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ABSTRACT
This thesis deals with 3D point cloud segmentation for industrial bin-picking, a key
challenge in the field of industrial robotics. The aim of the thesis is to develop and
deploy a highly effective algorithm for segmenting and registering 3D point clouds,
thereby improving the accuracy, speed, and efficiency of bin-picking operations.

The contribution of the thesis is the presentation of the researcher’s solution
to create artificially generated data needed for training. The thesis results in a sym-
biosis of advantages of a fast-segmentation algorithm based on machine learning,
and a high quality, robust but slow algorithm based on geometric principles. Func-
tionality, reliability and quality of the developed algorithm were also experimentally
verified on different types of objects and different datasets.

Results of the work show that the proposed algorithm yields a fast, reliable,
and comprehensive solution to the bin-picking problem. Customized data genera-
tion reduces the time and cost of applying such a system. In conjunction with a
comprehensive problem solving system we are able to accurately and easily generate
applications for diverse and specialized bin-picking tasks.

Achieved results contribute to the development of point cloud segmentation
methods and their applications in various industrial and scientific fields. By putting
the proposed system into practice we significantly contribute to performance and
reliability of the proposed automatic line.

ABSTRAKT
Diplomová práca sa zaoberá segmentáciou 3D mračna bodov pre priemyselné výbery
zo zásobníkov, čo je kľúčová výzva v oblasti priemyselnej robotiky. Cieľom práce je
navrhnúť a implementovať efektívny algoritmus na segmentáciu a registráciu 3D
bodov mračien, a tým vylepšiť presnosť, rýchlosť a efektívnosť bin-picking operácií.

Prínosom diplomovej práce je prezentácia autorovho vlastného riešenia vy-
tvárania umelo generovaných dát potrebných na trénovanie. Výsledkom práce je
symbióza výhod rýchleho segmentáčného algoritmu založeného na strojovom učení, a
kvalitného, robustného ale pomalého registračného algoritmu založeného na geomet-
rickom princípe. Funkčnosť, spoľahlivosť a kvalitu vytvoreného algoritmu boli veri-
fikované aj experimentálne na rôznych typoch objektov a rôznych datasetoch.

Výsledky práce ukazujú, že navrhnutý algoritmus prináša rýchle, spoľahlivé,
a komplexné riešenie problému bin-picking. Generovanie dát na mieru znižuje čas a
náklady na aplikáciu takéhoto systému. V spojení s komplexným systémom riešenia
problému, je možné jednoducho vytvárať riešenia pre rozmanite a špecializovane
úlohy bin-pickingu.



Dosiahnutými výsledkami prispieva k rozvoju metód segmentácie bodových
mračien a ich aplikácií v rôznych priemyselných a vedeckých oblastiach. Zavedením
navrhnutého systému do praxe, výrazne prispeje k zvýšeniu výkonnosti a spoľahli-
vosti navrhovanej automatickej linky.

KEYWORDS
3D segmentation, 3D point cloud, deep learning, 3D registration, 3D dataset gener-
ation, bin-picking
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1 Introduction

Each consumer wants to buy their product at the lowest possible price. In order to
keep the price low, products are often manufactured in large batches on automatic
lines. The design process of an automatic line involves many design nodes. One of
them, for example, is the way of filling the line with input blanks. This thesis deals
with the automation of the bin-picking process.

A key feature of the process is efficient sorting of objects based on their
properties. Traditionally, this task has been performed manually, which in the
long run was time-consuming and economically intensive with a high potential error
rate. With the development of 3D sensing capabilities there are opening up new
opportunities for automating this process.

In addressing the problem of automation of bin-picking method, this thesis
focuses on research and analysis of existing segmentation algorithms, implemen-
tation of the solution, and application to a specific problem of bin-picking using
industrial cameras.

The theoretical foundations of 3D point cloud and computer and machine
vision techniques relevant to this problem are also discussed in the theoretical part
of the thesis. This section also offers an overview of the technological possibilities
of 3D image acquisition and the analysis of current 3D point cloud segmentation
methods.

The next part of the thesis describes proposed solution in detail, including the
selection of algorithm, the solution architecture, the implementation of the proposed
solution, and the methods to address the challenges associated with this problem.
The following part is devoted to the evaluation and presentation of results of the
presented algorithms based on the experiments performed on both training data and
real data.

Finally, the thesis is devoted to the evaluation of achieved results, suggesting
possibilities for further research and development in this area.

Afterall, should the thesis contribute to the development of automated bin-
picking in industrial processes and provide useful insights for researchers and spe-
cialists in the field of computer vision and machine learning. The ultimate goal is
to design a solution that will increase the accuracy and reliability of identification,
reduce cycle time, and save money relative to currently used solutions in automated
lines. And also to eliminate human presence, and its associated disadvantages, such
as high cost and higher error rate.
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2 Literature Review

2.1 Computer, Machine, and Robot Vision

Computer vision, a branch of computer science, is the development of techniques
that enable computers to recognise and understand objects and people in images and
video. As a subset of artificial intelligence (AI), computer vision aims to replicate
human capabilities by automating tasks related to visual perception and under-
standing, [40] .

Machine vision and computer vision share the ability to perform tasks faster
than human vision. However, there are important differences between the two con-
cepts.

Computer vision, involves the capture and automation of image analysis. It is
the broader field of computer understanding and interpreting visual data. Computer
vision techniques can be applied to a wide range of theoretical and practical areas
beyond manufacturing. Its applications span various industries and include tasks
such as recognising objects, classifying images and understanding scenes.

Machine vision, on the other hand, is primarily about adding vision capabili-
ties to existing technologies. It involves image processing techniques and operates on
the basis of pre-defined rules and parameters. Machine vision systems are commonly
used in manufacturing applications, particularly for tasks such as quality assurance.

In summary, while computer vision encompasses a broader range of image
analysis and interpretation in a variety of applications, machine vision is a subset of
computer vision that focuses specifically on providing vision capabilities to support
manufacturing processes, [41] .

Robot vision is closely related to machine vision, while both are closely related
to computer vision. In a sense of a family tree, displayed in Figure 1, computer vision
could be seen as their parent.

Robot vision encompasses techniques derived from all of the above. While
Robot Vision and Machine Vision are often used interchangeably, there are subtle
differences between them. Machine vision applications, such as part inspection, do
not necessarily involve robotics directly.

Robot Vision is not just an engineering domain - it is a scientific discipline
with its own specialised areas of research. Unlike pure computer vision research,
robot vision requires the incorporation of robotic aspects into its techniques and
algorithms. These aspects include kinematics, reference frame calibration, and the
robot’s ability to physically interact with the environment.

In summary, Robot Vision draws on techniques from various fields and is
not limited to engineering. The use of visual feedback to control robot motion, as

17
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exemplified by visual servoing, is an example of a technique that is unique to Robot
Vision rather than Computer Vision, [21], [16] .

Fig. 1: Vision Family Tree, [21]

2.2 Overview of robot picking

In a modern automation processes, plenty of industrial applications require robot
arm path planning using a vision system.

Robot picking is an application used in manufacturing industry, which parts
to pick from a certain box, and pick them automatically. It’s a well combined
system, consisting of a robotic arm and a well designed and programmed machine
vision system.

It mainly brings advantages to the manufacturing companies, who can use
this system for the infeed of manufactured parts to the assembly line. The vision
system analyses the data acquired from camera. The system then decides which
part is the most suitable one to be picked first and defines its position. The results
are sent to the PLC, which the instructs the robotic arm to pick a part from the
box. The vision system should not only be able to find a part, but also calculate
the correct position. This is essential, when the parts are chaotically arranged in
the input box, [47], [51] .

We divide the processes according to whether they the position and orienta-
tions are known or not into two groups:

• Pick and place
• Bin-picking

18
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2.2.1 Pick and place

A pick and place robot is a type of industrial robot used to handle and place prod-
ucts on a production line. Typically used in high volume production environments
to quickly and precisely place items onto conveyors or other production devices.
Compared to industrial bin-picking tasks, pick and place operations are generally
simpler. Unlike bin-picking, pick and place operations typically involve objects in a
2D environment rather than a more complex 3D environment. Pick and place robots
are automation solutions that pick up and accurately place objects onto surfaces in
predetermined positions and orientations. The robot follows a pre-defined routine,
which is staged in advance, making it less challenging to execute. The parts involved
are not randomly oriented and the process is highly repeatable. From picking up the
first part to placing the first and subsequent parts, the robot’s operations remain
consistent and do not deviate. A representation for chaotically arranged items and
objects in a predefined grid is shown in Figure 2 below, [24], [15], [49] .

Fig. 2: a.) Items chaotically arranged. b.) Objects in a predefined grid., [51]

2.2.2 Bin-picking

Bin-picking, displayed in Figure 3, is an application that uses a combination of
robotics and computer vision technology to extract parts from a disorganised con-
tainer. Using a robotic arm controlled by a computer vision system, this technology
enables the automated extraction of parts. The computer vision system analyses
the scene, identifies part locations and determines the optimal part for extraction at
each iteration. Once the positions of the parts have been determined in a 3D space,
the robotic arm is able to pick them up efficiently, regardless of their orientation,
[47] .

In general, the bin-picking process requires all these steps :

• Data acquisition
• Object detection
• Estimating the position and orientation in space
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• Collision-free path-planing
• Object Picking
• Placing the object at the right place in the right orientation

During all these processes, most of the tasks should be done error-free to
provide a solid solution. Considering the data acquisition, whole slew of methods or
principles can be applied to get 3D image of the space. Nowadays, 3D laser scanners,
laser triangulation using a single camera with a 2D laser or stereo vision are used
to capture a 3D image of the environment.

These methods have to deal with numbers of issues such as finding a suit-
able position for the end-effector, finding the right gripping position or orientation
etc. Another key element in industrial bin-picking is the cycle time for a specific
application.

All of these tasks must be performed without damaging the object, box or
any other obstacles. They are carried out completely autonomously and based only
on the system’s decisions.

Bin-picking also opens the possibilities to pick heterogeneous objects. These
objects require the design of special grippers or end effectors. Therefore, bin-picking
should be able to reliably recognise any object, calculate its orientation, pick it and
place it in the box regardless of its material or geometry.

While gripper design, robot path programming to avoid collisions and robot
singularity avoidance are essential elements of bin-picking, the vision system is
widely recognised as the most critical factor in meeting this challenge. Industries
require robust and reliable systems to meet their needs. Although there are existing
bin-picking applications in operation, continuous research is dedicated to creating
universal systems that are free from failure, [47], [51] .

Fig. 3: Process of bin-picking, [47]
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2.3 Scene reconstruction

Scene reconstruction is a process of capturing one or more pictures in order to get
the information about an environment. These images are merged according to the
application in such a way that they create a 3D image of the environment of the
photographed surroundings.

2.3.1 2D Image Camera

The first solution that comes on mind for a picking application, uses some classical
2D RGB cameras, either in single or stereo configuration, displayed in Figure 4.
These solutions are using algorithms to extract features from the acquired images in
order to recognise objects and estimate their location and rotation in the coordinate
space.
Algorithms for single cameras mostly rely on the object’s characteristic such as color
or overall structure. Due to the fact, that numerous industrial objects often contain
some circular shapes, plenty of algorithms are focussing on detection of ellipses. A
single camera, if calibrated and its sensor size and lens parameters are known, can
determine the position and orientation of an object. However, this type of machine
vision configuration cannot reliably estimate rotation and translation around each
axis. For this reason, single camera systems are primarily used in pick and place
applications, [17] .

Fig. 4: Bin-picking with 2D camera, [52]
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The method described above depends on the knowledge of a pickable object
before designing the algorithm. Other algorithms are based on edge detection to
obtain an image description. Although these methods can produce results with
good accuracy, they do not provide sufficient information about the whole stage to
be used for collision detection of a robotic arm. This is one of the reasons why
research today focuses on registering objects in a point cloud, [17] .

2.3.2 3D Camera

Point clouds can be considered the most basic form of 3D models. They consist of
individual points that are plotted in three-dimensional space and contain various
measurements. These measurements typically include the coordinates of the point
along the X, Y and Z axes. In addition, point clouds can contain other data such as
colour information, stored in RGB format, and luminance values, which determine
the brightness of each point, [3], [17] .

The 3D point cloud of an environment can be acquired by several different
sensors and techniques. This section will briefly review the most common ways to
collect 3D data of a scanned environment for reconstruction purposes. Common
point cloud reconstructing methods are :

• 3D Laser Scanning
• Photogrammetry
• Videogrammetry
• RGB-D camera
• Stereo camera
• Structured Light

3D Laser Scanning

Light Detection And Ranging (Lidar), uses a laser scanner displayed in Fig-
ure 5, to measure the distance to a target by emitting laser beams and detecting the
reflected signals from the target. There are two main techniques for laser distance
measurement: time-of-flight and phase-shift. The time-of-flight technique uses a
laser beam and measures the time it takes to travel to the object and reflect back
to the detector. From the known speed of light, the distance can be calculated,
equation 1, [30], [17], [18], [23] .
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𝑑 = 𝑐 * 𝑡

2 (1)

Where

𝑑 [𝑚] distance to the target
𝑐 [𝑚

𝑠
] speed of light

𝑡 [𝑠] time of flight

On the other hand, the technique called phase-shift, emits a continuous am-
plitude wave and measures the phase shift between the emitted and reflected signals.
The resulting distance is calculated on the basis of the phase-shift and the wave-
length of the emitted wave, equation 2. The accuracy of the phase-shift techniques
is greater than the speed scanners measurement using the time-of-flight principles.
On the other hand,time-of-flight scanners are the only applicable option for scanning
longer distances, [30], [17], [18], [23] .

𝑑 = 𝑐 × Δ𝜑

2𝜋 × 𝑓
(2)

Where

𝑑 [𝑚] distance to the target
𝑐 [𝑚

𝑠
] speed of light

Δ𝜑 [𝑟𝑎𝑑] phase difference
𝑓 [𝐻𝑧] frequency

Fig. 5: 3D laser scanning [50]

Photogrammetry

Photogrammetry is a field that analyses photographic images to extract de-
cisive information about physical objects. The principle of creating a point cloud,
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shown in Figure 6, involves capturing a group of overlapping images of an object
from various angles, [30], [29] .

Fig. 6: Principles of photogrammetry, videogrammetry, [27]

Videogrammetry
Videogrammetry is a technique that enables the reconstruction of a point cloud by
utilizing sequential video frames to progressively build up information and improve
the accuracy of the final point cloud. This is achieved by tracking the features of
interest between successive frames of the video, displayed in Figure 7 below, [30]
[29] .

Fig. 7: Application of photogrammetry, [14]
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RGB-D Camera

The RGB-D camera, visible in Figure 8, is made up of regular RGB camera
and a depth sensor. The RGB camera captures classic images in red, green and
blue color. The depth sensor provides depth information for each pixel. The final
point cloud is composed right after the capture from both image data with RGB
color information and depth data, which include XYZ coordinates. One of the most
available RGB-D cameras, often used in research studies is the Microsoft Kinect,
[30], [18] .

Fig. 8: Asus RGB-D Camera, [26]

Stereo Camera

A stereo camera, exposed in Figure 9, is a system consisting of two (or more)
lenses and image sensors. By utilizing this camera configuration, it becomes possi-
ble to reconstruct a 3D point cloud from two or more images. This is achieved by
analyzing the relative position and orientation of the lenses involved in capturing
the images. The final point cloud is the result of image alignment and subsequent
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determination of disparities for each pixel. The system uses a fully automated pre-
calibration process, which extracts a 3D point cloud from the acquired images, [30].

Fig. 9: Stereo camera, [44]

Structured light

Structured light is a commonly used technique to estimate a 3D representa-
tion of a scene. It is similar to a stereo camera, but instead of two cameras, it uses
one camera in conjunction with a Digital Light Processing projector.

While stereo cameras might struggle when dealing with objects lacking tex-
ture, digital light processing projector solves the problem by projecting a known
patter onto the surface of the scene, effectively providing texture even in areas
where there is no texture.

In order to compute a depth map, the illuminated point that corresponds
to a pixel of the projector in the captured image is determined. Finding the cor-
respondence along the edges of the projected patterns is relatively straightforward,
so patterns with many edges are commonly used. Where projector and camera are
not rectified, random dots are typically used as projected patterns. If the system is
rectified, vertical binary lines are often used. The captured image is then subjected
to threshold to distinguish between the illuminated and unilluminated parts of the
scene, followed by matching the illuminated parts to the projected pattern.

However, the flashing nature of the projected pattern can be irritating to hu-
mans, which is why this type of sensor is often used in closed environments. Figure
10, represents the Keyence 3D solution based on structured light, [17] .
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Fig. 10: Keyence 3D bin-picking camera, [43]

2.4 Computer Vision software

2.4.1 Segmentation techniques

Data segmentation is a process, which assigns the same labels to points that belong
to the same region. Additionally, points with similar features within a continuous
region are grouped together to generate a segment. The process of segmentation can
be seen in Figure 11, each object is marked with the corresponding color. Hundreds
of computational techniques and principles for point cloud segmentation have been
proposed over the last few decades. The well-known segmentation methods could
be categorised according to their main segmentation mechanisms. Six of the most
common categories will be introduced here, which are categorized based on their
main segmentation mechanisms, along with their main advantages and disadvan-
tages, [30], [12] .
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Fig. 11: a.) Image before segmentation. b.) Image after segmentation., [5]

• Clustering-based
• Edge-based
• Region-based
• Graph-based
• Model Fitting-based
• Machine Learning-based

Clustering-based segmentation

This segmentation method uses clustering algorithms, that rely on specific
geometric features of the point cloud. The features can be positions, surface normals,
reflectance, etc. One commonly used clustering technique is the K-means algorithm,
which groups point cloud points by minimising the sum of squared distances between
the point and the corresponding cluster centroid. The K-means algorithm identifies
’k’ centroids and then assigns each data point to the nearest cluster, keeping the
centroids as compact as possible. The term ’means’, refers to the process of averaging
the data to determine the centroid location. The operation of the algorithm is shown
in simplicity in Figure 12.

A number of studies have reported satisfactory segmentation results using k-
means clustering. Moreover, the algorithm is simple to implement and understand.
However, clustering-based methods, including the K-means algorithm, have some
limitations. They can be sensitive to noise in the data and may be influenced
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by how the neighborhood is defined. These factors can impact the accuracy and
reliability of the segmentation results obtained from these methods, [30], [6] .

Fig. 12: a.) Input points. b.) Clustered points after K-means., [46]

Edge-based segmentation

Segmentation based on edges detects the boundaries between regions guided
by specific rules based on mathematical properties, such as normals, displayed in
Figure 13, gradients, higher order gradients and curvatures. Edge-based methods
can identify edges using different approaches, depending on the technique. The
edge-based methods can, for example, extract close contours from a binary map
for segmentation, identify edges and then immediately group points within their
boundaries, or, based on gradient information, fit a 3D lines to a set of points and
identify changes in the unit normal vector on the surface. These are some of the
principles that are nowadays used in edge-based segmentation.
Although edge-based methods are classified as fast segmentation techniques, they
may lack accuracy and are more sensitive to noise and variations in point cloud
density compared to other methods, [30] .

Fig. 13: Edge-based segmentation based on normals, [45]
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Region-based segmentation

The basic idea of region-based segmentation is to select one or a few seed
points and gradually expand the region by including neighbouring points based
on certain criteria. The method of region growing is exposed in Figure 14. The
algorithm typically performs by growing a region around identified point. The main
characteristics for selecting the seed can vary. Nowadays, properties like geometric
criteria or color features are used. Algorithms such as k-nearest neighbours, grow
the region based on estimation of normal vector for each point. In the research
papers, some approaches can be found that use normal and curvature constraints
to obtain smooth areas, or even two stage rough and detailed segmentation. Two
stage segmentation initially detects the main objects based on the normal vectors
and afterwards increases the obtained amount of information by a subsequent finer
segmentation. This structure of segmentation is called bottom-up.

There are also methods called top-down, which in contrast to previously
mentioned bottom-up approach, do not use seeds to grow the regions. The top-down
method works with the points the opposite way, the whole point cloud is taken as
a single region in the beginning and is iteratively divided into smaller groups with
similar characteristics called regions.

Region-based segmentation is generally more accurate than edge-based meth-
ods, but may be more sensitive for over or under segmentation and might have a
problem to precisely select the boundaries. Nevertheless, this approach is also more
robust to noise, due to global information, [30] .

Fig. 14: Region growing segmentation, [25]
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Graph-based segmentation

Point cloud segmentation using graph-based methods requires to work with
point as a graph. Each vertex represents a point in the cloud, whereas the edges
represent connected points in their neighbourhood, displayed in Figure 15. Some
algorithms based on this methodology, build a minimum spanning tree from the
graph. The others construct a 3D graph using k-nearest neighbours and together
with penalty function, smooth the segmentation.

In general, these methods excel at segmenting complex point cloud data with
variations in point cloud density or noise. On the other hand, they lack real-time
processing and often require off-line training or some special sensor and camera sys-
tem, [30], [8] .

Fig. 15: Graph based segmentation, [25]

Model Fitting-based segmentation

The concept of model fitting segmentation is based on the experience, that
the majority of man-made objects can be decomposed into simple geometric shapes
like spheres, planes, cylinders and other primitives. These basic shapes are then
fitted to the point cloud, similar to Figure 16. All the points, sharing the same
mathematical objects, are then labelled in the same group. The most common and
known approaches in this category are Hough transformation (HT) and Random
Sample Consensus (RANSAC) algorithms.

The 3D Hough transformation identifies planes and other geometrical ob-
jects directly. However, this algorithm might be often considered as a slow and
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sensitive approach, especially when fitting more parameter-based objects due to its
high dimensional computations.

The Ransac algorithm, on the other hand, is implemented chiefly for the
robust fitting of parametric models and low sensitivity to noise. Ransac is also
well known for its ability to avoid selecting outliers. Ransac produces numerous
hypotheses of primitives shapes originating from a random subset of sample points.
Methods derived from Ransac are able to automatically detect basic primitives in
unorganised point clouds and can even locally fit basic shapes like cones, cylinders,
planes, etc.

Model fitting segmentation methods are based on mathematical principles,
which increases their robustness to noise and outliers. Ransac is also useful for
processing large amounts of point cloud data. The Ransac algorithm in particular
produces good results in a reasonable time. However, both can suffer from accuracy
issues and fitting problems, [30] .

Fig. 16: a.) Model before fitting. b.) Model after correct fitting., [7]

2.4.2 Object recognition techniques

In order to create detailed 3D models of manufacturing parts from point cloud,
object recognition is necessary for assigning labels to data segments or individual
points. Object recognition can be defined as the recognition of objects in segmented
instances. Object recognition methods can be categorised as data-driven or model-
driven.

Whereas data-driven approaches use information such as shape, material or
features, model-driven methods focus on predefined structure between objects. Some
researches may combine these two methods or are use completely new approaches.
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The next subsection summarises methods used for object recognition using
point clouds. We can categorise these techniques into three groups listed below.
Each group is then briefly described in its paragraph below, [30] .

• Geometric shape descriptor
• Hard-coded knowledge based recognition
• Supervised learning based recognition
• CAD model scan recognition

Geometric shape descriptor

Recognition of object instances usually uses geometric shape descriptors.
These descriptors can describe manufactured object based on geometric features.
The main steps in geometric shape descriptors are off-line library generation, on-
line search in point cloud and a final verification.

The off-line library generation involves calculating all the geometric shape
descriptors based on the CAD or BIM model and storing these information in the
’library’. For recognition of object instances are mostly used local or semi-local
descriptors and global descriptors for recognition of object classes, thanks to their
capability of handling more shaped variations. For example, a local geometric fea-
ture based on a point pairs, which can find pairs of points with a constant distance
and calculate local feature based on normal vectors of these points.

After storing the library, on-line search is performed on a point cloud to find
the target object by comparing the shape descriptors from the library with the ones
calculated on the presented point cloud. Points with similar shape descriptors are
then identified, based on some threshold value.

The verification process aligns to every possible matching point on a CAD
point cloud model, to see if they match well. The alignment often requires a coarse
registration Principal Component Analysis (PCM) and a finer registration similar
to Iterative Closest Point (ICP) algorithm. A well aligned match, indicates the true
location of the object in the point cloud data, [30] .

Hard-coded knowledge

Common approach to identify components which have distinct and varying
geometric features is a segmentation of a point cloud data into some meaningful
segments and categorisation these segments into object classes based on a pre-
defined knowledge. Some methods use region growing algorithms with smoothing
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constraints and label them into specific category based on established knowledge.
The know-how is usually built on observations, that the adjacent object edges are
perpendicular to each other, or that upper plane of the object is often horizontal
and the side edges are vertical.

The pre-defined knowledge can be classified into four main categories, such
as: size, position, orientation and the topology of an object. Size is related to the
dimensions of the part, so that the area of the object is within a certain range.
Position relates to relative location of an element to another known element. Ori-
entation cares about the main direction of a normal vector of an element. Lastly,
topology is related to the topological relationship between the found components.

Despite the hard-coded based methodologies might seem efficient, even these
approaches have limitations in recognition of irregular building components or when
trying to extend this method to more complex object classes with more complicated
geometries, [30] .

Machine learning

Recognition of objects in points can be done also by using the supervised
learning algorithms. These methods involves training the classifier, that can seg-
regate point cloud into object classes. The two approaches to machine learning
object recognition are point-based classification and segment-based classification.
Point-based classification covers classifying each point individually into a class us-
ing the local features. Whereas segment-based classification involves dividing the
point cloud into homogeneous segments using data segmentation algorithms and
classifies each segment into a class using feature of each segment afterwards.

Many well known approaches are grounded on Support vector machines
(SVM) algorithm. For example SVM can be used as a final classifier of a pre-
viously segmented point cloud corresponding to different 3D CAD models. Some
studies also rely on classifying point cloud using machine learning algorithms and a
novel descriptors consisting of a few corresponding geometric features "to train the
model", [30] .

CAD/BIM model scan

The above mentioned methods for object recognition do not specifically re-
quire the 3D CAD, BIM model of the whole structure. If the the point consists
of only one object to be recognised, we can use much simple recognition approach
known as BIM-vs-Scan. The approach involves matching the designed CAD model
with the point cloud data.
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The mentioned principle consist of two steps. The point cloud data should
be aligned with the CAD model, which is achieved through some manual alignment
based on few parts of point or by a two step registration process containing coarse
and fine ICP registration.
As for the second part, every point or data segment is matched to an element in the
CAD model based on the geometric and semantic features of point in each segment,
[30] .

2.5 Neural Network

2.5.1 General Neural Networks

Inspired by the way the brain processes information, neural networks mimic the
basic operations of the human brain. They are being used for a range of real-time
tasks, because of their ability to perform fast computations and quick responses.
Basic neuron is diplayed in Figure 17.

Various components of an artificial neural network model are inspired by the
biological nervous system. The network usually consists of a large number of inter-
connected processing elements, also known as nodes. These elements are connected
to other nodes by connection links. The connection links incorporate weights that
store information about the training. These weights are updated at each iteration.
The neural network is trained, when all training data has been input. Such trained
neural network with its architecture is used to solve specific problems within its
definition. General artificial neural networks are used to solve a variety of problems
including classification, pattern matching, data clustering or segmentation, [28] .

Fig. 17: Basic neuron, [28]
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Such artificial neural networks can learn how to solve problems very efficiently
and can often adapt very well. Neural networks usually excel in their ability to learn
how to solve a particular problem, in the speed at which they solve it, and also in
their accuracy, [28] .

2.5.2 Working principles of Neural Networks

A neuron can be thought of as a linear model, either in single or multiple architec-
ture, coupled with an activation function. The neuron in layer [𝑖] takes as an inputs
the outputs of all the neurons [𝑖 − 1] in the previous layer. The neuron calculates
the weighted sum, adds bias and then passes through an activation function. For-
ward propagation uses a fully connected architecture, which means, that the neuron
in layer [𝑖] is connected to all outputs from previous layer [𝑖 − 1] and equivalently
connected to all neurons to the next layer [𝑖 + 1] where the output from neuron in
layer [𝑖] stands as an input to neuron in layer [𝑖 + 1]. The principle is also visible in
Figure 18.

Once the prediction is compared to an actual output, the loss is usually min-
imised by back-propagation method. This principle optimises the weights in order
to minimise the final loss, [28], [20] .

Fig. 18: Working principles of a neuron, [20]

2.5.3 Types of learning schemes

The fascinating aspect of neural networks is mainly their ability to learn from a
structured data and produce output based on that learning. Neural networks can
be divided into three categories based on the learning process.

• Supervised Learning
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• Unsupervised Learning
• Reinforcement Learning

Supervised Learning

Supervised learning, visible in Figure 19, is a type of learning where a teacher
or supervisor is involved in the training process. Input training pairs are provided,
each pair being an input and a target output. The output of the model is compared
to the desired output and an error is calculated. This error is fed back into the net-
work to adjust the weights until the performance of the model matches the desired
performance. This involves the environment feeding back to the model. In essence,
supervised learning is similar to learning with a teacher, [20], [28] .

Fig. 19: Visualization of Supervised Learning, [53]

Unsupervised Learning

Unsupervised learning, shown in Figure 20, has no supervisor or teacher, un-
like supervised learning. This type of learning has no feedback from environment
and the model learns by itself. During the training phase, the inputs are grouped
into classes based on their similarity. Each class contains patterns that tend to
resemble each other. When a new pattern is input, the model is able to predict
which class it belongs to based on its similarity to the other patterns. If there is no
existing class for the pattern, a new class will be created, [20], [28] .
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Fig. 20: Visualization of Unsupervised Learning, [54]

Reinforcement Learning

Reinforcement learning, displayed in Figure 21, combines aspects of both su-
pervised and unsupervised learning. It can be imagined as learning with criticism.
Instead of exact feedback from the environment, the feedback is in the form of a
critique of how close the solution is to being correct. The model learns on its own,
based on this feedback. Reinforcement learning is similar to supervised learning
in that, it receives feedback from the environment, but it differs from supervised
learning in that, it does not receive the desired output information. Instead, the
feedback is received in the form of criticism, [20], [28].

Fig. 21: Visualization of Reinforcement Learning, [28]

2.5.4 Types of Neural Networks

Neural Networks can be classified based on mathematical foundation and perfor-
mance.
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Feed-forward Neural Network

Feed-forward neural network, shown in Figure 22, so called because the data
moves in one direction. The input data enters at an input and leaves at an output.
There is no back-propagation of a signal in this type of layer. Back-propagation
is only used as an algorithm to calculate the final loss function using the gradient
method. Feed forward networks can also contain hidden layers and have a fixed
length specified by the programmer, [20], [28] .

Fig. 22: Feed-forward neural network, [20]

Radial Basis Function Network

RBF networks, displayed in Figure 23, are a combination of input, hidden
and output layers. By measuring the distance from a central point and interpolat-
ing, RBF networks categorises data. Interpolation resizes images and classification
is done by estimating input data, with each neuron holding data. RBF networks
group similar data points by searching the input area. Hidden layer outputs are
summed and weighted to form a network of outputs, that are sent to the output
layer, [20], [28] .
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Fig. 23: Radial Basis network, [20]

Recurrent Neural Networks

The disadvantage of feed-forward network is, that it cannot remember data
in past inputs. This is where RNN’s come in help to solve this.
RNN is a network, visible in Figure 24, that does a good job of modelling sequen-
tial data well. Sequential data means data that follows a particular order in that
a thing follows another. In an RNN, the output of the previous step can be used
as the input of the current step, therefore the RNN is a feedback neural network.
By storing the outputs, a better guesses can be made. In RNN, the data is passed
through a loop, so each node remembers the data from the previous step. RNNs
have a memory that helps the network to remember what has happened before in
the data sequence. When performing predictions, neurons act as a memory cells.
Most known type of RNN are Long short term memory networks (LSTM), [20], [28] .

Fig. 24: Recurrent neural network, [20]
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Convolutional Neural Networks

CNN architectures are usually used for image recognition, consisting of 3
stages of neuron arrangement.
The first stage is the convolutional layer, where neurons only process information
from a particular segment. This is usually done by batching the input features.
Followed by a pooling stage, in which the dimensions of the features are reduced
while the essential data is retained.
CNNs move on the third stage, the fully connected neural network, where the class
of the image is evaluated to determine the final probabilities. The real-life applica-
tion contains a combination of both, convolutional layers and neurons, [20], [28] .

2.5.5 3D Convolutional Neural Network

From a mathematical point of view, convolution is an integrative operation that
measures the amount of overlap of one function on another while is shifted. Convo-
lution mixes two functions in order to preserve the information.
In in the field of neural networks, convolutions are filters being used to extract fea-
tures from an input data. In essence, convolution involves usage of a filter with
adaptive weight matrices that traverses the input and computes the weighted sum
as an output. This weighted sum is referred as feature space and is the input for
the next layers, [2], [9] .

1D Convolution

1D convolutions, shown in Figure 25, are the simplest convolutions, usually
used for sequence data. However, they have also several other objectives. One-
dimensional convolutions help to extract 1D sub-sequences from the input sequences
and to identify local patterns within the convolution window. The resulting features
are obtained by applying a 1D convolution filter to sequence. 1D convolutions are
commonly used in natural language processing to represent sentences in a sequence
of words, [2] .
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Fig. 25: Visualization of 1D convolution, [2]

2D Convolution

When dealing with image datasets, A.I. based algorithms mainly use 2D
convolutional filters. The fundamental concept behind 2D convolution is that the
convolutional filter moves in two directions 𝑋 and 𝑌 to compute low-dimensional
features from image data. 2D convolution is initially defined as the element-wise
multiplication between the input and various filters. A 2D max-pool layer ( (2𝑥2)
filter) involves selecting the largest element from a small (2𝑥2) square defined within
the input data. 2D convolution principle is visible in Figure 26. The output of this
operation is a 2D matrix with a reduced dimension, [2], [9] .

Fig. 26: Visualization of 2D convolution, [19]
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3D Convolution

3D convolution, displayed in Figure 27, analytically uses a 3D filter to pro-
cess the dataset, with the filter moving in three directions 𝑋, 𝑌, 𝑍 to compute low
level feature representations. The same element-wise multiplication is performed
on the multiple pairs of 2D matrices in the input and filters. In a 3D max-pool
layer there is a (2𝑥2𝑥2) kernel, where the largest element is selected from a (2𝑥2𝑥2)
cube corresponding to the bounded space within the zone of the input data. The
output shape of this operation is a 3D volume space, such as cube. Although they
are designed for 3D space input, they can be also used for 2D space input, such as
images. Due to the size of the filters used and the size of the input data itself, the
number of operations increases in 3D CNN layers, including both convolution and
max-pool layers. This increase in the number of operations is more significant as
observed in the 2D CNN layers, [2], [9] .

Fig. 27: Visualization of 3D convolution, [2]

2.6 Overview of used technology

In this section, we will provide an overview of the technologies used in robotic vision,
specifically the Zivid 3D camera, Python programming language, and the Open3D
and TensorFlow libraries.

2.6.1 3D Zivid Cam

Zivid is a Norwegian technological company headquartered in Oslo, Norway which
specializes in machine vision cameras. The group produces 3D color cameras and
associated vision software used in numerous industrial automation systems, such as
industrial robot cells or collaborative robot cells (cobots).
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The hardware field of the company specialises on products such as Zivid Two
and Zivid One+ industrial colour cameras.

Zivid One+ was launched as an upgraded version of Zivid One in November
2018 at VISION 2018 in Stuttgart, Germany. The One+ product includes three 3D
colour cameras, which could work in distance from 3 to 160 cm depending on the
version.

Zivid One+ camera [56], is primarily used in industrial automation and
robotic applications such as pick and place, bin-picking and assembly tasks. Due to
its high resolution, high speed, and colour accuracy, this camera works well in a wide
range of applications. The camera is also compatible with various robotic platforms
and can be easily integrated into existing systems if the customised software is used.

In this thesis a Zivid One+ Small camera was used, displayed in Figure 28.
This camera has an optimum working distance of 350 to 700 mm. The camera’s
field of view varies from 300 to 1000 mm, providing flexibility in capturing objects of
different sizes. One of the features of the Zivid One+ Small camera is its noteworthy
spot accuracy, which ranges from 25 to 500 µm. The camera produces a final image
with a resolution of 2.3 MPx (1920 x 1200 points) with native 3D colour. In addition,
the camera’s point cloud output includes 3D coordinates (XYZ), colour information
(RGB) and contrast for each pixel. In terms of performance, the Zivid One+ Small
camera boasts an capture time, with a single frame taken in just 80ms at 1/154s
exposure. This fast capture time allows fast moving objects to be captured or quick
inspections to be carried out without compromising image quality or accuracy, [55],

.

Fig. 28: Zivid One+ camera, [48]
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2.6.2 Python

Python is a high-level, interpreted, object-oriented programming language with dy-
namic semantics. Its built-in high-level data structures and dynamic features, which
make it attractive for rapid application development and as a scripting language for
connecting existing components. Python supports modules and packages, which en-
courages a modular programming approach and code reuse. The Python interpreter
and an extensive standard library are freely available in source or binary format
for all major platforms. Python was chosen as the programming language for this
project because of its wide range of libraries and frameworks that greatly simplify
data processing, machine learning, and computer vision tasks, [42] .

2.6.3 Tensor-Flow Framework

Tensor-Flow was developed by Google as an open-source library, primarily used for
deep learning applications. Originally, Tensor-Flow was designed mainly for large
numerical computations without any consideration of deep learning. Eventually,
it has evolved to become one of the most popular frameworks for deep learning.
Ever since its first version appeared in 2017, it has become one of the most popular
deep learning frameworks with an enormous library for large-scale machine learning
computation.

One of its advantages is the ability to use different hardware resources such as
CPU and GPU, allowing faster computations and parallel processing. TensorFlow
is designed to take advantage of modern GPUs, which have high computational
capacity and are optimized for parallel operations. Using TensorFlow, computations
with high-dimensional tensors can be performed efficiently, which is important for
processing large datasets. GPUs provide the advantage of parallel processing, which
means that a number of operations can be performed simultaneously. This is useful
for mathematical data processing, convolutional neural networks, and other machine
learning algorithms. Overall, TensorFlow allows to efficiently take advantage of both
CPU and GPU for fast and parallel computations, while being able to efficiently
process large data with high-dimensional tensors, [1] .

2.6.4 Open 3D Library

Open3D is an open-source library, that is designed to make it easier to quickly
create software that handles 3D data. The front-end provides a well-chosen set of
data structures as well as algorithms in both Python and C++. The back-end is,
on the other hand, well optimised and ready for parallel computing. Open3D was
originally built from scratch with minimal dependencies. This fact allowed to easy
set up the library as well as cross platform compilation. The library has been utilized
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in several research papers and is widely adopted in cloud environments. The main
domains, it covers, are visualisation, 3D machine learning, robotics, etc., [38], [10] .
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3 Process of recognition and pose estimation

Using segmentation algorithms for bin-picking tasks requires both testing perfor-
mance on a sufficiently large dataset and segmentation of specific objects. In order
to correctly pick different parts from a bin, the pose for each part must be cor-
rectly estimated. To train a neural network for a specific objects, a specific dataset
must be used. In the following chapters, the algorithm for dataset generation, scene
segmentation, and pose matching is presented.

3.1 Dataset Generation for Bin-Picking Tasks

Since bin-picking is a task mostly used in the manufacturing industry, it is usually
necessary to segment different objects in most cases. The manufacturing industry
usually provides 3D CAD model data for each object. The creation of a custom
dataset for each specific object by labelling is very demanding, either from a time or
financial point of view. Based on this knowledge, it was decided not only to test the
implementation of segmentation and registration on publicly provided datasets, but
also to work on the whole process of bin-picking, including the generation of datasets
consisting only of objects selected by the author. The idea behind a synthetic data
generator is to have an all-in-one product package that can either be trained on
a self-made generated dataset, or be able to produce predictions of segmentations
from a real world dataset.

The data generation algorithm that is presented in this thesis, takes as an
input a 3D CAD model of an object, usually in a .𝑠𝑡𝑙 format, and produces a series
of scenes consisting of several 3D objects that have been previously inserted.

The second approach is to use pre-made datasets that are available for down-
load, such as the XA Bin-picking dataset [34] .
This dataset includes both simulated and real-world scenes featuring few indus-
trial objects. The dataset contains over 1000 training samples of scenes where the
ground truth instance labels have been manually created. More than 20 objects
can be found in the randomly arranged scenes. Each scene contains over 60 0000
annotated points. The parts are devoid of texture and color and both the training
and test samples contain only the boundary points of the parts, [34] .

Another publicly available dataset is the Fraunhofer IPA Bin-Picking dataset,
example of the dataset is visible in Figure 29. The dataset also includes simulated
and real scenes with many objects. The scenes in the dataset are fully annotated
with 6D poses. The multi-part scenes are generated by a physics simulation in which
objects are dropped into a bin in random positions and orientations. This dataset
also extends the Siléane dataset by providing additional examples. This addition
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is particularly useful for training deep neural networks and measuring performance,
[39], [11] .

These two public datasets provide sufficiently good amount of data for test-
ing the performance of every new architecture of Neural Network for either object
classification or registration.

Fig. 29: FraunHofer IPA dataset, [39]

3.1.1 Data Generation Theoretical Intro

The data generator used a random object centre generator, which places an object
in space by setting an 𝑋,𝑌 , and 𝑍 coordinate. There are two different probability
functions for selecting the position on the surface and the height of an object. A
uniform probability function is used to select an 𝑋 and 𝑌 coordinate to ensure a
homogeneous distribution of objects on a surface. A uniform probability function is
used to place the object in a plane to ensure a homogeneous distribution of objects in
the plane. The height of the centre was initially secured by a 𝑈 −𝑠ℎ𝑎𝑝𝑒𝑑 probability
distribution. Later, an option to select a height of 2 or 3 discrete values was added
because it also provided very good results.

If the object is symmetric around the 𝑍 axis, one rotational axis suffices to
control the rotation around the x or y axis. Other axes of rotation are frozen due to
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symmetry, because any rotation of the object around that axis, will not cause any
changes.

If the object is inhomogeneous, the other 2 degrees of rotation can also be
set to adjust the resulting position of the object in space. All axes of rotation are
normally generated by a normal distribution function with a desired offset.

Simple object generation, even with correct probabilistic distribution, pro-
duces a "ton" of overlapping objects. This bug was partially fixed by randomly
generating a large number of objects until a non-overlapping object was found.
Since this method of randomly finding a non-overlapping coordinate vector takes an
enormous amount of time, it was decided to use down-sampled objects. Example of
a generated data scene exposed in Figure 30.

While working with down-sampled objects has saved some time when creating
a scene, it has not brought any massive improvement. The overlapping of objects is
checked by finding out if any point of a new object is in the space of all previously
placed objects.

The final algorithm chooses the best generated position based on the number
of overlapping points. The object coordinates with the fewest overlapping points
are preselected. As the new coordinates are selected in the scene, the final object is
up-sampled back to the originally selected values.

The algorithm continues in this way, creating as many objects in the scene as
are selected. In this way it is able to achieve a sufficiently large and diverse dataset
to train a neural network.

Fig. 30: Example of generated dataset
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3.1.2 Data Generation Implementation

The implementation of a presented dataset generating algorithm is pretty much
straightforward. A user chooses a folder to save the results and selects the CAD
model in .𝑠𝑡𝑙 format, from which the dataset will be generated. The user has an
option to save the generated scene and to check the non-overlapping part of the
algorithm. The objects are generated in a loop, while the model is down-sampled at
the beginning. For each position generated each point of the newly created object
in the proposed position is tested with the previously placed objects, whether it is
located inside one of them. In this way all points of the new object are passed in
the cycle. In case none of the points is located inside the object, the object is stored
at the selected location.

If at least one point is inside one of the stored objects, a new position is
generated for the placement of the model. This continues until a location that has
no collision with existing objects is found. The second option is set if the maximum
allowed number of place generation is exceeded. In this case, the position already
generated, which had the least number of points in the collision, is selected.

After all points are placed, the algorithm up-samples points for each indi-
vidual objects. The output of the algorithm is a folder containing a point cloud in
’.txt’ format, folder with RGB images for each generated scene as well as correctly
labeled segments in ’.txt’ format for control.

3.2 Scene Segmentation

The presented segmentation method consists of training a network on a 3D point
cloud, which is usually generated by a 3D model of the target object. The proposed
method involves identifying the geometric centres of each part and using these points
as the main reference for the upcoming clustering. These centres are related to the
number of instances of an object in the scene. Therefore, this approach can elim-
inate redundant merging algorithms, which consume a lot of computing time and
can introduce errors in highly overlapping scenes, [33] .

3.2.1 FPCC Theoretical Intro

The backbone of the FPCC neural network is based on the transformation of the
original 3D point cloud data into a new coordinate system, where each point is
represented by a six-dimensional vector XYZ, equation 3, and a normalised vector
(𝑛𝑋 , 𝑛𝑌 , 𝑛𝑍). The resampled point cloud is fed into the network, which outputs a
256-dimensional feature output and a percentage of a centre score for each point.
The features extracted from the FPCC are then fed into two branches, an embedded
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features branch and a centre score branch, [33] .

𝐹 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑛𝑥, 𝑛𝑦, 𝑛𝑧)

𝑥𝑖 = 𝑥𝑖 − min(𝑥1, 𝑥2, ...., 𝑥𝑁)
𝑦𝑖 = 𝑦𝑖 − min(𝑦1, 𝑦2, ...., 𝑦𝑁)
𝑧𝑖 = 𝑧𝑖 − min(𝑧1, 𝑧2, ...., 𝑧𝑁)

(3)

The two resulting branches output an embedded feature and a centre score
for each point. The non-maximum suppression algorithm is immediately applied
to all points to identify the most valuable centres of each instance. Points with a
centre score greater than some threshold percentage, are automatically considered
as a candidates for the centre points. The point with the highest centre score is
selected as the first candidate centre point and all other points within a distance
sphere are removed. This process is repeated until no more points remain.

All the points except the centroids are then clustered based on the closest dis-
tance to the centroid. The nearest centroid of the point 𝑝𝑖 in the feature embedding
space is found and then the distance between the point and a centre is calculated.
If the distance exceeds the threshold value, the point is labelled as a noise and is
not assigned to any other group, [33] .

This clustering method differs from the conventional clustering methods, be-
cause it does not require the entire scene to be downsampled into multiple batches
and clustered in their batches. The basic process of segmentation is visible in Figure
31.

The final network loss during the training is a combination of the losses from
the embedded feature branch and the centre score branch, [33] .

Fig. 31: FPCC segmentation process, [33]
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Feature distance matrix

The feature distance matrix, which is part of the feature embedding space,
ensures that the points belonging to the same instances are close to each other. On
the other hand, the points belonging to different instances should be far from each
other. Equation 4 calculates the distance between two feature i and j [33] .

𝑑𝐹 (𝑖,𝑗) = ||𝑒(𝑖)
𝐹 − 𝑒

(𝑗)
𝐹 ||2 (4)

Valid distance matrix

This matrix consists only of binary elements. The aim is to train the network
to discriminate whether pairs of points within a given Euclidean distance belong to
the same instance or not. In the inference phase, the overall clustering of the points
depends on both the feature distance and the Euclidean distance of the point pairs
(centre-point - point). If the Euclidean distance between any two points is greater
than twice the maximum of a threshold distance, the points are considered not to be
in the same group, equation 5. These points will be ignored later to prevent them
from contributing to the final loss, [33] .

𝑑𝑉 (𝑖,𝑗)

⎧⎪⎨⎪⎩1, if ||𝑝𝑖 − 𝑝𝑗||2 < 2𝑑𝑚𝑎𝑥.

0, otherwise.
(5)

Centre score

To ensure that the centre score characteristic reflects the distance between a
point and its corresponding centre, the points close to the centre of an object have
higher scores than those on the boundary. To evaluate this, a centre score vector is
constructed according to the following equation 6, [33] .

𝑆𝑐𝑒𝑛𝑡𝑒𝑟(𝑖) = 1 − ( ||𝑝𝑖 − 𝑐𝑖||2
𝑑𝑚𝑎𝑥

𝛽

) (6)

Attention score matrix

The Attention Score Matrix represents the significant pairs of dots by assign-
ing weights between them in a matrix. This is done by calculating the weights based
on the distance of the point pair from the centre position point, equation 7, [33] .
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𝑆𝐴(𝑖,𝑗) = min(1, 𝑆𝑐𝑒𝑛𝑡𝑒𝑟(𝑖) + 𝑆𝑐𝑒𝑛𝑡𝑒𝑟(𝑗)) (7)

Embedded feature loss and Center score loss

As the point pair has two possible relationship scenarios, as belonging to the
same instance or not. The embedded feature loss 𝐿𝐸𝐹 is defined in equation 8. 𝜖1

and 𝜖2 are constants, which satisfy the condition 0 < 𝜖1 < 𝜖2, [33] .

𝐿𝐸𝐹 = ∑︀𝑁
𝑖=1

∑︀𝑁
𝑗=1 𝑤𝑖,𝑗𝜅𝑖,𝑗

𝑤𝑖,𝑗 = 𝑑𝑉 (𝑖,𝑗)𝑆𝐴(𝑖,𝑗)

𝜅(𝑖,𝑗)

⎧⎪⎨⎪⎩𝑚𝑎𝑥(0, 𝑑𝐹 (𝑖,𝑗) − 𝜖1), if 𝑝𝑖𝑎𝑛𝑑𝑝𝑗 in the same instance .

𝑚𝑎𝑥(0, 𝜖2 − 𝑑𝐹 (𝑖,𝑗)), otherwise.

(8)

For a function for the center score branch a Smooth 𝐿1 loss is used in equation
9.

𝐿𝐶𝑆 = 1
𝑁

∑︀𝑁
𝑖=1 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑆𝑐𝑒𝑛𝑡𝑒𝑟(𝑖) − 𝑆𝑐𝑒𝑛𝑡𝑒𝑟(𝑖))

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥)

⎧⎪⎨⎪⎩0.5|𝑥|2, if |𝑥| < 1.

|𝑥| − 0.5, otherwise.

(9)

3.2.2 FPCC Implementation

The implementation of the chosen algorithm was taken and modified from Github
[33]. The whole algorithm was rewritten to the newer version of a Tensor-Flow 2.x
from a Tensor-Flow 1.x, which makes it possible to run with the latest Python. The
algorithm has also been rewritten into a newer structural style of OOP programming,
to encapsulate all the features and functions of the bin-picking process into one class.

The implementation of the algorithm consists of two main functions for train-
ing and prediction. The architecture of the neural network is described in the fol-
lowing chapter. In the train function, the entered data for training is first read.
In case a saved checkpoint from the previous training is found, the neural network
continues with further training. It is possible to choose a backbone from the pair
’DGCNN’ or ’PointNet’.
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Before training, specific values are set for various parameters such as the
maximum distance, number of epochs, number of input points to the net, size of
training batch or weight decay.

3.2.3 FPCC Neural Network architecture

The architecture of the final neural network is based on the architecture proposed by
[33]. The neural network consists of two parallel parts connected to the backbone,
a feature extraction network called Dynamic Graph Convolutional Neural Network
(DGCNN). The main focus of this thesis was on the DGCNN as the backbone.
This was based on tests, referenced in the research paper, where they compared
it with PointNet and PointNet++, especially in the area of learning the geometric
features. As a feature extraction model, the DGCNN takes 𝑛 × 6 points as input.
At the convolutional level, an edge feature set of size 𝑘 is computed for each point.
Features within each set are aggregated to compute the edge convolution response
for the corresponding points. The basic architecture of DGCNN is displayed in
Figure 32, [33], [31] .

Fig. 32: DGCNN architecture, modified from [31]

The point cloud transformation block, in Figure 34, is responsible for aligning
the input set of points to a canonical space by applying an estimated 3 × 3 matrix.
To estimate the matrix, the block uses a tensor that concatenates the coordinates
of each point and the coordinate differences between its 𝑘 neighbours, [31] .

Fig. 33: Principle of DGCNN transformation, [31]
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The edge convolution block, in Figure 34, takes a tensor of shape 𝑛 × 𝑓 as
input, computes edge features for each point by applying a multi-layer perceptron
(MLP) with the number of layer neurons defined as 𝑎1, 𝑎2, 𝑎3, ...., 𝑎𝑛, and generates
a tensor of shape 𝑛 × 𝑎𝑛 after pooling between adjacent edge features, [31] .

Fig. 34: Principle of DGCNN edge convolution, [31]

After the DGCNN there are two parallel branches, both taking the output of
the DGCNN as input. The first part of the neural network is responsible for feature
extraction. Features pass through a multi-layer perceptron (MLP), similar to the
one in the DGCNN, to produce an embedded feature of size 𝑁 × 128.
The parallel centre score branch uses a double MLP layer to both reduce the dimen-
sionality of an output from DGCNN and to activate pointwise features by a sigmoid
function immediately after the double MLP layers. Using this approach, a centre
score ^𝑠𝑐𝑒𝑛𝑡𝑒𝑟 prediction can be made at each point. The whole architecture of the
segmentation network is visible in Figure 35, [33] .

Fig. 35: FPCC neural network architecture, [33]
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3.3 Object Registration

As mentioned above, registration in the bin-picking process is a challenging and
difficult task. With a proper output from a segmentation part, a satisfactory close
estimate of an object model transformation can be obtained. From a correct trans-
formation estimate, information can be extracted for the gripper to select a correct
location to pick up an object, etc.

Initially, a large number of publicly available algorithms were used for this
task, either based on mathematical transformations or neural networks. Although a
significant number of algorithms were tested on this task, such as (neural network)
GMCNet, OMNet or a large (open source library) Teaser plus plus, none of these
methods seemed to work and were not able to produce reasonable and correct trans-
formation results. Only the ProBreg library was able to produce reasonably good
results from time to time. The accuracy of the results was not very good and the
algorithm lacked stability, [22], [32], [36], [35] .

For all these reasons, chosen algorithm has to be more "heavy" but above
all robust. The point pair algorithm was originally proposed by [4]. The actual
algorithm implementation followed code implementation and some ideas from [37].

3.3.1 Point Pair Feature Theoretical Intro

The algorithm assumes that both the scene and the CAD model are represented by
a finite set of oriented points. Each point in the point cloud is also characterised by
a normal computed from its neighbourhood.
The algorithm consists of two phases. Off-line training creates the global model
description, while the on-line phase selects the reference points. All other points
in the scene interfere with the reference point to create point pair features. These
features are mathematically related to the model description. The voting of a pose
estimation algorithm is similar to the voting in Hough transform. Each potential
point match of a point pair votes for an object pose that provides the optimal pose
estimation, [4] .

Feature vector

The point pair feature describes the relative position and orientation of two
points and searches for those with similar characteristics to the model point pairs.
It uses the a vector, which consist of a values such as distance between points, nor-
mals and relative normals, to categorise point pairs. We can define vector 𝐹 for
each point 𝑝1 and 𝑝2 with normals 𝑛1, 𝑛2, distance 𝑑 = 𝑝1 − 𝑝2 in equation 10. The
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visualization of this vector is shown in Figure 36 [4] .

𝐹 (𝑝1, 𝑝2 = [‖𝑑‖2,∠(𝑛1, 𝑑),∠(𝑛2, 𝑑),∠(𝑛1, 𝑛2)] (10)

Fig. 36: Visualisation of a feature vector, [4]

Global Model Description

The aforementioned point pair features are used to construct a global model
representation during the off-line training phase. The model consists of a collec-
tion of point pair features, where features with similar feature vectors are grouped
together. To achieve this, the feature vector F described by the equation 10 is
computed for all point pairs (𝑚𝑖, 𝑚𝑗) belonging to the model 𝑀 on the model sur-
face. Distances and angles in the feature vector are sampled at intervals of 𝑑𝑑𝑖𝑠𝑡

and 𝑑𝑎𝑛𝑔𝑙𝑒 = 2𝜋
𝑛𝑎𝑛𝑔𝑙𝑒

. All the features, that have identical discrete versions are then
combined together. This can describe the global model representation as a mapping
from the feature space of sampled point-pairs to the model, equation 11, [4].

𝐿 : 𝑍4 ⇒ 𝐴 ⊂ 𝑀2 (11)

Knowing this, the four-dimensional point-pair feature vector previously de-
fined in the equation 10 is mapped onto the set A, containing all the pairs 𝑚𝑖, 𝑚𝑗) ∈
𝑀2 that define equivalent feature vector, [4] .
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Voting Scheme

Consider any arbitrary referenced point 𝑠𝑟 ∈ 𝑆 of the scene and assume, that
it is located on the object, which is searched. If this assumption is correct, then
there exists a point 𝑚𝑟 ∈ 𝑀 that corresponds to 𝑠𝑟. Once these two points and their
normals are aligned, the object can be rotated about the normal of 𝑠𝑟 to align the
model with the scene. This removes another degree of freedom for the pose of the
model in the scene. The fixed movement from model space into scene space can be
described by a point on the model and a rotation angle 𝛼. Such pair (𝑚𝑟, 𝛼) is called
a local coordinates of the model, relative to the reference point 𝑠𝑟. In this method,
a point pair (𝑚𝑟, 𝑚𝑖) ∈ 𝑀2 is aligned with a scene pair (𝑚𝑟, 𝑚𝑖) ∈ 𝑆2 where both
pairs have a similar feature vector 𝐹 . The transformation itself from the local model
coordinates to the scene coordinates is defined by the equation 12 and displayed in
Figure 37. Note that the local coordinates have 6 degrees of freedom (one for the
rotation angle 𝛼 and two for a point on the model surface), whereas a general rigid
motion in movement in 3D has 6 degrees of freedom, [4] .

𝑠𝑖 = 𝑇 −1
𝑠→𝑔𝑅𝑥(𝛼)𝑇𝑚→𝑔𝑚𝑖 (12)

Fig. 37: PPF transformation between model and scene, [4]

Given a fixed reference point 𝑠𝑟, our goal is to identify the optimal local
coordinates that maximise the number of scene points lying on the model. This is
a similar approach to the generalised Hough transformation, which is usually very
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efficient when the local coordinates have only three degrees of freedom. Once the
optimal local coordinates are found, the global pose of the object can be recon-
structed.

In the actual voting process, the model surface is searched for the point pairs
(𝑚𝑟, 𝑚𝑖) with similar distance and normal orientation to (𝑠𝑟, 𝑠𝑖), by pairing the
reference point 𝑠𝑟 with each point 𝑠𝑖 ∈ 𝑆 from the scene. This search determines
where on the model the scene point pair (𝑠𝑟, 𝑠𝑖) could be located, and is performed
using the off-line precomputed model description. The feature 𝐹𝑠(𝑠𝑟, 𝑠𝑖) is computed
and also used as a key to the global model description hash table, which returns
a set of similar feature vectors on the model. For each and every matching pair
(𝑚𝑟, 𝑚𝑖) or each possible position of (𝑠𝑟, 𝑠𝑖) as shown in Figure 38. Then it’s voted
for the local coordinates (𝑚𝑟, 𝛼). Figure 38 displays also the voting process.

After the processing all points 𝑠𝑖, the peak of the accumulator array corre-
sponds to the optimal local coordinate from a which a global rigid motion can be
computed. For stability reasons, all peaks that receive a certain number of votes
relative to the maximum peak are used, [4] .

To increase the efficiency of the algorithm, 𝛼 is split into two parts 𝛼 =
𝛼𝑚 − 𝛼𝑠, where 𝛼𝑚 and 𝛼𝑠 depend only on the point par in the model and scene
respectively. 𝑅𝑥(𝛼) is also split into 𝑅𝑥(−𝛼𝑠𝑅𝑥(𝛼𝑚)) and 𝑅−1𝑥(−𝛼𝑠) = 𝑅𝑥(𝛼𝑠).
This is achieved by using an equation 12.

𝑡 = 𝑅𝑥(𝛼𝑠)𝑇𝑠→𝑔𝑠𝑖 = 𝑅𝑥(𝛼𝑚)𝑇𝑚→𝑔𝑚𝑖 (13)

In this case, 𝑡 lies on the half-plane which is defined by the 𝑥 − 𝑎𝑥𝑖𝑠 and
the non-negative part of the y-axis. For each pair of points in the model or scene,
t is unique. Consequently, 𝛼𝑚 can be precomputed for each pair of model points
during the off-line phase and stored in the model descriptor. Using approach, 𝛼𝑠

only needs to be calculated once for each scene point pair (𝑠𝑟, 𝑠𝑖) and the final angle
𝛼 is a simple difference between the two values, [4] .

Fig. 38: PPF voting process, [4]
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Clustering

If the reference point is on the surface of the object, then the object pose is
determined by the voting scheme above. As a result, there is a need for multiple
reference points in order to ensure that at least one of the reference points is on the
object of interest.

As shown above, each reference point provides a set of potential object poses
corresponding to the peaks in its accumulator array. However, these retrieved poses
are only approximate to the ground truth due to different sampling rates of the
scene, the model and the rotation sampling in local coordinates.

In order to both eliminate incorrect poses and increase the accuracy of the
final result, the retrieved poses are clustered so that all poses within a single cluster
do not differ in translation and rotation by more than a predefined threshold. The
total score of a cluster is the sum of the poses it contains, where the score of a pose
is the number of votes it received in the voting scheme. After identifying the cluster
with the highest score, the final pose is computed by averaging the poses within that
cluster. Since the scene may contain multiple instances of the object, the method
may return multiple clusters. Pose clustering improves the stability of the algorithm
by discarding isolated poses with low scores, while the averaging step improves the
accuracy of the final pose. In Figure 39 , the complete process of PPF registration
is displayed, [4], [37] .

Fig. 39: Visualisation of PPF algorithm : a.) 3D Model. b.) Generation feature
vectors c.) Extracted PPF stored in Hash table. d.) Input scene. e.) Preprocessing.
f.) PPF Extraction. g.) Hashtable lookup and voting. h.) Final registration.,
modified from [13]
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3.3.2 Point Pair Feature Implementation

This code implementation followed code ideas from [37] .
The code is also written by the OOP programming paradigm. The main class has
two essential functions for offline training and online matching.

For model training, the inserted point cloud can be downsampled if selected.
To find and add vectors in certain sets, the dictionary structure was used as a hash
table. The training itself involves a cycle mapping relationship between each two
different points. In the implementation, the model representation is stored as a
hash table indexed by a feature vector F. A hash function is in the structure of the
Python dictionary was used to map the 4D vector F to a 1D integer. Using this
approach to accessing the hash table, all model features 𝐹𝑚(𝑚𝑖, 𝑚𝑗) that are similar
to a given scene feature 𝐹𝑠(𝑚𝑖, 𝑚𝑗) can be quickly retrieved. This process continues
until the features are mapped for every two points.

Fitting the scene to the pre-trained model requires similar initial steps as
downsampling or computing the maximum interval coordinates of the scene. The
model fitting itself consists of a double loop in the first step of the fitting. Each
time the hash generated from the scene matches a hash in the stored model hash
table, the accumulator matrix is incremented by a certain index. We implement the
matching scheme as a one-dimensional accumulator array. The number of elements
in the array corresponds to the total number of sample points of the model ‖𝑀‖
times the sample steps of the rotation angle 𝛼, 𝑛𝑎𝑛𝑔𝑙𝑒. For a fixed reference point,
this accumulator array represents the discrete space of local coordinates.

Then only the most voted points are retrieved. After selecting the most
relevant locations in the accumulator matrix by a threshold, the actual poses are
computed and stored in a list structure. Since many of the estimated poses may
have very similar transformations, the clustering method collects estimated poses
with similar transformation matrices.

To further increase the accuracy of the final pose estimation, a score recal-
culation has been implemented. The score recalculation is performed on each point
in a cluster and changes the final score of a cluster. After performing the proposed
pose transformation in the cluster, a space around each point of the cluster within
a certain threshold distance is searched to check for some existing model points.
Finding atleast one scene point in the predefined space around the searched point,
indicates a correct pose estimation for that point. On the other hand, this may
indicate an incorrectly proposed pose transformation if no points from the scene
are found nearby. The number of points that have model points within the defined
distance is summed, and the score is recalculated according to this sum, [37] .
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The code implementation is available on :
https://github.com/marecek199/3DGenerationSegmentationRegistration.git
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4 Experiment Results

This chapter presents both partial results for each section and a full test of the seg-
mentation process on a captured dataset. The chapter is divided into 4 sections for a
detailed look at each area. This text structure provides enough space to present the
results for each section with different settings. The first section presents the results
of an artificial dataset generation. This is followed by the results of neural network
segmentation. The third section focuses on object registration. The final section
presents the complete process, including each process described in the sections, as
well as tests on real acquired data.

4.1 Dataset Generation

The algorithm used for this task was not that complicated at first. All that was
needed to complete the task was to randomly place more objects in a coordinate
space and save the results in a suitable file format. However, as the algorithm was
implemented, various flaws were discovered.

4.1.1 Data generation : Initial settings

In Figure 40, we can see the first scene generated by our dataset generator. The
image shows scenes with [3, 7, 15] objects in the order. No overlapping prevention
has been added as the first phase of data generation.

Fig. 40: Data generation default settings : a.) 3 items. b.) 7 items. c.) 15 items

The objects from the default generator are very overlapping. It is obvious
that even though the neural network can learn something from a dataset generated
by this approach, it would struggle to generalise if the scenes with overlapping ob-
jects are given.
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4.1.2 Data generation : Second stage of settings

In the second stage of data generation, object overlap prevention has been added,
visible in Figure 41. The prevention algorithm is based on object collision detection.
Each new object added to the scene is checked at a point level. Based on whether
the points of the newly added objects are in collision with existing objects, the new
object is added or not.

Fig. 41: Data generation no-overlap settings : a.) 5 items. b.) 9 items. c.) 16 items

The objects in the presented scene were generated by an initial settings. Each
object was placed in a specific location selected by a random generator using a ran-
dom distribution. The angles of rotation around each axis and the centre height of
an object were chosen in the same way.

4.1.3 Data generation : Final settings

As the results of the previous two settings were analysed, the different probability
distributions were added to the data generation. The intervals in one generation
of rotation around the 𝑥 and 𝑦 axis were changed from (0, 2𝜋) to (0.25𝜋, 0.75𝜋)
with a normal distribution. This was done to generate objects mostly in the lying
position. The generation of a random rotation around the 𝑧 axis has been changed
to a uniform distribution. The uniform distribution was also added to replace the
one in the 𝑥, 𝑦 position to ensure a homogeneous distribution of objects in space and
not to create large clusters around the centre of the coordinate system. Results are
displayed in Figure 42.
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Fig. 42: Data generation final settings : a.) 4 items. b.) 9 items. c.) 15 items

Dataset generator created in this way provides an approach to train the seg-
mentation neural network using only the CAD model of the object. As a consequence
of the fact that the creation of the dataset is fully secured by a single algorithm, all
point clouds belonging to a single object are simply labeled. The marking of points
into segments occurs by color. This procedure completely eliminates the problem
of manually labeling the training data. Since this approach provides a way to set
object rotations or heights in a certain interval, or to set a minimum or maximum
number of objects in the scene, the final results of the resulting dataset can be better
adapted to the desired conditions.

4.2 Segmentation

This section presents the results of a data segmentation. The segmentation will
be shown on a few different objects, both on test data from the original dataset
and on different datasets. In this thesis, the neural network is trained on scenes
with (0 : 20) objects. All segmentation results presented here are only compared on
scenes with exactly 20 objects. This is a reasonable amount to show the segmentation
performance of the neural network and to ensure consistent conditions throughout
the comparison.

The next sections show different outputs based on different settings to get a
general idea of how the training or prediction settings affect the final output of a
segmentation network. All different outputs were trained on the GPU, using batch
size 2, due to the small memory of a GPU and the high memory requirements of
this particular architecture of the neural network. All trained networks share some
variables, such as weight decay or a backbone of a neural network. Some of the
network variables are specific to the subjects being trained, such as distance to cen-
tre. Due to the fact that the registration algorithm used in this thesis depends on
a CAD model, only datasets containing this 3D model are presented. However, the
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segmentation itself does not require this type of data and works completely without
it. As part of the research, the network’s ability to distinguish between different
objects in different point clouds was also experimentally tested. Since the results
were insufficient, the focus was shifted to segmentation of a single object type.

4.2.1 IPA Gear shaft

First segmented object in this section is a gear shaft model from a IPA dataset,
visible in Figure 43 .

Fig. 43: IPA Gear shaft

Comparison of different results affected by a distance from centre
variable

Although this object is not ideal for segmentation training on this particular
neural network because of the centre score condition. Because the topology of the
object body is not nearly homogeneous in all directions, the centre score must be
set higher to avoid separating far edges from the object body. If the distance from
centre threshold is set very low or high in the prediction, the neural network will
produce false results. The final segmentation with both high (a.) and low maximum
(b.) distance from a centre 𝑅𝑚𝑎𝑥 can be seen in Figure 44 .
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Fig. 44: Variable distance from center : a.) Too small. b.) Too big

Comparison of different results affected by a center score threshold
variable

The centre point threshold is also very important. If set too low, many false
positive segments will be revealed. On the other hand, setting it too high could result
in a very under-clustered segmentation. The final results of both under-clustered
(b.) and over-clustered (a.) results, set by a variable ′𝑐𝑒𝑛𝑡𝑒𝑟_𝑠𝑜𝑐𝑟𝑒_𝑡ℎ′, can be
seen in Figure 45 below.

Fig. 45: Variable center score percentage : a.) Too small. b.) Too big
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Results of a NN trained on a IPA dataset

In Figure 46 below, you can see the scene with a randomly placed gear shaft
in the box. On the left (a.) is the input data for a neural network. The image shows
that the segmentation of this neural network is not based on colour at all. On the
right side (b.) of figure, the ground truth data are displayed.

Fig. 46: Gear shaft : a.) Input data. b.) Ground truth data

The training of this neural network was performed on a IPA dataset. The
prediction results of the trained neural network can be seen in Figure 47 below. Both
views show that the network can be trained on the IPA dataset. The segmentation
results seem to be excellent with very few errors.

Fig. 47: Prediction on IPA data : a.) Top view. b.) Side view.
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The trained network was also tested on FPCC data, which is not part of the
IPA dataset, but contains a trained gear shaft object. The segmentation results are
not so good, with many small and large errors, visible in Figure 48. The distribution
of the objects in space is not much similar to the ones, the neural network was
trained. This problem can be reduced by using a training environment similar to
the one, on which the neural network will make predictions. The error can also be
reduced by training on a larger dataset, which could increase the network’s ability
to generalise. On the other hand, training on a larger dataset increases the total
training time.

Fig. 48: Prediction on FPCC data : a.) Top view. b.) Side view.

Results of a NN trained on a generated dataset

The next three figures show the prediction on different datasets of a neural
network trained on an artificially generated dataset. The results of a neural network
on each dataset presented, will mostly vary from prediction to prediction due to the
stochastic part of the neural network. The next Figure 49, displays the ground truth
data (b.). As was mentioned in the previous paragraph, the left side (a.) of this
figure represents the input data to the network, and the right side (b.) represents
the true labelled data.
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Fig. 49: Gear shaft : a.) Input data. b.) Ground truth data

The prediction made by the trained network can be seen in Figure 50 below.
The image shows the prediction results of the segmentation on the proposed point
cloud. In general, the results can be described as more than good, even though
there are incorrectly defined segments. Despite larger or smaller errors, the neural
network is able to segment most objects regularly and reliably on a test data that
is part of the generated dataset.

Fig. 50: Segmentation on testing data : a.) Top view. b.) Side view.

The results of the neural network trained on generated data and performing
predictions on a FPCC dataset can be seen in Figure 51. Obviously, the results are
worse. However, the network mostly underclusters the input point cloud. Since this
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type of error predicts fewer segments than it should, it can mostly be solved in the
following section of the thesis.

Fig. 51: Segmentation on FPCC data : a.) Top view. b.) Side view.

4.2.2 IPA Ring screw

The proposed neural network was also trained on different datasets, one of which
was also an IPA dataset consisting only of ring screws, which model is on Figure
52. The ring screw is a different object from the gear shaft in terms of topology and
geometry. Unlike the gear shaft, the ring screw also contains a hole.

Fig. 52: IPA Ring screw

71



ŠOOŠ, Marek. 3D point cloud segmentation for industrial bin-picking. . .

Results of a NN trained on a IPA dataset

Analogous to the previous subsection, the neural network is first trained on
a IPA dataset and then on a generated dataset. Figure 53 shows a correctly split
point cloud on the right (b.) and an image of the input data on the left (a.).

Fig. 53: Ring Screw : a.) Input data. b.) Ground truth data

The prediction output of a segmentation network trained on IPA data is
shown in Figure 54 below. The segmentation results also look very promising on the
ring screw. Figure shows that the segmentation network can cope very well with
holes in the body of the object. Even though there are some small errors, it can be
assumed that this structure of the segmentation network can cope very well with
different object geometries.

Fig. 54: Segmentation on testing data : a.) Top view. b.) Side view.

As the author do not have an FPPC dataset containing a ring screw to test
the performance of the neural network, an artificially generated dataset was used for
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testing purposes. The next Figure 55, shows the result of a network segmentation
prediction.
The result contains several incorrect assignments, but as mentioned in the text
above, a larger dataset might reduce this error.

Fig. 55: Segmentation on generated data : a.) Top view. b.) Side view.

Results of a NN trained on a generated dataset

The next Figure 56, shows the ground truth data on the right (b.) and the
input data on the left (a.). The results of the segmentation network were also tested
in reverse, the neural network was trained on a custom artificial dataset and tested
on test data from this dataset as well as on public data from an IPA dataset.

Fig. 56: Ring Screw : a.) Input data. b.) Ground truth data
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The network’s predictions look stable and with very few errors in Figure 57.
This means that the network architecture has no problem learning the basics on
both acquired and generated images.

Fig. 57: Segmentation on testing data : a.) Top view. b.) Side view.

The results on the other data are a bit worse, in Figure 58, with bit more
errors. Anyway, the network still does its job to segment whole point cloud into
smaller segments.

Fig. 58: Segmentation on generated data : a.) Top view. b.) Side view.

The performance comparison between on different objects is shown in ??.
As expected, the segmentation results on the training data perform better than on
other datasets. This fact is underlined by the graphical results shown above.
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Object Trained on Prediction on Precision [%] Recall [%]

Gear Shaft

Generated data Testing data 75.2 75
Generated data Public FPCC 39.6 32.7

IPA data Testing data 68.5 68.5
IPA data Public FPCC 28.6 33.3

Ring Screw

Generated data Testing data 72.4 74.3
Generated data IPA data 39.8 35.1

IPA data Testing data 69.6 70
IPA data Generated data 50 45

Tab. 1: Segmentation results on different data

4.3 Registration

This section presents the results of the registration. The registration is performed
on the output of a segmentation neural network. For presentation purposes, a few
segmented clusters from a segmentation part are shown and a CAD model of an
object is registered to this segment. The main reason for this part of the algorithm
is to find the exact position and rotation of a CAD object in the segmented point
cloud. The accurate pose estimation of an entire object, and not just a visible
segmented body part, will provide complete information for a robotic gripper. In
the next subsections, the final registration for both the gear shaft and the ring screw
from an IPA dataset is presented. The registration is performed on three segmented
surfaces, as shown in the images for each object. Since this algorithm works better
when working with coordinate values greater than one, i.e. not normalised, the
resulting segments from the segmentation mesh are up-scaled. After performing the
registration part on a segment, the transformed model is downscaled.

4.3.1 Registration on : IPA Gear Shaft

Figure 59, shows the raw output of a segmentation mesh. The more highlighted
areas represent three segmented areas that will be aligned by a CAD model of a
gear shaft. The main task is to take a CAD model shown in Figure 43, which by
default which is in the centre of a coordinate system, and to align it to all three
segments shown.
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Fig. 59: Gear shaft Registration : a.) Highlighted segments. b.) Isolated segments

Registration of the first segment

The process of aligning the first segment is shown in Figure 60. The output
segment shows a clustering error because it contains two gear shafts instead of one.
As mentioned in the text above, the registration algorithm can actually solve this
underclustering problem. The algorithm chooses the best match to align the gear
shaft model with the segmented area, ignoring the outliers or the other gear shaft
objects.

Fig. 60: Gear shaft Registration : a.) Isolated view 1. b.) Isolated view 2. c.)
Highlighted in the point cloud.

Registration of the second segment

The second gear shaft object, representing the PPF registration, is located
at the top of the box. There are some minor imperfections in the registration.
Figure 61, shows the final registration from two different views and the view of the
alignment of the CAD model in the scene.
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Fig. 61: Gear shaft Registration : a.) Isolated view 1. b.) Isolated view 2. c.)
Highlighted in the point cloud.

Registration of the third segment

The third registration of a gear shaft shows very similar results to the first
two. The PPF algorithm in Figure 62, shows precise registration and very fine
alignment in both focused views as well as in the environment with other gear
shafts in the box.

Fig. 62: Gear shaft Registration : a.) Isolated view 1. b.) Isolated view 2. c.)
Highlighted in the point cloud.
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Final registration of all three segment

The final summary of all three registrations is displayed in Figure 63. On the
left side (a.) are highlighted all three segments, with final gear shaft alignment on
the right (b.).

Fig. 63: Gear shaft Registration : a.) Highlited segments. b.) Aligned models into
segments

4.3.2 Registration on : IPA Ring Screw

A similar registration is performed on the IPA ring screw object. Obviously, the fine
tuning can be performed on all the segmented areas of the segmentation network,
but the results within an object would be very similar. The point cloud on the left
side (a.) of Figure 64, shows the output of the neural network in one colour. The
highlighted areas represent all three segments selected for registration.

Fig. 64: Ring screw Registration : a.) Highlighted segments. b.) Isolated segments

78



Institute of Automation and Computer Science, FME BUT, 2023

Registration of the first segment

As can be seen in Figure 65, the PPF algorithm is not very dependent on
the topological and geometrical level of an object. Thanks to this fact, the final
alignment of a ring screw from both views is fine, with a small error in the leftmost
view. The right view shows the alignment with other ring screws.

Fig. 65: Ring screw Registration : a.) Isolated view 1. b.) Isolated view 2. c.)
Highlighted in the point cloud.

Registration of the second segment

The next Figure 66, displays the alignment on the second segment. The final
ring screw co-ordinates with its rotation in space provide the stable results required
for bin-picking.

Fig. 66: Ring screw Registration : a.) Isolated view 1. b.) Isolated view 2. c.)
Highlighted in the point cloud.
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Registration of the third segment

The final registration of the third ring screw on the third segments is exposed
in Figure 67 below. Very similar results can be evaluated from the third alignment
with a stable characteristic.

Fig. 67: Ring screw Registration : a.) Isolated view 1. b.) Isolated view 2. c.)
Highlighted in the point cloud.

Final registration of all three segment

The results of the PPF registration end with the final Figure 68. As in the
previous subsection, the left part of the image (a.) highlights the three selected
segments that have been aligned and the results are present in the form of text
and image above. The right side (b.) shows all three segments with their final
and correct registration, demonstrating the robustness and stability of a proposed
algorithm to work with different objects in different environments.

Fig. 68: Ring screw Registration : a.) Highlited segments. b.) Aligned models into
segments
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4.4 Complete process on acquired data

Since the aim of our thesis was to make this solution applicable in practice, the
presented solution method is tested on a dataset created with the Zivid One+ cam-
era. The complete dataset consists of 20 point cloud scenes, each containing seven
objects freely distributed in space. The tested object is a T-join pipe displayed in
Figure 69.

Fig. 69: T join CAD model

The captured scene can be seen on the left side (a.) of Figure 70. The right
side (b.) displays the scene after the most surface was filtered by a threshold.

Fig. 70: Captured 3D environment : a.) Actual output from the camera b.) Point
cloud after filtering the surface
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4.4.1 Data generation

The availability of the CAD model of a segmented T-join allowed the creation of
an artificial dataset. This allowed the segmentation network to adapt its internal
parameters needed for correct prediction, rather than just guessing regions from
previous training on other objects.

As in the previous experiments, the dataset generation went smoothly. Only
[1 : 10] objects were simulated to generate a proper dataset for this specific task
within a 15 × 15 cm area box.

The result scenes can be seen in Figure 71, and in Figure 72 below.

Fig. 71: Generating scene 1 : a.) 4 items. b.) 7 items. c.) 10 items.

Fig. 72: Generating scene 2 : a.) 3 items. b.) 6 items. c.) 10 items.

4.4.2 Segmentation

Before segmentation, the point cloud was cleaned of the plane on which the objects
were placed. The result can be seen in Figure 70 b.) and was achieved by keeping
only the points that were within a certain distance, threshold. The results of the
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segmentation on the acquired data look very good. Only small errors appear on
two of the seven segmented objects in Figure 73. Since the neural network has been
fully trained only on the generated data shown above, it can be said that a neural
network trained in this way can, in principle, used directly for practical applications
in industry. Since our dataset was created with units of meters, but the output from
the 3D camera is in millimeters, the created 3D image of the scene had to be scaled
down.

Fig. 73: Segmentation on captured point cloud : a.) Top view. b.) Side view.

4.4.3 Registration

Figure 74 below, shows all seven registrations for each part. Each of the T join
registrations has a similar characteristic. It can be seen that the registration results
appear to be stable on the recorded data. The only thing that was changed in the
algorithm was a threshold for the score recalculation part in the final phase of the
algorithm.
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Fig. 74: Model registration on segments : a.) Segment 1. b.) Segment 2. c.)
Segment 3. d.) Segment 4. e.) Segment 5. f.) Segment 6. g.) Segment 7.

Since the partial results on each presented object look very good, the final
registration is displayed in Figure 75, for each object also looks good. Based on
these facts, the results show stability and fine tuning in the registration process as
well as in the segmentation process. It should not be forgotten, that the registration
and segmentation were performed on the basis of a neural network trained purely
on an artificially generated dataset.

Fig. 75: Final registration on captured data
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5 Discussion

The introduction part of the thesis provides an overview of the technologies that
are currently available, and used to create and process 3D point clouds. The paper
aims at an analysis and principles of different algorithms that focus on segmentation
and registration of objects in the point cloud. The overview makes it possible to
identify strengths and weaknesses of the different approaches and to propose a new
approach that exploits this best of the available methods.

One of the main advantages of this research is a development of an algorithm
for generating a custom dataset. This dataset allows to generate specific scenes
that can be adapted to different practical applications. This includes, for example,
embedding the generated object, selecting the maximum number of objects in the
scene, the size of the generated scene, the maximum height objects, or adjusting the
orientation of objects in space.

This thesis has studied the detailed theoretical descriptions and implementa-
tions of specific stand-alone algorithms for segmentation and registration of objects
in a point cloud. The segmentation algorithm, which is based on deep learning,
represents a modern approach to solving this problem. The added registration algo-
rithm is based on geometric properties. Robustness of registration algorithm, allows
using the registration part without the need for segmentation.

The resulting system created by combining both the above-mentioned al-
gorithms, benefits from the advantages of both methods. The registration PPF
algorithm can efficiently eliminate most of the segmentation flaws that can happen
using a neural network. Further, due to a very fast FPCC segmentation based on
deep learning, the registration algorithm is able to process the results within seconds.

The third chapter of the thesis focuses on the presentation of the experimental
results that were obtained while testing each algorithm. The algorithms were tested
on data that was either generated as part of this research or obtained from publicly
available sources. It was shown how the different algorithms perform on different
types of objects. Obtained results vary depending on different settings of algorithms.
This part of the thesis thus provides a comprehensive view of the functionality and
flexibility of the designed algorithms.

The key areas for improvement presented solutions include a more efficient
implementation of the PPF registration algorithm, which could significantly improve
the overall efficiency of the system. Parallelization of this algorithm would likely
reduce computational time. Another possible area for improvement lies in data
generation, where current approaches to collision detection encounter limitations
when generating a large number of objects in a limited area. An extension that could
also be considered is the use of a registration algorithm for an automatic labelling
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of 3D objects in the point cloud. This possibility would allow offline datasets to be
generated from directly measured data and further enrich the training dataset.

The results of the conducted research showed that accurate segmentation
and registration of objects in the 3D point cloud can be achieved for industrial bin-
picking, which is a great benefit in the field of robotic vision and machine learning.
Despite the fact that there is a continuous space to improve, this work opens the
way to new possibilities and brings valuable insights for future research in this area.
The outputs of this thesis can be easily built in already used automatic lines and
industrial cameras and spare much finances for industrial companies.
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6 Conclusion

The aim of the thesis was to deal with 3D point cloud segmentation for industrial
picking of spatially disordered parts from a bin, which is the key problem in process
automation using robotic vision systems. The structure of the thesis consists of
three logically connected chapters, in which all aspects of this problem are discussed
from different points of views.

The first chapter focuses on theoretical foundations of computer, machine
and robotic vision, and how these areas support the segmentation and registration
of objects in a point cloud. This chapter elaborates on the knowledge of pick and
place and bin picking issues, and outlines the possibilities of reconstructing 2D and
3D scenes into a point cloud. In this section there are also analyzed principles of
algorithms aimed at segmentation and registration of objects in the point cloud.

The second chapter is devoted to the actual solution of point cloud segmen-
tation. In the beginning of the chapter the procedure of generating labeled objects
was presented in the form of a point cloud for neural network training segmenta-
tion. The selection and implementation of the machine learning based segmentation
algorithm is further described. The conclusion presents the selection and thorough
implementation of the registration algorithm that processes segments from the neu-
ral segmentation network based on geometric features.

The third chapter presents the experimental results using algorithms pre-
sented in the theoretical section and their analysis of different parts. Consequently,
these algorithms were applied to both generated datasets and publicly available
datasets. The functioning of the algorithms was presented on different objects with
various settings. The whole process from the generation of the custom training data,
through the segmentation of the self-collected data using a 3D camera, to the regis-
tration of the object’s CAD model in the 3D point cloud scene was closely presented
in this chapter.

The result of this thesis is the progressive 3D point cloud segmentation
method that has full potential to significantly increase the efficiency of bin-picking
by industrial robots. The generation of custom 3D datasets allows customization of
the initial training conditions as much as possible. Machine learning-based segmen-
tation provides a very fast and accurate processing of the input point cloud. The
complexity of the whole system is underlined by robust model registration, which
can very efficiently find transformation matrices for models in each segment. The
efficiency of the registration method is precisely achieved by using segmentation as
an additional step before model registration. This solution is so robust and reliable
so it can be used in many industrial automated lines without the necessity of using
expensive softwares or human operators.
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SYMBOLS AND ABBREVIATIONS
A.I. Artificial Intelligence

2D Two-Dimensional

3D Three-Dimensional

RGB Red Green Blue

RGB-D Red Green Blue-Depth

RANSAC Random Sample Consensus

CAD Computer-Aided Design

HT Hough Transform

PCM Principal Component Analysis

SVM Support Vector Machine

ICP Iterative Closest Point

RBF Radial Basis Function

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

CNN Convolutional Neural Network

1D One-Dimensional

cobots Collaborative Robots

CPU Central Processing Unit

GPU, Graphics Processing Unit

XYZ Coordinates x,y,z

XA XA Bin picking dataset

IPA Fraunhofer IPA Bin-Picking dataset

6D Six-Dimensional

FPCC Fast Point Cloud Classification
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OOP Object-Oriented Programming

DGCNN Dynamic Graph Convolutional Neural Network

MLP Multilayer Perceptron

PPF Point Pair Features

4D Four-Dimensional

NN Neural Network

etc. Et cetera

.stl standard tessellation language format

GMCNet Graph Matching Consensus Network

OMNet OMNet: Learning Overlapping Mask

d distance to the target

m meter

cm centimeter

c speed of light

s seconds

ms miliseconds

t time of flight

rad radian

Δ𝜑 phase difference

f frequency

Hz Hertz

𝑖 index 𝑖

.txt plain text file

(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) normalizated location coordinates

F Feature vector

[𝑥𝑖, 𝑦𝑖, 𝑧𝑖] Coordinates on index 𝑖
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𝛽 beta - distribution of center score

𝑝𝑖 point on index 𝑖

𝑐𝑖 corresponding center on index 𝑖

𝑑𝐹 (𝑖,𝑗) feature distance matrix

ASM attention score matrix

VDM valid distance matrix

𝑑𝑚𝑎𝑥 maximum distance from center

𝐷𝐹 feature distance matrix

𝐷𝑉 valid distance matrix

𝑆𝑐𝑒𝑛𝑡𝑒𝑟(𝑖) center score vector

^𝑆𝑐𝑒𝑛𝑡𝑒𝑟(𝑖) predicted center score

𝜅(𝑖,𝑗) loss based on point pair

𝜖1, 𝜖2 constants

𝐿𝐶𝑆 Center score loss

𝑤(𝑖,𝑗) weight matrix

𝑆𝐴(𝑖,𝑗) attention score matrix

𝑝1,2 point 1, 2

𝑚1, 𝑚2 model points 1, 2

𝑠1, 𝑠2 scene points 1, 2

𝑑𝑑𝑖𝑠𝑡 sampled distance

𝑑𝑎𝑛𝑔𝑙𝑒 sampled angle

𝑛𝑎𝑛𝑔𝑙𝑒 the number of times the circle is sampled

M Set of model points

S Set of scene points

𝐹𝑚 model features

𝐹𝑠 scene features
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𝑠𝑟 reference point

R𝑥(𝛼) Rotation by angle 𝛼

𝑇𝑠⇒𝑔 Translation reference to origin
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