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A B S T R A C T 
This thesis deals wi th 3D point cloud segmentation for industrial bin-picking, a key 

challenge in the field of industrial robotics. The aim of the thesis is to develop and 

deploy a highly effective algorithm for segmenting and registering 3D point clouds, 

thereby improving the accuracy, speed, and efficiency of bin-picking operations. 

The contribution of the thesis is the presentation of the researcher's solution 

to create artificially generated data needed for training. The thesis results in a sym­

biosis of advantages of a fast-segmentation algorithm based on machine learning, 

and a high quality, robust but slow algorithm based on geometric principles. Func­

tionality, reliability and quality of the developed algorithm were also experimentally 

verified on different types of objects and different datasets. 

Results of the work show that the proposed algorithm yields a fast, reliable, 

and comprehensive solution to the bin-picking problem. Customized data genera­

tion reduces the time and cost of applying such a system. In conjunction with a 

comprehensive problem solving system we are able to accurately and easily generate 

applications for diverse and specialized bin-picking tasks. 

Achieved results contribute to the development of point cloud segmentation 

methods and their applications in various industrial and scientific fields. B y putting 

the proposed system into practice we significantly contribute to performance and 

reliability of the proposed automatic line. 

A B S T R A K T 
Diplomová p r áca sa zaoberá segmentáciou 3D m r a č n a bodov pre priemyselné výbery 

zo zásobníkov, čo je kľúčová výzva v oblasti priemyselnej robotiky. Cieľom práce je 

navrhnúť a implementovať efektívny algoritmus na segmentáciu a registráciu 3D 

bodov mračien, a t ý m vylepšiť presnosť, rýchlosť a efektívnosť bin-picking operácií . 

P r ínosom diplomovej práce je prezentácia autorovho vlas tného riešenia vy­

tvá ran ia umelo generovaných dá t po t rebných na t rénovanie. Výsledkom práce je 

symbióza výhod rýchleho segmentáčného algoritmu založeného na strojovom učení, a 

kval i tného, robus tného ale pomalého regis t račného algoritmu založeného na geomet­

rickom princípe. Funkčnosť, spoľahlivosť a kvali tu vy tvoreného algoritmu boli veri-

fikované aj exper imentá lne na rôznych typoch objektov a rôznych datasetoch. 

Výsledky práce ukazujú, že n a v r h n u t ý algoritmus pr ináša rýchle, spoľahlivé, 

a komplexné riešenie prob lému bin-picking. Generovanie dá t na mieru znižuje čas a 

nák lady na aplikáciu t akého to systému. V spojení s komplexným sys témom riešenia 

problému, je možné jednoducho vytvárať riešenia pre rozmani té a špecializované 

úlohy bin-pickingu. 



Dosiahnutými výsledkami prispieva k rozvoju m e t ó d segmentácie bodových 

mračien a ich aplikácií v rôznych priemyselných a vedeckých oblastiach. Zavedením 

nav rhnu tého sys tému do praxe, výrazne prispeje k zvýšeniu výkonnost i a spoľahli­

vosti navrhovanej automatickej linky. 

K E Y W O R D S 
3D segmentation, 3D point cloud, deep learning, 3D registration, 3D dataset gener­

ation, bin-picking 
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1 Introduction 
Each consumer wants to buy their product at the lowest possible price. In order to 

keep the price low, products are often manufactured in large batches on automatic 

lines. The design process of an automatic line involves many design nodes. One of 

them, for example, is the way of filling the line wi th input blanks. This thesis deals 

wi th the automation of the bin-picking process. 

A key feature of the process is efficient sorting of objects based on their 

properties. Traditionally, this task has been performed manually, which in the 

long run was time-consuming and economically intensive wi th a high potential error 

rate. W i t h the development of 3D sensing capabilities there are opening up new 

opportunities for automating this process. 

In addressing the problem of automation of bin-picking method, this thesis 

focuses on research and analysis of existing segmentation algorithms, implemen­

tation of the solution, and application to a specific problem of bin-picking using 

industrial cameras. 

The theoretical foundations of 3D point cloud and computer and machine 

vision techniques relevant to this problem are also discussed in the theoretical part 

of the thesis. This section also offers an overview of the technological possibilities 

of 3D image acquisition and the analysis of current 3D point cloud segmentation 

methods. 

The next part of the thesis describes proposed solution in detail, including the 

selection of algorithm, the solution architecture, the implementation of the proposed 

solution, and the methods to address the challenges associated wi th this problem. 

The following part is devoted to the evaluation and presentation of results of the 

presented algorithms based on the experiments performed on both training data and 

real data. 

Finally, the thesis is devoted to the evaluation of achieved results, suggesting 

possibilities for further research and development in this area. 

Afterall, should the thesis contribute to the development of automated bin-

picking in industrial processes and provide useful insights for researchers and spe­

cialists in the field of computer vision and machine learning. The ultimate goal is 

to design a solution that wi l l increase the accuracy and reliability of identification, 

reduce cycle time, and save money relative to currently used solutions in automated 

lines. A n d also to eliminate human presence, and its associated disadvantages, such 

as high cost and higher error rate. 

15 
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2 Literature Review 

m 

2.1 Computer , Machine , and Robot V i s i o n 

Computer vision, a branch of computer science, is the development of techniques 

that enable computers to recognise and understand objects and people in images and 

video. A s a subset of artificial intelligence (AI), computer vision aims to replicate 

human capabilities by automating tasks related to visual perception and under­

standing, [40] . 

Machine vision and computer vision share the ability to perform tasks faster 

than human vision. However, there are important differences between the two con­

cepts. 

Computer vision, involves the capture and automation of image analysis. It is 

the broader field of computer understanding and interpreting visual data. Computer 

vision techniques can be applied to a wide range of theoretical and practical areas 

beyond manufacturing. Its applications span various industries and include tasks 

such as recognising objects, classifying images and understanding scenes. 

Machine vision, on the other hand, is primarily about adding vision capabili­

ties to existing technologies. It involves image processing techniques and operates on 

the basis of pre-defined rules and parameters. Machine vision systems are commonly 

used in manufacturing applications, particularly for tasks such as quality assurance. 

In summary, while computer vision encompasses a broader range of image 

analysis and interpretation in a variety of applications, machine vision is a subset of 

computer vision that focuses specifically on providing vision capabilities to support 

manufacturing processes, [41] . 

Robot vision is closely related to machine vision, while both are closely related 

to computer vision. In a sense of a family tree, displayed in Figure 1, computer vision 

could be seen as their parent. 

Robot vision encompasses techniques derived from all of the above. Whi le 

Robot Vis ion and Machine Vis ion are often used interchangeably, there are subtle 

differences between them. Machine vision applications, such as part inspection, do 

not necessarily involve robotics directly. 

Robot Vis ion is not just an engineering domain - it is a scientific discipline 

wi th its own specialised areas of research. Unlike pure computer vision research, 

robot vision requires the incorporation of robotic aspects into its techniques and 

algorithms. These aspects include kinematics, reference frame calibration, and the 

robot's ability to physically interact wi th the environment. 

In summary, Robot Vis ion draws on techniques from various fields and is 

not l imited to engineering. The use of visual feedback to control robot motion, as 

17 
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exemplified by visual servoing, is an example of a technique that is unique to Robot 

Vis ion rather than Computer Vis ion, [21], [16] . 

2.2 Overview of robot picking 

In a modern automation processes, plenty of industrial applications require robot 

arm path planning using a vision system. 

Robot picking is an application used in manufacturing industry, which parts 

to pick from a certain box, and pick them automatically. It's a well combined 

system, consisting of a robotic arm and a well designed and programmed machine 

vision system. 

It mainly brings advantages to the manufacturing companies, who can use 

this system for the infeed of manufactured parts to the assembly line. The vision 

system analyses the data acquired from camera. The system then decides which 

part is the most suitable one to be picked first and defines its position. The results 

are sent to the P L C , which the instructs the robotic arm to pick a part from the 

box. The vision system should not only be able to find a part, but also calculate 

the correct position. This is essential, when the parts are chaotically arranged in 

the input box, [47], [51] . 

We divide the processes according to whether they the position and orienta­

tions are known or not into two groups: 

• Pick and place 

• Bin-picking 

F ig . 1: Vis ion Family Tree, [21] 
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2.2.1 Pick and place 

A pick and place robot is a type of industrial robot used to handle and place prod­

ucts on a production line. Typical ly used in high volume production environments 

to quickly and precisely place items onto conveyors or other production devices. 

Compared to industrial bin-picking tasks, pick and place operations are generally 

simpler. Unlike bin-picking, pick and place operations typically involve objects in a 

2D environment rather than a more complex 3D environment. Pick and place robots 

are automation solutions that pick up and accurately place objects onto surfaces in 

predetermined positions and orientations. The robot follows a pre-defined routine, 

which is staged in advance, making it less challenging to execute. The parts involved 

are not randomly oriented and the process is highly repeatable. From picking up the 

first part to placing the first and subsequent parts, the robot's operations remain 

consistent and do not deviate. A representation for chaotically arranged items and 

objects in a predefined grid is shown in Figure 2 below, [24], [15], [49] . 

a.) b.) 

F ig . 2: a.) Items chaotically arranged, b.) Objects in a predefined grid., [51] 

2.2.2 Bin-picking 

Bin-picking, displayed in Figure 3, is an application that uses a combination of 

robotics and computer vision technology to extract parts from a disorganised con­

tainer. Using a robotic arm controlled by a computer vision system, this technology 

enables the automated extraction of parts. The computer vision system analyses 

the scene, identifies part locations and determines the optimal part for extraction at 

each iteration. Once the positions of the parts have been determined in a 3D space, 

the robotic arm is able to pick them up efficiently, regardless of their orientation, 

[47]. 

In general, the bin-picking process requires all these steps : 

• Data acquisition 

• Object detection 

• Est imating the position and orientation in space 
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• Collision-free path-planing 

• Object Picking 

• Placing the object at the right place in the right orientation 

During all these processes, most of the tasks should be done error-free to 

provide a solid solution. Considering the data acquisition, whole slew of methods or 

principles can be applied to get 3D image of the space. Nowadays, 3D laser scanners, 

laser triangulation using a single camera wi th a 2D laser or stereo vision are used 

to capture a 3D image of the environment. 

These methods have to deal wi th numbers of issues such as finding a suit­

able position for the end-effector, finding the right gripping position or orientation 

etc. Another key element in industrial bin-picking is the cycle time for a specific 

application. 

A l l of these tasks must be performed without damaging the object, box or 

any other obstacles. They are carried out completely autonomously and based only 

on the system's decisions. 

Bin-picking also opens the possibilities to pick heterogeneous objects. These 

objects require the design of special grippers or end effectors. Therefore, bin-picking 

should be able to reliably recognise any object, calculate its orientation, pick it and 

place it in the box regardless of its material or geometry. 

Whi le gripper design, robot path programming to avoid collisions and robot 

singularity avoidance are essential elements of bin-picking, the vision system is 

widely recognised as the most critical factor in meeting this challenge. Industries 

require robust and reliable systems to meet their needs. Al though there are existing 

bin-picking applications in operation, continuous research is dedicated to creating 

universal systems that are free from failure, [47], [51] . 
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2.3 Scene reconstruction 

Scene reconstruction is a process of capturing one or more pictures in order to get 

the information about an environment. These images are merged according to the 

application in such a way that they create a 3D image of the environment of the 

photographed surroundings. 

2.3.1 2D Image Camera 

The first solution that comes on mind for a picking application, uses some classical 

2D R G B cameras, either in single or stereo configuration, displayed in Figure 4. 

These solutions are using algorithms to extract features from the acquired images in 

order to recognise objects and estimate their location and rotation in the coordinate 

space. 

Algorithms for single cameras mostly rely on the object's characteristic such as color 

or overall structure. Due to the fact, that numerous industrial objects often contain 

some circular shapes, plenty of algorithms are focussing on detection of ellipses. A 

single camera, if calibrated and its sensor size and lens parameters are known, can 

determine the position and orientation of an object. However, this type of machine 

vision configuration cannot reliably estimate rotation and translation around each 

axis. For this reason, single camera systems are primarily used in pick and place 

applications, [17] . 

F ig . 4: Bin-picking with 2D camera, [52] 
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The method described above depends on the knowledge of a pickable object 

before designing the algorithm. Other algorithms are based on edge detection to 

obtain an image description. Al though these methods can produce results wi th 

good accuracy, they do not provide sufficient information about the whole stage to 

be used for collision detection of a robotic arm. This is one of the reasons why 

research today focuses on registering objects in a point cloud, [17] . 

2.3.2 3D Camera 

Point clouds can be considered the most basic form of 3D models. They consist of 

individual points that are plotted in three-dimensional space and contain various 

measurements. These measurements typically include the coordinates of the point 

along the X , Y and Z axes. In addition, point clouds can contain other data such as 

colour information, stored in R G B format, and luminance values, which determine 

the brightness of each point, [3], [17] . 

The 3D point cloud of an environment can be acquired by several different 

sensors and techniques. This section wi l l briefly review the most common ways to 

collect 3D data of a scanned environment for reconstruction purposes. Common 

point cloud reconstructing methods are : 

• 3D Laser Scanning 

• Photogrammetry 

• Videogrammetry 

• R G B - D camera 

• Stereo camera 

• Structured Light 

3D Laser Scanning 

Light Detection A n d Ranging (Lidar), uses a laser scanner displayed in F ig ­

ure 5, to measure the distance to a target by emitting laser beams and detecting the 

reflected signals from the target. There are two main techniques for laser distance 

measurement: time-of-flight and phase-shift. The time-of-flight technique uses a 

laser beam and measures the time it takes to travel to the object and reflect back 

to the detector. From the known speed of light, the distance can be calculated, 

equation 1, [30], [17], [18], [23] . 
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d = c*- (1) 
2 v ; 

Where 

d [m] distance to the target 

c [™] speed of light 

t [s] time of flight 

O n the other hand, the technique called phase-shift, emits a continuous am­

plitude wave and measures the phase shift between the emitted and reflected signals. 

The resulting distance is calculated on the basis of the phase-shift and the wave­

length of the emitted wave, equation 2. The accuracy of the phase-shift techniques 

is greater than the speed scanners measurement using the time-of-flight principles. 

O n the other hand,time-of-flight scanners are the only applicable option for scanning 

longer distances, [30], [17], [18], [23] . 

Where 

c x A 0 

d [m] distance to the target 

c [—] speed of light 

A 0 [rad] phase difference 

/ [Hz] frequency 

(2) 

F ig . 5: 3D laser scanning [50] 

Photogrammetry 

Photogrammetry is a field that analyses photographic images to extract de­

cisive information about physical objects. The principle of creating a point cloud, 
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shown in Figure 6, involves capturing a group of overlapping images of an object 

from various angles, [30], [29] . 

• 
3 D - M o d e l \ / 

Fig . 6: Principles of photogrammetry, videogrammetry, [27] 

Videogrammetry 

Videogrammetry is a technique that enables the reconstruction of a point cloud by 

uti l izing sequential video frames to progressively bui ld up information and improve 

the accuracy of the final point cloud. This is achieved by tracking the features of 

interest between successive frames of the video, displayed in Figure 7 below, [30] 

[29]. 

F ig . 7: Appl icat ion of photogrammetry, [14] 
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R G B - D Camera 

The R G B - D camera, visible in Figure 8, is made up of regular R G B camera 

and a depth sensor. The R G B camera captures classic images in red, green and 

blue color. The depth sensor provides depth information for each pixel. The final 

point cloud is composed right after the capture from both image data wi th R G B 

color information and depth data, which include X Y Z coordinates. One of the most 

available R G B - D cameras, often used in research studies is the Microsoft Kinect , 

[30], [18] . 

Tri a ng u I ati ng De pt h 

Fig . 8: Asus R G B - D Camera, [26] 

Stereo Camera 

A stereo camera, exposed in Figure 9, is a system consisting of two (or more) 

lenses and image sensors. B y uti l izing this camera configuration, it becomes possi­

ble to reconstruct a 3D point cloud from two or more images. This is achieved by 

analyzing the relative position and orientation of the lenses involved in capturing 

the images. The final point cloud is the result of image alignment and subsequent 
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determination of disparities for each pixel. The system uses a fully automated pre-

calibration process, which extracts a 3D point cloud from the acquired images, [30]. 

F ig . 9: Stereo camera, [44] 

Structured light 

Structured light is a commonly used technique to estimate a 3D representa­

tion of a scene. It is similar to a stereo camera, but instead of two cameras, it uses 

one camera in conjunction wi th a Digi ta l Light Processing projector. 

Whi le stereo cameras might struggle when dealing with objects lacking tex­

ture, digital light processing projector solves the problem by projecting a known 

patter onto the surface of the scene, effectively providing texture even in areas 

where there is no texture. 

In order to compute a depth map, the illuminated point that corresponds 

to a pixel of the projector in the captured image is determined. F inding the cor­

respondence along the edges of the projected patterns is relatively straightforward, 

so patterns wi th many edges are commonly used. Where projector and camera are 

not rectified, random dots are typically used as projected patterns. If the system is 

rectified, vertical binary lines are often used. The captured image is then subjected 

to threshold to distinguish between the illuminated and unilluminated parts of the 

scene, followed by matching the illuminated parts to the projected pattern. 

However, the flashing nature of the projected pattern can be irri tating to hu­

mans, which is why this type of sensor is often used in closed environments. Figure 

10, represents the Keyence 3D solution based on structured light, [17] . 
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Fig . 10: Keyence 3D bin-picking camera, [43] 

2.4 Computer V i s i o n software 

2.4.1 Segmentation techniques 

Data segmentation is a process, which assigns the same labels to points that belong 

to the same region. Additionally, points with similar features wi thin a continuous 

region are grouped together to generate a segment. The process of segmentation can 

be seen in Figure 11, each object is marked wi th the corresponding color. Hundreds 

of computational techniques and principles for point cloud segmentation have been 

proposed over the last few decades. The well-known segmentation methods could 

be categorised according to their main segmentation mechanisms. Six of the most 

common categories wi l l be introduced here, which are categorized based on their 

main segmentation mechanisms, along wi th their main advantages and disadvan­

tages, [30], [12] . 
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b.) 
Fig . 11: a.) Image before segmentation, b.) Image after segmentation., [5] 

• Clustering-based 

• Edge-based 

• Region-based 

• Graph-based 

• Model Fitting-based 

• Machine Learning-based 

Clustering-based segmentation 

This segmentation method uses clustering algorithms, that rely on specific 

geometric features of the point cloud. The features can be positions, surface normals, 

reflectance, etc. One commonly used clustering technique is the K-means algorithm, 

which groups point cloud points by minimising the sum of squared distances between 

the point and the corresponding cluster centroid. The K-means algorithm identifies 

'k' centroids and then assigns each data point to the nearest cluster, keeping the 

centroids as compact as possible. The term 'means', refers to the process of averaging 

the data to determine the centroid location. The operation of the algorithm is shown 

in simplicity in Figure 12. 

A number of studies have reported satisfactory segmentation results using k-

means clustering. Moreover, the algorithm is simple to implement and understand. 

However, clustering-based methods, including the K-means algorithm, have some 

limitations. They can be sensitive to noise in the data and may be influenced 
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by how the neighborhood is defined. These factors can impact the accuracy and 

reliability of the segmentation results obtained from these methods, [30], [6] . 

Before K-Means I I After K-Means 

a.) b.) 

Fig . 12: a.) Input points, b.) Clustered points after K-means., [46] 

Edge-based segmentation 

Segmentation based on edges detects the boundaries between regions guided 

by specific rules based on mathematical properties, such as normals, displayed in 

Figure 13, gradients, higher order gradients and curvatures. Edge-based methods 

can identify edges using different approaches, depending on the technique. The 

edge-based methods can, for example, extract close contours from a binary map 

for segmentation, identify edges and then immediately group points wi thin their 

boundaries, or, based on gradient information, fit a 3D lines to a set of points and 

identify changes in the unit normal vector on the surface. These are some of the 

principles that are nowadays used in edge-based segmentation. 

Although edge-based methods are classified as fast segmentation techniques, they 

may lack accuracy and are more sensitive to noise and variations in point cloud 

density compared to other methods, [30] . 

F ig . 13: Edge-based segmentation based on normals, [45] 
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Region-based segmentation 

The basic idea of region-based segmentation is to select one or a few seed 

points and gradually expand the region by including neighbouring points based 

on certain criteria. The method of region growing is exposed in Figure 14. The 

algorithm typically performs by growing a region around identified point. The main 

characteristics for selecting the seed can vary. Nowadays, properties like geometric 

criteria or color features are used. Algori thms such as k-nearest neighbours, grow 

the region based on estimation of normal vector for each point. In the research 

papers, some approaches can be found that use normal and curvature constraints 

to obtain smooth areas, or even two stage rough and detailed segmentation. Two 

stage segmentation init ial ly detects the main objects based on the normal vectors 

and afterwards increases the obtained amount of information by a subsequent finer 

segmentation. This structure of segmentation is called bottom-up. 

There are also methods called top-down, which in contrast to previously 

mentioned bottom-up approach, do not use seeds to grow the regions. The top-down 

method works wi th the points the opposite way, the whole point cloud is taken as 

a single region in the beginning and is iteratively divided into smaller groups wi th 

similar characteristics called regions. 

Region-based segmentation is generally more accurate than edge-based meth­

ods, but may be more sensitive for over or under segmentation and might have a 

problem to precisely select the boundaries. Nevertheless, this approach is also more 

robust to noise, due to global information, [30] . 

F ig . 14: Region growing segmentation, [25] 
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Graph-based segmentation 

Point cloud segmentation using graph-based methods requires to work wi th 

point as a graph. Each vertex represents a point in the cloud, whereas the edges 

represent connected points in their neighbourhood, displayed in Figure 15. Some 

algorithms based on this methodology, bui ld a minimum spanning tree from the 

graph. The others construct a 3D graph using k-nearest neighbours and together 

wi th penalty function, smooth the segmentation. 

In general, these methods excel at segmenting complex point cloud data wi th 

variations in point cloud density or noise. O n the other hand, they lack real-time 

processing and often require off-line training or some special sensor and camera sys­

tem, [30], [8] . 

Foreground 
(source) 

Fig . 15: Graph based segmentation, [25] 

Model Fitting-based segmentation 

The concept of model fitting segmentation is based on the experience, that 

the majority of man-made objects can be decomposed into simple geometric shapes 

like spheres, planes, cylinders and other primitives. These basic shapes are then 

fitted to the point cloud, similar to Figure 16. A l l the points, sharing the same 

mathematical objects, are then labelled in the same group. The most common and 

known approaches in this category are Hough transformation (HT) and Random 

Sample Consensus ( R A N S A C ) algorithms. 

The 3D Hough transformation identifies planes and other geometrical ob­

jects directly. However, this algorithm might be often considered as a slow and 
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sensitive approach, especially when fitting more parameter-based objects due to its 

high dimensional computations. 

The Ransac algorithm, on the other hand, is implemented chiefly for the 

robust fitting of parametric models and low sensitivity to noise. Ransac is also 

well known for its ability to avoid selecting outliers. Ransac produces numerous 

hypotheses of primitives shapes originating from a random subset of sample points. 

Methods derived from Ransac are able to automatically detect basic primitives in 

unorganised point clouds and can even locally fit basic shapes like cones, cylinders, 

planes, etc. 

Model fitting segmentation methods are based on mathematical principles, 

which increases their robustness to noise and outliers. Ransac is also useful for 

processing large amounts of point cloud data. The Ransac algorithm in particular 

produces good results in a reasonable time. However, both can suffer from accuracy 

issues and fitting problems, [30] . 

F ig . 16: a.) Model before fitting, b.) Model after correct fitting., [7] 

2.4.2 Object recognition techniques 

In order to create detailed 3D models of manufacturing parts from point cloud, 

object recognition is necessary for assigning labels to data segments or individual 

points. Object recognition can be defined as the recognition of objects in segmented 

instances. Object recognition methods can be categorised as data-driven or model-

driven. 

Whereas data-driven approaches use information such as shape, material or 

features, model-driven methods focus on predefined structure between objects. Some 

researches may combine these two methods or are use completely new approaches. 
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The next subsection summarises methods used for object recognition using 

point clouds. We can categorise these techniques into three groups listed below. 

Each group is then briefly described in its paragraph below, [30] . 

• Geometric shape descriptor 

• Hard-coded knowledge based recognition 

• Supervised learning based recognition 

• C A D model scan recognition 

Geometric shape descriptor 

Recognition of object instances usually uses geometric shape descriptors. 

These descriptors can describe manufactured object based on geometric features. 

The main steps in geometric shape descriptors are off-line library generation, on­

line search in point cloud and a final verification. 

The off-line library generation involves calculating all the geometric shape 

descriptors based on the C A D or B I M model and storing these information in the 

'library'. For recognition of object instances are mostly used local or semi-local 

descriptors and global descriptors for recognition of object classes, thanks to their 

capability of handling more shaped variations. For example, a local geometric fea­

ture based on a point pairs, which can find pairs of points wi th a constant distance 

and calculate local feature based on normal vectors of these points. 

After storing the library, on-line search is performed on a point cloud to find 

the target object by comparing the shape descriptors from the library wi th the ones 

calculated on the presented point cloud. Points wi th similar shape descriptors are 

then identified, based on some threshold value. 

The verification process aligns to every possible matching point on a C A D 

point cloud model, to see if they match well. The alignment often requires a coarse 

registration Pr incipal Component Analysis ( P C M ) and a finer registration similar 

to Iterative Closest Point (ICP) algorithm. A well aligned match, indicates the true 

location of the object in the point cloud data, [30] . 

Hard-coded knowledge 

Common approach to identify components which have distinct and varying 

geometric features is a segmentation of a point cloud data into some meaningful 

segments and categorisation these segments into object classes based on a pre­

defined knowledge. Some methods use region growing algorithms with smoothing 
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constraints and label them into specific category based on established knowledge. 

The know-how is usually built on observations, that the adjacent object edges are 

perpendicular to each other, or that upper plane of the object is often horizontal 

and the side edges are vertical. 

The pre-defined knowledge can be classified into four main categories, such 

as: size, position, orientation and the topology of an object. Size is related to the 

dimensions of the part, so that the area of the object is within a certain range. 

Position relates to relative location of an element to another known element. Or i ­

entation cares about the main direction of a normal vector of an element. Lastly, 

topology is related to the topological relationship between the found components. 

Despite the hard-coded based methodologies might seem efficient, even these 

approaches have limitations in recognition of irregular building components or when 

trying to extend this method to more complex object classes with more complicated 

geometries, [30] . 

Machine learning 

Recognition of objects in points can be done also by using the supervised 

learning algorithms. These methods involves training the classifier, that can seg­

regate point cloud into object classes. The two approaches to machine learning 

object recognition are point-based classification and segment-based classification. 

Point-based classification covers classifying each point individually into a class us­

ing the local features. Whereas segment-based classification involves dividing the 

point cloud into homogeneous segments using data segmentation algorithms and 

classifies each segment into a class using feature of each segment afterwards. 

Many well known approaches are grounded on Support vector machines 

( S V M ) algorithm. For example S V M can be used as a final classifier of a pre­

viously segmented point cloud corresponding to different 3D C A D models. Some 

studies also rely on classifying point cloud using machine learning algorithms and a 

novel descriptors consisting of a few corresponding geometric features "to train the 

model", [30] . 

C A D / B I M model scan 

The above mentioned methods for object recognition do not specifically re­

quire the 3D C A D , B I M model of the whole structure. If the the point consists 

of only one object to be recognised, we can use much simple recognition approach 

known as BIM-vs-Scan. The approach involves matching the designed C A D model 

wi th the point cloud data. 
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The mentioned principle consist of two steps. The point cloud data should 

be aligned wi th the C A D model, which is achieved through some manual alignment 

based on few parts of point or by a two step registration process containing coarse 

and fine I C P registration. 

A s for the second part, every point or data segment is matched to an element in the 

C A D model based on the geometric and semantic features of point in each segment, 

2.5 Neura l Network 

2.5.1 General Neural Networks 

Inspired by the way the brain processes information, neural networks mimic the 

basic operations of the human brain. They are being used for a range of real-time 

tasks, because of their ability to perform fast computations and quick responses. 

Basic neuron is diplayed in Figure 17. 

Various components of an artificial neural network model are inspired by the 

biological nervous system. The network usually consists of a large number of inter­

connected processing elements, also known as nodes. These elements are connected 

to other nodes by connection links. The connection links incorporate weights that 

store information about the training. These weights are updated at each iteration. 

The neural network is trained, when all training data has been input. Such trained 

neural network with its architecture is used to solve specific problems within its 

definition. General artificial neural networks are used to solve a variety of problems 

including classification, pattern matching, data clustering or segmentation, [28] . 

activation ( £ (ws * x,) + bias ) 

A single neuron shov/n with Xj inputs with their respective weights W, and a bias term and applied activation function 

Fig . 17: Basic neuron, [28] 
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Such artificial neural networks can learn how to solve problems very efficiently 

and can often adapt very well. Neural networks usually excel in their ability to learn 

how to solve a particular problem, in the speed at which they solve it, and also in 

their accuracy, [28] . 

2.5.2 Working principles of Neural Networks 

A neuron can be thought of as a linear model, either in single or multiple architec­

ture, coupled wi th an activation function. The neuron in layer [i] takes as an inputs 

the outputs of all the neurons [i — 1] in the previous layer. The neuron calculates 

the weighted sum, adds bias and then passes through an activation function. For­

ward propagation uses a fully connected architecture, which means, that the neuron 

in layer [i] is connected to a l l outputs from previous layer [i — 1] and equivalently 

connected to all neurons to the next layer [i + 1] where the output from neuron in 

layer [i] stands as an input to neuron in layer [i + 1]. The principle is also visible in 

Figure 18. 

Once the prediction is compared to an actual output, the loss is usually min­

imised by back-propagation method. This principle optimises the weights in order 

to minimise the final loss, [28], [20] . 

Summation 
Inputs Weights a n c j ß j a £ Activation Output 

Fig . 18: Working principles of a neuron, [20] 

2.5.3 Types of learning schemes 

The fascinating aspect of neural networks is mainly their ability to learn from a 

structured data and produce output based on that learning. Neural networks can 

be divided into three categories based on the learning process. 

• Supervised Learning 
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• Unsupervised Learning 

• Reinforcement Learning 

Supervised Learning 

Supervised learning, visible in Figure 19, is a type of learning where a teacher 

or supervisor is involved in the training process. Input training pairs are provided, 

each pair being an input and a target output. The output of the model is compared 

to the desired output and an error is calculated. This error is fed back into the net­

work to adjust the weights unti l the performance of the model matches the desired 

performance. This involves the environment feeding back to the model. In essence, 

supervised learning is similar to learning wi th a teacher, [20], [28] . 

Labeled Data 

w A 
• A A 

Lables 

O A n -
Hexagon / \ Square 

Triangle 

Model Training 

Prediction 

d a 
Test Data 

uare • s « u 
A Trlangl 

Fig . 19: Visualization of Supervised Learning, 

Unsupervised Learning 

Unsupervised learning, shown in Figure 20, has no supervisor or teacher, un­

like supervised learning. This type of learning has no feedback from environment 

and the model learns by itself. During the training phase, the inputs are grouped 

into classes based on their similarity. Each class contains patterns that tend to 

resemble each other. When a new pattern is input, the model is able to predict 

which class it belongs to based on its similarity to the other patterns. If there is no 

existing class for the pattern, a new class wi l l be created, [20], [28] . 

37 



§00$ , Marek. 3D point cloud segmentation for industrial bin-picking. 
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Fig . 20: Visualization of Unsupervised Learning, [54] 

Reinforcement Learning 

Reinforcement learning, displayed in Figure 21, combines aspects of both su­

pervised and unsupervised learning. It can be imagined as learning wi th criticism. 

Instead of exact feedback from the environment, the feedback is in the form of a 

critique of how close the solution is to being correct. The model learns on its own, 

based on this feedback. Reinforcement learning is similar to supervised learning 

in that, it receives feedback from the environment, but it differs from supervised 

learning in that, it does not receive the desired output information. Instead, the 

feedback is received in the form of criticism, [20], [28]. 

Reinforcement Learning in ML 

Fig . 21: Visualizat ion of Reinforcement Learning, [28] 

2.5.4 Types of Neural Networks 

Neural Networks can be classified based on mathematical foundation and perfor­

mance. 
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Feed-forward Neural Network 

Feed-forward neural network, shown in Figure 22, so called because the data 

moves in one direction. The input data enters at an input and leaves at an output. 

There is no back-propagation of a signal in this type of layer. Back-propagation 

is only used as an algorithm to calculate the final loss function using the gradient 

method. Feed forward networks can also contain hidden layers and have a fixed 

length specified by the programmer, [20], [28] . 

Radial Basis Function Network 

R B F networks, displayed in Figure 23, are a combination of input, hidden 

and output layers. B y measuring the distance from a central point and interpolat­

ing, R B F networks categorises data. Interpolation resizes images and classification 

is done by estimating input data, wi th each neuron holding data. R B F networks 

group similar data points by searching the input area. Hidden layer outputs are 

summed and weighted to form a network of outputs, that are sent to the output 

layer, [20], [28] . 
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Recurrent Neural Networks 

The disadvantage of feed-forward network is, that it cannot remember data 

in past inputs. This is where R N N ' s come in help to solve this. 

R N N is a network, visible in Figure 24, that does a good job of modelling sequen­

tial data well. Sequential data means data that follows a particular order in that 

a thing follows another. In an R N N , the output of the previous step can be used 

as the input of the current step, therefore the R N N is a feedback neural network. 

B y storing the outputs, a better guesses can be made. In R N N , the data is passed 

through a loop, so each node remembers the data from the previous step. R N N s 

have a memory that helps the network to remember what has happened before in 

the data sequence. When performing predictions, neurons act as a memory cells. 

Most known type of R N N are Long short term memory networks ( L S T M ) , [20], [28] . 

Recurrent network 

hidden layers: "deEp" if > 1 

Fig . 24: Recurrent neural network, [20] 
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Convolutional Neural Networks 

m 

C N N architectures are usually used for image recognition, consisting of 3 

stages of neuron arrangement. 

The first stage is the convolutional layer, where neurons only process information 

from a particular segment. This is usually done by batching the input features. 

Followed by a pooling stage, in which the dimensions of the features are reduced 

while the essential data is retained. 

C N N s move on the thi rd stage, the fully connected neural network, where the class 

of the image is evaluated to determine the final probabilities. The real-life applica­

tion contains a combination of both, convolutional layers and neurons, [20], [28] . 

2.5.5 3D Convolutional Neural Network 

From a mathematical point of view, convolution is an integrative operation that 

measures the amount of overlap of one function on another while is shifted. Convo­

lution mixes two functions in order to preserve the information. 

In in the field of neural networks, convolutions are filters being used to extract fea­

tures from an input data. In essence, convolution involves usage of a filter wi th 

adaptive weight matrices that traverses the input and computes the weighted sum 

as an output. This weighted sum is referred as feature space and is the input for 

the next layers, [2], [9] . 

I D Convolution 

I D convolutions, shown in Figure 25, are the simplest convolutions, usually 

used for sequence data. However, they have also several other objectives. One-

dimensional convolutions help to extract I D sub-sequences from the input sequences 

and to identify local patterns wi thin the convolution window. The resulting features 

are obtained by applying a I D convolution filter to sequence. I D convolutions are 

commonly used in natural language processing to represent sentences in a sequence 

of words, [2] . 
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F ig . 25: Visualizat ion of I D convolution, [2] 

2D Convolution 

When dealing with image datasets, A . I . based algorithms mainly use 2D 

convolutional filters. The fundamental concept behind 2D convolution is that the 

convolutional filter moves in two directions X and Y to compute low-dimensional 

features from image data. 2D convolution is ini t ial ly defined as the element-wise 

multiplication between the input and various filters. A 2D max-pool layer ( (2x2) 

filter) involves selecting the largest element from a small (2x2) square defined wi thin 

the input data. 2D convolution principle is visible in Figure 26. The output of this 

operation is a 2D matrix wi th a reduced dimension, [2], [9] . 
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3D Convolution 

3D convolution, displayed in Figure 27, analytically uses a 3D filter to pro­

cess the dataset, wi th the filter moving in three directions X, Y, Z to compute low 

level feature representations. The same element-wise multiplication is performed 

on the multiple pairs of 2D matrices in the input and filters. In a 3D max-pool 

layer there is a (2x2x2) kernel, where the largest element is selected from a (2x2x2) 

cube corresponding to the bounded space within the zone of the input data. The 

output shape of this operation is a 3D volume space, such as cube. Al though they 

are designed for 3D space input, they can be also used for 2D space input, such as 

images. Due to the size of the filters used and the size of the input data itself, the 

number of operations increases in 3D C N N layers, including both convolution and 

max-pool layers. This increase in the number of operations is more significant as 

observed in the 2D C N N layers, [2], [9] . 

F ig . 27: Visualizat ion of 3D convolution, [2] 

2.6 Overview of used technology 

In this section, we wi l l provide an overview of the technologies used in robotic vision, 

specifically the Ziv id 3D camera, Python programming language, and the Open3D 

and TensorFlow libraries. 

2.6.1 3D Zivid C a m 

Ziv id is a Norwegian technological company headquartered in Oslo, Norway which 

specializes in machine vision cameras. The group produces 3D color cameras and 

associated vision software used in numerous industrial automation systems, such as 

industrial robot cells or collaborative robot cells (cobots). 

43 



D §00$ , Marek. 3D point cloud segmentation for industrial bin-picking... 

The hardware field of the company specialises on products such as Ziv id Two 

and Ziv id One+ industrial colour cameras. 

Ziv id One+ was launched as an upgraded version of Z iv id One in November 

2018 at V I S I O N 2018 in Stuttgart, Germany. The One+ product includes three 3D 

colour cameras, which could work in distance from 3 to 160 cm depending on the 

version. 

Ziv id One+ camera [56], is primarily used in industrial automation and 

robotic applications such as pick and place, bin-picking and assembly tasks. Due to 

its high resolution, high speed, and colour accuracy, this camera works well in a wide 

range of applications. The camera is also compatible with various robotic platforms 

and can be easily integrated into existing systems if the customised software is used. 

In this thesis a Z iv id One+ Small camera was used, displayed in Figure 28. 

This camera has an optimum working distance of 350 to 700 mm. The camera's 

field of view varies from 300 to 1000 mm, providing flexibility in capturing objects of 

different sizes. One of the features of the Ziv id One+ Small camera is its noteworthy 

spot accuracy, which ranges from 25 to 500 um. The camera produces a final image 

wi th a resolution of 2.3 M P x (1920 x 1200 points) wi th native 3D colour. In addition, 

the camera's point cloud output includes 3D coordinates ( X Y Z ) , colour information 

( R G B ) and contrast for each pixel. In terms of performance, the Z iv id One+ Small 

camera boasts an capture time, wi th a single frame taken in just 80ms at l /154s 

exposure. This fast capture time allows fast moving objects to be captured or quick 

inspections to be carried out without compromising image quality or accuracy, [55], 

2 -3 

Fig . 28: Z iv id One+ camera, [48] 
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2.6.2 Python 

Python is a high-level, interpreted, object-oriented programming language with dy­

namic semantics. Its buil t- in high-level data structures and dynamic features, which 

make it attractive for rapid application development and as a scripting language for 

connecting existing components. Python supports modules and packages, which en­

courages a modular programming approach and code reuse. The Py thon interpreter 

and an extensive standard library are freely available in source or binary format 

for all major platforms. Python was chosen as the programming language for this 

project because of its wide range of libraries and frameworks that greatly simplify 

data processing, machine learning, and computer vision tasks, [42] . 

2.6.3 Tensor-Flow Framework 

Tensor-Flow was developed by Google as an open-source library, primarily used for 

deep learning applications. Originally, Tensor-Flow was designed mainly for large 

numerical computations without any consideration of deep learning. Eventually, 

it has evolved to become one of the most popular frameworks for deep learning. 

Ever since its first version appeared in 2017, it has become one of the most popular 

deep learning frameworks wi th an enormous library for large-scale machine learning 

computation. 

One of its advantages is the ability to use different hardware resources such as 

C P U and G P U , allowing faster computations and parallel processing. TensorFlow 

is designed to take advantage of modern G P U s , which have high computational 

capacity and are optimized for parallel operations. Using TensorFlow, computations 

wi th high-dimensional tensors can be performed efficiently, which is important for 

processing large datasets. G P U s provide the advantage of parallel processing, which 

means that a number of operations can be performed simultaneously. This is useful 

for mathematical data processing, convolutional neural networks, and other machine 

learning algorithms. Overall, TensorFlow allows to efficiently take advantage of both 

C P U and G P U for fast and parallel computations, while being able to efficiently 

process large data wi th high-dimensional tensors, [1] . 

2.6.4 Open 3D Library 

Open3D is an open-source library, that is designed to make it easier to quickly 

create software that handles 3D data. The front-end provides a well-chosen set of 

data structures as well as algorithms in both Python and 0 + + . The back-end is, 

on the other hand, well optimised and ready for parallel computing. Open3D was 

originally built from scratch with minimal dependencies. This fact allowed to easy 

set up the library as well as cross platform compilation. The library has been utilized 
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in several research papers and is widely adopted in cloud environments. The main 

domains, it covers, are visualisation, 3D machine learning, robotics, etc., [38], [10] . 
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3 Process of recognition and pose estimation 

m 

Using segmentation algorithms for bin-picking tasks requires both testing perfor­

mance on a sufficiently large dataset and segmentation of specific objects. In order 

to correctly pick different parts from a bin, the pose for each part must be cor­

rectly estimated. To train a neural network for a specific objects, a specific dataset 

must be used. In the following chapters, the algorithm for dataset generation, scene 

segmentation, and pose matching is presented. 

3.1 Dataset Generat ion for B i n - P i c k i n g Tasks 

Since bin-picking is a task mostly used in the manufacturing industry, it is usually 

necessary to segment different objects in most cases. The manufacturing industry 

usually provides 3D C A D model data for each object. The creation of a custom 

dataset for each specific object by labelling is very demanding, either from a time or 

financial point of view. Based on this knowledge, it was decided not only to test the 

implementation of segmentation and registration on publicly provided datasets, but 

also to work on the whole process of bin-picking, including the generation of datasets 

consisting only of objects selected by the author. The idea behind a synthetic data 

generator is to have an all-in-one product package that can either be trained on 

a self-made generated dataset, or be able to produce predictions of segmentations 

from a real world dataset. 

The data generation algorithm that is presented in this thesis, takes as an 

input a 3D C A D model of an object, usually in a .stl format, and produces a series 

of scenes consisting of several 3D objects that have been previously inserted. 

The second approach is to use pre-made datasets that are available for down­

load, such as the X A Bin-picking dataset [34] . 

This dataset includes both simulated and real-world scenes featuring few indus­

tr ial objects. The dataset contains over 1000 training samples of scenes where the 

ground truth instance labels have been manually created. More than 20 objects 

can be found in the randomly arranged scenes. Each scene contains over 60 0000 

annotated points. The parts are devoid of texture and color and both the training 

and test samples contain only the boundary points of the parts, [34] . 

Another publicly available dataset is the Fraunhofer I P A Bin-Pick ing dataset, 

example of the dataset is visible in Figure 29. The dataset also includes simulated 

and real scenes with many objects. The scenes in the dataset are fully annotated 

wi th 6D poses. The multi-part scenes are generated by a physics simulation in which 

objects are dropped into a bin in random positions and orientations. This dataset 

also extends the Sileane dataset by providing additional examples. This addition 

47 



§00$ , Marek. 3D point cloud segmentation for industrial bin-picking. 

is particularly useful for training deep neural networks and measuring performance, 

[39], [11] . 

These two public datasets provide sufficiently good amount of data for test­

ing the performance of every new architecture of Neural Network for either object 

classification or registration. 

F ig . 29: FraunHofer I P A dataset, [39] 

3.1.1 Data Generation Theoretical Intro 

The data generator used a random object centre generator, which places an object 

in space by setting an X,Y, and Z coordinate. There are two different probability 

functions for selecting the position on the surface and the height of an object. A 

uniform probability function is used to select an X and Y coordinate to ensure a 

homogeneous distribution of objects on a surface. A uniform probability function is 

used to place the object in a plane to ensure a homogeneous distribution of objects in 

the plane. The height of the centre was init ial ly secured by a U — shaped probability 

distribution. Later, an option to select a height of 2 or 3 discrete values was added 

because it also provided very good results. 

If the object is symmetric around the Z axis, one rotational axis suffices to 

control the rotation around the x or y axis. Other axes of rotation are frozen due to 
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symmetry, because any rotation of the object around that axis, wi l l not cause any 

changes. 

If the object is inhomogeneous, the other 2 degrees of rotation can also be 

set to adjust the resulting position of the object in space. A l l axes of rotation are 

normally generated by a normal distribution function wi th a desired offset. 

Simple object generation, even wi th correct probabilistic distribution, pro­

duces a "ton" of overlapping objects. This bug was partially fixed by randomly 

generating a large number of objects unti l a non-overlapping object was found. 

Since this method of randomly finding a non-overlapping coordinate vector takes an 

enormous amount of time, it was decided to use down-sampled objects. Example of 

a generated data scene exposed in Figure 30. 

Whi le working with down-sampled objects has saved some time when creating 

a scene, it has not brought any massive improvement. The overlapping of objects is 

checked by finding out if any point of a new object is in the space of all previously 

placed objects. 

The final algorithm chooses the best generated position based on the number 

of overlapping points. The object coordinates wi th the fewest overlapping points 

are preselected. A s the new coordinates are selected in the scene, the final object is 

up-sampled back to the originally selected values. 

The algorithm continues in this way, creating as many objects in the scene as 

are selected. In this way it is able to achieve a sufficiently large and diverse dataset 

to train a neural network. 

F ig . 30: Example of generated dataset 
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3.1.2 Data Generation Implementation 

The implementation of a presented dataset generating algorithm is pretty much 

straightforward. A user chooses a folder to save the results and selects the C A D 

model in .stl format, from which the dataset wi l l be generated. The user has an 

option to save the generated scene and to check the non-overlapping part of the 

algorithm. The objects are generated in a loop, while the model is down-sampled at 

the beginning. For each position generated each point of the newly created object 

in the proposed position is tested with the previously placed objects, whether it is 

located inside one of them. In this way all points of the new object are passed in 

the cycle. In case none of the points is located inside the object, the object is stored 

at the selected location. 

If at least one point is inside one of the stored objects, a new position is 

generated for the placement of the model. This continues unti l a location that has 

no collision wi th existing objects is found. The second option is set if the maximum 

allowed number of place generation is exceeded. In this case, the position already 

generated, which had the least number of points in the collision, is selected. 

After all points are placed, the algorithm up-samples points for each indi­

vidual objects. The output of the algorithm is a folder containing a point cloud in 

'.txt' format, folder wi th R G B images for each generated scene as well as correctly 

labeled segments in '.txt' format for control. 

3.2 Scene Segmentation 

The presented segmentation method consists of training a network on a 3D point 

cloud, which is usually generated by a 3D model of the target object. The proposed 

method involves identifying the geometric centres of each part and using these points 

as the main reference for the upcoming clustering. These centres are related to the 

number of instances of an object in the scene. Therefore, this approach can elim­

inate redundant merging algorithms, which consume a lot of computing time and 

can introduce errors in highly overlapping scenes, [33] . 

3.2.1 F P C C Theoretical Intro 

The backbone of the F P C C neural network is based on the transformation of the 

original 3D point cloud data into a new coordinate system, where each point is 

represented by a six-dimensional vector X Y Z , equation 3, and a normalised vector 

( % , n y , % ) . The resampled point cloud is fed into the network, which outputs a 

256-dimensional feature output and a percentage of a centre score for each point. 

The features extracted from the F P C C are then fed into two branches, an embedded 
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features branch and a centre score branch, [33] 

m 

F Vii Z%i Tlxj ̂ yi Tt-z) 

Xi = xi-mm(x1,x2,....,xN) (3) 

Vi = y i - min(y i , y2, ••••,VN) 

Zi = Z i - min (z i , z 2 , z N ) 

The two resulting branches output an embedded feature and a centre score 

for each point. The non-maximum suppression algorithm is immediately applied 

to all points to identify the most valuable centres of each instance. Points with a 

centre score greater than some threshold percentage, are automatically considered 

as a candidates for the centre points. The point wi th the highest centre score is 

selected as the first candidate centre point and all other points within a distance 

sphere are removed. This process is repeated unti l no more points remain. 

A l l the points except the centroids are then clustered based on the closest dis­

tance to the centroid. The nearest centroid of the point pi in the feature embedding 

space is found and then the distance between the point and a centre is calculated. 

If the distance exceeds the threshold value, the point is labelled as a noise and is 

not assigned to any other group, [33] . 

This clustering method differs from the conventional clustering methods, be­

cause it does not require the entire scene to be downsampled into multiple batches 

and clustered in their batches. The basic process of segmentation is visible in Figure 

31. 

The final network loss during the training is a combination of the losses from 

the embedded feature branch and the centre score branch, [33] . 

F ig . 31: F P C C segmentation process, [33] 

51 



D SOOS, Marek. 3D point cloud segmentation for industrial bin-picking. 

Feature distance matrix 

The feature distance matrix, which is part of the feature embedding space, 

ensures that the points belonging to the same instances are close to each other. O n 

the other hand, the points belonging to different instances should be far from each 

other. Equation 4 calculates the distance between two feature i and j [33] . 

dF{l,J) = \\e?-ef\\2 (4) 

Valid distance matrix 

This matrix consists only of binary elements. The aim is to train the network 

to discriminate whether pairs of points within a given Euclidean distance belong to 

the same instance or not. In the inference phase, the overall clustering of the points 

depends on both the feature distance and the Euclidean distance of the point pairs 

(centre-point - point). If the Euclidean distance between any two points is greater 

than twice the maximum of a threshold distance, the points are considered not to be 

in the same group, equation 5. These points wi l l be ignored later to prevent them 

from contributing to the final loss, [33] . 

dV(i,j) < 
1, if \\pi -pj\\2 < 2d 

0, otherwise. 
(5) 

Centre score 

To ensure that the centre score characteristic reflects the distance between a 

point and its corresponding centre, the points close to the centre of an object have 

higher scores than those on the boundary. To evaluate this, a centre score vector is 

constructed according to the following equation 6, [33] . 

Scenter(i) = 1 — ( _ ~, — ) (6) 
Umax 

Attention score matrix 

The Attent ion Score Mat r ix represents the significant pairs of dots by assign­

ing weights between them in a matrix. This is done by calculating the weights based 

on the distance of the point pair from the centre position point, equation 7, [33] . 
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SA(i,j) — m i n ( l , Scenter(i) 4" Scenter(j)) (7) 

Embedded feature loss and Center score loss 

As the point pair has two possible relationship scenarios, as belonging to the 

same instance or not. The embedded feature loss LEF is defined in equation 8. €\ 

and e2 are constants, which satisfy the condition 0 < €\ < e2, [33] . 

— dv(i,j)SA(i,j) 

max(0, dp(ij) — ei), if Piandpj in the same instance 

max(0, e2 — dp^j)), otherwise. 

For a function for the center score branch a Smooth L\ loss is used in equation 

9. 

LcS = jj YsiLl SmOOthLl(Scenter(i) ~ Scenter(i)) 

(9) 

smoothLl(x) < 
0.5|a;| , if |x | < 1. 

|x| — 0.5, otherwise. 

3.2.2 F P C C Implementation 

The implementation of the chosen algorithm was taken and modified from Github 

[33]. The whole algorithm was rewritten to the newer version of a Tensor-Flow 2.x 

from a Tensor-Flow 1.x, which makes it possible to run wi th the latest Python. The 

algorithm has also been rewritten into a newer structural style of O O P programming, 

to encapsulate all the features and functions of the bin-picking process into one class. 

The implementation of the algorithm consists of two main functions for train­

ing and prediction. The architecture of the neural network is described in the fol­

lowing chapter. In the train function, the entered data for training is first read. 

In case a saved checkpoint from the previous training is found, the neural network 

continues wi th further training. It is possible to choose a backbone from the pair 

' D G C N N ' or 'PointNet'. 
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Before training, specific values are set for various parameters such as the 

maximum distance, number of epochs, number of input points to the net, size of 

training batch or weight decay. 

3.2.3 F P C C Neural Network architecture 

The architecture of the final neural network is based on the architecture proposed by 

[33]. The neural network consists of two parallel parts connected to the backbone, 

a feature extraction network called Dynamic Graph Convolutional Neural Network 

( D G C N N ) . The main focus of this thesis was on the D G C N N as the backbone. 

This was based on tests, referenced in the research paper, where they compared 

it wi th PointNet and Point Net++, especially in the area of learning the geometric 

features. A s a feature extraction model, the D G C N N takes n x 6 points as input. 

A t the convolutional level, an edge feature set of size k is computed for each point. 

Features wi thin each set are aggregated to compute the edge convolution response 

for the corresponding points. The basic architecture of D G C N N is displayed in 

Figure 32, [33], [31] . 

spatial 
transform 

EdgeConv co EdgeConv CO EdgeConv 3 EdgeConv CO 
mlp (64:64) = mlp (64,64) c mlp (64,64) mlp (64,64) * 

EdgeConv 
mlp (64,64) 

EdgeConv in EdgeConv 
mlp (512,512) 

c 
mlp (256,256) 

c 

Fig . 32: D G C N N architecture, modified from [31] 

The point cloud transformation block, in Figure 34, is responsible for aligning 

the input set of points to a canonical space by applying an estimated 3 x 3 matrix. 

To estimate the matrix, the block uses a tensor that concatenates the coordinates 

of each point and the coordinate differences between its k neighbours, [31] . 

n 
x 

k 
x 

6 

X 
CO 

spatial transform 

Fig . 33: Principle of D G C N N transformation, [31] 

54 



Institute of Automation and Computer Science, FME BUT, 2023 

The edge convolution block, in Figure 34, takes a tensor of shape n x / as 

input, computes edge features for each point by applying a multi-layer perceptron 

( M L P ) wi th the number of layer neurons defined as a i , 0 2 , 0 3 , a n , and generates 

a tensor of shape n x an after pooling between adjacent edge features, [31] . 

C 

k-nn graph X pooling 
x c mlp {a, , a 2 , a n } X 

c 
c 

EdgoConv 
mlp { a, . a 2 a n} 

Fig . 34: Principle of D G C N N edge convolution, [31] 

After the D G C N N there are two parallel branches, both taking the output of 

the D G C N N as input. The first part of the neural network is responsible for feature 

extraction. Features pass through a multi-layer perceptron ( M L P ) , similar to the 

one in the D G C N N , to produce an embedded feature of size TV x 128. 

The parallel centre score branch uses a double M L P layer to both reduce the dimen­

sionality of an output from D G C N N and to activate pointwise features by a sigmoid 

function immediately after the double M L P layers. Using this approach, a centre 

score scenter prediction can be made at each point. The whole architecture of the 

segmentation network is visible in Figure 35, [33] . 

F ig . 35: F P C C neural network architecture, [33] 
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3.3 Object Registrat ion 

A s mentioned above, registration in the bin-picking process is a challenging and 

difficult task. W i t h a proper output from a segmentation part, a satisfactory close 

estimate of an object model transformation can be obtained. From a correct trans­

formation estimate, information can be extracted for the gripper to select a correct 

location to pick up an object, etc. 

Initially, a large number of publicly available algorithms were used for this 

task, either based on mathematical transformations or neural networks. Al though a 

significant number of algorithms were tested on this task, such as (neural network) 

G M C N e t , O M N e t or a large (open source library) Teaser plus plus, none of these 

methods seemed to work and were not able to produce reasonable and correct trans­

formation results. Only the ProBreg library was able to produce reasonably good 

results from time to time. The accuracy of the results was not very good and the 

algorithm lacked stability, [22], [32], [36], [35] . 

For all these reasons, chosen algorithm has to be more "heavy" but above 

all robust. The point pair algorithm was originally proposed by [4]. The actual 

algorithm implementation followed code implementation and some ideas from [37]. 

3.3.1 Point Pair Feature Theoretical Intro 

The algorithm assumes that both the scene and the C A D model are represented by 

a finite set of oriented points. Each point in the point cloud is also characterised by 

a normal computed from its neighbourhood. 

The algorithm consists of two phases. Off-line training creates the global model 

description, while the on-line phase selects the reference points. A l l other points 

in the scene interfere with the reference point to create point pair features. These 

features are mathematically related to the model description. The voting of a pose 

estimation algorithm is similar to the voting in Hough transform. Each potential 

point match of a point pair votes for an object pose that provides the optimal pose 

estimation, [4] . 

Feature vector 

The point pair feature describes the relative position and orientation of two 

points and searches for those wi th similar characteristics to the model point pairs. 

It uses the a vector, which consist of a values such as distance between points, nor­

mals and relative normals, to categorise point pairs. We can define vector F for 

each point p\ and P2 wi th normals ni, ri2, distance d = pi — P2 in equation 10. The 
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visualization of this vector is shown in Figure 36 [4] . 

F{pi,P2 = [\\d\\2,Z(n1,d),Z(n2,d),Z(n1,n2)} 

m 

(10) 

F ig . 36: Visualisation of a feature vector, [4] 

Global Mode l Description 

The aforementioned point pair features are used to construct a global model 

representation during the off-line training phase. The model consists of a collec­

tion of point pair features, where features with similar feature vectors are grouped 

together. To achieve this, the feature vector F described by the equation 10 is 

computed for all point pairs (mi,mj) belonging to the model M on the model sur­

face. Distances and angles in the feature vector are sampled at intervals of d^ist 

and danqie = 2 n • A l l the features, that have identical discrete versions are then 

combined together. This can describe the global model representation as a mapping 

from the feature space of sampled point-pairs to the model, equation 11, [4]. 

L : Z 4 ^ A c M 2 (11) 

Knowing this, the four-dimensional point-pair feature vector previously de­

fined in the equation 10 is mapped onto the set A , containing all the pairs nii, rrij) e 

M 2 that define equivalent feature vector, [4] . 
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Voting Scheme 

Consider any arbitrary referenced point sr G S of the scene and assume, that 

it is located on the object, which is searched. If this assumption is correct, then 

there exists a point mr G M that corresponds to sr. Once these two points and their 

normals are aligned, the object can be rotated about the normal of sr to align the 

model with the scene. This removes another degree of freedom for the pose of the 

model in the scene. The fixed movement from model space into scene space can be 

described by a point on the model and a rotation angle a. Such pair (mr, a) is called 

a local coordinates of the model, relative to the reference point sr. In this method, 

a point pair (mr,mi) G M2 is aligned wi th a scene pair (mr,mi) G S2 where both 

pairs have a similar feature vector F. The transformation itself from the local model 

coordinates to the scene coordinates is defined by the equation 12 and displayed in 

Figure 37. Note that the local coordinates have 6 degrees of freedom (one for the 

rotation angle a and two for a point on the model surface), whereas a general rigid 

motion in movement in 3D has 6 degrees of freedom, [4] . 

Given a fixed reference point sr, our goal is to identify the optimal local 

coordinates that maximise the number of scene points lying on the model. This is 

a similar approach to the generalised Hough transformation, which is usually very 

(12) 

T n m — 

Fig . 37: P P F transformation between model and scene, [4] 
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efficient when the local coordinates have only three degrees of freedom. Once the 

optimal local coordinates are found, the global pose of the object can be recon­

structed. 

In the actual voting process, the model surface is searched for the point pairs 

(mr,mi) wi th similar distance and normal orientation to (sr,si), by pairing the 

reference point sr wi th each point Si G S from the scene. This search determines 

where on the model the scene point pair (sr, si) could be located, and is performed 

using the off-line precomputed model description. The feature Fs(sr, si) is computed 

and also used as a key to the global model description hash table, which returns 

a set of similar feature vectors on the model. For each and every matching pair 

(mr,mi) or each possible position of (sr,si) as shown in Figure 38. Then it's voted 

for the local coordinates (mr,a). Figure 38 displays also the voting process. 

After the processing all points Sj , the peak of the accumulator array corre­

sponds to the optimal local coordinate from a which a global r igid motion can be 

computed. For stability reasons, all peaks that receive a certain number of votes 

relative to the maximum peak are used, [4] . 

To increase the efficiency of the algorithm, a is split into two parts a = 

Oim — « s , where a m and as depend only on the point par in the model and scene 

respectively. Rx(a) is also split into Rx(—asRx(am)) and as) = Rx(as). 

This is achieved by using an equation 12. 

t = Rx(as)Ts^gSi = Rx(am)Tm^gmi (13) 

In this case, t lies on the half-plane which is defined by the x — axis and 

the non-negative part of the y-axis. For each pair of points in the model or scene, 

t is unique. Consequently, a m can be precomputed for each pair of model points 

during the off-line phase and stored in the model descriptor. Using approach, as 

only needs to be calculated once for each scene point pair (sr, si) and the final angle 

a is a simple difference between the two values, [4] . 

Model Description Accumulator Space 

Fig . 38: P P F voting process, [4] 
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If the reference point is on the surface of the object, then the object pose is 

determined by the voting scheme above. A s a result, there is a need for multiple 

reference points in order to ensure that at least one of the reference points is on the 

object of interest. 

As shown above, each reference point provides a set of potential object poses 

corresponding to the peaks in its accumulator array. However, these retrieved poses 

are only approximate to the ground truth due to different sampling rates of the 

scene, the model and the rotation sampling in local coordinates. 

In order to both eliminate incorrect poses and increase the accuracy of the 

final result, the retrieved poses are clustered so that all poses wi thin a single cluster 

do not differ in translation and rotation by more than a predefined threshold. The 

total score of a cluster is the sum of the poses it contains, where the score of a pose 

is the number of votes it received in the voting scheme. After identifying the cluster 

wi th the highest score, the final pose is computed by averaging the poses within that 

cluster. Since the scene may contain multiple instances of the object, the method 

may return multiple clusters. Pose clustering improves the stability of the algorithm 

by discarding isolated poses wi th low scores, while the averaging step improves the 

accuracy of the final pose. In Figure 39 , the complete process of P P F registration 

is displayed, [4], [37] . 

F ig . 39: Visualisation of P P F algorithm : a.) 3D Model , b.) Generation feature 

vectors c.) Extracted P P F stored in Hash table, d.) Input scene, e.) Preprocessing, 

f.) P P F Extraction, g.) Hashtable lookup and voting, h.) F ina l registration., 

modified from [13] 
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3.3.2 Point Pair Feature Implementation 

This code implementation followed code ideas from [37] . 

The code is also written by the O O P programming paradigm. The main class has 

two essential functions for offline training and online matching. 

For model training, the inserted point cloud can be downsampled if selected. 

To find and add vectors in certain sets, the dictionary structure was used as a hash 

table. The training itself involves a cycle mapping relationship between each two 

different points. In the implementation, the model representation is stored as a 

hash table indexed by a feature vector F . A hash function is in the structure of the 

Py thon dictionary was used to map the 4D vector F to a I D integer. Using this 

approach to accessing the hash table, all model features Fm(rrii, rrij) that are similar 

to a given scene feature Fs(rrii, rrij) can be quickly retrieved. This process continues 

unti l the features are mapped for every two points. 

F i t t ing the scene to the pre-trained model requires similar ini t ial steps as 

downsampling or computing the maximum interval coordinates of the scene. The 

model fitting itself consists of a double loop in the first step of the fitting. Each 

time the hash generated from the scene matches a hash in the stored model hash 

table, the accumulator matrix is incremented by a certain index. We implement the 

matching scheme as a one-dimensional accumulator array. The number of elements 

in the array corresponds to the total number of sample points of the model | | M | | 

times the sample steps of the rotation angle a, nangie. For a fixed reference point, 

this accumulator array represents the discrete space of local coordinates. 

Then only the most voted points are retrieved. After selecting the most 

relevant locations in the accumulator matrix by a threshold, the actual poses are 

computed and stored in a list structure. Since many of the estimated poses may 

have very similar transformations, the clustering method collects estimated poses 

wi th similar transformation matrices. 

To further increase the accuracy of the final pose estimation, a score recal­

culation has been implemented. The score recalculation is performed on each point 

in a cluster and changes the final score of a cluster. After performing the proposed 

pose transformation in the cluster, a space around each point of the cluster wi thin 

a certain threshold distance is searched to check for some existing model points. 

F inding atleast one scene point in the predefined space around the searched point, 

indicates a correct pose estimation for that point. O n the other hand, this may 

indicate an incorrectly proposed pose transformation if no points from the scene 

are found nearby. The number of points that have model points wi thin the defined 

distance is summed, and the score is recalculated according to this sum, [37] . 
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The code implementation is available on : 

https://github.com/marecekl99/3DGenerationSegmentationRegistration.git 
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4 Experiment Results 

m 

This chapter presents both partial results for each section and a full test of the seg­

mentation process on a captured dataset. The chapter is divided into 4 sections for a 

detailed look at each area. This text structure provides enough space to present the 

results for each section wi th different settings. The first section presents the results 

of an artificial dataset generation. This is followed by the results of neural network 

segmentation. The thi rd section focuses on object registration. The final section 

presents the complete process, including each process described in the sections, as 

well as tests on real acquired data. 

4.1 Dataset Generat ion 

The algorithm used for this task was not that complicated at first. A l l that was 

needed to complete the task was to randomly place more objects in a coordinate 

space and save the results in a suitable file format. However, as the algorithm was 

implemented, various flaws were discovered. 

4.1.1 Data generation : Initial settings 

In Figure 40, we can see the first scene generated by our dataset generator. The 

image shows scenes wi th [3, 7,15] objects in the order. No overlapping prevention 

has been added as the first phase of data generation. 

a.) b.) c.) 

Fig . 40: Data generation default settings : a.) 3 items, b.) 7 items, c.) 15 items 

The objects from the default generator are very overlapping. It is obvious 

that even though the neural network can learn something from a dataset generated 

by this approach, it would struggle to generalise if the scenes wi th overlapping ob­

jects are given. 
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4.1.2 Data generation : Second stage of settings 

In the second stage of data generation, object overlap prevention has been added, 

visible in Figure 41. The prevention algorithm is based on object collision detection. 

Each new object added to the scene is checked at a point level. Based on whether 

the points of the newly added objects are in collision with existing objects, the new 

object is added or not. 

F ig . 41: Data generation no-overlap settings : a.) 5 items, b.) 9 items, c.) 16 items 

The objects in the presented scene were generated by an init ial settings. Each 

object was placed in a specific location selected by a random generator using a ran­

dom distribution. The angles of rotation around each axis and the centre height of 

an object were chosen in the same way. 

4.1.3 Data generation : Final settings 

A s the results of the previous two settings were analysed, the different probability 

distributions were added to the data generation. The intervals in one generation 

of rotation around the x and y axis were changed from (0,2n) to (0.257T, 0.757r) 

wi th a normal distribution. This was done to generate objects mostly in the lying 

position. The generation of a random rotation around the z axis has been changed 

to a uniform distribution. The uniform distribution was also added to replace the 

one in the x, y position to ensure a homogeneous distribution of objects in space and 

not to create large clusters around the centre of the coordinate system. Results are 

displayed in Figure 42. 

a.) c) 
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Fig . 42: Data generation final settings : a.) 4 items, b.) 9 items, c.) 15 items 

Dataset generator created in this way provides an approach to train the seg­

mentation neural network using only the C A D model of the object. A s a consequence 

of the fact that the creation of the dataset is fully secured by a single algorithm, al l 

point clouds belonging to a single object are simply labeled. The marking of points 

into segments occurs by color. This procedure completely eliminates the problem 

of manually labeling the training data. Since this approach provides a way to set 

object rotations or heights in a certain interval, or to set a minimum or maximum 

number of objects in the scene, the final results of the resulting dataset can be better 

adapted to the desired conditions. 

4.2 Segmentation 

This section presents the results of a data segmentation. The segmentation wi l l 

be shown on a few different objects, both on test data from the original dataset 

and on different datasets. In this thesis, the neural network is trained on scenes 

wi th (0 : 20) objects. A l l segmentation results presented here are only compared on 

scenes with exactly 20 objects. This is a reasonable amount to show the segmentation 

performance of the neural network and to ensure consistent conditions throughout 

the comparison. 

The next sections show different outputs based on different settings to get a 

general idea of how the training or prediction settings affect the final output of a 

segmentation network. A l l different outputs were trained on the G P U , using batch 

size 2, due to the small memory of a G P U and the high memory requirements of 

this particular architecture of the neural network. A l l trained networks share some 

variables, such as weight decay or a backbone of a neural network. Some of the 

network variables are specific to the subjects being trained, such as distance to cen­

tre. Due to the fact that the registration algorithm used in this thesis depends on 

a C A D model, only datasets containing this 3D model are presented. However, the 
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segmentation itself does not require this type of data and works completely without 

it. A s part of the research, the network's ability to distinguish between different 

objects in different point clouds was also experimentally tested. Since the results 

were insufficient, the focus was shifted to segmentation of a single object type. 

4.2.1 I P A Gear shaft 

First segmented object in this section is a gear shaft model from a I P A dataset, 

visible in Figure 43 . 

F ig . 43: I P A Gear shaft 

Comparison of different results affected by a distance from centre 

variable 

Although this object is not ideal for segmentation training on this particular 

neural network because of the centre score condition. Because the topology of the 

object body is not nearly homogeneous in all directions, the centre score must be 

set higher to avoid separating far edges from the object body. If the distance from 

centre threshold is set very low or high in the prediction, the neural network wi l l 

produce false results. The final segmentation wi th both high (a.) and low maximum 

(b.) distance from a centre Rmax can be seen in Figure 44 . 

66 



Comparison of different results affected by a center score threshold 

variable 

The centre point threshold is also very important. If set too low, many false 

positive segments wi l l be revealed. O n the other hand, setting it too high could result 

in a very under-clustered segmentation. The final results of both under-clustered 

(b.) and over-clustered (a.) results, set by a variable 1 center_socre_th', can be 

seen in Figure 45 below. 

a.) b.) 

Fig . 45: Variable center score percentage : a.) Too small, b.) Too bij 
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Results of a N N trained on a I P A dataset 

In Figure 46 below, you can see the scene wi th a randomly placed gear shaft 

in the box. O n the left (a.) is the input data for a neural network. The image shows 

that the segmentation of this neural network is not based on colour at all . O n the 

right side (b.) of figure, the ground truth data are displayed. 

P * • v.' : S... *•• V 

fits 

eip?«".ii:.s-'-' v̂ -̂ :t 
W If 

a.) b.) 

F ig . 46: Gear shaft : a.) Input data, b.) Ground truth data 

The training of this neural network was performed on a I P A dataset. The 

prediction results of the trained neural network can be seen in Figure 47 below. Bo th 

views show that the network can be trained on the I P A dataset. The segmentation 

results seem to be excellent wi th very few errors. 

a.) b.) 
Fig . 47: Prediction on I P A data : a.) Top view, b.) Side view. 
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The trained network was also tested on F P C C data, which is not part of the 

I P A dataset, but contains a trained gear shaft object. The segmentation results are 

not so good, with many small and large errors, visible in Figure 48. The distribution 

of the objects in space is not much similar to the ones, the neural network was 

trained. This problem can be reduced by using a training environment similar to 

the one, on which the neural network wi l l make predictions. The error can also be 

reduced by training on a larger dataset, which could increase the network's ability 

to generalise. O n the other hand, training on a larger dataset increases the total 

training time. 

Results of a N N trained on a generated dataset 

The next three figures show the prediction on different datasets of a neural 

network trained on an artificially generated dataset. The results of a neural network 

on each dataset presented, wi l l mostly vary from prediction to prediction due to the 

stochastic part of the neural network. The next Figure 49, displays the ground truth 

data (b.). A s was mentioned in the previous paragraph, the left side (a.) of this 

figure represents the input data to the network, and the right side (b.) represents 

the true labelled data. 
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Fig . 49: Gear shaft : a.) Input data, b.) Ground truth data 

The prediction made by the trained network can be seen in Figure 50 below. 

The image shows the prediction results of the segmentation on the proposed point 

cloud. In general, the results can be described as more than good, even though 

there are incorrectly defined segments. Despite larger or smaller errors, the neural 

network is able to segment most objects regularly and reliably on a test data that 

is part of the generated dataset. 

a.) b.) 

Fig . 50: Segmentation on testing data : a.) Top view, b.) Side view. 

The results of the neural network trained on generated data and performing 

predictions on a F P C C dataset can be seen in Figure 51. Obviously, the results are 

worse. However, the network mostly underclusters the input point cloud. Since this 
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type of error predicts fewer segments than it should, it can mostly be solved in the 

following section of the thesis. 

F ig . 51: Segmentation on F P C C data : a.) Top view, b.) Side view. 

4.2.2 I P A Ring screw 

The proposed neural network was also trained on different datasets, one of which 

was also an I P A dataset consisting only of ring screws, which model is on Figure 

52. The ring screw is a different object from the gear shaft in terms of topology and 

geometry. Unlike the gear shaft, the ring screw also contains a hole. 

F ig . 52: I P A Ring screw 
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Results of a N N trained on a I P A dataset 

Analogous to the previous subsection, the neural network is first trained on 

a I P A dataset and then on a generated dataset. Figure 53 shows a correctly split 

point cloud on the right (b.) and an image of the input data on the left (a.). 

F ig . 53: R ing Screw : a.) Input data, b.) Ground truth data 

The prediction output of a segmentation network trained on I P A data is 

shown in Figure 54 below. The segmentation results also look very promising on the 

ring screw. Figure shows that the segmentation network can cope very well wi th 

holes in the body of the object. Even though there are some small errors, it can be 

assumed that this structure of the segmentation network can cope very well wi th 

different object geometries. 

a.) b.) 

Fig . 54: Segmentation on testing data : a.) Top view, b.) Side view. 

As the author do not have an F P P C dataset containing a ring screw to test 

the performance of the neural network, an artificially generated dataset was used for 
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testing purposes. The next Figure 55, shows the result of a network segmentation 

prediction. 

The result contains several incorrect assignments, but as mentioned in the text 

above, a larger dataset might reduce this error. 

a.) b.) 

Fig . 55: Segmentation on generated data : a.) Top view, b.) Side view. 

Results of a N N trained on a generated dataset 

The next Figure 56, shows the ground truth data on the right (b.) and the 

input data on the left (a.). The results of the segmentation network were also tested 

in reverse, the neural network was trained on a custom artificial dataset and tested 

on test data from this dataset as well as on public data from an I P A dataset. 

a.) b.) 

F ig . 56: R ing Screw : a.) Input data, b.) Ground truth data 
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The network's predictions look stable and wi th very few errors in Figure 57. 

This means that the network architecture has no problem learning the basics on 

both acquired and generated images. 

The results on the other data are a bit worse, in Figure 58, with bit more 

errors. Anyway, the network sti l l does its job to segment whole point cloud into 

smaller segments. 

a.) b.) 

Fig . 58: Segmentation on generated data : a.) Top view, b.) Side view. 

The performance comparison between on different objects is shown in ??. 

A s expected, the segmentation results on the training data perform better than on 

other datasets. This fact is underlined by the graphical results shown above. 
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Object Trained on Prediction on Precision [%] Recall [%] 

Generated data Testing data 75.2 75 

Gear Shaft 
Generated data Publ ic F P C C 39.6 32.7 

Gear Shaft 
I P A data Testing data 68.5 68.5 

I P A data Publ ic F P C C 28.6 33.3 

Generated data Testing data 72.4 74.3 

R ing Screw 
Generated data 

I P A data 

I P A data 

Testing data 

39.8 

69.6 

35.1 

70 

I P A data Generated data 50 45 

Tab. 1: Segmentation results on different data 

4.3 Registrat ion 

This section presents the results of the registration. The registration is performed 

on the output of a segmentation neural network. For presentation purposes, a few 

segmented clusters from a segmentation part are shown and a C A D model of an 

object is registered to this segment. The main reason for this part of the algorithm 

is to find the exact position and rotation of a C A D object in the segmented point 

cloud. The accurate pose estimation of an entire object, and not just a visible 

segmented body part, wi l l provide complete information for a robotic gripper. In 

the next subsections, the final registration for both the gear shaft and the ring screw 

from an I P A dataset is presented. The registration is performed on three segmented 

surfaces, as shown in the images for each object. Since this algorithm works better 

when working wi th coordinate values greater than one, i.e. not normalised, the 

resulting segments from the segmentation mesh are up-scaled. After performing the 

registration part on a segment, the transformed model is downscaled. 

4.3.1 Registration on : I P A Gear Shaft 

Figure 59, shows the raw output of a segmentation mesh. The more highlighted 

areas represent three segmented areas that wi l l be aligned by a C A D model of a 

gear shaft. The main task is to take a C A D model shown in Figure 43, which by 

default which is in the centre of a coordinate system, and to align it to all three 

segments shown. 
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a.) b.) 

F ig . 59: Gear shaft Registration : a.) Highlighted segments, b.) Isolated segments 

Registration of the first segment 

The process of aligning the first segment is shown in Figure 60. The output 

segment shows a clustering error because it contains two gear shafts instead of one. 

A s mentioned in the text above, the registration algorithm can actually solve this 

underclustering problem. The algorithm chooses the best match to align the gear 

shaft model with the segmented area, ignoring the outliers or the other gear shaft 

objects. 

F ig . 60: Gear shaft Registration : a.) Isolated view 1. b.) Isolated view 2. c.) 

Highlighted in the point cloud. 

Registration of the second segment 

The second gear shaft object, representing the P P F registration, is located 

at the top of the box. There are some minor imperfections in the registration. 

Figure 61, shows the final registration from two different views and the view of the 

alignment of the C A D model in the scene. 

a.) b.) c) 
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a.) b . ) c.) 

F ig . 61: Gear shaft Registration : a.) Isolated view 1. b.) Isolated view 2. c.) 

Highlighted in the point cloud. 

Registration of the third segment 

The third registration of a gear shaft shows very similar results to the first 

two. The P P F algorithm in Figure 62, shows precise registration and very fine 

alignment in both focused views as well as in the environment with other gear 

shafts in the box. 

A t 
•: -

3 

a.) b.) c.) 

Fig . 62: Gear shaft Registration : a.) Isolated view 1. b.) Isolated view 2. c.} 

Highlighted in the point cloud. 
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Final registration of all three segment 

The final summary of all three registrations is displayed in Figure 63. O n the 

left side (a.) are highlighted all three segments, wi th final gear shaft alignment on 

the right (b.). 

<-»>.sJ.\ 

O S 

a.) b.) 

Fig . 63: Gear shaft Registration : a.) Highli ted segments, b.) Al igned models into 

segments 

4.3.2 Registration on : I P A Ring Screw 

A similar registration is performed on the I P A ring screw object. Obviously, the fine 

tuning can be performed on all the segmented areas of the segmentation network, 

but the results within an object would be very similar. The point cloud on the left 

side (a.) of Figure 64, shows the output of the neural network in one colour. The 

highlighted areas represent all three segments selected for registration. 

'•:''<jv3i?'J 

a.) b.) 

Fig . 64: R ing screw Registration : a.) Highlighted segments, b.) Isolated segments 
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Registration of the first segment 

m 

As can be seen in Figure 65, the P P F algorithm is not very dependent on 

the topological and geometrical level of an object. Thanks to this fact, the final 

alignment of a ring screw from both views is fine, wi th a small error in the leftmost 

view. The right view shows the alignment wi th other ring screws. 

cm*?*. 

a.) b.) c.) 

Fig . 65: R ing screw Registration : a.) Isolated view 1. b.) Isolated view 2. c. 

Highlighted in the point cloud. 

Registration of the second segment 

The next Figure 66, displays the alignment on the second segment. The final 

ring screw co-ordinates wi th its rotation in space provide the stable results required 

for bin-picking. 

•m 

b.) 

4 | [ 

'>.:. ' '•?*8S:"'''"-J!1 

c) 

F ig . 66: R ing screw Registration : a.) Isolated view 1. b.) Isolated view 2. c. 

Highlighted in the point cloud. 

79 



D §00$ , Marek. 3D point cloud segmentation for industrial bin-picking. 

Registration of the third segment 

The final registration of the thi rd ring screw on the third segments is exposed 

in Figure 67 below. Very similar results can be evaluated from the third alignment 

wi th a stable characteristic. 

W 
a.) b.) 0 

F ig . 67: R ing screw Registration : a.) Isolated view 1. b.) Isolated view 2. c. 

Highlighted in the point cloud. 

Final registration of all three segment 

The results of the P P F registration end with the final Figure 68. A s in the 

previous subsection, the left part of the image (a.) highlights the three selected 

segments that have been aligned and the results are present in the form of text 

and image above. The right side (b.) shows all three segments wi th their final 

and correct registration, demonstrating the robustness and stability of a proposed 

algorithm to work wi th different objects in different environments. 

a.) b.) 

Fig . 68: R ing screw Registration : a.) Highlited segments, b.) Al igned models into 

segments 
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4.4 Complete process on acquired data 

m 

Since the aim of our thesis was to make this solution applicable in practice, the 

presented solution method is tested on a dataset created wi th the Ziv id One+ cam­

era. The complete dataset consists of 20 point cloud scenes, each containing seven 

objects freely distributed in space. The tested object is a T-join pipe displayed in 

Figure 69. 

F ig . 69: T join C A D model 

The captured scene can be seen on the left side (a.) of Figure 70. The right 

side (b.) displays the scene after the most surface was filtered by a threshold. 

e s + 2 + 

a.) b.) 

F ig . 70: Captured 3D environment : a.) Actua l output from the camera b.) Point 

cloud after filtering the surface 
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4.4.1 Data generation 

The availability of the C A D model of a segmented T-join allowed the creation of 

an artificial dataset. This allowed the segmentation network to adapt its internal 

parameters needed for correct prediction, rather than just guessing regions from 

previous training on other objects. 

As in the previous experiments, the dataset generation went smoothly. Only 

[1 : 10] objects were simulated to generate a proper dataset for this specific task 

within a 15 x 15 cm area box. 

The result scenes can be seen in Figure 71, and in Figure 72 below. 

9 » 
a.) b.) c.) 

Fig . 71: Generating scene 1 : a.) 4 items, b.) 7 items, c.) 10 items. 

,J4fJ 

c.) 

Fig . 72: Generating scene 2 : a.) 3 items, b.) 6 items, c.) 10 items. 

4.4.2 Segmentation 

Before segmentation, the point cloud was cleaned of the plane on which the objects 

were placed. The result can be seen in Figure 70 b.) and was achieved by keeping 

only the points that were within a certain distance, threshold. The results of the 
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segmentation on the acquired data look very good. Only small errors appear on 

two of the seven segmented objects in Figure 73. Since the neural network has been 

fully trained only on the generated data shown above, it can be said that a neural 

network trained in this way can, in principle, used directly for practical applications 

in industry. Since our dataset was created with units of meters, but the output from 

the 3D camera is in millimeters, the created 3D image of the scene had to be scaled 

down. 

a.) b.) 

Fig . 73: Segmentation on captured point cloud : a.) Top view, b.) Side view. 

4.4.3 Registration 

Figure 74 below, shows all seven registrations for each part. Each of the T join 

registrations has a similar characteristic. It can be seen that the registration results 

appear to be stable on the recorded data. The only thing that was changed in the 

algorithm was a threshold for the score recalculation part in the final phase of the 

algorithm. 
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d.) e.) f.) g.) 

Fig . 74: Mode l registration on segments : a.) Segment 1. b.) Segment 2. c.) 

Segment 3. d.) Segment 4. e.) Segment 5. f.) Segment 6. g.) Segment 7. 

Since the partial results on each presented object look very good, the final 

registration is displayed in Figure 75, for each object also looks good. Based on 

these facts, the results show stability and fine tuning in the registration process as 

well as in the segmentation process. It should not be forgotten, that the registration 

and segmentation were performed on the basis of a neural network trained purely 

on an artificially generated dataset. 

F ig . 75: F ina l registration on captured data 
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5 Discussion 
The introduction part of the thesis provides an overview of the technologies that 

are currently available, and used to create and process 3D point clouds. The paper 

aims at an analysis and principles of different algorithms that focus on segmentation 

and registration of objects in the point cloud. The overview makes it possible to 

identify strengths and weaknesses of the different approaches and to propose a new 

approach that exploits this best of the available methods. 

One of the main advantages of this research is a development of an algorithm 

for generating a custom dataset. This dataset allows to generate specific scenes 

that can be adapted to different practical applications. This includes, for example, 

embedding the generated object, selecting the maximum number of objects in the 

scene, the size of the generated scene, the maximum height objects, or adjusting the 

orientation of objects in space. 

This thesis has studied the detailed theoretical descriptions and implementa­

tions of specific stand-alone algorithms for segmentation and registration of objects 

in a point cloud. The segmentation algorithm, which is based on deep learning, 

represents a modern approach to solving this problem. The added registration algo­

r i thm is based on geometric properties. Robustness of registration algorithm, allows 

using the registration part without the need for segmentation. 

The resulting system created by combining both the above-mentioned al­

gorithms, benefits from the advantages of both methods. The registration P P F 

algorithm can efficiently eliminate most of the segmentation flaws that can happen 

using a neural network. Further, due to a very fast F P C C segmentation based on 

deep learning, the registration algorithm is able to process the results within seconds. 

The thi rd chapter of the thesis focuses on the presentation of the experimental 

results that were obtained while testing each algorithm. The algorithms were tested 

on data that was either generated as part of this research or obtained from publicly 

available sources. It was shown how the different algorithms perform on different 

types of objects. Obtained results vary depending on different settings of algorithms. 

This part of the thesis thus provides a comprehensive view of the functionality and 

flexibility of the designed algorithms. 

The key areas for improvement presented solutions include a more efficient 

implementation of the P P F registration algorithm, which could significantly improve 

the overall efficiency of the system. Parallelization of this algorithm would likely 

reduce computational time. Another possible area for improvement lies in data 

generation, where current approaches to collision detection encounter limitations 

when generating a large number of objects in a l imited area. A n extension that could 

also be considered is the use of a registration algorithm for an automatic labelling 
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of 3D objects in the point cloud. This possibility would allow offline datasets to be 

generated from directly measured data and further enrich the training dataset. 

The results of the conducted research showed that accurate segmentation 

and registration of objects in the 3D point cloud can be achieved for industrial bin-

picking, which is a great benefit in the field of robotic vision and machine learning. 

Despite the fact that there is a continuous space to improve, this work opens the 

way to new possibilities and brings valuable insights for future research in this area. 

The outputs of this thesis can be easily built in already used automatic lines and 

industrial cameras and spare much finances for industrial companies. 
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6 Conclusion 
The aim of the thesis was to deal wi th 3D point cloud segmentation for industrial 

picking of spatially disordered parts from a bin, which is the key problem in process 

automation using robotic vision systems. The structure of the thesis consists of 

three logically connected chapters, in which all aspects of this problem are discussed 

from different points of views. 

The first chapter focuses on theoretical foundations of computer, machine 

and robotic vision, and how these areas support the segmentation and registration 

of objects in a point cloud. This chapter elaborates on the knowledge of pick and 

place and bin picking issues, and outlines the possibilities of reconstructing 2D and 

3D scenes into a point cloud. In this section there are also analyzed principles of 

algorithms aimed at segmentation and registration of objects in the point cloud. 

The second chapter is devoted to the actual solution of point cloud segmen­

tation. In the beginning of the chapter the procedure of generating labeled objects 

was presented in the form of a point cloud for neural network training segmenta­

tion. The selection and implementation of the machine learning based segmentation 

algorithm is further described. The conclusion presents the selection and thorough 

implementation of the registration algorithm that processes segments from the neu­

ral segmentation network based on geometric features. 

The thi rd chapter presents the experimental results using algorithms pre­

sented in the theoretical section and their analysis of different parts. Consequently, 

these algorithms were applied to both generated datasets and publicly available 

datasets. The functioning of the algorithms was presented on different objects wi th 

various settings. The whole process from the generation of the custom training data, 

through the segmentation of the self-collected data using a 3D camera, to the regis­

tration of the object's C A D model in the 3D point cloud scene was closely presented 

in this chapter. 

The result of this thesis is the progressive 3D point cloud segmentation 

method that has full potential to significantly increase the efficiency of bin-picking 

by industrial robots. The generation of custom 3D datasets allows customization of 

the ini t ia l training conditions as much as possible. Machine learning-based segmen­

tation provides a very fast and accurate processing of the input point cloud. The 

complexity of the whole system is underlined by robust model registration, which 

can very efficiently find transformation matrices for models in each segment. The 

efficiency of the registration method is precisely achieved by using segmentation as 

an additional step before model registration. This solution is so robust and reliable 

so it can be used in many industrial automated lines without the necessity of using 

expensive softwares or human operators. 
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P P F Point Pair Features 
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G M C N e t Graph Matching Consensus Network 

O M N e t O M N e t : Learning Overlapping Mask 
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c speed of light 
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f3 beta - distribution of center score 
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Ci corresponding center on index i 

dp(i,j) feature distance matrix 

A S M attention score matrix 

V D M valid distance matrix 
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