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Abstract 
Map layers with a high level of spatial, temporal and thematic detail represent 

a crucial data source for environmental research. Methods of remote sensing have 

over the last decades become instrumental in acquisition of such data. To fully 

utilize the potential of remote sensing data, it is necessary to understand the pros 

and cons of individual platforms and sensors, of individual processing 

and validation methods and to be able to choose the most suitable of each for the 

particular research.  

The presented dissertation consists of four commented case studies aimed at new 

ways of utilization of high resolution airborne data in environmental mapping, 

with integration of spectral and vertical information acquired through airborne 

imaging being the central topic of the thesis. By applying suitable methods of data 

acquisition, processing and integration, we managed to acquire detailed 

information about the horizontal and vertical structure of the studied 

environment. The photogrammetric processing of imagery from unmanned aerial 

vehicles (UAVs) led to acquisition of a very accurate terrain model, even 

in a rugged terrain of succession steppes and forests of spoil heaps. Integration 

of vertical and spectral data acquired from processing of UAV data further 

improved the classification accuracy and allowed us to create thematic layers 

describing vegetation on the level of individual species/genera. The fusion 

of spectral data with vertical information moreover improved the robustness 

of the classification. Our results also indicate that improving spatial resolution 

of the input data for classification cannot act as a surrogate for the additional 

information represented by vertical data or additional spectral bands. 

Combination of hyperspectral data and characteristics acquired from airborne 

laser scanning (LiDAR) improved the accuracy and relevance 

of classification/identification of water bodies in the post-mining areas. Besides, 

integration of datasets led to eliminating misclassification of water bodies 

and shadows. 

Besides presenting tangible options for improvement of environmental mapping, 

the results of individual studies also document the principal influence of the 

following factors on the accuracy and quality of the obtained products: 

(i) The date and time of data acquisition – when mapping vegetation, the full 

vegetation season is the most suitable time for data acquisition while when aiming 

at identification of water bodies or creating terrain model, off-leaf season is 

preferable. Timing data acquisition in a way ensuring homogenous lighting 

conditions facilitates radiometric calibration and selection of a suitable time of day 

may help in elimination of shadows.  



(ii) Choosing a suitable platform and sensor – a high quality sensor allowing 

individual settings and selected flight parameters affects the accuracy and quality 

of the resulting products. Studies also illustrate the typical capabilities and limits 

of spatial extent for individual platforms, from hectares to hundreds square 

kilometres.  

(iii) The use of suitable processing methods and classification approaches – the 

differences in classification results have been strongly affected by the used 

classification methods. Besides, preliminary testing confirmed that pixel-based 

approaches provide inferior results when performing fusion of high resolution 

data than object oriented approaches.  



Abstrakt 
Mapové vrstvy s vysokým prostorovým, časovým a tematickým detailem jsou 

zásadním datovým podkladem pro environmentální výzkum. Nezastupitelným 

zdrojem pro získání takových podkladů se v posledních desetiletích staly metody 

dálkového průzkumu Země. Využití plného potenciálu dat dálkového průzkumu 

Země pro environmentální mapování spočívá v pochopení výhod a limitů 

jednotlivých platforem a sensorů, zvládnutí způsobu zpracování dat a výběru 

vhodné metody pro vyhodnocení přesnosti a relevance získaných produktů. 

Disertační práce tvoří komentovaný soubor čtyř případových studií zaměřených 

na nové způsoby využití leteckých dat vysokého rozlišení v environmetálním 

mapování. Tématem studií je integrace spektrálních a vertikálních informací 

získaných leteckým snímkováním. Vhodnými metodami pořízení, zpracování 

a integrace dat se podařilo získat podrobné informace o horizontální a vertikální 

struktuře zkoumaného prostředí. Fotogrammetrické zpracování snímků 

z bezpilotních letadel umožnilo získat velice přesný model terénu a to 

i v členitém prostředí stepních a lesních porostů sukcesních výsypek. Integrace 

výškových a spektrálních informací získaných zpracováním snímků z bezpilotních 

letadel zvýšila přesnost klasifikace a umožnila vytvořit vrstvy v tematickém detailu 

druhů/rodů vegetace. Navíc přidání vertikální informace zvýšilo robustnost 

klasifikačního přístupu a výsledky indikují, že vyšší prostorové rozlišení 

v klasifikacích nezastoupí chybějící spektrální či vertikální informace. Spojení 

hypespektrálních dat a charakteristik z laserového skenování (LiDAR) zvýšilo 

přesnost a relevanci získaných výsledků klasifikace/identifikace vodních ploch 

v prostředí post-těžebních lokalit. Navíc se integrací datových sad podařilo 

odstranit záměny v klasifikaci vodních ploch a stínů. 

Krom konkrétních možností pro zlepšení environmentálního mapování 

dokumentují výsledky studií zásadní vliv následujících faktorů na přesnost 

a kvalitu získaných produktů: 

(i) Termín a čas pořízení dat – V případě mapování vegetace je vhodná plná 

vegetační sezóna. Naopak pořízení dat mimo vegetační sezonu je vhodné 

při identifikaci vodních ploch a modelování terénu. Načasování pořízení snímků 

při homogenních světelných podmínkách usnadňuje radiometrické kalibrace 

a navíc volbou vhodné denní doby lze eliminovat stíny. 

  



(ii) Volba vhodné platformy a senzoru – Kvalitní sensor s možností individuálního 

nastavení a zvolené letové parametry ovlivňují přesnost a kvalitu získaných 

produktů. Navíc studie demonstrují typické možnosti a limity prostorového 

rozsahu pro pořízení dat pomocí leteckého snímkování v rozsahu hektarů 

až stovek kilometrů v závislosti na zvolené platformě. 

(iii) Použití vhodných metod zpracování a klasifikačních přístupů – Rozdíly 

ve výsledcích klasifikací se silně odvíjely od použitých klasifikačních metod. Navíc 

předběžné testování potvrdilo, že „pixel-based” přístupy poskytují při integraci dat 

velmi vysokého rozlišení slabší výsledky nežli objektově orientované přístupy.  
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Foreword 

Deja-vu 

or 

New wave with old content 

As fast as the development in the field of remote sensing moves forward, new 

questions and challenges for further research keep arising, often making it 

necessary to come back to the basics and start over. In view of new platforms, 

sensors and data, old paradigms have to be revised, new methods of data 

acquisition and processing must be tested from the perspective of relevance 

and applicability. The same spirit can be found in this thesis and in the ideas 

presented in individual studies included in this thesis. At the beginning, we 

expected to be able to quickly and directly apply newly acquired data and to easily 

target so far unanswered questions about many environmental topics. After 

the very first attempts for data acquisition using an own unmanned aircraft, we 

sobered up quickly and landed on the ground as we found out that we indeed had 

to go back to the beginnings, i.e. to case studies, methods of data acquisition 

and processing, to the very basics of the use and integration of data 

in environmental mapping.  



- 13 - 
 

Chapter I – Thesis Preface 

The last two decades have seen an unprecedented boom of remote sensing (RS), 

driven by technological developments such as the ever increasing potential 

and capacity of information and computing infrastructure on the one hand 

and demand for products of remote sensing and their application on the other. RS 

thus became an irreplaceable and integral part of many areas of primary 

and applied research, commercial applications and management/decision 

support. However, multiple factors including spatial, spectral and temporal 

sensing abilities of platforms and sensors represent limitations of the use of RS. 

Over the last decades of the research of traditional remote sensing methods 

(i.e. ground-based measurements, manned aircraft and satellite observations) 

many paradigms for acquisition, processing and application of remote sensing 

datasets have been developed, verified and introduced into everyday practice. 

A new wave and one of driving forces of the present day RS was brought by the 

introduction of Unmanned Aerial Vehicle (UAV) platform. UAVs, along with 

their unique combination of spatial and temporal capability, new sensors 

and processing, filled the existing gaps in traditional RS platforms and suitably 

complemented their capabilities. This is one of the reasons why UAVs have 

become a more or less separate field of RS over the last decade. Traditional 

manned aircraft in combination with the new unmanned aircraft represent the 

most detailed sources of RS datasets and due to their mass use, many various 

datasets with fine spatial-temporal resolution have come into existence. 

Remotely sensed datasets (both continuous data and extracted thematic layers) are 

valuable sources of information for environmental mapping, i.e. for the process 

of information acquisition and of trying to comprehend the way ecosystems 

and environment function. A typical example of the use of remotely sensed data 

in environmental mapping on various scales is acquisition of information about 

land use and land cover (LULC), which allows the analysis of changes, study 

of processes affecting landscape structures, or modelling of distribution 

of individual species and explanation of the processes in ecological communities. 

Two principal approaches can be observed in environmental mapping – one 

focusing on global processes with a high degree of generalization and low detail, 

the other on detailed research with limited spatial extent. With the growing detail, 

demands for spatial, spectral and temporal resolution of remotely sensed data 

grow. Integration (fusion approach) of data from multiple platforms, sensors 
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and/or from multiple time points leads to obtaining additional information 

and thus a finer detail for subsequent analyses. 

This thesis focuses on the field of environmental mapping based on integration 

of high resolution spectral information with information on vertical structure 

from manned and unmanned aircraft. Theoretical background provides a brief 

summary of the state of the art: (i) suitable platforms for fine resolution data 

acquisition; (ii) high resolution data processing methods and (iii) accuracy 

assessment in the context of environmental research. Case studies subsequently 

investigate and verify the usability of new platforms, sensors and processing 

methods in applied Earth observation and environmental mapping.  

The topics of the studies gradually progress from (i) methods of acquisition 

and processing of vertical data from various types of UAVs for terrain mapping 

in a mining-affected area; through (ii) two parallel studies aimed at mapping 

and classification of vegetation down to the level of species or genera, based 

on integration and classification of multispectral, vertical and thermal information 

from UAVs; up to (iii) a study dedicated to integration of hyperspectral data 

and LiDAR variables from an airborne platform for mapping small water bodies 

in a mining-affected area.  
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Chapter II – Objectives 

The presented thesis investigates the integration and use of airborne high 

resolution data in environmental mapping. The main objective is to contribute 

towards understanding and development of the application of fine resolution 

remotely sensed datasets in environmental mapping and thus to support 

the utilization of the full potential of RS for environmental research. In four 

presented and commented case studies, processing methods are being tested 

and the accuracy and relevance of products obtained from airborne remotely 

sensed datasets is being evaluated. The studies are discussed in the context of their 

potential for environmental applications and ecological modelling with emphasis 

on the evaluation of possible inaccuracies and impact of such inaccuracies. 

On the theoretical level, the aim is to formulate recommendations for data 

processing and to verify its principles in order to maximize the utilization 

of the potential of high resolution remotely sensed spectral and vertical 

information. On the level of practical application, the aim is to present specific 

methods for acquisition and processing of the data leading to creating products 

(namely thematic land cover maps and digital elevation models) suitable 

for further use in environmental research. 

The research questions: 
A) How can integration of newly available airborne sensed datasets contribute 

towards mapping of composition and structure of biotopes? Emphasis is laid 

on the: 

(i) Possibility of terrain mapping at post-mining areas and deriving vertical 

structure of vegetation by UAVs. 

(ii) Improvement of classification accuracy and relevance at the detailed level 

of vegetation by fusion of UAV-acquired spectral data and additional derived 

vertical information. 

(iii) Benefits of integration of airborne hyperspectral data and LiDAR variables 

in the identification of small water bodies in heterogeneous environment. 

B) What are the effects and impacts of (i) date and time of data acquisition; 

(ii) selection of a suitable sensor; (iii) use of suitable processing methods; and 

(iv) used evaluation methods on the quality of resulting environmental mapping 

products?  
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Chapter III - Theoretical Background 

„Remote sensing can be defined as a collection of information about 

an object without physical contact with such object. Aircraft 

and satellites are typical platforms used for RS. The term encompasses 

methods utilizing electromagnetic energy as a means for measurement 

of target characteristics.“ 

(Sabins, 1978) 

Besides the general principle that the term remote sensing (RS) describes any non-

contact technique whereby the object in space can be observed, this definition also 

implies the principal vectors of that field, i.e. platforms, sensors and data 

processing methods that can be used to get description and characteristics 

of the observed/studied object. From the technical perspective, the RS 

development in the last decades has been driven by the platform and sensor 

advancements and by continuously increasing information infrastructure 

and computing power. Hand in hand with the improvement of technology, 

the scope of possible applications keeps increasing. The definition of the limits 

and capabilities of RS is growing ever more complex. It is no longer true that RS 

serves for classical topographic mapping and land cover classification only (Toth 

and Jóźków, 2016). Due to this growing complexity and scope of application, this 

thesis and its theoretical background cannot and will not aim to capture the entire 

scope and state of the art of RS in a complex manner. 

Where RS platforms and sensors are concerned, a combination of three 

parameters is crucial for their performance - spatial, spectral and temporal sensing 

abilities (Blaschke et al., 2014; Lillesand et al., 2015; Toth and Jóźków, 2016). 

Taking these parameters into account, we will in this thesis disregard 

the continuous development of the “conventional” satellite and airborne remote 

sensing platforms and focus on other important vectors of the current RS: 

i) Relatively new Unmanned Aerial Vehicle (UAV) platform (Colomina and 

Molina, 2014; Manfreda et al., 2018) 

ii) Combination of multiple platforms, sensors or data sources (Pohl and 

Genderen, 2014; Toth and Jóźków, 2016)  
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Suitable platforms for fine resolution 

data acquisition  
The perception of what is high or low resolution depends on the relationship 

between the size of the observed object on the one side and on the detail 

provided by the sensor (e.g. spatial/cell resolution) on the other side. The term 

low resolution can therefore be used where individual resolution cells are bigger 

than the observed object and, conversely, the term high resolution describes 

resolution where resolution cells of the image are smaller than the observed object 

(Strahler et al., 1986). Specifically, in the context of this thesis, airborne RS 

(i.e. UAVs and manned aircraft) are perceived as suitable platforms for high 

resolution data acquisition. 

„Let them fly and they will create a new remote sensing market in your 

country“ 

(Colomina and Molina, 2014) 

AIRBORNE PLATFORMS - MANNED AIRCRAFTS and UAVs 

Until recently, most RS datasets originated from ground-based measurements, 

manned aircraft, satellite observations or combinations thereof. The last decade 

has however seen a new trend complementing the above mentioned methods - 

UAVs. UAVs brought significant development to many fields of the theoretical 

and applied Earth observation. Across the field of environmental studies, their 

unique combination of spatial and temporal capability fills a gap as they are 

capable of providing data with fine spatial resolution over relatively large areas 

combined with capacity for enhanced temporal retrieval in a relatively cost-

effective way (Manfreda et al., 2018). Being a relatively new platform, however, 

UAVs also come with limitations, such as weakness in the state of the art when 

compared with the traditional RS platforms obviating that UAVs still have a lot to 

catch up on. Another limitation is represented by legislative regulations of their 

operation, which may be quite strict in some states. Conceptual regulations 

on the supranational level are at present in various stages of development (Stöcker 



- 19 - 
 

et al., 2017). The requirements for UAV operation are therefore also subject to 

frequent changes. 

In contrast to UAVs, airborne data acquisition by manned aircraft is one 

of the oldest forms of remote sensing. Even after satellites started to be used 

for RS, manned aircraft still complemented those data by providing detailed 

spatiotemporal and spectral resolution. From the technical point of view, manned 

and unmanned aircraft are similar in principle (e.g. composite airframes; 

aerodynamics; flying speed, available equipment/sensors, flight planning) 

(Neininger and Hacker, 2012). On the other hand, differences between UAVs 

and manned aircraft include usable payload, operational aspects in the sense 

of spatiotemporal resolution and operating radius/area, potential restrictions 

on operation, safety and cost-efficiency (Colomina and Molina, 2014). A more 

detailed analysis of usable equipment will be provided in the next subchapter, 

a general observation however obviates that manned aircraft can be mounted with 

more, heavier, bigger and, in effect, better sensors (Toth and Jóźków, 2016). 

At present, some UAVs mounted with multiple sensors are commercially available 

(Nevalainen et al., 2017), the typical process of acquisition of multiple sensor data 

using a UAV however still involves several flights with a single sensor (Ahmed et 

al., 2017; Komárek et al., 2018; Sankey et al., 2017a). 

The operational radius (and, therefore, the extent of the mapped area) 

of the airborne manned or unmanned aircraft differs in the: (i) technical 

capabilities (range/flight time, range of the control unit in the case 

of UAV)(Neininger and Hacker, 2012), (ii) minimum flight height and speed 

(Manfreda et al., 2018) and (iii) legislative restrictions (Stöcker et al., 2017). It can 

be generally said that manned aircraft is capable of mapping substantially larger 

areas (tens to hundreds of square kilometres in a single flight mission) while UAVs 

allow mapping of up to tens square kilometres but due to their minimum flight 

height, they provide a better per pixel resolution. 

Other factors that must be taken into consideration when choosing between 

manned or unmanned aircraft include e.g. portability, flexibility, the demands 

(including time demands) of processing and, last but not least, cost-effectiveness. 

UAVs are often referred to as cost-effective instruments for mapping or data 

acquisition purposes (Anderson and Gaston, 2013; Diaz-Varela et al., 2014; 

Manfreda et al., 2018). The cost-effectiveness must be however always considered 

in view of the quality (e.g. per pixel resolution, spectral resolution) and quantity 

(i.e. spatial extent) of the data. From the perspective of spatial extent, UAVs can 

be only effective for small areas while for larger areas, the use of manned aircraft 
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or satellites is much more productive (Matese et al., 2015; Neininger and Hacker, 

2012). This implies that at present, manned aircraft are an irreplaceable platform 

in the applied Earth observation and environmental research and those two types 

of platforms complement each other very well. 

SENSORS for AIRBORNE RS 

An RS platform consists of a carrier and sensing payload. The basic classification 

of sensors is according to their principle to active and passive sensors (Gomarasca, 

2009). Passive sensors (also called optical sensors) detect electromagnetic energy 

reflected or radiated by the observed/recorded objects. Depending 

on the requirements and specifications of the particular application, sensors with 

various spatial and spectral resolutions (e.g. numbers and spectral width of bands 

or central wavelengths) have been and are being developed (Lillesand et al., 2015). 

Active sensors work on the principle of signal emission and subsequent detection 

of the signal reflected from the studied object(s). The main types of active sensors 

suitable for airborne RS are the Light Detection and Ranging (LiDAR; 

in combination with aircraft, a commonly used term is Airborne Laser Scanning, 

ALS) (see Vosselman and Maas, 2010) and microwave/radar sensors (see 

Woodhouse, 2017). Colomina and Molina (2014) distinguish the following 

categories of sensing payloads: (i) Visible-band, near-infrared and multi-spectral 

cameras; (ii) Hyperspectral cameras; (iii) Thermal imaging; (iv) Laser scanners and 

(v) Synthetic aperture radar. Those categories cover the full portfolio of sensors 

used for Earth Observation. 

When manned aircraft is used as the platform, the size and weight of the sensing 

payload is not limiting and full emphasis can be thus put on the sensor quality. 

The economic side of things thus represents the principal limiting factor when 

using manned aircraft, which usually leads into a compromise between 

the technical parameters and the price of equipment and sensors. On the other 

hand, search for an optimum combination of a UAV carrier and sensing payload 

is a significant limitation of that platform. The technical capabilities of UAV 

carriers (load bearing capacity, balancing and preservation of flight parameters, 

properties and safety) are in conflict with the sensor requirements (spatial, 

temporal and spectral resolution, sensor overall and optical quality) (Manfreda et 

al., 2018). However, as soon as 2013, Van Blyenburgh (2013) reported over 400 

imaging and ranging instruments suitable or optimized for UAVs including active 

and passive systems, ranging from visible spectrum through near infrared up to 

thermal infrared, LiDAR and microwave systems. The number of suitable 
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instruments and sensors for UAVs is ever increasing and the current broad 

portfolio of available sensors leads to a gradual closure of the gap between UAVs 

and other RS platforms. 

High resolution data processing 

methods 
The range of methods for RS data processing is as wide as the use of RS itself. 

This chapter aims to provide a summary of principles and methods utilized 

in the individual studies that form a part of this thesis and offers thus a basic 

insight into the topic of data processing with overreach into environmental 

mapping. In particular, the algorithms and methods of extraction of vertical 

information from optical data, classification approaches for creating new thematic 

layers and maps, and fusion approaches for integration of multiple datasets to add 

additional information allowing e.g. better classification or modelling, will be 

discussed in this chapter. 

VERTICAL STRUCTURE from REMOTE SENSING IMAGERY 

Photogrammetry in general deals with the description of physical characteristics 

and dimensions of objects measured in photographs or images (McGlone, 2013). 

Photogrammetry techniques also include image-matching algorithms allowing 

extraction of 3D structure from individual images. Structure from Motion (SfM) 

and Multi View Stereo (MVS) are among the most widely used and most well 

known techniques of such extraction. Both techniques use the overlap 

of the images acquired from various viewpoints. First, the algorithm determines 

the(i) internal camera/image geometry (lens properties) and the (ii) position 

and orientation of the camera/sensor. Based on those values, a 3D representation 

of the recorded object (as a point cloud) is calculated (Micheletti et al., 2015). 

Unlike common photogrammetric methods, this does not require any pre-defined 

or ground control points (Westoby et al., 2012). Ground control points are usually 

only used to pinpoint the 3D model into the coordinate system. 

SfM and MVS photogrammetric methods support processing of data from low-

cost, consumer grade, cameras as well as from expensive, high quality, metric 
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cameras (Turner et al., 2012). In the context of photogrammetry and remote 

sensing, these methods are especially used for acquisition of orthomosaics 

and elevation or surface models (Colomina and Molina, 2014). Such creation 

of 3D models of course calls for a comparison with methods of direct terrestrial 

measurement using global navigation satellite system (GNSS) or terrestrial laser 

scanning (TLS) as well as with methods of airborne laser scanning (ALS). GNSS 

and laser scanning achieve a better accuracy than SfM, both are however costly 

and in case of TLS also time demanding. (Gehrke et al., 2008; Nex and 

Remondino, 2014). SfM, on the other hand, with its relatively low price and easy 

portability of instrumentation, offers an interesting and flexible alternative to 

terrestrial or airborne laser scanning for applications such as acquisition 

of topographic models and data (Wallace et al., 2016; Westoby et al., 2012). 

CLASSIFICATION METHODS – PIXEL vs. OBJECT BASED 

‘‘What’s wrong with pixels?’’ 

(Blaschke and Hay, 2001) 

RS produces a spatially continuous and consistent representation of the Earth 

surface with good spatial-temporal resolution, which makes it instrumental 

for creating thematic layers and maps (typically land cover thematic layers but any 

other layers can be also created). Thematic mapping is usually based 

on classification of remotely sensed data (Foody, 2002). The principal premise is 

that different feature types or observed objects on the Earth surface possess 

different observable properties (e.g. spectral reflectance and emissivity, height, 

structure, thermal properties), according to which they can be recognized 

and classified into respective classes. Classification is therefore a process 

of categorizing the entire dataset into individual classes, during which 

the continuous (quantitative) representation is transformed into a thematic 

(qualitative) one (Lillesand et al., 2015). 

A typical and frequently used classification is so-called pixel-based approach where 

classification procedures reflect properties of individual pixels (cells) (Lillesand et 

al., 2015). However, with an improving resolution of remotely sensed data, single 

pixels can no longer provide crucial characteristics for classification of the object. 
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With the increasing variability of characteristics within an individual class, 

the ability to distinguish between classes using pixel-based classification 

approaches declines sharply. This leads to a drop in classification accuracy, which 

is represented e.g. by a so-called „salt-and-pepper problem“, i.e. a problem when 

individual pixels within a single observed object are classified differently 

from neighbouring pixels (Yu et al., 2006). 

Several methods have been developed to overcome problems associated 

with pixel-based classification of high resolution data, such as image pre-

processing (e.g. low-pass filtering or textural analysis, Genteno and Haerte, 1995; 

He et al., 2016; Mueller and Hoffer, 1989; Panchal and Thakker, 2017) or post-

classification processing (e.g. mode filtering, morphological filtering, or rule-based 

processing (He et al., 2016; Huang and Lu, 2014; Su, 2016) utilizing 

neighbourhood relationships between individual pixels. A robust approach 

for classification high-resolution data is represented by Object-Based Image 

Analysis (OBIA) where evaluation of neighbourhood relationships is a crucial step 

of the classification procedure (Blaschke, 2010; Liu et al., 2015). OBIA produces 

better results in comparison to pixel-based approaches, (Addink et al., 2007; An et 

al., 2007) and has therefore become one of widely used methods for processing 

and analysis of high resolution data (Alonzo et al., 2014; Diaz-Varela et al., 2014; 

Hartfield et al., 2011; Peña et al., 2013; Rampi et al., 2014).  

In OBIA approach, the whole image is divided into parts (so-called segments) 

based on one or more criteria of homogeneity in one or more dimensions. 

Depending on the segmentation algorithm (e.g. point, edge or region based), 

the homogeneity criteria may be represented by spectral or spatial properties 

of pixels forming the segment. The classification algorithm subsequently assigns 

the individual segments into classes based on (i) spectral characteristics (e.g. mean 

and standard deviation in individual spectral bands in the segments), (ii) textural 

characteristics (e.g. contrast variance or entropy within the segment) and 

(iii) spatial characteristics (e.g. area, length of edge, compactness, convexity or 

roundness of each segment). It is also possible to (iv) consider relationships 

among individual segments (e.g. distance, similarity, shape of similar or 

neighbouring segments), even in multiple layers (Blaschke et al., 2008). The OBIA 

approach thus significantly reduces problems associated with noise and with 

edges/mixed pixels (Alonzo et al., 2014; Blaschke et al., 2014) as well as the salt-

and-pepper problem Yu et al. (2006). 
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FUSION APPROACHES - DEFINITION, HISTORY and TRENDS 

„With the availability of multisensor, multitemporal, multiresolution 

and multifrequency image data from operational Earth observation 

satellites, the fusion of digital image data has become a valuable tool 

in remote sensing image evaluation.“ 

(Pohl and Genderen, 1998) 

Even though back in 1998, the above quote was mostly related to satellite RS, it 

still underlines the growing significance of image or data fusion coming with 

the growing number of available RS platforms, sensors and, therefore, of available 

data. A general definition of image fusion is given as: "Image fusion is a combination 

of two or more different images to form a new image by using a certain algorithm" (Genderen 

and Pohl, 1994). The image fusion may be used to improve the spatial, temporal 

and spectral resolution at the level of pixels; at the level of objects, it may be used 

for image sharpening, for improving geometric corrections, providing stereo-

viewing capabilities, enhancing certain features not visible in either of the single 

data alone, complementing datasets for improved classification, for detection 

of changes, and/or for substitution of missing or replacement of defective 

information (Pohl and Genderen, 1998). 

Since the beginning of 1990s, many fusion approaches and principles have 

become commonplace. Pansharpening became a standard method for combining 

high and low-resolution RS images and was implemented in widely used software 

(e.g. ENVI, SNAP). Similarly, combining multitemporal images is now a generally 

accepted method for radiometric calibration (e.g. Google Earth Engine) just like 

land cover and land use change detection based on multi-temporal datasets 

(Lunetta et al., 2004, 2006; Zhu and Woodcock, 2014a). Combining datasets 

from various platforms, sensors or different time points is another method 

for improving classification (will be discussed in more details in the following 

chapter). In their review of the image fusion concept, Pohl and Genderen (2014) 

mention new challenges for image fusion: (i) increasing demand for accuracy and 

precision of processing due to the ever increasing spatial resolution of available 

sensors, (ii) integration and use of data from aircraft and UAVs mounted with 

multispectral and hyperspectral, Light detection and ranging (LiDAR) and radar 

sensors. In a recent review on RS data fusion, Ghamisi et al. (2018) concluded that 
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fusion of spectral information and a point cloud (LiDAR or photogrammetry 

based) is an important and underdeveloped field of RS open for further 

investigation, both from the theoretical perspective and from the perspective 

of practical application. As a driver of the development, he mentions the necessity 

of integration of diverse datasets acquired from satellites, manned and unmanned 

aircraft. 

FUSION CLASSIFICATION 

Fusion classification approaches allow integration of multiple data sources 

for creating thematic layers or maps and, therefore, represent a method that played 

a crucial role in this thesis. This subchapter summarizes its potential and possible 

use in environmental mapping.  

Nowadays, there are many methods for composing and matching images 

from multiple sensors and data sources. Wenbo et al. (2008) demonstrated 

on widely used approaches for image fusion (namely Smoothing Filter-based 

Intensity Modulation, High Pass Filter, Modified Brovery, Multiplication, IHS 

transformation, and Principle component analysis) that when being used 

for various classifications, fused datasets contain more information than 

the original data and thus provide better classification results. Many studies using 

satellite and/or airborne data have suggested that a fusion of spectral imagery 

and vertical information may represent a suitable technique for improving 

the classification accuracy (e.g. Bork and Su, 2007; Hartfield et al., 2011; Holmgren 

et al., 2008; Luo et al., 2016). Combining optical imagery data with vertical 

information characterizing e.g. vegetation height or terrain slope is a popular 

approach, which benefits from the increasing availability of remote sensing data 

acquired by different sensors for the same area (Pohl and Genderen, 1998). Most 

often, such information is derived from LiDAR in case of manned or unmanned 

aircraft and radar in case of satellites. It is increasingly common to have both 

LiDAR and spectral data available for the same area (Asner et al., 2015, 2007; 

Hanuš et al., 2016). LiDAR data provide information complementary to optical 

images that is not affected by shadows. For example, Degerickx et al. (2019) used 

airborne LiDAR as an additional data source for spectral unmixing of urban land 

cover. Alonzo et al. (2014) fused high-spatial resolution hyperspectral data 

with LiDAR datasets at scale of the individual tree crowns to map tree species 

in a urban area. Gilvear et al. (2004) combined hyperspectral and LiDAR data 

for mapping estuary and river hydromorphology. Dalponte et al. (2012) 

and Naidoo et al. (2012) integrated such data for mapping tree species in Alps 
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and African savanna, respectively. First studies are also available on such a fusion 

using UAV-acquired data and benefits of such approach is being discussed 

(Husson et al., 2017; Komárek et al., 2018; Prošek and Šímová, 2019; Sankey et 

al., 2017a). All the mentioned studies suggest that the fusion of spectral (RGB, 

multispectral or hyperspectral) and vertical (LiDAR or SfM) information also leads 

to an overall improvement of accuracy. 

Accuracy assessment – types, reasons 

and impact of error in environmental 

mapping 

“There are many reasons for performing accuracy assessment. Perhaps 

the simplest reason is curiosity – the desire to know how good a map 

you have made” 

(Congalton and Green, 2002)  

POTENTIAL REASONS for ERROR 

More and more detailed classification results can be achieved and the demand 

for such detailed results grows. Classification of remotely sensed datasets has 

shown the possibility of classification to the level of genera or even species 

(Ahmed et al., 2017; Colomina and Molina, 2014; Husson et al., 2017; Sankey et 

al., 2017a). Where temporal resolution is concerned, we are able to analyse changes 

in the magnitude of days or even hours (Fensholt et al., 2011; He et al., 2013; 

Sapiano and Arkin, 2009; Streets et al., 2013). However, despite the ultra-fine 

spatial and temporal resolution of data acquired from the state of the art RS 

platforms and the most advanced processing techniques, results of data analyses 

are still burdened by uncertainties (Olofsson et al., 2014). Such errors are 

in particular caused by: (i) semantic differences in the definitions of classes; 

(ii) misregistration of pixels or object boundaries and (iii) misclassifications, 
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i.e. errors caused by the classification process (Oort, 2007); as a fourth reason, we 

may add errors caused by incorrect accuracy assessment (Congalton and Green, 

2002). 

ACCURACY ASSESSMENT 

A transparent design and statistically robust approach for accuracy assessment is 

essential for maintaining integrity when evaluating RS methods (Olofsson et al., 

2014). A deterministic evaluation of (in)accuracies would require analysis 

at the level of each individual object or even pixel when considering raster 

representation. While this could be interesting, it is in view of the extent of studied 

areas practically impossible. Therefore, in real life, only a part of classified objects 

can be validated against reality and the results must be extrapolated on the full 

extent (Foody, 2002).  

Olofsson et al. (2014) stated the following general good practices for accuracy 

assessment: (i) implementation of a probability sampling design ensuring accuracy 

and area estimation in the best possible way (with respect to practical 

considerations such as costs or availability of reference data); (ii) usage 

of reference (true) samples with a better accuracy than evaluated (validated) 

samples (so-called response design protocol); (iii) usage of analyses that are 

compatible with sampling design and response design protocol; (iv) where 

thematic assessment is concerned, an error matrix with estimates of overall 

accuracy, user's accuracy and producer's accuracy should be provided; 

(v) quantification of uncertainties and evaluation of the variability and potential 

error in the reference data; (iv) proper description of utilized methods of accuracy 

assessment with emphasis on potential deviations from standard methods.  

The chosen methods and design accuracy assessment is, in accordance with 

the above recommendations, described and discussed in detail in the individual 

case studies. Here, we will however continue by description of basic types of error, 

typical methods of accuracy assessment and examples of their impact 

in the research field of environmental classification. 
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POSITIONAL ACCURACY ASSESSMENT 

Positional accuracy or error is a parameter used for evaluation of inconsistence 

between the map/image feature´s coordinates or elevation and their „true“ 

position on the Earth surface – in this sense, we can consider horizontal 

(planimetric) or vertical (elevation) accuracy. The accuracy assessment 

of positional error aims to estimate statistical parameters of the error distribution 

as mean, standard deviation and standard error. Root-mean-square error (RMSE) 

is a widely used estimation method, indicating an average deviation 

of the evaluated product from the true state (Congalton and Green, 2002). 

The positional accuracy of the (ground) true samples used for calibration 

and validation of mapping results (e.g. classification) must be better than the size 

of classified objects (Olofsson et al., 2014). The opposite would lead to incorrect 

calibration of the classification algorithm and subsequent misclassifications 

(Lillesand et al., 2015) or false results of accuracy assessment (Gu et al., 2015).  

Another problem resulting from the positional error in classifications and/or 

raster sampling is represented by so-called mixed or edge pixels. The problem 

occurs when a single image cell/pixel contains multiple categories (Foody, 2004). 

This inevitably leads to classification errors, to overestimation of common classes 

and underestimation of minority classes (Blanco et al., 2013). Fusion approach to 

classification is in addition faced with another problem - misalignment of fused 

datasets. The proper integration of multitemporal or multisensor datasets thus 

requires minimization of misalignment (Pohl and Genderen, 2016). This is 

especially problematic when data originate from different platforms. A perfect 

alignment of the data would require several integration steps, from mounting 

the instruments on board of the same aircraft, to a precise time registration 

of each measurement and final data fusion method (Asner et al., 2012). However, 

mounting the instruments on board of the same aircraft is often not feasible 

(typically in the case of UAVs due to low load bearing capacity) and is of course 

not applicable where individual datasets were acquired at different times. 

Remaining crucial steps include precise (geo)referencing of datasets and a proper 

use of the fusion method. 

Finally, from the perspective of the use of the products of integration 

in environmental research, positional accuracy is one of principal characteristics 

affecting the usability and relevance of the results. When trying to identify land 

cover changes from data burdened with positional error, false changes are detected 

in the misalignment areas (Dai and Khorram, 1998; Foody, 2009a, 2009b). When 

modelling distribution of a particular species by species distribution models, 
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positional error is one of the principal sources of uncertainty. Positional error 

causes incorrect characterization of conditions suitable for occurrence 

of the species in question, which leads to reduction of the model performance 

(e.g. overestimation of the species habitat areas; see more in a review by Moudrý 

and Šímová, 2012). 

THEMATIC ACCURACY ASSESSMENT 

Thematic accuracy is a parameter characterizing how well the predicted 

or classified value fits the reality. So-called confusion (error) matrices are among 

the most common ways of presenting thematic accuracy. The following 

metrics/characteristics are included in confusion matrix: overall accuracy (ratio 

of correctly predicted values to the total number of true samples), producer’s 

accuracy (the likelihood that the object will be classified correctly) and user’s 

accuracy (also called reliability - the likelihood that the class shown on the map 

will match the reality) (Congalton and Green, 2002). Characterization 

from the opposite perspective, i.e. from the perspective of error, is also widely 

used (Overall Error; Omission Error as a complement to producer’s accuracy; 

Commission Error as a complement to user’s accuracy). 

When evaluating the quality of classification results, it is necessary to consider 

the producer’s accuracy/omission error as well as user’s accuracy/commission 

error because even if the overall accuracy may be high, a closer look may reveal 

a low producer’s or user’s accuracy of an individual class and the respective class 

is therefore represented incorrectly. Such a problem would limit the usability 

of the resulting species occurrence maps for subsequent research or management 

purposes. This is especially true when some of the classes possess very distinct 

characteristics (spectral properties, LiDAR or vertical characteristics, etc.) while 

others do not. Land cover classification containing artificial surfaces (such as 

tarmac or gravel roads), which are almost 100% distinguishable from vegetation, 

may serve as an example of such result. The extremely high “success rate” 

in the classification of such surfaces then artificially increases the overall accuracy. 

Hence, interpretation of the model accuracy only on the basis of the overall 

accuracy and subsequent usage of thus derived maps or data for ecological 

research may lead to biased results (Chignell et al., 2018; Fisher et al., 2018; Moudrý 

and Šímová, 2012; Schmidt et al., 2017; Šímová et al., 2019). For example, if 

the presence of a particular shrub species is important for the occurrence 

of an endangered bird species due to its feeding habits, the failure to correctly 

identify that particular shrub species (despite a high overall accuracy) provides 
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incorrect input data for the analysis of the particular bird occurrence. The results 

of such an application would therefore be invalid; if they are however perceived 

as reliable due to the high overall accuracy of the map, it could lead in effect to 

incorrect management decisions (Prošek and Šímová, 2019). Hence, 

the producer’s and user’s accuracy have to be considered in addition to the overall 

accuracy as integral characteristics that should always be reported by product 

creators and taken into account by product users (Congalton et al., 2014).  
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ABSTRACT 

Unmanned aerial vehicle (UAV) platforms are rapidly becoming popular in many 

research and industry sectors. Due to their relatively low purchase price 

and the fact they can be used to monitor areas that are difficult or even unsafe 

to access, they have been increasingly used in land surveying and mapping 

of smaller areas. Numerous UAV platforms equipped with various cameras are 

increasingly available on the market, differing in their suitability for environmental 

mapping. Surveyors therefore face a question whether to buy or assemble their 

own UAV. The objective of this study is to assess the performance of two fixed-

wing UAV systems for land survey and mapping applications. In particular, we: 

(1) compared a commercial eBee platform equipped with a Sony Cybershot DSC-

WX220 camera with zoom lens and a home assembled EasyStar II equipped with 

Nikon Coolpix A with a lens of fixed focal length to find out if a home-assembled 

solution can compete with specialized commercial platform; (2) investigated 

the utilization of UAV images acquired under leaf-off conditions for digital terrain 

model (DTM) generation with respect to vegetation cover (steppes and forests); 

(3) assessed whether an increase in the image quantity can compensate for a lower 

quality of images; and (4) compared the DTM derived from UAV imagery with 

the official Czech Republic airborne laser scanning (ALS) derived DTM. One 

flight with Easystar II and two perpendicular flights with eBee were performed. 

From these three flights, four point clouds were derived (one from each flight, 

and one resulting from a combination of two eBee flights), supplemented 

with four ground filtered point clouds. The accuracy of point clouds and DTM 

was assessed through a comparison with a conventional GNSS survey. We 

successfully identified the bare ground during the leaf-off period in the deciduous 

forest using images from both platforms. Point densities of point clouds acquired 

with Easystar II exceeded the densities of those acquired with eBee even after 

combining images from two eBee flights. Root mean square error of all derived 

point clouds ranged between 0.11 and 0.19 m, exceeding the accuracy of 

a nationwide ALS-derived DTM in both forest and open steppe areas. The most 

accurate point cloud was acquired using Easystar II. This is likely due to 

a combined effect of the quality of onboard cameras, camera settings 

and environmental conditions during the flight. For users who prefer to have 

greater control over their options rather than being dependent on the 

commercially available kit solution, home- assembled kits utilizing drones capable 

of carrying any camera available on the market may be an advantage.  
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Introduction 
Mining has a significant effect on the environment and has caused extensive 

transformations of landscapes throughout Europe. Surface lignite mining 

and associated disturbances affect large areas. Original ecosystems are removed, 

excavated overburden is deposited on spoil banks, biodiversity is significantly 

reduced, aesthetic value is also degraded, and landscapes are affected by operation 

facilities and coal processing plants (Hendrychová and Kabrna, 2016; Svobodova 

et al., 2012). While rehabilitation of such areas plays an integral part already 

at the mine planning stage, the effect of rehabilitation methods on landscape 

restoration success is still subject to extensive research (Vymazal and Sklenicka, 

2012). Studies devoted to mining and post-mining areas have been carried out 

at the landscape scale as well as at the scales of individual mines or quarries. Data 

for such studies are increasingly acquired by means of satellite (Bodlák et al., 2012), 

airborne (Wężyk et al., 2015) or terrestrial (Pukanska et al., 2014; Tong et al., 2015) 

remote sensing. However, satellite remote sensing provides limited information 

in terms of spatial resolution while terrestrial measurements are labour-intensive 

and time-consuming. In this context, Unmanned Aerial Vehicle (UAV) platforms 

show a great potential to fill the existing gap between satellite remote sensing 

and field measurements.  

UAV platforms are increasingly being used as an important source of data 

for monitoring, surveillance, and 3D modelling of areas affected by mining 

activities. Due to their advantages such as the capability to monitor areas that are 

difficult or even unsafe to access, they have been used to monitor, for example, 

rock slides (Fraštia et al., 2014), spoil heaps (Koska et al., 2017), surface mines 

(Kršák et al., 2016; Tong et al., 2015) or artificial rock outcrops (Blistan et al., 

2016). They are usually used in combination with digital cameras and acquired 

images are processed using a combination of Structure from Motion (SfM) 

and Multi View Stereo (MVS) approaches allowing extraction of 3D point clouds 

similar to those produced by laser altimetry (Nex and Remondino, 2014).  
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Laser altimetry, commonly referred to as Light detection and ranging (LiDAR) 

or airborne laser scanning (ALS), is an active remote sensing technology that has 

enabled terrain measurement with great extent and high accuracy (Wehr and Lohr, 

1999). LiDAR pulses can penetrate through gaps in vegetation canopies 

and register multiple returns representing both canopy and terrain. LiDAR point 

clouds can be classified using a specialized software to distinguish between ground 

and vegetation returns. Ground returns are then used to generate digital terrain 

model (DTM), while returns representing vegetation canopy can be used to derive 

various forest metrics (Hawryło et al., 2017; Mikita et al., 2013). Airborne laser 

scanning data are increasingly available and provided free of charge through 

government agencies in Europe (e.g. Fogl and Moudrý, 2016). However, due 

to the high acquisition costs, coverage is still lacking in many areas.  

Digital photogrammetry methods are based on images from passive sensors. 

The character of photogrammetrically generated point clouds is therefore 

inherently different, and their utilization for terrain surveys is mostly limited 

to bare-ground surfaces due to constraints presented by vegetation canopies 

(Meng et al., 2010). Dense vegetation constitutes a particularly challenging 

environment for bare ground detection as it is strongly affected by a number 

of systematic errors caused by the fact that only the uppermost layer is usually 

detected with digital photogrammetry methods. Indeed, the inability to acquire 

an accurate DTM under vegetation canopies is a frequently mentioned limitation 

preventing a wider uptake of digital photogrammetry in forestry applications 

(Jensen and Mathews, 2016; Tomaštík et al., 2017). In the case of deciduous forest 

stands, however, it is possible to acquire data during the leaf-off period, which is 

also a common approach for ALS data acquisition (e.g. Hodgson et al., 2005). 

However, the usability of images acquired under leaf-off conditions for modelling 

terrain underlying deciduous forest stands has been scarcely tested. Ni et al. (2015) 

and more recently DeWitt et al. (2017) have shown that it is indeed possible using 

satellite images, Dandois and Ellis (2013) reported similar success with UAV 

images. However, a deeper understanding of the possibilities and limitations 

of image data acquired from UAV platforms under leaf-off conditions is still 

lacking.  

Numerous UAV platforms equipped with various cameras are increasingly 

available on the market, differing in their suitability for environmental mapping 

(Boon et al., 2017; Thoeni et al., 2014; Torresan et al., 2017). Surveyors then often 

face a question whether to buy or assemble their own UAV. Some of the 

commercially available drones may be equipped only with vendor provided 

cameras. While home assembled drones are easily altered and upgraded anytime 
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(e.g. with a new camera), it may take some time until new equipment is available 

from the vendor in the case of a commercial drone.  

Consumer grade cameras have not been designed for photogrammetric 

applications (in contrast to metric cameras) and, as a result, they exhibit greater 

distortion and interior orientation instability (Fraser, 2013). The accuracy of point 

clouds or derived products such as DTM are also affected by other camera 

specifications (e.g. lens focal length or maximum aperture). Although cameras 

with zoom lens are used, cameras with a fixed focal length are considered superior 

for photogrammetry applications (Fraser, 2013; Shortis et al., 2006). Furthermore, 

the products’ resulting accuracies are affected by camera calibration and image 

orientation. While these tasks are solved separately for photogrammetric 

applications, in many applications they have to be computed at the same time 

using self-calibration procedures. However, it has been shown that self-calibration 

procedures used as a part of the bundle adjustment process may lead to errors 

in derived DTMs (Harwin et al., 2015; James et al., 2017; James and Robson, 

2014). In addition, collection of UAV imagery can be affected by environmental 

factors such as complex shadowing effects (e.g. Milas et al., 2017) and/or leaf 

and/or twig movements caused by the wind (e.g. Jensen and Mathews, 2016), 

which may consequently complicate the image matching algorithm. Besides, 

adjacent image overlaps can vary due to interference of external factors such 

as gusts of wind with the UAV stability (Jensen and Mathews, 2016). 

The general aim of this study is to compare the suitability of two fixed-wing UAV 

systems equipped with different cameras to survey a complex terrain of a non-

reclaimed spoil heap. In particular, we: (1) compared a commercial eBee platform 

equipped with a Sony Cybershot DSC-WX220 camera with zoom lens and a home 

assembled EasyStar equipped with Nikon Coolpix A with a lens of fixed focal 

length to find out if a home-assembled solution can compete with specialized 

commercial platform; (2) investigated the utilization of UAV images acquired 

under leaf-off conditions for DTM generation with respect to vegetation cover 

(steppes and forests); (3) assessed whether an increase in the image quantity can 

compensate for a lower quality of images; and (4) compared the DTM derived 

from UAV imagery with the official Czech Republic LiDAR DTM. 
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Materials and methods 

STUDY AREA  

Our study area is located in north-west Bohemia, Czech Republic, in the Most 

mining district (50°34ʹ N, 13°34ʹ E). The present study was conducted 

on an area of 68 ha located in the southern part of Hornojiřetínská spoil heap 

(Figure 1). Due to existing plans to mine the underlying coal seam in the future, 

this part of the Hornojiřetínská spoil heap has never been technically reclaimed. 

The terrain morphology has remained rugged as a result of heaping that has 

formed a typical undulated terrain (e.g. Doležalová et al., 2012). It has been 

observed that rough terrain and dense vegetation negatively affect the accuracy 

of point clouds (e.g. Meng et al., 2010). Therefore, such a challenging environment 

provides an ideal location for exploring the quality of point clouds and DTMs. 

The vegetation is in a late succession stage 35–50 years after heaping and consists 

of aquatic vegetation in terrain depressions (e.g. common reed Phragmites 

australis and common cattail Typha latifolia), steppes (low vegetation, especially 

bush grass Calamagrostis epigejos and tall oat grass Arrhenatherum elatius with 

scattered shrubs and trees such as elder Sambucus, rosehip Rosa, birch Betula, 

hawthorn Crataegus), and forests. Forests occupy approximately 20% of the study 

area and tree height is up to 30 m (Figure 1). The forest type and structure vary 

significantly throughout the study area. In order to take into account the effect 

of the forest type and structure on point clouds accuracy, we distinguished three 

forest areas: (1) afforested plantations of European ash (Fraxinus excelsior); 

(2) spontaneously grown forest dominated by Birch (Betula pendula); and 

(3) mature forest of Willow (Salix spp.) and Alder (Alnus spp.) (Table 1, Figure 1). 

The size of the study area is larger than the area where control points are located, 

which allowed us to verify the stability of the UAV-derived photogrammetric 

model.  
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Figure 1. Location of the study area in the southern part of Hornojiřetínská spoil heap (right); 
Canopy height model and location of three forest areas (top left); Ortophoto during leaf-on 

period (bottom left).  

LiDAR DATASETS  

Two LiDAR datasets were available for the study area. The first one was collected 

over the study area in the leaf-on period (May 2017) using a remote sensing 

platform called the Flying Laboratory of Imaging Spectroscopy equipped with 

a Riegl LMS-Q780 LiDAR (Hanuš et al., 2016). Data collection flights were 

conducted at 1030 m above ground with a velocity of 110 knots (ground speed) 

and with a 55% flight line side overlap. This provided an average density of 7.7 

points per m2. We used this dataset to calculate vegetation structure characteristics 

of forests (Table 1).  

The other LiDAR dataset was collected during the leaf-off period and was thus 

used as a reference surface for validation (hereinafter, DTMLiDAR). It was procured 

from the State Administration of Land Surveying and Cadastre. The model is 

based on ALS data gathered between 2010 and 2013. Minimum initial density 

of the raw acquisition data was 1 point per m2 while the final product was delivered 

in the form of terrain heights of discrete points forming a Triangulated Irregular 

Network (TIN). The declared Root Mean Square Error (RMSE) of heights is 

0.18 m in a terrain without continuous vegetation and 0.30 m in terrain with dense 

vegetation (i.e. forests). The accuracy has been evaluated by several studies 

(e.g. Hubacek et al., 2016; Šilhavý and Čada, 2015) and the model was previously 
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used, for example, in studies of yield prediction (Kumhálová and Moudrý, 2014; 

Moravec et al., 2017). Both LiDAR datasets were provided in the Datum 

of Uniform Trigonometric Cadastral Network (S-JTSK; EPSG: 5514) and Baltic 

Vertical Datum – after adjustment (Bpv; EPSG: 5705). 

Table 1. General characteristics of forests structure. Maximum, average, and standard 
deviation of height are calculated from a Canopy Height Model. Other characteristics are 

calculated directly from a classified point cloud. Canopy cover is calculated as the number of first 
returns above breast height (1.37 m) divided by the number of all first returns. Density of (D) 

ground, shrubs, and trees represents the number of returns in each height interval divided 
by total number of returns. 

Forest Area 

(ha) 

Max. 

height 

(m) 

Avrg. 

height 

(m) 

SD 

of height 

(m) 

Canopy 

cover 

(%) 

D. 

ground 

(%) 

D. 

shrubs 

(%) 

D. 

low 

trees 

(%) 

D. high 

trees 

(%) 

Plantations of European 

 ash 

6.8 29.4 12.4 5.0 58.0 42.3 4.8 40.8 12.0 

Spontaneously grown forest 

 of Birch 

5.0 21.3 10.6 4.1 60.0 40.6 3.0 52.8 3.6 

Mature forest of Willow 

 and Ader 

1.2 23.4 15.3 4.4 75.0 27.7 2.0 28.8 41.5 

GROUND CONTROL POINTS and VALIDATION CHECKPOINTS  

Prior to the UAV flights, twenty ground control points (GCPs) were established 

within and in the vicinity of the study area (Figure 1). GCPs were made of white 

wooden boards (dimensions 0.40 m by 0.40 m) with a black circle dia 0.15 m 

in the centre. GCPs coordinates were surveyed using Trimble GeoXR 6000 

handheld differential global navigation satellite system (GNSS) receiver with 

Zephyr 2 external antenna mounted on a pole in dual-frequency differential real-

time kinematic (RTK) mode with a 15 s observation time. It was connected to the 

Czech positioning system (CZEPOS) permanent GNSS network.  

Another RTK GNSS survey was conducted over the study area on 28 March 2017 

(leafoff period) to locate checkpoints for point clouds evaluation using a dual-

frequency Leica GPS1200 receivers. RTK mode with a 5 s observation time 

connected to the CZEPOS permanent GNSS network was used. As collecting 

GNSS data under tall canopies even during the leaf-off period was a challenging 

task, a conventional total station survey (with the total station position determined 

using GNSS) was also used in forested areas. In total, 721 checkpoints were 

collected for this study (Figure 1). In order to assess quantitatively the effects 

of vegetation canopies on point clouds accuracy, the information on vegetation 



- 39 - 
 

canopy (i.e. forest or steppe) was recorded during the survey for each checkpoint. 

422 points were obtained in forests and 299 points in steppes. All GCPs 

and checkpoints were transformed into the S-JTSK and Bpv coordinate system 

and provided 2–4 cm horizontal and vertical relative accuracies (Štroner et al., 

2013).  

UAV SYSTEMS  

Two UAV systems were used for the collection of images (Table 2). A commercial 

eBee system produced by SenseFly is a ready-to-deploy fixed-wing aircraft with 

removable wings and a push propeller. EBee was equipped with a Sony Cybershot 

DSC-WX220 camera with a resolution of 18.2 MPix and a zoom lens 

of equivalent focal length of 25 to 250 mm. Easystar is a home-assembled drone 

that consists of a commercially available motor glider Easystar II and 3DR 

Pixhawk autopilot allowing a fully autonomous flight. Easystar was equipped with 

Nikon Coolpix A camera with a 16.2 megapixel resolution and a fixed lens with 

an equivalent focal length of 28 mm.  

Table 2. Comparison of the two UAVs. The prices are listed for the year of purchase (2015).  

Item eBee Easy Star 

UAV type fixed-wing fixed-wing 

Motor Electric pusher propeller, 160 W Electric pusher propeller, 235 W 

Aircraft weight with camera Approx. 0.7 kg Approx. 1.0 kg 

Payload only vendor provided cameras any camera 

Wingspan 96 cm 136.6 cm 

Flight time 40 minutes 40 minutes 

Flight speed 11–25 m/s 10–24 m/s 

Autopilot integrated Pixhawk 

Batteries 3S LiPo, 2150 mAh 3S LiPo, 2200 mAh 

Cost (with equipment) Approx. $20,000 Approx. $5,000 

UAV SURVEYS  

The UAV images were collected on different days during March 2017 (Table 3). 

The days may have slightly differed in environmental conditions (e.g. light, wind 

speed), both days, however, met the conditions required for a successful survey. 

One flight with Easystar and two flights with eBee were performed to assess 

the effect of image quantity on accuracy and a density of a point cloud. The eBee 

flights were mutually perpendicular and differed in flight trajectories (Figure 2). 

Hereinafter, we refer to these flights as Easystar, eBee1 and eBee2. For both 

systems, an overlap of 85%, sidelap of 65% and a ground sampling distance 
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of about 30 mm per pixel was set. Height and speed of the UAV flight were set 

in both systems by the ground control software, depending on the required 

resolution. For both systems, the flight height was about 100 m above the ground 

level. The camera settings were manually set to ISO 400 and shutter speed priority 

(1/1250 s) for Easystar while eBee camera used default, manufacturer 

recommended settings (User Manual – WX Camera; Table 3).  

Table 3. Camera settings, parameters, photos acquired and camera interior orientation 
parameters. eBee Easystar Camera Sony Cybershot DSC-WX220 Nikon Coolpix A. 

(*physical focal length **Equivalent Focal Length for 35 mm film ) 

Camera eBee 

Sony Cybershot DSC-WX220 

Easystar 

Nikon Coolpix A 

Specifications and setttings  
  

Sensor (Resolution (Mpix)/Crop)  18.2/2.3  16.2/1.5  

Focal length (real*/ekv.**) (mm)  4.45/25  18.05.2028 

Aperture  3.3 2.8 – 4.5  

ISO  100 – 125  400 

Shutter speed (s)  1/250 – 1/640  1/1250  

Date of flight 28–03-2017  11–03-2017 

Number of photos (eBee1/eBee2) 1004/903 940 

Number of aligned photos (eBee1/eBee2) 941/869 938 

Interior orientation parameters  
  

Focal length (F) 4.5539 18.5764 

Principal point (Cx/Cy)  2437.82/1848.56  2458.75/1659.73  

Radial distortion parameters (K1/K2/K3)  -0.0033/-0.0338/0.0290  -0.0742/0.0901/-0.0467  

Tangential distortion parameters (P1/P2)  0.0025/-0.0012  -0.0003/0.00002  
 

 
Figure 2. Flight line trajectories (left to right eBee1, eBee2 and Easystar). 
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IMAGE PROCESSING and 3D POINT CLOUD GENERATION  

To generate 3D point clouds, acquired images were processed in the Agisoft’s 

PhotoScan Professional version 1.2.6. Processing was done separately for each 

individual flight (Easystar, eBee1, eBee2) and the two eBee flights were also 

combined (hereinafter, we refer to this as eBee1,2) to test the improvement 

in terrain representation. The procedure consisted of the alignment process, 

iteratively refining external and internal camera orientations and camera locations 

through a least squares method, generating a sparse point cloud, followed by the 

dense multi-view 3D reconstruction algorithm. The images, along with positional 

data estimated by the onboard GPS during the flight, were loaded into PhotoScan 

software. The alignment was subsequently completed using accuracy parameter 

set to ‘high’ and pair pre-selection to ‘disabled’. Accuracy set to ‘high’ ensured 

the use of the original image resolution while ‘disabled’ pair pre-selection ensured 

the best image matching. The limit for key points (indicating the maximum 

number of points sampled within each image) was set to 20,000 and for tie points 

(the number of points used for image matching) to 5,000. The GCPs were loaded 

and identified in the images, their assumed accuracy was set to 2 cm. Six points 

were completely removed from the evaluation due to their displacement or 

complete destruction by animals. This devaluation was caused by a time gap 

between the measurement of the ground control points and the flights, which was 

in turn caused by the necessity to wait for the appropriate weather conditions 

(no snow cover, low wind speed, etc.). Dense point clouds were built with a high 

reconstruction quality and mild depth filtering. The point clouds were transformed 

into the S-JTSK and Bpv coordinate systems and exported to the LAS format. To 

determine the accuracy of the photogrammetric model, the total coordinate 

error E was calculated for each point cloud as follows:  

 

where Xerr, Yerr and Zerr are coordinate differences of GCPs, and N is the number 

of control points. For all point clouds (Easystar, eBee1, eBee2, eBee1,2), points 

representing ground surface were identified using LAS Ground tool of the ArcGIS 

software and exported as new ground filtered point clouds (hereinafter, we refer 

to those as EasystarGround, eBee1,Ground, eBee2,Ground, eBee1,2,Ground). 
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POINT CLOUDS and DMR5G ACCURACY ASSESSMENT  

We compared cameras calibration (i.e. focal length, principal point coordinates, 

radial and tangential distortion coefficients) and residual errors. Besides, we 

compared point clouds in terms of their density and calculated height differences 

between point clouds and checkpoints. The GNSS surveyed checkpoints have 

the greatest accuracy and were thus used as the reference dataset (true elevation) 

to evaluate the point clouds. To quantitatively evaluate the impact of vegetation 

on point cloud accuracy, we performed the evaluation separately for steppes 

and three forest types (Table 1). We evaluated the accuracy of all point clouds 

(Easystar, eBee1, eBee2, eBee1,2, EasystarGround, eBee1, Ground, eBee2, Ground, 

eBee1,2,Ground) and DTMLiDAR. We also show a profile to visually compare the 

photogrammetric point clouds (Easystar, eBee1,2) with LiDAR. In addition, we 

performed pairwise combinations between the two ground filtered point clouds 

and DTMLiDAR. Water areas were manually vectorised over orthophoto and 

removed from the analysis. All analyses were performed in ArcGIS 10.4.1 and 

Cloud Compare 2.9.1.  

Due to the presumed presence of outliers, we used a robust L1 norm method 

(Koch, 1999). This method, being a function of the probability distribution, 

directly uses Laplace distribution, which is more suitable for dealing with outlying 

measurements than normal distribution. For nonhomogeneous measurements 

(measurements with varying standard deviations), a robust weight change is given 

by the function,  

 

where w represents weights, v residuals and iteration step. The calculation is done 

iteratively, residuals acquired from one calculation are used to calculate robust 

weights’ changes in the next calculation. The outliers are determined by residuals 

exceeding the limit value (2.5 times the standard deviation calculated from 

residuals). After finding the first set of outliers, new value of mean and standard 

deviation is determined, followed by a new robust analysis of outliers. As 

a maximum, ten iterations were used and the number of outliers did not exceed 

10%.  

Subsequently, we calculated vertical differences between 721 checkpoints and 

the individual point clouds. The point cloud heights at the positions 

of checkpoints were derived using 2.5D Delaunay triangulation from six nearest 

points. Mean error x, standard deviation s and RMSE were calculated for vertical 

differences. Both the systematic and random error of the differences contribute 
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towards RMSE while only the random error component is included 

in the standard deviation.  

 

where xi is the ith elevation from point cloud, xREF is the corresponding ‘true’ 

measured elevation, x is mean error, and N is the number of checkpoints. 

Results and discussion  

CHARACTERISTICS of CAMERAS and GEOREFERENCING  

Calibration results of both cameras including estimates of focal length, principal 

point coordinates, radial and tangential distortion coefficients, and residual errors 

are shown in Figure 3 and Table 3. The Nikon Coolpix A camera (Easystar) 

achieved very small residual errors after calibration (max. approx. 0.2 pixels) due 

to the overall quality of the prime lens (fixed focal length). The calibration model 

eliminated the radial distortion in the centre of the camera very well. In contrast, 

the DSC-WX220 (eBee) residual error after calibration was higher (max. approx. 

0.7 pixels). This is likely due to the naturally inferior quality of the zoom lens when 

compared with a prime lens, and therefore different distortion values during 

shooting. According to the radial and tangential distortion parameters (Table 3), 

the Coolpix A lens has a bigger radial distortion than the DSCWX220. However, 

Coolpix A calibration successfully eliminated the distortion while the DSC-
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WX220 indicate a radial distortion that increases in the direction of the 

perspective centre (Figure 3).  

The total coordinate errors associated with the georeferencing of the point clouds 

in Agisoft’s Photoscan are shown in Table 4. The higher total coordinate error 

for eBee point clouds is likely caused by the lower quality of images. We noticed 

many GCPs were blurred with the central black circle difficult or even impossible 

to discern. Such a blur in these images is likely to occur due to a combination 

of abrupt changes in UAV speed or position in strong gusts of wind (Jensen and 

Mathews, 2016) and the slower shutter speed of the camera. Posterior comparison 

revealed that the default camera settings used on the eBee platform used 

a different compensation method to achieve uniform luminosity than the shutter 

speed priority used on the Easystar UAV (Table 3).  

 

Table 4. Summary of point cloud characteristics. Point density is shown as Mean ± Standard 
deviation. Void fraction is a percentage of 1m2 resolution cells that did not contain any ground 

point. 

Flight  Total 

coordinate 

error (m) 

Total points  Point 

density 

(points/m2)  

Ground points  Ground point 

density 

(points/m2)  

Percentage 

ground 

(%)  

Void 

fraction 

(%) 

Easystar  0.041 205,311k 330 ± 54  169,507k 277 ± 84 82.6 1.3 

eBee1 0.081  163,290k  274 ± 84 113,525k 197 ± 93   69.5  7.2 

eBee2  0.053  129,003k 208 ± 37  105,960k 173 ± 53  82.1  1.3 

eBee1,2  0.050  145,129k 241 ± 76  111,088k 188 ± 79  76.5  5 

 

Figure 3. Visualisation of distortion characteristics of lens mounted on the two platforms/(left 
– Easystar, right – eBee). 
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While the Easystar mounted Nikon Coolpix A camera with its larger sensor, which 

is less prone to noise generation, allowed a higher ISO setting and therefore higher 

shutter speed (1/ 1250s), Sony DSC-WX220 camera mounted on eBee in the 

manufacturer-recommended auto mode used low ISO and compensated for 

changing lighting conditions predominantly by changing shutter speed.  

DENSITY and ACCURACY of PHOTOGRAMMETRICALLY 

DERIVED POINT CLOUDS  

Point cloud characteristics for the acquired datasets varied significantly (Table 4). 

The most dense point cloud was acquired with Easystar. Its average density was 

330 points per m2, while the average density of all eBee derived point clouds was 

below 280 points per m2. When overlaid with a grid at 1 × 1 m resolution, Easystar 

and eBee2 provided a similar number of cells containing at least one ground point 

(a low value of void fraction). It is evident that the images acquired with Easystar 

were of very high quality allowing proper image matching and thus a greater 

number of points. Moreover, ground points were successfully generated even 

in the forest areas. In contrast, eBee1 contained a number of void areas in forests. 

The point density was significantly lower for eBee1,2 and eBee2 than for Easystar 

but it still achieved relatively good results in terms of ground coverage, especially 

in problematic forested areas (Figure 4; see below). Furthermore, we found that 

the proportion of ground points was not dependent on the total number of points 

in the point cloud as eBee1 showed a lower proportion of ground points despite 

having a higher point density. 

The accuracy of point clouds was relatively consistent throughout the three forest 

types under study and the results shown represent evaluation throughout all 

forested areas (Table 5). Easystar point cloud achieved the best accuracy in both 

the forests (Table 5) and steppes (Table 6) with the RMSEs of 0.11 m and 0.12 m, 

respectively. A combined processing of two individual flights eBee1,2 resulted in 

a lower RMSE than individual eBee point clouds, both the RMSE (due to a greater 

systematic error) and the number of excluded measurements were however still 

worse than Easystar results. The eBee2 point cloud, despite displaying a higher 

RMSE and number of outlying values than Easystar, still yielded a very good 

overall accuracy of the data. The eBee1 flight achieved the worst results in the 

forest areas.  

The high number of outliers for eBee1,2 and especially for eBee1 point cloud was 

caused by gaps in forested areas where no points were identified by the software. 
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Contrary to our expectations, a higher number of images did neither lead to 

a better coverage, nor higher point densities or lower void fraction (Table 4). 

On the contrary, the results were inferior to those acquired from a single eBee2 

flight. Triangulation between distant points in these gap areas (without a single 

point identified) created a terrain significantly different from reality, and points 

were evaluated as outlying. We did not notice these gaps in steppes and indeed 

the number of outliers is much lower in that environment (Table 6). Although 

Clapuyt et al. (2016) have shown that topography derived from repeated surveys 

differed in the magnitude of centimetres which is in accordance with our results, 

they have performed their study in an area covered by pasture and arable fields 

without crops. As we detected relatively large gaps where no points were identified 

for eBee1 point cloud, it is apparent that under suboptimal conditions 

(e.g deciduous forest during leaf-off period), the repeatability of a survey is 

problematic.  

 

 

Figure 4. Ortophoto and location of a profile (top) and structure of photogrammetric point 
clouds under forest stands derived from eBee1,2 (middle) and Easystar (bottom) in comparison 

with LiDAR point cloud acquired during leaf-on period (May 2017). Note that both 
photogrammetric point clouds show a great potential for detecting ground in forest during the 

leaf-off period. The profile is 1 m wide.  
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Table 5. UAV and GNSS differences (422 points in forest). 

Flights Mean difference (m) RMSE(m) SD (m) No. of outliers 

Easystar 0.04 0.11 0.10 3 (1%) 

eBee1 0.08 0.17 0.15 31 (7%) 

eBee2 0.10 0.15 0.11 10 (2%) 

eBee1,2 0.08 0.13 0.10 13 (3%) 

EasystarGround 0.05 0.11 0.10 1 (0%) 

eBee1,Ground 0.07 0.19 0.17 47 (11%) 

eBee2,Ground 0.10 0.15 0.11 16 (4%) 

eBee1,2,Ground 0.08 0.13 0.11 15 (4%) 

DTMLiDAR 0.21 0.24 0.13 21 (5%) 

 

Table 6. UAV and GNSS differences (299 points in steppes).  

Flights Meandifference(m) RMSE(m) SD(m) No.ofoutliers 

Easystar 0.05 0.12 0.11 3(1%) 

eBee1 0.15 0.19 0.11 1(0%) 

eBee2 0.16 0.19 0.09 4(1%) 

eBee1,2 0.14 0.16 0.07 3(1%) 

EasystarGround 0.04 0.11 0.10 3(1%) 

eBee1,Ground 0.16 0.19 0.11 5(2%) 

eBee2,Ground 0.16 0.19 0.10 7(2%) 

eBee1,2,Ground 0.15 0.17 0.08 12(4%) 

DTMLiDAR 0.27 0.31 0.14 22(7%) 

 

We can only hypothesize what caused the differences between two eBee flights. 

The most likely explanation lies in differences in the weather conditions between 

the flights, especially wind speed. The combination of a possible higher wind 

speed, causing movement of the thin twigs, and slower shutter speed used 

by the camera in the manufacturer recommended default settings might have 

caused a greater blur in the forest areas in the eBee1 flight, which might have 

subsequently complicated the image matching algorithm.  
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The EFFECT of the VEGETATION  

The low difference between the RMSE and the standard deviation indicates 

a minimal systematic error in the forest areas. The obtained standard deviations 

for the height component are approaching the generally accepted limit of accuracy 

of the GNSS RTK method of about 0.05–0.1 m, indicating the suitability of UAV 

photogrammetry for ground detection even in the deciduous forests during 

the leaf-off period. In the steppes, however, point clouds are affected by a slightly 

higher systematic shift (Table 6). This slight increase in RMSE for all point clouds 

is likely caused by the presence of low vegetation and shrubs. The passive 

photogrammetric methods measure the highest visible terrain points, e.g. grass 

or small dense shrubs. The systematic shift is caused by the difference between 

the height of the low vegetation and the terrain.  

While the presence of low vegetation is problematic even in winter and the risk 

that the vegetation is identified as the ground is almost inevitable (Meng et al., 

2010), high vegetation (i.e. tree trunks, branches, and twigs) was only residually 

present in generated point clouds (Figure 4). That is in contrast with Dandois and 

Ellis (2013; see Figures 2 and 7 in their paper). The different character of acquired 

point clouds is likely due to the differences in the structure of the forests. 

The canopy on the three deciduous forest plots (250 × 250 m) in their study was 

higher (mean canopy height between 20 m and 37 m; maximum height up to 42 m) 

and the species composition was different (mainly American beech Fagus 

grandifolia, oak Quercus spp., hickory Carya spp., and tulip-poplar Liriodendron 

tulipifera). Besides, they used a hexacopter and flew only 40 m above the peak 

canopy height (our flying altitude was almost double that above the canopy).  

ACCURACY of LiDAR DTM  

DTMLiDAR contains a higher systematic error (shift) and a higher number 

of outliers compared to the photogrammetrically derived point clouds in both 

forests and steppes (Table 5, 6). The RMSE of 0.24 m is within the declared 

accuracy of 0.30 m in forests; in the steppes, however, the RMSE of 0.31 exceeds 

the declared accuracy; the vertical (in) accuracy of GNSS survey (0.05–0.1 m) used 

as a true elevation must be however taken into account and hence, the DTMLiDAR 

accuracy may well be maintained even in these areas. The reasons are likely similar 

to those discussed for photogrammetric point clouds as the vegetation is often 

dense in these areas, which, in conjunction with the low density of ALS data, may 

have prevented an accurate recording of the ground surface (see Brazdil, 2012). 

Furthermore, Hubacek et al. (2016) reported problems in areas where a micro-
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relief objects were present. It is likely that it might have been difficult to accurately 

represent the undulated terrain with low density of points.  

There is a systematic shift of DTMLiDAR compared to the acquired 

photogrammetric point clouds (Table 7), which corresponds to their higher 

accuracies (Tables 5 and 6). Height differences range from −0.20 m to 0.56 m 

and from −0.28 m to 0.58 m for ground filtered Easystar and eBee1,2 point clouds, 

respectively, prior to the L1 norm application, and therefore containing the 

outliers (Figure 5). Outside the area with ground control points, the point clouds 

acquired by the individual UAVs (after ground filtering) are affected by the 

stability and rigidity of the model. In the area between the ground control points 

(central part), the differences are very close to zero for both Easystar and eBee; 

nevertheless, the accuracy drops outside the area with the ground control points. 

Note that the areas of lower accuracy slightly differ between the point clouds 

(Figure 5). UAV platforms are less costly to deploy in comparison to ALS surveys 

and able to provide data at higher spatial resolutions that are more appropriate 

for microtopographic studies (Lucieer et al., 2014). On the other hand, they are 

highly limited by weather conditions (snow, wind, cold and the movement of the 

sun) that are often, especially during the winter season, not very inviting for 

a survey.  

Table 7. Image-derived point clouds comparison with LiDAR DTM (147,111 points).  

Point clouds Mean difference (m) RMSE (m) SD (m) No. of outliers 

EasystarGround 0.15 0.21 0.14 3805 (3%) 

eBee1,Ground 0.13 0.22 0.17 6772 (5%) 

eBee2,Ground 0.11 0.18 0.14 5576 (4%) 

eBee1,2,Ground 0.12 0.18 0.13 6569 (4%) 
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Figure 5. Comparison of point clouds eBee1,2,Ground (left) and EasystarGround (right) with 

LiDAR DTM expressed as vertical difference (LiDAR – Point Cloud). Red colour indicates 
areas of overestimation and blue color areas of underestimation of LiDAR DTM compared 

to point clouds. Note that high overestimation occurs mainly in areas outside the ground control 
points, which indicates decreasing accuracy of point clouds outside the area defined by GCPs. 

Conclusions  
We compared the suitability of two UAV systems (a commercial eBee system 

by SenseFly and a home assembled Easystar II motor glider with 3DR Pixhawk 

autopilot) for mapping of undulated terrain of post-mining site (spoil heap) during 

a leaf-off period. We want to emphasize that our goal was to compare the overall 

performance (i.e. drone + camera) of a commercially available ready-to-use 

platform with a cheap customizable home-assembled kit and it was not our 

intention to evaluate suitability of particular cameras (as various cameras can be 

mounted on Easystar), nor to evaluate the automated vs manual setting 

of parameters, although they are likely the main cause of the differences.  

The acquired point clouds were evaluated in two environments – forests 

and steppes. Easystar achieved better results than eBee in both point density 

and accuracy, which is most likely due to the use of a better camera (lens with fixed 

focal length and bigger sensor allowing higher ISO setting and therefore faster 

shutter speed). A better accuracy after ground filtering of the point clouds was 

acquired for the forest environment with RMSEs of 0.11 and 0.13 for Easystar 
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and eBee, respectively. Accuracies acquired in the steppe environment were 

slightly inferior with RMSE 0.11 and 0.17 for Easystar and eBee, respectively. 

A combination of images from two mutually perpendicular flights led to a higher 

accuracy but failed to increase the density of the point cloud. Despite differences 

between the acquired point clouds, both systems were able to accurately detect 

terrain in open steppes and under forest canopy under leaf-off conditions with 

a higher accuracy than a nationwide LiDAR-derived DTM. Hence, we can report 

that photogrammetric methods can be used successfully in steppes and deciduous 

forest stands under leaf-off conditions to generate accurate DTM. Further 

research is however needed to quantitatively assess the quality of models acquired 

under leaf-off conditions in deciduous forest stands of different characteristics 

(e.g. tree species, structural, and site characteristics).  

Both solutions (Easystar and eBee) have pros and cons and they pose different 

requirements on the user. It is well known that cameras with fixed focal length are 

more appropriate for photogrammetry and it is fair to note that senseFly have 

recently made another camera available for their eBee system, the 20 MPix 

senseFly S.O.D.A. However, for users who prefer to have greater control over 

their options rather than being at the vendor’s mercy, home-assembled kits 

utilizing drones capable of carrying any camera available on the market may be 

an advantage.  
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ABSTRACT 

Detailed plant species classification using very high spatial resolution data is 

a challenging task. Exploring the potential of imagery acquired by Unmanned 

Aerial Vehicle (UAV) to identify individual species of plants and assessing values 

of additional inputs such as height and thermal information into classification 

process are hot research topics. Our study uses a fusion of visible, multispectral 

and thermal imagery acquired through the low altitude aerial survey for detail 

classification of land cover and vegetation types. The study area is located in the 

central part of the Czech Republic and situated in an environmentally specific area 

– an arboretum of 2.45 ha. Visible (i.e. RGB), multispectral, and thermal sensors 

were mounted on a flying fixed-wing Unmanned Aerial System. The imagery was 

acquired at a very detailed scale with Ground Sampling Distance of 3–18 cm. 

Besides three mosaics (one from each sensor), normalized Digital Surface Models 

were built from visible and multispectral sensors. Eight classification models were 

created – each mosaic (visible/multispectral) was enriched with height data, 

thermal data, and combined height and thermal information. A classification into 

a three level system was performed through Geographic Object-based Image 

Analysis using Support Vector Machine algorithm. In general, Overall Accuracy 

grew with the amount of information entering the classification process. Accuracy 

reached 77 – 91% depending on the level of generalization for the best model 

based on multispectral data and 67 – 80% for data from the visible sensor. Both 

thermal data and height information improved the accuracy; however, the 

statistical evaluation did not reveal any significant difference between the 

contribution of height and thermal data. Results also indicate that increasing 

spectral resolution leads to a significantly better performance of the models than 

higher spatial resolution. UAVs equipped with a proper sensor provide 

a convenient technology for detail land cover classification even in areas with 

many similar plant species. 

KEYWORDS 

Low altitude aerial survey, Classification accuracy, Fine spatial resolution, 

Normalized digital surface model (nDSM), Geographic object-based image 

analysis (GEOBIA), Multispectral and thermal imagery fusion, Image processing, 

Structure from motion (SfM)  
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Introduction  
Nowadays, it is relatively easy to acquire one´s own image data with a detailed 

spatial, sufficient spectral and variable temporal resolution. Unmanned Aerial 

Vehicles (UAVs) and their use are among the most dynamically developing fields 

of remote sensing (RS), being a suitable source of data for environmental analyses 

focused e.g. on classification of vegetation (Gini et al., 2014; Husson et al., 2017; 

Laliberte et al., 2011; Lisein et al., 2015; Michez et al., 2016; Weil et al., 2017) 

invasive plant detection (Müllerová et al., 2017), pests (Näsi et al., 2015), plant 

diseases and water stress detection (Baluja et al., 2012; Berni et al., 2009; Calderón 

et al., 2013; Nishar et al., 2016; Zarco-Tejada et al., 2012), modelling of individual 

treetops (Díaz-Varela et al., 2015), in agriculture (Moravec et al., 2017; Pérez-Ortiz 

et al., 2015), or for monitoring animal species (Chrétien et al., 2016). 

One of the major UAV challenges lies in a detail classification of the land cover 

(Ahmed et al., 2017), which may support decision-making mechanisms and 

operations. Besides low altitude UAV surveys, other technologies are used 

for precision classification, e.g. for species classification of trees (Ali et al., 2004; 

Holmgren et al., 2008), of vegetation specific for various environment types 

(Alonzo et al., 2014; Bork and Su, 2007; Feng et al., 2015; Hartfield et al., 2011; 

Husson et al., 2017; Rampi et al., 2014; Reese et al., 2015; Sankey et al., 2017b), or 

a complex land cover classification (Kuria et al., 2014; Szostak et al., 2014; Teo 

and Huang, 2016; Zhou and Qiu, 2015). 

Classification accuracy can be affected by the properties and quality of both the 

spectral information and height data from (a) digital terrain models (DTMs); 

(b) digital surface models (DSMs) or (c) normalized digital surface models 

(nDSM). For land cover classification, a fusion approach combines multi(hyper)-

spectral satellite data (Reese et al., 2015; Zhou and Qiu, 2015), airborne (Alonzo 

et al., 2014; Bork and Su, 2007; Teo and Huang, 2016) and UAV-borne (Sankey et 

al., 2017a) with Airborne Laser Scanning (Alonzo et al., 2014; Bork and Su, 2007; 

Holmgren et al., 2008; Zhou and Qiu, 2015) or with airborne images processed 

through photogrammetric image matching (Reese et al., 2015). The height data 

(point clouds) can be also derived from UAV-borne imagery by 

a photogrammetric Structure from Motion (SfM) method. However, the height 

data are frequently inappropriately neglected during classification utilizing UAV 

imagery (Feng et al., 2015) despite the fact that they can be instrumental 

in achieving better results (Husson et al., 2017). 
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The accuracy of resulting classification is also affected by the classification 

approach. If processing very high resolution data (e.g. UAV-borne data), 

classifications based on Geographic Object-based Image Analysis approach 

(GEOBIA; Blaschke, 2010; Liu et al., 2015) tend to provide better results than the 

traditional pixel-based approach (Yu et al., 2006). The benefit of GEOBIA has 

been repeatedly shown in multiple studies utilizing predominantly satellite or 

airborne high spatial resolution data (Addink et al., 2007; Alonzo et al., 2014; An 

et al., 2007; Diaz-Varela et al., 2014; Hartfield et al., 2011; Peña et al., 2013). 

UAV sensors are typically RGB cameras recording images in visible (Feng et al., 

2015; Gini et al., 2014; Husson et al., 2017; Müllerová et al., 2017) or in near 

infrared spectrum (Ahmed et al., 2017; Weil et al., 2017). RGB cameras are used 

on a mass scale due to their availability, their classification accuracy is however 

substantially lower (Ahmed et al., 2017). On the other hand, the higher spatial 

resolution may act as a substitution for additional spectral bands in specific RS 

studies. Other sensors, e.g. hyper-spectral cameras or UAV LiDAR (Sankey et al., 

2017a) are also available, however, their costs are high. 

Due to current restrictions and regulations, use of UAV is limited by country-

specific legislation. Applicability is also limited by a higher price of miniaturized 

sensors or a relatively high UAV susceptibility to failures (Freeman and Balas, 

2014; Zuiev et al., 2015). UAV is still a novel technology, therefore use is still 

facing challenges and problems that need to be identified and overcome than the 

traditional remote sensing methods (Ahmed et al., 2017). The analysis of imagery 

obtained through other (non-UAV) methods have led to the development 

of many more or less standardized approaches over the years. It is likely, although 

not properly verified yet, that for various environment-related analyses, these 

approaches will be also applicable very high resolution data (magnitude of a few 

cm). Recent general reviews of UAV applications have been published (Marris, 

2013; Pajares, 2015), more studies using different types of UAV imaging sensors 

are however needed to increase the potential of the utilization of such new 

platforms in vegetation inventorying and other environmental applications. 

Despite the fact that UAVs have been a hot research topic in the recent years, only 

a few studies focused on their usability for precise classification using a set 

of sensors have been published. 

The aim of our study is to evaluate the potential of UAV acquired data (namely 

of images acquired using visible, multispectral and thermal sensors, and height 

models – nDSMs – derived from such data) for classification of land cover, 

particularly on the level of individual plant species. Following research questions 
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are presented: (i) Is it possible to classify individual plant species with a sufficient 

accuracy based on UAV imagery? (ii) Is it possible to substitute additional spectral 

data by an RGB sensor with a higher spatial resolution for classification of plant 

species? (iii) Do the height data contribute to improving the classification more 

than thermal data? (iv) Do the thermal data constitute an important source 

of information for detailed land cover classification? 

Materials and methods 

 

Figure 1. (Above left) Location of the study area. (Right) The study area, a part of the 
Libosad arboretum (2.45 ha). Seven ground control points were used to facilitate further data 

processing. (Bottom left) Oblique view of the coloured densified Point Cloud from the point 
indicated on the orthophotomap. The map corresponds to ETRS 1898 LAEA projection 

(EPSG 3035). 
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STUDY AREA 

The area of interest is an arboretum (called Libosad) on site of the campus of the 

Czech University of Life Sciences in Prague, Czech Republic (Figure 1). The 

arboretum, founded in 2007, takes up 2.67 ha and includes approximately 900 

plant species, divided into 22 thematic units. The relief of the area of interest is 

topographically homogeneous (elevation ranges 280–289 amsl). 

IMAGE DATA COLLECTION 

UAV imagery was acquired during the full vegetation period between 20th and 

22nd June 2017, always between 12:00 -13:00 (proper sun angle, minimizing the 

effect of shadows). The eBee aerial platform (senseFly, Switzerland), a miniature 

fixed-wing vehicle with a maximum take-off weight approximately 0.8 kg and the 

wingspan of 0.96 m, was used for image acquisition. The following cameras were 

used for individual flights: (a) DSC-WX220 (Sony, Japan, Figure 2 A) – 

a consumer grade digital compact camera; (b) MultiSPEC 4 C (Airinov, France, 

Figure 2 B) – a 4-channel multispectral camera and (c) ThermoMAP (senseFly, 

Switzerland, Figure 2 C) – an eBee-ready thermal camera based on FLIR Tau 

sensor. Detail characteristics of the cameras are available from the manufacturer‘s 

websites, parameters important for the study are collected in Tables 1 and 2. 

Flight missions were performed using eMotion 2 ground station software. The 

flight plan was conducted using perpendicular flight lines with 80% overlaps and 

sidelaps to acquire high quality data. Conditions for UAV flight mission were 

convenient, ceiling and visibility were fine, the weather was sunny without clouds, 

the temperature of 30–31 °C, and a light breeze of 2–5 m.s−1. Only vendor-

provided sensors, one at a time, can be mounted on the eBee platform. Therefore, 

three separate specific flights with the UAV equipped with (a) visible (i.e. camera 

records in a visible part of the spectrum) camera; (b) multispectral camera and 

(c) thermal camera were conducted; flight details are shown in Table 2. A grayscale 

calibration target with known reflectance values was captured for further image 

calibration. For data post-processing, a total number of seven Ground Control 

Points (GCP), designed as 0.5 m white numbered boards with a centre hole for 

survey rod, was surveyed using GPS Leica 1200 (Leica, Germany) through real-

time kinematic connected to the CZEPOS network of permanent GNSS stations. 
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IMAGE PROCESSING and ORTHOMOSAIC BUILDING  

All acquired imagery was processed using a photogrammetric software 

Pix4Dmapper 3.1.2 (Pix4D S.A., Switzerland). Firstly, point clouds (densified) 

were created for all data types using stereo-photogrammetry based photo-

reconstruction method (Structure from Motion). Orthomosaics were built and 

accurately georeferenced using Ground Control Points, the Root Mean Square 

Error (RMSE; mean of X, Y, and Z) was 0.038 m for RGB mosaic and 0.054 m 

for MSC mosaic. RMSE, which indicates how was the model fitted to the GCPs, 

was lower than a double value of Ground Sampling Distance (GSD). As the last 

step, the Surface Reflectance values were calculated from the multispectral mosaic 

using values from onboard irradiance sensor (Sun irradiance and Sun angle) and 

the calibration target. The values were subsequently verified in the terrain using 

the GreenSeeker (Trimble, US) crop sensing system. Similarly, thermal sensor 

values were corrected using object emissivity values estimated from NDVI 

vegetation index. 

CREATING NORMALIZED DIGITAL SURFACE MODELS  

Digital surface models were created through the Inverse Distance Weighing and 

using an algorithm implemented in Pix4Dmapper, the digital terrain model with 

a resolution of 5 x GSD was derived (software limitation due to robustness, see 

Pix4D User Manual). A normalized digital surface model was subsequently created 

in ArcGIS for Desktop 10.4 (ESRI, US) by subtracting DTM raster from DSM 

raster for both RGB and MSC mosaics, resulting in two distinct models, namely 

(a) nDSMRGB and (b) nDSMMSC.  
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Table 1. Selected characteristics of utilized UAV sensors; abbreviations: B (Blue), G (Green), 
R (Red), RE (Red Edge), NIR (Near Infrared), LWIR (Long Wavelength Infrared), GSD 

(Ground Sampling Distance), FWHM (Full Width at Half Maximum). 

Sensor (abbreviation) Image resolution  GSD at 100 m (cm/px)  FWHM 

(nm)  

Band Peak 

(nm)  

Weight (g)  

DSC-WX220  17.98 MPx  2.75 B:410-490  B: 460  113 

(RGB)  (4896x3672)  
 

G:460-600  G: 530  
 

   
R:580-660  R: 660  

 

MultiSPEC 4C  4 x 1.23 MPx  10 G:530-570  G: 550  160 

(MSC)  (1280x960)  
 

R:640-680  R: 660  
 

   
RE:730-740  RE: 735  

 

   
NIR:770-810  NIR: 790  

 

ThermoMAP  0.33 MPx  18.5 LWIR:7,5k-  LWIR 10k 134 

(TMP)  (640x512)  
 

13,5k 
  

 

 

 

 

Figure 2. Used devices: Unmanned Aerial Vehicle eBee was equipped with a visible (A), 
multispectral (B), and thermal camera (C).  
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Table 2. Basic parameters of the flight missions and data processing parameters. Flight height, 
a high number of gained images and points density for ThermoMAP is a subject of technical 

specification of the sensor; AGL (Above Ground Level).  

Sensor Date of Acquisition  Fly Area (ha)/ 

Fly Time (min) 

 Fly Height 

AGL (m)  

No. of gained  

images 

No. of aligned 

images 

Avg. points density 

 per m3 

DSC-WX220 June 22 15.0/21 70 218 217 274.5 

MultiSPEC 4C June 20 13.8/27 60 28 408  18.8 

ThermoMAP June 20 10.1/27 100 4794 386  1.6 

CLASSIFICATION MODELS 

Image to image registration was conducted due to different spatial resolutions 

of built mosaics and models (Table 3). Thermal mosaic and nDSM data were 

resampled (Nearest Neighbour) to the same pixel size as RGB and MSC mosaics. 

Input datasets were cropped to fit the study area using ArcGIS and classification 

models were subsequently created in ENVI 5.4 (Exelis VIS, US). Selected 

combinations of obtained image mosaics and nDSMs were layered into a single 

image using the Layer Stacking tool. In total, eight classification models were 

created from various combinations of input data, see Table 4. 

Table 3. Input datasets. Description of the created mosaics (RGB, MSC and TMP) and 
normalized digital surface models (nDSM). 

Inputdataset Bands Ground Sampling 

Distance (cm/px) 

Description 

RGB mosaic Blue, Green, Red 2.2 Image mosaic built from imagery taken by DSC-

WX220 sensor. 

MSC mosaic Green, Red, RE, NIR 5.7 Image mosaic built from imagery taken 

by MultiSPEC 4 C sensor. 

TMP mosaic LWIR 20.1 Image mosaic built from imagery taken 

by ThermoMAP sensor. 

nDSMRGB Normalized height 10.8 Normalized height created by subtraction 

of DTMRGB from DSMRGB. 

nDSMMSC Normalized height 28.4 Normalized height of objects created subtraction 

DTMMSC from DSMMSC. 

DELINEATION of LAND COVER and VEGETATION TYPES  

The land cover structure was created using pre-existing inventory records and 

maps from 2015, accurately describing the occurrence of plant species in the area 

of interest. Species represented by less than 10 individuals were not included. This 

step was necessary for the study as the area of interest was an arboretum 
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containing a high number of species and cultivars with a small number 

of individuals, which could have possibly complicated the interpretation of the 

results. The structure contained 24 classes, consisting of 17 elements of living and 

7 of inanimate nature on the most detailed level (see Table 5). 

Table 4. Classification models. An overview of the eight classification models derived from 
combinations of selected input datasets. 

Classification model  Input dataset  

MSC  MSC mosaic  

MSC-TMP  MSC mosaic, TMP mosaic  

MSC-nDSM  MSC mosaic, nDSMMSC  

MSC-nDSM-TMP  MSC mosaic, nDSMMSC, TMP mosaic  

RGB  RGB mosaic  

RGB-TMP  RGB mosaic, TMP mosaic  

RGB-nDSM  RGB mosaic, nDSMRGB  

RGB-nDSM-TMP  RGB mosaic, nDSMRGB, TMP mosaic  

GROUND DATA COLLECTION 

The field survey was performed at the same time as the UAV flights by recording 

exact positions of objects into a detail orthomosaic built within pre-analysis. The 

data collection process was conducted using a Collector for ArcGIS (ESRI, US) 

application to verify the inventory records. In total, 436 reference polygons (each 

containing a single taxonomic individual) covering approx. 7% of the area 

of interest were classified into 24 land cover types. For each class, 10 polygons 

were randomly selected for analysis and each of those sets was, again randomly, 

divided into training data (5 polygons) and validation data (remaining 5). 

CLASSIFICATION PROCESS  

Verification of suitability of UAV input data acquired using various sensors for 

classification was performed through object classification (Blaschke, 2010; 

Blaschke et al., 2014) using Feature Extraction method in ENVI, see Figure 4 for 

classification workflow. Individual classification models and training data were 

used as input data (Table 4). In all, therefore, eight individual classifications using 

identical training data and classification parameters were performed (see Figure 3). 

Image segmentation was performed using the following parameters: (a) Scale level: 

30, Scale Algorithm: Edge, and Segment bands: MSC/ RGB bands only; (b) Merge 
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level: 98, Merge Algorithm: Full Lambda Schedule and Merge Bands: MSC/RGB 

bands only, and (c) Texture Kernel Size: 9. As the software manufacturer 

recommendation is not to use data with variable value range as Segment bands 

data, neither nDSM nor thermal data were used for segmentation (ENVI Help). 

The optimum setting of segmentation parameters was found experimentally using 

ENVI Preview. In the second step, the classification itself, we used the Support 

Vector Machine (SVM) classifier in default settings (Radial Basis kernel type) with 

selected classification attributes (chosen by logic/experimental) as follows: 

(a) Spectral (Mean, Standard Deviation), (b) Texture (Range, Mean, Variance, 

Entropy), (c) Spatial (Compactness, Elongation, Hole Area/Solid Area).  

Table 5. A class structure used in the study, consisting of 24 classes divided into a 3-level 
system.  

Level 1  Level 2  Level 3  
 

Tall  Fir (Abies), Pine (Pinus)  

Coniferous plants Low 

(under 3 m) 

Juniper (Juniperus), Golden Juniper (Juniperus), Pine (Pinus), Spruce 

(Picea), Yew (Taxus), Golden Yew (Taxus) 

   
 

Tall  Maple (Acer), Willow (Salix)  

Broadleaf plants Low 

(under 3 m) 

Cotoneaster (Cotoneaster), Lavender (Lavandula), Cinquefoil (Potentilla), 

Rose (Rosa), Spiraea (Spiraea) 

   

Herbaceous (Grasses) Lawns  Lawns  

 Meadows  Meadows  

   

Non-vegetation  Artifficial  

surfaces  

Pavement, gravel, crushed stones, bark-dust, wooden elements, metallic 

elements  
Shadows 

 

VALIDATION ASSESSMENT  

The accuracy of individual models was assessed through comparison with 

validation samples. Stratified random sampling design utilizing supervised object-

based classification suggested by Zhen et al. (2013) was used. The number 

of validation samples was set to 600 (Cochran, 1977). In each of the validation 

polygons of each class, five simple random samples were created. The relative 

accuracy of the classifications acquired through comparison with validation 

samples via Confusion Matrix (Foody and Boyd, 2013; Olofsson et al., 2014; 

Stehman, 2013), together with 95% Confidence Interval for accuracies in order to 

cover classification errors. The differences among individual models were tested 
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through a test for homogeneity with a binomial distribution using Holm's p-value 

adjustment method to compensate for multiple comparisons (used for example 

by Klouček et al., 2015), see Figure 5. All statistical analyses were done at three 

hierarchical levels: (a) Level 1 (4 classes); (b) Level 2 (8 classes); (c) Level 3 

(24 classes). 

Results and discussion  

 

Figure 3. An example of all created classification models. For clarity, data on artificial surfaces 
are presented at Level 3 while vegetation classes depicted at Level 2.  

The Overall Accuracy of models in general increases with the amount 

of information entering the classification process and with decreasing level 

of detail. The results imply that models based on multispectral data are 

of significantly better quality than those based solely on data from the visible 

sensor. The highest Overall Accuracy on the individual levels (Level 1, 2 or 3) was 

acquired through models combining all input data both for multispectral data 

(model MSC-nDSM-TMP 77.33 – 90.50%) and for visible data (model RGB-

nDSM-TMP 66.83 – 79.33%). Conversely, one-input models were the least 

accurate on any given levels (model MSC 64.00 – 85.00% and RGB 59.00 – 

71.17%). Addition of a second input did yield a significant improvement of the 
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relative accuracies besides one-input models (MSC-nDSM 73.00 – 86.50%; MSC-

TMP 70.67 – 90.00%; or RGB-nDSM 64.33 – 75.83%: RGB-TMP 63.17 – 

77.50%); however no significant differences between the two-input models 

of both individual sensors were detected with respect to the Overall Accuracy, see 

Table 6. 

 

Figure 4. A scheme depicting the principles of the methodology used in the study. 

ASSESSMENT in INDIVIDUAL CLASSES  

Plant species at level 3 

The overall classification accuracy of individual plant species at the most detailed 

level grew in the case of MSC based models with the increasing number of input 

data (51.47 – 69.33%). For species recognition, the role of height data (63.20%) 

appears to be greater than that of the thermal data (57.33%). However, both inputs 

have a significant positive impact on the quality of models (see Table 7). MSC-

only model was more accurate for recognition of a single species class (e.g. Fir). 

On the other hand, a two-input model combining the spectral model with thermal 

data provided significantly better results in four classes, with nDSM data in five 

classes and models using all inputs were better in eight out of fifteen classes. 

Regardless of the number of inputs, the worst distinguishable classes were Fir and 

Cotoneaster. The use of multiple inputs did not yield any significant improvement 

from using a single MSC input for classes Juniper, Yew, Golden Yew, Willow, 

Cinquefoil and Rose. The accuracy of recognition of remaining classes was 

however improved by additional inputs. In all MSC-based models, some classes 

were significantly overestimated (e.g. Low Pines) while other underestimated 
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(e.g. Cotoneaster), see Figure 6 for illustration. The misclassification occurred 

most often between these extremes and the under-and overestimation was 

decreasing with increasing number of inputs, see Appendix A for details.  

Table 6. A comparison of the accuracies of models derived from the multispectral and visible 
sensors using Support Vector Machine algorithm within object classification; OA = Overall 

Accuracy (%); 95% CI = 95% Confidence Interval.  

Classification model  Level 1 
 

 Level 2 
 

Level 3  
 

 
OA 95% CI OA 95% CI OA 95% CI 

MSC  85.00  82.14 – 87.86  75.33  71.88 – 78.78  64.00  60.16 – 67.84  

MSC-TMP  90.00  87.60 – 92.40  82.17  79.10 – 85.23  70.67  67.02 – 74.31  

MSC-nDSM  86.50  83.77 – 89.23  82.00  78.93 – 85.07  73.00  69.45 – 76.55  

MSC-nDSM-TMP  90.50  88.15 – 92.85  85.83  83.04 – 88.62  77.33  73.98 – 80.68  

RGB  71.17  67.54 – 74.79  64.33  60.50 – 68.17  59.00  55.06 – 62.94  

RGB-TMP  77.50  74.16 – 80.84  69.00  65.30 – 72.70  63.17  59.31 – 67.03  

RGB-nDSM  75.83  72.41 – 79.26  72.17  68.58 – 75.75  64.33  60.50 – 68.17  

RGB-nDSM-TMP  79.33  76.09 – 82.57  75.17  71.71 – 78.62  66.83  63.07 – 70.60  

 

Table 7. A comparison of overall percentage accuracies of models derived from the multispectral 
and visible sensors for individual models. Level 1a represents the accuracy of analysis focused 

on differentiation of Coniferous vs Broadleaf plants; Level 1b on Tall vs Low vegetation; Level 

2 differentiation between Tall Coniferous, Low Coniferous, Tall Broadleaf, and Low 
Broadleaf plants; Level 3 presents accuracy of detail plant species classification. Values 

of Overall Accuracy are derived from the confusion matrix in Appendix A.  

Classification model  Level 1a  Level 1b  Level 2  Level 3  

MSC  81.07  78.67  65.60  51.47  

MSC-TMP  86.93  82.13  74.40  57.33  

MSC-nDSM  83.47  89.07  76.27  63.20  

MSC-nDSM-TMP  87.73  86.93  80.27  69.33  

RGB  60.53  65.87  49.60  42.67  

RGB-TMP  71.47  71.73  57.87  50.13  

RGB-nDSM  65.07  78.67  59.20  48.27  

RGB-nDSM-TMP  74.13  86.13  67.47  55.73  

 

RGB-based models reveal a similar pattern as the MSC-based ones. The 

contribution of additional inputs, however, unlike for MSC-based models, differed 

for individual classes and, in most cases, was lower than for corresponding MSC-
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derived models. The overall classification accuracy of plant species acquired 

through RGB-based models was in all instances lower than that of MSC-based 

models. The least accurate model was RGB only (42.67%) while the most accurate 

model is RGB-nDSM-TMP (55.73%). Slightly higher Overall Accuracy was 

achieved using thermal (50.13%) than height data (48.27%), see Table 7. The over-

and underestimation of classified individual classes is smaller than in the case 

of MSC models, see Figures 6 and 7 for comparison. Conversely, when compared 

to the one-input RGB model, including TMP into the model provided a significant 

improvement of accuracy of five classes, including nDSM of six classes and 

a model containing all input data led to improvement in eight classes. RGB data 

appear to be ineffectual (throughout all models) for distinguishing classes low 

Pine, low Spruce and Cinquefoil. Using additional inputs has no effect on the 

accuracy of classes Golden Juniper and Golden Yew. Conversely, enhancing the 

models by at least one input leads to a significant improvement of the accuracy 

of remaining classes, see Appendix A.  

 

Figure 5. Test for homogeneity with a binomial distribution of models generated from visible 
and multispectral sensors. The figure illustrates (dis)similarity of individual models at all levels. 
Dark represents the statistically significant difference between models (95% level of significance); 
light represents models that cannot be distinguished at the particular level. The size of the circle 

illustrates the strength of the relationship (high, moderate, or low). 
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Plant species at level 2  

At Level 2, MSC-based models show a better Overall Accuracy than RGB-derived 

models in distinguishing Tall Coniferous, Low Coniferous, Tall Broadleaf, and 

Low Broadleaf plants (65.60 – 80.27% for MSC and 49.60 – 67.47% for RGB) 

and the accuracy for both grew with the number of inputs, see Table 7. The only 

class classified more accurately through RGB-based models is Tall Coniferous 

plants. Conversely, the best accuracy was achieved in both instances for Low 

Coniferous plants, see results of Level 2 in Appendix A.  

 

 

Figure 6. Visualization of the confusion matrix. The circular plot of the MSC-nDSM-TMP 
model at Level 3 represents the misclassifications (lines connect misclassified classes, hence the 

larger section, the more incorrectly classified polygons in the class). 
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Plant species at level 1  

Distinguishing Broadleaf and Coniferous plants were also better when using MSC-

based models (Overall Accuracy of 81.07 – 87.73% for MSC vs 60.53 – 74.14% 

for RGB; depends on model, Table 7). The difference from the previous levels lies 

in a significantly higher accuracy of thermal-based two-input models than the 

height. For both sensors, the classification of Coniferous plants was more accurate 

than that of the Broadleaf plants (with the exception of the RGB-only model). 

When enhancing the models with additional inputs, however, the accuracy of the 

classification of Broadleaf plants grew, significantly more so for MSC-based 

models (65.14 – 81.14%) than for RGB-derived models (61.71 – 65.14%), see 

Level 1 accuracies in Appendix A. Conversely, when detecting differences in the 

vegetation height, both RGB and MSC models achieved very high accuracy (78.67 

– 89.07% for MSC vs 65.87 – 86.13% for RGB), see Table 7. MSC-based models 

were more accurate where low vegetation was concerned, while RGB-based 

models provided very similar results for both Low and Tall vegetation.  

The accuracy of the MSC and RGB models inside individual classes was increasing 

with decreasing level of detail, i.e. the incorrect classification occurred more 

frequently at more detailed levels. Results from all levels and both data types 

indicate that during classification, the misclassification of Coniferous and 

Broadleaf plants for Artificial surfaces or Herbaceous plants is negligible while the 

misclassification for Shadows occurs substantially more often.  

Non-vegetation and Herbaceous classes at all levels  

The accuracy of models derived from both sensors for Artificial surfaces is high. 

Additional inputs improve the MSC models classification (89.33 – 96.00%) while 

they do not elicit any significant improvement in RGB model (92.00 – 95.33%) 

at Level 3. One of the lowest accuracies were recorded in one-input MSC model 

in the classification of Gravel, Crushed stone and Metallic elements, which were 

misclassified for Barkdust. Increasing land cover generalization corresponds with 

classification accuracy for all sensors and models. At Levels 1 and 2; the accuracy 

for both MSC and RGB-based models is very high and comparable, see 

Appendix A.  

A similar pattern can be observed in the Herbaceous class where both MSC-and 

RGB-based models reveal almost similar, highly accurate, results. The Overall 

Accuracy for Herbaceous is 94.00 – 100% for MSC and 92.00 – 98.00% for RGB. 

Classification of Lawns was performed with lower accuracy than that of Meadows. 

For example, one-input RBG model lies in negligible misclassification 

(overestimation) of meadows for classes of low broadleaf plants. The accuracy 
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of Lawns classification is increasing in both sensors with the addition of thermal 

data while the addition of height information surprisingly does not improve 

accuracy. Conversely, meadows achieve the same accuracy independently 

of sensors/models, see Appendix A. 

The least accurate results were recorded for the class of Shadows, which was 

frequently mistaken for Coniferous plants classes (Figures 6 and 7) and where the 

Overall Accuracy for either of the sensors did not exceed 60%. Even here, 

however, the observation that additional inputs increase the performance was 

confirmed.  

 

Figure 7. Visualization of the confusion matrix. The circular plot of the RGB-nDSM-TMP 
model at Level 3 represents the misclassifications (lines connect misclassified classes, hence the 

larger section, the more incorrectly classified polygons in the class). 
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OVERALL ACCURACY ASSESSMENT  

The study results are in the general sense similar for both multispectral and visible 

sensors. It is obvious that multiple-input based information increases the accuracy 

of the classification and, therefore, models based on more information provide 

better results. Besides, models based on multispectral sensor perform better than 

RGB-derived models. To achieve a detailed classification of the vegetation types, 

it is therefore not feasible to substitute higher spectral resolution (multispectral 

sensors) with higher spatial resolution (visible sensor, see RQ ii). In both sensors, 

it is necessary to use both height and thermal data to achieve the best results at 

a detailed scale. This requirement, however, increases both the economic and 

temporal demands on the analysis as well as demands on the personnel 

performing the analysis and computational capacity. Based on the resulting 

accuracies, we therefore recommend using a combination of data acquired 

through a multispectral sensor with nDSM. However, for some classes 

(e.g. Lawns) or lower detail levels, thermal data are a more significant predictor 

than nDSM and enhancing the models with thermal data is, therefore, a welcome 

contribution. Our results also indicate that the land cover and vegetation types can 

be classified with a sufficient accuracy (almost 81%) using UAV at the level 

of individual plant species (RQ i) even in an environmentally very specific area. 

When analyzing the usability of individual models, it is necessary to take into 

account, besides Overall Accuracy, their potential for individual classes of the 

vegetation types as well. For some classes, the accuracy may be inconsistent with 

the Overall Accuracy due to a lower or, contrary, higher accuracy of other classes. 

CLASS-SPECIFIC ASSESSMENT  

Based on the results of the individual plant species (Level 3), multispectral data are 

necessary for achieving a sufficient accuracy. The RGB spectral resolution is 

insufficient for distinguishing between these classes as their reflectance values 

in this bandwidth are very similar and even the addition of height or thermal data 

cannot make up for this lack of spectral information. The accuracy of most classes 

is in accordance with the trend of the Overall Accuracy and the assumption that 

including more inputs into the analysis improves the plant species classification 

accuracy was confirmed for both thermal and nDSM data.  

The Fir class was frequently misclassified for low Pine and Spruce in MSC-based 

models. A possible explanation for this fact lies in the absence of the blue band 

in the multispectral data, which may be significant for distinguishing a large 

number of garden varieties of coniferous plants. The situation was altogether 
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different for Pines that were classified with a sufficient accuracy; pines are present 

in the non-intervention zone of the arboretum and only one cultivar was present. 

This simple comparison can lead us to an assumption that in natural or near-

natural areas, the classification can be more accurate than in an artificial landscape 

such as arboretum. The assumption of the blue band significance is further backed 

by results at Level 1 where RGB models detected Coniferous plants with a greater 

accuracy than MSC models. To achieve the best Overall Accuracy of classification 

of both Coniferous and Broadleaf plants (Level 1–3), however, it is necessary to 

use MSC based models. For classification of Herbaceous and Artificial surfaces, 

RGB and MSC data are interchangeable and thermal data do not play any 

significant role as the addition of nDSM data into the model is sufficient to 

improve the model accuracy. Conversely, additional data are needed for the class 

of Shadows as neither MSC, not RGB sensors provide good enough results and 

their supplementing by nDSM (for RGB sensor) and/or TMP (MSC sensor) 

improves the results. The need for different additional data is caused by the 

different spectral characteristics acquired by the different sensors.  

UNCERTAINTIES ASSESSMENT  

The accuracy of the performed classifications may be affected, besides the input 

data, by (a) the selection of the classification system (pixel-based or object-based) 

and, subsequently, classifier. It is customary in the remote sensing community to 

use object classification for high resolution data as that type of classification brings 

multiple benefits. In this case, an SVM non-parametric classifier was selected due 

to its robustness as it was shown that SVM can be used without compromising 

accuracy even if the reference polygons are not ideally distributed (Lu and Weng, 

2007); (b) the used classification and processing software. The most commonly 

used classification software in the literature for GEOBIA is the eCognition 

Developer (Trimble, US) (Husson et al., 2017; Müllerová et al., 2017; Weil et al., 

2017) or ENVI software (Ahmed et al., 2017). No study focused on the global 

comparison of these programs is however available and, therefore, it is hard to 

make a clear decision on the suitability of one or the other for a particular 

application. Where photogrammetry is concerned, either Pix4Dmapper or Agisoft 

PhotoScan (Agisoft LLC, Russia) are the most commonly used. The limitation 

of Pix4Dmapper is its inability to build a DTM with better spatial resolution than 

5 x GSD; (c) the time of UAV image acquisition. Choosing the right season 

for image acquisition greatly affects the resulting accuracy (Müllerová et al., 2017; 

Weil et al., 2017). Husson et al. (2017) and Zhen et al. (2013) acquired images 

in August, Ahmed et al. (2017) in July. Late spring to early summer appeared to 
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be the most suitable month for image acquisition under the conditions of Czech 

Republic (tempered zone, Northern hemisphere). Images used in our study were 

acquired in accordance with the literature in full vegetation (Sankey et al., 2017a; 

Weil et al., 2017); (d) used accuracy assessment, based on randomly selected 

spatially independent validation data (different from the training data) (Zhen et al., 

2013). The stratified random sampling design was used for the reference polygons 

to make sure land cover classes with low spatial extent were not omitted. The 

accuracy assessment was performed in accordance with the good practice as 

summarized e.g. by Olofsson et al. (2014). Accuracy assessment using reference 

polygons may lead to its overestimation by up to 10%, as reported by Zhen et al. 

(2013), we minimized that effect by maintaining the percentage representation 

of individual classes of land cover in the reference polygons (training and 

validation data) proportional to reality. As accuracy assessment by Confusion 

Matrix is highly dependent on the area of interest (Olofsson et al., 2014), we have 

added 95% Confidence Intervals allowing a more general application of results. 

Another approach used in some studies lies in multiple selections of validation 

and training data (Weil et al., 2017).  

COMPARISON WITH OTHER UAV STUDIES  

Our results are in accordance with findings from previous studies, however, to our 

best knowledge no study published so far took thermal data in detail scale into 

consideration, much the less combining it with visible, multispectral or height data. 

Ahmed et al. (2017) achieved 79% accuracy of hierarchical classification of the 

land cover on a detailed scale (10 categories) when using the visible camera and 

82% when using multispectral imagery; height data (DSM, it was not stated if the 

model was normalized) was used. When taking into account Level 2 in our study 

with a similar number of categories (8), 72% accuracy was achieved for RGB and 

82% for MSC when including height data (nDSM); further enhancement of the 

model with thermal data led to an increase of accuracy to 75% and 86%, 

respectively. Weil et al. (2017) reported an average accuracy of their classification 

of nine categories to be 85% (predominantly forest and herbaceous vegetation 

in the East Mediterranean). A combination of SVM and object classification was 

used by Müllerová et al. (2017) who achieved 65 – 86% accuracy of their binary 

detection of invasive plant species in the Czech Republic by the visible camera. 

One of the few studies systematically utilizing nDSM for UAV-based vegetation 

classification is the study by Husson et al. (2017) using object based classification 

and Random Forest classifier. The accuracy of recognition of individual water 

plant species in their study ranged from 52 to 75%. In our study, the accuracy on 
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a similar detail based on visible data was 60 – 68%, increasing to 63 – 71% when 

including thermal data into the model and even to 74 – 81% where visible data 

were replaced with multispectral. Their results are in agreement with ours also 

in the conclusion that the accuracy decreases with the increasing complexity of the 

vegetation/land cover. The contribution of the height data for classification 

of (semi)arid species was also confirmed by Sankey et al. (2017a) who combined 

data from UAV-mounted hyper-spectral sensor and LiDAR for six categories (one 

of which were shadows as well) to achieve an 84 – 89% Overall Accuracy and 72 

– 76% accuracy where only hyper-spectral data were involved. Similarly to our 

study, Shadows belonged to the most problematic categories in their study, 

particularly so when using hyperspectral data only.  

The study results do not confirm the usability of visible sensor for a detailed 

classification of land cover at the level of species, which is in accordance with the 

findings of the above mentioned studies related to aquatic plants (Husson et al., 

2017), park greenery (Gini et al., 2014) or detection of invasive plant species 

(Müllerová et al., 2017). It is obvious that not even higher spatial resolution can 

for this purpose act as a surrogate for the missing spectral channels, not even 

in models utilizing nDSM data where the more detailed height information could 

have increased the RGB model performance. The visible sensor can be however 

successfully used for detailed classification of Artificial surfaces and for basic 

classification of Herbaceous plants. Thanks to the presence of the blue channel, 

RGB can be used for satisfactory species classification of Coniferous plants. 

However, the multispectral sensor provides general better results despite the 

missing blue band.  

We could possibly increase the accuracy by substituting the multispectral sensor 

with hyperspectral (Sankey et al., 2017a). The question of the degree 

of improvement when using such an expensive high-grade technology, however, 

remains unanswered. We can also assume that using multispectral cameras with 

a higher spectral resolution, such as Micasense Rededge (Weil et al., 2017), Parrot 

Sequoia (Ahmed et al., 2017) or Tetracam Multi-Camera Array (Laliberte et al., 

2011) could further improve the accuracy of the classification and increase the 

difference between the performance of the multispectral and visible sensors, 

a comparison is however also missing at present. On the other hand, the accuracy 

of SfM-derived point clouds is comparable to that of LiDAR-derived point clouds 

(Koska et al., 2017) and, therefore, if the vertical structure of the vegetation at each 

point is not of concern and only the information about the vegetation surface is 

sufficient, investment into this expensive sensor is not necessary for classification 

of vegetation. 
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GENERAL ASSESSMENT  

For a general purpose in any classification analysis based on UAV-borne data, we 

recommend the combination of a multispectral sensor and nDSM as the most 

efficient method requiring only a single flight (as the height information can be 

easily extracted during UAV imagery processing). A statistical evaluation has not 

revealed if nDSM or TMP data are more valuable for the classification (RQ iii); 

however, adding any one of these two into the MSC-based model significantly 

improved the accuracy (RQ iv). When searching for the best compromise between 

the number of sensors used (costs) and a sufficient classification accuracy, the 

answer can differ with the level of detail. As it is not possible to generalize the 

results, a test for homogeneity with binomial distribution was performed for every 

pair of models. Results indicate that models based on multiple inputs can be 

utilized for classification of individual plant species; however, distinguishing 

among individual multi-input models is more difficult (Figure 5). Our study area 

contains multiple cultivars with not entirely natural height, which potentially affect 

the result of classification. It can be therefore assumed that in a more natural 

environment with a smaller number of species, it is possible to achieve even better 

results and accuracies. We also assume that in such environments, even various 

models based on two inputs could give results that will be distinguishable both 

mutually and from all-input models. However, further studies are needed to verify 

these hypotheses. 

Conclusion  
The study proves the contribution of UAV-borne thermal and height data 

for classification of land cover and vegetation types. Thermal data and normalized 

height (nDSM) inputs increase classification accuracy when compared to spectral 

data only, even in a very specific environment of an arboretum. The best Overall 

Accuracy was achieved by combining all acquired input datasets on the 

multispectral sensor. The results confirmed our hypotheses that (RQ i) it is 

possible to classify individual plant species with a sufficient accuracy using UAV-

borne data; (RQ ii) RGB sensor with a better spatial resolution cannot fully 

substitute additional spectral information acquired using MSC sensors; and that 

(RQ iv) thermal data are an important source of information distinguishing some 

classes. On the other hand, the hypothesis (RQ iii) that the height data contribute 
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to the accuracy more than thermal data was not confirmed. Nevertheless, it is clear 

that UAV technology is, providing suitable parameters and input data, a powerful 

tool for a detailed and accurate classification of the land cover and recognition 

of plant species. 
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ABSTRACT 

High quality data on plant species occurrence count among the essential data 

sources for ecological research and conservation purposes. Ecologically valuable 

small grain mosaics of heterogeneous shrub and herbaceous formations however 

pose a challenging environment for creating such species occurrence maps. 

Remote sensing can be useful for such purposes, it however faces several 

challenges, especially the need of ultra high spatial resolution (centimeters) data 

and distinguishing between plant species or genera. Unmanned aerial vehicles 

(UAVs) are capable of producing data with sufficient resolution; their use for 

identification of plant species is however still largely unexplored. A fusion 

of spectral data with LiDAR-derived vertical information can improve the 

classification accuracy, such a solution is however costly. A cheaper alternative 

of vertical data acquisition can be represented by the use of the structure-from-

motion photogrammetry (SfM) utilizing the images taken for (multi/hyper) 

spectral analysis. We investigated the use of such a fusion of UAV-borne 

multispectral and SfM-derived vertical information acquired from a single sensor 

for classification of shrubland vegetation at species level and compared its 

accuracy with that derived from multispectral information only. Multispectral 

images were acquired using Tetracam Micro-MCA6 camera in the west of Czechia 

in a shrubland landscape protected within the NATURA 2000 network. Using 

(i) multispectral imagery only and (ii) multispectral-SfM fusion, we classified the 

vegetation into six classes representing four woody plant species and two meadow 

types. Our results prove that the multispectral-SfM fusion performs significantly 

better than multispectral only (88.2% overall accuracy, 85.2% mean producer’s 

accuracy and 85.7% mean user’s accuracy for fusion instead of 73.3%, 75.1% and 

63.7%, respectively, for multispectral). We concluded that the fusion 

of multispectral and SfM information acquired from a single UAV sensor is 

a viable method for shrub species mapping. 

KEYWORDS 

Fine spatial resolution, Species classification, Multispectral, Normalized digital 

surface model (nDSM), Structure from motion (SfM), Unmanned aerial systems, 

Tetracam Micro-MCA6 
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Introduction 
High quality data on vegetation, ideally up to the level of individual species, count 

among the essential data sources for ecological research and conservation 

purposes (Bazzichetto et al., 2018; Chignell et al., 2018; Husson et al., 2017; 

Mairota et al., 2015; Rapinel et al., 2015; Sankey et al., 2017a). However, 

the acquisition of species maps with a sufficient spatial and thematic accuracy may 

present a major challenge. This is especially true in small grain landscapes such 

as areas with mosaic pattern of heterogeneous shrub and herbaceous formations 

(Lu and He, 2017; Sankey et al., 2017b; Wang et al., 2018). Such sites with 

impenetrable thickets consisting of various shrub species make mapping using 

ground techniques extremely difficult. An attractive alternative for shrub species 

mapping lies in the use of remote sensing (RS). The classification of RS data to the 

level of individual species (or genera) however requires a detailed spatial resolution 

of the imagery, allowing the researcher to distinguish between individual shrubs 

and (clusters of) herbs. Such requirements however in turn rule out the use 

of most satellite imagery and suitable airborne data are rarely available for the 

studied location. A possible solution for an inexpensive acquisition of such data 

on a local scale may lie in the use of unmanned aerial vehicles (UAVs) that are 

capable to provide images with pixel size in the order of centimeters (Colomina 

and Molina, 2014; Husson et al., 2017; Komárek et al., 2018; Sankey et al., 2017b, 

2017a). 

Even if such detailed data are acquired, the extremely detailed classification (to the 

level of species/genera) can lead to a low classification accuracy and reliability. It 

is of course much easier to achieve a high classification accuracy if only generalized 

classes (e. g. forests, shrubs, meadows) are to be distinguished (Ahmed et al., 2017; 

Komárek et al., 2018). With greater thematic detail, however, such a decline 

in accuracy is not only apparent in the overall accuracy but even more so in the 

producer’s accuracy (hereinafter accuracy, i.e., the likelihood that the species will 

be classified correctly) and/or user’s accuracy (i.e., reliability, the likelihood that 

the class shown on the map will match the reality) of the identification 

of individual classes. Thus, despite a high overall classification accuracy, a closer 

look at the accuracy or reliability of individual species can reveal a very low rate 

of correct identification or representation of some species on the map (see 

e.g. Komárek et al., 2018). Such a problem would limit the usability of the resulting 

species occurrence maps for subsequent research or management purposes. This 

is especially likely to happen if the classification includes non-vegetation surfaces 

(e.g. tarmac or gravel roads), which are almost 100% distinguishable from 
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vegetation and, therefore, artificially improving the overall classification success 

rate. For example, an 80% overall accuracy may look good at the first glance but 

a closer look revealing a 55% producer’s accuracy for a particular species in the 

analysis tells us that almost half of the real occurrence of the particular species was 

omitted. A 55% reliability then indicates that almost half of the pixels identified as 

a particular species are actually a different species in the real world. Using such 

a map as a basis for subsequent ecological research may lead to biased results 

(Chignell et al., 2018; Fisher et al., 2018; Moudrý and Šímová, 2012; Schmidt et al., 

2017; Šímová et al., 2019). For example, if the presence of a particular shrub 

species is important for the occurrence of an endangered bird species due to its 

feeding habits, the failure to correctly identify that particular shrub species (despite 

a high overall accuracy) provides incorrect input data for the analysis of the 

particular bird occurrence. The results of such a study would therefore be invalid; 

if they are however perceived as reliable due to the high overall accuracy of the 

map, it could lead in effect to incorrect management decisions. It is therefore not 

sufficient to rely on the overall accuracy, the producer’s accuracy and reliability for 

individual classes must be studied and reported with every such map and, 

of course, every effort should be made to maximize those values. 

Some studies using satellite and/or airborne data have suggested that a fusion 

of spectral imagery and vertical information (particularly airborne LiDAR data) 

may represent a suitable technique for improving the classification accuracy 

in a detailed thematic resolution (Alonzo et al., 2014; Bork and Su, 2007; Hartfield 

et al., 2011; Holmgren et al., 2008). Very few studies are however available on such 

a fusion of UAV-acquired data and its benefits (Husson et al., 2017; Komárek et 

al., 2018; Sankey et al., 2017b, 2017a). All those studies suggest that although the 

fusion of spectral (RGB, multispectral or hyperspectral) and vertical (LiDAR or 

structure from motion photogrammetry, SfM) information leads to an overall 

improvement of accuracy, this may not be the case for some individual classes. 

From the dates of publication of all those studies, it is obvious that the fusion 

of UAV-acquired spectral and vertical data is a very novel approach and further 

research on the classification accuracy in various landscapes is needed. 

All the UAV-based studies on the fusion of spectral and vertical data published so 

far use either UAV LiDAR sensor or SfM as a source of the vertical data. LiDAR 

is generally considered to provide more accurate vertical information (Dandois 

and Ellis, 2013; Fonstad et al., 2013; Mancini et al., 2013; Sankey et al., 2017a; 

Wallace et al., 2016). The price of the LiDAR UAV solution (sensor itself plus 

a suitable carrier) however remains high. SfM, on the other hand, requires no extra 

sensor; the vertical data can be extracted from RGB or multispectral images (only 
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a single flight mission is therefore needed for acquisition of both spectral and 

vertical data). As indicated in several studies, the use of UAV SfM can produce 

ultra-fine canopy height models (CHMs) comparable with LiDAR-derived CHMs 

and have a great potential for use in ecology (Anderson and Gaston, 2013; 

Cunliffe et al., 2016; Kalacska et al., 2017). The trade-off between the total data 

acquisition costs (costs of the carrier and sensor, of imaging and data processing) 

and the accuracy of the vertical information intended for fusion with the spectral 

data must therefore be considered when choosing the suitable method of UAV 

data acquisition. 

In this study, we classified shrubland vegetation into six classes, namely four 

shrubs pecies/genera and two meadow types, based on data acquired using 

a multispectral sensor during a single flight mission. Our principal aim was to find 

out if the fusion of the multispectral information and vertical data acquired 

through SfM from the same imagery can significantly improve the classification 

accuracy of shrubland vegetation when compared to the use of solely multispectral 

in formation. We hypothesized that the addition of the vertical information can, 

besides improving the accuracy of distinguishing the shrubs from herbs, improve 

the producer’s and user’s accuracy of differentiation between individual shrubs 

species and meadow types. 

Methods 

STUDY AREA 

The study was carried out in the west of Czechia (Central Europe), in Doupovske 

hory (50°18' N, 13°8' E; Figure 1). The predominant vegetation type is shrubland 

consisting of a mosaic of herbaceous and shrub vegetation. Two sites (8.7 ha and 

6.4 ha, 0.7 km apart) were studied. One site is flat; the other covers a mild south-

oriented slope. The predominant shrub species on these sites are blackthorn 

(Prunus spinosa), hawthorn (Crataegus sp.), elder (Sambucus nigra) and willow 

(Salix sp.). The entire area of Doupovske hory is protected under the Directive 

2009/147/EC of the European Parliament and of the Council on the 

Conservation of Wild Birds (The Birds Directive). 
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Figure 1. Study area and study sites. 

EQUIPMENT and DATA COLLECTION 

UAV, sensor and flight parameters 

A multispectral Tetracam Micro-MCA6 camera (1.3 Mpix resolution; 6 spectral 

bands - B, G, R, RE, 2x NIR, focal length 9.6 mm, equivalent focal length 50 mm) 

was used for the acquisition of the multispectral data (for detailed information 

on bands, see Table 1). The camera is equipped with a dedicated lens and sensor 

(resolution of 1280x1024 pixels) for each spectral band. The images are recorded 

in a native 10-bit .RAW or 8-bit .RAW. 
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The multispectral camera was mounted on a UAV using a three-axis gimbal 

stabilizer for maintaining the nadir position of the camera. The operational time 

of the used UAV – namely a hexacopter Robodrone Kingfisher (total weight 

of 7.5 kg including a battery and used sensor; see Figure 2) is approximately 

20 minutes. The flights were performed with a direct pilot supervision using 

an autopilot controlled by the Mission Planner software (V1.3) combined with 

a Pixhawk control unit. The exact position of the UAV was recorded using GNSS 

sensor, atmospheric barometer and compass. The UAV flight altitude was 50 m 

above ground. The flight parameters were designed to ensure a lateral overlap 

of at least 60%. The flight speed of 2 m/s and the automatic sequence recording 

of one photo per 2 s ensured the longitudinal overlap of the photos >80%. These 

parameters resulted in a spatial resolution of <2.5 cm/pix. 

Table 1. Spectral bands of the used multispectral sensor and exposure time proportions. 

Channel/band Λ (nm) Bandwidth (nm) Proportion of exposure time (%) 

1 800 10 80 

2 490 10 80 

3 550 10 70 

4 680 10 80 

5 720 10 100 

6 900 20 140 

 

.  

Figure 2. UAV Robodrone Kingfisher with a mounted multispectral camera Tetracam Micro-
MCA6. 

Study sites of 8.7 and 6.4 ha, respectively, were scanned on 20. 6. 2016, which 

represents, in the longitude of Czechia, the foliated period with marked spectral 

differences among certain species in the late spring phenophase. The flights took 

place within two hours of the solar midday on a day with minimum cloud cover 

to minimize the effect of shadows and ensure constant lighting conditions. 
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Ground truth data mapping 

For the purposes of classification and subsequent accuracy evaluation, ground 

truth data were collected through a field survey. Two meadow types were 

distinguished – one with the predominance of grass communities (hereinafter 

Meadows) and the other with a significant representation of species from 

Apiaceae family (hereinafter ApiMeadows). In addition, four species (genera) 

of shrubs were distinguished: elder (Sambucus nigra), hawthorn (Crataegus sp.), 

blackthorn (Prunus spinosa) and willow (Salix sp.), see Figure 3. Originally, 

polygons of other classes were collected with the intention to include them in the 

study, such as poplar (Populus sp.), common alder (Alnus glutinosa), common ash 

(Fraxinus excelsior), meadows with significant representation of other types 

of high herbaceous plants such as stinging nettle (Urtica dioica), low grass 

vegetation, or bare soil. However, their number, area or spatial distribution were 

insufficient for the classification and validation and these classes were therefore 

not included in the results. The distribution, areas and numbers of polygons are 

summarized in Table 2. 

The vegetation was mapped using smart devices (tablets and phones) equipped 

with the Collector for ArcGIS app combined with a Garmin GLO GPS receiver 

(GPS external module for smart devices providing improved accuracy of 2 to 5 m). 

The Collector app allows mobile field data collection combining a custom 

basemap layer (we used an orthophoto with 5 cm/pix resolution) with the GPS 

position of the field worker. The operators identified the individual classes in the 

field, immediately entering the data directly into the Collector and drawing 

polygons of individual classes. Where the borders between classes were not 

sufficiently clear from the orthophoto (e.g. borders between different meadow 

classes or lower shrubs) and the operator therefore needed a more accurate 

localization for drawing the class-specific polygons, RTK GNSS receivers 

Leica 1200 with a sub-decimeter accuracy was used instead of Garmin GLO. 

Altogether, 185 polygons divided into 6 classes were recorded through Collector 

for ArcGIS, covering a majority of shrubs and trees in the areas of interest. 

Additional 93 polygons were created using RTK GNSS receivers, predominantly 

meadows and lower shrubs. This combination of data collection methods allowed 

us to acquire 278 single class polygons as ground truth data. See Figure 4 for 

an example of the distribution of the ground truth data. 
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Table 2. Vegetation classes and mapped ground truth data - number of polygons and their 
areas. 

Class Number of polygons ∑ Area (m2) 

Meadows 59 228 

ApiMeadows 56 456 

Elder 29 25 

Hawthorn 31 69 

Blackthorn 20 184 

Willow 43 140 

∑ of others (not used) 60 469 

∑ Meadows 115 684 

∑ Shrubs 123 418 

Total 278 1471 

 

 

 

Figure 3. Study area. A broader view of the study areas (A, B), Willow shrubs (C), 
ApiMeadows with Blackthorn (D), Meadows with Hawthorn (E). Elder (background), 

Meadow (central part) and ApiMeadow (foreground). 
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Figure 4. Distribution of the ground truth data (top) and stages of the data processing: ground 
truth data recorded on the orthophoto (left), results of the segmentation (middle) and 

of the classification (right). 

PHOTOGRAMMETRY (SfM) DATA PROCESSING 

During pre-processing, raw images were converted into multi-band TIFF images 

with resolution of 7.8 MPix (6x1.3 Mpix) in PixelWrench2 software. 3D point 

clouds and multispectral mosaics were created in Agisoft PhotoScan V1.3, 

a software utilizing an SfM algorithm (photogrammetric range imaging technique). 

Depending on user settings, following steps are performed during batch 

processing: Alignment of photos (detection of identical points), building a dense 

point cloud (creating a densified point cloud and an automatic noise points 
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filtering using a “Depth filtering” function), building digital elevation model 

(DEM) or Mesh texture, and building orthomosaic. The processing parameters 

used in our study for both areas of interest are summarized in Table 3. The 

resulting mosaic and 3D point cloud were georeferenced using 12 ground control 

points (GCPs). The acquired average positioning accuracy was < 0.3 m and 

maximum error < 0.6 m. As the data were subsequently utilized for a uni-temporal 

analysis and the flights were performed under identical weather condition, no 

radiometric calibration of the scene was necessary. We used a mosaic algorithm 

for correction of colour and brightness of the entire scene (see more in Agisoft 

User Guide, 2017). 

Table 3. Photogrammetry procedure – user settings and input data. 

Procedure Property Study sites 

Align photos 

 

Accuracy Highest 

Generic/reference preselection Yes 

Key and Tie point limit 

 

as many as possible/all 

 

Build Dense cloud 

 

Quality Ultra High 

Depth filtering 

 

Aggressive (recommended for aerial data 

processing) 

 

Building DEM 

 

Source data Dense cloud 

Interpolation 

 

Enabled 

 

Build Orthomosaic 

 

Surface DEM/DSM 

Blending mode 

 

Mosaic 

 

   

Accuracy  Property Study site 1 Study site 2 

Images Number (acquired/used) 225/225 180/169 

Spatial resolution 

of orthomosaic and DEM/DSM 

(cm/pix) 2.22 2.33 

Tie Points (points)  5 483 416 1 384 978 

Dense point cloud (points) 84 056 416 54 705 998 

VERTICAL DATA (DSM, DTM, nDSM) 

Normalized digital surface model (nDSM) describes relative heights of objects 

over the bare earth, which in our study means the vegetation canopy height. nDSM 

was computed by subtracting the digital terrain model (DTM) from the digital 

surface model (DSM) created from the dense point clouds (see Figure 5 as 

an example). A crucial step in creating DTM and DSM is the identification 

of ground points (GP) and non-ground points (NGP) inside the dense point 
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cloud, which was performed in the Agisoft PhotoScan software. The tool allows 

to distinguish between categories of GP, NGP, and noise points (outlying points 

that failed to be removed during depth filtering procedure, see more in Agisoft 

User Guide, 2017). After several trials, we used the following parameters: Max 

angle 10°; Max distance 0.2 m; Cell size 5 m. This combination of parameters 

allowed classification of all taller vegetation as NGPs while the GP category 

contained enough points for a DTM interpolation. DSM was subsequently created 

from all categories apart from the noise points while the DTM was computed 

solely from points identified as GP (see Figure 6 for an example of a resulting 

profile). 

 

Figure 5. A preview of digital elevation models (DSM, DTM, nDSM) created on the basis 
of SfM point cloud for the entire area (1) and a detail (2). 

 

Figure 6. An example of a point cloud profile with classified categories ground points (yellow) 
and non-ground points (grey). 
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SEGMENTATION and SUPERVISED CLASSIFICATION 

If processing and analysing very high resolution (VHR) data such as UAV-

acquired data, Geographic Object-Based Image Analysis (GEOBIA) method has 

been shown to provide better results than pixel-based approaches (Alonzo et al., 

2014; Blaschke, 2010; Hartfield et al., 2011; Liu et al., 2015). For this reason, we 

used GEOBIA approach in our study. GEOBIA process, consisting of image 

segmentation and subsequent classification of the segments, was performed 

in eCognition software. A multiresolutional segmentation algorithm divided 

the images into principal segments based on similar spectral, shape and, in our 

study, height characteristics. The principal user settings are pixel value vs shape. 

It is also possible to alter the weight of individual channels in the pixel value while 

the shape of the segments is derived from compactness and smoothness 

parameters (see eCognition user guide for more information). To acquire optimum 

results, input parameters were initially tested on several small sample patches – 

shape parameter in steps by 10 units (from 10 to 200), compactness and 

smoothness by 0.1 units (in the full range, from 0.1 to 1). After each step, we 

performed a visual inspection using high resolution orthophotos and nDSM 

datasets as a reference. Following values resulting from the tests were set based 

on these preliminary results: Shape 40; pixel value 1:1 for all used bands; 

compactness 0.4; smoothness 0.6 (see detail in Figure 4 as an example). 

A supervised classification method based on the nearest neighbor (NN) algorithm 

was used for classification of the segments into 6 classes (see Table 1). To evaluate 

the contribution of SfM based vertical information, we performed independent 

classifications of a) spectral data only (hereinafter Multispectral approach) and 

b) a combination of the spectral data with nDSM (hereinafter Fusion approach). 

In the NN classifications, we used common layer characteristics (mean value, 

standard deviation and range of pixels in each segment), texture characteristics 

(contrast, homogeneity and entropy) and shape characteristic (length/width, 

asymmetry, shape index, compactness, density and roundness). The choice 

of those characteristics was based on the Space Optimization Tool results 

(a feature of eCognition software - a tool for automatic identification of significant 

characteristics for NN classification). For the classification of the fusion data, 

nDSM was used as an additional band considered in the nearest neighbor 

algorithm. The entire process is depicted in Figure 7. 
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Figure 7. The classification process. 

ACCURACY ASSESSMENT 

The nearest neighbor classification is sensitive to the data allocation into 

calibration and validation datasets and to their spatial distribution (Blaschke et al., 

2008). To minimize that effect, we performed a ten-fold random allocation of the 

acquired ground truth data into the calibration (60%) and validation (40%) datasets 

and repeated the entire process of calibration and validation ten times. 

For classification, therefore, 60% of randomly selected ground truth polygons 

of each of the six distinguished classes were selected. Calculations of producer’s 

accuracy (accuracy, ACC), user/consumer accuracy (reliability, REL) and Cohen´s 

Kappa were based on the overall extent of correctly and incorrectly classified 

pixels. 
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This way, we acquired 10 ACC and REL values for each class and for each of the 

classification approaches (Multispectral and Fusion). The hypothesis that 

supplementing the spectral data with vertical information improves the 

classification accuracy (ACC, REL) was tested through one-tailed paired Wilcoxon 

test (null hypothesis: median ACC (Fusion) ≤ median ACC (Multispectral); REL 

tested accordingly). The difference in classification was tested in this way 

for individual classes as well as for the overall accuracy. Based on the results of the 

Wilcoxon test and interquartile range of ACC and REL values acquired through 

individual classification approaches, we also assessed if the addition of the vertical 

information can reduce the classification sensitivity to the changes in the allocation 

of the calibration and validation data. 

Results 
Our results show an improvement of the classification of shrubland vegetation 

through fusion with SfM-derived vertical data (compared to results 

of multispectral-only approach). Using the Fusion approach for ten repeated 

classifications into six classes representing four woody plants species and two 

meadow types, we achieved an overall accuracy of 88.2%, mean ACC (producer’s 

accuracy) of 85.2%, mean REL (user’s accuracy) of 85.7% and Kappa coefficient 

of 0.84. Classification based solely on multispectral data yielded overall accuracy 

of 73.3%, ACC of 75.1%, REL of 63.7% and Kappa coefficient of 0.60. The 

differences between both classification approaches are detailed in Table 4. 

Detailed results are also presented in confusion matrices (Table 5). Where vertical 

information was not utilized (Multispectral approach), Meadows were frequently 

misclassified for some shrub classes, especially Hawthorn, which led to very low 

ACC and REL values of both classes (Meadows: ACC 48.7%, REL 61.0%; 

Hawthorn: ACC 64.1%, REL 49.7%). Adding vertical information improved ACC 

of meadows with major representation of tall herbaceous plants from the 

Apiaceae family (ApiMeadows); there was no effect on REL, which was 

nevertheless high in both classification approaches (the highest of all classes, 

94.2% and 95.1%, respectively). In the Elder class, the supplementary vertical 

information did not increase ACC (even reduced it somewhat, from 86.2% to 

84.3%), it however helped to significantly improve REL (86.2% vs 39.3%). 

For this species, therefore, the high ACC of multispectral classification was only 
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achieved at the expense of a significant REL reduction, i.e., overestimation of the 

overall area of the class in question and decreasing the classification reliability 

(more than 60% of areas denoted as Elder using multispectral data only were 

in fact ApiMeadows). Principally similar results were obtained for the Blackthorn 

class. For Willow, Hawthorn and Meadows classes, the use of vertical information 

yielded significantly better results according to both ACC and REL. 

The regression analysis utilizing all ten repeated classifications revealed a strong 

negative relationship between the improvement in accuracy caused by adding the 

height data to the model and the accuracy of the original classification using 

multispectral data only. This correlation is somewhat stronger for REL (R=-0.87, 

p<0.001) than for ACC (R=-0.84, p<0.001). As apparent from Figure 8, both REL 

and ACC were greatly improved by the fusion where multispectral approach 

yielded low accuracies. From approx. 80% ACC and 90% REL, respectively, the 

improvement was however close to zero and equally likely to lead to minor 

improvement or deterioration. 

Results of the statistical analyses furthermore indicate that the allocation and 

spatial distribution of the validation and calibration data also affect the 

classification accuracy (both ACC and REL; Table 4 and Figure 9). On the basis 

of ranges (max-min) comparison, we can say that the effect of allocation of the 

ground truth data into the classification and validation datasets is in most cases 

smaller where classification is based on a combination of height and spectral data 

(Fusion) than when it is built solely on the spectral data (Multispectral). 

Table 4. Results of one-tailed paired Wilcoxon test for each class and overall classification. 
Asterisks indicate significant improvement of the classification by addition of vertical 

information (significantly better accuracy of Fusion approach when compared to Multispectral 
approach). Significance levels: *** <0.001; **<0.01; - insignificant. 

Class ACC REL 

Meadows *** *** 

ApiMeadows ** - 

Elder - *** 

Hawthorn *** *** 

Blackthorn - *** 

Willow ** *** 

All classes *** *** 
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Table 5. Confusion matrices for Fusion and Multispectral approach. Values represent means 
from 10 repetitions of classifications and validations. 

 Meadows ApiMeadows Elder Hawthorn Blackthorn Willow  

Fusion        

Meadows 84.0 7.2 0.0 0.0 0.0 0.0  

ApiMeadows 11.4 169.4 1.4 0.0 0.2 0.2  

Elder 0.25 0.6 8.4 0.0 0.0 0.7  

Hawthorn 0.53 0.27 0.0 20.8 2.12 3.9  

Blackthorn 4.3 2.1 0.0 5.1 54.0 8.1  

Willow 1.1 0.3 0.0 1.0 1.7 52.0 Mean 

ACC 0.921 0.929 0.843 0.753 0.734 0.929 0.852 

REL 0.828 0.942 0.862 0.775 0.930 0.802 0.857 

Overall accuracy 0.882  Kappa 0.840 
 

 

 

Multispectral 

 

Meadows 44.4 6.2 0.0 12.4 9.6 18.6  

ApiMeadows 14.1 144.5 14.1 0.9 3.6 5.3  

Elder 0.2 0.6 9.1 0.0 0.0 0.1  

Hawthorn 2.4 0.1 0.0 17.7 3.6 3.7  

Blackthorn 7.8 0.1 0.0 4.0 58.5 3.3  

Willow 3.8 0.4 0.0 0.7 2.1 49.1 Mean 

ACC 0.487 0.792 0.914 0.641 0.795 0.876 0.751 

REL 0.610 0.951 0.393 0.497 0.756 0.614 0.637 

Overall accuracy 0.733  Kappa 0.596  
 

 

 

Figure 8. Accuracy improvement due to including height data in the model (Fusion) as a 
function of the accuracy of the original multispectral classification.  
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Figure 9. Resulting (A) producer’s accuracy ACC and (B) user’s accuracy REL for 
individual classes in ten repeated classifications with a random allocation of ground truth data 

into calibration and validation datasets. Boxplot: median, quartiles, range. 
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Discussion 
The novelty of our approach for detail vegetation mapping lies in the fusion 

of spectral and vertical information acquired during a single flight mission from 

a single multispectral UAV sensor. In our study, the addition of the vertical 

information significantly improved both producer’s accuracy ACC and user’s 

accuracy (reliability) REL of the entire classification. At least one of the accuracy 

indicators (either ACC or REL) was increased in each of the six individual classes 

(four shrub species, two types of meadows). For three classes (Meadows, 

Hawthorn, Willow), we registered improvement of both ACC and REL. 

In the study that is the most similar to our approach, Sankey et al. (2017a) classified 

five species and bare ground in a forest-grassland ecotone using a UAV-borne 

hyperspectral sensor and LiDAR. A close comparison of the studies reveals that 

both producer and user accuracies were (as expected) greater when using the 

hyperspectral than multispectral sensor (average ACC hyperspectral 86% vs our 

multispectral 73%; average REL hyperspectral 91% vs multispectral 64%). After 

supplementing the spectral information with the vertical, however, the differences 

in results are much smaller (average ACC hyperspectral+LiDAR 89% vs 

multispectral+SfM 85%; average REL hyperspectral+LiDAR 90% vs 

multispectral+SfM 86%). It is true that we cannot exclude the possibility that 

combining our multispectral data with LiDAR would lead to a further 

classification improvement. This, however, should be an object of further studies, 

along with a practical question if such a possible improvement of vegetation 

classification is of a degree justifying the substantial difference in costs 

of obtaining SfM and LiDAR information, especially in the field of ecological 

research. 

The SfM-based vertical models are generally considered to be less accurate than 

those based on LiDAR data (Dandois and Ellis, 2013; Fonstad et al., 2013; 

Niethammer et al., 2012; Sankey et al., 2017a). As indicated by our results, 

however, their use for fusion with multispectral data and thus for the improvement 

of classification of multispectral-based models can represent a cost-effective and 

viable alternative to the use of LiDAR-based models. 

Another study similar to ours in concept, though not in the vegetation type, was 

that of (Husson et al., 2017) who combined multispectral data with a vertical 

information acquired through structure from motion (SfM) photogrammetry for 

classification of non-submerged aquatic vegetation. The addition of vertical 

information also improved the classification accuracy by up to 30%, particularly 
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so for more detailed thematic resolution (7 classes according to the dominant taxa) 

and for sites with the most complex vegetation. 

We have also revealed a strong negative relationship between the improvement 

of ACC and REL resulting from the addition of the vertical information and the 

accuracies of the original (multispectral only) classification. In our study, the 

addition of the vertical information did not improve the (relatively high) reliability 

of the multispectral classification for ApiMeadows, i.e. meadows with high 

representation of tall vegetation from Apiaceae family (92.9%), and producer’s 

accuracy of the multispectral classification of Elder (91.4%). In these classes, 

however, the addition of the vertical information significantly improved the 

producer’s accuracy for ApiMeadows (79.2 to 92.9) and especially the originally 

very low reliability of Elder (39.3% improved to 86.2 %). The low reliability for 

Elder in the multispectral approach was caused by numerous misclassifications for 

ApiMeadows, probably due to a similar spectral response of white umbellate 

inflorescences of Apiaceae plants and elders Sambucus nigra. Another exception 

from the general trend was the producer’s accuracy for Blackthorn, which 

decreased with the addition of the vertical information from 79.5% to 73.4%. 

A possible explanation may lie in the notable height variability of the species 

throughout the sites (20 cm to 3 m). 

The relationship between the contribution of vertical information to the accuracy 

and the original, spectral-only, accuracy deserves in our opinion further research, 

the results of which could for example help in decisions whether or not to perform 

a fusion of spectral and vertical data and if so, which sensors should be utilized. 

Our results indicate that where the spectral-only approach yields high ACC and 

REL (in our study at least approx. 80% ACC and 90% REL, respectively), any 

addition of the vertical information is unlikely to further improve the results and, 

quite on the contrary, can lead to worsening the results. 

For some species, the improvement of the classification accuracy through vertical 

information can be substantial, the result can however still be insufficient for use 

in ecological modelling. For example, the user’s accuracy of Hawthorn improved 

from 49.7% to 77.5%. Such a result is not explicitly bad; from the perspective 

of further application, however, we must keep in mind that almost a quarter 

of pixels classified as Hawthorn were still classified incorrectly (in our study, 

predominantly as Blackthorn). 

The choice of the date of mapping is another very important factor that has to be 

considered while planning the study (Laba et al., 2005; Müllerová et al., 2017). The 

mapping date for this study (June 20th, within 2 hours of the solar midday) can be 
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in our opinion considered as suitable in the latitude and altitude of our study, 

which is supported by the achieved accuracy results for most classified species. 

An advantage of the UAV over airborne and satellite missions is, among other 

things, a flexibility in repetition of the flight missions and, therefore, the possibility 

of flexible temporal resolution (e.g. Anderson and Gaston, 2013). Multitemporal 

image acquisition of the study area in different phenological stages could improve 

the classification accuracy of species for which the mapping in a single 

phenological stage has not yielded results of a sufficient accuracy (in our study, 

Hawthorn). On the other hand, a disadvantage of UAVs when compared to 

satellite and airborne datasets may lie in a more time-consuming image acquisition. 

While airborne or satellite sensors can record large areas in a matter of minutes, 

UAV image recording takes much longer and a single flight mission can only 

encompass a few hectares. Thus, mapping of a large area using UAVs could be 

affected by changes of weather conditions, daytime effects (sun position and 

shadows) and, in extreme cases (e.g. when adverse weather conditions persist), 

even by a change of the phenological stages. For these reasons, we selected two 

distinct study sites, a few hectares in size each, to be able to perform image 

acquisition over the course of a single day under ideal weather conditions. Such 

an approach is common in other recent studies utilizing new rotary wing UAVs 

for acquisition of ultra-high resolution images, e.g. for vegetation type 

classification (Husson et al., 2017; Komárek et al., 2018; Sankey et al., 2017a, 

2017b), for study of vegetation structure of rocky habitats (Díaz-Varela et al., 

2018), for description of dryland vegetation structure (Cunliffe et al., 2016) or for 

detection of individual trees (Nevalainen et al., 2017). 

Our study also confirms the assumption that the allocation of calibration and 

validation data affects the quality and accuracy of the classification. For example, 

Olofsson et al. (2014) reported the differences in accuracy assessment of up 

to ±10%. We have eliminated the problem to a major degree by performing a 10-

fold random allocation of the ground truth polygons into calibration and 

validation datasets and a 10-fold repeated classification and validation. The results 

(Figure 9) indicate significant differences in the obtained accuracies, in some 

species up to ±20 per cent from the medians. The results also indicate that 

supplementing the multispectral data with vertical information has a positive 

effect on reducing this sensitivity for most classes. 

Other factors possibly limiting the accuracy of vegetation classification include the 

segmentation and classification algorithms and the validation method (Blaschke et 

al., 2014; Liu et al., 2015; Olofsson et al., 2014). To minimize those effects, we 

performed a pre-assessment, testing both pixel based classification and GEOBIA 
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approaches. Pixel based classification led to significantly worse results and, 

in accordance with those pre-assessment results and with recent publications 

(Alonzo et al., 2014; Diaz-Varela et al., 2014; Hartfield et al., 2011; Peña et al., 

2013; Rampi et al., 2014) we used GEOBIA that is considered to be more suitable 

for classification of VHR images. Because we had to deal with non-normal 

distribution of the input data, we chose a non-parametric (nearest neighbor) 

classification algorithm, in line with Lu and Weng (2007). The non-normal 

distribution of the data is most obvious for the nDSM data across all classes, it 

was however also present in several multispectral bands (see Figure 10). Although 

we used a robust, non-parametric algorithm, the results show that the classification 

results strongly depend on the selection of ground truth data (see the ranges 

of accuracy and reliability in Figure 9), which further underlines the importance 

of our approach using 10-fold repetition. 

 

Figure 10. Value distributions in individual classes. 

GEOBIA approach is also affected by the precision of the segmentation 

technique used at the input stage (Alonzo et al., 2014). The Estimation Scale 

Parameter algorithm - a tool for estimating suitable scales for segmentation based 

on the local variance - can help with fine-tuning the Scale parameter 

for a multiresolution segmentation algorithm (Draguţ et al., 2014, 2010). No fully 

automatic approach to the optimizing and quantification of the segmentation 

algorithm is however available. Another recommended method is testing 

of individual input parameters followed by a visual inspection (see more 
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in eCognition user guide). Visual interpretation is one of the widely used 

references for a quantitative evaluation of the accuracy of various segmentation 

approaches (Alonzo et al., 2014; Clinton et al., 2010; Draguţ et al., 2014). For that 

reason, we tested the input parameters of the segmentation algorithm for both 

sites and using the expert knowledge of the study site, we performed a visual 

inspection over a high resolution orthomosaic and nDSM raster. Our approach 

ensured that the resulting segments took even the smallest objects in the image 

(small shrubs with treetop projection of approx. 0.5 m2 and height approx. 0.5 m) 

into consideration while, at the same time, larger homogenous areas 

(ApiMeadows, large willow shrubs) were not unnecessarily fragmented. 

Conclusion 
Our study proved that a fusion of multispectral and SfM-derived vertical 

information significantly improves the accuracies of classification of shrubland 

vegetation to the level of individual species/genera of shrubs and meadow types. 

Our findings indicate that it is possible to acquire high quality results of shrubland 

mapping that can be potentially utilized for ecological research and other 

applications even without high investments in LiDAR sensor and without 

the need of several flight missions. However, where the accuracy of the 

classification based solely on multispectral data was high (approx. 80% producer’s 

accuracy and 90% user’s accuracy), supplementing the results with vertical data 

had little positive effect on the classification accuracies or even worsened the 

results for some species. Identifying the level of producer’s and user’s accuracies 

derived solely from spectral data, after which the fusion with vertical data becomes 

unnecessary, in various landscape types is an interesting research question 

for further studies. Our results also demonstrated the high dependency 

of classification results on the allocation of ground truth data. Although fusion 

with vertical data reduced that dependency in most cases, we believe that our 

approach using multiple random allocations and classifications of ground truth 

data should be a standard approach for similar studies. 
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ABSTRACT 

Inland water bodies are globally threatened by environmental degradation and 

climate change and repeated monitoring is crucial for their successful preservation. 

Remote sensing, especially multispectral and hyperspectral data, has been widely 

used for identification of water bodies. However, the use of optical imagery is 

constrained by accuracy problems related to the difficulty in distinguishing water 

features from other surfaces with low albedo, such as shadows from buildings and 

trees. In this study, we evaluated the potential of integrating hyperspectral data 

with LiDAR-derived variables (hereafter “integrative approach”) to eliminate the 

effect of shadows. The hyperspectral imagery consisted of 148 bands from 380 to 

2450 nm; the spatial resolution was 1.25 m. We used five LiDAR-derived variables 

at the same resolution: (i) Points density; (ii) Intensity; (iii) Ratio of the number 

of first returns and of all returns; (iv) Elevation of the normalised digital surface 

model; (v) Slope of the digital surface model. The study area consisted of several 

spoil heaps located in North Bohemian brown coal basin, one of the largest 

mining areas in Europe, that contains heterogeneous water bodies with a high 

variability of shape and size, located in environments with contrasting vegetation 

cover. We utilized object-based classification (support vector machine) based 

solely on hyperspectral or LiDAR data with classification based on integration 

of both datasets. In addition, we classified hyperspectral data by two traditional 

pixel-based approaches (K-mean and spectral angle mapper). Our results show 

a superior classification accuracy of the integrative approach yielding an improved 

discrimination of open water surface, with the omission error of 2% and 

commission error of 0.41% compared to individual hyperspectral (omission 7.6% 

and commission 1.28%) or LiDAR (omission 4.0% and commission 0.41%) 

variables. Pixel based approaches yielded very high omission errors of 5.2% and 

22.4% and commission error of 0.8% and 0.5% for K-mean and Spectral angle 

mapper, respectively. We also evaluated the success of detecting individual ponds 

and integrative approach was the only approach that detected the water bodies 

with both omission and commission error below 10%. Finally, the assessment 

of misclassification reasons showed a perfect elimination of shadows in the 

integrative approach. Our finding demonstrate that utilizing LiDAR data 

successfully eliminated problems with shadows and that integration 

of hyperspectral and LiDAR data for open surface water classification can greatly 

improve the identification of small water bodies. 
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Introduction 
Water, besides being an essential natural resource, also represents an important 

environment supporting high biodiversity. Inland water bodies are however 

globally threatened by agricultural irrigation, ongoing urbanization, environmental 

degradation and climate change (Vörösmarty et al., 2010) and the spatial and 

temporal changes of surface water bodies are therefore drawing more and more 

attention (Pekel et al., 2016). Precise extraction and repeated monitoring of open 

surface water bodies is needed for better management of water resources as well 

as for preservation of these threatened ecosystems and preventing biodiversity 

loss (Harrison et al., 2018). 

Mining is one of human activities with strong environmental impacts 

(Hendrychová and Kabrna, 2016; Svobodova et al., 2012). In particular, surface 

mining and associated extensive disturbances significantly influence large areas and 

have negative effects on freshwater biota that persist even after the reclamation 

of the mining site (Giam et al., 2018; Osenberg, 2018). On the other hand, it has 

been repeatedly shown that reclaimed areas have a high conservation value (Schulz 

and Wiegleb, 2000; Vanhée and Devigne, 2018; Vymazal and Sklenicka, 2012). 

This is particularly true about areas left to spontaneous succession as those 

represent habitats that have been disappearing throughout Europe over past 

decades (Doležalová et al., 2012). Spoil heaps have been shown to become 

important biodiversity refuges, especially for aquatic species such as anurans 

(Vojar et al., 2016) and dragonflies (Harabiš et al., 2013). However, labour 

intensive and extremely time demanding in situ surveys are often needed to 

localize habitats of such endangered species. Such a survey was undertaken 

for example by Doležalová et al. (2012) who identified more than 900 open 

surface water bodies important for conservation on spoil heaps. Although field 

surveys provide valuable information for preservation of important habitats and 

for understanding of various ecological and environmental processes (e.g. Prach 

and Walker, 2011; Vojar et al., 2016), they are unsuitable for repeated monitoring 

due to their labour intensiveness. Remote sensing is an efficient and cost effective 
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alternative for such surveys, although it is only rarely adopted in restoration 

projects (Cordell et al., 2017).  

Remote sensing has been widely used for identification of water bodies and 

for monitoring their changes. Several processing techniques have been adopted 

for such purposes (Chen et al., 2004). For example, various spectral water indices 

are frequently used to extract water bodies due to the ease of use and low 

computational cost. The Normalized Difference Water Index (NDWI) was 

developed to distinguish open water bodies from vegetation using green and NIR 

bands of Landsat satellite images (McFeeters, 1996) and several modifications and 

improvements on that index have been subsequently introduced (Feyisa et al., 

2014; Xu, 2006). Another approach is to extract water features using various 

classification techniques, of which the support vector machine approach is the 

most popular (Pôssa and Maillard, 2018; Rokni et al., 2015). However, other 

classification algorithms in combination with various data sources (spectral, 

LiDAR or radar dataset) have also been used (e.g. neural networks, K-nearest 

neighbour and random forests) to distinguish water bodies individually (Kaplan 

and Avdan, 2017; Mahdianpari et al., 2017; Paul et al., 2018) or in the context 

of several land cover classes (Antonarakis et al., 2008; Brennan and Webster, 2006; 

Dronova et al., 2015; Luo et al., 2016).  

Images from satellite sensors of varying spatial, temporal, and spectral resolution 

have been extensively used to detect and extract surface water. This includes 

identification of water bodies using satellite sensors such as Landsat Thematic 

Mapper or MODIS (Carroll et al., 2009; S. Lu et al., 2011). Data from such sensors 

are particularly suitable for global scale studies at a relatively coarse resolution. 

For regional or local scale studies that require detailed information about small 

water bodies (Šikola et al., 2019; Šímová et al., 2019), airborne hyperspectral data 

with high spatial and spectral resolution have emerged as an important data source 

and were utilized for applications such as wetland mapping (Harken and 

Sugumaran, 2014; Zhang and Xie, 2012), water quality assessment (Giardino et al., 

2007; Olmanson et al., 2013) and water bodies identification (Xie et al., 2014).  

However, the use of optical imagery is constrained by accuracy problems. 

In particular, these are related to the difficulty in distinguishing water features 

from other surfaces with low albedo, such as shadows from clouds and terrain 

(Verpoorter et al., 2012); where high resolution imagery is used, shadows from 

buildings and trees may also pose a problem (Liu et al., 2017; Mostafa and 

Abdelhafiz, 2017). The presence of such surfaces may cause misclassification due 

to the similarity in reflectance patterns and various approaches have been 
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proposed to overcame this problem (Mostafa and Abdelhafiz, 2017; Verpoorter 

et al., 2012). 

Combining optical imagery data with digital elevation models (DEM) 

characterizing e.g. vegetation height or terrain slope is a popular approach, which 

benefits from the increasing availability of remote sensing data acquired 

by different sensors for the same area (Pohl and Genderen, 1998). Most often, 

such information is derived from Light detection and ranging (LiDAR). LiDAR 

data itself was successfully used for land cover classification (including water; 

Antonarakis et al., 2008). LiDAR data provide complementary information to 

optical images and are not affected by shadows. It is increasingly common to have 

both LiDAR and hyperspectral data available for the same area (Asner et al., 2015, 

2007; Hanuš et al., 2016). For example, Degerickx et al. (2019) used airborne 

LiDAR as an additional data source for spectral unmixing of urban land cover. 

Gilvear et al. (2004) combined hyperspectral and LiDAR data for mapping estuary 

and river hydromorphology. Dalponte et al. (2012) and Naidoo et al. (2012) 

integrated such data for mapping tree species in Alps and African savanna, 

respectively. 

However, the integration of LiDAR-derived variables and hyperspectral data 

for open surface water classification has not been tested so far, possibly due to the 

fact that open water absorbs energy on the wavelength commonly used 

by terrestrial LiDAR (1064 nm). In LiDAR point clouds, water bodies are 

therefore represented as empty areas without any returns, which makes the use 

of LiDAR for water feature identification slightly awkward. However, Steuer et al. 

(2011) utilized this very feature of LiDAR to detect water bodies and Lu et al. 

(2011) successfully utilized terrain-derived attributes (terrain slope) to improve 

open surface water classification by eliminating problems with shadows.(S. Lu et 

al., 2011) 

The overall objective of this study is to extract open surface water bodies on spoil 

heaps from very high resolution data. A crucial step for such task is to eliminate 

problems caused by shadows from trees and terrain (i.e. false positives). To 

achieve this goal, we integrated hyperspectral data with LiDAR-derived variables 

(hereinafter “integrative approach”) and adopted object-based approach, which is 

capable of providing good results with very high resolution data (Alonzo et al., 

2014; Hartfield et al., 2011; Liu et al., 2015). In addition, it is common that LiDAR 

and hyperspectral data show some level of misalignment (e.g. Parmehr et al., 2014) 

and it can be assumed that object-based classifications are less prone to such 

misalignment (Blaschke, 2010). To illustrate the advantages of our integrative 
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approach, we compared it with object-based classification based solely 

on hyperspectral or LiDAR data, and with classification of hyperspectral data 

by two traditional pixel-based approaches. We quantitatively evaluated the 

accuracy of all above classifications in terms of: (i) overall accuracy per area with 

stratified random points sampling; (ii) accuracy validated per features classified as 

water bodies; and (iii) analysed the sources of misclassification. 

 

 

Figure 1. Aerial images of representative water bodies. Images were taken in time range from 
2011 to 2016.  
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Materials 

STUDY AREA 

The present study was conducted on four spoil heaps originating from brown coal 

mining located in the North Bohemian brown coal basin (Figure 1), which is the 

largest mining area in the Czech Republic and one of the largest in all of Europe. 

The overall area of those four spoil heaps is 37.97 km2 and elevation ranges from 

200 m to 410 m above sea level (Figure 2).  

 

Figure 2. Study area in a topographical context – represented by a combination of slope and 
hillshade. The four spoil heaps under study are delineated by red line 

Depending on the age of the spoil heap, adopted reclamation techniques and 

consequently terrain character, the vegetation consists of forest, steppes (low 

vegetation with scattered shrubs and trees), grassland, and aquatic vegetation (e.g. 

Doležalová et al., 2012; Frouz et al., 2018). Spoil heaps also differ in their character 
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due to application of different reclamation approaches. Some have been 

technically reclaimed, which led to formation of a uniform terrain, while others 

(or their parts) have not and their terrain morphology remained rugged as a result 

of heaping, forming a typical undulated terrain (Frouz et al., 2018). 

The number of surface water bodies in the study area is especially high in areas 

without technical terrain reclamation, their sizes ranging from several square 

meters to thousands square meters. Water bodies can occupy up to 10% of the 

non-reclaimed parts. On technically reclaimed sites, water bodies are also often 

artificially created, they are however generally larger than those generated 

spontaneously. Therefore, the study area contains heterogeneous water bodies 

of high variability of shape and size located in environments with contrasting 

vegetation cover (e.g. grassland, dense shrubs, and forests; see Doležalová et al., 

2012 for more details about the character of the water bodies in study area). 

AIRBORNE DATA COLLECTION and PRE-PROCESSING 

The airborne LiDAR and hyperspectral data were acquired simultaneously on 18th 

May 2017 using a remote sensing platform FLIS (The Flying Laboratory 

of Imaging Spectroscopy; Hanuš et al., 2016). FLIS is operated by the Global 

Change Research Institute (Czech GLOBE) and equipped with an inertial 

measurement unit (IMU), global navigation satellite system (GNSS) receiver, two 

hyperspectral sensors (Visible Near Infrared, VNIR, CASI-1500 and Short Wave 

Infrared, SWIR, SASI-600), and LiDAR sensor (Riegl LMS Q-780) which are all 

mounted on an aircraft Cessna 208B Grand Caravan (see Table 1 for sensor 

parameters and data characteristics). Flights for data collection were conducted at 

1030 m above ground with a velocity of 110 knots (ground speed). The data 

acquisition took three hours (from 14:30 to 17:30 CEST) and consisted of 41 flight 

lines. Data were provided in the European terrestrial reference system ETRS-89 

and Universal transverse Mercator projection (UTM33N). 

Hyperspectral data  

The hyperspectral imagery consisted of 48 bands covering the visible near-infrared 

range from 380 to 1050 nm (CASI-1500) and 100 bands covering the near-infrared 

and short-wave infrared range from 950 to 2450 nm (SASI-600) with a band width 

of 15 nm. Pre-processing of the hyperspectral images (i.e., radiometric correction, 

georeferencing and atmospheric corrections) were all carried out by the provider 

(Czech GLOBE). Radiometric corrections were performed in the RadCorr 

software by converting spectral radiances to physical radiance units based 
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on calibration parameters from the CzechGlobe spectroscopic laboratory (Hanuš 

et al., 2016). Radiance images were geometrically corrected, orthorectified using 

a digital terrain model (DTM), and georeferenced. Subsequently, VNIR and SWIR 

data were merged (VNIR data were resampled to SWIR resolution using pixel 

aggregate method) and corrected for atmospheric conditions using a radiative 

model MODTRAN in ATCOR-4 software (Richter and Schläpfer, 2016). 

LiDAR data  

Airborne LiDAR data was acquired with a Riegl LMS Q-780 laser scanner. The 

scanner has a rotating polygon mirror and scans in parallel lines. The scan field 

of view is 60° and the wavelength is 1064 nm. The LiDAR data were provided 

in LAZ format with an average point density of 8 points per square meter. We 

further processed the LiDAR point cloud using LAStools (LAStools, 2019; 

http://lastools.org). LASnoise and LASground tools of the LAStools software 

were used to determine ground points. We tested several settings for LASground 

and visually assessed the resulting DTMs using hill-shaded terrain and the success 

of the identification of ground points in the most troublesome areas. The best 

results were acquired using predefined settings for natural environments (Moudrý 

et al., 2019a, 2019b). 

Based on the visual inspection and variables used in prior studies (Antonarakis et 

al., 2008; S. Lu et al., 2011), we considered the five following variables as suitable 

for water bodies identification: (i) Points density – number of points per spatial 

unit; (ii) Intensity - average light intensity of LiDAR returns; (iii) Ratio of the 

number of first returns and of all returns; (iv) Elevation of the normalised digital 

surface model based on the triangular network of points identified as non-ground 

points; (v) Slope of digital surface model – based on triangular network of all first 

class returns. All LiDAR variables were derived for identical spatial units and 

sampled to the same raster grid – cells were aligned with the same spatial resolution 

of 1.25 m in the UTM 33N coordinate system. For subsequent classification steps, 

we created a composite dataset consisting of a full hyperspectral cube (with all 148 

bands) and five LiDAR-derived variables (Figure 3). 
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Table 1. Hyperspectral sensors and dataset characteristics 

 Sensor 

Sensor parameters VNIR (CASI-1500) SWIR (SASI-600) 

Spectral resolution [nm] 380-1050 950-2450 

Bandwidth [nm] 15 15 

Max. spectral resolution [nm] 3.2 15 

Count of band 48 100 

Spatial resolution [m/cell] 0.5 1.25 

Angle of view [°] 40 40 

 

 

Table 2. LiDAR sensor and dataset characteristic 

Sensor Parameters (Riegl LMS Q-780) 

Wavelength [nm] 1064 

Laser pulse frequency [kHz] 400 

Angle of view [°] 60 

Beam divergence [mrad] 0.25 

Point density [point/m2] 7-8 

Field of view [°] 60 

 

 

 

Figure 3. (A) Aerial photo – true colour composite with RGB bands i.e. visible part 

of the spectrum, (B) false colours composite with Red, NIR, SWIR bands i.e. 

representation of infrared part of the spectrum and (C) LiDAR variables composite where 

red band represents nDSM, green band represent light intensity of LiDAR returns, and 

blue represent points density 
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Methods 

OVERVIEW of METHODOLOGY 

To classify open surface water, we adopted the Support vector machine (SVM) 

algorithm as a representative of object-based classification approaches 

recommended for VHR datasets classification (Blaschke, 2010). SVM algorithms 

were also successfully used for classification of integrated LiDAR and 

hyperspectral data by other researchers (Dalponte et al., 2012; Luo et al., 2016; 

Okiemute and Ruth, 2017). We performed object-based classifications using 

hyperspectral data and LiDAR variables separately as well as using their 

combination. In addition, we also used two different pixel-based classification 

methods based on hyperspectral data, namely, K-mean classification 

(a representative of unsupervised classification methods) and spectral angle 

mapper (a recommended and optimal method for hyperspectral datasets). We also 

tested the suitability of integrated hyperspectral/LiDAR data for pixel based 

approaches; however, the results were poor and therefore not presented in this 

study. 

 

Figure 4. Overview of methodology, classification approaches and accuracy assessment 

The accuracy of all classifications was quantitatively assessed in terms of: 

(i) overall accuracy per area with stratified random points sampling; (ii) accuracy 

validated per features classified as water bodies (i.e. how successful the individual 

methods are in detecting particular ponds or lakes); and we assessed (iii) sources 

of misclassification (e.g. landcover, shadow). The major data processing steps and 

adopted methods are presented in Figure 4. Data pre-processing and classification 

were performed in ENVI SW, post-processing and all spatial operations 

in ArcGIS 10.6 SW (ESRI, Redlands, CA, USA). 
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OBJECT-BASED CLASSIFICATION APPROACHES 

Support vector machine 

We used the support vector machine (SVM) algorithm as a representative 

of object-based classification approaches. The process of classification consists 

of (1) image segmentation and (2) classification of segments. First, based 

on similar spectral, textural, shape and, in our study, LiDAR variables, the 

segmentation algorithm divided the image information into basic segments. 

Segmentation was performed by the Feature Extraction tool with “scale level” and 

“merge level” being adjustable input parameters. We iteratively tested the scale 

level in steps of 5 units (ranging from 10 to 100), combined with merge level 

settings in steps of 5 units (ranging from 10 to 95) on five samples (100x100m). 

After a visual inspection of tests on those preliminary samples, we used scale level 

value of 25 and merge level value of 75, or scale level value of 30 and merge level 

value of 80, depending on the site. Second, we used the supervised classification 

method based on SVM algorithm independently for (i) full range hyperspectral 

data; (ii) LiDAR variables; and (iii) combination/composite of hyperspectral data 

and LiDAR variables. We manually selected 20 representative training samples 

for each category. The following characteristics per object were used for SVM 

classification: Basic variables (Mean, Standard Deviation, Min and Max pixel 

value), Texture variables (Range, Mean, Variance, Entropy), and Spatial variables 

(Area, Length, Compactness, Convexity, Roundness, Elongation, Numbers 

of holes, Hole Area/Solid Area). 

PIXEL BASED CLASSIFICATION APPROACHES 

Unsupervised classification approach  

K-mean classification is a typical representative of nonparametric, unsupervised 

classification algorithms (Tou and Gonzalez, 1974). The K-Mean algorithm used 

in our study (namely ENVI SW implementation) starts with uniform distribution 

of class means in the space, which are then iteratively clustered into classes based 

on the minimum distance. After each iteration, class means are recalculated and 

pixels reclassified according to the new means. The following input parameters 

were used: number of classes, change threshold, maximum number of iterations. 

Using an inappropriate number of classes represents a common problem of this 

approach as it can lead to mixing classes together. A typical example is 

a combination of water bodies and shadows (Movia et al., 2016). Therefore, we 

iteratively tested the numbers of classes (a range from 5 to 30) on five samples 
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(100x100 m) while keeping other parameters unchanged (change threshold: 1%, 

maximum number of iterations: 50). After each iteration, we performed a visual 

inspection using high resolution ortho-images as a reference. Based on the results 

of this preliminary test, 12 classes were used in the final classification, along with 

the other parameters as mentioned above (change threshold 1%; maximum 

number of iterations 50). 

Spectral angle classification approach 

Spectral angle mapper (SAM) is a classification approach recommended and 

optimized for hyperspectral data. The algorithm determines the spectral similarity 

between two spectral curves by calculating the angle between the spectral bands, 

treating them as vectors in a space with dimensionality equal to the number 

of bands (Kruse et al., 1993). Selection of input steps/parameters includes 

choosing (1) a suitable calibration dataset/spectral library and (2) a threshold 

maximum angle deviation. We assembled a spectral library based on over 200 

samples of water bodies in our study area. We iteratively tested and visually 

inspected the maximum angle deviation in steps of 0.05 units (ranging from 0.05 

to 1.0) on five samples (100x100 m) and used the maximum angle deviation of 0.2 

for the final experiment. 

ACCURACY ASSESSMENT 

We quantitatively assessed the accuracy of classification methods in the following 

way: (i) We used a stratified random sampling design according to the good 

practices for accuracy assessment (Olofsson et al., 2014) with randomly generated 

500 points (hereafter validation per area), 250 of which was located in non-water 

areas and 250 in water; (ii) We compared the classification approaches based 

on accuracy validated “per features”, i.e. per objects identified as water bodies. We 

randomly generated altogether 500 points in surfaces classified as water bodies 

in a way ascertaining that no more than a single point was in each feature. Noise 

features consisting of less than 4 pixels were omitted. 147 of those points were 

subsequently manually identified (see below) as non-water and 353 as water 

surface samples; (iii) We assessed the cause of misclassification (e.g. presence 

of spectrally similar land cover categories such as shadows or categories with 

similar LiDAR characteristics such as roads or holes in vegetation structure). 

Those “misclassification points” were generated for each of the classification 

approaches separately, until we had 100 points where classification failed for each 

approach and the reasons of misclassifications were analysed. 
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For validation per area and validation per feature, we calculated the omission error 

as the fraction of values that belong to a water category but were misclassified 

as non-water category and commission error as the fraction of values classified 

as water but not belonging to that class. All points used for the above validations 

were assessed over high resolution ortho-images (0.5 m per pixel) and manually 

assigned to desirable categories by a researcher with expert knowledge of the site. 

Moreover, water points were subsequently validated in the field.  

Results 

OVERALL ACCURACY 

The identification of water bodies was very successful. However, methods differed 

in the overall accuracy and especially in the identification of particular water 

bodies and sources of misclassification. The accuracy of open surface water bodies 

based on validation per area depends on the classification method with omission 

error ranging from 2% to 22.4% and a generally low difference in commission 

error – lower that 1.5% (which is however caused predominantly by the fact that 

the total area of water bodies is smaller than the total remaining area) (Figure 5). 

The most accurate classification was achieved by the integrative approach (SVM 

hyperspec.+LiDAR) with omission and commission errors of 2% and 0.4%, 

respectively. The object-based classification using only hyperspectral data (SVM 

hyperspec. only) had a relatively high omission (7.6%) as well as commission 

(1.3%) errors. The object classification based on LiDAR variables (SVM LiDAR 

only) had a slightly lower omission error than the K-mean classification (4% 

compared to 5.2% for K-mean), and the commission error was in both approaches 

lower that 1%. SAM classification approach also had a low commission error 

(0.5%), but the omission error was the highest of all approaches (22.4%). 

PER FEATURE ACCURACY 

Validation per features showed that the integrative approach is more successful 

in identifying particular water bodies than other methods (Figure 5). It was the 

only approach that at the same time correctly identified more than 90% of water 

bodies (omission error 5.3%) as well as more than 90% of non-water surfaces 
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(commission error 9.6%). In contrast, object classification based on hyperspectral 

characteristics only have the highest omission error of 19.4% as well as a very high 

commission error of 30.4%. The remaining methods achieved mutually 

comparable results with the exception of SAM classification that yielded the 

highest commission error (Figure 5). 

THE CAUSE of MISCLASSIFICATION 

The assessment of misclassification reasons showed that all classifications based 

solely on hyperspectral data were negatively affected by the presence of shadows 

and to a certain extent by the presence of artificial surfaces and terrestrial or littoral 

vegetation (Figure 6). For all three classification methods based solely 

on hyperspectral data, more than 50% of misclassifications were caused 

by shadows (due to the similar spectral characteristics, see Figure 7). The method 

most affected by shadows was the unsupervised K-mean classification where 73 

out of 100 misclassification points were shadows misclassified as water areas. 

In SAM and SVM, 56 and 51 out of 100 misclassified points were shadows. 

In contrast, LiDAR variables provided additional information (see Figure 8) and 

classification based on them recorded only 4 out of 100 misclassified points 

as affected by shadows; this classification was mostly affected by other categories 

(in particular vegetation and artificial surface – roads). Classification with 

integrated LiDAR+hyperspectral data also showed minimum errors caused by the 

presence of shadows (Figure 6). The predominant source of misclassification 

in this method was littoral vegetation, responsible for 87% of misclassifications. 
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Figure 5. Results of the accuracy assessment for each classification approach 1) Validation 

per area based on 250 water and 250 non-water randomly generated validation points; 

2) Validation per feature based on 353 water and 147 non-water samples 

 

Figure 6. Cause of misclassification for each classification approach based on 100 

validation points 



- 117 - 
 

 

 

Figure 7. spectral curves of water bodies and shadows on spoil heap areas based 

on 50 samples of each surface 

 

Figure 8. Hyperspectral characteristics (represented by relative surface reflectance) and 

LiDAR variables (represented by absolute values of parameters resampled to scale 

in range from 0 to 100) of water bodies and shadows 
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Discussion 
In this study, we examined the possibility to integrate airborne LiDAR and 

hyperspectral data to classify open surface water bodies and in particular to 

mitigate negative effect of shadows caused by their similar spectral signature. We 

used a range of structural variables derived from LiDAR and spectral, textural and 

spatial variables derived from hyperspectral data (with 148 bands). We tested both 

LiDAR variables and hyperspectral data alone and in combination. 

Our results show that the integration of LiDAR and hyperspectral data using 

object-based classification yielded an improved discrimination of open surface 

water bodies, with the omission error of 2% and commission error of 0.41% 

compared to individual hyperspectral (omission 7.6% and commission 1.28%) or 

LiDAR (omission 4.0% and commission 0.41%) variables (Figure 5). These results 

are comparable to those reported by Luo et al. (2016) who also integrated airborne 

LiDAR and hyperspectral data to classify land cover (including water surface) with 

omission error of 3.95% and zero commission error. Their study area however 

contained few water bodies and only 22 validation points were used to evaluate 

that category. In contrast, Okiemute and Ruth (2017) classified water surface 

in context of seven categories of land cover integrating LiDAR and 

multispectral/hyperspectral data and achieved a low omission error of 0% and 

relatively high commission error ranging from 19.6% to 4.3%, depending on the 

classification method. It must be however noted that standard overall accuracy 

assessment based on validation per area does not accurately reflect the 

classification accuracy of small water bodies that were our main interest as it is 

biased due to the presence of large water bodies and due to the fact that the total 

area of water bodies is smaller than the total remaining area. 

We also evaluated the success of detecting individual ponds and investigated 

the sources of misclassification, which both show a superior classification 

accuracy of the integrative approach. The accuracy assessment based on random 

samples per features classified as water shows that the integrative approach is 

much more successful in detecting particular water bodies than remaining 

approaches. It was the only approach that detected the water bodies with both 

omission and commission error below 10% (Figure 5). The assessment 

of misclassification reasons showed a perfect elimination of shadows in the 

integrative approach. The predominant source of misclassification in this method 

was littoral vegetation (i.e. non-submerged aquatic vegetation). As the littoral zone 

is a part of the water body, this misclassification should nevertheless not be 
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considered as an error per se (Gairola et al., 2013; Husson et al., 2017). A more 

detailed classification capable of identification of littoral vegetation is a focus 

of another ongoing study. 

Our results show that the integrative approach (i.e. the fusion of hyperspectral 

data and LiDAR variables) improves the classification of water bodies derived 

from remote sensing data, predominantly by eliminating misclassification 

problems caused by shadows. Shadows are a common problem in the airborne 

imagery and many studies reported misclassification due to the presence 

of shadows (Liu et al., 2017; Mostafa and Abdelhafiz, 2017; Verpoorter et al., 2012; 

Wu et al., 2014). Our results show that all classification approaches based solely 

on hyperspectral data are strongly negatively affected by shadows, particularly the 

K-mean classification where 73 out of 100 misclassified points were misclassified 

due to the presence of shadows (see Figure 7 for spectral waveform of water and 

shadows in our study area). In contrast, classification approach based only 

on LiDAR variables is predominantly affected by artificial surfaces and terrestrial 

or littoral vegetation (Figure 6). It is also noteworthy that our results suggest that 

the accuracy of the detailed water surface identification based on LiDAR variables 

alone is comparable as that obtained with hyperspectral data alone (see also 

Antonarakis et al., 2008). 

Although data acquisition during the solar midday is a logical solution for avoiding 

shadows, it is difficult to accomplish. It is a solution often used with unmanned 

aerial vehicles (e.g. Cunliffe et al., 2016; Prošek and Šímová, 2019; Weil et al., 

2017); however, even when data are acquired during the solar midday, shadows 

at regions outside the equatorial zone are not eliminated perfectly. Furthermore, 

with aircraft used over larger areas, it is impossible to acquire data in a short time 

and in many parts of the world, weather conditions are not always very inviting 

for a survey. Bad weather conditions also appeared in 2017 at our study area and 

we had to wait until data acquisition was possible. Wu et al. (2014) suggested 

an interesting possibility for elimination of the problem with shaded areas based 

on a difference between images acquired at a different times. This method is 

however suitable only for satellites or unmanned aerial vehicles, not for aircraft 

data acquisition as it would incur substantial additional costs. 

Our results show that the integration of LiDAR and hyperspectral data is 

applicable even where surface water bodies are partly covered by vegetation 

(e.g. littoral zones). We suggest that combining LiDAR and hyperspectral data can 

improve detection of water bodies even under the vegetation canopy (e.g. high 

trees). To further test this hypothesis, however, additional field work is required 
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to accurately detect such water bodies. Theoretically, we could use data 

from previous studies (Doležalová et al., 2012) that are available to us, however 

those data were gathered with consumer-grade GNSS receivers and therefore are 

positionally inaccurate for testing this hypothesis (e.g. Tomaštík et al., 2017).  

We also tested integration of hyperspectral and LiDAR data with pixel based 

approaches; however, the results were poor and therefore not presented in this 

study. We attribute this failure to misalignment between the two datasets. 

Hyperspectral and LiDAR data integration in pixel-based classification 

approaches requires reduction of misalignment of image pixels and LiDAR laser 

spots issues to minimum. This is especially problematic when data originate from 

different platforms. However, even when the data are acquired from the same 

aircraft, perfect alignment is not guaranteed. To perfectly align the data, several 

integration steps are required, from placing the instruments on board of the 

aircraft to a precise time registration of each measurement and final data fusion 

(Asner et al., 2012). In contrast, object-based classification is considered less prone 

to problems with noise and edge mixed pixel (Alonzo et al., 2014; Blaschke et al., 

2014).  
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Conclusion 
In this study, we extracted open surface water bodies on spoil heaps at a very high 

resolution. We used object-based classification on integrated hyperspectral/ 

LiDAR data. To evaluate advantages of the integrated data approach, we 

compared it with classifications using LiDAR and hyperspectral data separately 

and with two pixel based approaches with hyperspectral data alone. Our results 

show that the integrated approach provides better results than separate use of the 

datasets and significantly reduces both omission and commission errors. 

Furthermore, the commission error of integrated approach was predominantly 

caused by identifying littoral zones of ponds as water surfaces and in principle 

should not be considered as an error per se while where hyperspectral data alone 

were used, shadows were the principal misclassification reason. Most importantly, 

both the LiDAR-only and integrated approach classifications successfully 

eliminated problems with shadows that have affected all other approaches. We 

suggest that integration of hyperspectral and LiDAR data for open surface water 

classification can greatly improve the identification of small water bodies and its 

repeated monitoring, which is crucial to preserve these important habitats not only 

in our study area, but worldwide.  
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Chapter VIII – Discussion 

and Conclusions 

Over the last decades, RS became an irreplaceable source of data 

for environmental research. The ever increasing number and availability of RS 

platforms, datasets and processing techniques greatly facilitate environmental 

mapping. On the other hand, the improving data resolution and ever more 

sophisticated methods of data acquisition and processing also keep increasing 

the expectations on the quality and relevance of resulting products. This thesis 

presents, verifies and successfully applies several types of remotely sensed 

and ground measured datasets to environmental mapping. Every new phenomena 

investigated using remote sensing approaches requires a greater or smaller level 

of individualization of methods. Results and conclusions of the presented case 

studies show that the following is crucial for successful integration and application 

of high resolution airborne data in environmental mapping: (a) the choice 

of a suitable RS platform and sensors, (b) selection of a suitable approach to data 

processing, its individual steps and parameters, and (c) the choice of a suitable 

method of accuracy assessment facilitating the process of drawing conclusions 

from the results. Only a good understanding to all of those principal parts of the 

process allows to fully utilize the potential of remotely sensed fine resolution data 

in environmental research. 

Contribution of fusion classification 

To fuse or not to fuse, that is the question. 

When classifying, it is relatively easy to achieve high accuracy and relevance of the 

results when distinguishing among generalized classes (e.g. forests, shrubs, 

meadows or artificial surfaces). With an increasing thematic detail of classification, 

the accuracy and relevance of classification results however decreases, see results 

of STUDY 2 or Ahmed et al. (2017). The growing requirements for thematic detail 
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of the classified layers often exceed the realistic expectations as even in the most 

detailed spectral datasets, the information may be insufficient for successful 

distinguishing between classes with similar spectral profiles (e.g. classification 

of plant species with similar spectral characteristics – STUDY 2 and 3 – or 

distinguishing between water surfaces and shadows from hyperspectral data – 

STUDY 4). Nevertheless, the ever growing number of available RS platforms, 

sensors and data, integration of multiple remotely sensed datasets is possible. Such 

integration/fusion approach may add a supplementary information from the other 

dataset that can make differentiation possible even between classes that cannot be 

distinguished on the basis of one dataset only (typically, spectral data can be 

supplemented with vertical structure and variables, LiDAR variables or thermal 

data). Such approach is therefore instrumental in yielding the full information 

available from RS platforms. 

A potential for improvement of classification results is shown in STUDY 2, 3, and 

4. In STUDY 2 and 3, we show that a fusion of UAV spectral data and additional 

derived datasets significantly improves the accuracies (both user and producer 

accuracy) of classification of hard-to-distinguish vegetation to the level 

of individual species/genera. Combination of thermal data and normalized height 

(nDSM) inputs in STUDY 2 improved classification, even in a very specific 

environment of an arboretum. The novelty of the approach used in the STUDY 3 

for detailed mapping of shrubland vegetation lies in the fusion of spectral and 

vertical information acquired during a single flight mission from a single 

multispectral UAV sensor. It indicates that it is possible to acquire high quality 

results of mapping that can be potentially utilized for ecological research and other 

applications even without high investments in LiDAR sensor and without the 

need of several flight missions. In STUDY 4, we extracted open surface water 

bodies in post mining areas using integration of hyperspectral data and LiDAR 

variables from manned aircraft. Our results show that the integrated approach 

provides better results than the separate use of the datasets and significantly 

increases both user’s and producer’s accuracy. The novelty of the approach 

presented in STUDY 4 for water bodies at detailed resolution lies in the 

integration of hyperspectral data with several LiDAR variables (common 

approaches use only elevation or slope-derived vertical variables, whereas we used 

the density of points; intensity of LiDAR pulse; ratio of the number of first 

returns and of all returns; elevation of the normalised digital surface model; slope 

of digital surface model). Moreover, to evaluate advantages of the integrated data 

approach, we compared it with classifications using LiDAR and hyperspectral data 

separately and with two pixel-based approaches with hyperspectral data alone. 
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To evaluate the advantages and accuracy improvement of the integrated/fusion 

data approach, we compared classification results in all classification studies (2-4) 

with classifications based solely on spectral data. In terms of classification 

advantages, it is necessary to first consider when classification improvement is 

actually possible at all and whether it makes any sense. The regression analysis 

in STUDY 3 revealed a strong negative relationship between the improvement 

in accuracy caused by adding the height data to the model and the accuracy of the 

original classification using multispectral data only. It is obvious that in some 

landscape types, integration of vertical data would likely fail to bring any benefits 

(e.g. steppes). However, as results of STUDY 2-4 show, there are many classes 

(e.g. different meadows type, water bodies vs shadows) where the integration 

of additional information is worthwhile for accurate and relevant results. 

Result interpretation is highly affected by the used sampling design (Congalton 

and Green, 2002; Olofsson et al., 2014). Hence, we had to adapt the accuracy 

assessment in each study in a way providing relevant evaluation of the acquired 

accuracies and enabling the quantification of potential improvement. In 

STUDY 4, we assessed the classification accuracy in several ways: (i) overall 

accuracy per area – which allowed to observe how successful the individual 

methods are in detecting water surface pixels and at the same time allowed us to 

compare the results with other studies; (ii) accuracy validated per features classified 

as water bodies – showing how successful the individual methods were 

in detecting particular ponds or lakes, which represents the most important 

characteristic from the biotope mapping perspective and which allowed a better 

mutual comparison of the methods; (iii) sources of misclassification – showing 

the contributions and weaknesses of individual methods from the point of view 

of removing errors. In STUDY 2, we had to deal with major differences in the 

spatial extent of individual categories in the study area. For evaluation of the 

classification results, we used an accuracy assessment method based on randomly 

selected spatially independent validation samples. We used a stratified random 

sampling design for reference polygons to make sure that land cover classes with 

low spatial extent were not omitted. In STUDY 3, we used another accuracy 

assessment approach for dealing with the problem of allocation and spatial 

distribution of calibration and validation samples. We performed a 10-fold 

random allocation of the ground truth polygons into calibration and validation 

datasets and a 10-fold repeated classification and validation. A similar validation 

approach with multiple selections of calibration and validation samples 

(hereinafter Multiple random selection) was used e.g. by Weil et al. (2017).  
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In general, many classification approaches are more or less sensitive to allocation 

and spatial distribution of calibration samples (hereinafter classification sensitivity 

for sample distribution (Foody and Mathur, 2004). Where pros and cons 

of a classification approach are assessed, classification sensitivity for sample 

distribution should be always considered and reported, just like it is common 

in proving model performance in species distribution modelling. Based 

on Multiple random selection, we demonstrate in STUDY 3 that the allocation 

of ground true samples affects the accuracy of the used classification approach. 

Moreover, we show that where classification integrates vertical information with 

spectral data, the classification sensitivity to sample distribution is in most cases 

smaller than when it is built solely on spectral data. In STUDY 2, we use 

a different approach with 95% confidence intervals, allowing a more general 

application of results and reducing the dependency on the area of interest. 

The accuracy of classification results is also strongly affected by the classification 

approach. In all studies dealing with classification (STUDY 2-4), we used object-

based classification approach to data integration/fusion. Object-based approach 

has been shown to provide better results than pixel-based approaches with high 

resolution data (Alonzo et al., 2014; Blaschke, 2010; Hartfield et al., 2011; Liu et 

al., 2015). In preliminary testing for STUDY 2-4, we also tried data 

integration/fusion algorithm with pixel-based classification. The results acquired 

during testing led us however to disregarding pixel-based classification for data 

fusion/integration, which applied to all our studies. In STUDY 2 and 3, the poor 

results of pixel-based approach can be attributed to the high data resolution 

(the individual distinguished objects consist of hundreds of pixels). Thus, 

the results showed a high impact of „salt-and-pepper” problem and the variability 

of characteristics within an individual class led to a very low accuracy 

and relevance of the classification. In STUDY 4, two pixel-based approaches 

with hyperspectral data alone (non-integrative approach) were used as examples 

of widely used classification approaches and algorithms (namely K-mean and 

Spectral angle mapper). The failure of the pixel-based integration in STUDY 4 is 

not due to the high resolution because small water bodies often consisted 

of relatively small number of pixels. We attribute this failure rather 

to misalignment between the integrated datasets. For successful hyperspectral 

and LiDAR data integration in pixel-based classification approaches, it is crucial 

to minimize misalignment of the image pixels and LiDAR laser spots. Even when 

the data are acquired from the same platform and at same time, with precise time 

registration and referencing, perfect alignment can not be guaranteed at the level 

of pixels. A possible solution for this problem might lie in resampling integrated 
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data into a coarser grid, which would eliminate the shift in the order of individual 

neighbouring cells. In STUDY 4, however, such approach was not possible due 

to the above mentioned efforts to identify small water bodies consisting of a small 

number of pixels (the smallest water bodies were represented by 4 cells). 

Misclassification reasons and limitations 

of airborne RS 

Is sky the limit? 

Where are the pitfalls and bottlenecks? 

Despite the availability of remotely sensed datasets with uniquely high spatial, 

spectral and temporal resolution, despite advanced methods of data acquisition 

and processing of RS datasets using integration/fusion approach, any 

classification will always bear some level of uncertainties and misclassifications. 

As a typical example, we can mention misclassification caused by shadows, which 

represents a problem in many studies (Liu et al., 2017; Mostafa and Abdelhafiz, 

2017; Verpoorter et al., 2012; Wu et al., 2014). The presence of shadows leads 

to major problems with misclassification due to the similarity in reflectance 

patterns among groups with normally distinct spectral characteristics such 

as vegetation or artificial surface and water bodies (STUDY 4). Various 

approaches have been proposed to overcome this problem (Mostafa and 

Abdelhafiz, 2017; Verpoorter et al., 2012). 

Approaches for dealing with the shadows include for example identification 

of shadows as an individual category as we did in STUDY 2 or as used in other 

studies (Movia et al., 2016; Shao et al., 2011), simple thresholding (Wu and Bauer, 

2013) or classification of shadows separately as pre-processing step (Zhou et al., 

2009). However, such classification approaches (mostly based only on spectral 

characteristics, although that is not the case of STUDY 2) are still affected 

by a certain level of error due to similar spectral waveforms (such as the problem 
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of similar waveforms of water and shadows in STUDY 4). Besides, if 

implementing such approach, we still lack information about the real vegetation 

cover in areas classified as shadows and this class therefore represents areas 

with unsuccessful classification. Moreover, representation of shadowed areas 

differs among individual vegetation classes (depending e.g. on the use data, 

classification approach and the environment itself as shown in STUDY 4). 

A situation can therefore occur when a one class more prone to being misclassified 

as shadows is greatly underrepresented in the resulting thematic layer as much of it 

is classified as “shadows”. The resulting biotop description then provides 

information that is not just incomplete but often even misleading. When using 

thematic maps/layers containing the categories of shadows, we then face the same 

problems as when using data burdened with positional error, i.e. incorrect 

characterization of conditions suitable for occurrence of the species in question, 

which in effect leads to reduction of the model performance 

e.g. (over/under)estimation of species habitat areas (Moudrý and Šímová, 2012). 

Similarly, when analysing land cover changes, the use of thematic maps containing 

shadows either causes false changes detection (Shahtahmassebi et al., 2013; Stow 

et al., 2014; Zhu and Woodcock, 2014b), or, to prevent this, areas that are 

shadowed in any of the layers must be removed from analysis. Such negative 

effects are the principal reasons for the search of other methods of their 

elimination. 

An interesting possibility of dealing with this problem lies in the identification 

of shaded areas based on differences between images acquired at different times 

(Wu et al., 2014). However, while this method is suitable for satellites, it is 

unsuitable for airborne RS acquisition due to additional costs, especially where 

manned aircraft are concerned. In the case of UAVs, the additional time and image 

processing costs are lower but still present.  

A logical method for minimizing shadows is data acquisition during the solar 

midday. It is a frequently used option with unmanned aerial vehicles 

(e.g. STUDY 2 and 3 as well as other studies such as Cunliffe et al., 2016; Weil et 

al., 2017). However, even when data are acquired during the solar midday, shadows 

are not eliminated perfectly in regions outside the equatorial zone (see the 

presence of shadows in STUDY 2). Furthermore, where airborne RS is used 

for a larger area, it is impossible to acquire data in a short time. While satellites can 

record large areas in a single image (providing that the weather conditions are 

favourable, i.e. low cloud coverage), airborne surveying takes much longer even 

for a single flight mission/area of interest. Airborne RS in general, and especially 

UAVs, is to a great degree limited by the legislation (Stöcker et al., 2017) and 
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by weather conditions that may prevent the flight mission (Dandois et al., 2015; 

Lu and He, 2017). In the case of STUDY 4, we also encountered unfavourable 

weather conditions in 2017 and we had to wait for a long time until data 

acquisition was possible. In case of STUDY 3, the extent and number of study 

sites was also reduced. One reason for that was the necessity for data acquisition 

around the time of the solar midday, which limited the time available for missions, 

especially under the strict conditions of a military area where the study was 

performed. In STUDY 1, the image quality was significantly affected by the wind 

– gusts of wind caused blurred images. 

Light conditions represent the last but not least crucial parameter in the context 

of short term weather conditions. Good lighting conditions allow the acquisition 

of sharper images with a better contrast, which subsequently yields better results 

e.g. during 3D photogrammetry reconstruction (see STUDY 4 or Micheletti et al., 

2015). If the images are acquired under different lighting conditions, radiometric 

corrections/calibration of the images is necessary to obtain relevant surface 

reflectance values (Lillesand et al., 2015). This is especially true where 

multitemporal approach is applied, i.e. when the analysed data originate 

from several time points or where the weather and/or lighting conditions are 

changing during the image acquisition mission, which is especially typical 

for airborne RS (Chavez, 1996; Dinguirard and Slater, 1999; D. Lu et al., 2011). 

As the data in STUDY 3 were subjected to a uni-temporal analysis and the flights 

were performed under constant weather conditions, no radiometric calibration 

of the scene was necessary. We however used a mosaic algorithm for correction 

of colour and brightness of the entire scene. In STUDY 2, however, the changing 

weather conditions (high clouds and a partial shadowing by low clouds) during 

data acquisition resulted in a necessity of calibrating the surface reflectance values 

from the multispectral mosaic. The calibration was performed during SfM 

photogrammetry procedure using values from onboard irradiance sensor (Sun 

irradiance and Sun angle) and a calibration target. The imaging mission 

for acquisition of hyperspectral data for STUDY 4 took the longest (a period 

from 13:30 to 16:30 pm solar time) and with the highest spectral detail. In effect, 

major radiometric corrections were needed. The corrections were performed 

in the RadCorr software by converting spectral radiances to physical radiance units 

based on calibration parameters from the CzechGlobe spectroscopic laboratory 

(if interested in details of the method, see more in Hanuš et al., 2016). 

When considering a longer time frame, season and phenological stages play 

a major role for classification and hence, a proper timing is crucial for acquisition 

of the best possible accuracy (Müllerová et al., 2017; Weil et al., 2017). Timing 
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of data acquisition in view of the season and phenological stage was crucial for all 

our case studies. In STUDY 1, the timing in relation to the leaf on/off period was 

crucial for proper detection of ground in a forest environment. In STUDY 2 

and 3, we waited for optimum circumstances in the phenological stage of full 

vegetation as recommended e.g. by Sankey et al. (2017a) or Weil et al. (2017). The 

data was acquired in late spring to early summer, which appeared to be the most 

suitable months for image acquisition under the conditions of the Czech Republic 

(temperate climate zone, Northern hemisphere). Hyperspectral and LiDAR 

datasets for STUDY 4 were acquired for use in multiple studies (besides 

identification of water bodies detailed in STUDY 4, it was also utilized for species 

distribution modelling). The latter was one of the reasons why the data were 

acquired in the phenological stage of full vegetation, which turned out to be 

problematic from the perspective of identification of water bodies (a problem 

with the littoral vegetation and high shadow-casting vegetation). 

Accuracy of vertical structure from 

remote sensing imagery 

Quantity does not mean quality – and even quality is not always vital. 

Image processing using image-matching algorithms (namely SfM and MVS 

algorithms) are based on combining a high number of images/photos and allow 

a 3D reconstruction of observed objects even if low (consumer) quality data are 

used (Micheletti et al., 2015). The quantity of observed data is however not 

the only parameter for obtaining reliable results. The quality of processed images 

plays a crucial role. Images from high quality metering cameras with calibrated lens 

and high resolution sensor come with lower distortion and higher resolution. 

As can be expected, they provide better results than low-end consumer grade 

cameras in the sense of the accuracy of photogrammetry processing and of results 

of 3D object reconstruction (Chiabrando et al., 2013; Micheletti et al., 2015; Peipe, 

1997). Other crucial factors for obtaining high-quality, accurate and relevant 

results of 3D terrain reconstruction from airborne imagery include correct settings 
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of flight parameters and the possibility to customize camera settings suitable 

for the flight parameters and lighting conditions. 

In the STUDY 1, we compared the suitability of two UAV platforms 

(a commercial eBee system and a home assembled Easystar II motor glider) 

for mapping of undulated terrain of a post-mining site (spoil heap) during a leaf-

off period. Accuracy of the 3D reconstruction (3D point cloud) was evaluated 

in two types of environment, namely forest and steppes. Easystar achieved better 

results than eBee in both point density and accuracy, which is most likely due to 

the use of a better camera and customizable camera/sensor settings. We also 

tested the impact of quantity/density of images from two mutually perpendicular 

flights. Combination of more images from mutually perpendicular flights 

improved the accuracy of the 3D point cloud but the point density remained 

practically unchanged. In both types of environments (open steppes and forest 

canopy under leaf-off conditions), both UAV platforms managed to identify 

the terrain with a better accuracy than that of a nationwide LiDAR-derived DTM. 

Hence, we can report that photogrammetric methods (namely a combination 

of fine scale images and SfM approach) can be successfully used both in steppes 

and deciduous forest stands under leaf-off conditions to generate accurate DTM. 

We have to add a few notes to the conclusions of the STUDY 1: (i) in comparison 

to 2017, the market development led to a significant improvement of the quality 

of commercially available cameras both from the perspective of the optical quality 

and from the actual sensor (signal receptor). Nowadays, ready-to-use UAVs 

with sensors of comparable if not better quality than those that can be mounted 

on a home-assembled kit are commercially available. The study was however not 

intended as a criticism of one or the other platform as (ii) the aim was to compare 

overall performance (i.e. drone + camera) of a commercially available ready-to-use 

platform with a cheap customizable home-assembled kit. On the other hand, 

suitability of particular cameras and the automated vs manual setting 

of parameters was not directly evaluated, although the results suggested that 

the automatic balancing of the aperture, shutter speed and camera/sensor 

sensitivity to light (ISO) in the eBee platform (the only option in the camera 

originally supplied with the eBee UAV) might have been one of the sources of the 

poorer performance of that platform; (iii) LiDAR-derived DTM from manned 

aircraft that was used for result comparison in the STUDY 1 was a nationwide 

model covering the entire area of the Czech Republic, which affected its accuracy. 

However, this difference is a valuable illustration of the differences in usability 

of manned and unmanned aircraft in RS (the spatial extent vs detail, accuracy and 
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resolution) and confirms that on a small scale, UAVs can substitute or even 

outperform manned aircraft platform. 

3D reconstructions using SfM algorithm are generally considered to be less 

accurate than those based on LiDAR data if both are performed for similar spatial 

extent and spatial resolution (Dandois and Ellis, 2013; Fonstad et al., 2013; 

Niethammer et al., 2012; Sankey et al., 2017a). Where the goal is topographic 

mapping in complicated conditions (such as post-mining areas), choosing the best 

available solution providing as accurate products as possible is crucial. On the 

other hand, on the application level (such as classification), even data 

with relatively lower positional accuracy may play a crucial role and provide a vital 

information for identification of a particular class (e.g. vertical structure derived 

from SfM used in STUDY 3 vs. LiDAR vertical information used in Sankey et al., 

2017a). The same can be said about data with relatively lower spatial resolution 

that however contained additional spectral information (e.g. RGB sensor 

vs multispectral sensor in STUDY 2). This idea was also well documented 

by Dalponte et al. (2012) who compared the results of classification based 

on hyperspectral vs multispectral data combined with LiDAR information of low 

vs high density and demonstrated that data with better spectral resolution provide 

better classification results. They however noted that from the perspective of the 

spectral resolution, the information crucial for the classification success was 

contained in the red-edge band, which was missing in multispectral datasets. 

We can therefore only speculate about results that would be obtained using 

a multispectral sensor (i.e. with relatively lower number of bands) that would 

cover the red edge as the problem may be indeed on the qualitative (suitable 

wavelengths) than quantitative (number of bands) side. Besides, both low and high 

density LiDAR point clouds improved the classification performances.  

As indicated by results of STUDY 2 and 3, vertical information obtained by SfM 

can represent a viable alternative to the use of LiDAR-based models for fusion 

with multispectral data (and thus for improvement of classification 

of multispectral-based models). The vertical data used in STUDY 2 were obtained 

using eBee system by SenseFly, i.e. the UAV platform that yielded poorer results 

in STUDY 1 from the perspective of the 3D terrain structure. In STUDY 3, 

a single sensor was used for acquisition of multispectral data as well as of the 

vertical information (namely a multispectral sensor Tetracam Micro-MCA6). 

The proof that obtaining both information from a single flight with one sensor 

(i.e. there is no need of multiple flight missions or for dealing with data 

misalignment as discussed in detail above) is a significant achievement improving 

practical applicability of the use of multispectral sensors. The used camera 
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Tetracam Micro-MCA6 is optimized for high spectral resolution (six calibrated, 

relatively narrow, bands from 380 to 900 nm) but from the perspective of image 

quality, this camera is far from perfect (for example, the small size of the 

chip/sensor leads to a relatively high level of noise, which must be prevented 

by use of slower shutter speed or automatic exposure control).  

In a study with a similar number and type of classes as well as with a classification 

approach similar to that we used in STUDY 3, Sankey et al. (2017a) combined 

UAV-borne hyperspectral data and LiDAR derived vertical information. A closer 

comparison of the studies reveals that both producer’s and user’s accuracies were 

(as expected) higher when using the hyperspectral than multispectral sensor. After 

supplementing the spectral information with the vertical, however, the differences 

in results are much smaller. It is also necessary to point out that so far, 

a combination of multispectral data and LiDAR has not been tested yet 

for mapping in detail comparable to STUDY 2 and 3. We therefore can not 

exclude the possibility that a combination of multispectral data with LiDAR could 

lead to even better results than our combination of multispectral and SfM data. 

This, however, should be an object of further studies, along with a practical 

question if such a possible improvement of vegetation classification is of a degree 

justifying the substantial difference in costs of obtaining SfM and LiDAR 

information, especially in the field of ecological research.  
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Conclusions 
This thesis shows several novel approaches for acquisition, processing 

and integration of RS products in environmental mapping. We are presenting new 

possibilities to obtain and describe detailed vertical/horizontal composition 

and structure of biotopes. We show that photogrammetric methods (namely 

a combination of UAV-acquired fine scale images and SfM approach) can be used 

successfully in steppes and deciduous forest stands under leaf-off conditions to 

generate accurate DTMs. Moreover, based on a comparison of suitability of two 

UAV platforms, we can conclude that a better point density and vertical accuracy 

was obtained with the better camera and customizable camera/sensor settings 

rather than with the use of a seemingly “more professional” carrier without the 

possibility of customized camera settings. Finally, we show that combining 

a greater number of images from mutually perpendicular flights increased the 

accuracy of the 3D point cloud but failed to increase point density.  

We have successfully integrated remotely sensed high resolution datasets 

for classification of vegetation at the level of individual species/genera. Fusion 

of UAV-acquired spectral data and additional derived vertical information 

significantly improved both user’s and producer’s accuracies. We newly use 

the fusion of spectral and vertical information acquired during a single flight 

mission from a single multispectral UAV sensor, indicating that it is possible 

to acquire high quality results for shrubland vegetation even without high 

investments in LiDAR sensor and without the need of several flight missions. We 

also extracted open surface water bodies in post mining areas using integration 

of hyperspectral data and LiDAR variables from manned aircraft. Our results 

show that the integrated approach provides better results than separate use of the 

datasets and significantly increases both user’s and producer’s accuracies. 

Furthermore, integration of LiDAR variables successfully eliminated problems 

with shadows that affected all other approaches based on multispectral data only. 

Moreover, results of the presented thesis improve the knowledge about crucial 

factors for obtaining suitable environmental mapping results in terms of: (i) the 

date and time of data acquisition; (ii) selection of a suitable sensor; (iii) use 

of suitable processing methods; (iv) use of a robust and transparent accuracy 

assessment. 

(i) The date and time of data acquisition played a crucial role in obtaining suitable 

results in all studies. Seasonality (leaf-off period) was the principal prerequisite 

for being able to identify ground points under the forest canopy. In view of the 
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phenological stages of classified vegetation categories timing of data acquisition is 

a crucial step towards obtaining maximum spectral diversity of the classified 

species. Besides, the effect of shadows was partially eliminated by performing 

the mission during the solar midday. On the other hand, the acquisition timing 

could not solve problems with misclassification of water and shadow, which 

represents a typical example of limitations of airborne RS. 

(ii) The sensor quality has a crucial influence on the quality of the resulting 

RS products (namely on the density and accuracy of 3D point clouds obtained 

by SfM processing of UAV images). Besides, our results also demonstrate 

the trade-off between spatial extent and spatial accuracy for DEMs when 

comparing the use of manned and unmanned aircraft for data acquisition. 

From the classification point of view, improving resolution is not a sufficient 

surrogate for spectral information, i.e. an RGB sensor with a better spatial 

resolution cannot fully substitute additional spectral information acquired using 

multispectral sensors or thermal data. 

(iii) The differences in results obtained through various classification methods 

demonstrate a strong dependency of the quality of results on the used 

classification approach. Moreover, preliminary testing clearly showed that pixel-

based classification approaches are unsuitable for classification based 

on integration/fusion of very high resolution data as well as for combining 

misaligned datasets. For this reason, all studies in this thesis that were focused 

on fusion classification used object based approach, the use of which facilitated 

the fusion of datasets and helped overcome the problems associated 

with misalignment and high resolution. 

(iv) From the perspective of accuracy evaluation, all studies adhered to the good 

practice for accuracy assessment based on a transparent sampling design. 

To provide data evaluation metrics allowing direct comparison of the classification 

success with other studies, standard metrics have been used (i.e. overall, user’s 

and producer’s accuracy in case of thematic mapping/classification and RMSE 

in case of DTM, respectively). Moreover, studies investigating vegetation 

classification represent two possible directions for generalization of the results 

(namely repeated calibration/validation approach and use of confidence intervals). 

In addition, besides data evaluation metrics allowing direct comparison of the 

results with other studies, we showed accuracy validated per features 

of distinguished classes, which is a crucial parameter from the perspective 

of biotope mapping allowing a better relative comparison of methods. 
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Further research 
One of the possible directions of future research is pushing the limits of RS 

datasets processing. As mentioned in STUDY 4, results of LiDAR 

and hyperspectral data integration indicated a potential to recognize water surface 

even where water bodies are partly covered by vegetation, namely in littoral zones. 

We can therefore assume that such data fusion could improve detection of water 

bodies even under other types of vegetation canopy (e.g. high trees). Kükenbrink 

et al. (2017) presented an approach for mapping and quantification of volume 

inside a forest canopy using airborne laser scanning. A suitably and correctly 

classified LiDAR point cloud can therefore be instrumental both in characterizing 

vertical structure of the vegetation and for filtering the vegetation points out. 

As also mentioned in STUDY 4, open water absorbs energy on the wavelength 

commonly used by terrestrial LiDAR (1064 nm). In LiDAR point clouds, water 

bodies are therefore represented as empty areas without any returns or returns 

with a character of specific “noise”. These properties, combined with specific 

shape characteristics of water bodies, could be possibly used in object based 

classification for identification of water bodies under canopy cover. To further test 

this hypothesis, however, additional field work is required. Theoretically, we could 

use data from previous studies (Doležalová et al., 2012) that are available to us, 

however those data were gathered with consumer-grade GNSS receivers 

and therefore are not positionally accurate enough for testing this hypothesis 

(e.g. Tomaštík et al., 2017). 

Case studies indicating new options of RS-based environmental mapping are 

typically performed with a limited spatial extent and thematic detail. Although we 

may extrapolate from such results, it is not possible to draw conclusions from such 

studies and apply them universally to all situations that may occur in practice. 

For example, we report in STUDY 1 that photogrammetric methods can be used 

successfully in steppes and deciduous forest stands under leaf-off conditions to 

generate accurate DTMs. Further research is however needed to quantitatively 

assess the quality of DTM acquired under leaf-off conditions in deciduous forest 

stands of various types and characteristics (e.g. tree species, structural, and site 

characteristics). The specific study area used in the STUDY 2 provides a unique 

opportunity for testing fusion classification approaches on data that can be 

surveyed during a single UAV mission as it contains multiple cultivars and species 

in such a small area. However, the unnatural character of the study area can 

potentially affect the result of classification. It can be therefore assumed that 

in a more natural environment with a smaller number of species, it is possible to 
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achieve even better results and accuracies. However, further studies are needed to 

verify these hypotheses. 

In STUDY 3, we identified and described in detail the contribution of adding 

the vertical information obtained by SfM processing of UAVs images to 

multispectral data. Comparison of our results with those of studies utilizing 

significantly more expensive technologies that are also more demanding from 

the processing perspective (namely a hyperspectral camera and a LiDAR sensor 

mounted on UAV; Sankey et al., 2017a), we can see that the classification accuracy 

based solely on multispectral sensor was poorer than that acquired 

by hyperspectral sensor. However, after integration of the spectral information 

with vertical, the accuracy of our significantly cheaper solution is 

similar/comparable to that reported by Sankey et al. (2017a). It is true that we 

cannot exclude the possibility that combining our multispectral data with LiDAR 

instead of SfM data would lead to a further classification improvement. This, 

however, should be an object of further studies, along with a practical question 

if such a possible improvement of vegetation classification is of a degree justifying 

the substantial difference in costs of obtaining SfM and LiDAR information, 

especially in the field of ecological research. 

A repeated calibration/validation approach used in the STUDY 3 allowed us to 

evaluate of the dependency of classification results on the distribution of the true 

data samples. This dependency turned out to be quite strong; integration 

of additional vertical information however reduced that dependency. 

As classification results are generally more or less dependent on the spatial 

distribution of true data samples (Foody and Mathur, 2004), we conclude that the 

dependency of the classification results on the distribution of true data samples 

should be always reported in similar studies as an additional measure of robustness 

of the used approach.  
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