
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

AUDIO STREAMING FOR ANDROID DEVICES
USING UPNP
SDÍLENÍ AUDIA POMOCÍ UPNP PRE ANDROID

BAKALÁŘSKÁ PRÁCE
BACHELOR'S THESIS

AUTOR PRÁCE GABRIEL LEHOCKÝ
AUTHOR

VEDOUCÍ PRÁCE Ing. VÍTĚZSLAV BERAN, Ph.D.
SUPERVISOR

BRNO 2014

Abstrakt
Obrovské množství lidí v současnosti používa své smartfóny jako mobilní hudební přehrávač,
kde si ukladá svou oblíbenou hudbu. Chceme-li při poslechu zvýšit hudební zážitek a
chceme-li použít kvalitní externí soustavu reproduktorů, použitím wireless streamovacího
protokolu U P n P a RTSP můžeme to jednodušše docílit. Tyhle protokoly umožní jednoduché
sdílení hudby, a jsou již implementovány v prevažne většině audio-video zařízení. Táto
práce si klade za cíl popis tychto technologii, na základe čeho popisuje i vývoj a realizaci
jednoduché aplikace na sdílení audia.

Abstract
There is a huge number of people using their smartphones as portable music-players, with
their favourite music stored on the device. To improve the music listening experience, a
louder and better quality loudspeaker is needed. Using U P n P and RTSP streaming, wireless
streaming of the music becomes possible. These protocols are implemented in high variety
of devices, thus the user can share the music track to many devices easily. This thesis
describes the technologies and possibilities in this kind of audio sharing and also describes
a simple application that provides this kind of audio streaming.

Klíčová slova
Android, UPnP, aplikácia, audio, hudba, sdílení, streamování, multimédia, mobilní telefon,
smartfón, RTSP

Keywords
Android, UPnP, mobile application, audio, music, streaming, sharing, multimedia, mobile
phone, smartphone, RTSP

Citace
Gabriel Lehocký: Audio streaming for Android devices using UPnP, bakalářská práce,
Brno, F IT V U T v Brně, 2014

Audio streaming for Android devices using UPnP

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Ing.
Vítězslava Berana, Ph.D.

Gabriel Lehocký
July 20, 2014

© Gabriel Lehocký, 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in­
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 2

2 Theory 3
2.1 Wireless streaming technologies 3
2.2 UPnP Device Architecture 7
2.3 D L N A 9
2.4 Android 11
2.5 Real-time Transport Protocol 18
2.6 Existing Android Applications Using U P n P 20

3 Application Concept 23
3.1 Basic Concept 23
3.2 User Interface Concept 24

4 Implementation 25
4.1 Tools and Libraries 25
4.2 Android Audio Manager and Media Recorder 26
4.3 Streaming with RTSP 27
4.4 U P n P Communication 28

4.5 The Final Application 29

5 Testing and evaluation 32

6 Future Improvements 34

A Content of the C D 38

1

Chapter 1

Introduction

Portable devices are very popular nowadays. One of the most used ones are smartphones
with the Android operating system [14]. These phones are well equipped with advanced
features, so except of making phone calls, users can use them for high variety of tasks, e.g.,
web browsing, photographing, gaming or listening to music [31].

Android offers an online store (Google Play) to download free applications, and with that,
to extend the possibilities provided by the device. On the actual market there are hundreds
of advanced music players for Android with millions of downloads together, but one can
use the built-in music player which is equipped with many functions. Therefore, even this
default music player is used by high percentage of users. Listening to music on a smartphone
is very popular and many Android users do it every day. Users have their favourite tracks
stored in the device's storage, and have playlists created by their taste of music [3].

People usually use their device to listen to music alone, with headphones on. For this
purpose every available music player is suitable. To listen to the music in better quality,
and louder, smartphone speakers or a headphones are not an optimal choice for a true
music lover []. To connect the device to a better quality audio system, the easiest and
most common way is the 3.5mm jack cable. Apart from that, there are plenty of wireless
technologies also (section 2.1) that provide more free connectivity.

The Universal Plug and Play (UPnP) protocol is implemented in high range of network ca­
pable media-related devices. U P n P is one of the most used technologies for media streaming
in local network [].

There are already applications on the Google Play store solving the problem of streaming
our favourite music to an audio system using Universal Plug and Play protocol (section 2.6).
However, this solution tries to do it in a different way, where the user doesn't need to learn
to work with a new music player application, but can use any media player to play the
music. This solution also tries to make possible to stream other audio streams, like phone
call, game sounds, audio of a video and other sources.

2

Chapter 2

Theory

This chapter describes the technologies and protocols that are used within this thesis.
First, it discusses some technologies which can be used for audio streaming. Furthermore it
describes the Universal Plug and Play protocol and its functionality in more details. In this
section there are also information about Android and Real-time Transfer Protocol which
are used for audio streaming on the network by the created application 4.5. The last section
of this chapter describes some existing applications that provide audio sharing using the
UPnP protocol.

2.1 Wireless streaming technologies

There are some technologies and standards which make wireless media streaming possible.
The four most common media steaming technologies are Bluetooth, AirPlay, Miracast and
D L N A [6, 19, 24].The following subsections describe the basics of these technologies.

Bluetooth

Only a few technologies exists that succeeded to unificate the whole market, but Bluetooth
did it. Bluetooth was created by Ericsson in 1994 to make a RS-232 like communication
wireless [5]. The most common use of this technology today is telephoning and audio
listening.

Setting up a Bluetooth communication is relatively easy. To connect two devices, only
pairing them is needed. Usually this pairing process requires a four-digit password to
create the communication channel []. The data transfer between the devices is beamed
directly without the need of a router or other intermediary.

Bluetooth uses protocols, called profiles, that interpret different kinds of communications.
There is a big number of Bluetooth profiles describing many different types of communica­
tion. From these profiles, two provide audio streaming. These two are the Headset Profile
and the Advanced Audio Distribution Profile []. To create a functioning communication,
both end-point-devices must have the same profile implemented.

3

The Headset Profile (HSP) provides support for mobile devices to connect with a hands-
free device [6]. The audio is encoded in 64 kbit/s C V S D (Continuously variable slope delta
modulation) or P C M (Pulse-code modulation). It also implements minimal controls like
the ability to ring, to adjust the volume or to pick up the call and to hang up.

For audio streaming an A2DP (Advanced Audio Distribution Profile) is used that relies
on the G A V D P (Generic Audio/Video Distribution Profile). This profile creates a one-way
stereo-quality pipeline between a source (smartphone, tablet, media player, laptop, etc.)
and sink (wireless speaker system, A V receiver, etc.) []. The data channel of the A2DP
profile is 721 kbps wide and it supports many different audio codecs like mp3, wma, aac,
and others [30].

Figure 2.1: Music streaming from a smartphone to the headphones over Bluetooth.

Todays most preferred codec for audio streaming over Bluetooth is aptX, which can deliver
near-CD-quality streaming []. The support of the aptX codec is good in the new devices
however still not all of them supports this codec. The big advantage of the aptX, is the
high tolerance to bit errors, and the quick re-establishing feature after a small dropout in
the communication. The end-to-end latency of the aptX is 32ms, while the latency of the
standard Bluetooth stereo is around 150ms.

AirPlay

AirPlay (originally called AirTunes, when it only supported audio) is Apple's wireless dis­
play standard. It allows to stream audio and video from an iPhone, iPad, or Mac to an
Apple TV device [6, 19].

AirPlay can work two different ways. It is able to use it in a display and audio mirroring
mode, just like in a standard media streaming mode. Apple's technology is good enough to
stream and share the right content the user wants to [19].

In the most common implementation, the AirPlay-capable devices are connected to the
local network via W i F i or Ethernet []. Therefore the quality of the streaming from the
iOS or Mac device, depends on the quality of the network. AirPlay streams the music

4

in lossless A L A C (Apple Lossless Audo Codec) format. This means that the compressed
audio is streamed without any further loss, but the better quality audio is down-sampled
to 44.1 kHz.

AirPlay protocol stack uses U D P for streaming media, and is based on the RTSP (specified
in chapter 2.5) network control protocol [12]. A E S encryption is used for the two-channel
audio. This encryption requires the receiver to access the appropriate private key to decrypt
the streams. The stream is buffered for approximately 2 seconds before playback begins,
resulting in a small delay before media is played [2].

To prevent sound quality deterioriaton due to reduction in bit depth and sound quality,
AirPlay protocol uses metadata packets that contain the final output volume []. The
audio data is streamed unprocessed at its original full volume, and the volume metadata is
used by the end-point to set the volume. AirPlay also makes possible to stream one source
to different end-points, each with its own volume control.

Figure 2.2: Video played from iPhone on an Apple T V using AirPlay.

As also view by the users, we can consider AirPlay a good functioning standard for media
streaming, but it also has one big disadvantage. It only works with Apple devices [19].
However, more and more television and A V R receiver manufacturers implement this stan­
dard in their newly released devices for the Apple device users, so they can use this type
of media streaming.

WiDi/Miracast

W i D i (Wireless Display) is a standard created by Intel []. Wi th this technology Intel
tries to compete against Apple's AirPlay.

To share media content using W i D i , there is no need for a connection to a local network
such in case of AirPlay or U P n P [24]. The connection is direct between the two devices,
which use W i F i Direct connection. This technology is integrated to all new Intel-based PCs
and into TVs from manufacturers as Samsung, LG, and Toshiba. W i D i , just like AirPlay,
allows screen and audio mirroring, and also individual media sharing. It also allows to show
different content on the P C and T V display at the same time.

W i D i supports up to FullHD video streaming with 60fps in H.264 that is hardware en­
coded [26]. As for audio, it is possible to stream a 6 channel (5.1) in 16-bit/48 kHz L P C M
in A A C or AC3 format. The latency of the streaming is less then 150ms.

5

Miracast is considered to be Android's answer to Apple's Airplay, and it uses W i F i Direct
connection just like W i D i does []. A l l smartphones and tablets with Android 4.2 and
later are Miracast-enabled. The newest version of W i D i and Miracast are compatible with
each other, so the two technologies are merged together.

v$ a « a i s

n es • q »9

m z\ m m • n
i onl.cl* PiCtionar Dulnhm 8r .m l Clo*nlo»di Em'il HI* Mt naff

!P • S • ™
N«S >Ji= FiOInt* G.I In, G i n . GLbrncfimii Gm*t

Goo fit* intuit*} Lj'rtud- LO i oun>elui* . LC l » i * Lflcil

Figure 2.3: Screen mirroring from an Android device to T V using Miracast.

The Miracast was created to be an industry-wide standard, but in practice it didn't worked
out well [19]. The biggest problem is, that for the manufacturers it is not mandatory to
brand the products with the „Miracast" brand. As a result different manufacturers call
their implementation of Miracast differently. For example Sony calls it „screen mirroring",
Samsung calls it „AUShare Cast", Panasonic calls it „display mirroring", and LG calls
their Miracast support „SmartShare". The manufacturers not only name the technology
differently, but there are also differences in the implementations. These differences make
theoretically compatible Miracast devices incompatible with each other, so the standard
seems to have collapsed in practice.

UPnP/DLNA

D L N A (Digital Living Network Alliance) is a non-profit company that was crated by Sony to
standardize media transmission and streaming on a local network []. The D L N A standard
uses U P n P (described in chapter 2.2) as it's communication protocol. It is considered to be
the most common way of media streaming over the local network []. This standard allows
to share media in an IP-based network, just like in case of the AirPlay. A l l D L N A certified
products that are connected to the same network are compatible with each other. There
are many types of devices with various roles that can be part of the D L N A topology. The
three main components of the communication are the media server, the media player and the
media renderer. (A more detailed specification is in chapter 2.3, part Device Classification.)

Playback quality depends on many things: the quality of the source files, the quality of
the video processing within the player, and the speed and reliability of the network. The
positive side of the D L N A is the open architecture, that allows to stream high variety of
media formats even in lossless quality []. The playback ability of the given format depends
on the player itself, and whether it supports such formats. File compatibility varies per
manufacturer of the player. Some choose to support a wide variety of file types while others
only support the basics required by D L N A . (More in chapter 2.3, part Media Formats)

The biggest difference between D L N A and AirPlay/Miracast is, that D L N A is not a wireless

6

display solution []. It does not allow content sharing the way AirPlay and Miracast does.
It is designed to stream local media files from the media server to the player. The standard
also implements media description and control function like play, pause, next, previous,
stop, etc.. The playback control is possible on the media player side of the communication.

On the actual market there are millions of D L N A certified devices, so this technology is
easily accessible []. Nearly every network capable multi-media device (TV, Blu-Ray, A V R ,
etc.) has the D L N A certification. The UpnP protocol allows to create the connection
between the devices easily. The devices automatically advertise themselves on the local
network. This makes them easy to access.

Media Server

Figure 2.4: Different devices with various roles in one network.

2.2 UPnP Device Architecture

UPnP is a technology, that defines an architecture of a peer-to-peer network connection for
intelligent appliances, wireless devices, and PCs of all forms []. The protocol was designed
to be an easy-to-use and flexible standard connectivity in any kinds of networks, whether
in the home, in a small business, or in public spaces. U P n P provides open networking and
distributed architecture for T C P / I P networks that allows data transfer and transfer control
functionality.

UPnP has a zero-configuration feature with automatic discovery of various devices on the
same network. The U P n P devices can dynamically connect to the network, advertise their
capabilities and ask for presence and capabilities of other devices. The devices can also

7

disconnect from the network easily and smoothly without leaving any unwanted state be­
hind [].

The U P n P Device Architecture contains protocols for communication between controllers,
or control points and devices. For discovery, description, control, eventing, and presenta­
tion, the U P n P Device Architecture uses the protocol stack showed in Figure 2.5.

The U P n P Architecture uses both T C P and U D P transport protocols []. U D P is used
for SSDP (Simple Service Discovery Protocol) and for multicast events. T C P is used for
H T T P communication which delivers S O A P (Simple Object Access Protocol) and G E N A
(General Event Notification Architecture) messages.

The U P n P architecture defines two general classifications of devices: controlled devices
(or simply „devices"), and control points []. The controlled device functions in a role
of a server, that responds to the requests from the control points. Both control points
and controlled devices can be implemented on a variety of platforms including personal
computers and embedded systems. On a single network, multiple devices and control points
can be operational at the same time.

Media Media Media Media
Server Controller Player Renderer

Media
Printer

UPnP

S S D P M u l t i c a s t Even t s
S O A P G E N A

S S D P M u l t i c a s t Even t s
H T T P

U D P T C P

IP

Figure 2.5: U P n P protocol stack.

Discovery

Discovery is the first step in U P n P networking []. The U P n P discovery protocol allows the
device to advertise itself to other devices on thelocal network when the device is connected
to it. This discovery protocol also allows the device to search for devices on the network.
The discovery message contains some essential information about the services provided by
the device. It also contains information such as the type of the device, the universal unique
identifier, the pointer to more detailed informations and it also can contain the identification
of the current state of the device.

Description

After a control point has discovered a device, the control point still knows only the basic
provided information about the device []. The control point retrieves additional informa­
tion from the U R L that is provided in the discover message, to learn more features of the
other device. The description of the device has two logical parts. The first part describes

8

the physical and the logical containers of the device, while the second describes the service
capabilities of the it. The U P n P device description also includes some vendor-specific infor­
mation about the device. These information are for example the model name and number
of the device, the serial number, the manufacturers name and the U R L of the website of
the device.

Control

After knowing all the information about the device, the control point can ask to invoke
actions and receive responses to the actions from the device [4]. Invoking actions on the
device works like a remote procedure call. The control point sends the action to the device.
After the action was completed or failed, the device returns the result of the action.

The control messages are done by sending a S O A P request to the „control U R L " of the
control point [18]. This control U R L was specified in the description of the device. The
performed action to the request depends on the profile of the device. For every device
profile, different kinds of control requests can be sent, different methods can be called.
These methods are also listed in the devices description.

Eventing

UPnP also implements a concept for so-called „state variables" []. State variables are
used to keep some form of the state of the U P n P devices. In case the state is changed, a
new state is sent to all devices that are subscribed to the event. Devices can subscribe to
events using the U R L that can be found in the description of the devices.

There are two types of supported eventing []. The first is the unicast eventing, where the
control point can subscribe to get state updates. The second is the multicast eventing. In
this the variables can be defined as multicast events. In this case the event is sent over
U D P to all the listening devices on the multicast address. Event notifications are sent by
the G E N A (General Event Notification Architecture).

Presentation

After the control point has discovered a device and retrieved a description of the device,
the last step in U P n P networking is the presentation []. The control point can load the
content/data into the player/renderer in case the device has the U R L of the presentation.
The player/renderer can allow the user to control the playback of the content/data, de­
pending on the type of the data content. The level of the control of the playback depends
on the content and the player/renderer device.

2.3 DLNA

The Digital Living Network Alliance was formed by Sony in 2003, to come up with a
standard that all media-related consumer electronic devices can support [27]. The goal was

9

to make high range of network capable multimedia devices able to communicate with each
other.

D L N A uses the U P n P protocol for communication [24]. It defines strict rules to unify the
communication between network media devices. D L N A specifies all the necessary functions,
an U P n P capable device should implement, to be a reliable and fully compatible with other
network of devices.

The Digital Living Network Alliance certifies consumer electronic devices (TVs, smart-
phones, A V receivers, Blu-ray players, . . .) in order to ensure the compatibility between
different brands. This makes the manufacturers stick to the regulations made by the D L N A
to make the device more salable on the market. Currently there are over 250 companies
contributing to D L N A .

Device Classification

The D L N A specification is divided into 3 main groups based on the type of the device [27].
Home Network Devices, Mobile Handheld Devices, and Home Infrastructure Devices (for
example routers that connect other devices). Within these groups, the devices can be
further divided into several classes based on their role in the communication: 1

Digital Media Server stores content and makes it available for the network Digital Media
Players, Mobile Digital Media Players, Digital Media Renderers and Digital Media
Printers. Some examples of digital media servers include PCs and network attached
storage (NAS).

Digital Media Player finds content offered by the Media Servers, and provides playback
and rendering capabilities. Digital Media Players are not visible to other devices on
the network such as Media Controllers. Examples of a Digital Media Player are TVs,
home theater systems, game consoles and handheld mobile devices like smartphones.

Digital Media Renderers are similar to Digital Media Players, but they render or play
content received from a Media Server. Digital Media Renderers are unable to find
content on the network, so they must be set up and controlled by a Media Controller.
A device that is a combination of a Media Player and a Media Renderer, can either
find a Media Server on its own or be controlled by an external Media Controller.
Digital Media Renderers are TVs, A V receivers and remote speakers for music.

Digital Media Controller finds content provided by a Media Server and matches it to
the rendering capabilities of a Media Renderer. It sets up the connections between
the Server and the Renderer. A n intelligent remote control is for example a Controller
device, such as a tablet or smartphone.

Digital Media Printer products provide printing services to the D L N A home network.

Mobile Digital Media Server devices differ from the Digital Media Server devices in
that they support formats more suitable for mobile devices. Smartphones and portable
music player are typical examples of the Mobile Digital Media Servers.

1 Information about the device classification was collected from the official Digital Living Network Alliance
website (h t t p : / / w w w . d l n a . o r g / d l n a - f o r - i n d u s t r y / c e r t i f i c a t i o n / d l n a - d e v i c e - c l a s s e s /
d i g i t a l - m e d i a - s e r v e r)

10

http://www.dlna.org/dlna-for-industry/certification/dlna-device-classes/

Mobile Digital Media Player differs from the Digital Media Player in that they support
formats more suitable for mobile devices. For example a multimedia teblet can be a
Mobile Digital Media Player.

Mobile Digital Media Controller finds content offered by the Media Servers, and match
it to the rendering capabilities of a the Media Renderer,and setting up the connections
between the server and renderer. A n example is an intelligent remote access device
like a smartphone or tablet.

Mobile Digital Media Uploaders send content to the Media Servers with upload func­
tionality. For example digital cameras, tablets and smartphones can be Media Up­
loaders.

Mobile Digital Media Downloader finds and downloads content exposed by the Media
Servers and play the content locally on the device after download. For example a
portable music player can behave this way.

Media Formats

A D L N A certified media server/renderer must support all of the file formats named in the
following list 2 . The device can support other file formats also but these default ones must
be supported. Most of the D L N A certified devices support more media formats than these
basics.

Picture: J P E G (Optional: GIF, TIFF, P N G)

Audio: L C P M , M P 3 , A A C - L C (Optional: W M A 9 , AC-3 , A A C , ATRAC3plus)

Video: M P E G 2 , AVC/H.264 (Optional: M P E G 1 , M P E G 4 , W M V 9 , H E V C H.265)

Print: H T M L

When the player does not support a file format that it was ordered to play, the server can
transcode it to a standard format []. The transcoding process takes a lot of power and it
slows down the streaming.

2.4 Android

Android is a mobile operating system that is based on a modified version of Linux [20].
The Android project was found in 2003 by the Android, Inc to create a mobile platform
operating system. In 2005 Google took over the Android project development.

The main advantage of Android is that is offers unified approach to application develop­
ment [20]. Wi th this approach, the developer only needs to to develop the application for
the Android system, and it is able to run on a high variety of devices that has this OS.
The OS allows to create high range of different application that can use different features
provided by the Android system. This positive feature is the reason manufacturers use this

2The list of media format is form the official D L N A guidelines: h t t p : / / w w w . d l n a . o r g /
d l n a - f o r - i n d u s t r y / g u i d e l i n e s

11

http://www.dlna.org/

operating system in their new devices, and today this OS owns over 44% of the mobile
device market [23].

Android is an open source project, which is a great advantage for the manufacturers. This
allows the free customization in the software and also has no fixed hardware configuration.
Android itself supports the following features [20]:

• Storage - SQLite lightweight relational database

• Connectivity - G S M / E D G E , Bluetooth, W i F i , L T E , W i M A X . . .

• Messaging - SMS and M M S

• Web browser - WebKit

• Media support - H.264, M P E G - 4 , A M R , A A C , M P 3 , J P E G , P N G , GIF . . .

• Hardware support - Accelerometer, Camera, GPS, Proximity sensor . . .

• Multi touch screen

• Multitasking

• Flash support

• Tethering - Internet sharing as a wireless hotspot

Architecture

APPLICATIONS
Home Contacts Phone Browser

APPLICATION FRAMEWORK
Activity Manager Window Manager Contetnt Providers View System

Package Manager Telephony Manager Resource Manager Location Manager Notification Man.

Sufrace Manager

OpenGL/ ES

SGL

LIBRARIES
Media Framework SQLite

FreeType WebKit

SSL libc

ANDROID RUNTIME
Core Libraries

DalvikVirtual
Machine

Display Driver

Keypad Driver

LINUX KERNEL
Camera Driver Flash Memory Driver Binder (IPC) Driver

WiFi Driver Audio Driver Power Management

Figure 2.6: Android architecture diagram.

12

The Architecture of the Android operating system is divided into five sections in four main
layers [20]:

• Linux kernel - The kernel is the basic level of the Android system. This kernel layer
contains all the device drivers for all the hardware components of the given Android
device.

• Libraries - The libraries provide the basic function of the Android.The SQLite library
for example, provides database support so an application can use this kind of data
storage. The WebKit library provides functionalities for web browsing.

• Android runtime - On the same level with the libraries is the Android Runtime.
This provides a set of core libraries. These libraries implement the Java methods, so
the higher level applications can be written in the Java language. The Dalvik virtual
machine of this runtime enables for every single application to run its own process,
with its own Dalvik virtual machine. A l l Android applications are compiled into a
Dalvik executable format. This Dalvik Virtual Machine was designed and optimized
specifically for the Android OS to be power efficient for the battery powered mobile
devices with limited hardware specification.

• Application framework - This framework implements wide range of methods that
can be used by the developers in the applications.

• Applications - The application layer contains all the applications that are installed
on the Android device like Phone, Contacts, Web Browser, File Browser, etc..

Activity Lifecycle

The A c t i v i t y is the main class of every Android application [20]. This class starts
every application. The name of an A c t i v i t y can be specified by the developer. Ev­
ery single A c t i v i t y that is implemented by the application, must be defined in the
A n d r o i d M a n i f e s t . xml. This xml file is the main component of every single application.
It contains the name and version of the application, list of the components (Activities),
permissions, services and other properties that are used by the application.

A n A c t i v i t y is created by extending the A c t i v i t y Java class of the A D T . This class
implements a series of events that control the behavior of the A c t i v i t y lifecycle (see
Figure 2.7) [20].

It is not necessary to define all these methods for every A c t i v i t y , but it is recommended
if the application has non-traditional behavior [20].

Android Services

A service is an application in Android which runs in the background without needing
to interact with the user []. The best example of the services is playing music in the
background or logging the location using GPS.

By extending the S e r v i c e base class of the Android library, a new service can be cre­
ated []. Just like the A c t i v i t y class, the S e r v i c e has some methods we have to use
to define its behavior.

13

Activity
launched

-> onCreateO

I

User navigates back
to the activity

Process is
killed

Other application
needs memory

onStart()

onResumeQ

Activity is
running

Other activity comes
n fornt of the activity

onPause()

Activity is no longer
visib s

onStopQ

Activity finished or
destroyed by system

onDestroyQ

onRestartQ

User returns to
the activity

User navigates back
to the activity

Activity is
shut down

Figure 2.7: Activity lifecycle diagram.

The onBind () method makes binding possible by an activity to the service [20]. This in
turn enables an activity to directly access members and methods inside a service.

The onStartCommand () method is called when the service is started [20]. This can
be made by using the s t a r t S e r v i c e () method. This method signifies the start of the
service, and this method contains the code of the behaviour of the service.

The onDestroy () method is called when the service is stopped using the s t o p S e r v i c e ()
method []. This is where the clean up of the resources are implemented, which are used
by the service.

To make the services possible to run, all services that are started by the application must
be declared in the A n d r o i d M a n i f e s t . xml file [20].

14

Androids Audio Related APIs

The Android library has many implemented classes which help us to create different mul­
timedia applications. Some of the most significant ones are the following []:

• AudioManager provides access to volume and ringer mode control.

• AudioRecord class manages the audio resources to record audio from the audio
input hardware of the platform.

• Aud i o T r a c k manages and plays a single audio resource.

• MediaRecorder is used to record audio and video from the input hardware of the
platform

• M e d i a P l a y e r class can be used to control playback of audio/video files and streams.

• R e m o t e C o n t r o l l e r is used to control media playback, display and update media
metadata and playback status.

• Ring t o n e provides a quick method for playing a ringtone, notification, or other
similar types of sounds.

Media Recorder

MediaRecorder class allow us to build out own audio recording functionality. It enables
wide flexibility, such as controlling the length or the quality of the recording [].

The MediaRecorder class is used for both audio and video capture []. After construct­
ing a MediaRecorder object, to capture audio, the s e t A u d i o E n c o d e r and s e t A u d i o S o u r c e
methods must be called. If these methods are not called, audio will not be recorded. (The
same goes for video. If s e t V i d e o E n c o d e r and s e t V i d e o S o u r c e methods are not
called, video will not be recorded.) Other methods such as setOutputFormat allows us
to choose what file format should be used for the recording and s e t O u t p u t F i l e allows
to set up the output file.

The MediaRecorder operates as a state machine. Figure 2.8 shows a diagram from the
Android A P I reference page for MediaRecorder, which describes the various states and
the methods that may be called from each state [15].

The following lists show us the possible options we can use for media recording connected
with the codec and the source of the recording: 3

AudioSource: The following options are available to set the audio recorder source [11]:

• CAMCORDER: Microphone audio source with same orientation as camera if available,
the main device microphone otherwise

• DEFAULT: Default audio source

• MIC: Microphone audio source
3These lists are from the Android Developers website

15

1

Figure 2.8: MediaRecorder state diagram from Android A P I reference.

• REMOTE.SUBMIX: Audio source for a submix of audio streams to be presented re­
motely. (Only from A P I level 19, Android 4.4)

• VOICE_CALL: Voice call uplink + downlink audio source

• VOICE_COMMUNICATION: Microphone audio source tuned for voice communications
such as VoIP.

• VOICE_DOWNLINK: Voice call downlink (Rx) audio source

• VOICE_RECOGNITION:Microphone audio source tuned for voice recognition if avail­
able.

• VOICEJJPLINK: Voice call uplink (Tx) audio source

AudioEncoder: B y the Android system, the following media codecs are supporte [10]:

• AAC: A A C Low Complexity (A A C - L C) audio codec

• AAC.ELD: Enhanced Low Delay A A C (A A C - E L D) audio codec

• AMR_NB: A M R (Narrowband) audio codec

• AMR_WB: A M R (Wideband) audio codec

• DEFAULT: Default audio codec

• HE_AAC: High Efficiency A A C (HE-AAC) audio codec (Only from A P I level 16, An­
droid 4.1)

16

Native Development

Android N D K (Native Development Ki t) is a set of tool for the developers, that allows
to implement a part or a whole Android application in a native language like C, C++ or
assembly []. Native application development may improve the performance, usually of a
processor-bound application. Many multimedia applications and games use native code to
improve the applications performance.

There are three reasons, that a native code improves the performance of an application [22].
While the Java code is compiled into a Java byte-code, and it is run by the Dalvik Virtual
Machine, the native code is compiled into a binary code and it is run directly by the oper­
ating system. In the system, a Just-in-Time (JIT) compiler is added to the Dalvik Virtual
Machine. The JIT compiler analyzes and optimizes the Java code before it's execution, and
it makes the execution slower. This is the first reason the native code is faster in most of
the cases than the Java code.

The second factor that can improve the performance of an application is, that the native
code can access some lower level processor features [22]. These features are not accessible
by the applications using only the Android SDK.

The third reason is the optimization possibility of the application on the assembly level [22].
This kind of optimization is also used in desktop software development.

Using N D K also have some cons [22]. Calling JNI (Java Native Interface) methods also
take extra work for the Dalvik Virtual Machine. Also, the native code cannot be optimized
by the JIT compiler just like the Java code. Developing with N D K does not guarantee the
performance improvement of an application furthermore it can even harm the performance
some times.

Rooting Android

Rooting an android device means that the user gets root permission for all the functions
of the system []. Rooting an android device can give the opportunity to do much more
than the phone can do out of the box, e.g., wireless tethering, speeding up the device with
overclocking, or customizing the themes. Wi th a rooted phone, certain applications can
access system settings, as well as flash custom ROMs to the phone, which add all sorts of
extra features. There are many different Android phones on the market so the method to
root a device differs for each model.

Rooting a device brings many privileges but there are also disadvantages of having a rooted
device.

Advantages [29, 28]:

• More applications: applications can control the system and use more features of it.

• Latest OS updates: the user can manually install any system updates, and always
has the access to the newest versions provided by the Android developers.

• More customizations: the user interface is highly customizable.

17

• Speed or battery life boosts: Rooting allows the user to install custom kernels that
are optimized for different power modes.

Disadvantages [28]:

• Rooting immediately voids the warranty of the device.

• Poor performance: Boosting up a performance of the phone should be an advantage.
However, in many cases the phone loses it's performance and reliability.

• Viruses: The applications with root privilege can easily infect the system with any
viruses.

The biggest risk of rooting a phone is that, there is always a small possibility with flashing.
In rare cases the phone becomes unable to function, becomes „bricked" [17].

2.5 Real-time Transport Protocol

Real-time Transport Protocol (RTP) is used to transmit digitalized audio or video signals
over IP Internet [7]. R T P provides two key facilities, i.e., sequence number, timestamp,
which allow the receiver to detect order of data loss and to control the playback. R T P is
designed to carry wide variety of real-time data so it does not enforce a uniform interpre­
tation of semantics. The fixed R T P header contains information about the payload, thus
the receiver knows how to interpret the received data.

R T P only focuses on transporting content, however another aspect of real-time transmission
is equally important: monitoring of the underlying network during the session and providing
out of band communication between the endpoints [7]. Out of band mechanisms can be
used for detecting and sending informations about playback delay, jitter changes or even for
parallel information sending, like captions for a video stream. Real-time Control Protocol
(RTCP) provides exactly these kind of data for the R T P communication. R T C P allows
senders and receivers to transmit a series of reports to one another, that contain additional
information about the transferred data and the performance of the network.

Real-time Streaming Protocol

Real-time Streaming Protocol (RTSP) defined in R F C 2326, is an application-level protocol,
that enables control over the delivery of data with real-time properties over IP []. This
protocol is designed to work with lower level protocols R T P and R T C P to provide complete
streaming service over Internet. It works for a large audience multicast and for single-viewer
unicast too.

RTSP provides remote control functionality for audio and video streams, such as pause,
fast forward, reverse, and absolute positioning. Sources of data include both live data feeds
and stored media files [25].

RTSP establishes and controls streams of continues audio and video media between the
media server and the clients. A media server provides playback and recording function
for the media streams, while the client requests these data. RTSP supports the following
operations [33]:

18

Retrieval of media from the media server: The client can request a presentation de­
scription via H T T P or some other method.

Invitation of a media server to a conference: A media server can be invited to join
an existing conference. After joining the conference, the media server can play or
record the the media in a presentation.

Adding media to an existing presentation: The server and the client can notify each
other about any additional media becoming available.

Methods of the RTSP

The method tokens of this protocol indicate the action to be performed on the other side of
the communication. The following list summarizes all the methods of the RTSP protocol.
It also shows which request is sent by which participant of the communication, and the
requirement of the implementation of the method [1, 33]:

OPTIONS: client to server / server to client, required
Information to the other party about the options that can be accepted.

DESCRIBE: client to server / server to client, recommended
Description of a presentation or media object identified by the request U R L from the
server.

ANNOUNCE: client to server / server to client, optional
From client to server it posts the description of the presentation or media. From
server to client, it announces updates in the description of the session.

SETUP: client to server, required
Client asks the server to allocate resources for the stream and to start the RTSP
session.

PLAY: client to server, required
Client asks to start sending data via the allocated SETUP

PAUSE: client to server, recommended
Client temporarily halts the stream without freeing the server resource associated
with it.

TEARDOWN: client to server, required
The client ask the server to stop the stream with also freeing the resource associated
with it.

GET_PARAMETER: client to server / server to client, optional
Retrieves value of the parameter of a presentation or a stream.

SET_PARAMETER: client to server / server to client, optional
Sets the value of the presentation or a stream.

REDIRECT: server to client, optional
The server informs the client that if must connect to an other server U R L provided
in the mandatory location header.

19

RECORD: client to server, optional
The client initiates recording a range of media data according to the presentation
description.

If the server does not support a particular optional or recommended method, it must return
501 Not Implemented answer, and the client should not try that request again [1].

2.6 Existing Android Applications Using UPnP

on the actual Google Play store, there are a couple of applications that use U P n P commu­
nication architecture [21, 13]. These applications can be divided into three groups, based
on their functions and role in U P n P communication.

•:>.,i t 16:00

MP31192kbps I 44.1kHz

[TV] Samsung TV

[TV]Samsung LED32

3RAVIA KDL-32W650A

HM II

MOW P L A Y I N G P L A Y L I S T L I B R A R Y D E V I C E S

Figure 2.9:
BubbleUPnP music controller interface.
Source: play.google.com

Figure 2.10:
i M e d i a S h a r e media renderer selection
screen.
Source: play.google.com

The first type of existing U P n P application is the media renderer (player) [21]. It is
basically a media renderer application that allows only to play the media on the android
device. These applications browse media servers and the playback is realized on the mobile
device not on an other media renderer.

The second type is the U P n P remote control or control point application [21]. Remote
control applications searches the local network for U P n P clients and servers. Their basic
function is to browse for a media file on the media server and initialize the streaming to a
media player. The application in this case is a remote controller which allows the user to
control the streaming with functions like pause the playback of the video or changing to

20

http://play.google.com
http://play.google.com

next picture or music track. High number of U P n P remote control applications work also
like a media renderer.

The third type of Android U P n P using applications are the media servers [13]. There are
plenty U P n P server applications on the current Android market, that are capable to share
the media, stored on in the memory of the hand-held device to a media renderer. These
applications also have the functions to control the playback on the media renderer.

Features of some of the most used media server applications are the following [21, 13]:

BubbleUPnP by Bubblesoft (see Figure 2.9)

• Music and video streaming from a U P n P / D L N A Media Server to the Android device.

• Control audio playback of the android device from another U P n P Control point.

• Downloading media from the media server to the android device.

Flipps (fromer iMedia Share) by Flipps Media Inc. (see Figure 2.10)

• Accessing to over 100 online media channels (YouTube, Vimeo, B B C , C N N , . . .) .

• Media playback controlling for media renderer.

Í B " P > I * iifl • Í Í 12:14
f -

Brtiwsä for media to play

ffl A ©
A ©

F l ©
Ar. st I id ex ©

Étl Artist/Album

J Composer ©
P i F ©

Figure 2.11:
S k i f t a media brower screen.
Source: play.google.com

i |g | Diwakars Media [HOMENAS]

| | ^ ^ ^ ^ ^ | Man. But without a ' m
B̂̂ ^̂ BP Transformers

, y Young teenagerSam
^ m A a - ^ M t a Wilwicky becomes
..—,.,»» involved in the ancient

SJ! • struggle between two
- - extraterrestrial factions

k
TfSSSM

2012
2009-11-13.158 mins

Dr. Adrian Helms-ley,
part of a worldwide
geophysicalteam
invesiigating Lhe effect
on the earth of

Armageddon
(1998)
ľidec/mp4.2.2 GE

Toy Story 3

Woody, Buzz, and the
rest of Andy's toys
haven't been played
with in years. With
Andy about to go to

TRON: Legacy
2010-12-17.125 mins

Sam Flynn, the tech-
savvy son of Kevin
Flynn, looks into his
father's disappearance
and finds himself pullec

Alvin And
Chipmunks
video/mp4.1.54
—do manual sea

Astro Boy (2010)
uideo/mp4.l.ii GB

Figure 2.12:
MediaHouse UPnP/DLNA Browser
browsing surface.
Source: [13]

Skifta by Qualcomm Atheros, Inc. (see Figure 2.11)

• D L N A Certified application

• Accessing media, stored on a media server and in the local storage.

• Media server - sharing the local media for media Tenderers.

21

http://play.google.com

• Controlling media playback of the media Tenderers.

UPnPlay by Bebopfreak

• Accessing and streaming music and video via media servers.

• Music and video streaming from a U P n P / D L N A Media Server to the Android device.

• Downloading media from the media server to the android device.

MediaHouse U P n P / D L N A Browser by Diwakar Bhatia (see Figure 2.12)

• Accessing and streaming music and video via media servers.

• Music and video streaming from a U P n P / D L N A Media Server to the Android device.

• Media playback controlling for media renderer.

22

Chapter 3

Application Concept

To create the basic concept of the application, first it is important to analyse what other
existing applications offer (described in Chapter 2.6).

A l l existing media server applications work the same way in basics. Each of them allows
the user to stream a local media file available on the device's storage or some of them to
play an online media stream [13].

None of these actually available applications allow the user to stream a phone call, notifica­
tions and other voices (game music and fx, phone ringing, audio played by other application,
etc.).

3.1 Basic Concept

To cope with the problems mentioned in the previous section, I designed an application to
fill the gap of the missing features on the current market. The idea is, that the applica­
tion streams all audio which would be heard through the device's speakers, just the way
that a Bluetooth (Section 2.1) headphones works, but in this case using U P n P and RTSP
streaming. Basically U P n P was not designed to work like Miracast (Section 2.1) or Apple's
AirPlay (Section 2.1). It is not designed to share the device's screen or audio output to an
other device, but also doesn't make it impossible.

So why UPnP? The first reason is that AirPlay is only available only for Apple devices [19].
The second is that Miracast is not universal and popular enough. It has the limitation
that only devices by same manufacturers can work together [19]. The third reason is that,
high number of TVs and AVRs with network connection feature are D L N A certified [].
That makes them a fully functioning audio receiver. The last reason is that there are no
applications yet which try to solve audio mirroring for Android devices using UPnP.

In order to create a widely compatible application, it is recommended to design it using
the D L N A standard. This means, that the application should provide services that are
fully understandable by most of the media related devices on the network []. For us, this
mainly contains the media encoding we would like to stream, and the events (actions) that
control the playback.

23

3.2 User Interface Concept

In Figure 3.1 there is an application screen that is designed to control the application
named AudioShare. The four blue numbered frames are indicating the main features
and functions that the application should provide. The following points define what these
different elements are, and what functionality they provide.

I AudioShare
Found UPnP devices:

ÜBI Sony STR-DN840

XBMC [Windows 7]

fTVl Samsung LED32
Rescan network

Stream notifications

Stream ringing

Stream phone call

Save settings

Figure 3.1: Application GUI concept.

1. This list shows the found U P n P players on the network. By clicking on a found device,
the audio streaming automatically starts 4. The icon before the name of the device
indicates the type of the device found (TV, A V R , H i F i , etc.). While the streaming is
active this list becomes disabled.

2. The „Rescan network" button has two functions. While looking for specific device,
the user can make a new network scan for U P n P devices. When the audio streaming
service is running, this button becomes a „Stop streaming" button, that stops audio
streaming.

3. This part of the GUI makes the user change basic settings about streaming. The user
can change, what sources will be streamed.

4. When the streaming is running, an icon is showed on the Android status bar, thus
the user knows that the application is running an the streaming is in process.

24

Chapter 4

Implementation

This chapter describes the techniques and tools used in the implemented application. The
implementation started with two different applications to solve two basic problems.

The first application was designed to work with the audio sources of the android and to
make them able to create stream the audio on the network. In Section 4.2 is described the
solution of getting the the audio from different sources, and Section 4.3 explains the usage
of a RTSP streaming library used in this application.

The second application solves the problem of the communication with the U P n P protocol.
This implementation is described in Section 4.4. In the final application 4.5 this was
extended with the functions of the first applications making the RTSP streaming.

4.1 Tools and Libraries

In this project, Android Developer Tools (ADT) 1 were used for implementation. A D T is
an Eclipse 2 integrated development environment containing Android software development
kit (SDK).

In this application, a library named C l i n g is used for U P n P communication on the net­
work 3. C l i n g is a U P n P library implemented in Java language. This application uses
the 2 . 0 - a l p h a 3 version of C l i n g that was released on 22nd January, 2014. Com­
pared to C l i n g version one, this second version in addition contains the implementa­
tion for Android platform. This library implements the U P n P discovery and descrip­
tion only. For further communication and control message sending to the device, the
c l i n g - s u p p o r t - 2 . 0 - a l p h a 3 library is also needed.

A library named l i b s t r e a m i n g 4 is used for RTSP audio streaming. L i b s t r e a m i n g
is a library, which allows to stream the camera and/or microphone of an android powered
device using RTSP. It also supports A A C audio format for streaming, so all D L N A certified
devices are able to play the audio provided in its stream.

1 A D T is available on website: http : / /developer . android. com/ sdk/index. html
2Eclipse official website: http://www.eclipse.org/
3The C l i n g library is available on: h t t p : / / 4 t h l i n e . o r g / p r o j e c t s / c l i n g /

The l i b s t r e a m i n g library is available on: https : / / g i t hub. com/fyhertz / l i b s t r e a m i n g

25

http://www.eclipse.org/
http://4thline

4.2 Android Audio Manager and Media Recorder

To test the functions and possibilities provided by the Audio Manager implemented in the
Andriod SDK, a simple application was created to test and learn the usage of the audio
related APIs of the platform.

The audio source listening application uses the AudioManage class from Android libraries.
This class allows to manage the audio related functions of the Android system.

This application also contains a service that listens if there is an audio that is produced by
any application running on the device.

In Figure 4.1, there is the interface of the application named VolumeSet. It shows that
the listening service is running, and a blue S letter is showed on the system's notification
bar. This S means that there is currently no audio played on the device. In case any audio
is played in the speakers, an M letter shows up on the notification bar.

.,1 (=113:22 1 .,1 (=113:22 1

[oj VolumeSet

Alarm
MIN MAX

-
Alarm •
DTMF m DTMF
Music Music ~~w
Notif... Notif... w
Ring Ring w
System System

Call Call w

Listen Service Stop

Figure 4.1: Audio manager application's interface.

After a long research (on different websites and in other sources), I realized that, to make
the application,that makes it possible to get audio streams from different audio sources of
the device, a native development is required and that this solution requires a rooted android
device (more about rooted Android in Section 2.4)-

During further studies and research, other possible solution was found. This solution uses
the MediaRecorder class of the Android A P I . It is used by the l i b s t r e a m i n g library
(mentioned in Section 4.1), that became the part of this application.

The MediaRecorder A P I , records the audio to an output file set with the method
s e t O u t p u t F i l e () . This solution is a simple hack of this recorder, to write the recorded

26

data to a local socket instead of a file. The pseudo-code in listing 4.1 shows us how is the
MediaRecorder output redirection implemented.

Listing 4.1: MediaRecorder setup pseudo-code

myLocalServerSocket = new LocalServerSocket(LOCAL_ADDR);

myReceiver = new LocalSocket ();
myReceiver.connect(new LocalSocketAddress(LOCAL_ADDR));
// also s e t t i n g up b u f f e r s i z e and timeout f o r the r e c e i v e r

mySender = myLocalServerSocket.accept ();
/ / a lso s e t t i n g up b u f f e r s i z e f o r the sender

myMediaRecorder = new MediaRecorder();
// also s e t t i n g up recorder source, codec and q u a l i t y

myMediaRecorder.setOutputFile(mSender.getFileDescriptor());

To get the audio stream, we just have to read the data from the mySender socket. This is
performed by the R t s p S e r v e r service implemented by the l i b s t r e a m i n g library, that
is described in Section 4.3.

4.3 Streaming with RTSP

The RTSP communicarion is implemented in the l i b s t r e a m i n g library (mentioned in
Section 4.1). To set up the server, it is necessary to create a new S e s s i o n class. This class
is responsible for the correct setup of the streaming preferences (implementation showed
in Listing 4.2). To set up the source of the audio (microphone, phone call or all audio),
we have to perform a change in audio source of the audio track that is streamed. In this
source code variable a u d i o Q u a l i t y is an A u d i o Q u a l i t y class that holds the settings
of the quality of the audio. In our case this is set to 128Kb/s with 44100 Hz sample
rate. The variable a u d i o S o u r c e is an integer, that is set to one of the constants of the
MediaRecorder. AudioSource object.

Listing 4.2: Session setup

Session mySession = SessionBuilder.getlnstance()
.s e t C o n t e x t (g e t A p p l i c a t i o n ())
.setAudioEncoder(SessionBuilder.AUDIO_AAC)
.setAudioQuality(audioQuality)
.setVideoEncoder(SessionBuilder.VIDEO_NONE)
. b u i l d () ;

mySession.getAudioTrack().setAudioSource(audioSource);

It is also possible to set a custom port of the streaming using shared preferences provided
by the Android system. The implementation of this setup is showed in Listing 4.3. In
our case the port MY_PORT.NUMBER is set to value 44444. Without setting this value the
communication uses the default RTSP port number 8086.

27

Listing 4.3: Custom port number setup

E d i t o r e d i t o r = PreferenceManager.getDefaultSharedPreferences(this).edit();
editor.putString(RtspServer.KEY_PORT, String.valueOf(MY_PORT_NUMBER));
editor.commit();

After all the setups, to start or stop the RTSP server from the activity, the code provided
in Listing 4.4 is necessary.

Listing 4.4: Start and stop RtspServer

// S t a r t the RTSP server

t h i s . s t a r t S e r v i c e (n e w I n t e n t (t h i s , R t s p S e r v e r . c l a s s)) ;

// Stop the RTSP server
this.stopService(new I n t e n t (t h i s , R t s p S e r v e r . c l a s s)) ;

4.4 UPnP Communication

Libraries named C l i n g and the C l i n g Support (mentioned in Section 4.1) were used in
this application, for the communication with the U P n P protocol. These libraries implement
all the necessary functions to find and communicate with other devices on the network.

The M a i n A c i t i v i t y class of the application starts a service, that is implemented in
an A n d r o i d U p n p S e r v i c e class. This service binds devices on the network. The found
devices are stored as a D e v i c e object and saved into an A r r a y A d a p t e r , then listed on
the screen. More about this service in Section 4.5, part Application behaviour.

The communication with the devices is managed by using A c t i o n C a l l b a c k classes, that
are implemented in the C l i n g Support library. The setAVTransportURI action is
the one, which extends the A c t i o n C a l l b a c k class. This action sends the U R I string of
the media location, that should be played by device. Another used action is the P l a y . The
P l a y action tells the device to start the playback of the media that's U R I was sent earlier.

To stop the media stream a Stop action is sent to the device. There is also a possibility
to call a Pause action, but in our case the application doesn't use this function.

The listing number 4.5 shows the pseudo-code of the actions. As an example it uses P l a y
action. In this code, the d e v i c e variable is D e v i c e class that was selected from the
A r r a y A d a p t e r listed on the screen. The u p n p S e r v i c e is the service that binds the
devices on the network.

Listing 4.5: ActionCallback pseudo-code

S e r v i c e l d s e r v i c e l d = new UDAServiceld("AVTransport");
Service s e r v i c e = d e v i c e . f i n d S e r v i c e (s e r v i c e l d) ;
ControlPoint c o n t r o l P o i n t = upnpService.getControlPoint ();

ActionCallback p l a y A c t i o n = new P l a y (s e r v i c e) ;
p l a y A c t i o n . s e t C o n t r o l P o i n t (c o n t r o l P o i n t) ;
p l a y A c t i o n . r u n () ;

28

4.5 The Final Application

The final application named Audio Share is a simple application, that allows the user
to stream the audio from the microphone, phone-call or other audio sources to an U P n P
media renderer. The implementation of the different components were explained in previous
sections. This section focuses on how the application behaves, and how it interacts with
the user.

Application behaviour

Figure 4.2 shows, what kind of processes and actions are performed by the application.

To start the application, the device has to be connected to a W i F i network. If it is not
connected, the application notifies the user about it and asks to connect to a W i F i hot-spot.

AndroidUpnpService MainAvtivity RtspServer Client
S t a r t S e r v i c e .. S t a r t S e r v i c e

onCreate() — y

source changed

device showed up
Add t o l i s t

device disappeard

Remove from
l i s t

R e s t a r t S e r v i c e

device selected

stop button clicked

Stop S e r v i c e
onDestroyO

£Z

ä

UPnP a c t i o n :

UPnP a c t i o n

S t o p S e r v i c e

URL and P l a y

RTSP: DESCRIBE

RTSP: SETUF

R^SP: PLAY

UDP: AUDIO

Stop

RTSP: TEARDOWN

Figure 4.2: Application Flow Diagram.

When starting the applications M a i n A c t i v i r y activity, the onCreate () method is
called, as for every Android activity dercribed in Chapter 2.4. At this point, both the

29

R t s p S e r v e r and the A n d r o i d U p n p S e r v i c e service is started.

The A n d r o i d U p n p S e r v i c e is running in the background, while the application is alive.
The service binds the U P n P devices on the network and adds or removes them from the
list listed on the screen by the M a i n A c t i v i t y .
The R t s p S e r v e r service also runs in the background during the whole lifetime of the
application. This service waits for clients to connect and request the audio stream. If the
audio source was changed by the user, this service is restarted. This restart is necessary for
the MediaRecorder run by the service (see MediaRecorder state diagram in Figure 2.8).
Performing a change in source is not available while audio is streamed to a client.

Wi th selecting a device from the list showed on screen (list showed in Figure 4.3), the
application sends the U R L to the selected U P n P device and an action to start playing it.
The device this way connects to the running R t s p S e r v e r and the streaming with the
RTSP protocol is started. If a not valid (no media renderer) device was selected from the
list, the application notifies the user that a wrong device was selected.

When the Stop button is clicked (visible in Figure 4.5), an action to stop is sent to the
client. The client this way disconnects from the server.

In case the application is exited (onDestroy ()) , both the A n d r o i d U p n p S e r v i c e and
the R t s p S e r v e r service is stopped.

User interface

The following figures show the graphical user interface of the application AudioShare.
The application has a portrait mode only interface.

Found UPnP devices:

LOKI-PC: Loki:

XBMC (White0

Rescan network

Settings

Figure 4.3: AudioShare home screen.

Fol

AudioShare
ound UPnP devices:

LOKI-PC: Loki:

Settings

Select the source to stream

* J. • 1 7

<g) Microphone

Phone Call

O Phone Call (speaker only)

Music and App sounds

Figure 4.4: Audio source settings.

In Figure 4.3, there is the default application layout with the listed found devices and the
button, to refresh the list of devices and to open the settings (see Figure 4.4). In the settings

30

window the last option to set the audio source to Music and App sounds is only available
for devices with Android A P I version 19 or later 5 .

1 4:27

Found UPnP devices:

XBMC (White7)

LOKI-PC: Loki:

Stop streaming

Settings

Figure 4.5: AudioShare is running.

When clicking on the device, the streaming starts and a notification appears on the Android
notification bar (see Figure 4.6). While the streaming is running (see Figure 4.5), there is
no possibility to change the settings, or to select a different device from the list of devices.

AudioShare
Audio is streaming

Figure 4.6: Notification of the running the streaming.

When the audio streaming is stopped, the notification disappears from the notification bar.

5The reason for this limitation is the described in Section 2.4 part Media Recorder, Audio Source.

31

Chapter 5

Testing and evaluation

The application was tested on 3 different smartphones with different A P I levels of Android,
and with a U P n P media renderer connected to the network.

The three android devices were a ETC Desire S with a non-rooted Android 4.0.4, a Samsung
Nexus 10 with non-rooted Android 4.4.2, and a Samsung Galaxy S (GT-I9000) with a
rooted CyanogenMod1 Android version 4.1.2. The media renderer was an XBMC2 version
12.3 multimedia application installed on 64 bit Windows 7 operating system. The used
network was a W i F i b /g connection with a 24Mb/s speed.

Wi th all three devices the application behaved in most cases the same way. To detect
the XBMC media renderer, it was not necessary to use the R e f r e s h button. The devices
connected or disconnected from the network were automatically added or removed from the
list. To create a connection with the the media renderer usually takes 2 to 3 seconds until
the playback starts. The delay in the streaming was usually 0.5 to 1 seconds depending
on the workload of the network. This delay was also caused by buffer setups of the media
renderer. In case of an highly overloaded network an over 6 second delay was measurable,
or even data loss was emerged. Some data loss was also caused by the overload of the
phones memory or C P U . This problem has occurred only for the HTC Desire S and the
Samsung Galaxy S devices, that have only a 1GHz C P U and under 512 M B of R A M .

On all three devices the application took 4.5MB of storage size. While running without
streaming, the application consumed 13-14 M B of R A M . The R A M usage was raised to
16-17MB when the streaming was running.

Deficiencies and limitations

During testing, few limitations and problems were detected in the applications reliability
and functionality.

In most of cases a problem has occurred when the application was started without W i F i
connection. After connecting to the network while the application was in the background,

1 CyanogenMod official website: http://www.cyanogenmod.org/
2XBMC official website: h t t p : //xbmc. org/

32

http://www.cyanogenmod.org/

the client was unable to connect to the RTSP server. The solution for this problem was to
kill the application in task manager, then start it again with the connected W i F i .

Due to the limitations of the Android system, the final application does not provide all the
functions that were set as a goal in Section 3.1.

The application is able to stream the microphone and the phone call audio, but it is not
able to stream the audio from music or video players, nor from games. Even if the An­
droid A P I level 19 (Android 4.4) contains the MediaRecorder. AudioSource setting to
REMOTE.SUMBIX, this setting is not working for third-party applications. It is only reserved
for use by system components [11].

The application was not tested on a device with rooted Android 4.4 operating system.
On that system, all kind of audio streaming might work, due to the permission to access
system features. Only this rooted android system might be able to provide a functional
audio stream of every audio source of the device .

33

Chapter 6

Future Improvements

The created application is capable to provide audio stream to U P n P devices. However,
in this form it has no practical or meaningful usability in real life. If we would decide to
continue our development, it would be possible to create an application that is practical
and useful for the users.

One option is to create a walkie-talkie application. For that, an additional U P n P renderer
service would be necessary for the application. That way the phones would be able to find
each other, and stream audio to each other.

Another option is, to use it as a phone communication extension for P C . That way the user
would be able to make receive phone calls using a P C , even if the phone is not in the a
reachable destination. The mobile could notify the P C client using custom action about
the incoming phone call and the user could accept is, and establishing a two way audio
streaming between the devices. The user could use the microphone and the speakers of the
computer instead of the hand-held device.

34

Bibliography

[1] H . Schulzrinne A . Rao and R. Lanphier. Real Time Streaming Protocol (RTSP).
R F C 2326, Apr i l 1998.

[2] Rogue Amoeba. Preventing audio delays while watching videos with airfoil, [online].
http://rogueamoeba.com/support/knowledgebase/?showArticle=
A i r f o i l V i d e o P l a y e r . [cited 2014.07.09].

[3] AndroidPIT. Top 5 music players: The best way to play music on android, [online].
h t t p : //www. a n d r o i d p i t . com/top-5-music-players. [cited 2014.05.23].

[4] Various Authors. Upnp device architecture 1.1. [online], h t t p :
/ / u p n p . o r g / s p e c s / a r c h / U P n P - a r c h - D e v i c e A r c h i t e c t u r e - v l . 1 . p d f .
[cited 2014.01.15].

[5] Bocha. Mindent a bluetooth multipointrol. [online].
h t t p : / / m o b i l a r e n a . h u / t e s z t / m i n d e n t _ a _ b l u e t o o t h _ m u l t i p o i n t r o l /
a _ b l u t o o t h _ m u l t i p o i n t _ l e n y e g e . h t m l . [cited 2014.06.09].

[6] Dennis Burger. Bluetooth, airplay, dlna: What's the best streaming format today?
[online], h t t p : / /hometheaterreview. com/
b l u e t o o t h - a i r p l a y - d l n a - w h a t s - t h e - b e s t - s t r e a m i n g - f o r m a t - t o d a y ,
[cited 2014.01.15].

[7] Douglas E . Comer. Internetworking with TCP/IP Vol 1. Alan Apt, 2000. ISBN:
0-13-018380-6.

[8] Google Android Developers. Android.media, 2014. h t t p : / / d e v e l o p e r .
android.com/reference/android/media/package-summary.htmll.

[9] Google Android Developers. Mediarecorder, 2014. h t t p : / / d e v e l o p e r . a n d r o i d ,
com/reference/android/media/MediaRecorder.html.

[10] Google Android Developers. Mediarecorder.audioencoder, 2014.
h t t p : / / d e v e l o p e r . a n d r o i d . c o m / r e f e r e n c e / a n d r o i d / m e d i a /
MediaRecorder.AudioEncoder.html.

[11] Google Android Developers. Mediarecorder.audiosource, 2014.
h t t p : / / d e v e l o p e r . a n d r o i d . c o m / r e f e r e n c e / a n d r o i d / m e d i a /
MediaRecorder.AudioSource.html.

[12] Jason A . Donenfeld. Airtunes 2 protocol, [online].
h t t p : / / g i t . zx2c4 . com/Airtunes2/about/. [cited 2014.07.09].

35

http://rogueamoeba.com/support/knowledgebase/?showArticle=
http://mobilarena.hu/teszt/mindent_a_bluetooth_multipointrol/
http://developer
http://developer.android.com/reference/android/media/
http://developer.android.com/reference/android/media/

[13] Dreamcss. Top 10 dlna streaming apps for android, [online], h t t p :
/ / b l o g . d r e a m c s s . c o m / a n d r o i d / d l n a - s t r e a m i n g - a p p s - f o r - a n d r o i d / ,
[cited 2014.05.23].

[14] eMarketer.com. Smartphone users worldwide will total 1.75 billion in 2014. [online].
http://www.emarketer.com/Article/
S m a r t p h o n e - U s e r s - W o r l d w i d e - W i l l - T o t a l - 1 7 5 - B i l l i o n - 2 0 1 4 /
1010536. [cited 2014.05.23].

[15] Shawn Van Every. Pro Android Media. Apress, 2009. ISBN: 978-1-4302-3268-1.

[16] Sumanth Gopinath and Jason Stanyek. The Oxford Handbook of Mobile Music
Studies, Volume 1. Oxford University Press, 2014. [cited 2014.05.23].

[17] Whitson Gordon. Everything you need to know about rooting your android phone,
[online], h t t p : / / l i f e h a c k e r . com/5789397/
t h e - a l w a y s - u p - t o - d a t e - g u i d e - t o - r o o t i n g - a n y - a n d r o i d - p h o n e , [cited
2014.06.12].

[18] Armijn Hemel. Upnp stack layout, [online].
h t t p : / /www. upnp-hacks . org/upnp. html, [cited 2014.01.15].

[19] Chris Hoffman. Wireless display standards explained: Airplay, miracast, widi,
chromecast, and dlna. [online], http://www.howtogeek.com/177145/
w i r e l e s s - d i s p l a y - s t a n d a r d s - e x p l a i n e d - a i r p l a y - m i r a c a s t - w i d i -
chromecast-and-dlna. [cited 2014.01.15].

[20] Wei-Meng Lee. Beginning Android Application Development. Wrox, 2011. ISBN:
9781118087299.

[21] L i N U X L i N K S . c o m . 5 best free android upnp clients, [online], h t t p : / /www.
l i n u x l i n k s . c o m / a r t i c l e / 2 012 011215410218 3 / U P n P C l i e n t s .html, [cited
2014.05.23].

[22] Feipeng Liu . Android Netive Development Kit Cookbook. Packet Publishing, 2013.
ISBN 978-1-84969-150-5.

[23] Natasha Lomas. Android still growing market share by winning first time
smartphone users, [online], http://techcrunch.com/2 014/05/0 6/
a n d r o i d - s t i l l - g r o w i n g - m a r k e t - s h a r e - b y - w i n n i n g - f i r s t - t i m e - s m a r t p h
[cited 2014.07.09].

[24] Adrienne Maxwell. How do i connect my tablet to my tv? let me count the ways...
[online], h t t p : / /hometheaterreview. com/
ho w - d o - i - c o n n e c t - m y - t a b l e t - t o - m y - t v - l e t - m e - c o u n t - t h e - w a y s .
[cited 2014.01.15].

[25] Rafael Osso. Handbook of Emerging Communications Technologies. C R C Press,
1999. ISBN: 978-0849395949.

[26] Steve Paine. Widi ? wireless display overview, specifications, testing and demos,
[online], h t t p : //www.umpcportal. com/2014/02/
w i d i - w i r e l e s s - d i s p l a y - o v e r v i e w - s p e c i f i c a t i o n s - t e s t i n g - a n d - d e m o s /
[cited 2014.07.09].

36

http://eMarketer.com
http://www.emarketer.com/Article/
http://www.howtogeek.com/177145/
http://LiNUXLiNKS.com
http://techcrunch.com/2
http://014/05/0
http://6/
http://www.umpcportal

[27] A . J . Peck. What is dlna? [online].
h t t p : //usacomp2k3 . b l o g s p o t . sk/2 0 0 9 / 1 2 / w h a t - i s - d l n a . html, [cited
2014.07.09].

[28] Thomas Phelps. To root or not to root, [online], h t t p : / /google . about. com/
o d / s o c i a l t o o l s f romgoogle /a/ r o o t - a n d r o i d - d e c i s i o n . htm. [cited
2014.06.12].

[29] Brent Rose. 9 reasons to root your android device, [online], h t t p :
/ / g i z m o d o . c o m / 5 9 8 2 2 8 7 / r e a s o n s - t o - r o o t - y o u r - a n d r o i d - d e v i c e ,
[cited 2014.06.12].

[30] Serge Smirnoff. Bluetooth audio quality - a2dp. [online], h t t p :
/ / s o u n d e x p e r t . o r g / n e w s / - / b l o g s / b l u e t o o t h - a u d i o - q u a l i t y - a 2 d p .
[cited 2014.07.09].

[31] Chris Smith. Making calls fifth most popular use for smartphones, says report.
[online], h t t p : / /www. t e c h r a d a r . com/news/phone-and-communications/
m o b i l e - p h o n e s / m a k i n g - c a l l s - f i f t h - m o s t - p o p u l a r -
u s e - f o r - s m a r t p h o n e s - s a y s - r e p o r t - 1 0 8 7 6 2 3 . [cited 2014.05.23].

[32] Quora/Bjorn van Raaij. How are volume changes applied to an airplay audio stream?
[online], h t t p : / / www. quora . c o m / A i r P l a y - m e d i a - s t r e a m i n g - p r o t o c o l /
H o w - a r e - v o l u m e - c h a n g e s - a p p l i e d - t o - a n - A i r p l a y - a u d i o - s t r e a m / ,
[cited 2014.07.09].

[33] Richard Zurawski. The Industrial Information Technology Handbook, chapter R T P ,
R T C P , and RTSP - Internet Protocols for Real-Time Multimedia Communication.
C R C Press, 2004.

37

Appendix A

Content of the CD

The attached C D contains the following directories and files:

• Directory: AudioShare - This directory contains the source files of the applica­
tion. This folder can be imported into Eclipse IDE as an existing project. In the
A u d i o S h a r e / b i n folder, there is a AudioShare. apk file that can be directly in­
stalled on Android devices.

• File: t h e s i s . p d f - The technical report in P D F format.

38

