
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

SOURCE CODE METRICS FOR QUALITY IN JAVA
KVALITATIVNÍ METRIKY ZDROJOVÉHO KÓDU V JAZYCE JAVA

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR VLADYSLAV SHERSTOBITOV
AUTOR PRÁCE

SUPERVISOR Ing. ZBYNĚK KRIVKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

Department of Information Systems (DIFS) Academic year 2019/2020

Bachelor's Thesis Specification |||||||||||||||||||||||||
22417

Student: Shers tob i tov Vladyslav
Programme: Information Technology
Title: Source Code Metr ics for Qual i ty in Java
Category: Compiler Construction
Assignment:

1. Study a chosen library for Java source code analysis (e.g. Spoon) and study the possibilities
to access several open source projects implemented in Java programming language using
existing tools and APIs (e.g. GitHub).

2. Study various code metrics that influence the project quality with focus on the quality and
usability of the entire software project such as cyclomatic complexity, maintainability index,
and density of comments.

3. According to the instructions of the supervisor/consultant, prepare the set of testing projects
in Java (approx. several dozens or hundreds) to assess their quality.

4. According to the instructions of the supervisor/consultant, design a tool to analyze these
projects with focus on the evaluation of useful metrics and automatic assessment of the code
quality in the Java software projects.

5. Implement the designed tool.
6. Test the tool using the prepared set of testing projects, evaluate and sum up the results

including the proposal of some future improvements.
Recommended literature:

• Norman Fenton, James Bieman. Software Metrics. A Rigorous and Practical Approach,
Third Edition. CRC Press, 2014.

• Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, Lionel Seinturier.
Spoon: A Library for Implementing Analyses and Transformations of Java Source Code. In
Software: Practice and Experience, Wiley-Blackwell, 2015. Doi: 10.1002/spe.2346.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Kř ivka Zbyněk, Ing., Ph.D.
Consultant: Tišnovský Pavel, Ing., Ph.D., RedHatCZ
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: July 3 1 , 2020
Approval date: October 16, 2019

Bachelor's Thesis Specification/22417/2019/xshers00 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
In order to measure and improve code quality, there needs to be a system in place consisting
of quantitative metrics and their analysis. Wi th software quality metrics that represent how
well source code is written, source code can be evaluated. Based on this evaluation, code
may meet or not meet the criteria set, which may be used for many purposes.

The current research shows the program developed based on identified code qualities
and related metrics, methods used in creating the program, and test results based on open-
source projects.

Abstrakt
Pro kontrolu a zlepšovaní kvality zdrojového kódu musí být zaveden systém, který se
skládá z kvantitativních metrik a jejich analýzy. S použitím metrik kvality softwaru, které
reprezentují, jak dobře je zdrojový kód napsán, lze hodnotit zdrojový kód. Na základě
tohoto hodnocení může kód splňovat nebo nesplňovat stanovená kritéria, která mohou být
použita pro mnohá účely.

Daný výzkum prezentuje program vyvinutý na základě identifikovaných vlastností kódu
a souvisejících metrik, metod používaných při tvorbě programu a výsledků testů založených
na projektech s otevřeným zdrojovým kódem.

Keywords
Software quality, Java Spoon, quality of code, metrics, software metrics.

Klíčová slova
Kvalita software, Java Spoon, kvalita zdrojového kódu, metriky, softwarové metriky.

Reference
S H E R S T O B I T O V , Vladyslav. Source Code Metrics for Quality in Java. Brno, 2020. Bach­
elor's thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Zbyněk Křivka, Ph.D.

Rozšířený abstrakt
Pro kontrolu a zlepšovaní kvality kódu musí být zaveden systém, který se skládá z kvanti-
tavních metrik a jejich analýzy. Pro vybudování takového systému, byly stanovené konkrétní
metriky zdrojového kódu pomoci kterých je možné identifikovat, jak dobře je zdrojový kód
napsán. Taky program musí umožnit stanovit, pokud požadovaná kritéria pro dany pro­
gram byli splněné. Výsledný program musí být schopný vyhodnotit kvalitu zdrojového
kódu.

Na základě ISO standardu v práci byly identifikované a popsané klíčové vlastnosti, které
popisují dobře vypracovaný kód. Na základě těchto vlastností bylo vybráno a důkladně
popsáno pět následujících metrik zdrojového kódu: počet řádků kódu, hustota komentářů,
cyklomatická složitost, index udržovatelnosti a Halsteadův index.

Knihovna Java Spoon umožňuje generování abstraktních syntaktických stromů. Po­
moci A S T a regulárních výrazů, použitých na vyhodnocení uzlů stromu, daný program
vypočítává výsledky pro každou metodu, udává průměrné hodnoty pro třídy a také pro
celý projekt. Poté jsou výsledky porovnávány s výsledky z jiných projektu. Po porovnaní
hodnot metrik uživatel dostane percentil kvality kódu pro cyklomatickou složitost, index
udržovatelnosti a hustotu komentářů, a na základě toho může zjistit, jak moc kvalitní kód,
v porovnaní s ostatními projekty má.

Vytvořeny program i práce se zaměřují na jazyk Java. Pro získání zdrojových textů
projektů kvůli otestovaní výsledného programu bylo třeba získat přistup ke 100 projektů
s otevřeným zdrojovém kódem. Všechny testovací projekty byli získaný pomoci GitHub.

Také je nutné prozkoumat a vzít v úvahu různé kódové metriky, které ovlivňují kval­
itu projektu se zaměřením především na kvalitu a jednoduchou použitelnost celého soft­
warového projektu. Pro danou práci bylo vybráno pět kódových metrik, viz výše.

B y l navržen nástroj pro analýzu těchto projektů se zaměřením na ohodnocení užitečných
metrik a automatické vyhodnocení kvality kódu v softwarových projektech napsaných v
jazyce Java.

Pomocí připravené sady testovacích projektů byl otestován navržený nástroj včetně
návrhu některých možných budoucích vylepšení. Poté byly ohodnoceny a shrnuté výsledky.
Byla provedena analýza pro zjištění, která metrika má největší vliv na výslednou kvalitu
programu.

Source Code Metrics for Quality in Java

Declaration
Hereby I declare that this bachelor's thesis was prepared as an original author's work under
the supervision of Ing. Zbyněk Křivka, Ph.D. The supplementary information was provided
by Ing. Tišnovský Pavel, Ph.D. A l l the relevant information sources, which were used during
the preparation of this thesis, are properly cited and included in the list of references.

Vladyslav Sherstobitov
July 31, 2020

Acknowledgements
I would like to thank my supervisor Ing. Zbyněk Křivka, Ph.D. for his guidance and
valuable feedback. Also, my sincere thanks go to Ing. Tišnovský Pavel, Ph.D. for his useful
advice.

Contents

1 Introduction 3
1.1 Document Structure 3

2 Software Metrics 5
2.1 Software Quality Metrics 5
2.2 Software Quality Models 6
2.3 Software Maintainability 8
2.4 Reasons to Track Maintainability 9
2.5 Conclusion 12

3 Source Code Metrics 14
3.1 Lines of Code 14

3.1.1 Calculation 15
3.2 Cyclomatic Complexity 16

3.2.1 Calculation 16
3.2.2 Application 17
3.2.3 Implementation 18

3.3 Halstead Complexity 18
3.3.1 Calculation 18
3.3.2 Application 20
3.3.3 Implementation 20

3.4 Density of Comments 20
3.4.1 Application 21

3.5 Maintainability Index 22
3.5.1 Calculation 22
3.5.2 Implementation 22
3.5.3 Application 23
3.5.4 Summary 24

4 Implementation 25
4.1 Use of the Program 25
4.2 Metrics Calculation 26
4.3 Java Spoon library 26
4.4 Abstract Syntax Tree 28

4.4.1 Application 28
4.5 Possible Improvements 29

5 Testing 30

1

5.1 Tested Projects 3 0

5.2 Evaluation of Results 30
5.3 GitHub 3 1

5.4 Limitations 3 ^

5.5 Summary 3 ^

6 Conclusion 3 3

Bibliography 3 ^

A Contents of the Attached C D 3 6

B Example of the output statist ics.txt 37

2

Chapter 1

Introduction

With the increasing importance of software in everyday tasks and the focus of developers
on software quality, it is essential to track quality during all stages of development.

The goal of the project is to define metrics crucial to software quality, how they are
applied in code evaluation, and how this data can be used to improve code quality for a
better end product. As well, to provide a program capable of measuring code quality by
the means of metrics defined by renowned research based on standards.

The task is to achieve an easy to implement and use command-line application for eval­
uation of source code written in Java language, and for it to have an output of quantitative
metrics such as Lines of Code, Cyclomatic Complexity, Halstead Metrics, Comment Den­
sity, and most importantly Maintainability Index. The project focuses on the importance of
maintainability as a software quality and Maintainability Index as the means of translating
quantitative data into a qualitative measure.

This project explains how with the help of the Java Spoon library, abstract syntax trees,
and regular expressions, the code calculates results for each method, gives an average values
for classes, and then the outcomes are compared between programs for analysis to identify
the outliers.

1.1 Document Structure

There are 6 chapters in this thesis.
Chapter 2 describes the importance of software quality metrics. This chapter provides

information about quantitative and qualitative metrics and how they are connected. It
covers how qualitative evaluation could be obtained based on the quantitative metrics
received from the static analysis of the code. Section 2.2 introduces ISO standards for the
evaluation of software quality. It is followed by Sections 2.3 and 2.4 where it is described
why maintainability is the main focus during software development and how it can save a
lot of resources during each phase of the product development.

Chapter 3 contains information about every metric that was used in this project. Each
section is started with a brief theoretical overview of the metric followed by subsections
about calculations, applications, and implementations. In the final Section 3.5 recom­
mended values for metrics are introduced.

In Chapter 4 Implementation of the C L I application for static analysis of the source
code is described. It covers a basic overview of the architecture of the application and
describes how with the help of Java Spoon Library, abstract syntax tree, and usage of

3

regular expression a detailed report about the metrics of the project is received. Also,
possible improvements were defined at the end of Section 4.5.

Chapter 5 covers the testing process for the applications. Also, it describes how tested
projects were accessed. Section 5.5 evaluates and sums up received results including a visual
overview in the form of graphs.

Chapter 6 concludes how the main goal of this research was achieved.

4

Chapter 2

Software Metrics

2.1 Software Quality Metrics

Quality metrics are an important part of effective quality management in every process
and plan. Simply put, a code quality metric is a measure that allows translating software
features into quantitative data, giving an ability to measure performance, and with an
ability to measure performance the software development can become more effective [6].

Many aspects can be evaluated only by the users by interacting with the software or its
prototype, some can involve different hardware, and most can be identified by the analysis
of the source code. This means that software quality measurement methods can be broken
down into two major groups: quantitative and qualitative.

Quantitative methods use numbers. They measure countable objects represented by
numbers and are necessary for statistical analysis, progression, and comparison with similar
products. The biggest advantage of quantitative data is that it can be prepared automati­
cally, measured at any stage of software product completion, and their ease of integration.
Importantly, methods need to have specified targets or a model for comparison in order to
be effective [3].

Qualitative methods use objects differently than numbers. Data can be acquired by the
means of interviews, surveys, observations. This complicates the process of implementation,
may make the data achieved less objective and difficult to process, however, the outcome
may give a richer and more informative result. Qualitative methods in most cases require a
complete product or its prototype and may assist with future improvements of measurement
structures used [3].

5

Quantitative methods
Measurement

Quantification
Computations

Applications
Statistical results

Contro l and management
Comparison o f similar products

Integration with other indicators

Qualitative methods
Comments, notes and schemas
Discussions and observations,
Questionnaires, interviews

Analysis, reasoning

Applications
Problem identification and removal
Theory generation and improvement
Understanding o f project reality
Enhancement o f the measurement structure
Cross-case analysis
Focus on details, complexity
Non-technical aspects

Figure 2.1: Comparison of quantitative and qualitative methods in aspects of techniques
and applications. The Figure is taken from [3].

Overall, this means that both measurements complement each other and allow for a
greater final product, but during the development well defined quantitative metrics will
have the following benefits:

1. Quantitative metrics can be tracked during the whole cycle showing weaknesses and
dangers without the need to wait until the end of the development to see the results.

2. Productivity depends on the time spent on tasks and which tasks in particular. In
order to track productivity and make improvements, quantitative metrics are needed
to prioritize the tasks for the team.

3. Quantitative metrics can be used as a means of communication. Keeping metrics in
the target will mean that there are no issues with the project if there is a deviation
from target progression that can be reported to the management by using established
metrics improving awareness and workflow.

2.2 Software Quality Models

In order to identify what metrics are necessary to improve and measure software quality it
is necessary to first identify what characteristics a finished software product needs to have.

Such characteristics were defined in ISO 9126 — Software Product Evaluation — Quality
Characteristics and Guidelines for their Use [8] which was published 1991 due to increase of
computer usage in many application areas, and its correct operation is critical to business
success and human safety. It was divided into four parts:

• quality model

• external metrics

• internal metrics

Ü

• quality in use metrics.

And the quality model itself consists of 6 key characteristics: Maintainability, Efficiency,
Portability, Reliability, Functionality, Usability, see Figure 2.2.

Analysability
Changeabil i ty

Testability

Stability

Attractiveness
Operability

Maintaina
bility

Learnability
Understandabil i ty

Ressource util isation
Time behaviour

Suitability
Interoperabi l i ty

Regularity
Accuracy
Security

Adaptabil i ty

Replaceability
Installs bility

Co-existence
Fault tolerance

Reco vera bility
Maturity

Figure 2.2: ISO 9126. The Figure is taken from [4].

Wi th the growth of the software sector, on March 1, 2011, ISO/IEC 9126 was replaced
by ISO/IEC 25010:2011 Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality models [9]. Ac­
cording to it, software quality is the most important factor in software development as it
defines customer satisfaction and determines the success of the software project. To better
suit modern requirements a set of adjustments has been made with the main two being new
characteristics, see Figure 2.3.

7

SOFTWARE PRODUCT
QUALITY

I JTTTTh

Suitabi l i ty

'Functional
Completeness

• Functional
Correctness

• Functional
Appropriateness

Performance
Efficiency Compat ib i l i t y

•Co-existence

• Interoperability

Reliabi l i ty

1 Maturity

•Availability

• Fault Tolerance

• Recoverability

Secur i ty

'Confidentiality

• Integrity

'Non-repudiation

•Authenticity

* Accountability

Mainta inabi l i ty

'Modularity

'Reusabil ity

• Analysability

'Modifiability

•Testability

Usabi l i ty

•Appropriateness
Recognizability

• Learnability
• Operability
• User Error

Protection
• User Interface
Aesthetics

•Accessibility

1

Portability

•Adaptability

• Installability

• Replaceability

Figure 2.3: ISO 25010. The Figure is taken from https://iso25000.com/index.php/en/iso-
25000-standards/iso-25010

Previously it was defined that the goal is to achieve a set of quantitative metrics in
order to measure software quality during development, and in this sense the key quality is
Maintainability with its sub-characteristics.

2.3 Software Maintainabili ty

Software maintainability represents the degree of effectiveness and efficiency with which
a product or system can be modified to improve it, correct it or adapt it to changes in
environment, and in requirements [9].

Software maintainability differs from hardware maintainability by the fact that it does
not "wear out" and ages in other ways. If the environment in which software functions
stayed the same, it could function indefinitely and in most cases without any degradation,
and in the state, it was originally designed. However, we are not isolated from changes
in software and hardware surrounding said software products, and in most cases, software

8

https://iso25000.com/index.php/en/iso-

Corrective maintenance Perfective maintenance
The process of receiving reports of errors,
diagnosing the problem, and fixing it.

The process of receiving suggestions and re­
quests for enhancements or modifications,
evaluating their effects, and implementing
them.

Adaptive maintenance Preventative maintenance
The process of assessing the effects of "en­
vironmental changes" on a software system,
and then modifying the system to cope with
those changes.

The process of planning code reorganiza­
tions, implementing them, and testing to
ensure that they have no adverse impact.

Table 2.1: Main factors of software maintenance.

systems are modified after they have been delivered to include new features required in the
future. Taking this into consideration, four major factors in software maintenance [13] can
be identified in Table 2.1.

2.4 Reasons to Track Maintainabili ty

A n increasing rate of changes in technologies helps provide a better software product at the
end, but it requires existing code to be adjusted to fit modern requirements. The cost of
software maintenance is rising dramatically and it has been estimated in [11] that nowadays
software maintenance accounts for more than 90% of the total cost of software, whereas it
was around 50% a couple of decades ago [5]. Knowing how maintainable software is will
have a financial and quality impact on the final product.

100 % = Tota I cost of softwa re

1970 2014

Figure 2.4: Development of Software maintenance costs as a percentage of the to­
tal cost. The Figure is taken from http://asq.org/public/wqm/how-to-save-on-software-
maintenance-costs.pdf

9

http://asq.org/public/wqm/how-to-save-on-software-

Financial Impact

From the financial aspect, low maintainability will affect the product by an increased rate
of software rot.

Software rot is a state of software when it becomes more difficult to change than re­
quired [12]. It does not mean that complicated and hard to update code is rotten, but more
than changes will imply additional spending in one of the three key areas:

1. Time - an inability to provide changes before the deadline.

2. Resources - more team members, more equipment needed to implement the changes.

3. Quality - if the deadline must be met and no additional resources are available
quality will suffer.

In order to define software rot more accurately, a couple of factors need to be noted [7]:

1. Difficulty and resource requirements do not identify software rot but may be caused
by the nature of the code and requested features.

2. If software functions, it does not mean the absence of software rot. The code may
still function appropriately but implementing changes may be harder than expected.

3. Rotten code does not mean that software loses profitability.

Reasons of Software Rot
One of the biggest reasons for software rot is a concept of technical debt. It is a metaphor
by Ward Cunningham meaning when making a decision, an easier path is taken instead of
a more practical approach, and from this point, an implied cost for an additional rework
grows [18]. If this debt is overlooked, with every subsequent release, it will lead to code
becoming unmaintainable, and additional resources will need to be used to rewrite whole
parts.

Instances of technical debt:

• Inconclusive or insufficient requirement definition. This may help to start on a project
earlier, however, will require redesigning later.

• Deadline pressure when quicker solutions are given priority.

• Existence of tightly functioning components where subjects are not modular.

• Lack of documentation.

• A parallel development in different branches.

• Delayed refactoring - even if an issue is identified it may be addressed later than
required, further increasing the debt.

• Lack of knowledge and behavioral issues (lack of leadership or ownership).

Overall, technical debt is not always a bad thing. It is a rational decision to go with
a faster solution to meet the deadline and address the shortcut taken after the release,
however, it is important to address the shortcut on time. In case even a few known things
are not changed on time, it would be increasingly hard to estimate how much resources will
be required later for a fix, and prolonged avoidance will be a major reason for software rot.

10

Quality Impact

Another reason to monitor software maintainability is its quality of being an enabler of
other code quality characteristics. It is best seen when maintainability sub-characteristics
from ISO 25010 are reviewed [9]:

• Modularity - degree to which a system or computer program is composed of dis­
crete components such that a change to one component has minimal impact on other
components.

• Reusability - degree to which an asset can be used in more than one system, or in
building other assets.

• Analyzability - degree of effectiveness and efficiency with which it is possible to
assess the impact on a product or system of an intended change to one or more of
its parts, or to diagnose a product for deficiencies or causes of failures, or to identify
parts to be modified.

• Modifiability - degree to which a product or system can be effectively and efficiently
modified without introducing defects or degrading existing product quality.

• Testability - degree of effectiveness and efficiency with which test criteria can be es­
tablished for a system, product or component and tests can be performed to determine
whether those criteria have been met.

Having high maintainability will allow for easier improvements in other 6 software char­
acteristics whether it is to make an improvement in a software feature, optimize resource
utilization, or implement a range of requests from the end-user.

11

2.5 Conclusion

Having highly maintainable code and tracking its maintainability throughout the lifecycle
will increase overall software quality. It is possible by maintainability having an impact on
code quality characteristics defined in ISO 25010. At the same time, from the definition
of technical debt and software rot - the main reasons for decreases in maintainability are
changes brought into the code incorrectly. This means that software rot can be slowed
down by the implementation of proactive measures.

Maintainability sub-characteristics can be used to create a system of metrics to assist
with maintainability measurement, see Figure 2.5.

Testability

Figure 2.5: Relation between Software Maintainability and Maintainability Index.

Using Cyclomatic Complexity, Halstead complexity measures, Density of Comments we
can calculate Maintainability Index proposed by Oman and Hagemeister. A l l metrics are
quantitative and satisfy requirements set previously in this chapter. As well, they cover sub-
characteristics of maintainability defined in ISO 25010 [9] according to research provided
in Chapter 3. Lastly, they can be used in order to predict and track software quality by
reviewing software source code as it is shown in Chapter 4.

Overall the most important principles about metrics in software quality are:

• They can measure performance, lead the team in the correct direction, and track
progress.

• Based on the results, the management can implement actions and assign them correct
priority based on deviations of metrics during the development process.

12

• Metrics are no bounds and are here not to limit developers, there are instances where
a correct decision would be not to follow the most rational way according to raw
numbers.

13

Chapter 3

Source Code Metrics

After defining the required characteristics and metrics that will allow us to monitor progres­
sion, it's essential to find a correct approach to calculation. Further calculation methods
will be used in the application.

3.1 Lines of Code

Lines of Code is one of the most traditional metrics to quantify the complexity of software,
as well as it is one of the simplest to understand and count [15]. Not only Lines of Code is
a useful metric itself, but a vital component in the calculation of many others. There are
four types of L O C :

1. LOCphy - a sum of physical lines of code.

2. L O C b l - a sum of blank lines.

3. LOCpro - a sum of program lines.

4. LOCcom - a sum of comment lines.

The best way to use L O C metrics is to set targets for LOCpro per method and class in
order to maintain appropriate complexity (and in return maintainability, readability, and
repairability), and as a result to justify or set requirements of higher than average LOCcom.

Physical (LOCpro) and logical (LLOC) are two major measures of Lines of Code metric.
Physical lines of code is much easier to calculate but is sensitive to the formatting style of
the developer. Logical lines of code while being harder to calculate are independent of style
and formatting, and are more objective in code length and complexity [15].

for (int i = 0; i < 10; i++) System.out.println("Index i s : " + i) ; /* How many

lines of code is this? */

This example consists of 1 L L O C and 2 LOCpro. Comment lines are not included in the
calculation, used only for the illustration.

/* How many lines of code is this? */

for (int i = 0; i < 10; i++) {

System.out.println("Index i s : " + i) ;

}

14

This example consists of a total 3 L L O C and 2 LLOpro. Comment lines are not included
in the calculation, used only for the illustration.

3.1.1 Calculation

For further evaluation only logical lines of code and logical lines of commented code are
important. Not all lines are calculated. Some of the lines do not complicate the overall
logic, so must be excluded.

Lines of code that are excluded from the calculation:

1. File docs (license doc) - mostly contain information about the license, author, and
data of creating this file.

2. Empty lines - depends only on the style of the programmer. Sometimes used for
code separation or modularity.

3. Import lines - could be hundreds and mostly does not affect code complexity.

4. Package lines.

5. Lines with empty comment line or start or end of block comment - does
not contain any information and could be replaced with one line inline comment.

#line LLOC LLOCcom

#1 (0) (0) /**

#2 (0) (0) * license information

#3 (0) (0) * author: some name

#4 (0) (0) */
#5 (0) (0) package some.package.example

#6 (0) (0)

#7 (0) (0) import example.of.some.imp

#8 (0) (0)

#9 (0) (0) /**

#10 (0) (0)

#11 (1) (1) * javadoc example

#12 (0) (0) */
#13 (1) (0) public class Main {

#14 (1) (0) public static void main(String[] args) {

#15 (1) (1) // example of separate inline comment

#16 (0) (0)

#17 (1) (0) if (args.length != 1) {

#18 (1) (0) System.err.printlnC'Bad");

#19 (2) (1) System.exit(1); // example of inline

#20 (1) (0) }
#21 (1) (0) }
#22 (1) (0) }

This example consists of total 11 L L O C and 3 LLOcom.

15

3.2 Cyclomatic Complexity

Cyclomatic Complexity is a metric that was developed by Thomas J . McCabe, Sr. in 1976.
Simply put, it shows the number of linearly independent paths in the section of code [19],
meaning that if code has no conditionals or decision points, it's complexity will be equal
to one, if there is a single i f statement, there would be two possible outcomes and the
complexity would be equal to 2, and, similarly, an i f statement with two conditions (same
as switch) would increase complexity by 2.

3.2.1 Calculation

The first way to calculate McCabe Cyclomatic Complexity (MCC) [19] is to use a formula:

MCC = E - N + 2P (3.1)

Where
P = number of connected components
E = number of edges of the graph
./V = number of nodes of the graph
However, M C C can be used for modules (subroutines, methods, etc.), and in this case

P will always be equal to 1, simplifying the formula to:

MCC = E - N + 2 (3.2)

The second way would be to use a control flow graph of a module, where the program
begins executing at the node (1), then going to a conditional statement with one condition
at the node (2), then going to a conditional statement with two conditions at node (6), and
then exiting at the node (11), see Figure 3.1.

(1) while (i < 100) {

(2) if (arr[i] 7, 2 == 0) {

(3) parity = 0;

} else {

(4) parity = 1;

(5) }
(6) switch (parity) {

case 0:

(7) System.out.println("a[" + i + "] is even"

case 1:

(8) System.out.println("a[" + i + "] is odd")

default:

(9) System.out.println("Unexpected error");

}
(10) i++;

}

(11) int a = 10;

To calculate M C C from a graph, we need to count the number of edges and nodes,
giving an M C C of 5 for the example above.

16

Figure 3.1: Cyclomatic Complexity example to the previous source code.

And using the formula mentioned previously:
MCC = U - 11 + 2 = 5

3.2.2 Application

One of the original applications of the metric by McCabe is to limit the complexity of
the code for modules. The recommended use was to identify modules with the complexity
higher than 10 and subsequently to split them into smaller modules in order to keep the
structure and readability. Limits over 15 have been used successfully as well according to
McCabe, however, should be reserved for projects that would have operational advantages
over typical projects such as experienced staff, formal design, a modern programming lan­
guage, structured programming, code walkthroughs, and a comprehensive test plan. Such
projects would require additional testing for more complex modules [19].

Prevent Defects

There are multiple [17], [21] research conclusions that prove there is a correlation between
the size of the program (measured in lines of code) with the frequency of defects, however,
they are more inconclusive than correlations between M C C and defects. This does not
necessarily imply that by always keeping M C C in check, the number of failures will be
minimized, but by controlling Cyclomatic Complexity and limiting code complexity as
follows should improve code and comment quality overall.

17

Importance of Cyclomatic Complexity in Unit Testing

Unit testing is a software testing method defined by individual units of code are tested to
determine whether they are fit for use [10]. The goal of the unit test is to make sure that
each segment of code satisfies the required conditions.

One of the biggest advantages of unit testing is its ability to be used in the early
stages of development, as a result of improving the structure of the code, functionality, and
identifying errors in the first cycles of development. In this case, M C C could be used to
determine the number of test cases required to achieve thorough test coverage for a module.

In order to make sure that software is well functioning, tests should cover as many
branches as possible. The more branches are covered, the fewer errors will be unnoted. This
is the situation in which C C will assist since it identifies the lowest number of branches in
a module, and by managing, C C in code number of tests necessary can be brought down
to a minimum:

1. M C C is an upper bound for test cases required to achieve full branch coverage (to
make sure that all branches have been executed at least once).

2. M C C is a lower bound to achieve full path coverage, since every with every additional
IF statement number of paths will grow by a factor of two, and at the same time
M C C will grow by 1. As for path and branch coverage, the following statement will
always be true: the number of branches < M C C < number of paths.

As for management, unit testing oriented development will make time spent on devel­
oping more efficient as per points said above in addition to the outcome, that such code
will be more maintainable and reusable.

3.2.3 Implementation

In this project, C C is calculated with the help of abstract syntax tree up until methods,
and after, a number of keywords are calculated according to a predefined regular expression
table.

The easiest way to calculate the Cyclomatic Complexity for Java programming language
is to count a number of occurrences of those symbols: i f , while, for, case, catch,

ft&, I I , ?

3.3 Halstead Complexity

Halstead metrics have been introduced in 1977 by Maurice Howard Halstead [1]. His goal
was to identify measurable properties of software, and relations between them. Metrics are
experimented and used extensively since that time and are one of the oldest measures of
program complexity.

3.3.1 Calculation

Halstead's metrics are based on a system, where the source code is interpreted as a sequence
of tokens and each token is classified (either as an operator or an operand. According to
this, four quantities are calculated and the rest of the metrics are derived from them:

N\ - number of operators
N2 - number of operands

18

n\ - number of unique operators
ri2 - number of unique operands
Halstead Length totals the number of operators and operands, and in case the number

of statements is small and Halstead Volume is high, it would indicate, that the individual
statements are quite complex.

N = Ni + N2 (3.3)

On the other side, in case there are many different variables or a small number of
variables are used repeatedly, it would indicate complexity among statements and measured
by the Halstead Vocabulary.

n = ni + ri2 (3-4)

The Halstead Bugs attempts to estimate the number of bugs that there are liable to
be in a particular piece of code.

eI v , »
B = or (3.5)

3000 3000 v '
To calculate the approximate difficulty of writing and maintaining the code, the Hal­

stead Difficulty uses a formula to assess the complexity base on the numbers of unique
operators and operands.

D = — * — (3.6)
2 n 2

 1 7

The Halstead Effort attempts to estimate the amount of work that it would take to
recode a particular method.

E = D * V (3.7)

The Program Level is the inverse of the Halstead Difficulty and would mean, that a
low-level program is more likely to contain errors, than a high-level program.

L = 1 (3.8)

Time to Implement would be proportional to the effort and according to Halstead,
it should be divided by 18 to receive approximate time in seconds.

r = ^ (s e c) (3.9)

The Halstead Volume uses program length and vocabulary size to give a measure of
the amount of code written.

V = N*log2n (3.10)

19

3.3.2 Application

The Halstead metrics are applicable for the written code, however, one of the best uses
would be during the development to follow complexity trends. This is done so, since main­
tainability should be a concern during the early stages and technical debt in further ones,
and a significant complexity increase may be a sign of a high-risk module.

There are two weaknesses that need to be highlighted about Halstead metrics. The
first is, that the most appealing metrics to follow would be Difficulty, Number of Bugs,
and Time to Implement, and the issue is, that they are strongly based on assumptions and
correlate mainly with Volume. As the size of the program grows, so does the number of
bugs, difficulty, and time to implement. Wi th the data calculated, it may not always be
usable even with other metrics coupled, except for statistical analysis.

The second one is, that Halstead metrics measure lexical and textual complexity per cal­
culations above, rather than structural complexity exemplified by Cyclomatic Complexity,
and it was one of the reasons for heavy criticism. To address both issues, not all metrics are
used, they are coupled together with Cyclomatic Complexity and most importantly, they
show the best results as a strong component to Maintainability Index.

3.3.3 Implementation

Halstead metrics are calculated with the help of the abstract syntax tree and for the meth­
ods, regular expressions are used for calculation, regular expressions are used for identifying
operands and operators.

3.4 Density of Comments

Density of Comments is a metric representing the percentage of comment lines in a given
part of the source code, which is calculated by dividing the number of commented lines by
a total number of lines of code [2]. The metric can be used as a quality indicator to see
how much code is commented, and assume code maintainability, hence the survival and
longevity.

M a i n Uses of Comments

1. Planning and reviewing. Comments can be used to outline the initial intention.
In this case, not code itself should be described, but what it's meant to do. This can
be used to compare needs with results, as well as introducing yourself to the code
that was previously worked in (to understand the logic behind).

2. Code description. Even though comments can be used to explain written code, it
is considered a bad practice for the reason, that if code needs explaining, most likely
it's too complex, so it needs re-writing. The best use of this scenario would be during
bug fixing, or when there is a need to explain why a particular block of code does not
meet best practices.

3. Algorithmic description. Sometimes a comment may contain a solution to a spe­
cific problem, so they may require an explanation of the methodology. Even though
it may sound more like an explanation of the code, it would be considered more of
an explanation of the reason behind, making it easier to understand the logic and
motivation.

20

4. Resource inclusion. In some occasions not only text can be used as comments, but
it may contain diagrams, graphs, or even copyright notices.

5. Metadata. Metadata is often stored in a comment. Many maintainers put guidelines
for feedback on any improvements, they may make. Other metadata may include the
name of the original creator, the date of the first version, the name of the maintainer,
names of people who edited the program so far, the U R L of documentation, license
information, etc.

6. Debugging. It is considered common practice to comment out a code snippet in
order to identify the source of an error. By commenting out parts and running code
an error can be isolated and corrected.

7. Automatic documentation generation. Sometimes it is appropriate to store
in the comments metadata and documentation. In case functions and classes are
commented properly, and annotations are kept, the documenting process may be
simplified, and data in it will keep relevance with updates.

8. Directive uses. Normal comment characters in some cases are co-opted in order to
create a particular directive for an interpreter or editor.

9. Stress relief. On some occasions, programmers will add comments to relieve stress
by commenting on working conditions, tools used, or the quality of the code itself.

Comment Recommendations

With the definition of Comment density metric and uses of comment, requirements can be
set in order to improve maintainability, repairability, and readability of code.

The first would be to have at least one comment per procedure with a clear descrip­
tion, as well, it is recommended to describe each parameter and a return value of a func-
tion(ranges of values to be expected and range returned). The procedure comment should
follow the procedure declaration line. In case the procedure is long or complex it is advised
to include comments inside the body.

Including recommended uses and positions it has been identified, that 10% of code
should be commented. In some cases code can be self-descriptive, and thus commented less,
but, if heavy use of comments is required, it may be a warning sign for code complexity
and lack of maintainability.

As for readability, 10% as well is when clarity seems to peak according to research, since
lack of comments may hide logic and abundance of unclear comments will have a negative
effect too.

3.4.1 Application

In the program, Comment Density calculates the relation of comments (inch JavaDoc,
block comments and inline comments; excluding blank lines, imports and packages) to the
logical lines of code.

21

3.5 Maintainabili ty Index

Maintainability Index (MI) is a single-value indicator for how maintainable the source code
is, proposed by Oman and Hagemeister, allowing to control and improve, how easy it will
be to support, remove bugs, and implement new features [20].

3.5.1 Calculation

To calculate MI, values of the average Halstead Volume per module, the Cyclomatic Com­
plexity, the number of Lines of Code, and the comment ratio of the system are needed [6]. In
order to increase MI, Cyclomatic Complexity should be reduced, as well as the Volume (V),
and the total number of Lines of Code (LOC). Overall this means that MI keeps all the
qualities of metrics in it and serves as a good and simple summary of the overall state of
the code.

MI is calculated with the help of multiple metrics, but it shouldn't be the only way of
measure of how good a program is. Instead, it may be an effective tool in a summary with
other metrics and may be used as a way to track program improvement in progression with
each subsequent release, as well as in decision making to change existing code or to rewrite
it. In addition to this part will be focused on reducing technical debt with the help of MI.

171 - 5.2 * \n(avgHV) - 0.23 * avgCC{g')- (3.11)

- 16.2 * ln(avgLOC) + 50 * sin y/(2A * perCM)

Where
HV = Halstead Volume
CC = Cyclomatic Complexity
LOC = Lines of Code
per CM = % Comment Lines

3.5.2 Implementation

With the help of MI, negative changes will identify the growth of technical debt, from that
point separate modules can be reviewed, and changes can be made to keep code readable
and reliable. Standard benchmarks can be used, which £1X6 ctS follows:

LOCpro

• per function min - 4, maximum - 40.

• per file minimum - 4, maximum - 400.

There are two negative outcomes for Comment Density values:

1. Density of Comments being above the recommended level would mean that some
functions are over commented (most likely due to lexical or logical complexity issues)
and as a result, will negatively affect readability and maintainability.

2. If Density of Comments is below target, it would mean that complex code is under
commented and issues may arise when new developers need to look at it, or when the
developer returns to his own code but cannot understand the logic behind it as well
negatively affecting readability and maintainability in terms of repairability.

22

Cyclomatic Complexity

• 1 - 10 - good Cyclomatic Complexity. Structured and well-written code that is easy
to test.

• 10 - 20 - acceptable Cyclomatic Complexity. Fairly complex code that could be a
challenge to test. Depending on what you are doing these sorts of values are still
acceptable if they are done for a good reason.

• 20 - 35 - bad Cyclomatic Complexity. The code is complex and is hard to test. This
code should be refactored, broke down into smaller methods, or using some design
patterns.

• 35 > extremely bad Cyclomatic Complexity, very complex code, that is not at all
testable and almost impossible to maintain or extend. Should be fully refactored or
rewritten.

If the maximum value for M C C is greater than 15, then in most cases code should be
restructured to achieve better test coverage and readability.

Density of Comments

Recommended average 10%, in case of higher LOCpro and Cyclomatic Complexity may
be increased.

Maintainability Index

• 140 - 171 - good maintainability. The code as a whole can be considered maintainable
and reliable.

• 100 - 140 - moderate maintainability. Majority of the code meets the requirements,
however, there is either a part of code that may be edited for improvement or it
contains a reasonable explanation.

• 40 - 100 - poor maintainability. Most likely there are major issues with code com­
plexity in combination with poor commenting, and as a result, will not be re-usable.

• < 40 - extremely poor maintainability. Every single module needs to be rewritten,
impossible to re-use.

3.5.3 Application

As the goal of MI is to identify the impact of changes in software on its maintainability the
best application would be to track MI over a period of time. Calculating the slope between
two major releases provides information about possible instances of software rot in specific
modules.

Once the affected module is identified, tracing back to the previous point shows what
changes, in particular, have affected the results, allowing to address possible issues in a
timely manner.

If an application has a high L O C value, MI may as well be a great indicator for further
analysis with a heat map in order to review the values of other metrics. This helps isolate
code that is most impactful for further focus and research.

23

Overall, simple changes can be implemented on a regular base to save a lot of effort in
the long term:

• Check for two types of modules: ones with low MI, and ones with trending degrada­
tion.

• Group modules by functionality and check how often changes are made in those groups
(new features are implemented, modifications or updates are made), in order to assist
the responsible team with data to further isolate and resolve the issue.

• In case data is inconclusive, cross-checks should be done focusing on metrics such as
Cyclomatic Complexity.

• Review the amount of code written to implement new functionality. Wi th time, code
reviews should be performed in order to improve optimization. Having redundant
code is one of the biggest reasons for technical debt increase.

• After any optimization changes are performed, tests should be run again to make sure
MI has improved.

3.5.4 Summary

MI is calculated with the help of multiple metrics [20], but it shouldn't be the only way of
measure of how good a program is. Instead, it may be an effective tool in a summary with
other metrics and may be used as a way to track program improvement in progression with
each subsequent release.

The best way to use MI is to manage technical debt in order to improve the overall
quality of the software product and to cut down maintenance-related costs.

24

Chapter 4

Implementation

The main goal of the application is to provide an easy to use tool for a detailed report
generation. The report is to contain data on relevant metrics that have been defined and
described in Chapters 2 and 3.

The Java programming language was chosen for the application development with
Maven being used for the application's building process, as well as an external Java Spoon
Library for analysis and transformations of Java Source Code described in Chapter 4.3.

This is a command-line application. As an input, the user is only required to provide a
project directory, and as an output, the user will get a detailed report. The report contains
basic info about the project and metrics for each method, class, and average values for
the whole project. For a better understanding of the values and to receive a qualitative
evaluation, which shows a comparison in the form of percentile with other open-source
projects, which will be described in more detail in Chapter 5. Based on the output the
user should be able to identify critical points in the code and areas of opportunity for
improvement to prioritize tasks for higher code quality.

Output analysis may be automated with basic U N I X command-line utilities. Overall,
it is recommended to trend results over some time in order to track project quality and to
avoid drops in the metrics by means of Continuous Integration or Continuous Delivery.

The program is purposefully written without a graphical user interface (GUI) for sim­
plified automatization to receive results for every build after every release. Since the focus
group are Java developers - using, automating, and personalizing a C L I program will not
be an issue. Source code should be used as the input, and for simplified usage and config­
uration it is expected for code to be built. Unit test files should be ignored for optimized
performance and results, otherwise, all .Java files will be analyzed. Lines of Code and Den­
sity of Comments metrics should be calculated before Java Spoon usage since Java Spoon
transforms source code into an abstract syntax tree and metrics cannot be calculated at
this point. After successful L O C and Density of Comments calculation, the previously
mentioned Java Spoon library should be used to receive A S T as an output.

4.1 Use of the Program

The minimum requirements for launching the application are Java 8 and one external
library - Java Spoon. Also, Maven will be needed for adding the required dependencies.
The project could be launched via C L I with only one parameter — a destination to the
tested directory.

25

On the output, the user will get the statistics .txt file which contains all the metrics
for every single method, class, and average values for the whole project. A n example of the
output can be found in appendix B .

4.2 Metrics Calculation

Every metric is calculated separately, so for each metric A S T is reviewed. Even though
such an approach affects the performance of the program, it allows for the program to
be modular, and new metrics can be added much more easily. A medium-sized project
is analyzed within a few seconds and with a big sized project, its calculation may take
up to a couple of minutes. It is expected for the program to be used with every release
so no negative impact on productivity is expected, however, the benefit is with improved
Continuous Integration or Continuous Delivery.

1. The Density of Comments is calculated for each class and the whole project. For this
metric L L O C is used as mentioned in Section 3.4.

2. C C is calculated by node calculation within the A S T . In the final result C C for
every method is noted, as well as the C C sum for every class (as a sum of C C for
methods within a class), and an average result for all classes. Getters, setters, and
overwritten methods from Object class are excluded from the calculation since these
methods can give false good results in metrics. In the final results total, C C is noted,
however, results cannot be compared as a percentile of other open-source projects,
since it correlates with project size, so it is more appropriate to review the percentile
of average C C per method.

3. Halstead Index is calculated with usage of regex from java.util library since Java
Spoon library cannot identify operands and operators, so instead regular expressions
are used. Within the Hasted Index, multiple metrics are calculated, and even though
some can be debatable, the main one is Halstead Volume since it is used for Main­
tainability Index calculation.

4. For the Maintainability Index, previously mentioned metrics are used with defined
formula from Section 3.5.

4.3 Java Spoon library

Java Spoon enables Java developers to perform three operations [16] with the source code
in a simple manner:

• Analyze - provide software engineers with the primitives to write their own analyses.

• Transform - enables to modify any part of the code.

• Generate - creates the possibility to generate code based on templates.

Its greatest advantage is that it allows performing listed operations without deep knowl­
edge of parsing.

26

The M a i n Features of Java Spoon

1. Provides a Java metamodel for representing Java ASTs easy to read and transform.

2. A P I to transform and generate Java source code.

3. The use of generic typing for static checking of the analyses and transformations.

4. The native and seamless integration and processing of Java annotations.

5. A pure Java statically-checked templating engine.

Overview of Spoon

When a Java program is given as an input, it is parsed with a compiler to produce a first
A S T . Then, nodes are created and deleted in order to simplify the initial A S T and to create
a model that is easier and more intuitive to manipulate. This complete-time (CT) model is
an instance of a Spoon metamodel. In case the user makes a transformation, the processing,
and the templating, engine takes these transformations as an input and applies them to the
Java model. In the end, the Spoon model contains all the original source code in the tree
nodes.

Processors for
Analysis & Transformation

1

Low-Leve l Abs t rac t Syntact ic Tree

i

AST Simplification

Spoon Meta-Model V n s l a n c e Spoon Java Model

Java Syntax Printing

Processing &
Templating Engine

»

Transformed Java Program

Figure 4.1: Java Spoon metamodel.

The Spoon Metamodel of Java

A programming language can have different metamodels. A n A S T is an instance of a
metamodel. Each metamodel, and each A S T , will be more or less appropriate depending
on the kind of task. The Spoon metamodel was designed to be easily understandable by a

27

normal Java developer. The Spoon metamodel allows for the creation of its own analyses
and transformations.

The Spoon metamodel consists of three parts:

• The structural part - contains the declarations of the program elements, such as
interface, class, variable, method, annotation, and enum declarations. CTElement is
a parent element and the rest inherits from it. In the image, all elements are prefixed
by " C T " which stands for "compile-time".

parent

CTElement

CTVariable

CTAn notation CTSimpleType
5

CTFicId CTPara meter CTExecutable

CTEnum CTAnnotationType CTType

J .

CTMethod CTConstructor

CTInterface CTCIass

Figure 4.2: Structure of the element.

• The code part - contains the executable Java code, such as the one found in method
bodies. Since Java is a complex language, the code metamodel figure does not contain
all classes. There are two main types of code elements: statements and expressions.

• The reference part - models the references to program elements (for instance a ref­
erence to a type). It expresses the fact, that that program references elements that
are not necessarily reified into the metamodel. References are used by metamodel
elements to reference elements weakly. Weak references make it more flexible to con­
struct and modify a program model.

4.4 Abstract Syntax Tree

A n abstract syntax tree (AST) is a way of representing the syntax of a programming
language as a hierarchical tree-like structure [14]. In comparison to Concrete Syntax Trees
(another type of a syntax tree used in order to get an exact representation of the code),
abstract syntax trees represent code at an abstract level disregarding unimportant elements
such as grammar symbols.

4.4.1 Application

ASTs are used to represent the structure of the program code. It may serve as a represen­
tation of the program in the intermediate stages.

28

Properties of the AST:

• Does not contain inessential punctuation,

• Stores extra information to the program (e.g. position of elements),

• Can be edited, enhanced.

In the A S T operators serve as nods and operands are leaves

4.5 Possible Improvements

The code has been constructed by means of modular programming. The main advantages
that come with this approach are that the code has lower average complexity, makes it
easier to be tested, and most importantly, allows for reusability and simplified adjustments.

In the future, we see that the program can be improved by expanding the metrics
calculated, adding a graphical user interface, and using more than 100 projects as a base
for calculating percentile value. Also the possibility of adding a config file to control which
metrics are calculated, since unnecessary calculations or complications of analysis may affect
time consumption.

29

Chapter 5

Testing

This chapter describes the process of testing and received results analysis. Testing was
performed on 100 projects differing in size and characteristics. A l l tested projects were open-
source and were acquired from GitHub, described in Chapter 5.3. The testing evaluation
described in Chapter 5.2.

A l l the data from testing could be found in statistics. ods file.

5.1 Tested Projects

The main requirement for a project to be chosen for testing was relevance and relative
public success, meaning it needed to have more than 100 stars on GitHub or more than 500
followers.

A l l the projects were acquired by the simple bash script with a git clone operation on
the list of the needed project on the input. In the program described in the implementation
Chapter 4, a hundred open source-projects were tested to build a base for future comparison.

5.2 Evaluation of Results

Overall results for almost all the projects are quite high, that is can be explained because
those projects are popular and many developers working on those projects.

Based on the statistics acquired from the data base user can get a percentile for all
key metrics, such as Cyclomatic Complexity, Density of Comments, and most important —
Maintainability index. This percentile gives a qualitative evaluation for a project in com­
parison to the analyzed projects.

The program has an opportunity to adjust the test base for better project evaluation.
This allows comparing either more projects or projects that have more similar characteris­
tics. For getting the best results, the test base should be done on the set of similar by size
and area projects.

Based on testing and analysis, reviewing metrics and percentile immediately shows
possible areas of improvement. Percentile was defined for simplifying the output for the
user, so he does not need to study the whole report. User can instantly see not only how
good his or her project is, but to see what the main weakness of the project is. As an
example, if the user gets percentile for Density of Comments around 70, percentile for MI
around 80, and percentile for Cyclomatic Complexity around 40, the user can clearly see

30

that the main focus should be on breaking the methods to smaller methods or simplifying
the logic.

5.3 G i t H u b

GitHub is a web-based version control system developed and started by Chris Wanstrath,
P. J . Hyett, Tom Preston-Werner, and Scott Chacon in 2008 using Ruby on Rails. GitHub
is mainly used for computer code, supports source code management and version control
functionality of Git while adding its own features1. After one year of being online, by
February 2009, GitHub had accumulated 46000 repositories, and in November 2018 it had
hit 100 million repositories with 31 million developers.

2008 2010 2012 2014 2016 2018

Figure 5.1: Github growth

Features

Projects on GitHub can be accessed using Git command-line interface supporting all stan­
dard Git commands. Multiple clients have been created by GitHub and third-party de­
velopers that integrate with the platform. There are two types of repositories: public and
private. Being a registered or non-registered user defines what information can be accessed
and changed.

In addition to code hosting, editing, and tracking, the site provides social networking
like functionality for the ease of collaboration and identifying positive trends and changes.

Features defined by the GitHub site:

1. Formattable documentation (R E A D M E files).
x

http://github. com

31

http://github

2. Wikis.

3. Issue tracking supporting feature request, the fulfillment of milestones.

4. Pul l requests.

5. Commits history.

6. GitHub pages and subscriptions.

7. Code hosting.

5.4 Limitations

During the testing process, there have been found 2 limitations related to the Java Spoon
library:

1. Java Spoon could not create an abstract syntax tree if there is presented at least one
.java file with syntax or semantic errors. It is recommended to build the project
before testing.

Error message: spoon.compiler.ModelBuildingException: The type Baseldent

is already defined for Cgnnc project

2. Sometimes Java Spoon has a problem with creating A S T for larger projects with
more than 50 000 Lines of Code. It has a problem with inner (nested) classes which
are accessed from the different packages. Workaround for this issue would be to
temporarily delete problem classes or to test the whole project by smaller parts.

Error message: spoon.SpoonException: Cannot compute access path to type:

Cls$CustomException in context of type: Cls

5.5 Summary

After testing all acquired projects with the program, statistics show that project size (LOC)
and Density of Comments play a major role in code maintainability and as quality as
a result. Average Cyclomatic Complexity has almost no impact on the final result for
Maintainability Index, so should be used only for identifying methods that crossed the
defined limit of C C on this project. Halstead Index gives us the information about the
length of the program, and many theoretical metrics, such as Time to Implement, Number
of Delivered Bugs, Effort, and Difficulty. The author could not identify any advantages or

where Halstead metrics could be useful.

32

Chapter 6

Conclusion

Quantitative and qualitative software metrics play a major role in all software development
stages. This is why one of the goals was to identify the key characteristics of good code, and
thus the software metrics to control those characteristics. A n important part of the thesis
was to find the relation between qualitative and quantitative metrics and the possibility to
evaluate the quality of the code based on quantitative data.

The main goal of the thesis was to implement a command-line application capable of
evaluating the source code metrics. This goal was achieved successfully. The implemented
application allows users to analyze Java source code projects and receive the calculated
metrics in the form of a report. For the program to function we have defined ways of cal­
culating the metrics and implementing those calculations in the code. The key approaches
to calculation were building the abstract syntax trees and the usage of regular expressions.
The program developed had met the requirements of being adjustable and easy in usage
since it was developed with a modular programming approach. It has been tested on a
hundred of the open-source projects, thus creating a base for comparison.

The evaluation of the tested projects shows us that the most important metric for
Maintainability Index is Lines of Code and Density of Comments. Cyclomatic Complexity
plays a minor role in the calculation of Maintainability Index, so it's better to evaluate
this metric independently from other metrics. Volume from Halstead Measures also plays
a minor role in the calculation of Maintainability Index. Halstead Index as an independent
metric does not bring any useful info, so should be used with a reserve.

Future work includes expanding the number of metrics used for identifying the software
code quality. Also, a graphical user interface could be useful for some developers for having
better visualization. Another improvement would be to use a wider base of the tested
projects for future comparison.

33

Bibliography

[1] Measurement of Halstead Metrics with Testwell CMT++ and CMTJava. Accessed
2020-05-27.
Retrieved from: h t tps : //www.verifysoft.com/en_halstead_metrics.html

[2] Arafat, O.; Riehle, D.: The Comment Density of Open Source Software Code.
Accessed 2020-07-03. 195-198 pp.. in Companion to Proceedings of the 31st
International Conference on Software Engineering (ICSE 2009). I E E E Press, 2009.
Retrieved from: h t tp : / /128.223.4.25/events/icse2009/images/postPosters/
The7„20Comment7„20Density7„20of7„200pen7„20Source7„20Software7„20Code.pdf

[3] Bobkowska, A . : Quantitative and qualitative methods in process improvement and
product quality assessment. January 2001.

[4] Chhabra, P. S.: ISO 9126 Quality Model. January 2018. Accessed 2020-07-30.
Retrieved from:
h t tp : / / thesuccessin5.blogspot.com/2018/01/iso-9126-quali ty-model.html

[5] Coen, J . B.; Vogt, H . H . : How to save on software maintenance costs. November
2014. Accessed 2020-06-4.
Retrieved from:
h t tp : / /asq.org/public/wqm/how-to-save-on-sof tware-maintenance-costs.pdf

[6] Coleman, D.; Ash, D. : Using Metrics to Evaluate Software System Maintainability.
August 1994: pp. 44-49.

[7] Eick, S. C ; Graves, L . ; Karr, A . F. : Does Code Decay? Assessing theEvidence from
Change Management Data. January 2001. Accessed 2020-06-07.
Retrieved from: h t tps :
/ /pdfs.semanticscholar .org/ecd9/43f 52274c575f8018fb0fad8bd45b645e03d.pdf

[8] ISO: ISO/IEC TR 9126-4:2004 Software engineering — Product quality — Part 4:
Quality in use metrics. 2004. Accessed 2020-01-28.
Retrieved from: https://www.iso.org/standard/39752.html

[9] ISO: ISO/IEC 25010:2011 Systems and software engineering — Systems and
software Quality Requirements and Evaluation (SQuaRE) — System and software
quality models. 2011. Accessed 2020-01-28.
Retrieved from:
h t tps : / / iso25000.com/index.php/en/iso-25000-standards/iso-25010

[10] Kolawa, A . ; Huizinga, D.: Automated Defect Prevention: Best Practices in Software
Management. 2007. ISBN ISBN 978-0-470-04212-0. 75 pp.

34

http://www.verifysoft.com/en_halstead_metrics.html
http://semanticscholar.org/ecd9/43f
https://www.iso.org/standard/39752.html
http://iso25000.com/

[11] Koskinen, O. J.: Software Maintenance Costs. Accessed 2020-01-26.
Retrieved from: http://users.jyu.fi/~koskinen/smcosts.htm

[12] Matt, B.: Signs Your Software is Rotting. June 2020. Accessed 2020-07-13.
Retrieved from:
https: //codurance.com/2020/06/09/signs-your-software-is-rotting/

[13] McCormack, J.; Conway, D.: CSE2305 - Object-Oriented Software Engineering.
Accessed 2020-05-14.
Retrieved from:
http: / /users.monash.edu/-jonmc/CSE2305/Topics/ 13.25.SWEng4/html/text.html

[14] Newcomb, P.: Abstract Syntax Tree Metamodel Standard. 2005. Accessed 2020-02-21.
Retrieved from: https://www.omg.org/news/meetings/workshops/
ADM_2005_Proceedings_FINAL/T-3_Newcomb.pdf

[15] Nguyen, V . ; Deeds-Rubina, S.; Tan, T.; et al.: A SLOC Counting Standard. 2007.
Accessed 2020-02-16.
Retrieved from: http: //citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.550.8181&rep=repl&type=pdf

[16] Pawlak, R.; Monperrus, M . ; Petitprez, N . ; et al.: Spoon: A Library for Implementing
Analyses and Transformations of Java Source Code. September 2015. Accessed
2019- 12-20.

Retrieved from: https://hal.inria.fr/hal-01078532/document

[17] R. Subramanyam and M . S. Krishnan: Empirical analysis of CK metrics for
object-oriented design complexity: Implications for software defects. Apr i l 2003: pp.
297-310.

[18] Ward, C : Debt Metaphor. February 2009. Accessed 2020-05-22.
Retrieved from: https://www.youtube.com/watch?v=pqeJFYwnkjE

[19] Watson, A . H.; McCabe, T. J.: Structured Testing: A Testing Methodology Using the
Cyclomatic Complexity Metric. 1996. Accessed 2020-04-20.
Retrieved from: https:
//csse.usc.edu/TECHRPTS/2007/usc-csse-2007-737/usc-csse-2007-737.pdf

[20] Welker, K . D.: The Software Maintainability Index Revisited. August 2001, Accessed
2020- 02-17.

Retrieved from: http://web.archive.org/web/20021120101304/http:
//www.st sc.hill.af.mil/crosstalk/2001/08/welker .html

[21] Yu , P.; Systa, T.; Muller, H.: Predicting faultproneness using 00 metrics. An
industrial case study. 2002: pp. 99-107.

35

http://users.jyu.fi/~koskinen/smcosts.htm
https://www.omg.org/news/meetings/workshops/
http://citeseerx.ist.psu.edu/
https://hal.inria.fr/hal-01078532/document
https://www.youtube.com/watch?v=pqeJFYwnkjE
http://web.archive.org/web/20021120101304/http
http://www.st
http://sc.hill.af.mil/crosstalk/2001/08/welker

Appendix A

Contents of the Attached C D

Following directories and files can be found on the C D :

• Directory src - a directory containing source code files and Java Spoon .jar

• File README.md - a file describing the project and instructions of running the project.

• File tested_projects.txt - a file containing list of the tested projects.

• File download_github_projects. sh - a script to download all the tested projects
from GitHub.

• Directory latex - a directory containing DTFXsource files.

• File output_metrics. ods - a file containing statistics from the testing.

• File xshersOO.pdf - an electronic version of this thesis.

36

Appendix B

Example of the output
s t a t i s t i c s . t x t

Statistics for the whole project:
Number of classes: 11
Number of all classes (including all nested classes): 15
Total number of methods: 56 (getters, setters and overwritten methods from Object class
are excluded)
Logical lines of code: 924
Average cyclomatic complexity: 2.16
Maintainability index: 45.75
Density of comments: 8.55%
Halstead index:
Volume: 15492.27
Difficulty: 697.69
Effort: 401406.89
Program length: 3072
Time to implement: 22300.38 s
Number of delivered bugs: 4.94

Percentiles of the key metrics:
Cyclomatic complexity: 49
Maintainability Index: 10
Density of comment: 32

Classes:
com.github.gcacace.signaturepad.MainActivity:

Number of methods: 8
Logical lines of code: 133
Commented lines of code: 8
Density of comments: 6.02%
Average cyclomatic complexity: 2.12
Maintainability index: 61.08
Halstead index:
Volume: 2834.46

37

Difficulty: 117.36
Effort: 52982.44
Program length: 546
Time to implement: 2943.47 s
Number of delivered bugs: 0.82
methods:
com.signaturepad.MainActivity.addJpgSignatureToGallery(Bitmap signature):

Cyclomatic Complexity: 2
Halstead index:
Volume: 256.76
Difficulty: 13.6
Effort: 3491.99
Vocabulary: 27
Program Length: 54
Time to implement: 194 s
Number of delivered bugs: 0.08
Program level: 0.07

38

