> = cos (0/2)|O) + sin (0/2)| 1), (2.2) 

where 0 e [0,n] and (f> € [0,2n]. This parametrization allows to represent the 
qubit by a point on the Bloch sphere. 

The Bloch sphere plays an important role in describing quantum states. Pure 
quantum states lie on the surface of the Bloch sphere. Moreover, points lying 
inside this sphere can be associated with mixed quantum states representing a 
statistical ensemble of pure states. They cannot be described by a state vector, but 
instead, they have to be represented using a density operator (a density matrix 
after choosing a certain basis) 

l 
/ W = £ # I ^ M ) X ^ ( M ) I » (2.3) 

i=0 

with probabilities p, that must satisfy the conditions p, > 0 and 2 ; Pi = 1-
Each pure state is also described by a density operator, however, the sum 

from the previous expression collapses as all p, except one vanish 

Ppure = \ m m m ^ \ - (2.4) 
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z 

Figure 2.1: Bloch sphere representing qubits. The opposite poles of the sphere usually 
correspond to the basis vectors |0), | l), but the choice is arbitrary. Points on the surface 
of the sphere represent pure states, and the points inside the sphere represent mixed 
states. 

Multiqubit states 
We can generalize everything presented so far for systems involving two or more 
qubits. One possible choice of basis states of the two-qubit Hilbert space T-L2 = C 4 

is given by the tensor product of the basis states of the single-qubit Hilbert space 
H = C2 

|00) = |0>®|0>, 
|01) = |0>®|l>, (2.5) 

|10) = |1>®|0), 
|11) = |1>®|1>. 

This basis is called the two-qubit computational basis, just as {|0), |l)} is called 
the single-qubit computational basis. 

A general pure two-qubit state is given by a superposition of basis states 

I<A>1,2 = QolOO) + CoilOl) + C 1 0 |10) + C n | l l ) , (2.6) 

with complex coefficients that must satisfy | C 0 0 | 2 + | C 0 1 | 2 + | C 1 0 | 2 + | C n | 2 = 1. 
Analogously for N-qubits, we have a computational basis given by 

I00...0) = \0)®N = |0>! ® |0)2 ® - ® |0)JV, 

|00 ... 1> = |0>! ® |0)2 ® - ® |1)JV> 
: (2.7) 

|11 ... 1> = \ l ) m = |1>! ® |1)2 ® - ® |l)jV-
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The N-qubit pure state can be expressed using the relation 

l^)i,2,...,JV - X chi2...iN\hh — ijv). 
i1i2...iAfe{0,l} 

(2.8) 

1. with complex coefficients that must satisfy |QJ;2...;NI 
A mixed N-qubit state is described by a density operator expressed by an 

incoherent sum of pairwise orthogonal pure states 

2JV 

(2.9) 
i=l 

2JV 
with pi> 0 and 2;=i Pi = 1 

2.1.1 Single-qubit characterization 

There are two important quantities that are frequently used for single-qubit states 
characterization. The first one is fidelity J-, which quantifies how close two 
quantum states are to each other. It is a measure of the distance between two 
density operators p, a expressed as 

Hp,o) = Tr ap\jo Tr P<NP (2.10) 

where Tr denotes the trace, which is the sum of the diagonal terms of the density 
matrix 1 . If one of the states is pure, i.e., p = (i/'X'AI. then fidelity takes the form 

F(p,a) = 7r[ap] = (if/\a\t). (2.11) 

The second one is purity V, which tells us how close the states are to the 
surface of the Bloch sphere, i.e., how pure they are. It can be expressed as 

V(p) = Tr[/5 2]. (2.12) 

For pure states, the purity is equal to 1, for completely mixed states in the case 
of a single-qubit d-dimensional system, the purity is Vmin = 1/d. 

'The trace of a square matrix that is the product of two real matrices can be rewritten as the 
sum of the products of their elements £i=i 2,=i aijhj-
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2.1.2 Quantum gates 
Devices that perform operations on qubits are called quantum gates [Bl ] . In any 
specific basis, the operators can be represented by square matrices (the chosen 
one is usually the computational basis). For n qubits, we get 2n x 2n matrices. 
Some quantum logic gates are analogous to classical ones. Unlike classical gates, 
quantum gates are capable of working wi th quantum superpositions. In addition, 
there are quantum gates that do not have a classical counterpart. In the following, 
we present the elementary unitary 2 quantum logic gates using unitary operators 
as well as matrix representations in the computational basis. 

Identity gate 
A n identity gate is an identity matrix expressed for a single-qubit as 

[}7 = i = |oXo| + | i X i | -> i = 

It does not modify the quantum state. The main importance of this gate lies in 
the mathematical description of the results of various operations performed wi th 
other gates. 

1 0 
0 1 

(2.13) 

Pauli gates 
Pauli gates X, Y, Z are given by three Pauli operators ax, ay, az and for a single-
qubit are expressed as follows 

ö x = ^x = loXi| + |iXo| -> x 

Vy = 6-v = i | l X 0 | - i | 0 X l | 

[/z = <7z = | o X o | - | i X i | -> z 

0 1 
1 0 

0 -i 
1 0 

1 0 
0 -1 

(2.14) 

(2.15) 

(2.16) 

Pauli gates are rotations around the x, y, and z axes of the Bloch sphere by 
n rad. The Pauli X gate is equivalent to the classical logic N O T gate wi th respect 
to {|0), |l)} basis. It is also called a bit-flip because it maps |0) to | l ) and | l ) to 
|0). Similarly, the Pauli Y gate maps |0) to i\l) and | l ) to —i\0), and the Pauli Z 

2 Any two points on the surface of the Bloch sphere, i.e., two pure qubit states, can be mapped 
to each other by a reversible operation U. Such a transformation satisfying the condition U'U — 
UU* — I is called unitary. 
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gate leaves |0) unchanged and maps | l ) to —|l), hence it is sometimes called a 
phase-flip. 

A quantum circuit using quantum gates can be easily visualized using quan­
tum circuit diagrams. Such diagrams for Pauli operators are shown in Fig. 2.2. 
A n d in Fig. 2.3, we can see the circuit diagram for a measurement in a computa­
tional basis. 

— X 

(a) ax gate (NOT gate) (b) ay gate (c) az gate 

Figure 2.2: Circuit diagrams of Pauli gates. 

Pauli operators together with the identity operator satisfy relations 

i = bi = 6* = 8-1 Tr[ajak] = 2fy, (2.17) 

and since they form an operator basis, we can express any operator A as their 
linear combination 

A=^ajd-j, (2.18) 
i 

where GQ 

10) |1> 

Figure 2.3: Circuit diagram of a measurement in a computational basis. 

Phase-shift gates 
Single qubit gates mapping |0) to |0) and | l ) to e^ | l ) . The probability of mea­
suring |0) or | l ) does not change when applying these gates, but the phase of the 
given quantum state is modified. More specifically, it is a rotation around the 
z-axis of the Bloch sphere by <j) rad, where 0 is a given phase-shift with a period 
of 2n. Their matrix has the following general form 

UP• =|0X0| + e # | l X l | -
1 0 
0 e# 

(2.19) 
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Depending on the value of <p, we get different phase gates. For example, T-
gate with <f> = n/4, S-gate with <f> = n/2 often used for a SWAP gate, or Pauli 
Z gate with <f> = n. A l l these gates can be expressed together using equation 
T = VS = $Z. 

A n example circuit diagrams for the S and T gates are shown in Figure 2.4. 

- S — T — 
(a) S gate (b) T gate 

Figure 2.4: Circuit diagram of S gate (a) and T gate (b). 

Hadamard gate 
Hadamard gate H is defined for a single-qubit as 

1o) + | i ) \ ^ , /|a> — |o> 
H V2 

|0> 
42 ll> V2 

(2.20) 

This gate maps |0) to and | l ) to i) It means that it creates a ba­
lanced superposition of the quantum state i f the quantum state is from the com­
putational basis. In Bloch sphere formalism, Hadamard gate performs a rota­
tion around the axis (x + z)/V2 by n rad and changes the basis. For example, 
HZH = X swaps z-basis to x-basis. 

H 

Figure 2.5: Circuit diagram of Hadamard gate. 

Multi-qubit gates 
These gates operate on multiple qubits simultaneously and some enable entan­
glement creation. They are the basic building blocks for the construction of 
quantum circuits. Some of them are simple to implement and are composed of 
single-qubit gates. The more complex gates then use the less complex ones for 
their construction. Multi-qubit gates include, for example, controlled gates or a 
SWAP gate. Some of the gates we discuss below. 
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1) Controlled gates 
These gates operate on two or more qubits, where at least one qubit plays the 
role of controlling some operations. For example, a C N O T gate, also known as 
a C X , operates on two qubits and acts as a N O T operation on the second qubit 
only when the first qubit is in the state | l ) . Otherwise, it does nothing. 

Since this gate acts on at least two qubits, the minimal computational basis 
available to us is for two qubits and takes the form {|00), |0l), |10), | l l )} . Now, we 
can express the C N O T gate as 

£>CNOT = | 0X0 |® i + | l X l | ® a x 
C N O T 

"1 0 0 0" 
0 1 0 0 
0 0 0 1 
0 0 1 0 

(2.21) 

Similarly, the C Z gate introduces a n phase shift i f and only i f both qubits are 
in state | l ) . 

L > c z = | 0 X 0 | ® i + | l X l | ® a 2 C Z 

"1 0 0 0 " 
0 1 0 0 
0 0 1 0 
0 0 0 -1 

(2.22) 

(a) CNOT gate (b) CZ gate 

Figure 2.6: Circuit diagrams of CNOT gate (a) and CZ gate (b). 

In general, unitary operation of controlling gates can be written as Uc = 
|0X0| 0 1 + 11X11 ® U a n d acts as a U operation on the second qubit only when 
the first qubit is in the state | l ) . The circuit diagrams of C N O T and C Z gates are 
shown in Fig. 2.6 and the general circuit diagram for unitary controlled gates is 
shown in Fig. 2.7 



16 QUANTUM BITS 

U 

Figure 2.7: Circuit diagram of a general unitary controlled gate. 

Toffoli gate 

It is a 3-bit entangling gate that is universal for classical computing, but not for 
quantum computing. A quantum Toffoli gate is defined for three qubits and acts 
as a C N O T gate with two control qubits and one target qubit. Assuming we only 
have input qubits in states |0) or | l ) , then i f the first two qubits are in the state 
| l ) , a Pauli X gate is applied to the third qubit (CCNOT gate). Otherwise the gate 
does nothing. Its circuit diagram is shown in Fig. 2.8. 

Tomographic characterization of linear optical quantum Toffoli gate imple­
mented by interference of photons on a partially polarizing beam splitter inserted 
inside a Mach-Zehnder interferometer is reported in Ref. [79]. A simplification 
and a demonstration of Toffoli gate is in Ref. [19]. 

SWAP gate operates on two qubits. As its name suggests, when it is used, the 
given two qubits are swapped. Using the computational basis for two qubits, we 
can express the SWAP gate as 

Figure 2.8: Circuit diagram of Toffoli gate. 

2) SWAP gate 
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£>SWAP = looXool + |oiXio| + |ioXoi| + | i i X n | S W A P 

"1 0 0 0" 
0 0 1 0 
0 1 0 0 

_0 0 0 1. 
(2.23) 

We can build the SWAP gate from three consecutive C N O T gates, and an ope­
ration that swaps two qubits can then be performed without the need to measure 
the qubits [Bl ] . Circuit diagrams of SWAP gate are shown in Fig. 2.9. 

- 0 -

(a) (b) 

Figure 2.9: Two common circuit diagrams of SWAP gate (a), and a circuit diagram of 
SWAP gate built from three consecutive CNOT gates (b). 

The experimental implementation and full tomographic characterization of 
deterministic high-fidelity SWAP gate for two photonic qubits is reported in 
Ref. [80]. Implementation of a SWAP gate using linear optics can be found in 
Ref. [81]. 

2.1.3 Polarization and spatial encoding 
We can implement qubits in many different physical systems. We need an ob­
ject which exhibits quantum properties. We can use, for example, atoms and 
ions, other options are N V centres and quantum dots, or superconducting cir­
cuits. The most important variant for us is the realization of a qubit using pho­
tons. A qubit of information can be encoded in any of several degrees of freedom 
[82]—polarization, orbital angular momentum [83], time [84] or frequency [85]. 
Each degree of freedom offers different advantages in solving various problems, 
be it stability, control or scalability. Encoding a qubit into two modes of a single 
photon enables long-distance quantum communication. In this thesis, we utilize 
encoding to polarization and spatial modes. 

Polarization encoding 
Using the computational basis for one qubit, we can assign a logic value 0 to the 
horizontal polarization \H) = |0) and a logic value 1 to the vertical polarization 
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\V) = | l ) of a photon. A n y other polarization state can be expressed by a linear 
combination (superposition) of these two mentioned polarization states. The 
linear combination is given by Eq. (2.1). 

When introducing the qubit in Section 2.1, three eigenvectors defining the 
axes of the Bloch sphere were given, and thus we could determine three different 
projection measurements on pairs of orthogonal vectors related to each axis. In 
the case of polarization states, we also have a total of six projections: three pairs 
of orthogonal vectors related to the individual axes of the Poincare sphere plotted 
in Fig. 2.10. In addition to the already mentioned polarization states of horizontal 
|ff) and vertical |V) polarization, we also have diagonal \D) = (|ff) + |V))/V2 and 
anti-diagonal \A) = (|ff) — \V))/\[2 polarization states, and right-handed circular 
\R) = (|ff) + i |V»/V2 and left-handed circular |L> = (|ff) - i\V))/S polarization 
states. These three pairs of states form a set of mutually unbiased bases encoded 
in polarization. 

z 

Figure 2.10: Pure polarization states on the surface of the Poincare sphere. The unplot-
ted partially polarized states lie inside the Poincare sphere. 

To manipulate the polarization state, we generally use birefringent optical 
components. For example, single-qubit operations can be directly implemented 
using waveplates, which realize rotation in polarization space. Individual polari­
zation states, their evolution, and the effects of polarization components can be 
represented by points on the Poincare sphere. On this sphere, the polarization 
states are described by vectors in Jones or Stokes formalism (see [B2]- Chapter 6). 
In this case, the Poincare sphere is the same object as the Bloch sphere shown 
in Fig 2.1. The advantages of this encoding in experiments are mainly simple 
preparation, manipulation and measurement of individual polarization states. 
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Spatial encoding 
While only one spatial mode was used in the polarization encoding, in a spatial 
encoding, a qubit of information is encoded in a superposition across two spatial 
modes. We can rewrite the superposition from Eq. (2.1) as 

where is a two-mode state wi th / (j) photons in the first (second) spatial mode. 
The Fock state |1,0) (|0, l)) corresponding to the state |0) (|l)) describes that there 
is one photon in mode 0 (1) and none in mode 1 (0). 

Polarization and spatial encoding can be easily interchanged in experiments 
using polarizing beam splitters, which separate two orthogonal polarization com­
ponents into two different spatial modes. We encounter both types of encoding 
if, for example, we have an interferometer in the experiment. This encoding is 
well compatible with photonic integrated circuits [86, 87] and, for example, can 
be used to generate entangled states [88]. 

2.1.4 Two-photon interference 
Two-photon interference is a very important phenomenon that is purely quan­
tum in nature. Its importance lies in the ability to improve the accuracy of mea­
surements, to help overcome the limits of classical computations, to use it in 
quantum communication or in its possibility to demonstrate the indistinguisha-
bility of photons [89]. To describe the effect of two-photon interference, also 
known as the Hong-Ou Mandel effect [90], we must first look at the behaviour 
of photons at a beam splitter (BS). BS is a device with two input ports, usually 
labelled a and b, and two output ports labelled c and d. See Fig. 2.11. 

\f) = a | l ,0) + /?|0,l), (2.24) 

ib 

a c, 

Figure 2.11: Beam splitter with two input (a, b) and two output (c, d) ports. 

Now, consider a lossless BS. If the light beam passes through port a or b, it 
is split according to the given splitting ratio of the BS into two beams that exit 
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ports c and d. This splitting ratio is described by the complex parameters r and 
t, known as the BS reflectance and transmittance, which satisfy the condition 
\t\2 + \r\2 = 1. 

The quantum description of the BS according to the second quantization for­
malism is given by using a set of bosonic operators known as annihilation a, and 

+ 
creation a,- operators representing electromagnetic fields in mode i. These op-
erators satisfy the bosonic commutation relation a- ] = <%;, where <5,; is the 

Kronecker delta. In this approach a, b, c, and d represent annihilation operators 
in modes a, b, c, and d of input and output ports of BS, respectively. Now, we 
can write the BS operation represented by unitary matrix Ugg using these field 
operators 

'?\ = vJf\. uBS-l 

where T = |t|2, R = |r| 2, <p is phase shift usually taken as n/2 or 0. 
In this work, we consider 0 = 0 and the balanced option where r = t = 1/V2. 

We can express the annihilation operators describing the input ports of the BS 
by the output ones 

a = — (c + d), (2.25) 
V2 

b = — (c - d). (2.26) 
V2 

Suppose we have two photons at two different BS inputs that are distin­
guished by polarization, the initial state can be expressed as 

Win) = \H)a\V)b = 4&J|0>, (2-27) 

where |0) is a Fock state known as a vacuum state \vac). 
The output state changed by the BS transformation can be written using 

Eq.(2.25) and Eq. (2.26) as 

4$io> ̂  +4)(4 - 4)\Q) = ^(44 - 4 4 + 4 4 - 44)i°>- ( 2-2§) 

From this equation we can see that two cases can happen at BS with the same 
probability: 

• Two photons exit the BS together through the same output port c or d. This 
behaviour is described by the first term and the fourth term in parentheses. 
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• Two photons exit the BS separately through two different ports c and d. 
This behaviour is described by the second term and the third term in pa­
rentheses. 

However, i f we assume that we have indistinguishable photons at the BS 
inputs, the resulting situation w i l l change. The initial state is the same as in 
Eq. (2.27), only we w i l l no longer write the indices distinguishing the polarization 
of the photons. The output state has the form 

flt6t|o) ^> i(ctct - ctrft + gtrft _ rftrft)|0) 

= ^ ( C ^ ) 2 - (^ ) 2 ) |0 ) (2.29) 

= 7=(|2>c - \2)d), 

where the last expression arose from the action of the creation operator on the 

vacuum state (a ; ) n |0) = 4n\\n)i. The result tells us that both photons go together 
each time either through the output port c or d of the BS. This situation corre­
sponds to a state where there is constructive interference on one BS output port 
and destructive interference on the other. This phenomenon is called bunching. 
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Figure 2.12: H O M dip. The red dotted line is the theoretical dip curve for the balanced 
beam splitter (BS). We can see that the curve goes from a maximum of 1 to a minimum of 
0. For illustration, we plotted a curve for an unbalanced BS. Typical behaviour is shown 
by the blue points representing directly measured data from our experiment. These data 
are fitted with a Gaussian function marked by the blue dashed line. In this case, the 
measured coincidences reach the minimum value at the same position as the theoretical 
curve for the balanced BS, but the minimum value is no longer zero. 
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Such behaviour can be experimentally measured by changing the degree of 
indistinguishability of photons. This can be achieved by changing the polariza­
tion state of one input photon or more likely by delaying one photon from a 
given pair, for example, by extending its path inside the interferometer. Only 
cases where coincidences were observed, i.e., both detectors detected the arrival 
of a photon simultaneously, are measured. The resulting graph, also known as 
H O M dip, is the dependence of the coincidence rate on the temporal delay and 
it is shown in Fig. 2.12. 

2.1.5 Quantum state tomography 
Results from experimental measurements in quantum physics are affected by 
fluctuations. However, knowledge of the quantum state makes it possible to 
predict the statistical results of a measurement performed on a set of identically 
prepared systems. To determine the quantum state, we use a method known as 
quantum state reconstruction or quantum state tomography. 

Among the experimenters, from the various proposed algorithms, two ap­
proaches came to the fore: 

• Linear inversion, since the statistics of the measurement results is a linear 
function of the density matrix p. Thus, the density matrix can be obtained 
by solving a system of several linear equations. 

• Maximum Likelihood or simply MaxLik, which allows among all possible 
density matrices to find the one that maximizes the probability of obtaining 
a given set of experimentally measured data. 

Both methods allow the inclusion of experimental imperfections in the cal­
culation, such as the reduced efficiency of the detectors. The disadvantage of l i ­
near inversion is that statistical and systematic errors of quantum measurements 
manifest themselves directly in the density matrix, which can lead to unphysical 
results. For example, when measuring the polarization state, a density matrix 
is determined from the measured data, from which it is possible to determine 
the state purity V defined in Eq. (2.11). If the source of light fluctuates and we 
assume (ax) = {ay) = 1, the purity may be greater than one, which is an unphy­
sical result. Such a case does not occur i f we use MaxLik. Its other advantage is 
that it allows the implementation of some additional known information about 
the density matrix into the reconstruction procedure. In this thesis, we only give 
a brief description of this method. The theory and mathematical derivation of 
MaxLik can be found in Refs. [91-93], and the implementation into a Python 
code is reported in Ref. [94]. 
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Let N be the total number of repeated measurements of a particle (photon) 
that is detected in one of the j outputs of our experiment. Our measurement is 
described by a set of positive operators LT;- known as P O V M s for which ft; > 0 and 
YJJ ft/ = 1. Let fj be the relative number of occurrences of each measurement 

result ft;, where YJJ fj = 1- The likelihood function of the quantum state p is 
given by the relation 

C(p) = Ujpf, (2.30) 

where pj = Tr[ft ;/5] is a propability of each outcome. The goal is to find the 
density matrix that maximizes the likelihood function. 

We can consider P O V M elements corresponding to measurement ft;- = |y/Xy/l 
and after logarithming Eq. (2.30) we get 

l n £ ( p ) = £ / y l n t y | p | y y > . (2.31) 

Here we can neglect the multiplicative factors, because they do not affect the 
maximization of the function. 

The density matrix p that maximizes the likelihood function satisfies the 
equation [91] 

Rp = p, (2.32) 

where « = E , / , ^ 

It is important to note that the likelihood function maximization may not 
give a result that correctly describes the quantum system. In general, the rela­
tion Tr[p] = 1 may not hold. This situation is treated using an undetermined 
Lagrange multiplier X, where Rp = Xp. After applying the normalization condi­
tion (that is in this text already included in R), we get X = 1 and again Eq. (2.32). 

However, it is analytically very difficult or even impossible to solve Eq. (2.32). 
In addition, the left side of this equation does not represent a Hermitian operator. 
The solution is to rewrite the equation in the following form [92] 

RpR = p. (2.33) 

There are now positive semidefinite operators on both sides of the equation. 
Now, we can find the density matrix that maximizes the likelihood function 

by successive iterations 

* + 1 = T r T ^ h ' ( 2 3 4 ) 

Ti[RjPjRj] 
where we can start our estimation from p0 = 1/2 and stop when we reach our 
desired value e, for example using the trace: Tr[|y5 ; + 1 — p ; | 2 ] < e. 
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2.1.6 Entanglement 
Quantum entanglement is one of the characteristic features of quantum mechan­
ics that does not occur in classical mechanics. It is also considered an important 
resource and its use can be found, for example, in quantum teleportation [12,13, 
95], in some protocols of quantum cryptography [10, 75, 96] or in superdense 
coding [14, 97]. Entanglement occurs between two or more particles. In this 
work, we only deal wi th photons. They can be entangled in their polarization 
[98, 99], frequency [100], momentum [101, 102], time (time bins) [43, 103], or­
bital angular momentum (OAM) [39], or any combination of all the mentioned 
options, which is called hyper-entanglement [104-106]. 

If we consider two or more qubits, then due to the superposition principle, 
there are quantum states, either pure or mixed, which cannot be expressed simply 
by a tensor product, as we mentioned in Section 2.1 - Multiqubit States. Thus, 
for some pure states, we are not able to write 

I<A>1,2 * \<f>)i ® If >2, (2-35) 

and similarly for some mixed states 

P * £ PiPU 0 hv (2-36) 
i 

where pt > 0. These states are not separable and they are called entangled. 
There are different levels of separability. The state may be separable, sepa­

rable with respect to given subgroups, or inseparable. N-qubit state p is called 
fc-separable, i f it can be written in the following decomposition 

P = Z Pi 0 « = 1 O ^ n X ' 
i 

where <8^=1(/3Sn), is the tensor product of k density matrices for chosen partition 
{S l t S 2 , . . . , Sfc} into k disjoint nonempty subsets with k < N. 

These different levels of separability give rise to a hierarchy of separable 
states. For k = 1, the states are called genuinely n-partite entangled and 
P * 2 ; Pi ®n=i (pSn)i- F ° r k > 1, the states are /c-separable and specifically, 
for k = 2, the states are called biseparable and they can be factorized into two 
subsystems. Finally, for k = N, the states are called separable or classical. 

A multipartite quantum state can be shared by several parties, which are 
allowed to act locally on their subsystems by performing measurements and ge­
neral quantum operations. In order to improve the measurement results, these 
participants can communicate freely via the classical channel and tell each other, 
for example, the results of their previous measurements. The whole process is 
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known as local operations wi th classical communication (LOCC). It enables the 
study of quantum correlations and other nonlocal quantum effects. Using L O C C , 
we can also deterministically transform a maximally entangled bipartite state 
into any other quantum state when considering a bipartite system [107]. 

Degradation of entanglement occurs when entangled particles pass through 
the environment (decoherence), or i f at least one of the particles of the entangled 
pair is detected [108, 109]. 

The next two Sections in this work deal with some criteria and measures of 
entanglement, which, together with others, can be found in Ref. [110]. 

Entanglement detection 
If we want to determine that we have an entangled state in an experiment, we 
need to use one of the entanglement criteria. Such a criterion wi l l tell whether 
the state is entangled or not. However, it says nothing about how much the 
systems are entangled. 

Historically, the first criterion was Bell's inequalities, which originally served 
to verify the EPR paradox. This criterion makes it possible to decide whether 
the local hidden variable is consistent with quantum mechanics or whether it is 
possible to disprove this theory. Measurement statistics (measurement outputs) 
are bound by Bell's inequalities. These inequalities are violated by entangled 
states. However, any separable state does not lead to their violation. In addition, 
not all entangled states lead to Bell's inequalities violation. We can only identify 
some of them. Among the most famous Bell's inequalities is the Clasuer-Horne-
Shimony-Halt (CHSH) inequality [111]. 

One of the most used criteria is the positive partial transpose (PPT) criterion. It 
serves for detecting entanglement between two qubits. It is based on the partial 
transposition of the density matrix. Let us have binary parameterized inputs of 
the density matrix 

p= X X ^IOOI ® 
i,;e{0,l}fc,/e{0,l} 

Then the partial transpose with respect to the first qubit pTl is defined as 

pTl= X X pw\m®m. 
;,;e{0,l}fc,/e{0,l} 

Similarly for pTz, where we replace the index k wi th /. 
A state is said to have a partial transposition, or to be a PPT i f it has no 

negative eigenvalue after partial transposition. But i f it has at least one negative 
eigenvalue, then the given state is entangled. 
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The main disadvantage of the PPT criterion is that it requires complete infor­
mation about the quantum state, which is obtained from quantum tomography. 

The criterion that does not need full knowledge of the quantum state is an 
entanglement witness. The main idea of the witness lies in the fact that sepa­
rable states form a convex subset in the state space. The witness is the operator 
W, which defines a hyperplane dividing the state space into two half-planes. The 
first half-plane contains all separable states, and the other one contains entangled 
states. It holds that Tr[Wp s e p] > 0 for all separable states and for Tr[W/3] < 0 the 
given p is entangled, see Fig. 2.13. The theory regarding witnesses and experi­
mental implementation can be found in [112, 113]. 

Figure 2.13: An entanglement witness dividing the state space into two half-planes. One 
contains only entangled states, and the other contains all separable and some entangled 
states. 

Entanglement measures 
Measures of entanglement are used to quantify the amount of entanglement of 
a state defined on a composite Hilbert space %. A quantity can be called the 
entanglement measure E(p) only i f it fulfils the following requirements 

1. E(psep) = 0 for all separable states, 

2. E(p) cannot be increased using L O C C operations, 

3. E(p) is not changed with an action of local unitary operations L U . 

Sometimes, due to certain advantages, two more conditions are added, but they 
are not necessary. These are convexity PkPk) ^ Yjk Pk^iPk) a n d additivity 
E(p®N) = NE(p), where p®N represents JV-copies of p. 

Measures of entanglement include, for example, entanglement of formation, 
negativity or concurrence. 
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Entanglement of formation quantifies how many Bell states, i.e., maximally 
entangled states, are needed to prepare the given state using local quantum ope­
rations and classical communications (LOCC). Measures of entanglement include 
extremizations, which are often difficult to solve analytically. Despite the fact 
that for pure states the entanglement of formation (EoF) is defined for all bipartite 
systems of arbitrary dimension, analytic evaluation of EoF for mixed states is 
known mainly in two-qubit systems [114]. 

For a bipartite pure state pp, the EoF is defined as the von Neumann entropy 
of the reduced state (the subsystem) /5j 

EF(pp) = S(p2) = Sip,) = - T r [ p ! log 2 Pi] = " E Af 1 l og 2 x{\ (2.37) 
i 

where p p = I&2X&21. P i = T r 2 [ p p ] = £me{o,i} Eye{o , i} £fc,Ze{o,i} (H)jM\ ® 
(m\k\l\rn) is a partial trace over the second qubit and Xpl are eigenvalues of px. 

For a bipartite mixed state pm definition of EoF is based on 'convex-roof ex­
tension' and takes form 

E(pm)= inf Y! PkE(\<j>k)l 
Ph\<Pk) k 

where pm = Efc Pfcl&X^fcl a n d infimum is taken over all pure-state decomposi­
tions of pm. Thus, we can write the mixed state using von Neumann entropy 

Ef(p)= inf V p f c S ( p u ) . (2.38) 
Pk>m) ^ 

For bipartite system, we can derive this measure directly from concurrence, 
which wi l l be discussed below. 

Another measure is negativity, which is close to the PPT criterion. It quanti­
fies how much the PPT criterion is violated. The definition for two qubits is as 
follows 

Nip) = k\\pTi - m ) = E ( 2 - 3 9 ) 
1 A,<0 

where | |A | | = Trh/ÄTÄ] is a trace norm A and A r are eigenvalues of pTl, which is 
the state after partial transposition. 

The last measure we mention is concurrence. For pure states \<p), it is defined 
as 

C m = ^ ( l - T r K A ) 2 ] ) , (2.40) 

where p\ is the state after tracing over the second qubit (we consider only two 
qubits). 
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Generalizing the concurrence to mixed states is given by 

C(p) = max(0, X1 - A 2 - A 3 - A 4 ) , (2.41) 

where At are eigenvalues of operator R = ^J^J)(ay <8> ay)p*(ay <8> Oy)^//5 in de­
scending order. 

Concurrence allows us to express entanglement of formation for two qubits 

EF(p) = h(l + ^l-(C(p)Y/2), 

where h(x) = x l o g 2 x - ( l - x ) l o g 2 ( l - x ) is a binary entropy function also known 
as Shannon entropy. 

There are also other measures of entanglement, including the geometric mea­
sure of entanglement (witnesses) quintifying the minimum distance between the 
entangled state and fully separable states. 

Based on individual measures of entanglement, we can also define a maxi­
mally entangled state that maximizes a certain measure. If we consider the von 
Neumann entropy of a bipartite state, then the maximally entangled state is the 
one that leads to a completely mixed state after a partial trace, i.e., the resulting 
state has a purity equal to 1/2. For a bipartite system, i.e., a system wi th two 
qubits, the maximally entangled states are the so-called Bell states. They form 
the basis of the composite Hilbert space and are expressed as follows 

, ± N 100) ± |11> 
|^> = ' ' ' '-, (2.42) 

V2 
• ± N | o i ) ± | i o ) 

|^> = r • (2-43) 
V2 

2.2 Single and entangled photon sources 
As quantum information and quantum communication develop, so do the de­
mands on quantum sources. The single-photon generation and correlated (en­
tangled) photon pairs are increasingly required for many applications. Such 
generation can be achieved either deterministically ("on demand") or probabi­
listically. Deterministic sources include, for example, quantum dots [115-117], 
atoms [118], molecules[119, 120], ions [121] or N V centres in diamonds [122, 
123]. Probabilistic sources that use a nonlinear optical process to generate pho­
tons include spontaneous parametric down-conversion (SPDC) [99, 124, 125] or 
four-wave mixing (FWM) [126, 127]. 

In this work, we describe one deterministic and one probabilistic source in 
more detail. More specifically, we look at the SPDC, which is used in most of our 
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experiments to generate correlated pairs, but it can also generate heralded single 
photons. The second source is based on quantum dots, which are excellent single-
photon sources, but we look at their ability to generate polarization-entangled 
pairs. 

2.2.1 Spontaneous parametric down-conversion 

SPDC is a non-linear process in which the pump photon is converted into two 
photons - signal and idler, while the energy and momentum are preserved [128]. 
Since this process starts from the electromagnetic vacuum fluctuations, which 
are responsible for the photon conversion, it is a purely quantum process, and 
the photons created in this way have strong quantum properties. 

SPDC can be used for single photon generation, where the detection of one 
photon from a photon pair indicates the existence of a second photon. In other 
words, the first photon serves to herald the second one. However, this genera­
tion is not "on-demand" because it is a probabilistic process where photons are 
distributed with a Poisson distribution. This implies some nonzero probability of 
multiphoton emission. The more we increase the source power, the more likely 
multiphoton emission w i l l occur. There are some efforts to suppress this probabi­
lity of multiphoton emission, for example, via the photon-blockade effect [129]. 

Another property of photons generated in SPDC process, which is widely 
used in experiments, is their indistinguishability. If we control the coherence 
length of the generated photon pairs as well as their path, we can achieve in­
distinguishability in the temporal and spatial modes of photons. The indistin­
guishability of photons leads to the two-photon interference effect discussed in 
Section 2.1.4. 

The most important use of SPDC is to generate entangled pairs. We discussed 
entanglement in Section 2.1.6. Entanglement can be created between different 
degrees of freedom of a photon. However, in this thesis we only deal with pola­
rization entanglement, because our experiments require only correlated photon 
pairs in polarization. 

Main principle 
The strong input beam (pump) enters the optically nonlinear medium, while the 
other modes (signal and idler) are in the vacuum states. In this interaction, the 
vacuum modes are excited and the resulting generated photon pairs are corre­
lated or entangled wi th each other. 

For this interaction, we need an environment that exhibits a second-order 
nonlinearity described by the susceptibility j ® . Such an environment is, for ex-
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ample, an anisotropic crystal. The photon conversion into two less energetic pho­
tons requires to fulfil the phase-matching condition. This condition expresses the 
conservation of momentum. If we have a nonlinear anisotropic crystal, it is pos­
sible to meet these conservation laws by properly choosing the polarization of 
the pump beam and tilting the crystal or controlling its temperature. 

According to the polarization state of the pump and to the resulting polariza­
tion states of the signal and the idler, we distinguish several types of SPDC: 

• Type 0: the pump has the same polarization as the signal and idler. 

• Type I: the pump has orthogonal polarization wi th respect to the signal 
and idler, which both have the same polarization. 

• Type II: signal and idler have orthogonal polarization. 

However, there are materials for which it is impossible or very difficult to 
meet the condition of phase matching. For example, in a crystal, this could be 
due to insufficient or no birefringence to compensate for the dispersion of a ma­
terial. For shorter wavelengths, this birefringence and dispersion compensation 
becomes more of a problem. This is due to the refractive index of the material, 
which tends to increase rapidly wi th frequency, while the birefringence remains 
nearly constant [130]. 

For materials with low birefringence, we can use a method called quasi-phase-
matching to improve the efficiency of the nonlinear process. This method is 
based on creating such a crystal structure that the orientation of one crystal axis 
is periodically inverted depending on the position in the crystal. This structure 
is called periodically-poled and the orientation of the crystal axis is inverted af­
ter the propagation over the so-called coherence length, i.e., the distance along 
which the nonlinear process still proceeds constructively. 

In this thesis we use the source described in [1]. It is a particular collinear 
degenerate type II scheme where three waves interact in a nonlinear periodically 
poled crystal. The pump is polarized and has an extraordinary linear polarization, 
and two beams of light arising in a nonlinear environment have one ordinary and 
the other extraordinary polarization, while their spectral and spatial modes are 
entangled. 

2.2.2 Quantum dots 
Quantum dots (QDs) are nanocrystals of a semiconducting material with diame­
ters in the range of a few nanometers. Since the dimensions of QDs are very 
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small, the optical properties, such as the frequency of emitted light, depend on 
the size of these nanocrystals. If the dimension of the material is larger than the 
wavelength of the observed particle, then the particle behaves as i f it were not 
constrained by anything. When the dimension of the material decreases, we start 
to observe a quantum confinement effect, and the energy required to activate 
electrons inside QDs increases. This effect leads to a blue shift in the emission 
of radiation, see Fig. 2.14. If the size reduction of particles inside the material 
reaches a certain limit, the quantum confinement effect becomes more observ­
able and the radiation spectrum changes from continuous to discrete. There are 
three quantum-confined structures classified by their dimensionality. 1-D con­
fined structures are called quantum wells, 2-D confined structures are known as 
quantum wires, and the last ones are quantum dots wi th 3-D confinement. In 
other words, in a quantum dot case, the motion of electrons and holes is quanti­
zed in all three dimensions. This 3-D confinement makes the energy spectrum 
of a single carrier quantized in discrete-level shells [B3]. 

Confinement width 

Conduction band 

21 

0) 
Bandgap Eg 

Valence band • • • 
6 nm 2 nm 

Figure 2.14: Quantum confinment effect. The smaller the QD, the stronger the confine­
ment. The energy required to excite the electron increases and the emission spectrum 
of the QD shifts to the blue region. This figure is taken from Ref. [131]. 

Quasiparticles 
Absorption of a photon by interband transitions inside QDs creates an electron 
in the conduction band and a hole in the valence band. The mutual Coulomb 
interaction between the specific electron and the specific hole can give rise to a 
new excitation in the QD called exciton (X). This electron-hole pair is bound by 
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the Coulomb interaction, even though the individual particles are distant from 
each other. Since the electron-hole pair interaction strength is weak and we can 
consider QD as a uniform dielectric material, we are in the limit of so-called 
free excitons, also known as Wannier-Mott excitons [B3]. We can model these 
quasiparticles by a hydrogen atom and we can apply the Bohr model to calculate, 
for example, their energy or radius. Analogically to atoms, electrons occupy 
discrete energy levels and they can be excited to higher energy levels [B3, B4]. 

The exciton is not the only quasiparticle that can arise from energy absorp­
tion. Two excitons can create a quasiparticle called biexciton (XX) or, in some 
literature, an excitonic molecule, which is the two electron-hole pair state. In 
addition to these quasiparticles (X, XX) wi th a neutral charge, there are also 
charge-carrying excitons, so-called trions (X*) . They consist of two electrons 
and one hole or vice versa [B5]. The Coulomb interactions among electrons and 
holes of all mentioned quasiparticles are plotted in Fig 2.15. We wi l l discuss these 
quasiparticles more in the next section. 

X X" "Mi xi I 1 

X+ XX 

Figure 2.15: Coulomb interaction among electrons and holes. Main forces are marked 
by solid lines, additional ones by dashed lines. This figure is taken from Ref. [132]. 

Symmetries and electronic states 
A free electron-hole pair can not exist inside a QD kept at low temperatures due 
to quantum confinement. In addition, there can be a maximum of two electrons 
on individual energy levels inside a QD due to the Pauli exclusion principle. Ex­
citons can be formed when these electrons are excited into higher energy levels. 

Conceptually, as mentioned above, an exciton is similar to a hydrogen atom 
(one electron orbiting one proton, i.e., a hole, bound together by Coulomb inter­
action) and therefore we can say that a QD with an electron and a hole in the 
ground state is in the s-shell. The s-shell is an orbital wi th a spherical symme­
try which can contain only two electrons. Excited states of electrons inside the 
QD, which can be achieved, for example, by a higher temperature or a certain 
excitation force, are said to be in the higher atomic orbitals: p-shell, d-shell, etc. 

Hamiltonian of a single particle (electron or hole) consists of kinetic and po­
tential energy including spin-orbit interaction. The former is invariant under 
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all unitary operations acting on the spatial coordinates. The latter reflects the 
symmetry of the QD and thus determines the point group symmetry of the total 
Hamiltonian. From a theoretical point of view, the QDs are in the high symmetry 
point group (tetrahedral symmetry, see [B6]), with the total angular momen­
tum JZ = SZ + L Z , where SZ is the spin angular momentum along the z axis, and 
L Z is the orbital angular momentum along the z axis. Total angular momentum 
JZ is related to the quantum number which describes the shape or type of the 
orbital. 

During the QD formation, an anisotropy arises between the main growth 
direction and lateral directions. As the anisotropy increases, the group of sym­
metry points reduces to T)2d (dihedral symmetry). The lack of symmetry along 
the growth axis leads to an even lower group of symmetry points C 2 v (cyclic sym­
metry). Additionally, lower symmetry means lifted degeneracy between energy 
levels. To describe a QD with imperfect symmetry, we can use the restriction on 
the s-shell for electrons in the conduction band. This restriction implies L§ = 0 
and the relation for total angular momentum simplifies to JZ = Sf. The valence 
band is more complicated due to spin-orbit interaction. Here, we cannot apply 
the s-shell restriction like in the case of electrons and thus the spin SZ is not 
enough, because L Z * 0. This spin-orbit interaction splits the valance band into 
a heavy hole band wi th total angular momentum 3 \JZ \ = ± 1 / 2 and a light hole 

band wi th total angular momentum \J^\ = ± 3 / 2 [133]. 
The confinement in a QD lifts the degeneracy between the light hole band 

and the heavy hole band. In consequence, the maximum of the valence band is 
usually composed only of heavy hole states without mixing the two bands. 

What we can do now is to calculate the total angular momentum M = S |+L |+ 

SZ + l)l of particles inside of QD, which consists of the total angular momentum 
of electrons in the conduction band restricted to the s-shell and total angular 
momentum of heavy holes in the valence band. This procedure leads to seven 

spin configurations in a QD based on the total angular momentum M = SZ + J Z , 
see Fig. 2.16. We have four states for exciton, two states for trion, and one spin 
configuration for biexcition [134]: 

• | |M| | 4 = 2 for exciton X. During the recombination of the electron-hole pair, 
no photon is emitted. This effect is called "dark" state5. 

• | | M | | = 1 for exciton X. During the recombination of the electron-hole 

3By notation | • | we mean projection. 
4By notation || • || we mean absolute value. 
5Detailed conditions of the two possible spin configurations of a "dark" state: 

|2) = \l,s) = |3/2,1/2) and | - 2> = | - 3/2, -1/2) 



34 SINGLE AND ENTANGLED PHOTON SOURCES 

pair, a photon is emitted (photoluminescence). This effect is called "bright'' 
state 

= 1/2 for trion X + . 

= 3/2 for trion X ~ . 

= 0 for biexciton X X . 

X x + X 

M=-1 M=+1 . 

_ F ^ _ _ F ^ _ 

M=+2 A I V I — M=-2 

M=+1/2A 

M—1/2 

/2 M=-3/2 

M=+3/2 
fflB 

IVI ' O l 

X X 

M=0 

Figure 2.16: Spin configurations of a quantum dot when restricted to the s-shell. 
There are four configurations for exciton (X), two configurations for each of two tri-
ons ( X + , X ~ ) , and one configuration for biexciton (XX), depending on the projection 
of the total angular momentum M. Electrons are marked with filled circles and holes 
with empty ones. Two of the exciton configurations are known as "bright" states and 
the other two as "dark" states, depending on whether or not a photon is emitted during 
electron-hole pair recombination. Dark states are indicated by a gray background. This 
figure is taken from Ref. [134]. 

Entanglement 
Exciton and biexciton play significant roles in creating polarization-entangled 
photon pairs in QDs. In this Section, we describe the quantum dot as a three-
level (ladder) system containing the ground level (0), the exciton level (X) and 
the biexciton level ( X X ) . A two-level system for the QD description is used i f 
we consider only the s-shell restriction. In that case, we are interested in QDs as, 
for example, single-photon sources. Then, the 0 and X levels are sufficient. 

6Detailed conditions of the two possible spin configurations of a "bright" state: 
|1) = |/,S) = 13/2,-1/2) and | - 1 ) = 1-3/2,1/2) 
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To obtain entangled photon pairs from a QD, we need to populate its XX 
level. It can be achieved, for example, by shining a laser tuned at half the ener­
gy of the 0 — XX transition (the 0 — X and X — XX transitions generally do 
not have the same energies). If we have the fully populated XX level, there are 
two excitons wi th different spins. Each exciton can decay by radiation emitting 
a photon wi th either right (a + ) or left (a~) circular polarization, see Fig. 2.17. 
More precisely, on the XX level, after the emission of a photon in a specific po­
larization state created by the recombination of the first electron-hole pair (the 
first exciton), one more exciton remains on the same energy level. However, 
this energy level is now labelled as the X level because it has only one exciton 
left. Energy is now half as in the biexciton case XX. The Fig. 2.17 shows three 
different levels 0, X, XX. The excitonic level is, in this case, degenerated. The 
second electron-hole pair also recombines and emits a photon in a state of or­
thogonal polarization to the previously emitted photon, which is a consequence 
of the Pauli exclusion principle. Mathematically, the two-photon state, produced 
by the described process, can be written as 

|«A+) = - | ( k + ) 1 k - ) 2 + k - ) i k + ) 2 ) , (2.44) 

which describes a maximally entangled Bell state [135]. 

XX" 

Figure 2.17: The process of two-photon recombination from the biexciton XX level 
through the degenerate exciton X level to the ground state. During this process, two 
photons with orthogonal polarizations are generated. If the degeneracy is not lifted, we 
cannot distinguish which photon comes from which level, and, therefore, the emitted 
photon pair is entangled in polarization. This Figure is taken from Ref. [136]. 
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Fine-structure splitting 
In the previous sections, we described electrons and holes being bound to form 
an exciton through (their) mutual Coulomb interaction. We mentioned that the 
exciton has four spin configurations divided into bright and dark states according 
to the ability to emit a photon. Furthermore, the energy levels of the bright states 
inside the QD allow the creation of polarization-entangled pairs, but only i f they 
are degenerate. However, the spin-degeneracy of the bright exciton level is usu­
ally split due to the spin-orbit interaction and Zeeman interaction between elec­
trons and holes. We call this effect fine-structure splitting (FSS) [136, 137]. 

The energy level degeneracy is also determined by the QD symmetry men­
tioned in the previous sections. Its importance is indicated in Fig. 2.18. If the 
symmetry of the quantum dot is reduced, the FSS increases, and the indistin­
guishable photon pairs become distinguishable. The entanglement between the 
photons produced by the X and XX levels decreases and can completely vanish. 
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Figure 2.18: Energy scheme illustrating the effect of the exchange interaction on the 
exciton X bright states. XX denotes the biexciton state. \M) is the exciton total angular 
momentum, denotes circularly polarized light, and nx/y linearly polarized light. D 2 j , 
C 4 v , and C 2 v indicate the confinement potential symmetry. This Figure is taken from 
Ref. [136]. 

There are many ways to restore higher symmetry in QDs leading to the FSS 
reduction. These techniques include, for example, annealing [138, 139], appli­
cation of an external electric [140, 141] or magnetic field [142], structural elon­
gation of the QDs [143], interfacial symmetry lowering and its enhancement by 
atomistic elasticity[144], or external strain fields [145, 146]. We describe the last 
mentioned method in more detail in Chapter 3 because we use it to restore the 
symmetry in QDs to generate entangled photon pairs. 
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2.3 Quantum coherence as a resource theory 

In classical and quantum physics, coherence is at the heart of interference. Quan­
tum coherence arising from quantum superposition describes phenomena that 
do not occur in classical optics. It is related quantum features, such as quantum 
correlations (entanglement) [147] or steering [148]. 

Coherence originates from the fact that all optical fields have some random 
fluctuations and arises from correlations between some components of the fluc­
tuating electric field at two or more points. Coherence can be described by the 
sharpness of the fringes in a Young interference experiment [B7]. Mathemati­
cally, coherence is introduced in terms of phase space distribution and multipoint 
correlation functions [7, 48]. 

The above-mentioned description of coherence is very well developed in both 
classical and quantum optics. However, the concept can be generalized. To des­
cribe quantum coherence beyond optical fields, we can identify a set of incohe­
rent states and a class of free operations that map the set onto itself. Coherence 
is thus considered a resource that can not be generated or increased within this 
restricted class of operations. This approach is called resource theory of coherence. 

It is important to note that resource theory does not exist only for coherence, 
but resource theories of thermodynamics [149], entanglement [150] or asymme­
try [151] were also proposed. In this work, we further deal with coherence as a 
resource and describe this framework in more detail. 

Resource theories aim to describe what tasks or transformations of a physical 
system an experimenter can achieve when certain constraints exist. Anything 
that overcomes these limitations is considered a resource. 

Since coherence is a basis-dependent concept, we must first choose the so-
termed reference basis of our vector space. This basis can be chosen to suit 
existing constraints, such as the conditions in the laboratory, the difficulty of 
performing some operations in experiments, or different conservation laws. Sub­
sequently, we can identify a set of incoherent states and a class of free operations. 
Wi th free states and free operations defined, we can further introduce the maxi­
mally coherent state and the coherence measures. 

2.3.1 Free states and the set of free operations 

Let us have a finite d-dimensional Hilbert % space and its given reference ba­
sis {\i)}i=o,...,d-i- The density matrices that are diagonal in this basis are called 
incoherent. They form a set denoted as X c B(H), where B(H) is the set of all 
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bounded trace class operators on %. Hence, all incoherent density operators p 
can be written as 

d-l 

P=J]pMl (2-45) 
i=0 

where pt are the probabilities. 
In contrast to the mentioned resource theories of entanglement, thermody­

namics, or asymmetry, where a set of free operations is clearly given, in the 
resource theory of coherence the free operations are not unique. There are diffe­
rent classes of these operations. For our purposes, it w i l l be sufficient to mention 
only three of them. Some other classes of incoherent operations can be found in 
Ref. [152]. 

Classes of free (incoherent) operations 
First, we define the individual classes of operations, and then we w i l l describe 
in more detail what the definitions mean and explain how the individual classes 
differ from each other. 

Maximally incoherent operations (MIO): Trace-preserving completely positive and 
non-selective quantum maps : B(H) i-> B(H) such that 

AM[X] C X. (2.46) 

Incoherent operations (10): A set of trace-preserving completely positive maps A / : 
B(H) h> B(H) that allows for Kraus representation with corresponding Kraus 
operators {Kn}, satisfying ^ n Kn Kn = 1 (trace preservation), and for all n and 
pel: 

e l . (2.47) 
Tr[KnßKÜ] 

A + 
10 also fulfils a condition: KnXKn C X. 

Strictly incoherent operations (SIO): The set of trace-preserving completely posi­
tive maps, expressed also as in Eq. (2.47), since it is a subset of 10, but outside 

t A t the condition KnXKn c X, they also satisfy a condition Kn XKn c X. We can also 
define SIO using the dephasing operator 

d-l 

A[p] = £ \mp\m- (2.48) 
i=0 

file:///mp/m-
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Then SIO can be written using a set of incoherent Kraus operators {Kn} such that 
the results measured on the reference basis are independent of the coherence of 
the input state, i.e., 

(i\KnpKÍ\i) = <ř|J^A[p]J^J"|i> (2.49) 

for all n and i. 
A l l these classes are unable to create coherence from incoherent states. MIO 

is the largest of all the mentioned classes and is also called incoherence preserv­
ing operation. 10 is a subset of MIO. This representation is not unique, it is 
determined by the difficulty of the problem being solved. Eq. (2.47) defining 10 
using the Kraus operators Kn guarantees that even i f the individual measurement 
results n are available, coherent states cannot be generated from an incoherent 
state, not even probabilistically. SIO is a subset of 10, so we can write relations 
between individual sets: SIO c 10 c MIO. Wi th SIO, it is required that the admis­
sible operations cannot use coherence from the input state (which is therefore 
not necessarily incoherent). This set has an incoherent Kraus decomposition, i.e., 
not only Kn but also Kn is incoherent. 

Maximally coherent state 
For a certain reference basis {|i)};=o,...,d-i of a finite eř-dimensional Hilbert space 
%, we can write the eř-dimensional maximally coherent state as 

d-l 
\9d) = j= X |i>. (2.50) 

va j = 0 

Using 10 and a maximally coherent state we can generate all other (/-dimensional 
quantum states. The maximally coherent state is analogous to the maximally 
entangled states expressed in Eq. (2.42) and Eq. (2.43). 

2.3.2 Quantum operations 
Just as the maximally entangled state in bipartite systems enables the genera­
tion of all quantum operations via local operations and classical communication 
(LOCC) [153], the maximally coherent state enables the generation of all quan­
tum operations via 10 [54]. More specifically, i f we consume a maximally coher­
ent state via 10, we can implement any quantum operation that acts on Hilbert 
space %. It is not yet known how much coherence is needed to create any uni­
tary or any quantum operation in general. However, coherence quantifiers are 
monotonie for incoherent operations, so they can provide lower bounds on the 
amount of coherence that is needed to realize a quantum operation [49, 154]. 
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2.3.3 Coherence monotones and measures 

Coherence monotones and measures are mathematical tools for quantifying co­
herence. This mathematical approach is based on several postulates. In this 
work, we w i l l not state the postulates in detail, we w i l l only say what properties 
a quantity must have to be either monotone or measure. A l l definitions are given 
inRef. [152]. 

A n y quantity C that fulfils nonnegativity and either monotonicity or strong 
monotonicity (or both) is called a coherence monotone. A n y quantity C that, in 
addition to the above-mentioned three conditions, also fulfils convexity, unique­
ness, and additivity is called a coherence measure. In some literature, a cohe­
rence measure is defined as a quantity that satisfies only the first four conditions, 
i.e., non-negativity, monotonicity, strong monotonicity and convexity. However, 
with the first-mentioned approach inspired by entanglement theory, we can di­
rectly introduce two measures of coherence. 

The first one is distillable coherence Q , which is the maximal number of ma­
ximally coherent one-qubit states that can be obtained per copy of a given state 
using 10. The second one is coherence cost Q , which is the minimal rate of ma­
ximally coherent single-qubit states required to produce a given state via 10. 

In general, the distillable coherence cannot be larger than the coherence cost: 
Q ( p ) < Q(p) . The equality holds only for pure states, and thus the resource 
theory of coherence is reversible for them. 

Coherence monotones include, for example, geometric coherence, which is de­
fined using the fidelity of two states [155], or the relative entropy of coherence and 
the lx-norm of coherence Q , which are discussed below. 

Relative entropy of coherence 
Relative entropy of coherence is one of the quantifiers based on finding the infi-
mum of distance that is taken over a set of incoherent states X. For this quantifier, 
the distance is the quantum relative entropy and is described by the relation 

Cr(p) = min S(p\\a), (2.51) 

where S(p\\a) =Tr[p log 2 p ] -Tr[p log 2 <r] and p is an arbitraty state and a denotes 
an incoherent state. 

Relative entropy of coherence fulfils nonnegativity, monotonicity and con­
vexity for any MIO, 10 or SIO set. For 10, it also fulfils strong monotonicity and, 
in addition, two other necessary conditions - uniqueness and additivity, which 
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make it a quantum measure. Specifically, for 10, this coherence measure is equal 
to the distillable coherence Q , which leads to a simpler equation 

Cr{p) = Q ( p ) = S(A[p]) - S(p), (2.52) 

where A[p] is the dephasing operator defined in Eq. (2.48) and S(p) = - T r ( p log 2 p) 
The proof of this equality can be found in Ref. [152]. 

Relative entropy of coherence can be described as the minimum amount of 
noise required to obtain a completely decoherent state. The upper bound of this 
measure on the Hilbert space % of dimension d is given by the relation 

C r (p) < S(A[p]) < log d. (2.53) 

Note that C r (p) = S(A[p]) i f and only i f the quantum state p is a pure state. Pure 
states satisfying C r (p) = log d are called maximally coherent states, which were 
defined in Section 2.3.1. 

In Chapter 4, we investigate remote control and enhancement of local quan­
tum coherence. We have a bipartite system with two qubits, and we use one as a 
target and the other as a control. We show that for specific intersystem coupling 
and using several copies of the second system, we can deterministically enhance 
the local coherence of the first system while fully preserving its purity. This pro­
cedure works for any pure control state with non-zero coherence. We evaluate 
the amount of coherence in our systems using relative entropy of coherence. 

^-norm of coherence 
A n y matrix norm, denoted as || • ||, satisfying the triangle inequality 7 and abso­
lute homogeneity 8 gives rise to a convex coherence quantifier. Such quantifiers 
include, for example, the /p-norm, where p > 1 is a real number. This norm is 
defined by the relation 

\\MK = f £ i M>/) • (2-54) 

For p = 1 we get the Taxicab norm also called Zj-norm. For p = 2 we have the 
Euclidean norm 9 , and as p goes to infinity, the given norm is called infinity norm. 

The Zj-norm of coherence C^ can be expressed as 

Ch(p) = mm ||p - a\\h = J] \Pij\, (2.55) 

7 | |A + B\\ < \\A\\ + \\B\\, where A and B are matrices. 
8||AA|| = |A| x \\A\\, where A is a real number and A is a matrix. 
9IMI2 = yj(x,x) 
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which is the sum of the magnitudes of all off-diagonal terms. 
For 10, this coherence quantifier fulfils all four conditions mentioned above 

(nonnegativity, monotonicity, strong monotonicity and convexity). It is therefore 
a coherence monotone. However, /j-norm does not fulfil the other two conditions 
(uniqueness and additivity), so in our approach, it is not a quantum measure. 

Considering maximally coherent state where d is the dimension of Hilbert 
space % , the coherence quantifier Q takes the form 

CkiWd)) = d-1. (2.56) 

2.3.4 Mutual (correlated) coherence 

So far, we have discussed quantum coherence in the context of a simple sys­
tem that did not contain multiple subsystems. In a composite quantum system, 
coherence can be distributed in various and non-trivial ways. In addition to the 
quantum coherence of the composite system (global coherence), we can also con­
sider the coherence of individual subsystems (local coherence). A new form of 
coherence, which characterizes the amount of quantum coherence in a global 
composite system that is not contained in the local states of its subsystems, is 
called mutual coherence. The basis-optimized value of mutual coherence, known 
as correlated coherence, characterizes new types of quantum correlations of the 
subsystems that are conceptually different from entanglement [156]. 

Consider a bipartite quantum system in a composite Hilbert space %AB = 

HA^T^B wi th d = dA = dg dimensions of the composite system, quantum system 
A and quantum system B, respectively. The basis of the system A B is given by the 
tensor product of the reference bases of both subsystems, i.e., (Ir)^}^ <8> {\j)s}^=i-
Mutual coherence CM of the bipartite system A B is then defined as a difference 
between the coherence of the global state C(PAB) a n d the local coherences of the 
two subsystems C(p^) and C(pg) 

CM(PAB) = C(pAB) - C(pA) - C(pB), (2.57) 

where pA = Trg[p^ B ] and pg = Tr^Jp^g] are the density metrices of subsystems 
A and B, respectively. 

The coherence quantifier in Eq. (2.57) can be chosen to be /j-norm of cohe­
rence Q or relative entropy of coherence CR. If the chosen coherence quantifier 
is relative entropy of coherence C r , it is possible to express the mutual coherence 
as a difference of relative entropies [157] 

CM(PAB) = S(PAB\\PA ® PB) ~ S(A(pAB)\\A(pA) <8> A(p B ) ) , (2.58) 
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where S(p\\a) = Tr[/51og2 p] - T r [p log 2 a] and A[p] is the dephasing operator 
defined in Eq. (2.48). 

As mentioned in Section 2.3.3, relative entropy of coherence is a measure of 
coherence, which means that is also additive CR([>A ® PB) = Q - ( P A ) + Q - ( P B ) -

This condition ensures that the mutual coherence vanishes for any product state 
CM(PA ® PB) = 0- However, i f we choose /j-norm as the coherence quantifier, 
then this monotone could lead to a non-zero correlated coherence for a product 
state. For this reason, we w i l l only use relative entropy of coherence to describe 
mutual coherence CM-

In Chapter 5, it is described that care must be taken when considering trans­
formations of various forms of quantum coherence in composite systems. More 
specifically, we investigated how to maximize mutual coherence in certain 
subspaces of d-dimensional Hilbert space % and the connection wi th maximally 
entangled states. 

2.3.5 Connection of quantum coherence with entan­
glement 

Since both - coherence and entanglement - are significant resources defined by 
resource theories, it is more than clear that we can find some parallels between 
these concepts. Considering that we have already defined entanglement in Sec­
tion 2.1.6, we briefly mention only these similarities point by point. 

• The maximally coherent state plays an analogous role in resource theory 
of coherence, as the maximally entangled state in entanglement resource 
theory. 

• When defining a coherent state, we first introduce an incoherent state. 
This is similar to introducing a separable state in entanglement theory to 
define what an entangled state is. 

• While in the theory of entanglement the generation of all quantum opera­
tions in bipartite systems is possible using the maximally entangled state 
and local operations and classical communication (LOCC) [153], in the the­
ory of coherence all these operations are generated using the maximally 
coherent state and 10 [54]. 

• The measures are also defined in both resource theories. In certain cases, 
some measures of entanglement may be equal to measures of coherence [158]. 

• A state that has some amount of coherence (i.e., is not incoherent) can 
be used to generate entanglement via bipartite IOs. In other words, it is 
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not possible to create an entangled state by any operation i f we start from 
incoherent states [159]. 

2.4 Quantum cryptography 
Ever since humans learned to read and write, there has been an effort to com­
municate information between two participants in such a way that a third par­
ticipant can not reach them. Technology has evolved significantly since ancient 
Egypt, and today, computers and various security protocols are used to communi­
cate information securely. The key is to create an encryption method that can not 
be broken. However, classical encryption and classical computers already seem 
insufficient with the development of quantum computers. Therefore, methods 
based on the principles of quantum mechanics, such as quantum key distribution 
or oblivious transfer, are increasingly coming to the fore. 

2.4.1 Quantum key distribution 

Quantum key distribution (QKD) is a secure method that allows an exchange of 
encryption keys between two participants, usually called Alice and Bob. They 
have access to two communication channels - one quantum and the other clas­
sical. Alice and Bob use the quantum communication channel to securely share 
keys. The classical channel serves Alice and Bob to communicate such infor­
mation that they can perform bases reconciliation, error correction, and privacy 
amplification [160]. In other words, Alice sends information using bits usually 
encoded into qubits to Bob over a quantum channel. To verify the security of the 
quantum channel, they communicate certain information over a classical channel 
to reveal the possible leakage of information to someone else. In QKD, the person 
trying to get the information shared between Alice and Bob is called Eve, from 
the word "eavesdropping". Based on the information, which Alice and Bob share 
over the classical channel, they can determine the amount of noise in the quan­
tum channel. This knowledge allows them to use classical algorithms, which 
subsequently guarantee that the information Eve has about their secret key is 
exponentially small. The Q K D scheme is shown in Fig. 2.19 (a). 

Q K D can be described in the following four steps (for more information see the 
BB84 protocol below): 

• Sifted key creation, i.e., generation of n random bits encoded into logical 
values of 0 and 1 using, for example, polarization or phase methods, 
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• Channel parameter estimation, i.e., determining the amount of noise (pos­
sible information leakage) present in the quantum channel, which is sub­
sequently included in the privacy amplification algorithm, 

• Error correction, i.e., using the information communicated over the authen­
ticated classical channel to reconcile the differences between Alice's and 
Bob's bit strings, 

• Privacy amplification, i.e., an algorithm applied after error correction for 
extracting secret random bits from the bit string that still may be partially 
known to Eve. 

The final random secret key, which is known to Alice and Bob, is used to en­
crypt and decrypt the shared message. Only the key, not the message, is secretly 
distributed between Alice and Bob over the quantum channel. The message is 
encrypted with the key and communicated publicly. Eve tries to disrupt both 
channels, quantum and classical, in such a way that she learns as much infor­
mation as possible without her presence being detected. The security of Q K D 
is based on the laws of quantum mechanics, unlike classical computing, which 
relies on the computational difficulty of mathematical tasks. 

In QKD, the secret key is distributed over the quantum channel using a vari­
ety of quantum protocols. We can divide these protocols into four main catego­
ries: The protocols that use discrete variables (DV) [65], the protocols that use 
continuous variables (CV) [66], hybrid protocols using both [68] and distributed-
phase-reference coding [161]. For D V and CV, each bit of information about the 
key is encoded into a single signal state. However, the difference between the 
two is that D V uses encoding into discrete variables of the quantum state, such as 
polarization or phase, while C V encodes information into continuous variables, 
i.e., quadratures of a coherent or squeezed state. Distributed phase-reference-
coding uses the phase difference of two successive signal pulses or the differen­
ce in the arrival times of individual photons to encode the information. Some 
quantum protocols use entanglement which brings certain benefits. It allows, 
for example, to communicate over a greater distance or it enables determining 
the security of a given quantum protocol, see the E91 protocol below. 

Some important QKD protocols 

In this section, we only mention a few quantum protocols to simply explain the 
principles of Q K D . A t the same time, we also explain other concepts related to 
the security of quantum protocols, such as various forms of eavesdropping. 
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BB84 
The first Q K D protocol was proposed in 1984 by Bennett and Brassard [15], hence 
its name BB84. This protocol uses qubits to encode bits of information. It was 
originally described using photon polarization states, however, other variants, 
such as the phase encoded states in optical fibers, can be used to transmit infor­
mation using this protocol. The security of this protocol against eavesdropping 
(Eve) was proved in Ref. [162]. 

The protocol consists of choosing two nonorthogonal polarization bases, for 
example, H V and D A . H (V) is the horizontal (vertical) polarization state assigned 
to a logical value 0 (1). In the second basis, the two polarization states, diagonal 
and antidiagonal, are again assigned to the logical values of 0 or 1. The sender, 
Alice, randomly chooses a basis and thus randomly sends one particular state 0 
or 1. This state is sent over a free space or a fiber to the receiver, Bob. He also 
randomly, independently of Alice, chooses a basis and then detects either 1 or 0. 
Then they share their settings of bases via the classical communication channel. 

If Alice sends 2n bits of information encoded into qubits to Bob, then Bob has 
a 50% chance of choosing the same bases as Alice. Therefore, after sharing the 
bases choices with Alice over the classical channel, he has at least n bits from the 
correct guesses. Some random others of these n bits are sacrificed when Alice 
and Bob exchange information about the logical values they sent/measured. In 
this way, they try to determine their error rate. Knowledge of the error rate of 
their quantum channel enables the application of classical protocols, i.e., error 
correction and privacy amplification. The error rate is caused by a noise in the 
quantum channel, which is always considered to be caused by Eve. She can 
disrupt the quantum channel, for example, by taking the qubits sent by Alice and 
measuring their logical values on the bases she guesses. However, a qubit mea­
surement (detection) destroys the qubit, and because of the no-cloning theorem 
of quantum mechanics, Eve cannot clone qubits before her measurement. The 
solution for Eve is to have a device similar to Alice's. She can then send her bits 
to Bob. But for that, she has to choose her own random bases. Thus, even i f Bob 
agrees on the choices of bases with Alice, he may not agree with Eve, causing 
Bob to measure different bit logical values than he should, thus revealing the 
presence of Eve. 

Alice and Bob therefore perform error correction. One possible algorithm is 
based on a parity check [163]. Alice and Bob first agree on a random permutation 
of the bit positions in their strings because they want to randomly distribute 
errors. The bit strings are then divided into blocks of the same size k (blocks with 
the same number of bits), and the parity of each block is calculated by summing 
the logical values of the bits and dividing the sum by modulo 2. Alice and Bob 
then exchange these parities. In this way, they can detect the blocks with an odd 
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number of errors. Alice and Bob can apply a dichotomic search, an algorithm 
capable of finding and correcting one of the errors, the wrong bit, in the block. 
However, this bit is not secure for encryption and, therefore, is discarded at the 
end of the protocol. They can then repeat the process by choosing a different 
k, recalculate the parity and try to correct the errors. The number of remaining 
errors decreases wi th each iteration, and the number of sacrificed bits as well. 
In this way, Alice and Bob try to match all bit strings and eliminate errors until 
they reach close to the optimal information rate given by the Shannon limit (the 
maximum amount of error-free information that can be transmitted per time unit 
over a communication channel in the presence of noise). 

The final step is privacy amplification, where Alice and Bob gain a shorter 
but secret bit string, their secret key, from a partially secret bit string obtained 
during the error correction process. For privacy amplification, hash functions 
are mainly used in practice. These are one-way functions mapping bit strings 
of arbitrary size to fixed-size ones [164]. After applying both, error correction 
and privacy amplification, Alice and Bob have a secure bit string, a secret key, 
where it is guaranteed that the probability that Eve knows the individual bits of 
the secret key is exponentially small. 

E91 
In 1991, Artur Ekert proposed a Q K D protocol using entanglement [10]. Instead 
of Alice sending particles wi th information to Bob, there is another source that 
creates entangled particles and sends one to Alice and one to Bob. The quantum 
states used here are called spin singlets 1 0 . The well-known example of the singlet 
state is the Bell state defined in Eq. (2.43). One particle from the entangled 
pair wi th either up or down spin travels to Alice, while the other one with the 
opposite spin travels to Bob. However, one cannot decide which particle has 
which spin without measuring at least one of these two particles. The spin-up 
and spin-down states of the particles correspond to bit values 1 and 0, respecti­
vely. 

Alice and Bob choose one of three coplanar axes to measure their particle. 
There is a 1/3 probability that Alice and Bob w i l l choose a compatible basis. If 
this happens, they w i l l always get anti-correlated measurement results. It means 
that i f Alice measures spin up on her particle, Bob's particle has spin down, and 
vice versa. However, i f Alice and Bob choose incompatible bases, then the result 
of Bob's measurement is random, independent of Alice's measurement. These 
two-thirds of the results are discarded in this protocol. 

1 0 A set of particles with spin quantum number s — 0, which is evident in a spectrum that has 
only one spectral line. Then we also have triplet states with s = 1/2, in whose spectra we see 
the threefold splitting of spectral lines. 
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To discard these measurements, Alice and Bob let each other know via the 
classical channel in which bases they performed their measurements. The pre­
sence of Eve is tested using Bell's theorem. Because, as was already mentioned 
in Section 2.1.6, Bell's inequalities are violated only i f two particles are entangled. 
If there is Eve in the quantum channel, she w i l l disturb the entanglement by her 
presence - by measuring one of the entangled particles to obtain information. 
There may be a situation where Bob does not receive a particle from an entangled 
pair. But since Alice received hers, this fact already indicates the presence of Eve. 
Eve can measure Bob's particle in some of her randomly chosen bases, but then 
she has to send another particle to Bob. In this case, Eve's particle w i l l no longer 
be entangled with Alice's particle. As a result, Bell's inequalities are not violated. 

MSZ96 and others 
This Q K D protocol was proposed by M u , Seberry and Zheng in 1996. It uses nei­
ther polarizing photons nor entangled particles. It requires four nonorthogonal 
quantum states described by noncommuting quadrature phase amplitudes of a 
weak optical field. These states have multiple overlaps (more than 90%), so it is 
almost impossible to get a definite result by measuring just one state. While the 
first two protocols use DV, this protocol uses CV. 

Some other protocols, such as BBM92 [165] or Decoy state protocol [166], 
use decoy states. These are states with different mean numbers of photons that 
are used to detect eavesdropping attacks. The main problem with probabilistic 
sources, such as the SPDC described in Section 2.2.1, is the occurrence of multi-
photon emission. The consequence is that there is more than one photon in the 
pulse. But that is an unwanted case. Eve can steal these extra photons and per­
form her measurements on them to gain information. Different intensity pulses 
from different sources transmitted over the same quantum channel help prevent 
this attack, otherwise known as photon number splitting (PNS). 

Other invented protocols aim to improve some features of the original ones. 
For example, SARG04 [167] is a more robust version of BB84 protocol, specifically 
in PNS attacks. Another example is the Six-state protocol [168], which, as the 
name suggests, uses all three orthogonal polarization bases. This makes it more 
resistant to noise. 

2.4.2 Oblivious Transfer 

In addition to QKD, there are other cryptographic methods such as Oblivious 
Transfer (OT), quantum bit commitment (QBC) [60] or password-based authen­
tication [61]. OT is the basic building block for all other two-party protocols and 
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wi l l be discussed in more detail. 
In the OT protocol, one communication participant has several messages and 

sends them to the other communication participant. The receiver should receive 
only one of the messages and not learn anything about the others. However, the 
sender should be oblivious to which message the receiver received and whether 
he received it at all. The OT scheme is shown in Fig. 2.19 (b). 

The first OT proposal was introduced by Rabin in 1981 1 1 . The sender has 
one bit available, which with a probability of 1/2 is sent to the receiver. How­
ever, the sender does not care whether the bit is received or not. This proposal 
belongs to a form of OT called All-or-nothing. Another form of OT is 1-2 obliv­
ious transfer [62]. It means 1 out of 2, so the sender has two messages, two bits. 
However, the recipient w i l l only receive one of them. The probabilities of receiv­
ing both messages are equal. Again, the sender does not care which message 
was received, i f any at all. There are also several more generalized versions of 
this protocol. One of them is 1 out of n OT [63], where we have n messages, and 
the recipient receives only one of them. Or there is also the variant k out of n 
OT [170]. Another concept of OT is X O R oblivious transfer, or simply X O T [171]. 
The sender has two bits, which are sent to the receiver. The receiver then receives 
one of the two bits or their XOR. Apart from our quantum protocol, which is des­
cribed in Section 6, there is so far only one other X O T quantum protocol, namely 
KST22 [172]. 

Just as Q K D protocols allow quantum-safe communication, quantum OT-
(QOT) protocols allow quantum-safe computation. Unlike QKD, where security 
is required against an unwanted third party, in (Q)OT, security should be en­
sured directly against communication participants who do not trust each other. 
Another difference between Q K D and QOT is that we cannot implement QOT 
with unconditional security. In other words, security is not only determined 
by the laws of quantum physics. We need to use the restrictions and assump­
tions discussed below. However, these two approaches, Q K D and QOT, also have 
something in common. Both have quantum protocols for sending encrypted in­
formation and may also use similar methods, such as polarization encoding or 
entanglement. 

As we already mentioned, QOT security is not determined only by the laws of 
quantum physics. A n unconditionally secure QOT was shown to be impossible 
in 1997 in Refs. [173, 174], leading the quantum cryptography community to 
pursue two possible paths: 

• The first path was the invention of protocols limited by certain assump­
tions such as relativistic constrains [175, 176], noise, or bounded quantum 
storage [177]. Such protocols include, for example, BBCS92 (below) or 

nHowever, oblivious transfer was first described by Wiesner [169]. 
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KW16 [178]. 

• The second path includes protocols which allow communication partici­
pants to obtain some information with a certain probability, but we have 
to calculate the probabilities of cheating for individual participants. This 
path is referred to in some literature as Weak OT, in which we include 
protocols, such as CKS13 (see below) or X O T (see Section 6). This approach 
also leads to the concept of Private Database Query [179]. 

Classical Channel Classical Channel 

(a) QKD (b) OT 

Figure 2.19: Schemes of quantum key distribution (a) and oblivious transfer (b). In 
QKD, Alice (left) and Bob (right) exchange a secret key and trust each other. Eve (centre) 
pretends to be Bob (Alice) to Alice (Bob) and tries to get the secret key by eavesdropping 
and disrupting both channels (classical and quantum) that Alice and Bob use for trans­
mission. In OT, Alice and Bob also communicate with each other, but unlike QKD, they 
do not trust each other. Here, security is not determined only with Eve in mind, but 
calculations are made to find out the cheating probabilities of Alice and Bob, who want 
to get more information than they should. 

BBCS92 protocol 
This protocol is among the first proposed protocols and reduces quantum OT to 
quantum bit commitment [180]. Its name, similar to BB84, is formed by the first 
letters of its inventors, i.e., Bennet, Brassard, Crepeau and Skubiszewska, and at 
the same time by the year when it was created. This protocol uses weak pulses 
of polarized light, and the encoding method is very similar to the BB84 protocol. 

Alice and Bob initially exchange some information before starting OT, so 
they can successfully communicate. For example, Bob w i l l tell Alice about the 
detector's quantum efficiency and their dark count rates. Alice w i l l tell him, 
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for example, the intensity of the pulses she sends and the security parameter AT. 
Then Alice sends Bob a random sequence of 2N/a 1 2 faint pulses each in one of H , 
V, D, and A polarization. The following steps are the same as in the BB84 protocol: 
Bob randomly decides the bases on which he detects pulses. He writes down the 
choices and the measured results. Alice then tells Bob the bases she used to 
send each pulse. Unlike the BB84 protocol, Bob does not reveal his choices. He 
should receive a total of 2N pulses, which he divides into good ones and bad ones 
(depending on his correct choice of bases). Wi th the 50% probability of correct 
guessing, Bob should now have N correctly measured pulses and N wrongly 
measured pulses. After further steps with error corrections, two possibilities 
arise: Either Bob has the correct chain of N pulses, and thus also the necessary 
information from Alice, or Bob didn't receive anything because his error rate 
was higher, and, therefore, he doesn't have all the N necessary correct results to 
gain the information. Alice doesn't know on which bases she and Bob agreed, so 
she has no idea which information Bob obtained i f any at all. 

One security issue is immediately apparent. If Bob had some quantum me­
mory where he could store all of his unmeasured photons sent by Alice, then after 
learning Alice's choice of bases, he would get all the information. For this reason, 
one possible security assumption of OT is the absence of quantum storage. To 
verify that Bob does not cheat, Alice can ask about some of his bases choices and 
the results of his measurements. If Bob is honest, then he passes Alice's test. If 
not, he only has a certain probability of guessing. 

CKS13 protocol 
The Chailloux-Kerenidis-Sikora protocol is the first proposed Weak OT protocol. 
A specific quantum system is sent to the receiver, who performs some quantum 
operation on it and sends it back to the sender. A t the same time, both commu­
nication participants work in 3D Hilbert space and do not use conjugate coding, 
i.e., coding from the BB84 protocol. 

It starts by preparing an entangled state on the receiver's side, which depends 
on the random selection of bits. He keeps one of the three qutrits and sends 
the other two to the sender. The sender applies a unitary operation according 
to his random bit selection on these other two qutrits. This subsystem is sent 
back to the receiver. The receiver now has a state that is either the same as, or 
orthogonal to, the initially created entangled state. Now, the receiver can make a 
measurement that perfectly distinguishes between these two cases. One of these 
cases has the logical value of 1 and the other of 0. This way, the receiver gets 
only one bit of information without the sender knowing which one [181]. 

a is a fraction of pulses Alice expects that Bob will detect successfully 



Chapter 3 

A source of entangled photons based 
on a GaAs quantum dot 

Results presented in this Chapter come from cooperation with the group of Prof. Ri-
naldo Trotta in Rome, Italy. Rinaldo Trotta et al. devised a method and built an 
experimental setup (both described below). All our experimental results were mea­
sured using their setup directly in the laboratory of La Sapienza University in Rome. 
This collaboration ended with a joint article [Al]. The results described in this The­
sis are based on my own measured data obtained during cooperation with the group 
of Prof. Trotta. 

Quantum dots, as well as SPDCs, can be used as sources of entangled pairs. 
However, to achieve similar qualities in entanglement generation as probabilis­
tic sources, the quantum dot should have low multiphoton emission probability, 
high brightness, tunable emission energy, and high fidelity entanglement. The 
significant advantages of quantum emitters are the Coulomb interaction and the 
Pauli exclusion principle. Thanks to them, each excited state can be populated 
only once. Moreover, the simultaneous emission of more than one photon of 
a given frequency per excitation cycle is reduced to a negligible probability of 
re-excitation during the same laser pulse. 

However, a proof-of-concept demonstration of a quantum dot (QD) device 
that fulfils all the strict requirements of the ideal entanglement source at the 
same time is still missing. It is mainly due to several technical difficulties, such 
as fine structure splitting (FSS) described in Section 2.2.2, which reduces entan­
glement; the low extraction efficiency which is caused by total internal reflection 
in the high refractive index semiconductor material; low indistinguishability of 
the generated pairs due to decoherence and time correlations in the two-photon 
cascade. 
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Figure 3.1: Bragg resonator, also called Bullseye cavity. This figure is taken from 
Ref. [182]. 

One way to solve some of these problems is to place the QD in the microcavi-
ty. Its ability is to redirect the flow of photons, improving the efficiency of photon 
extraction. Another method is the application of some external fields. We used 
gallium arsenide (GaAs) QDs embedded in a Bragg resonator and integrated into 
a micromachined multiaxial piezoelectric actuator that enables voltage tuning. 
We applied a D C voltage to affect the QDs on this device. More specifically, our 
goal is to use this voltage to reduce the FSS and thereby improve the entangle­
ment of the generated photon pairs. 

The choice of a Bragg resonator (CBR), also called a Bullseye cavity, is best 
compatible wi th the strain tuning technique. In the centre of this resonator is 
a QD surrounded by a circular Bragg grating, see Fig 3.1. This results in a peri­
odic change in the refractive index. The repetition of this structure has a period 
that satisfies the second-order Bragg condition. Due to this, the light inside the 
semiconductor is reflected in the direction perpendicular to the plane wi th the 
Bragg grating. If, in addition, the Bragg grating is combined wi th a metallic mir­
ror placed below it, then the result is even better reflectivity of a quasi-Gaussian 
beam emerging from the top surface of this structure. A further improvement 
in emission occurs thanks to the Purcell effect, which enables higher repetition 
rates. By a different Purcell factor, we can also influence the lifetime of quasi-
particles such as exciton X and biexciton XX and thus also increase the indistin-
guishability of photons emitted during the recombination of these quasiparticles 
(more information below). The extraction efficiency, i.e., the fraction of photons 
collected by the lens at the surface of the samples in our experiment, is 0.77(5), 
which was measured with single-photon avalanche photodiodes (SPADs) for the 
brightest QDs in the sample, excited at the repetition rate of 80 M H z and con­
nected to a multimode fiber. 
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3.1 QDs characterization 
Individual GaAs QDs grown by Al-droplet etching are created by molecular beam 
epitaxy growth at the Institute for Semiconductor and Solid State Physics of the 
Johannes Kepler University in Linz (AT). There can be several dozens of them 
on one created sample. The formed membrane containing GaAs QDs is then 
placed on the piezoelectric actuator. Next, it is necessary to find the position 
of each QD and mark them. Therefore, we have to place a marking grid on the 
membrane. It is done by patterning the mask with electron lithography. Finally, 
the QDs positions are read again to etch the Bragg cavities. A detailed description 
of the entire procedure can be found in Ref. [134]. The etched sample is then 
mounted in a low-temperature (5K) closed-cycle cryostat to characterize the shift 
of the cavity mode wi th temperature and to observe any degradation of the QD 
emission due to the etching process. 

Fig. 3.2 shows the reflectivity spectrum of a Bragg cavity with QDs. We can 
see that the peak corresponding to the QD emission is almost in the centre of the 
formed cavity, in the dip, so the extraction efficiency is very high. The spectral 
response of the cavity is analyzed by obtaining its reflectivity spectrum. We used 
a white halogen lamp, which is a broadband source. The spectrum of the light 
reflected by the cavity is almost flat, so we plot only the part covering the dip. 
This dip is created by the light absorption in resonance wi th the cavity. We also 
see the emission of the QD inside the dip because the cavity is mode-matched to 
this QD. 
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Figure 3.2: A part of the measured reflectivity spectrum of the cavity with a QD. We 
used a broadband source, it follows that the entire spectrum is almost flat, except for the 
dip. The dip was created by the absorption of light that is in resonance with the cavity. 

Inside the cryostat, the entire sample lies on a mount wi th linear piezo actua­
tors that control the sample movement in the x, y, and z directions. A t the same 
time, the entire sample is projected onto a computer screen, where the grid and 
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the location of the individual QDs can be seen, see Fig. 3.3. It is possible to target 
the position of the desired QD by controlling the piezo actuators. After finding 
the position, we can start to excite the QD and measure its properties. 

Figure 3.3: Example of an electron lithography grid showing the location of the Bragg 
resonators surrounding the QDs. This figure is taken from Ref. [134]. 

3.1.1 Degree of linear polarization 
The asymmetry of the QD, the location of the QD in the cavity and also the 
asymmetry of the cavity in which the QD is located lift the polarization degene­
racy into two orthogonal linearly polarized modes. However, we assume that 
the two emitted photons from the QD, created by the decay of two excitons, w i l l 
be entangled in polarization, and both w i l l have opposite circular polarizations, 
see Section 2.2.2. We must therefore determine the degree of linear polarization 
(DOLP). The smaller the DOLP, the better, as it w i l l not affect our resulting po­
larization entanglement fidelity measurement. 

The measurement starts with cooling the sample with QDs down to 5 K in 
a cryostat. We use a mode-locked pulsed Ti:Sapphire laser Chameleon Ultra II 
from Coherent wi th 680 nm to 1080 nm tuning range. The 200 fs long laser pulses 
are narrowed in energy wi th a 4-f pulse shaper to roughly 9 ps temporal width. 
The QD is excited with a two-photon excitation (TPE) scheme where the laser 
energy is tuned to half the energy difference of the 0 - XX transition (ground 
state and the biexciton level) and begins to emit light. The laser light is directed 
to the cryostat using a 10:90 beam splitter with low polarization sensitivity. The 
radiation from the QD and the scattered laser beam return from the cryostat 
through the same beam splitter. Scattered radiation from the laser is filtered out 
by a series of three notch-filters based on volume Bragg gratings (VBG) with a 
bandwidth of 0.4 nm each. Therefore, we see only two peaks belonging to X and 
XX on the resulting spectrum. Experimental scheme is shown in Fig. 3.4 (a). 

For DOLP measurment, we place a half-wave plate, a linear polarizer and a 
detector in the path of the light coming from the QD, see Fig. 3.4 (b). If the light 
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Figure 3.4: Experimental scheme for the characterization of QDs. For simplicity and 
clarity, we omitted 10:90 BS and sketched the radiation from the lasers going into and 
out of the cryostat from 3 directions. The red line indicates pulses from the Ti:Sa laser, 
and the green line represents continuous radiation from the 532 nm laser diode. The 
diode serves to remove charged excitons. Behind the Ti:Sa laser is a delay line that 
shifts the pulses by 1.8 ns. A l l (polarizing) beam splitters have a splitting ratio of 50:50. 
The figure is further divided into individual schemes according to the measurement of 
different properties: Scheme for measuring the spectrum of a quantum dot (a), scheme 
for measuring the degree of linear polarization of photons emitted by a quantum dot (b), 
scheme for measuring the indistinguishability of photons (c), and scheme for measuring 
the entanglement of photons (d). 

emitted by the QD is not linearly polarized, nothing happens during the rotation 
of the half-wave plate and the intensity measured by the detector is constant. If, 
however, the light is linearly polarized, then the intensity at the detector perio­
dically decreases and increases wi th a typical cosine squared dependence. From 
this dependence, we can determine the DOLP. Finally, we keep all QDs with low 
DOLP and write down their positions. We no longer measure wi th others. 

The QD we finally chose for strain tuning and generation of entangled photon 
pairs has D O L P = 0.05(1). 



QDS CHARACTERIZATION 57 

3.1.2 Lifetime measurement and indistinguishability 

Consider a three-level ladder scheme wi th two decays XX -> X -> 0. Two 
photons are emitted in this cascade. The measured photoluminescence spectrum 
(PL) of X and XX photons is shown in Fig. 3.5. Their wavelength differs by 
approximately 2 nm. The reason is the Coulomb interaction between the two 
excitons, which causes XX to have a lower energy i.e., a longer wavelength. 
These photons are generally inseparable, but only until the decay rate of the X 
state vanishes. This nonseparability limits the indistinguishability of photons. 
The X photon state separability can be quantified by purity V 

where p = T r ^ G [ | ^ | ] = J0°° J0°° Y x x ^ ^ ' ^ ^ ^ e ^ - ^ 2 

^ x x ^ x ( 0 l v a c X v a c l f r x x ^ x ( O dtdt' and yx (Yxx) is the decay rate of exciton 
(biexciton), <x>xx^x is the frequency of the transition XX -> X, bA_^B ( £ > a ^ b ) is 
the time domain creation (annihilation) operator decribing the photonic modes 
that individual transitions couple (decouple) to. This equation is described in 
more detail in Ref. [183]. For us, the resulting fraction on the right side of Eq. (3.1) 
showing the importance of decay rates. It usually holds for QDs that yxx = %Yx-
In this case, the maximum purity we can achieve is V = 2/3. A t the same time, 
we can see that the upper bound of photon indistinguishability wi th maximal 
coherence for a three-level system in a QD is limited by decay rates of the quasi-
particles [183]. We cannot directly measure this theoretical purity value in an 
experiment. Instead, we measure the two-photon interference and then deter­
mine the visibility. Purity and visibility are identical for systems with negligible 
emission wi th photon numbers greater than 1 [184]. 

Two-photon interference is measured using the H O M experiment. Scheme 
is depicted in Fig. 3.4 (c). We excited the quantum dot wi th two n-pulses (pulses 
with the largest population inversion, i.e., creation of a biexciton) delayed by 
1.8 ns. This gives us XE (early) and XL (late) as wel l as XXE and XXL. These 
photons then pass through a Mach-Zehnder interferometer with arms of diffe­
rent lengths. This interferometer is equipped with a 1.8 ns delay line. A t the 
output of this interferometer, the photons interfere in a co-polarised configura­
tion and are subsequently detected. The result is a correlation histogram for 
X and XX containing 5 peaks belonging to all possible combinations of paths 
that the photons could have taken. If the photons are indistinguishable (we also 
consider temporal and spatial overlap), there is no peak at zero delay. This result 
corresponds to the black line in Fig. 3.6. The visibility of the H O M is determined 
from the values of the intensities in the co- and cross-polarized, and its results 

Yxx 
(3.1) 

Yxx + Yx 
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Figure 3.5: Exciton X and biexciton XX photoluminescence (PL) spectrum measured 
during the experiment. There are no photons from trions or remaining laser beam be­
cause they are suppressed by notch-filters. 

are Vxx = 61.5% for the biexciton photon and Vx = 62.4% for the exciton photon, 
which are values consistent wi th the theory. 

X Hong-Ou-Mandel visibility XX Hong-Ou-Mandel visibility 

D e l a y [ns] 

(a) X Hong Ou-Mandel visibility 
measurement. 

D e l a y [ n s ] 

(b) XX Hong Ou-Mandel visibility 
measurement. 

Figure 3.6: Measurement of Hong Ou-Mandel visibility of exciton X (a) and biexciton 
XX (b). 

The reduced indistinguishability of the emitted photons is due to the limited 
visibility that results from the nature of the emission from the three-level QD 
system. We can also describe this behaviour using finite exciton lifetimes. Biex­
citon photons are spectrally broadened due to the linewidth of the exciton, which 
has a finite lifetime. On the other hand, a photon from an exciton has a timing 
jitter caused by the cascade. Visibil i ty depends on the ratio of lifetimes of both 
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emitted photons TXX/TX- F ° r large values of this ratio, visibility drops almost 
to zero [183]. We can influence this ratio with asymmetric Purcell enhancement 
of these states. This enhancement, influenced by the choice of the cavity, helps 
achieve near-unity indistinguishability values and entangled photon pairs. 

We made measurements of the exciton and the biexciton lifetimes using a 
spectrometer in which we used a 300g/mm grating. We sent the signal from 
there to a SPAD with a low time jitter of 70 ps (FWHM) and then to a correlator 
with a time jitter of 8 ps. The T T L signal from the used photodiode served as a 
time reference. The instrument response function (IRF) is obtained by sending 
a 9 ps long laser pulse along the same path. We fitted the data with the model 
given by the convolution of the IRF wi th the exponential decay expected from 
a simple rate equation model of the radiative cascade and extracted the lifetime 
values. The errors of the obtained lifetimes are determined from a chi-square 
(X2) statistic with a confidence interval enclosed in a 5% increase of the j 2 . In 
this way, we narrowed down the selection of the remaining QDs, for which we 
further measured fine-structure splitting. 
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Figure 3.7: Decay rates measurement. We see that the decay rate of the exciton X 
plotted by red circles and red solid line is larger than that of the biexciton XX plotted 
by blue dots and blue solid line. For reference, we also plotted the instrument response 
function (IRF) by solid black line. 

The measured lifetimes of the chosen QD are for the exciton TX = 37(1) ps 
and for the biexciton TXX = 12(1) ps. The decay rates of both photons, from 
which the lifetimes are further determined, are shown in Fig 3.7. To summerize, 
lifetimes limit the maximum achievable visibility and this is why their measure­
ments are so important. Using different Purcell factors, which are determined 
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by the properties of the cavity, we can influence the lifetimes of quasi-particles 
and thus improve the indistinguishability of photons. 

3.1.3 Fine-structure splitting measurement 

What is fine-structure splitting (FSS) and its undesirable effect on the polarization-
entangled photon pairs generation inside QDs was described in Section 2.2.2. Its 
measurement and subsequent reduction are important for generation of entan­
gled photon pairs from a QD. 

The FSS is measured by placing the H W P and linear polarizer in the way of 
the light emitted by the QD. If the two exitonic levels are degenerate, there is no 
significant change in their energies during H W P rotation. However, i f any FSS 
exists, the energy values of the two levels are different and are affected by the 
rotation of the H W P . The larger the FSS, the larger the energy changes difference 
occurs. Polarization-resolved QD emission spectra are collected at each H W P ro­
tation step using a 1800 g/mm spectrometer grating. The half-amplitude sine fit 
of the energy difference between the X and XX lines returns the FSS magnitude 
of the X level. A typical dependence can be seen in Fig. 3.8. The measured FSS 
values of various QDs reached up to 30 //eV. 
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Figure 3.8: Difference of X and XX energy levels depending on HWP rotation. The red 
line is a fit of the data obtained during the QD measurement. This Figure is taken from 
the supplementary material of Ref. [185]. 
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3.2 Strain-tuning 
After we have characterized the lifetimes of individual quasiparticles of the QD 
and obtained sufficient extraction efficiency thanks to the Bragg resonator, we 
still have to solve the FSS that arises from the QD asymmetry. Our method to 
reduce the FSS is to apply a voltage to the membrane with QDs. Since we only 
have detectors wi th finite time resolution, we must reduce the FSS to a value 
smaller than the natural width of the emission line. 

The FSS reduction method in which we can further tune the QD emission 
was proposed by Trotta et al. in Rome, Italy. A more detailed description is 
given in Ref. [146]. They designed a device that applies triaxial stress in the 
plane to change the shape of the QD electronic structure. The idea is as follows: 
The membrane wi th QDs is placed on the piezoelectric material. Subsequently, 
a controlled voltage acting on this membrane causes its volume deformation. In 
other words, by applying a tunable D C voltage, we can control the amount of 
stress applied on a particular QD and thus improve its broken symmetry. A 
mathematical description of this process can be found in Refs. [134, 146]. 

To achieve voltage tuning, Trotta et al. use a piezoelectric material P M N -
PT in which they make three cuts at an angle of 60° with respect to each other. 
These cuts form six separate areas where we can independently apply voltage 
with almost no crosstalks. To tune the asymmetry of the QDs, we only need to 
apply three voltages V l 5 V 2 , and V 3 on pairs of opposite arms (legs). We choose 
opposite ones because then the membrane with the QDs cannot move. The six-
legged piezoelectric material wi th QDs membrane is shown in Fig. 3.9. 

Figure 3.9: Six-legged device made by prof. Trotta et al. in Rome for strain-tuning of 
the QD. 

The measurement of one particular selected QD is shown in Fig 3.10. Here, 
we used only two channels (two legs) labelled Ch2 and Ch3 with applied voltage 
to reduce the FSS. We started by measuring the FSS when no voltage was applied. 
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Subsequently, we left zero values on two of the three channels (Chi and Ch2), 
while on the third (Ch3), we gradually measured the FSS wi th a step of 50 V. First, 
we went with the voltage to positive values, and then by reducing the voltage, 
we returned to zero value. A t zero, we continued to decrease the voltage by 
50 V. This way we got to negative values. The reason was the fragility of the 
membrane, which would be destroyed by the application of a larger step. After 
measuring the voltage on Ch3 from -250 V to 350 V while holding Ch2 and C h i 
at zero values, we came back, as well, wi th the value of Ch3 at zero. We then 
changed the voltage on Ch2 by +50V and, leaving C h i and Ch2 at zero values, 
measured the FSS again. Subsequently, we left the value of Ch2 at +50 V and 
again started to change the voltage of Ch3 from -250V to 350V with the same 
procedure as in the previous measurement. We repeated this process until we 
ran the Ch2 scale from -100V to 400V (again slowly returning to zero and only 
then to negative values). 

Figure 3.10: Dependence of FSS on the change of two applied voltages on channels Ch2 
and Ch3. 

We can see from Fig 3.10 that the original FSS value of the selected QD was 
approximately 2.5 jieSf, which corresponds to the green curve wi th zero voltages 
on Ch2 and Ch3 channels. By gradually increasing the voltage on both channels 
through the described process, we achieved the FSS minimal value of 0.2(2) /ieV 
It corresponds to the purple curve during a set voltage of 350 V on Ch2 and 250 V 
on Ch3. Furthermore, we see that by further increasing the voltage on Ch2 by 
50 V, the FSS value starts to rise again (orange curve). 

4.0 -
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3.3 Entanglement measures and their mea­
surement 

To determine the entanglement of the photons generated during the X and XX 
recombination process in the QD, we need to reconstruct the two-photon den­
sity matrix. Experimental scheme for entanglement measurement is shown in 
Fig. 3.4 (d). Here, we use notch filters to reflect X (XX) onto the corresponding 
rotating platform wi th the polarization tomography measurement components, 
i.e., polarizing beam splitter (PBS), quarter-wave plate (QWP), and half-wave 
plate (HWP). The platforms rotate because each QD emits photons wi th slightly 
different wavelengths, so the notch filters must be rotated accordingly to these 
wavelength differences to be able to filter X and X X . 

The minimum number of projective measurements on several identical co­
pies of the state for the two-photon density matrix reconstruction is 16. We re­
constructed the density matrix by performing 36 projection measurements into 
different polarization bases states. Subsequently, we applied the maximum like­
lihood method, MaxLik [93], to obtain the density matrix. Fig. 3.11 shows the 
real and imaginary parts of the density matrix at the minimum FSS value that 
we managed to achieve in the experiment. From the knowledge of the density 
matrix, we can determine the entanglement measure, for example, concurrence 
defined by Eq. (2.41). 

(a) Real part of the density matrix. (b) Imaginary part of the density matrix. 

Figure 3.11: Real (a) and imaginary (b) parts of the density matrix of the entangled 
photon pair reconstructed using MaxLik during the minimal obtained value of FSS. 

Apart from the concurrence, we also evaluate the entanglement fidelity. We 
use the knowledge that QDs generate a Bell state (see Section 2.2.2), so we 



64 ENTANGLEMENT MEASURES AND THEIR MEASUREMENT 

can determine what overlap our measured state has with this Bell state. Entangle­
ment fidelity F is 1 for perfectly entangled states. Since we know the polarization 
properties of our setup and we make sure that the radiation emission from the 
QD is not polarized, we only need a reduced set of 6 co- and cross-polarized coin­
cidence measurements between the two photons of the pair in three polarization 
bases to determine the entanglement fidelity [186, 187]. 

From measurements in each polarization basis we can calculate cross-corre­
lation visibilities between the X and XX photons using the relation 

i ° ( Q ) - g f ( o ) 

s f ( o ) + 5 f ( o ) ' 
(3.2) 

where indices i,j represent the two orthogonal polarizations of the chosen basis 
(HV, D A , PvL) and g^2\o) is the second-order correlation function in T = t2—h = 0. 
The fidelity of our reconstructed state wi th the Bell state is then 

1 + CHV + CDA - CRL 

(3.3) 
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Figure 3.12: Dependence of two different entanglement measures on FSS - concur­
rence and fidelity. Concurrence is calculated from Eq. (2.41) using the density matrix 
gained from the full quantum tomography measurement, while fidelity is determined 
from Eq. (3.3). 
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The experiment aims to prove that the entanglement measure reaches its 
maximal value when the FSS is reduced to zero. Measurement results are shown 
in Fig 3.12. We can see that concurrence and entanglement fidelity are increasing 
while FSS is decreasing. A t the experimentally obtained minimum value of FSS, 
which is 0.2(2) /ieV, the concurrence is maximal and its value is 0.87(1), and the 
entanglement fidelity reaches also its maximal value, which is 0.91(1). 

3.4 Discussion 
We have demonstrated a device containing QDs surrounded by an enhanced ca­
vity, i.e., a Bragg resonator, enabling strain-tuning. This device can tune the 
emission energy of the QD while reducing the FSS between two excitonic levels 
to almost zero. We managed to increase the extraction efficiency of emitted light 
to 0.77(5). We measured lifetimes of quasiparticles reaching 12(1) ps for the XX 
transition and 37(1) ps for the X transition, which corresponds to Purcell factors 
up to 11. We have shown the effect of different FSSs on the polarization entangle­
ment between the generated photon pairs of the QD. During the experiment, we 
managed to reduce the FSS value of the QD from 2.5(2) //eV by the applied voltage 
to 0.2(2) jieSf and, thereby, increase the concurrence value to 0.87(1) and the en­
tanglement fidelity value up to 0.91(1). However, considering similar conditions, 
the probabilities of multiphoton emission are higher i f we compare them with 
the same source type. This could be due to imperfect emission filtering around 
the XX peak and the remaining poorly filtered backscattered laser beam from 
the cryostat. The improvement of this device makes it possible to use QDs in the 
future as sources of entangled pairs used, for example, to demonstrate quantum 
teleportation or entanglement-based quantum key distribution. 



Chapter 4 

Deterministic controlled enhancement 
of local quantum coherence 

The resource theory of quantum coherence is gaining more and more interest. 
Applications range from quantum information processing [53, 188] to metrology 
[189], thermodynamics [190-192] and even biology [193]. Quantum coherence 
in terms of resource theory has been described in Section 2.3. 

We investigate a remote control and enhancement of quantum coherence. 
Methods and results described in this Chapter have been published in [A2]. We 
start from a product state of target system A and control system B, with limited 
local coherence in each subsystem. The two systems then interact via suitable 
coupling with a controllable coupling strength, which establishes quantum cor­
relations between A and B. This coupling does not generate any local coherence 
from input incoherent states. Only incoherent measurements and incoherent 
operations are allowed locally on systems A and B. We show that for specific 
intersystem coupling, this procedure can deterministically enhance the local co­
herence of A while fully preserving its purity, and it works for any pure control 
state with non-zero coherence. This measurement-based protocol can be iterated 
and the state of system A can be deterministically steered to a state with maxi­
mum coherence. We also show that instead of controlling the coupling strength 
of the interaction between the two systems, we can consider a fixed coupling 
strength, and impose a suitable phase shift on the input control system B. 
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Figure 4.1: Quantum circuit of the measurement-induced quantum coherence enhance­
ment. The target system A and the control system B are coupled by a fixed Hamiltonian 
and the coupling strength co can be controlled. Only incoherent operations can be applied 
locally to the systems A and B. After the interaction with A, the system B is measured 
in the basis of incoherent states and the measurement outcome is transmitted to A, who 
can apply a strictly incoherent unitary operation ax that flips the basis states |0) and |l). 

4.1 Our protocol 
We consider the quantum circuit illustrated in Fig. 4.1 wi th target qubit A and 
control qubit B initially prepared in pure states 

\f)A = cosa|0) + s ina | l ) , |^>B = cos /5|0> + sin ̂ |1>, (4.1) 

where |0) and 11) represent the basis of incoherent states of each qubit. Coherence 
of pure state \ijf) is quantified by the entropy of probabilities of the basis states 
|0) and |1>, 

C = h(cos2a), (4.2) 

where h(x) = - x l o g 2 ( x ) - (1 - x ) l o g 2 ( l - x) . The coherence is maximized for 
balanced superposition state (|0) + |l))/V2 , i.e., at a = n/4 (see Section 2.3.1). 
As shown in Fig. 4.1, the qubits A and B are coupled via a unitary operation 
U = exp(-iHt) induced by Hamiltonian H. Subsequently, the control qubit B is 
measured in the basis of incoherent states and a strictly incoherent operation can 
be applied to target qubit A depending on the result of measurement on qubit B. 
The goal of the protocol is to deterministically enhance the coherence of target 
qubit A while fully preserving its purity. In what follows, we show that this 
is possible for a non-trivial interaction Hamiltonian H that preserves the total 
population of levels | l ) , hence it couples only the basis states |0l) and |10). Such 
a Hamiltonian is available for many physical systems including superconduct­
ing qubits [194, 195], trapped ions [196] or neutral atoms [197], and thus well 
motivated. More specifically, we take 

H = fc(|0lXl0|-|10X01|), (4.3) 
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where g is an interaction strength. Consequently, we have 

U 

Í 1 0 
0 cos(^ř) 
0 - sin(^ř) 

V 0 0 

0 0 \ 
sin(^ř) 0 
cos(^ř) 0 

0 1 ) 

(4.4) 

This coupling (4.4) does not generate any local coherence i f the qubits A and 
B are initially prepared in incoherent states p^ a n d PB (i-e-> density matrices diag­
onal in the computational basis). By the local coherence of a system p we mean 
a coherence C of its individual qubits, e.g., for an i-th subsystem, the local co­
herence is C(Tr;^j[/>]). Although operation in Eq. (4.4) generally introduces cor­
relations between the subsystems, the subsequent partial trace prevents gaining 
local coherence for initially incoherent states. On the other hand, we w i l l later 
show that coupling in Eq. (4.4) increases the local coherence of initially partially 
coherent input qubits. 

In our protocol, a nonvanishing coherence of control qubit B represents a 
resource that can be used to increase the local coherence of qubit A . The protocol 
requires control of the effective two-qubit coupling strength co = gt. In practice, 
this could be achieved, e.g., by choosing the time t when the control system B is 
measured, thus controlling the effective interaction time. The optimal coupling 
strength co can be determined from the requirement that the normalized output 
states of qubit A | i ^ o ) a a n d |^ i)a> that correspond to projection of qubit B onto 
|0) or | l ) , w i l l possess the same coherence. This yields 

tanto 
cot A - tan A 

tan/? + cot/?' 

and 

where 

life) A cosá |0 ) + s i n á | l ) , \ÝI)A = s iná |0 ) + c o s á | l ) , 

tan A cot ft + cot A tan /? 
tana 

tan 2 P + cot 2 P + tan 2 A + cot 2 A 

(4.5) 

(4.6) 

(4.7) 

The state \I}/\)A c a n be deterministically converted to state \^/Q)A by local strictly 
incoherent unitary operation A X defined in Eq. (2.14). This operation only flips 
the basis states and cannot increase the coherence of the state. 

The above protocol enhances the coherence of target qubit A for any control 
state l^)^ wi th nonvanishing coherence. Indeed, assuming 0 < ft < n/2 one can 
prove the following strict inequalities 

min(tan a, cot a) < tan á < max(tan a, cot a), (4.8) 
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Figure 4.2: Convergence of the deterministic coherence enhancement protocol for a0 = 
TT/16 and ft = TT/16. We plot the parameter a specifying the state of qubit A after n 
iterations (a), the coherence of qubit A (b), the dependence of the coupling strength co on 
the iteration step n (c), and the state purity V = Tr[p 2] (d). Blue circles represent results 
for the protocol with measurement and feed-forward. For comparison, orange squares 
indicate results for a scheme without measurement. 

which imply \a — TT/4\ < \a — JI/4\. This proves that the coherence of qubit A 
is enhanced because the angle a gets closer to n/4. If several copies of control 
state \((>)B are available, we can iterate the protocol and repeatedly apply the map 
a -> a to asymptotically generate a state with maximal coherence in qubit A . The 
convergence to a = n/4 is asymptotically exponentially fast. Assume tana = 
1 — e wi th e « 1. Then 

tan a ~ 1 
cot P - tan P 

|tan/? + cotpY 
(4.9) 

Since 
cot — tan [5 

< 1 
tan [5 + cot P 

we get e -> qe and an exponentially fast convergence. We can thus determin-
istically concentrate the coherence by the measurement and pump it to qubit A 
starting from several copies of control qubits with low coherence. 

Note that the conditional application of the operation ax to qubit A is not re­
ally necessary for deterministic coherence concentration. One can instead keep 
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track of the measurement outcomes on qubits B and adapt the coupling strength 
o) at each step accordingly. If the measurement outcome on qubit B is '1', then 
we instead of ax application select the next o)' = —on where on is selected using 
Eq. (4.9). This choice satisfies the condition on equal coherence of output con­
ditional states when the input qubit A has been flipped. The protocol w i l l then 
deterministically converge to a = n/4. Typical behaviour of the protocol is illus­
trated in Fig. 4.2. Note that the coupling strength on decreases at each iteration 
of the protocol and asymptotically vanishes. 

For comparison, we provide in Fig. 4.2 also results of a simpler protocol that 
does not involve any measurement and feed-forward. In this latter scheme, we 
throw away the qubit B after the interaction and we numerically optimize the 
coupling strength co at each iteration to maximize the coherence of the output 
state of qubit A . Note that the state of qubit A becomes mixed in this process as 
illustrated in Fig. 4.2 (d). Therefore C is evaluated using the general formula for 
coherence of a mixed state (defined in Eq. (2.52)) 

C(p) = S(A[p])-S(p), (4.10) 

where S(p) = — T r ( p l o g 2 p), and A[p] = p 0 0 |0X0| + p n | l X l | is the density ma­
trix of the completely dephased state. The protocol without measurement does 
not converge to a maximally coherent state and the coherence saturates at an 
asymptotic value that is strictly smaller than 1, see Fig. 4.2 (b). This illustrates 
the importance and usefulness of the measurement and feed-forward that enable 
us to control and enhance the coherence while fully preserving the purity of the 
target qubit. 

Instead of controlling the coupling strength on, we can also control the con­
centration of quantum coherence by applying a phase shift <p to input qubit B, 
which yields the input control state cos /J|0) + elcp sin /J|l). This latter approach 
is less universal, because it works only for a restricted range of input states and 
coupling strengths, but is appealing because the control of two-qubit interaction 
is replaced with local control of qubit B. We illustrate this protocol for a maxi­
mally entangling two-qubit gate U obtained at o) = n/4. We again require that 
the two conditional output states of qubit A |i^o,i) possess the same coherence. 
This yields an expression for the phase shift q>, 

1 cot 2 a + cot 2 [I - tan 2 a - tan 2 /? 
cos<p= . (4-11) 

2 tan a tan p + cot a cot p 

The condition | cos<p| < 1 defines the range of a and p1 for which the protocol 
works. In particular, this condition is always satisfied i f a = p\ Numerical cal­
culations confirm that i f the phase shift in Eq. (4.11) exists, then the protocol 
enhances the coherence of qubit A . Besides the bit flip ax the two conditional 
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output states of qubit A w i l l differ also by some phase shift <5 of the amplitude of 
state | l ) that should be compensated by local strictly incoherent operation elS(Jz, 

where az is defined in Eq. (2.16), or tracked and taken into account in the iterati­
ve version of the protocol. For co = n/4 we find that the iterative protocol wi th 
fixed ft and initial point a 0 = P w i l l converge to a state with maximum coherence 
provided that n/8 < p1 < 3n/8. 

4.1.1 Experimental realization of a linear opt. partial 
SWAP gate 

We have experimentally tested the proposed protocols with a quantum photonic 
setup [82, 198], where qubits are encoded into polarization states of single pho­
tons. The interaction between the two qubits is provided by a partial-SWAP gate 

OPSWAP = n+ + ei2MU-, 

where f l _ = |Y_X^F—I is the projector onto the anti-symmetric singlet Bell state 
= -^( |0l) — 110)), f l + = I — f l _ is projector onto the three-dimensional 

symmetric subspace of two-qubits, and I denotes the identity operator. Up to 
unimportant phase shifts of the incoherent basis states, the partial SWAP gate 
induces the same coupling of states |0l) and |10) as the Hamiltonian in Eq. (4.3). 

The linear optical partial SWAP gate is schematically illustrated in Fig. 4.3. 
The gate is formed by a balanced interferometer with additional balanced beam 
splitter inserted into each of its arms [199]. The coupling strength on is controlled 
by the phase shift between the two interferometer arms and is fully tunable. The 
gate operation is based on two-photon interference at a balanced beam splitter. If 
the input photons are in a symmetric state, they bunch at the first balanced beam 
splitter and must propagate through the upper interferometer arm to reach the 
designated gate outputs. On the other hand, i f the photons are initially in the 
anti-symmetric singlet state, they remain antibunched after interference at B S l 
and each photon propagates in one arm of the interferometer, which imposes 
the phase shift 2o) between the symmetric and antisymmetric states of the two 
qubits. The gate operates in the coincidence basis and its successful application 
is heralded by coincidence detection of a single photon in each of the two gate 
output ports indicated in Fig. 4.3. Similarly to other linear optical quantum gates 
[198], the gate is probabilistic and its theoretical success probability is g irrespec­
tive of the coupling strength on. In the experiment, we automatically post-select 
the successful events by measuring two-photon coincidences between the two 
output ports of the gate. Note that this probabilistic nature of the linear optical 
partial SWAP gate does not preclude testing of our deterministic protocol, be­
cause it only reduces the data acquisition rate, but upon success it realizes the 
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required quantum circuit that could in principle be implemented deterministi-
cally on other platforms. 

qubitA 

Figure 4.3: Linear optical partial SWAP gate [199]. A Mach-Zehnder interferometer is 
formed by two balanced beam splitters. Two additional balanced beam splitters are in­
serted inside the interferometer. The interaction strength co is determined by the relative 
phase shift between the interferometer arms. Successful gate operation is indicated by 
coincidence detection of a single photon in each of the two output gate ports indicated 
in the figure. 

4.1.2 Experimental setup 
Detailed experimental setup is depicted in Fig. 4.4. Its core that implements the 
partial SWAP gate is formed by a displaced Sagnac interferometer, which ensures 
inherent passive interferometric stability of the setup [200]. Correlated photon 
pairs are generated in the process of spontaneous parametric down-conversion 
in a nonlinear crystal pumped by a laser diode (not shown in the figure). The two 
photons are spatially separated at a polarizing beam splitter and guided to the 
input ports of the Sagnac interferometer. Polarization states of photons are pre­
pared and controlled wi th half- and quarter-wave plates and Glan-Taylor prisms. 
At the output, the photons are detected by single-photon avalanche photodiodes. 
Wi th this compact and inherently stable setup we have implemented the partial-
SWAP gate with unprecedently high gate fidelity that exceeded 0.97 for all tested 
coupling strengths 0) in the interval [0, n/2\. 

The photonic platform employed in our experiment provides a convenient 
testbed for proof-of-principle demonstration and verifcation of the proposed pro­
tocol for controlled enhancement of quantum coherence. Although the coheren­
ce of polarization states of single photons could be easily manipulated wi th the 
waveplates, we do not use the waveplates for such purpose in the main part of our 
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Legend 

Figure 4.4: Experimental setup. The Mach-Zehnder interferometer is folded into dis­
placed Sagnac interferometer. Polarization states of single photons are controlled and 
analyzed with the use of wave plates, polarizing beam splitters and Glan-Taylor prisms. 
Photons are detected by silicon avalanche photodiodes operating in the Geiger mode. 
The auxiliary detector is used only for the tuning of the interferometric phase. 

experiment. We emphasize that we utilize the waveplates solely to prepare the 
input states and to set the measurement basis for the characterization of the out­
put states. The partial SWAP operation that forms the core of the demonstrated 
protocol is implemented with a Mach-Zehnder interferometer that does not con­
tain any waveplates. Our results reported below thus confirm the functioning of 
the protocol, which is applicable to any physical system, including those where 
the coherence changing-operations can be more experimentally demanding and 
costly than incoherent operations. 

4.1.3 Results 

We have first experimentally probed a single step of the coherence enhancement 
procedure. To compensate for the additional phase shifts induced by the partial 
SWAP gate, the qubit A was prepared in the state cos a\0) + i s ina | l ) while the 
control qubit B was prepared in state cos /?|0) + sin f}\l). In this measurement, we 
have probed the symmetric scenario where both qubits A and B initially have the 
same coherence, a = fi. The two-qubit coupling strength o) is set according to 
Eq. (4.5). We perform full quantum tomography of the output two-qubit state, re­
construct the density matrix by likelihood maximization [93], and extract from 
it (non-normalized) density matrices and corresponding to the projec­
tion of qubit B onto the basis states |0) and | l ) , respectively. We then apply the 
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conditional bit flip ax together with a suitable correcting phase shift <5 to the re­
constructed density matrix pAl and obtain the overall output state of qubit A , 
PA = PAO + ei8^axpAxaxe-I8AK 

Alternatively, we can choose only the subset of the two-qubit coincidences 
that correspond to projections of qubit B onto the computational basis states, 
and from this restricted data set we directly reconstruct the single-qubit density 
matrices pA0 and pA1. These two procedures yield very similar results and in 
what follows we report data obtained with the former procedure. 
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Figure 4.5: Experimental results for a single step of the coherence enhancement proto­
col with identical input states of qubits A and B, a = ft. The experimentally determined 
purity V (a) and coherence C (b) of input (squares) and output (circles) state of qubit A 
are plotted for 6 different input states. The solid and dashed lines indicate theoretical 
predictions (they coincide for the purity V). 

The experimental results are displayed in Fig. 4.5 for six different values of 
a. We plot in the figure the coherence of the state C as well as the state pu­
rity V = Tr(p 2 ) . Since the experimentally determined states are not exactly 
pure, we use the general expression for coherence of a mixed state, Eq. (4.10). 
For reference, the curves in Fig. 4.5 specify the theoretical prediction for an ideal 
pure-state protocol. We can see that the experimental data closely follow the the­
oretical expectation. The protocol enhances the local coherence of qubit A while 
maintaining its very high purity. The input state is practically perfectly pure, 
with V > 0.992 for all a considered, while the output state becomes slightly 
mixed. This can be attributed mainly to the imperfections of the two-qubit par­
tial SWAP gate, such as residual phase fluctuations in the interferometer and an 
imperfect visibility of two-photon interference. 
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Figure 4.6: Experimental test of iterative coherence enhancement. The effective angle 
a (a), coherence (b) and purity (c) of qubit A and the coupling strength co (d) are plotted 
in dependence on the number n of steps of the protocol. The results are presented for 
two different inputs OQ = ft = 15° (blue) and OQ = ft = 20° (orange). Symbols represent 
experimental data, solid lines guide the eye, and dashed lines indicate theoretical predic­
tions. Data at n = 0 represent the reference input state. 

Here and in the rest of this Chapter, the error-bars represent one standard 
deviation and were obtained using parametric bootstrapping. Wi th the knowl­
edge of reconstructed states, measurement operators, mean count-rate in the to­
mogram, and under the assumption of the Poissonian distribution of measured 
coincidence numbers, we generated 1000 tomograms, processed them the same 
way as the original tomograms, obtaining a set for each quantity of interest (e.g. 
coherence, purity). We evaluated the standard deviation of this set. For quanti­
ties of interest near its theoretical boundary, purity in this case, we instead found 
0.158 and 0.84 quantiles and used them to plot asymmetrical error-bars, in which 
lies 68.2% of all samples, equivalently to one standard deviation. 

Having verified the functioning of a single step of the protocol, we now pro­
ceed to experimental test of the iterative coherence enhancement scheme. A t 
each step, we determine the output density matrix p^ of qubit A and use it as an 
input state of the next step of the protocol, while keeping the state of qubit B (i.e., 
the angle fi) fixed at each step. The suitable coupling strength o) is at each step 
again determined from Eq. (4.5), where the angle a is chosen according to theo­
retical prediction for ideal pure state protocol, c.f. Fig. 4.2. We prepare a mixed 
polarization state p& of a single photon by preparing a statistical mixture of the 
two eigenstates of p^ wi th weights equal to the corresponding eigenvalues. We 
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start the iterative protocol from a symmetric input, a0 = [5. In Fig. 4.6 we plot the 
experimental results for two different initial coherences, a 0 = 15° and a 0 = 20°. 

The figure displays the coherence and purity of the state after each step of 
the protocol, together with the effective angle a determined from the dominant 
eigenstate of pA, and the utilized two-qubit coupling strength o). For OCQ = 15° 
we observe that the coherence increases up to 5th step of the protocol while for 
a 0 = 20° the coherence of qubit A reaches its maximum already at the 3rd step 
and then drops down. The reason for this behavior is that the experimental im­
perfections accumulate and reduce the purity of pA after each step of the protocol, 
c.f. Fig. 4.6 (d). Therefore, although the effective angle a increases at each step 
and closely follows the theoretical prediction, as shown in Fig. 4.6 (a), the noise 
eventually begins to reduce the coherence of the state. These data illustrate the 
sensitivity of the quantum coherence manipulation protocol to noise and imper­
fections. Thanks to the very high fidelity of our linear optical partial SWAP gate 
we were able to observe the improvement of coherence up to 5 iterations of the 
protocol. 

The difference in coherence maxima positions in Fig. 4.6 is related mainly to 
the partial SWAP gate implementation. Computational basis states |0l) and |10) 
are coupled by the partial SWAP gate, and the coupling strength o) is determined 
by the interferometric phase <p = 2co. Therefore, the output populations of |0l) 
and 110) are sensitive to q> and vulnerable to phase noise. These populations in­
crease as the parameters a and ft get closer to n/4, and therefore the protocol 
becomes more vulnerable to dephasing in this limit. Moreover, the phase mis­
alignment breaks the condition \^/Q)A = GxW\)A> which increases the mixedness 
of the output state. Also, this effect becomes more pronounced when a and ft get 
closer to n/4, because then the probabilities of the two measurement outcomes 
on qubit B become more balanced. 

Finally, we have experimentally tested the alternative protocol, where the 
coupling strength o) is fixed and at each step of the protocol we adjust the phase 
of qubit B to enhance the coherence of qubit A . Experimental results for this pro­
tocol are displayed in Fig. 4.7. We set on = n/4 hence we employ the maximally 
entangling V S W A P gate as considered in the preceding theoretical analysis. The 
left panels show results for OCQ = 20°, when this protocol cannot be iterated to in­
finity and terminates after second step, because the phase shift in Eq. (4.11) that 
should be applied to the control qubit B does not exist anymore. In Fig. 4.7 (b) 
we present results for a 0 = 25°. In this case the protocol can be arbitrarily ite­
rated and in theory should converge to a maximally coherent state. In practice, 
we observe that the coherence grows up to third iteration and then it begins to 
moderately decrease again as the noise accumulates. 
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Figure 4.7: Experimental results for iterative protocol with fixed coupling strength co = 
7r/4 and control exercised by phase shifts applied to input qubit B. The coherence, purity 
and effective angle a of qubit A are plotted for two different inputs a0 = ft = 20" (a) 
and a0 = ft = 25° (b). Data at n = 0 represent the reference input state. Blue dots are 
experimental data, black squares show the theoretical prediction for comparison. The 
lines are to guide the eye. 

4.1.4 Coupling strength setting 

The coupling strength setting is an important part of our experiment, hence we 
discuss it in more detail. The coupling strength on is controlled using a Sagnac 
interferometer. One of the mirrors inside this interferometer is mounted on 
a piezoelectric device. By applying a voltage, we can tilt the mirror and thus 
slightly change the phase q> of the interferometer. By changing the interferomet-
ric phase q>, we simultaneously set the two-photon coupling strength on because 
they depend on each other by the relation q> = 2o). In Fig 4.8, we see the depen­
dence of the detected counts on the two outputs of our experiment in 0.1 s on 
the tilting of the mirror. This tilting also changes the coupling efficiency at the 
individual outputs, resulting in the observation of different local maxima. 

We first tried to set the interferometric phase q> to the specific value by measu­
ring the typical behaviour shown in Fig. 4.8. In this way, we found out from the 
fit which setting of the mirror tilt corresponds to the desired number of counts 
at the experiment outputs (and therefore the desired coupling strength co). 

When we set the values for the correct mirror tilt determined from the fit, 
we encountered a problem with the hysteresis of the piezoelectric device. In 
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Figure 4.8: A typical interference pattern while the mirror is tilted using a piezoelectric 
device inside the Sagnac interferometer. We see the number of detections in 0.1 s on 
the two outputs of the experiment depending on the applied voltage on the piezoelectric 
crystal. Due to the mirror tilt, the coupling efficiency slightly changes, and we observe 
different local maxima. 

other words, when we repeatedly apply the voltage to the mirror, the number 
of counts at the outputs change. Therefore, we had to find another solution to 
the problem. We have separated the mirror tilt settings into several areas. The 
area with approximately linear dependence, which corresponds to the values 
10° < \(p\ < 170°, and two other areas 0° — 10° and 170° — 180° with nonlinear 
dependence. 

The method with a fit is still sufficient for the first mentioned area. How­
ever, we have added a few more steps to improve this method. The procedure is 
as follows: We fit the scanned interference fringe wi th a quadratic dependence 
of the fringe envelope and a quadratic dependence of the phase on the voltage. 
According to the specific phase, we can calculate from the fit the correct voltage 
that we set on the piezo, and the setpoint of the normalized intensity Itgt. Af­
ter this step, we start the method of proportional regulation, where we tune the 
voltage on the piezo V by a step AV^ according to the relation = ±k(I — Itgt), 
where I is the currently normalized value on the detector, k = 2 V is the feedback 
strength. We choose the sign depending on whether we set the intensity on the 
rising or the falling edge of the interference fringe and we also take into account 
the actual value of voltage on the piezo. We terminate the procedure when the 
change (I — Itgt) is smaller than the set threshold. The typical accuracy of setting 
the phase in this area is approximately ±2°. 

In the 0° — 10° and 170° — 180° areas, we set the phase using the "scan and 
stop" method. We can describe this method in this way: 'When you come across 
the required value plus or minus some minimum value, stop to scan and start to 
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measure.' We test the accuracy of the phase setting in the interval 0° — 180° wi th 
the step of 5°. The deviations from the desired phase are plotted in Fig. 4.9. The 
accuracy of the setting is on average ±2°. For both methods, we rescan the fringe 
from time to time to get r id of the effect of slow drift and the gradual appearance 
of additional hysteresis. 

50 75 100 125 
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(a) Phase setting 

nominal q> [deg] 

(b) Phase deviation 

Figure 4.9: Interferometric phase setting measurement. The interferometric phase q> 
is connected to the coupling strength co by the relation q> = 2co. The black dashed line 
marks the value that we want to set. Red dots are the measured actual phase settings in 
the experiment (a). Plotted deviations obtained from (a) by calculating the subtraction 
of the measured phase values from the expected ones (b). 

To verify our methods, we have one more way to determine the phase. It 

is based on a population ratio where <p = 2co = 2 arctan (-J^yj^j j^ j - We try 

to set the desired phase using the methods mentioned above and estimate the 
actually set phase with this calculation. The results are in Fig. 4.10 and indicate 
the presence of both - systematic and random errors. 
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Figure 4.10: Set values of the coupling strength co. The black points are the desired 
values. The red and blue points are the two different (measured) values of co, which are 
set using the described procedures, and the green points are the measured attempts to 
correct the co value setting from population ratio. 

4.2 Discussion 
We have presented and experimentally tested a novel protocol for control and 
enhancement of quantum coherence under a restricted set of operations that in­
clude local strictly incoherent operations and measurements, feed-forward, and 
fixed interaction Hamiltonian with tunable coupling strength. We have observed 
that the quantum coherence of the target system can be remotely deterministi-
cally controlled and steered to a maximally coherent state within this setting. 
The considered set of operations is practically motivated, because the strictly in­
coherent operations and measurements are usually easy to implement and also 
the considered interaction Hamiltonian (4.3) is physically well motivated and 
available for many experimental systems and platforms such as superconducting 
qubits, trapped ions and neutral atoms [194-197]. 

While we have presented the protocol for two-dimensional systems (qubits), 
extension to higher-dimensional systems is possible. Consider interaction Ha­
miltonian Hjk = ig(\jkXkj\ - \kjXjk\). Following the above protocol and utilizing 
a control system B prepared in superposition of states \j) and \k), one can en­
hance the quantum coherence of target system in a two-dimensional subspace 
spanned by \j) and \k). One can then apply a unitary permutation operation 
Un = Yuj kO)Xjl to the target system to address a different subspace and repeat 
the whole procedure to drive the state of the target system A towards the maxi­
mally coherent state. One can also consider variants of this protocol, where one 
can switch on and off couplings of different pairs of quantum levels \j) and \k) or 
even simultaneously switch on several such elementary couplings. 



Chapter 5 

Mutual coherence from separable co­
herent qubits 

The concept of mutual coherence was introduced in Section 2.3.4. This quantum 
coherence characterizes the amount of quantum coherence in a global composite 
system that is not contained in the local states of its subsystems. We noted that 
this type of quantum coherence describes quantum correlations that can differ 
from entanglement. This Chapter is based on publication [A3]. 

We investigate quantum states that maximize mutual coherence in various 
subspaces of the two-qubit Hilbert space. Maximum mutual coherence in diffe­
rent subspaces of the Hilbert space of a pair of qubits cannot always be achieved 
by using some maximally coherent state. Therefore, we study individual cases 
with caution. We investigate the characterization of states with maximal mutual 
coherence in subspaces of dimension {2,3,4}. We quantify the coherence by the 
relative entropy of coherence, see Section 2.3.3. For this coherence measure, our 
results reveal a non-trivial structure of the optimal states in dimension 3 of the 
Hilbert space. 

Subsequently, we have generated the optimal states in a linear-optical proof-
of-principle experiment. We have realized strictly incoherent two-qubit quan­
tum filters capable of transforming an initial product state of two qubits wi th 
a certain amount of local coherence into a state maximizing the mutual coher­
ence. Furthermore, we have also prepared the optimal states via a sequence of 
unitary operations, which involves single-qubit transformation outside the class 
of strictly incoherent operations. 
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5.1 Mutual coherence and subspaces of the 
Hilbert space 

For a pair of d-dimensional quantum systems, the mutual coherence is maxi­
mized by a maximally entangled state 

where \j) denotes the basis of free states with zero coherence. The state \W) ex­
hibits complete symmetry in the sense of equal probabilities of basis states \j)\k). 
However, applications may require coherence to be contained in a specific sub-
space of the full Hilbert space. If we impose a constraint that the state can 
be formed by superposition of N free product states \jk) only, where N < d2, 
the optimal state that maximizes the mutual coherence in such subspace can 
become nontrivial and not a maximally entangled state. We investigate this inte­
resting phenomenon for the simplest nontrivial composite Hilbert space of a pair 
of qubits (d = 2) and N = 3. In our study, we quantify the coherence by the re­
lative entropy of coherence, Eq.(2.58), which is a well-behaved additive measure 
of coherence. 

We identify the optimal state for the d = 2, AT = 3 setting and find that 
it exhibits uneven populations of the three basis states and, therefore, does not 
represent a state wi th maximum global coherence in the given subspace of the 
full Hilbert space. We then generate this optimal state experimentally from the 
easily accessible product state of individual qubits. We aim at the preparation of 
the optimal state by the free transformation of the resource theory, namely by a 
probabilistic strictly incoherent operation represented by a single Kraus operator 
diagonal in the basis of free states [201, 202]. For comparison, we also test an 
alternative preparation scheme based on a combination of the quantum C Z gate 
and a local single-qubit unitary operation that couples the basis states |0) and | l ) . 

Our work reveals that care is needed i f one considers transformations of dif­
ferent forms of coherence between each other in a compound system. If one aims 
at gaining maximum mutual coherence, the form shared among subsystems and 
not being present only locally, one can not directly assume this condition is ful­
filled by some maximally coherent state. On the contrary, individual cases should 
be examined separately wi th caution. 

d-l 
(5.1) 
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5.2 Description 
Mutual coherence combines together the concepts of coherence and quantum 
correlations differently from entanglement. Naively, one could conjecture that 
maximally entangled states maximize the mutual coherence among all pure states 
in a given considered class. Interestingly, we find that this is not always the case. 
We focus on a system composed of two qubits and consider pure states that are 
formed by the superposition of N free basis states \jk), where j, k e {0,1}. For 
N = 2 and N = 4, we find that the mutual coherence is indeed maximized for 
maximally entangled states, 

|&> = -p(|00>+ |11», (5.2) 
42 

and 
l&> = -(|00) + |01) + | 1 0 ) - | 1 1 » . (5.3) 

We have QwC^) = 1 a n d QwOAi) = 2, which saturates the bound CM = log 2 N 
on mutual coherence of a pure bipartite state formed by the superposition of N 
free states \jk). By contrast, for AT = 3, we found by an exhaustive numerical 
search that the pure state that maximizes CM is formed by an unbalanced super­
position of the three basis states, 

\f3) = c\U) + 1 ^ ( 1 0 1 ) + | 1 0 » , (5.4) 

where c ~ 0.277 and ~ 0.679. 

For this state, we get Qvf(ifo) ~ 1.1, which exceeds the maximum mutual 
coherence achievable by the superposition of two free basis states. The most inte­
resting feature of the optimal state |^ 3) is the strong imbalance in absolute values 
of probability amplitudes, meaning that this state is not maximally coherent in 
the sense of the ordinary coherence C of the total state. In fact, the maximally 
coherent [201] analog of = 1/S (111) + 110) + |01», exhibits a sub-
optimal value of the mutual coherence, CM ~ 0.85. The state |^ 3) can be seen as 
a superposition of the maximally entangled state ^ ( | 0 l ) + |10)) and a product 
state 111). When we form the linear combination defined in Eq (5.4) and begin to 
increase the value of c, we increase the coherence of the total state, but we also 
introduce nonzero local coherences. While the first effect increases the mutual 
coherence, the other tends to reduce it, and it turns out that the maximum occurs 
for a specific unbalanced superposition. 

Let us conclude this section by noting that the states \ are representatives 
of whole classes of optimal states because local bit flips ax defined by Eq. (2.14) 



84 EXPERIMENTAL SETUP 

and phase shifts exp(r#<jz), where az is defined by Eq (2.16), do not change the 
mutual coherence and also do not change the number of free basis states in the 
superposition. 

5.3 Experimental setup 
We next investigate experimental preparation of the optimal states \ from in­
put product states \(PA)WB) wi th vanishing mutual coherence. We mainly focus 
on the non-trivial optimal state |t^3), and we generate this state on a quantum 
photonic platform where qubits are encoded into polarization states of single 
photons. 

Legend 
0 H W P 
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Figure 5.1: Mutual coherence generation by a strictly incoherent quantum filter from 
input product state with CM = 0. Shown are the conceptual scheme of the protocol (a) 
and the experimental setup (b). "HWP" is a half-wave plate, "QWP" is a quarter-wave 
plate, "GT" is the Glan-Taylor polarizer, "PPBS" is a partially polarizing beam-splitter, 
"BD" is a beam-displacing crystal, "FC" is a fiber coupler, and "SPAD" is a single photon 
avalanche detector [203]. 

Our first strategy, illustrated in Fig. 5.1 (a), is based on application of a suitable 
probabilistic strictly incoherent quantum operation [201] represented by a single 
Kraus operator M diagonal in the basis of free states, 

M = A|00X00| + 5(|0lX01| + |10Xl0|) + C | l l X l l | , (5.5) 

and satisfying M^M < 1. This quantum filter transforms a pure input state 
l^in) onto a pure output state |^ o ut) = Af llAin)/\JP~S> wi th success probability P5 = 
( i / ' m | M ^ M | i / ' m ) . Choosing a symmetric product input state 

(5.6) 
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the optimal state |^ 3) can be obtained by a filter that completely eliminates the 
state |00), A = 0, and 

M _ = qf(|0lX01| + |10X10|) + |11XH|, p < Pth, 

M + = |0lX01| + |10X10| + 9 _ 1|HXll|> P > Pth-
(5.7) 

Here pth = 2c 2 /( l + c 2 ) and q2 = p(l - pth)/[pth(l " p)l-
In our experiment, time-correlated photon pairs are generated in the process 

of spontaneous parametric down-conversion in a nonlinear crystal pumped by 
a C W laser diode [204] and guided to the main setup depicted in Fig. 5.1 (b). 
Initially, one photon is polarized vertically and the other horizontally, and we 
associate the H / V basis wi th the computational basis. Polarization states of sin­
gle photons are manipulated by a combination of quarter- and half-wave plates. 
The quantum filter M is implemented by two-photon interference in a suitably 
designed inherently stable multimode interferometer [203, 205] composed of cal-
cite beam displacers, partially polarizing beam splitter and wave plates. Param­
eters of the filter are determined by the angular positions of wave plates neigh­
bouring the central PPBS. Successful filtering is heralded by the presence of a 
single photon at each output port of the filter, similarly to linear optical quan­
tum gates operating on a coincidence basis. W i t h our scheme, we can directly 
implement the quantum filters M _ . This is not a significant restriction, because 
for p > the filter M+ could be obtained as a combination of easily implemen-
table local single-qubit amplitude attenuations |0X0| + <y 111X11 a n d an accessible 
filter M0 = |0lX01| + |ioXio| + | i iXn|. 

5.3.1 Results 

We have applied the quantum filters to a range of input states (5.6). For p > pth 
we have employed the filter M 0 while for p < pt^ we have applied the optimal fi l­
ter M_ specified in Eq. (5.7). The output two-qubit states were comprehensively 
characterized by quantum state tomography based on the maximum likelihood 
reconstruction algorithm, MaxLik [93]. The optical elements in our setup intro­
duce additional single-qubit local phase shifts. These phase shifts do not modify 
the coherence properties of the state and were compensated in data processing 
by suitable local single-qubit unitaries exp(i6Aaz ^ ) <8> exp(i6gaz applied to the 
reconstructed density matrix. The experimentally generated state for p = 0.125 
is plotted in Fig. 5.2 (c), and the dependence of CM on p is displayed in Fig. 5.2 (d). 
Parameters characterizing the prepared state plotted in Fig. 5.2 (c) are summari­
zed in Table 5.1, which displays state fidelity J- wi th the ideal target state, state 
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purity V = Tr [p 2 ] , mutual coherence CM, and the residual population p00 of 
state 100). 

preparation D T V CM p00 

M_ 3 0.914(7) 0.92(1) 0.78(2) 0.072(5) 

VB&CZ 3 0.935(6) 0.93(1) 1.18(2) 0.035(3) 

Ucz 4 0.95(1) 0.92(2) 1.70(6) 

Table 5.1: Fidelity, purity, mutual coherence, and population of state |00) are displayed 
for two experimentally generated states |^3) and also state |^ 4). The experimental un­
certainties specified in parentheses represent one standard deviation. The first column 
indicates how the output state was prepared from a suitable input product state. M _ is 
a filter defined in Eq. (5.7), VB is a local unitary operation and Ucz is a quantum CZ gate 
operation. 

The observed mutual coherence CM = 0.78(2) is significantly lower than the 
theoretical expectation C^f(^ 3) ~ 1.1, which is mainly caused by imperfect filte­
ring that leaves some residual population in state |00), see Fig. 5.2 (e), as well as 
residual coherence between this state and the other basis states, see Fig. 5.2 (c,e). 
This leads to higher local coherences, and consequently, the mutual coherence 
is reduced. As illustrated in Fig. 5.2 (a), the state |00) is initially dominantly 
populated, which makes the complete elimination of this state particularly ex­
perimentally challenging and sensitive to imperfections. To further confirm the 
origin of the experimentally observed sub-optimal value of CM, we have arti­
ficially eliminated the population of |00) in the reconstructed density matrices 
and renormalized them. The orange points in Fig. 5.2 (d) show that the resulting 
mutual coherence is close to the theoretical prediction. 

For comparison, we have also pursued an alternative preparation strategy 
based on unitary transformation of a suitably chosen asymmetric input product 
state 

\fm) = (cos(x)|0> + s i n ( x ) | l » <8> (cos(y)|0> + s i n ( y ) | l » , 

where 
f l - c 2 

cos(x) = J—-— , sini 

This state can be transformed to the state (5.4) by a sequence of the maximally 
entangling quantum C Z gate Ucz = exp(J7r | l lXll | ) followed by local unitary 
operation VB = exp[r(7r/2 - y)ay] on qubit B, where ay is defined by Eq (2.15). 
We have configured our setup to realize the quantum C Z gate [206-208], which 
corresponds to the choice A = B = 1 and C = —1 in Eq. (5.5). The local unitary 
operation Vg was implemented with a half-wave plate. We have experimentally 
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(a) theoretical input (b) theoretical output (c) experimental output 

0.0 0.1 0.2 0.3 0.4 0.5 
P 

0.0 0.1 0.2 0.3 0.4 0.5 
P 

Figure 5.2: Generation of mutual coherence from product two-qubit state. As an exam­
ple, we plot the real parts of density matrices of the theoretical input product state with 
p = pth (a)> the corresponding theoretical output state \\j/3) obtained after application of 
the filter M_ (b), and the actual experimental output state (c). The imaginary parts of 
the theoretical density matrices vanish. We also display the dependence of the mutual 
coherence of the output state on the input state excitation probability p (d) and the resid­
ual population of the unwanted level |00) (e). Blue dots represent experimental data, and 
the orange crosses are experimental data after numerical elimination of the level |00) by 
filter M,o = 1 - |00X00|. Solid lines indicate the predictions of a theoretical model of the 
setup, and the dashed line is the ideal theoretical dependence for a perfect setup. The 
employed quantum filters are specified in the main text. 

probed the generation of the whole single-parametric class of states defined by 
Eq. (5.4) with 0 < c < 1. 

The experimental results are displayed in Fig. 5.3. As an illustration, we 
present in Fig. 5.3 (c) the reconstructed experimentally generated state for nom­
inal target value c = 0.264, which has the highest fidelity among all generated 
states with the target state Note that the actual parameters of the gener-
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Figure 5.3: Generation of the two-qubit states defined in Eq. (5.4) by unitary operations. 
As an example we plot the real parts of density matrices of a theoretical asymmetric in­
put product state for c = 0.277 (a), the corresponding theoretical output state obtained 
by application of CZ gate UCz and local unitary operation VB (b), and the actual output 
experimental state prepared with nominal c = 0.264 (c). The imaginary parts of the the­
oretical density matrices vanish. Also shown is the dependence of the mutual coherence 
of the output state on |c|2 (d), and the residual population of level |00) in the experimen­
tally prepared states (e). Blue dots represent experimental data, the solid lines indicate 
predictions of a theoretical model of the setup, and the dashed line shows the ideal the­
oretical dependence. 

ated states slightly differ from the nominal theoretical values, and the presented 
experimental state is closest to the optimal state among the whole set of pre­
pared states. In comparison to the filter-based preparation, the purity and fidelity 
of the state prepared by unitary operations are higher, and the residual popula­
tion of the state |00) is reduced to 0.035(4), see Table 5.1. The mutual coherence 
CM = 1.18(3) slightly exceeds the maximum achievable by superposition of three 
basis states \jk). The experimental imperfections in this case thus lead to a slight 
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increase of the mutual coherence. The suppression of the state |00) is generally 
better than in the filter-based scheme, as illustrated in Fig. 5.3 (d). Our ability to 
suppress the population of state |00) is mainly limited by imperfect two-photon 
interference due to the partial distinguishability of the two photons and by the 
precision of retardance and rotation of wave-plates. To quantify the effect of 
wave-plate settings, we numerically search for optimal local single-qubit unitary 
operations that minimize the population of state |00) while keeping CM above a 
chosen threshold 1.05. After we apply the optimal single-qubit unitaries to the 
reconstructed state, the population of |00) drops to p00 = 0.012(2), while the 
mutual coherence of the state remains high, CM = 1.05(3). 

(a) theoretical input (b) theoretical output (c) experimental output 
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Figure 5.4: Generation of the optimal state with quantum CZ gate. Shown are the 
real parts of density matrices of the theoretical input symmetric product state for p = 0.5 
(a), the theoretical maximally entangled output state (b), and the experimentally 
prepared state (c). The imaginary parts of the theoretical density matrices vanish, and 
the imaginary parts of matrix elements of the experimental state in (c) are smaller than 
0.011. 

To complete our analysis of preparation of states that maximize the mutual 
quantum coherence, we have utilized the quantum C Z gate to generate the op­
timal maximally entangled state |^ 4) from input product states |±) |±) , where 
|±) = (|0) ± | l ) ) /V2 . Note that for unbalanced input states one could first ap­
ply local quantum filters to balance the amplitudes of |0) and | l ) and then use the 
quantum C Z gate. Representative results for input |+)|—) are plotted in Fig 5.4. 
The purity and fidelity of the generated state read J- = 0.95(1) and V = 0.92(2) 
and are for comparison also listed in Table 5.1. The mutual coherence of the 
state is close to the theoretical maximum, CM = 1.70(6). The state |^ 4) simulta­
neously maximizes also the ordinary global coherence and for the experimentally 
prepared state we get C = 1.71(6). On the other hand, the local coherences prac­
tically vanish, because the state is maximally entangled and each subsystem is 
locally in a maximally mixed state. The prepared state is not perfectly pure due 
to the residual distinguishability of the two photons and the amplitudes of the 
states \jk) are not perfectly balanced due to various experimental imperfections, 
which explains why the experimental mutual coherence is less than the theoret-
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ical maximum = 2. 

Gate V T_ \A\ j % | | B 1 0 | \C\ 
1 0.985(1) 0.9912(5) 0.950 0.901 1.000 0.957 

M0 0.963(5) 0.965(3) 0.243 0.949 1.000 0.928 
Ucz 0.927(6) 0.957(3) 0.801 0.951 1.000 0.881 

Table 5.2: Purity and fidelity of selected experimental two-qubit quantum operations. 
The last four columns display the experimentally determined filter parameters that most 
closely match the experimental data. Since the experimentally implemented operations 
are not exactly symmetric, we specify separate parameters B01 and BW for states |0l) and 
|10). 

The observed purities and fidelities of the generated two-qubit states are con­
sistent wi th the high purities and fidelities of the quantum operations used for 
their preparation. Note that the input product states for preparation of the op­
timal states are superposition states, which are typically more sensitive to 
gate imperfections than the basis states \jk). We have characterized the experi­
mental two-qubit quantum filters and gates by full quantum process tomography. 
Each two-qubit quantum operation $ is described by its Choi matrix x that can 
be obtained by applying $ to one part of a four-qubit maximally entangled state. 
This Choi-Jamiolkowski isomorphism between quantum operations and states 
allows us to conveniently define the purity and fidelity of quantum operation 
by straightforward extension of definitions for quantum states. In Table 5.2, we 
summarize experimental results for the filter M 0 and the unitary gate Ucz- F ° r 

reference, we also provide results for the two-qubit identity operation 1. The 
achieved fidelities are fully comparable to the highest fidelities of linear optical 
two-qubit quantum gates and operations reported in the literature [19, 209-211]. 

5.3.2 Population suppression 
To summarize, we use two different methods for restriction to various subspaces 
of the Hilbert space in our experiment. The first is the application of a filter by 
setting specific values of the constants A , B, and C in Eq. (5.5). Specifically, for 
the 3D subspace of the Hilbert space, which is the most interesting to us, we try 
not to have any |00) population at all, so we choose A = 0. However, wi th this 
setting, we failed to completely reduce the |00) population due to partial photon 
distinguishability, which led to higher mutual coherence than was predicted by 
theory. 

Therefore, we choose another way to reduce the |00) population. We set 
A = B = 1 and C = - 1 , thereby, we get the C Z gate. We then reduce the 



EXPERIMENTAL SETUP 91 

population |00) by a local unitary operation on the second output qubit. This 
method leads to a better reduction of the unwanted population than the first 
method, but also not to its complete suppression. Since the suppression of the 
100) level is a crucial part of the experiment, we describe this second method in 
more detail. 

The input qubits are in a state of generally asymmetric linear polarizations 

\i/in) = (cos(x)|0> + s i n ( x ) | l » ® (cos (y)|0> + s i n ( y ) | l » . (5.8) 

This state passes through the C Z gate, behind which the second output qubit is 
rotated using HWP(z). The output state is, therefore, dependent on the parame­
ters x, y, and z and can be written as 

l</out(*>y>z)) 

/ cos(x) cos(y - z) 
- cos(x) sin(y - z) 
cos(y + z) sin(x) 
sin(x) sin(y + z) 

(5.9) 

We suppress the population |00) by choosing z = y-n/2 and balance the po­
pulations |0l) and |10) by choosing y = - 1 / 2 arcs in( l / tan(x)) . The remaining 
x is our free parameter, which we sample in the interval (0° — 90°). The resulting 
state should take the form 

l<AoutO)) 

o 
cos(x) 
cos(x) 

-yjl — cot 2 (x) sin(x) 

(5.10) 

Wi th the first sampling iteration, we found the approximate location of mu­
tual coherence CM maximum, which is around 47°. Therefore, in the next iter­
ation, we chose a step of 1° outside the 45° — 55° region, where we proceeded 
with a finer step of 0.5°. The results are shown in Fig. 5.5 using the blue dots. 
We compare these results with the theoretical dependence shown by the dashed 
black line and the dependence determined from the reconstructed process matrix 
of the C Z gate shown by the solid black line. The prediction from the process ma­
trix and the measured data show a higher mutual coherence CM than we should 
get for the states in the 3D subspace of the Hilbert space. The cause is the imper­
fect suppression of population |00), which we illustrate in Fig. 5.6. 

We implement the suppression of the state |00) population by a local unita­
ry operation on the second output qubit. Unfortunately, we only managed to 
suppress the population of the state |00) to p 0o = 0.035. We came closest to the 
state with a theoretically optimal population of the state | l l ) wi th the values 
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Figure 5.5: Measured mutual coherence CM of the prepared states depending on the 
population of the state | l l ) . The dashed line is the ideal theoretical dependence, and 
the solid line shows the prediction obtained from the measured CZ gate process matrix. 
The vertical grey lines indicate the theoretical optimal population pu = |c|2 = 0.077 
and the population of the balanced superposition where p n = 1/3. Error bars show 
one standard deviation that we obtained by bootstrapping. The blue points are directly 
measured data. The orange and green points correspond to states to which we applied 
local unitary operations to suppress the population of the state |00), wis a parameter 
defining applied local unitary transformations and is discussed below in the text. 

p ! i = 0.080, which has a mutual coherence = 1.33(4). The state that most 
closely corresponds to a balanced superposition has a population p\f = 0.330 
and a mutual coherence Offi = 1.15(4). The near-optimal state exceeded the 
mutual coherence of the balanced state by four standard deviations. 

To better understand how the mutual coherence depends on the population 
of levels, we applied local unitary transformations to the reconstructed density 
matrices to minimize the state population |00) and simultaneously estimate the 
populations of the states |0l) and |10). We formulated the optimal transforma­
tions as minimizing pQ0 + w ( p 0 1 - p io) 2 and the weight w was set empirically 
to 0.25. This weight is the compromise between minimizing |00) and balancing 
|0l), 110). We apply the local unitary transformation found by choosing the w 
parameter to the density matrix. The mutual coherence of such states is shown 
in Fig. 5.5 by orange dots, and the resulting populations after adjustment are in 
Fig. 5.7 (a), (b), (c). This adjustment brought the measured mutual coherence 
closer to the theoretical prediction obtained from the process matrix of the C Z 
gate. 
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Figure 5.6: The measured population of the prepared state depending on the selected 
parameter x. The population |00) is plotted in panel (a), the populations |0l) and |10), 
which should theoretically coincide, are plotted for comparison in one panel (b), and the 
population | l l ) is plotted in pannel (c). 

To obtain the 3D subspace, we have to completely suppress the state popula­
tion |00). For this, we choose the weight w = 0 and repeat the analysis. Popula­
tions of individual levels are plottedin Fig. 5.7 (d), (e), (f). The mutual coherence 
CM of such states is shown in Fig. 5.5 using green dots and its resulting value 
together with the suppressed population of the state |00) are in Table 5.1. The 
mutual coherence is not that large as the corresponding ideal theoretical value, 
most likely due to the imbalance populations of the |0l) and |10) states . Due 
to the partial mixing of this measured states, the |00) state population plotted in 
Fig. 5.7 (d), cannot be completely suppressed. 

5.4 Discussion 
In this Chapter, we have studied the mutual coherence in various subspaces of 
the Hilbert space of a pair of qubits. First, we have theoretically investigated and 
characterized states maximizing mutual coherence in the subspaces of dimension 
{2,3,4}. Our results reveal a non-trivial structure of the optimal states in dimen-
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Figure 5.7: The population of the prepared state, after the application of local unitary 
transformations with the parameters w = 0.25 (a), (b), (c), and w = 0 (d), (e), (f). If 
w = 0.25, we have balanced populations of |0l) and |10) levels. This behaviour is plotted 
in panel (b). On the other hand, if w=0, it is no longer the case, which is shown in panel 
(e). However, by comparing panels (a) and (d), we can see that population suppression 
of |00) is more successful for the case when w = 0. 

sion 3, whereas in even-dimensional subspaces, the states show high symmetry. 
Subsequently, we have generated the optimal states in a linear-optical proof-of-
principle experiment. We have realized strictly incoherent two-qubit quantum 
filters capable of transforming an initial product state of two qubits wi th a cer­
tain amount of local coherence into a state maximizing the mutual coherence. 
Furthermore, we have also prepared the optimal states via a sequence of unitary 
operations that involves single-qubit transformation outside the class of strictly 
incoherent operations. Our experimental results confirm the complex behaviour 
of mutual coherence in the three-dimensional subspace and show that mutual 
coherence as a nonlinear quantity is highly sensitive to imperfections. 



Chapter 6 

Non-interactive XOR quantum oblivi ­
ous transfer 

Presented outcomes result from the cooperation with researchers from Heriot-Watt 
University in Edinburgh, Great Britain. They devised the protocol mentioned below, 
including all the necessary calculations. Our group performed an optical experi­
ment confirming their conclusions. The Chapter is based on our joint article [A4]. 

X O R oblivious transfer (XOT) is a variant where the sender, Alice, has two 
bits, and a receiver, Bob, obtains either the first bit, the second bit, or their 
XOR. Bob should not learn anything more, and Alice should not know what 
Bob has learned. As we mentioned in Section 2.4.2, a perfect quantum OT wi th 
information-theoretic security is known to be impossible. 

Although we do not consider any other constraints in this protocol, such 
as limited quantum storage or relativity (see Section 2.4.2), the probabilities of 
cheating are still limited by the laws of quantum mechanics. The general lower 
bound of cheating probabilities for sender and receiver in 1-2 OT is 2/3 [181, 212]. 
When using symmetric states as bit values of the sender, the bound is raised to 
~ 0.749. This shows that protocols using pure symmetric states are not optimal. 
However, except for 1-2 OT protocols using pure symmetric states, there are 
no known quantum protocols for quantum oblivious transfer where the lower 
bounds have been proven to be tight. 

We present a protocol that can therefore be said to be optimal among non-
interactive protocols using purely symmetric states because it achieves the small­
est possible cheating probability for Bob and for Alice considering Bob's cheating 
probability. Our non-interactive X O T protocol has the same cheating probabili­
ties as the protocol given by Kundu et al. [172]. The cheating probabilities are 
3/4 for Bob and 1/2 for Alice. That protocol, however, uses entanglement and is 
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interactive in a way that quantum states are sent back and forth between sender 
and receiver. Our protocol is easier to implement since it is non-interactive and 
does not require entanglement. In addition, our protocol can work even i f Bob 
becomes the sender of the quantum state and Alice the receiver who measures 
it while still implementing an oblivious transfer from Alice to Bob. It is called 
a reverse protocol. Even though in other OT protocols, the cheating probability 
for the reverse version may be different than for the non-reversed version, the 
cheating probabilities for both parties remain the same in both variants of our 
protocol. However, the reverse version of the protocol is easier to implement. 

Determining the cheating probabilities of our X O T quantum protocol, further 
calculations, comparison with the classical version of XOT, and comparison with 
the version of the protocol that uses entanglement are described in detail in our 
article [A4]. In this work, we mainly focus on the experimental implementation 
of this protocol. 

6.1 Quantum XOT with symmetric states 
We consider quantum X O T protocols which satisfy certain properties: 

1. They are non-interactive protocols, where Alice sends Bob a quantum state 
\ij/x Xl), encoding her bit values x 0 , Xj, and Bob measures it. 

2. Alice's states x ) are pure and symmetric. That is, |i^oi) = U\IJ/QQ), \ij/n) = 
L ^ o i ) . I^JO) = U\fn), for some unitary U wi th U4 = 1. 

3. Each of Alice's bit combinations is chosen wi th probability 1/4. 

4. When measuring each state \ ^ X q X i ), Bob obtains either x 0 , x 1 ; or x 2 = Xo©Xj 
with probability 1/3. 

The states \^ X q X i ) need to be chosen so that it is possible for Bob to obtain 
either X Q . X J or x 2 = x 0 © Xj correctly. We denote an honest Bob's measurement 
operators by n 0 * , fti*, n * 0 , fl^, I1XOR=O> IfxoR=i, corresponding to Bob obtaining 
x 0 = 0, x 0 = l . X j = 0, Xj = l , x 2 = 0 and x 2 = 1 respectively. Bob should obtain 
either the first or the second bit, or their XOR, each wi th probability 1/3. The 
probability of obtaining outcome m is 

Pm = <^fc|nm|i/}fc}> (6-1) 

for m e {0*, 1*,*0,*1,XOR = 0 .XOR = 1}. This probability should be equal to 
1/3 when an outcome is possible and otherwise be equal to 0. 
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Usually, in OT, it is assumed that the sender and receiver are choosing their 
inputs at random. Here, Bob w i l l obtain either x 0 , Xj, or x 0 ©Xj at random. Using 
the terminology in [ 2 1 2 ] , we have a semi-random X O R oblivious transfer (XOT) 
protocol, defined in general as follows. 

Definition 1 (Semi-random XOR oblivious transfer) Semi-random XOT is a 
two-party protocol where 

1. Alice chooses her input bits ( X Q . X J ) € { 0 , 1 } uniformly at random, thereby 
specifying also their XOR %2 — XQ ® Xj, or she chooses Abort. 

2. Bob outputs the value b e { 0 , 1 , 2 } and a bit y, or Abort. 

3. If both parties are honest, then they never abort, y = x^, Alice has no in­
formation about b, and Bob has no information about x ^ + 1 ) m o ( / 3 or about 
x{b+2) modi-

6.1.1 Bob cheating 

We can observe a connection between the cheating probabilities of Alice and Bob. 
Bob's cheating probability increases i f the quantum states are more distinguish­
able. On the contrary, the cheating probability for Alice decreases. When Bob 
is cheating, he tries to guess both, x 0 and x l t bits. He gets one bit from Alice 
but shouldn't have access to the other, so he can guess. Wi th the knowledge of 
both bits, he also knows the X O R value. Bob can always cheat in this way with a 
probability of at least 1 / 2 . The cheating strategy, which maximises Bob's proba­
bility of correctly learning both x 0 and Xj is a minimum-error measurement. His 
optimal measurement is a square-root measurement [ 2 1 3 , 2 1 4 ] since he wants to 
distinguish between equiprobable, pure and symmetric states. 

6.1.2 Alice cheating 

A cheating Alice aims to guess whether Bob has obtained x 0 , x 1 ; or x 2 = x 0 © Xj. 
Even i f following the protocol, Alice can always cheat at least wi th probability 
1 / 3 wi th a random guess. To detect Alice cheating, Bob can test the states he 
received. If he doesn't, dishonest Alice can send him any state. To prevent Alice's 
possible cheating, Bob can ask Alice to declare some fraction of the states she sent 
him. He then checks i f his measurement results agree wi th what Alice declares. 
Generally, Alice's cheating probability when Bob does not test is at least as high 
as when he does. 
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6.2 A non-interactive qutrit XOT protocol 

We present a protocol that can thus be said to be optimal among non-interactive 
protocols using pure symmetric states, since it achieves the smallest possible 
cheating probability 3/4 for Bob, and the smallest possible cheating probability 
1 / 2 for Alice. 

In our protocol, Alice encodes two bit values x 0 , xx in one of the four non-
orthogonal states 

for which it holds that U4 = 1. The states \(j)x Xl) are selected so that it is possible 
to unambiguously exclude two of them, meaning that it is possible to learn either 
x0, X J , or x 0 © Xj. Because the states are non-orthogonal, it is not possible to 
unambiguously determine which single state was received. In other words, it is 
impossible for Bob to perfectly learn both bits x 0 , Xj . 

After choosing her bits (x 0 , Xj) € {0,1} uniformly at random, Alice sends the 
respective state to Bob, who makes an unambiguous quantum state elimination 
measurement to exclude two of the four possible states. There are six different 
pairs of states he can exclude. Each excluded pair corresponds to learning either 
x 0 , Xi, or x o 0 x 1 ; wi th either the value 0 or 1. To construct Bob's measurement ope­
rators, we need six states, each one orthogonal to a pair of states in Eq. (6.2). The 
measurement operators are then proportional to projectors onto these six states, 
normalised so that their sum is equal to the identity matrix. For instance, the 
measurement operator UA = (1/4)(|0) +12))((0| + (2|) w i l l exclude the states \<pn) 
and \<pio), so Bob's outcome bit w i l l be x 0 = 0; similarly for the other operators. 
Table 6.1 gives the excluded pairs, the corresponding measurement operators, 
and the deduced output bits for Bob. 

l0xox1) = ^ ( | O ) + (-l) X l U) + (- l ) x ° |2) ) . (6.2) 

(6.3) 



REVERSED VERSION OF THE XOT PROTOCOL 99 

Outcome bit Eliminated states Measurement operator 

x 0 = 0 1011 > and |0 1 O> UA = i(|0> + |2))((0| + (2|) 

x 0 = 1 l^oo) and |0Oi> f l 5 = i(|0> - |2»«0| - (2|) 

xl = 0 I0n> and |0 O i) f lc = |(|0> + | 1 » « 0 | + <1|) 

Xj = 1 I0oo> and |0 1 O ) nD = 7(|o)-U))((o|-(i|) 

x 2 = 0 l^oi) and |0 1 O ) n £ = i(|i> + |2»«i| + <2|) 
4 

x 2 = 1 I0oo) and | 0 n ) UF = I ( |1)- |2))((1 | - (2 | ) 
4 

Table 6.1: Bob's measurement operators and outcomes. 

To summarise, our X O T protocol proceeds as follows: 

1. The sender Alice uniformly at random chooses the bits (x 0 , Xj) £ {0,1} and 
sends the corresponding state |0 X ( ) X l ) to the receiver Bob. 

2. Bob performs an unambiguous state elimination measurement, excluding 
two of the possible states wi th certainty, from which he can deduce either 
x 0 , Xj , or x 2 = x 0 © Xj. 

A dishonest Bob can cheat with probability BQT = 3/4 by applying the square-
root measurement [213,214]. Alice's cheating probability is AQT = 1/2, whether 
or not Bob tests the states she sends. 

6.3 Reversed version of the XOT protocol 
We w i l l consider non-interactive X O T from Alice to Bob implemented in such 
a way that Bob sends Alice one of six states depending on his randomly chosen 
XQ , Xj , or x 2 — XQ © Xj and its value. Alice learns x 0 and Xj by performing a mea­
surement on Bob's state. For the reversed non-interactive X O T protocol, Bob's 
measurement operators given in Table 6.1 become his states, when normalized 
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to 1, and Alice's states given in (6.2) become her measurement operators, when 
renormalised so that they sum to the identity operator. The X O T protocol is then 
performed as follows: 

1. Bob randomly chooses one of the six states 

-o) =-7=(|0> +12» , 
V2 

-i) = 7=(|o> -
V2 

|2», 

\K--o) =7=(|0> + |1», 
V2 

\<J>Xl= -i) = > " 
\K--o) =-7=(|l> + |2», 

V2 \K--i) = >>-
V2 

|2» (6.4) 

and sends it to Alice. This choice determines the values of b and bit x^, i.e., 
Bob's input and output in "standard" non-random XOT. 

2. Alice performs a measurement on the state she has received from Bob, 
learning the bit values (x 0 , Xj). Her measurement operators a r e 

n 0 o = > ) 4 •|1> + | 2 » « 0 | + <1| + <2|), 

n 0 i = >" |1) + | 2 ) X ( 0 | - ( 1 | + (2|), 

n „ = >>-- | 1 ) - | 2 ) X ( 0 | - ( 1 | - ( 2 | ) , 

n io = > ) 4 - | 1 ) - | 2 ) X ( 0 | + (1 | - (2 | ) . (6.5) 

In terms of x 0 and Xj, Alice's measurement operators can be written n X ( ) X i = 
I ^ V ^ x o x J - where |0 X ( ) X i ) = (1/2)(|0> + ( - l ) X l | l ) + ( - l ) x ° | 2 » . As in the unre­
versed X O T protocol, when both parties act honestly, Alice w i l l have two bits, 
but w i l l not know whether Bob knows her first bit, her second bit, or their XOR. 
Bob wi l l have one of x 0 , x 1 ; or x 2 = x 0 0 x 1 ; but w i l l not know anything else, since 
he can only deduce one bit of information with certainty, based on the state he 
has sent (if he is honest). 

6.3.1 Alice cheating 
Alice still wants to learn which output Bob has obtained as in the non-reversed 
version. She cheats by distinguishing between the three mixed states obtained by 
pairing up the states in (6.4) that correspond to the same output wi th minimum 
error, and she can do so with a probability of Ar

0T = 1/2. 
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6.3.2 Bob cheating 

Bob wants to know exactly which of the four two-bit combinations Alice got. As 
in the non-reversible protocol, there are two scenarios for the cheating sender of 
the state, now Bob: The first is when the receiver of the state, now Alice, tests 
the state, and the second is when she does not. Here again, Bob's probability of 
cheating is the same for both scenarios and is Br

0T = 3/4. 
When Alice is not testing, Bob can achieve this probability i f he sends an 

eigenvector corresponding to the largest eigenvalue of one of Alice's measure­
ment operators corresponding to the same output bit. However, i f Alice is testing, 
then to achieve this cheating probability, Bob needs to send a superposition of 
the states he is supposed to send. In addition, this superposition must be entan­
gled with some system, he keeps. 

6.4 Experimental implementation 
In our experiment, the quantum states are encoded into spatial and polarization 
degrees of freedom of a single photon. We generate photon pairs in a type II 
SPDC wi th a periodically poled K T P crystal, and their wavelength is 810 nm. 
In the resulting pair of photons, one is horizontally and the other vertically po­
larized. Photons with vertical polarization serve as heralding photons and pass 
through the fiber directly to the detector. Horizontally polarized photons are 
guided through the fiber into the experiment. The experimental setup is shown 
in Fig. 6.1. 

Figure 6.1: Detailed scheme of the experimental setup. Green boxes labelled with black 
numbers represent half-wave plates (HWP). Small orange rectangles are glass plates 
which serve for phase compensation. Large semi-transparent cyan boxes represent beam 
displacers. Next to HWP10, there is a polarizing beam splitter. Note that H W P l , HWP2, 
HWP4, and HWP10 are ring-shaped and polarization of the central beam is not affected. 
Insets show the actual arrangement of the half-wave plates. 
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It contains eleven half-wave plates (HWPs) drawn as green rectangles num­
bered from 0 to 10. Individual photons pass through the first H W P and then 
enter the calcite displacer, which is indicated by the cyan rectangle. Here, i f 
the photons are diagonally polarized, they are divided into two possible paths, 
i.e., the first with horizontal and the second wi th vertical polarization, 6 mm 
apart. Vertically polarized photons pass through the calcite directly. However, 
horizontally polarized photons have a different refractive index inside the calcite 
and are, therefore, displaced due to the calcite birefringence. 

We use these optical components because the protocol requires an interfeq-
rometric network that allows the coupling of these modes wi th each other and 
with the vacuum. Calcite beam displacers serve to construct passively stable in­
terferometers [80] while also allowing us to use spatial and polarization degrees 
of freedom to encode qutrits. Since we need multiple light propagation paths 
to implement our protocol, we use H W P s that can address photons in all these 
propagation paths simultaneously, some paths, or only one path. Therefore, we 
used standard wave plates (numbers 0 and 3), plates with a hole in the middle 
(numbers 1, 2, 4, and 10, ring-shaped) and a small plate that is attached only in 
the centre of its structure (number 5). In addition, we used a custom design for 
four side-by-side waveplates (numbers 6, 7, 8, 9) in our experiment. 

The first H W P addresses all photons. Therefore, we found the most accurate 
one to minimize errors and losses in later parts of the experiment. First, we 
adjusted our experiment wi th a strong signal from a laser diode at 810 nm, and 
then we used a single-photon source described in [1]. 

Even though there are multiple optical paths, only four interferometric phases 
are relevant for the tested protocols. Each of these interferometers shown in 
Fig. 6.2 consists of two beam displacers. Fig. 6.2 also shows the angles of the 
HWPs to set the correct interferometric phases. For three of the four interferom­
eters, we placed the beam displacer on the mount with the piezoelectric device. 
We adjust the first relative optical phase by tilting the second beam displacer 
using a piezoelectric actuator attached to a prism turn table. We then set the 
phase of the second interferometer by tilting the third beam displacer. The third 
interferometric phase is changed by tilting the glass plate, which we place in the 
bottom arm of the interferometer. Finally, we set the last optical phase by tilt­
ing the fourth beam displacer. We have to adjust all these phases in this order 
because of the optical paths they share. 
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Figure 6.2: Settings of the four relevant phases in the experiment. Calcite beam displac­
e s serve to construct passively stable interferometers while allowing the use of spatial 
and polarization degrees of freedom to encode qutrits. Calcites that are on mounts with 
piezoelectric devices are marked in yellow. The red (blue) line corresponds to construc­
tive (destructive) interference. 
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Single-photon detection is implemented as coincident measurements with a 
trigger signal heralding photon creation (vertically polarized photons from cre­
ated photon pairs). The coincidence window used is 2.5 ns. If multiple detectors 
registered a signal wi th the trigger signal, only one result is randomly selected 
and counted. However, such situations occurrs at most once in 2000 measure­
ments. 

Using strong laser light, we characterize the phase stability of the largest in­
terferometer formed by the outermost optical paths between the first and the 
fourth beam displacer, which merge at the sixth displacer. We set the optical 
phase to roughly n/2, cover the setup wi th a cardboard box, and monitor the 
output intensity for one hour. The observed drift rate is 0.57min. The amplitude 
of the fast phase fluctuations is roughly 5° peak-to-peak. 

There are several sources of experimental errors. The most significant of 
them is the unequal coupling efficiency of the fibers at the output of the interfer-
ometric network spanning from 0.75 to 0.85. Furthermore, there are also unequal 
efficiencies of the used single-photon detectors. The largest relative difference is 
0.12. We compensate for these inequalities using detection electronics. The inac­
curate retardance of half-wave plates causes a mismatch between the expected 
and actual coupling ratio for a given angular position. We try to compensate for 
this imperfection by slightly adjusting the angular positions. We also use wave 
plates to exchange polarization modes. Imperfect retardance limits the ability to 
convert horizontal polarization to vertical. In our experiments, it subsequently 
causes undesired losses and residual coupling. 

In addition, a slight difference in the length of the beam displacers causes an 
imperfect overlap of the optical beams, which reduces the interferometric visi­
bility. The worst observed visibility was 0.85. A t the output of our experiment, 
however, we coupled the light into single-mode optical fibers. They serve as 
spatial filters and restore interferometric visibility. The worst observed visibility 
using fibers is 0.99. We also observe that the different optical paths suffered from 
slightly unequal optical losses (the most significant difference is 0.02), but we did 
not directly compensate for this imperfection. 

Coincidence counts Cy are accumulated during 10 s long measurements for 

each input state. The relative frequencies are calculated as = v

 , J , where i 

indexes the input states and j indexes the measurement results. The relative fre­
quency errors shown are determined using the standard error propagation law, 
assuming that the detection events follow a Poisson distribution, and thus the 
standard deviations G,- can be estimated as , / G ; . 
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6.4.1 Both parties honest 
In the case of both honest parties, Alice prepares one of the qutrit states given 
in (6.2) and sends it to Bob. The basis state |0) is represented by the horizontally 
polarized mode in the upper output, | l ) by the horizontally polarized mode in 
the lower output, and |2) by the vertically polarized mode in the lower output of 
the beam displacer. The settings of the angles of wave-plate axes corresponding 
to all of Alice's states are listed in Table 6.2. 

l<A)o> M>1> I01O> \<f>n) 
HWPO -27.37° -27.37° 27.37° 27.37° 
H W P 2 -25.50° 25.50° 25.50° -25.50° 

Table 6.2: Wave-plate angles for Alice's state preparation if Alice is honest. The angle 
of H W P l is always zero (it only compensates for path differences). These settings also 
hold for cheating Bob in the reversed protocol. 

Bob's six measurement operators are defined in Table 6.1, for unambiguously 
eliminating pairs of states. This measurement can be implemented by a projecti­
ve von Neumann measurement {|̂ Xf;l}^=A m a n extended six-dimensional Hilbert 
space where 

\U) = >>+ |2> + 13)- |5> 

l&> = i ( | o > -
2 

|2> + 13) + 15) 

lfc> = >> + |1>- 13) + |4) 

l&> = 1 Clo> -
2 

|1>- 13)- |4) 

l&> = >+ | 2> - |4> + 15) 

>~ | 2> - | 4 > - |5> 

are orthogonal states wi th |3), |4), |5) being the basis states in the additional di­
mensions represented by modes added on Bob's side. 

A unitary transformation between states {\^i)}f=A and the computational basis 
{[/)}/=o c a n D e realized by a symmetric beam-splitter network (consisting of six 
50:50 beam splitters), which can be further translated into a setup consisting of 
half-wave plates and a beam displacer which combines spatial and polarization 
modes of light. The first beam displacer on Bob's side in Fig. 6.3 just transfers 
the incoming polarization and spatial modes into three separate paths. 
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Figure 6.3: Experimental setup for the XOT protocol when both parties are honest. 
Green boxes labeled with black numbers represent half-wave plates (HWP). Large semi-
transparent cyan boxes represent beam displacers. Next to HWP10, there is a polarizing 
beam-splitter. Note that HWP4 is ring-shaped and polarization of the central beam is 
not affected. Detectors are labeled according to the corresponding P O V M operators. 
Settings for Alice's half-wave plates are listed in Tab. 6.2 for when she is honest and in 
Tab. 6.4 for when she is cheating. Settings for Bob's half-wave plates are HWP3= 0°, 
HWP4=HWP5=HWP7=HWP8=HWP10= 22.5°, HWP6=HWP9= 45°. Beams marked in 
red have horizontal linear polarization, beams marked in blue have vertical polarization. 
Purple indicates general polarization states. 

The following half-wave plates - "double" H W P 4 and H W P 5 - turned by 
22.5° play the role of "beam splitters", mixing the original three modes wi th 
the additional three "empty" (vacuum) modes. Each waveplate mixes two polar­
ization modes. Behind the next beam displacer, there are two half-wave plates 
turned by 45°, which swap horizontal and vertical linear polarizations, and two 
half-wave plates turned by 22.5°, which represent the other two "beam splitters". 
The last "beam splitter" is implemented by a half-wave plate turned by 22.5° fol­
lowed by a polarizing beam splitter in the right part of the figure. 

To prevent the injection of higher-dimensional states into Bob's apparatus 
(so that Alice only has access to the subspace spanned by her legitimate states), 
there should be a linear polarizer placed in the upper input port. However, in 
our proof-of-principle experiment, we have omitted it to simplify the setup. 

In Table 6.3, we show the experimental data for the unreversed X O T protocol 
when both parties are honest. Alice sent states |0oo)> l^oi). Î n)> l^io) a n d Bob 
made an unambiguous quantum state elimination measurement. In Table 6.3, 
there are the absolute numbers of detector counts, corresponding relative fre­
quencies, and theoretical probabilities for comparison. Digits in parentheses rep­
resent one standard deviation at the final decimal place. The states in (6.2) were 
being prepared with equal probabilities. The average error rate caused by ex-

perimental imperfections was 0.01249(8). It was calculated as ~» where i 
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indexes input states, j indexes measurement results, Cy are measured numbers 
of counts, and $± denote the sets of erroneous outcomes (outcomes that should 
not occur). 

Bob 
n B n c n D 

n £ 
UF 

Alice x 0 = 0 x 0 = 1 xl = 0 Xj = 1 x 2 = 0 x2 = 1 
C 166443 5562 167526 719 167691 1389 

l<A)o> / 0.3268(7) 0.0109(1) 0.3289(7) 0.00141(5) 0.3292(7) 0.00273(7) 

Pt 1/3 0 1/3 0 1/3 0 
c 167799 4375 272 167383 1001 166933 

ton) f 0.3305(7) 0.0086(1) 0.00054(3) 0.3296(7) 0.00197(6) 0.3288(7) 

Pt 1/3 0 0 1/3 0 1/3 
c 4540 167803 167806 446 1189 168087 

I0io> f 0.0089(1) 0.3291(7) 0.3291(7) 0.00087(4) 0.00233(7) 0.3297(7) 

Pt 0 1/3 1/3 0 0 1/3 
c 3791 166615 317 166221 167797 1789 

I011> f 0.0075(1) 0.3289(7) 0.00063(4) 0.3282(7) 0.3313(7) 0.00353(8) 

Pt 0 1/3 0 1/3 1/3 0 

Table 6.3: Measured counts C, relative frequencies / , and corresponding theoretical 
probabilities pt for the situation when both the parties were honest. 

%2 — XQ ® X\. 

6.4.2 Alice cheating 

Bob is honest, so his measurement is the same as in the previous case. To guess 
which of the three bits Bob w i l l obtain, Alice sends states |0), | l ) , or |2). The 
corresponding angles of the wave-plates are listed in Table 6.4. 

|o> ll> |2> 
H W P 0 0° 45° 45° 
H W P 2 0° 45° 0° 

Table 6.4: Angles for wave plates, for Alice's state preparation if Alice is cheating. The 
angle of H W P l is always zero. 

Alice's states were being prepared wi th equal probabilities. Her average pro­
bability of correctly guessing which one of the three bits Bob obtained (i.e., his 
value of b), estimated from the experiment, was 0.4999(3). It was calculated as 
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M ' ,J, where % denote the sets of correct guesses. The theoretical prediction 

is 1/2. 
In Table 6.5, we show the experimental data for the case of a dishonest Alice 

in the unreversed X O T protocol. Alice sent states |0), | l ) , |2), while Bob honestly 
made an unambiguous quantum state elimination measurement. 

Bob 
n B n c n D n £ 

n f 

Alice x0 = 0 x 0 = 1 x1 = 0 Xj = 1 x 2 = 0 x 2 = 1 
C 126264 135006 124653 121434 29 30 

|o> f 0.2488(6) 0.2661(6) 0.2457(6) 0.2393(6) 0.00006(1) 0.00006(1) 
*b> x \ Pt 1/4 1/4 1/4 1/4 0 0 

c 10 189 127189 129235 131522 121722 
|1) f 0.000020(6) 0.00037(3) 0.2495(6) 0.2535(6) 0.2580(6) 0.2387(6) 

X\'X2 Pt 0 0 1/4 1/4 1/4 1/4 
c 130304 124349 93 26 119256 132601 

12) f 0.2572(6) 0.2454(6) 0.00018(2) 0.00005(1) 0.2354(6) 0.2617(6) 
*0> x2 Pt 1/4 1/4 0 0 1/4 1/4 

Table 6.5: Measured counts C, relative frequencies / , and corresponding theoretical 
probabilities pt for the situation when Alice is cheating. x2 

6.4.3 Bob cheating 
Alice is honest, so she sends her states exactly as in the described case above, 
when both parties were honest. To guess all three bits (equivalently, any two 
bits), Bob applies the square-root measurement consisting of four P O V M ele­
ments which are actually the same as that expressed in (6.5). This P O V M can 
be implemented by projectors {I^Xfilli'ioo m a four-dimensional Hilbert space 
spanned by |0), | l ) , |2), |3), where 

I&)> = ^(|0> + |1> + |2> + | 3 » , 

lfoi) = ^ ( | 0 ) - U ) + | 2 ) - | 3 » , 

lfio) = ^(|0) + U ) - | 2 ) - | 3 » , 

l f l l ) = ^ ( | 0 ) - U ) - | 2 ) + |3)), (6.7) 

are orthogonal states. The implementation of this projective measurement is 
shown in Fig. 6.4. The angles of the wave plates are listed in the figure caption. 



EXPERIMENTAL IMPLEMENTATION 109 

Alice 
(Bob) 

Bob 
(Alice 

I Io i i loo 

D n n 

Figure 6.4: Experimental setup for the XOT protocol when Bob is cheating. The no­
tation is the same as in Fig. 6.3. The settings for the reciever's half-wave plates are 
HWP3=HWP7=HWP8=22.5°, HWP4=45°, HWP5= 90°. The same setup is used for the 
reversed protocol when Alice is honest. But in that case, Bob is the sender and Alice 
is the receiver (names in parentheses). The settings of the sender's half-wave plates for 
honest Alice in the unreversed protocol, or for cheating Bob in the reversed protocol, are 
listed in Tab. 6.2, and for honest Bob in the reversed protocol in Tab. 6.7. 

Alice's states were being prepared with equal probabilities. Bob's average 
probability of guessing all bits, estimated from the experiment, was 0.7431(3). 
The theoretical value is 3/4. 

Alice Bob (Alice) 
(Bob) n 0 0 n 0 i n n 

c 377482 41178 38173 43299 

l<A)o> f 0.7547(6) 0.0823(4) 0.0763(4) 0.0866(4) 

Pt 3/4 1/12 1/12 1/12 
c 40908 359828 52461 41808 

I0O1> f 0.0826(4) 0.7268(6) 0.1060(4) 0.0844(4) 

Pt 1/12 3/4 1/12 1/12 
c 41904 39478 378828 41595 

I01O> f 0.0835(4) 0.0787(4) 0.7548(6) 0.0829(4) 

Pt 1/12 1/12 3/4 1/12 
c 50901 42306 38995 368643 

f 0.1016(4) 0.0845(4) 0.0779(4) 0.7360(6) 

Pt 1/12 1/12 1/12 3/4 

Table 6.6: Measured counts C, relative frequencies / , and corresponding theoretical 
probabilities pt for the situation when Bob is cheating. These results also correspond 
to the reversed protocol with cheating Bob - then the roles of sender and receiver are 
swapped (see the names in the parentheses). 
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In Table 6.6, we show the experimental data for the case of a dishonest Bob in 
the unreversed X O T protocol. While Alice honestly sent the correct states, Bob 
applied the square-root measurement. In fact, it also shows the experimental 
data for the reversed X O T protocol with a dishonest Bob, only interchanging the 
sender and receiver roles, see names in parentheses. 

6.4.4 Reversed protocol - Both parties honest 
In the reversed protocol, Bob prepares and sends one of the six non-orthogonal 
qutrit states defined in (6.4). These states can be prepared in a similar way as 
Alice's states were being prepared in the original protocol. The corresponding 
angles for the wave-plates are listed in Table 6.7. 

l0x„=O> I0x,=o> l^= i> l0x7=O> 
HWPO -22.5° 22.5° 22.5° -22.5° 45.0° 45.0° 
H W P 2 0.0° 0.0° 45.0° 45.0° -22.5° 22.5° 

Table 6.7: Reversed protocol. The wave plate angles for Bob's state preparation, if Bob 
is honest. The angle of H W P l is always zero. x2 = x 0 © x1. 

In this case, Alice is the receiver. To learn the bit values she performs a 
P O V M measurement, the components of which are defined in (6.5). We already 
know how to implement this measurement, because it is exactly the same as the 
measurement for cheating Bob in the unreversed protocol. So the correspond­
ing higher-dimensional projective measurement consists of the projectors onto 
the states (6.7). Therefore, the setup for the reversed protocol in the case when 
both parties are honest is actually the same as the setup for the unreversed pro­
tocol when Bob is cheating - see Fig. 6.4 - only the roles of Alice and Bob are 
interchanged. 

Bob's states were being prepared with equal probabilities. The average error 
rate caused by experimental imperfections was 0.00428(4). 

In Table 6.8, we show the experimental data for the reversed X O T protocol 
when both parties are honest. Bob sent states |0 X o = o). \<pXo=i)> I0xi=o)> I0xi=i)> 
\<Px2=o)> I0x2=i) a n d Alice performed a P O V M measurement. 
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Alice 
Bob n 0 o n 0 i n n 

c 249402 239442 1636 1806 

=o> / 0.5066(7) 0.4864(7) 0.00332(8) 0.00367(9) 

Pt 1/2 1/2 0 0 
c 3028 762 249215 246373 

\K= f 0.0061(1) 0.00153(6) 0.4991(7) 0.4934(7) 

Pt 0 0 1/2 1/2 
c 249097 802 246042 1069 

I0x1 = =o> f 0.5012(7) 0.00161(6) 0.4950(7) 0.00215(7) 

Pt 1/2 0 1/2 0 
c 1019 241863 1840 246310 

I0x1 = =1> f 0.00208(6) 0.4926(7) 0.00375(9) 0.5016(7) 

Pt 0 1/2 0 1/2 
c 255968 38 301 249572 

\<f>x2 = =0> f 0.5060(7) 0.00008(1) 0.00060(3) 0.4933(7) 

Pt 1/2 0 0 1/2 
c 29 237407 264287 213 

\<f>x2 = =1> f 0.00006(1) 0.4730(7) 0.5265(7) 0.00042(3) 

Pt 0 1/2 1/2 0 

Table 6.8: Reversed protocol - both parties honest. Measured counts C, relative frequen­
cies / , and corresponding theoretical probabilities pt for the situation when both the 
parties were honest. x2 
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6.4.5 Reversed protocol - Alice cheating 
Bob honestly prepares quantum states, but cheating Alice wants to know which 
bit Bob has actually learned, the first or the second bit, or their XOR. In this case, 
however, Alice is the receiver who has to distinguish between three states 

Px0 =^I0xO=OX0xO=OI + ^l0x o=lX0x o=ll 

= | |0X0| + | | 2X2 | , 

Pxj =^I0x1=OX0x1=OI + ^ x ^ l X ^ x ^ l l 

=i |oXo| + i | i X i | , 

Px2 =^I0x2=OX0x2=OI + ^l0x 2 = lX0x 2=ll 

= | | 1 X H + | | 2 X 2 | (6.8) 

These mixed states all have prior probability 1/3, since Bob sends each of his 
six states wi th probability 1/6. Alice's optimal strategy is to use these measure­
ment operators 

n* 0 = i |oXo | + i |2X2| , 

K = | loXo| + f l i X i N 

= | | 1X1 | + | |2X2|- (6.9) 

This gives Alice a cheating probability Ar

0T of 

AOT = ^ [ T r ( p X o n X o ) + T r ( p x n X i ) 

+ Tr(p X 2 f l X 2 ) ] =1 (6.10) 

which is the same cheating probability as the one Alice can achieve in the un­
reversed protocol. The P O V M operators are actually statistical mixtures of the 
projectors onto the basis states |0), | l ) , and |2). This means that Alice can make 
a projective measurement followed by classical post-processing. E.g., i f she ob­
tains the result corresponding to |0X0|, she knows that Bob has either the value 
of bit xQ or the value of bit x l t each with 50% probability. Bob's states were be­
ing prepared with equal probabilities. The average probability of Alice guessing 
Bob's b, estimated from the experiment, was 0.4992(2). 
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Figure 6.5: Experimental setup for the reversed XOT protocol when Alice is cheat­
ing. The notation is the same as in Fig. 6.3. The settings of Alice's half-wave plates 
are HWP3 = HWP4 = HWP10 = 0°, HWP5 = 90°, HWP6 = HWP7 = HWP9 = 45°. 

The setup scheme implementing Alice's measurement when she is cheating 
is plotted in Fig. 6.5. The angles of the wave plates are listed in the figure caption. 

Alice 
loxol u x n |2X2| 

Bob X j , x 2 x 0 , x 2 

c 266828 23 260337 

=0> / 0.5061(7) 0.000044(9) 0.4938(7) 

Pt 1/2 0 1/2 
c 266040 13 261456 

=1> f 0.5043(7) 0.000025(7) 0.4956(7) 

Pt 1/2 0 1/2 
c 264336 255114 172 

I0x1 = =0> f 0.5087(7) 0.4910(7) 0.00033(3) 

Pt 1/2 1/2 0 
c 267393 255628 151 

I0x1 = =1> f 0.5111(7) 0.4886(7) 0.00029(2) 

Pt 1/2 1/2 0 
c 1240 257057 262665 

\<f>x2 = =o> f 0.00238(7) 0.4934(7) 0.5042(7) 

Pt 0 1/2 1/2 
c 1192 254941 262185 

\<f>x2 = f 0.00230(7) 0.4919(7) 0.5058(7) 

Pt 0 1/2 1/2 

Table 6.9: Reversed protocol. Measured counts C, relative frequencies / , and corre­
sponding theoret. probabilities pt for the situation when Alice was cheating. x2 = x 0©*i-
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In Table 6.9, we show the experimental data for the case of a dishonest Alice 
in the reversed X O T protocol. While Bob honestly sent the correct states, Alice 
performed a projective measurement and classical post-processing. 

6.4.6 Reversed protocol - Bob cheating 
In this case, Alice behaves honestly but cheating Bob wants to obtain the values 
of both xQ and xx (and thus their XOR). To estimate these values, Bob uses the 
set of four "fake" states equivalent to the ones in (6.2). Clearly, the experimental 
setup, as well as the state preparation and measurement, are the same as that 
for the unreversed protocol wi th cheating Bob, see Fig. 6.4. Therefore, it was 
not necessary to repeat the measurement because the results had already been 
obtained. They are shown in Table 6.6. The average probability of Bob guessing 
all bits, estimated from the experiment, was 0.7431(3). The theoretical value is 
3/4. 

6.5 Discussion 
We have analysed and realised protocols for quantum X O R oblivious transfer. 
The protocols are non-interactive, do not require entanglement, and make use 
of pure symmetric states. We presented particular optimal quantum protocols, 
showing that they outperform classical X O R oblivious transfer protocols, and ob­
tained cheating probabilities for sender and receiver for general non-interactive 
symmetric-state protocols. The cheating probabilities for the unreversed pro­
tocols are the same as for a previous protocol [172], which is interactive and 
requires entanglement. 

Non-interactive protocols, which do not require entanglement, are simpler 
to implement. In our protocol, Bob obtains Alice's first bit, her second bit, or 
their X O R at random. Thus, we introduced the concept of semi-random X O T 
protocols, analogous to the definition of semi-random 1-2 OT protocols given 
in [212]. We also introduced the concept of "reversing" a protocol, which means 
that the sender of the quantum state instead becomes a receiver of quantum 
states, and vice versa, while keeping their roles in the X O T protocol the same. 
This is useful i f one party only has the ability to prepare and send quantum states 
while the other party can only measure them. 

We optically realised both the unreversed and the reversed version of our 
optimal non-interactive quantum X O T protocol, including Alice's and Bob's op­
timal cheating strategies. The achieved experimental data match our theoretical 
results very well , thus demonstrating the feasibility of both protocols. 



Chapter 7 

Summary 

This thesis covers the generation of entangled photon pairs inside quantum dots, 
experiments wi th quantum coherence and applying one specific quantum proto­
col. We realize these experiments wi th linear quantum optics. A l l experiments 
use encoding a qubit into polarization modes of a photon and quantum state 
tomography using a maximum likelihood algorithm. 

Our first experiment involved a gallium arsenide quantum dot embedded in a 
ring Bragg resonator and integrated into a multiaxial piezoelectric actuator that 
enables three-axis mechanical strain tuning. By applying a suitable voltage, we 
can shape the quantum dot on the given substrate and thus improve its broken 
circular symmetry. This procedure leads to a greater degeneration of the exciton 
level and increases entanglement of the generated photon pairs. In this thesis, 
we demonstrate a device concept that delivers entangled photons wi th high en­
tanglement, high brightness, tunable emission energy, and low probability of 
multiphoton emission of photons emitted by the quantum dot. This device en­
ables the implementation of advanced quantum communication protocols, such 
as entanglement swapping, quantum teleportation, and quantum key distribu­
tion based on photon entanglement. 

Photon entanglement is closely related to quantum coherence. For example, 
the secure key rate can be quantified by the coherence of the shared bipartite 
quantum states [59]. In our second experiment, we investigate the protocol for 
assisted enhancement of quantum coherence for a qubit. We deterministically 
increase the coherence of the target system (one qubit) by reducing the coherence 
of the control system (multiple copies) while fully preserving the purity of the 
target system. The protocol is based on the control qubit measurement and the 
two-qubit interaction with a tunable coupling strength, which does not generate 
local coherence. We experimentally demonstrated this protocol using photonic 
qubits and observed the enhancement of coherence for up to five iterations of 
the protocol. 
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In the following experiment, we stayed wi th quantum coherence, but this 
time, we investigate states that maximize the mutual coherence in different sub-
spaces of dimension {2, 3, 4} of the two-qubit Hilbert space. In our study, we 
quantify the coherence by the relative entropy of coherence. For this coheren­
ce measure, We have discovered an optimal non-trivial asymmetric state in a 
three-dimensional subspace of the Hilbert space. We experimentally prepared 
this optimal state from two factorized photonic qubits by a strictly incoherent 
probabilistic quantum operation, which projects this input state into the required 
three-dimensional subspace. For comparison, we also experimentally tested the 
preparation of the state wi th maximum mutual coherence using unitary trans­
formations of the input product states. These theoretical and experimental tests 
demonstrate the first successful attempts to control mutual quantum coherence 
in qubit systems. Our results pave the way for further investigations of the pro­
perties of mutual coherence in non-trivial subspaces of composite Hilbert spaces. 

Last but not least, we study one specific cryptographic protocol called non-
interactive X O R oblivious transfer or X O T It is a protocol between two partici­
pants who do not trust each other. Here, the sender, Alice, has two bits available, 
and the receiver, Bob, gets either the first bit, the second bit, or their XOR. He 
should not learn anything more, and Alice should not know what information 
Bob received. Of course, there is the possibility that either the sender or the re­
ceiver is not being honest, or even cheating both of them to find out as much 
information as possible. In the last described experiment of this thesis, we de­
termine the smallest possible cheating probabilities for dishonest parties using 
symmetric pure states. We also reverse this protocol in such a way that Bob be­
comes the sender of the quantum state and Alice its receiver, who measures the 
state, while the oblivious transfer is still implemented in the same direction as 
in the unreversed case. The cheating probabilities for both parties remain the 
same as for the original variant of the protocol. This optimal quantum proto­
col achieves better results than classical X O R oblivious transfer protocols and 
better probabilistic results when cheating the sender and receiver for generally 
non-interactive protocols wi th symmetric states. 
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