
T
BRNO UNIVERSITY OF TECHNOLOGY
V Y S O K É U Č E N Í T E C H N I C K É V B R N Ě

FACULTY OF INFORMATION TECHNOLOGY
F A K U L T A I N F O R M A Č N Í C H T E C H N O L O G I Í

DEPARTMENT OF INTELLIGENT SYSTEMS
Ú S T A V I N T E L I G E N T N Í C H S Y S T É M Ů

PREDATOR-PREY SIMULATION IN JAVASCRIPT
SIMULÁCIA DRAVEC-KORISŤ V JAVASCRIPT

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

JOZEF MÉRY

Dr. Ing. PETR PERINGER

B R N O 2 0 2 0

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2019/2020

Bachelor's Thesis Specification |||||||||||||||||||||||||
23150

Student: Mery Jozef
Programme: Information Technology
Title: Predator-Prey Simulation in JavaScript
Category: Modelling and Simulation
Assignment:

1. Analyze the simulation models of predator-prey dynamical systems and methods of their
implementation. Focus on "boid" class of models.

2. Design the application for simulation of predator-prey models with suitable visualization of
simulation results.

3. Implement the simulator in JavaScript language. Test the application in Electron
environment and common WWW browsers. Create set of (at least 5) demonstration models
suitable for educational purposes.

4. Evaluate the project results and propose possible future improvements.
Recommended literature:

• Reynolds C: "Flocks, herds, and schools: a distributed behavioral model". In Proceedings of
the SIGGRAPH'87 Conference, vol. 4, pp. 25-34,1987.

• Macal C , North M.: "Agent-based modeling and simulation". In Proceedings of the 2009
Winter Simulation Conference, IEEE, 2009.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Peringer Petr, Dr. Ing.
Head of Department: Hanacek Petr, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: July 31, 2020
Approval date: May 13, 2020

Bachelor's Thesis Specification/23150/2019/xmeryj00 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
Studying the populations of organisms is a useful research field. It can help predict, under
stand, and possibly help preserve populations. Th is bachelor's thesis focuses on modeling
and simulat ing an agent-based predator-prey model . The agents' essential traits include
flocking based on C . Reynolds 's boids model, reproduction, and mutat ion. This thesis's
result is a configurable browser-based applicat ion, which can be used to simulate differ
ent scenarios and extract various statist ical information. The applicat ion contains setting
templates that were simulated. The results of the simulations are briefly evaluated.

Abstrakt
Študovan ie popu lác i e organizmov je veľmi u ž i t o č n á oblasť v ý s k u m u . D o k á ž e pomôcť s
p r e d p o v e d a n í m , p o r o z u m e n í m a m o ž n ý m zachovan ím populác i í . T á t o b a k a l á r s k a p r á c a
sa zameriava na modelovanie a simulovanie modelu dravec-korisť za loženého na agentoch.
M e d z i n a j p o d s t a t n e j š i e vlastnosti agentov p a t r í schopnosť zhlukovania za ložená na modeli
boids v y t v o r e n ý C . Reynoldsom, reprodukcia a m u t á c i a . Výsledok tejto p r á c e je konfig
u rova t e lná p reh l i adačova ap l ikác ia , k t o r ú m o ž n o použiť na simulovanie rôznych s i tuác i í a
z ískanie š t a t i s t i ckých úda jov . Apl ikác ia obsahuje šab lóny nas t aven í , k t o r é bol i s imulované .
Výs ledky s imuláci í sú k r á t k o z h o d n o t e n é .

Keywords
modeling, simulation, agent-based model, predators, preys, boids model, flocking, organism
interaction, organism mutat ion, populat ion study, web applicat ion, React.js, TypeScr ip t ,
Electron.js

Kľúčové slová
modelovanie, s imulác ia , modelovanie za ložené na agentoch, dravce, koriste, model boids,
zhlukovanie, interakcia organizmov, m u t á c i a organizmov, š tudovan ie populác i í , webová ap
likácia, React.js, TypeScr ip t , Electron.js

Reference
M E R Y , Jozef. Predator-Prey Simulation in JavaScript. Brno , 2020. Bachelor's thesis.
Brno Universi ty of Technology, Facul ty of Information Technology. Supervisor D r . Ing. Petr
Peringer

Rozšírený abstrakt
V pos ledných rokoch vedecké discipl íny čoraz viac využíva jú modelovanie a s imulác iu . M o d
elovanie a s imulác ia sú veľmi dôleži té a už i t očné n á s t r o j e na porozumenie n á š h o sveta.
U m o ž ň u j ú r iešenie n e s p o č e t n é h o m n o ž s t v a p rob l émov . P r í k l a d y t a k ý c h t o p r o b l é m o v m ô ž u
byť: op t ima l i zác ia dopravy, p redpoveď počas ia , a n a l ý z a o b c h o d n é h o t rhu alebo š túd i e o
populác i í . T á t o p r á c a sa zameriava na š tudovan ie d y n a m i c k é h o sys t ému , k t o r é h o definu
júce p rvky sú: vzťah dravec-korisť a schopnosť zhromažďovan ia .

H l a v n ý m i myš l i enkami vzťahu dravec-korisť sú dve, p r o t i k l a d n é bytosti : dravce a korist i .
Vzťah t ý c h t o b y t o s t í je, že dravce k o n z u m u j ú korist i a naopak, korist i sú k o n z u m o v a n é drav
cami. I n t u i t í v n y m p r í k l a d o m t a k ý c h t o organizmov sú líšky Avšak t á t o myš l i enka
p la t í aj na rastliny. P r í k l a d o m t a k é h o t o p r í p a d u sú medvede a bobuľovi té plodiny. Z toho
vyplýva , že vzťah dravec-korisť sa d á nazvať aj ako vzťah p roducen t - spo t r eb i t e ľ . Jeden z na
jskorš ích a zá roveň na jvýznamne j š í ch modelov, k t o r ý pop í sa l tento vzťah je Lotka-Vol te r ra
model. Je to nel ineárny, m a t e m a t i c k ý model, k t o r ý sa vzťahuje na všeobecných dravcov a
korist i . Tak t iež t vo r í zák lad pre mnoho ďalších v ý s k u m o v aj mimo š t ú d i e populác i í .

Zhlukovanie alebo zhromažďovan ie je p r i r odzený jav. Je to výs ledok sp rávan ia k a ž d é h o
organizmu za loženého na l oká lnom v n í m a n í . K ý m správan ie celej skupiny sa j av í ako or
ganizované , jedince sa chovajú chaoticky a nep redv ída t eľne . C . Reynolds pop í sa l t a k é t o
chovanie v jeho modely boids. Je za ložený na abstraktnom v n í m a n í a troch p rav id lách
chovania. Ich kombinác i a spôsob í k o m p l e x n é a v ý p o č t o v o p r í s t u p n é zhromažďovac ie sprá
vanie.

P r v ý m cieľom tejto p r á c e je a n a l ý z a s y s t é m o v dravec-korisť . Z tohto d ô v o d u sa p r á c a
z a o b e r á d ô k l a d n o u diskusiou skoršie s p o m e n u t é h o Lotka-Vol te r ra modelu. J e d n á sa o ne
l ineárny, m a t e m a t i c k ý model, k t o r ý obsahuje všeobecné dravce a korist i , p r i č o m predpok
l adá nekonečnú potravu pre korist i . M o d e l p r e d p o k l a d á cykl ický vzťah populác i í , k torý ,
avšak závisí len od p r v o t n é h o stavu. A k by nastal akýkoľvek ex t e rný podnet, cyklický
vzťah by sa zmeni l bez možnos t i n á v r a t u k p ô v o d n é m u . Teda stabi l i ta modelu je s l abá a
jeho výs ledky sú o t á z n e . Napriek tomu bo l z á k l a d o m pre mnoho ďalších v ý s k u m o v . Ďalej
je s p o m e n u t á a l t e r n a t í v a modelu Lotka-Vol te r ra s n á z v o m Holl ing-Tanner. Tento model je
opäť vy jad rený matematicky a t ak t i e ž sa z o b e r á s v šeobecnými by tosťami , avšak obsahuje
väčšie m n o ž s t v o parametrov. M o d e l je s p o m e n u t ý len okrajovo s k r á t k y m p o r o v n a n í m .

Ďa l š ím cieľom je diskusia rôznych spôsobov i m p l e m e n t á c i e modelov dravec-korisť . Z
tohto d ô v o d u p r á c a obsahuje všeobecný postup modelovania, k t o r ý je p r ezen tovaný ako
m n o ž i n a krokov. Ďalej sú p o p í s a n é t r i špecifické modelovacie p r í s t upy : m a t e m a t i c k é mod
elovanie, b u n k o v é automaty a modelovanie za ložené na agentoch. S p o m e n u t é kroky m o ž n o
aplikovať na akýkoľvek p r í s t u p , keďže p r í s t u p sa vzťahuje na vyjadrenie a r ep rezen t ác iu
myšl ienok, prvkov a vzťahov v modeli .

Výs ledkom p r á c e je ap l ikác ia s p u s t i t e l n á v p reh l i adač i . Vďaka n á s t r o j u Electron.js je
s p u s t i t e l n á aj pr iamo v p r o s t r e d í o p e r a č n é h o s y s t é m u . N a i m p l e m e n t á c i u bol i využ i t é rôzne
m o d e r n é n á s t r o j e ako Node.js, React.js alebo JavaScript s rozš í ren ím TypeScr ip t . Apl ikác ia
je s c h o p n á simulovať a vizualizovať model dravec-korisť , p o n ú k a ovládac ie p rvky s imulácie ,
umožňu je p a r a m e t r i z á c i u s imuláci í , obsahuje preddef inované šab lóny parametrov a zbiera
a prezentuje š t a t i s t i cké informácie . R e l e v a n t n é informácie a dôs ledky m o ž n o vyťažiť z ap
likácie behom m i n ú t . I m p l e m e n t o v a n ý model obsahuje t r i bytosti : dravce, korist i a potravu
koris t í . Teda vzťah p r o d u c e n t - s p o t r e b i t e ľ sa v modeli n a c h á d z a d v a k r á t . Dôlež i té schop
nosti dravcov a kor is t í sú starnutie, hladovanie, reprodukcia a m u t á c i a . K o r i s t i sú okrem
t ý c h t o schopné aj zhlukovania za loženého na modely boids. By tos t i ex is tu jú v dvojrozmer
nom priestore.

Preddef inované šab lóny bol i s imulované a výs ledky sú k r á t k o z h r n u t é . Dôlež i tý výs ledok
je, že zhlukovanie zlepšilo p o p u l á c i u kor is t í , avšak n e č a k a n ý m s p ô s o b o m . Zlepšnie m o ž n o
nájsť v pomere dravcov a kor is t í . Bez zhlukovania mať s t ab i lný stav z n a m e n á mať asi tro
j n á s o b n e viac kor is t í ako dravcov. Zhlukovanie vylepši lo pomer na pr ib l ižne š t v o r n á s o b o k .
Je to pravdepodobne s p ô s o b e n é m e n š í m rozptylom kor is t í v priestore, a teda je nižš ia šanca ,
že ich dravec ná jde . Ďalš í z au j ímavý výs ledok m o ž n o pozorovať s povolenou m u t á c i o u . V
tomto p r í p a d e bol i popu lác i e najviac chaot ické . Cykl ický vzťah m o ž n o pozorovať aj p r i
n i ek to rých vlastnostiach by tos t í .

Z apl ikácie m o ž n o vyťažiť m n o ž s t v o už i točných informáci í a vyvodiť z nich dôsledky.
Napriek tomu je veľký p o t e n c i á l na ďalšiu p r á c u . Nakoniec, p r á c a obsahuje n a v r h o v a n é
vylepšenia , ako n a p r í k l a d modelovanie pohlavia, zmena z dvoj na t r o j r o z m e r n ý priestor a
ďalšie.

Predator-Prey Simulation in JavaScript

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of D r . Ing. Pe t r Peringer. I have listed a l l the l i terary sources,
publications, and other sources, which were used during the preparation of this thesis.

Jozef M e r y
Ju ly 28, 2020

Acknowledgements
I would like to thank my supervisor D r . Ing. Pe t r Peringer for his numerous ideas, advice,
and help. They helped me greatly w i t h the creation of this thesis. Next , I would like to
thank a l l developers who make their software available free of charge for everyone. Wi thou t
them, an applicat ion like this would be impossible.

Contents

1 Introduction 3

2 Mode l ing and simulation 4
2.1 Fundamental concepts 4
2.2 Mode l ing process 5
2.3 Different methods of modeling 7
2.4 Predator-Prey models 10

3 Boids and entity physics models 13
3.1 Boids model 13
3.2 Physics and locomotion 18

4 Designing the application 21
4.1 Formulat ing the problem 21
4.2 Designing the model 22
4.3 User interface design 25

5 Implementation description 26
5.1 Ut i l i zed technologies and tools 26
5.2 Implemented model description 29
5.3 Quad-tree opt imizat ion 33
5.4 Simulat ion visual izat ion 34

6 Results of simulations and suggested improvements 36
6.1 Scenario 1 - The need for predation 36
6.2 Scenario 2 - Contro l l ing prey populat ion wi th food 37
6.3 Scenario 3 - Absence of flocking 37
6.4 Scenario 4 - Presence of flocking 38
6.5 Scenario 5 - M u t a t i n g towards ideal properties 39
6.6 Summary of results 41

6.7 Suggested improvements and future work 41

7 Conclusions 43

Bibl iography 44

A Project overview and useful guides 47
A . l Project structure overview 47
A . 2 Bu i ld ing and running the applicat ion 48

1

A . 3 App l i ca t ion compat ibi l i ty and availabil i ty 50

B Contents of attached D V D 51

2

Chapter 1

Introduction

In recent years, various scientific disciplines increasingly uti l ize modeling and simulation.
Mode l ing and simulat ion are essential tools that allow studying a vast number of problems,
allowing a better understanding of our world. Such problems include traffic opt imizat ion,
weather forecast, analysis of market dynamics, or populat ion studies. Th is thesis focuses
on the populat ion dynamics i n a predator-prey model combined wi th C. Reynolds's boids
flocking model.

The basic ideas of any predator-prey model are that it contains two distinct, opposing
organisms: predators and preys, and that predators consume preys. One of the earliest
predator-prey models is the Lotka-Volterra model. It is a simple non-linear mathematical
model, which became the basis for many other studies i n the field of populat ion dynamics,
and i n others as well . [12]

F lock ing or swarming is a common phenomenon i n nature. It is the result of the behavior
of every ind iv idua l organism based on its local perception. W h i l e the group's behavior
as a whole seems to be organized, individuals behave chaotically and unpredictably. C.
Reynolds described such behavior i n his boids model. The boids model is based on three
simple locomotion rules and an abstract perception model. [17]

The result of this thesis w i l l be a browser-based applicat ion capable of visualizing the
simulation of a predator-prey model. Enti t ies or organisms w i l l be generic and their sig
nature capabilities w i l l include flocking and mutation. The applicat ion w i l l allow loading
and customizing pre-loaded settings, and w i l l also gather and present statistical information
about the entities. A l l the pre-loaded model settings w i l l be simulated, and their results
briefly evaluated.

The text of this thesis is d ivided into mult iple logical units. Chapter 2 provides the
fundamental ideas of modeling and simulation, defines the process of modeling and model
iteration, provides different methods of modeling w i th example use cases, and discusses
two specific mathematical predator-prey models. Cont inuing wi th the theoretical base,
chapter 3 discusses the boids model i n detai l . Another model discussed in chapter 3 is
a physics and locomotion model, which is required by the boids model for fulfilling the
flocking rules and other objectives. The initial design for the resulting applicat ion can be
found i n chapter 4. It contains the modeled problem formulation, defines the important
elements and their connections, proposes element representation using a class diagram, and
provides a simple user interface mockup. Next , chapter 5 lists the most important tools
ut i l ized during development, contains a thorough description of the implemented model, and
presents visualization results. Results of simulations wi th various settings, and proposals
for possible improvements and future work are discussed i n chapter 6.

3

Chapter 2

Modeling and simulation

The following chapter describes the basic idea of modeling and simulation, discusses why
it is an essential tool , defines the process of modeling and model iteration, presents vari
ous methods of modeling, and lists practical examples of problems solvable using modeling
and simulat ion. The Lotka-Volterra and the Hoiling-Tanner mathematical predator-prey
models are also discussed.

2.1 Fundamental concepts

Let us discuss the fundamental ideas of modeling and simulat ion before we dive deeper into
specific modeling methods.

The fundamental idea of modeling is creating a model that is an intentionally simplified
representation of reality. This simplification is also referred to as abstraction. Because the
world we live i n is very complicated wi th many moving parts and variables, the goal of
abstraction is to a id understanding a smal l piece of it by removing some of the variables,
while keeping those, whose impact on a system we wish to study. In this context, a system
is the abstraction of reality containing various entities that can act on the system, thus
changing its state. [15]

After modeling comes simulation, which is the execution of a given model or „ p u t t i n g
it into mot ion" . The simulation's goal is to closely reproduce a real system's behavior while
possibly producing varying results for different inputs. Simulat ion results are observations
of impacts on the system wi th changing inputs, or predictions about how the system's real
counterpart w i l l evolve. Acqui red results can be compared wi th the real system to improve
the model and its accuracy. The process of improving the model is referred to as model
iteration or calibration, which can sometimes uti l ize historical data. Enabled by today's
very powerful computer systems, s imulat ion is a potent and essential tool that allows us to
understand better the world we live in , anticipate the outcome of our actions, and discover
connections i n a complex system. [15]

Due to computers capable of simulations emerging only in the 20th century, s imulat ion is
a relatively new field of research. The earliest examples of simulations come from technical
fields, such as s imulat ing a building's s t ructural integrity. W i t h the rapid growth of com
put ing power i n recent years, simulations are now applicable to more complex and diverse
problems. More data is available, it is possible to process it better and more accurately,
and better visualizat ion techniques are available. Use cases include weather forecasts, traffic
simulations, and entity interactions, which is an important part of this thesis. [15]

4

2.2 Modeling process

Model ing is the creation of a simplified and inaccurate representation of reality. The fol
lowing section discusses the process of modeling. The process refers to steps or phases that
result in a model.

Despite various existing techniques, the basic idea of modeling can be divided into six
phases [15]:

1. formulating the problem (see 2.2.1)

2. designing the model (see 2.2.2)

3. implementing the model (see 2.2.3)

4. verification and validation (see 2.2.4)

5. simulation and analysis (see 2.2.5)

6. processing the results and formulating answers (see 2.2.6)

2.2.1 F o r m u l a t i n g the p r o b l e m

„The scientific mind does not so much provide the right answers as ask the right
questions." (Claude Levi-Strauss)

The basic principle of modeling is to model a problem, not a system. W h a t ends up being
modeled is, in fact, a system. This principle refers to the usability of a model. Therefore
in this phase, we ask the question: „ W h a t problem is the model a t tempting to solve and
what questions need to be answered?". We attempt to formulate the problem as precisely
as possible, choose the model time domain, and consider the available resources, such as
t ime and finances. [15]

A s an example, let us consider the problem of aircraft flight modeling. There are
many possible approaches to formulating this problem, each resulting i n drastically different
models. One of the possibilities is to model a single specific flight scenario that would
attempt to answer how a real aircraft would behave under various conditions. The essential
elements of such a model could include the power of aircraft engines and the current weather
conditions. The t ime-domain for this model could be minutes, hours, or days at most. A
completely different possibil i ty of formulation could be the modeling of expected aircraft
lifespan. In this model, the essential elements could be usage and maintenance intervals.
The t ime-domain could, i n this case, be weeks, months, or even years.

2.2.2 D e s i g n i n g the m o d e l

In the early stages of model design, we attempt to keep the model very simple by abstracting
away details and adding them later as necessary. We define the most significant modeled
elements. These elements collectively define what the model is going to consider. Another
consideration we have to make is in what detail we are going to model and represent each
element. Next , we define the connections between ind iv idua l elements focusing on the
relationship rather than how exactly are said elements related. [15]

To continue wi th the aircraft flight model, let us assume we formulated the problem
as a specific flight scenario modeling. Essential modeled elements could include modeling
various physical forces, weather, fuel type, fuel quality, or engines' power. After defining

5

these elements, we have to decide on the details of their representations. D o we represent the
engines as a single number, or do we consider its effectiveness, various types (jet, propeller),
size, or other parameters? We proceed to define the ind iv idua l element connections. In this
example, the engine effectiveness could be related to the fuel type and quality.

2.2.3 I m p l e m e n t i n g the m o d e l

In this step, we choose the right tool for the job. Possibilities include existing applica
tions like MATLAB1 or wr i t ing a suitable program from scratch, possibly u t i l iz ing existing
libraries or other tools. [15]

We then define the representation of ind iv idua l modeled elements. For a computational
model to be usable, we must define a l l the properties and connections of every element in
the model, including the input parameters. These can be chosen based on observations,
historical data, estimating, or even randomly. [15]

Cont inuing w i t h the flight model example, in this step, we would accurately define the
representation of each element we designed wi th a l l their connections. We could define the
relation between engine effectiveness and fuel quali ty using an equation.

2.2.4 Ver i f i ca t ion a n d va l idat ion

W h e n the implementat ion is finished, we have to determine whether the model is suitable
for answering the original question. Validation is the process of confirming that the model
reflects the behavior of the real system. [15]

Verification is the process of confirming that the implementat ion does what we expect
to or confirming that the implementat ion reflects the abstract model's behavior [15]. In
our example, verification could be an observation that engine effectiveness decreases wi th
lower-quality fuel.

W h i l e verification can be done using well-defined steps, validation is much more difficult.
The fundamental problem wi th models is that they are always faulty and can never entirely
accurately reflect reality. Because of this, val idat ion is often subjective and is based on
usability rather than accuracy. [15]

2.2.5 S i m u l a t i o n a n d analysis

After we created a model we deem suitable, we analyze i t . Analyzing is based on the specific
problem, but it usually means finding the role of each element i n the model, finding the
most impactful element, and learning how the model behavior changes w i th varying inputs.
[15]

We could analyze the aircraft flight s imulat ion by asking the following questions:

• How does the weather affect flight stabil i ty?

• How does the traveling speed affect fuel consumption?

• How does the traveling speed affect the aircraft turning radius?

• W h a t is the relation between air density and fuel consumption?
x h t t p s : //www.mathworks.com/products/matlab.html

G

http://www.mathworks.com/products/matlab.html

2.2.6 P r o c e s s i n g the results a n d formula t ing answers

We study the results gained from the simulat ion analysis, and we attempt to answer the
original questions. Mode l ing is an iterative process - i f needed, we return to previous steps
to possibly improve the model and its results. [15]

2.3 Different methods of modeling

Not a l l problems can be modeled well w i th a part icular modeling method. Due to the
populari ty of modeling, many different modeling methods were invented, greatly increasing
applicabili ty. Th is section presents a non-exhaustive list of different modeling methods w i th
their respective properties and possible use cases. The modeling steps mentioned in section
2.2 can be applied to any of the methods.

2.3.1 M a t h e m a t i c a l m o d e l i n g

Mathematical modeling is an example of the „ t o p - t o - b o t t o m " modeling approach that fo
cuses on the whole system's structure and quantity summaries w i th explicitly defined feed
back [14].

Mathemat ica l modeling is based on the following principles [14]:

• The state of the system is expressed w i t h state variables, whose summary represents
certain information, such as the number of ind iv idua l organisms, temperature, or
currency exchange rate.

• The system behavior is defined using equations that contain the state variables. These
equations define how the variables change in either discrete or continuous t ime.

There are two options for solving mathematical models [14]:

• Exact mathematical analysis leading to a generic solution or to values for which the
behavior of the model stabilizes.

• Numerical method that begins w i th certain in i t i a l variable values and determines the
behavior using numerical calculations (simulation).

Equations that define the variable value changes in discrete t ime are referred to as recurrence
relations. They define the state of variables in t ime t + 1 based on previous variable states
in the t ime interval 0 to t. If the variables states in t ime t = 0 are known, it is possible to
calculate their state i n t ime t € iV using substitution. [14]

W h e n it is not pract ical ly possible to divide t ime into discrete steps, differential equa
tions express the change or difference (hence the name differential) of state i n t ime t.
Simpler differential equations allow analytical solving, resulting i n an exact solution, while
complex ones can be solved using numerical methods w i th reduced accuracy. Numer ica l
methods are based on time discretization. [14]

Examples of problems solvable using mathematical modeling include solidification and
melting, population dynamics, or even tumor growth. [14]

7

2.3.2 C e l l u l a r a u t o m a t o n based m o d e l i n g

Cellular automata are discrete and dynamic systems based on a regular grid. In theoretical
analysis, the gr id is considered infinite, but it has to be finite i n a computer simulation.
Every unit i n the gr id is an identical cell, which is in one of a finite number of states.
The dynamics i n a cellular automaton are based on an ind iv idua l cell's neighborhood (usual
neighborhoods are i l lustrated in figure 2.1) and a finite set of fixed rules shared by a l l cells.
[20]

In computer simulations, the set of rules has to include edge-case rules defining the
behavior of cells on the edge of the grid [13].

1. Empty 2. Von Neumann 3. Moore 4 ^Moa™" 5. Extended

Figure 2.1: Different neighborhood options i n cellular automata. Based on figure from
article [3], edited.

The state of cells changes i n discrete t ime steps meaning that updat ing is done on every
cell simultaneously. In practice, this usually means that a state snapshot is required every
update cycle, based on which every cell updates its state. [13]

Cel lular automata £1X6 ct CctSG of emergent behavior systems because the cells themselves
do not contain explicit information about the system's behavior. The system's behavior
does not depend on its elements, but the element relationships. Because of this, the behavior
of the system cannot be predicted by examining its elements. [9]

Example uses of cellular automatons include traffic modeling, musical composition,
spreading of a disease, crystallization, pattern emergence modeling, and others [22] [13].
Perhaps the most famous cellular automaton model is called the Game of life created by
John H. Conway. Despite very simple rules 2 , the model is able to produce exceptionally
complex patters and behavior (examples of stable patters shown i n figure 2.2).

• • • • • • • • • • • • • • • • •
• _ _ •

Curiae fliiverleaf RarnmerneaH
(Still Life) fOscillfitfir'l (Spaceship)

1
(Spaceship)

Figure 2.2: Examples of stable patterns in Conway's Game of life. Taken from article [8].

2 h t t p s : //en. wikipedia.org/wiki/Conway7.27s_Game_of _ L i f e#Rules

8

http://wikipedia.org/wiki/Conway7.27s_Game_of

2.3.3 A g e n t - b a s e d m o d e l i n g

Agent-based modeling and simulation (A B M S) is a new approach to modeling that has
gained popular i ty i n recent years. Th is increase i n popular i ty is caused by the increasing
complexity of problems that require analyzing and solving using modeling and simulation,
its broad spectrum of applicability, and the rapid growth of computational power. A B M S
also allows the modeling and simulat ion of systems that were previously too complex. [6]

A n agent-based model (A B M) is most commonly made up of ind iv idua l units - agents.
W h i l e a strict definition for an agent does not exist, in the context of A B M S , agents are usu
ally defined as discrete, heterogeneous, and dynamic subjects. Agents are also autonomous
and self-directed - they can make decisions on their own based on their environment and
interactions wi th other local agents. Agents usually store information about their resources,
such as health, energy, or others. Agents have behavior rules or goals that define how they
interact w i th each other and make decisions, possibly considering their resources. It may
also be possible for agents to learn. They may be able to adapt and adjust their behavior
based on previous experiences. [6]

A necessary part of an agent-based model is randomness and heterogeneity. Agent-
based models require agent diversity, which can mean different types of agents or attribute
diversity among individuals . A n example of different types of agents is predators and preys,
while at tr ibute diversity may be a varying life expectancy value. A n A B M usually contains
a large number of agents wi th simple behavior rather than a smal l amount w i th complex
behavior. [13]

Agents may exist i n an environment. It can have its parameters and behavior or interact
wi th agents. In a computat ional model, the environment must be finite. The environment
is usually modeled as one of the following [13]:

• Euclidean geometry, which is usually up to 3D. In a finite Euclidean geometry, agents
are usually wrapped around the edges.

• Regular grid, s imilar to cellular automata (see 2.3.2). The important difference is that
A B M s are heterogeneous as opposed to homogeneous.

• Chart, which is useful when the emphasis is on the connection between agents and
their physical location is insignificant.

• Point, when a l l agents are i n a single location, possibly interacting w i t h any other
agent.

Similar to cellular automata (see 2.3.2), agent-based models (A B M s) may also exhibit emer
gent behavior. Simple, deterministic rules may cause the emergence of various sustainable
patterns. Emergent behavior may have implications on the development and interpreta
tion of A B M s , because it may be present i n more complex models representing real-world
phenomena. [6]

Prac t ica l examples of A B M applications include analyzing the spread of epidemics, un
derstanding the human body, studying consumer behavior, or improving supply chains [11].
A s another example of an A B M , figure 2.3 presents the visual izat ion of Thomas Schelling's
(1971) segregation model;''. The top figure shows the in i t i a l configuration, and the bo t tom
figures are different results based on the similarity threshold.

3 h t t p : / / n i f t y , stanford.edu/2014/mccown-schelling-model-segregation/

9

http://stanford.edu/2014/mccown-schelling-model-

15% Threshold 30% Threshold 75% Threshold

Figure 2.3: Example of an A B M applicat ion. Taken from article [4].

2.4 Predator-Prey models

The essential elements i n a predator-prey model are two opposing organisms: predators
and preys. The relationship between these two organisms is that they exist i n the same
environment, the predators consume preys, and opposingly, the preys are consumed by
predators. This relationship forms the behavioral basis of predator-prey models. Foxes
and rabbits are an intuit ive example of an imal predators and preys, but the same concept
also applies to plants: bears and berries. Predator-prey models often model evolution
or mutation. The predators are evolving their properties that are increasing their prey
consumption rate. O n the other hand, preys are evolving whatever is necessary to prevent
being eaten by the predators. The main goal of predator-prey models is to understand the
fluctuations in the respective populations. [12]

In the following section, the Lotka-Volterra model is described i n detail , and a more
sophisticated alternative is briefly discussed, the Hoiling-Tanner model.

2.4.1 L o t k a - V o l t e r r a m o d e l

A n early and basic yet significant predator-prey model is called the Lotka- Volterra model,
named after I tal ian mathematician Vito Volterra and Amer i can chemist Alfred Lotka, who
worked on the model simultaneously, but independently i n the second decade of the 20th
century. It is said that Vol ter ra developed the model idea based on the observations of
Adriatic fishing fleets. [12]

Let N(t) be the prey population and P(t) be the predator population in t ime t. Assuming
the preys have infinite food, the Lotka-Vol te r ra populat ion model is described wi th the
following differential equations [2]:

d ^ = N(t)(r-aP(t)), (2.1)

dP(t)
dt

P(t) (caN(t) - q) (2.2)

10

Equations 2.1 and 2.2 have the following parameters [2]:

• r - prey growth rate

• a - predator hunt ing/at tack rate

• c - predator efficiency at turning food into offspring

• q - predator morta l i ty rate

l / A 111 •,v"1 'H-lR represent the instantaneous growth rates of populations. and
dt a n a dt

Equations 2.1 and 2.2 have the following implications [2]:

• W i t h the absence of preys, the populat ion of predators is expected to reduce expo
nentially as described i n equation 2.2:

dP(t)
dt

-P(t)q

W i t h the absence of predators, the populat ion of preys is expected to grow exponen
tially as described i n equation 2.1:

dN(t)
dt

N(t)r

• Predators cause prey populat ion reduction as described by the —N(t)aP(t) member
in equation 2.1.

• Preys cause predator populat ion promotion as described by the P(t)caN(t) member
in equation 2.2.

A s i l lustrated i n figure 2.4, the Lotka-Vol te r ra model predicts a cyclical population relation
ship. W h e n the predators have abundant food resources (there is a large number of preys in
their environment), their populat ion thrives - they can survive and reproduce; thus, their
numbers grow. W i t h the growth of the predator populat ion comes the reduction of the
prey populat ion lowering predator sustainability, causing their starvation - the predator
populat ion diminishes. L o w predator populat ion numbers allow the thriving of preys, and
wi th that, the cycle is complete and repeats.

Figure 2.4: Hypothe t ica l cycl ica l populat ion relationship predicted by the Lotka-Vol te r ra
model. Taken from [2].

The cyclical equilibria are present i n the continuous-time version of the model . The re
spective populat ion numbers at any given t ime are based on the in i t i a l state (assuming

11

no external s t imuli) . They oscillate wi th in a closed range indefinitely, centered around the
interior steady-state, creating a closed orbit . These closed orbits, however, are only weakly
stable. A n y external stimulus changes the internal steady state without the possibil i ty of
returning to the previous one on its own; thus, the Lotka-Vol te r ra model is structurally
instable. Weak stabil i ty questions the robustness of predictions made by the model . The
cycl ical equil ibria are not present i n the discrete-time version of the model i n which the
orbits spiral outward instead of being closed. [10]

A more complex yet similar pattern to the one in figure 2.4 is observable i n figure 2.5.
The populat ion numbers present an approximat ion of a real predator-prey relationship, as
they are based on pelt purchases, which is an indirect measure. A n assumption can be made
according to which the pelt purchase numbers are directly related to the actual respective
populations.

Figure 2.5: A n indirect measure of predation based on pelt purchases. Taken from [7].

2.4.2 H o l l i n g - T a n n e r m o d e l

The earliest model describing the populat ion dynamics i n a predator-prey relationship is the
Lotka-Volterra model (see 2.4.1). Th is model pioneered the research of interacting species.
However, its usabil i ty is questionable. A modification or an improvement over the Lo tka -
Vol ter ra model is the Holling-Tanner model. It also models predators and preys as generic
entities, but it has addi t ional parameters. For example, the populations are affected by the
environment they live i n or the prey's quality.

Let N(t) be the prey population and P(t) be the predator population i n t ime t. The
Holl ing-Tanner model is described wi th the following differential equations [21]:

dN(t)
dt

rN(t) (1
N(t)^ mN(t)P(t)

]~ A + N(t) ' K

dP(t)
sP(t) (1

P{t)

(2.3)

(2.4)
dt " K~ hN(t)n

where r is the prey growth rate, K represents the carrying capacity of prey or the max imum
number of prey that can be sustained by the environment, m is the maximum number of
prey consumed by individual predators in a t ime unit , A is the number of preys required to
achieve half of the maximum rate m, s represents the predator growth rate, and h is the
measure of food quality provided to the predators (abstract quali ty of prey, which may refer
to size, nutr i t ional quality, or other properties). [21]

12

Chapter 3

Boids and entity physics models

Flocks, schools, herds, or other group behaviors are made up of discrete entities, and yet
the overall group motion seems fluid and synchronized, creating a beautiful and puzzl ing
visual result. Despite the seemingly complex behavior, it is believed that it is the aggregate
result of each entity interacting wi th its own perceived part of the world. [17]

Flocking is used throughout this thesis to describe a grouping behavior. Other terms
exist that describe the same idea for different species.

This chapter groups together the boids model and a simple entity physics and locomotion
model. Despite sharing the author, they are usable independently. They are grouped in
this chapter as the boids model requires entity physics and goal achieving ability. The boids
model, discussed i n section 3.1, aims to efficiently describe flocking behavior w i th a set of
simple rules or goals, and an abstract perception model. Entity physics, locomotion, and
achieving goals are discussed i n section 3.2.

3.1 Boids model

The following section is devoted to the boids model. It discusses its requirements, three
fundamental behavior rules, and an abstract perception model.

The boids model was invented by Craig Reynolds in 1987. It was inspired by birds ' social
behavior, hence the name boids {bird-oids or bird-like objects). The base for the boids model
is a geometric flight ability, which refers to motion along a path: a dynamic, incremental,
rigid geometrical transformation in space. W h i l e i n real flight, turning and movement
happen continuously and simultaneously, an incremental geometric flight is only a discrete
approximation of real flight. A n i m a t i n g discrete geometric flight requires incrementing the
motion at least once every frame. [17]

Na tu ra l flocks consist of two opposing, balanced behaviors: collision avoidance and
staying close to the flock. Col l i s ion avoidance is a reasonably obvious desire to prevent
damage w i th in the flock. However, the desire to stay close to the flock seems to be the result
of the following factors: protection from predators and survival, social behavior w i th in the
flock, and better chances of feeding. These factors could be further condensed to survival
and the ability to reproduce. Na tu ra l flocks have seemingly no upper limit to the number
of members due to each flock member basing its behavior on a local flock around itself, or
i n other words, a l imi ted number of other closest flockmates. [17]

13

Simulated flocks require a model that supports geometric flight and the following simple
rules, whose combination results in a complex flocking behavior l isted in order w i th decreas
ing precedence [17]:

• separation (3.1.1) - avoiding collision wi th local flockmates

• alignment (3.1.2) - adjusting velocity to match average of local flockmates

• cohesion (3.1.3) - steering to average posit ion of local flockmates

Every rule mentions local flockmates that are discussed i n subsection 3.1.4.

3.1.1 S e p a r a t i o n behav ior rule

Col l i s ion avoidance or separation urges the boids to steer away from each other to prevent
impact creating a natural , safe distance between ind iv idua l boids. Separation and alignment
(see 3.1.2) are complementary, and together they enable safe flight wi th in the flock's interior.
Separation is based only on the position of other local flockmates (see 3.1.4), ignoring the
velocity. The resulting separation force magnitude is inversely proportional to the distance
of other boids, urging them to steer away from each other more, the closer they are. [17]

Algorithm 1 describes how to calculate the desired velocity for separation. It takes
data structures as inputs that allow retrieving various information about the boid, such as
posit ion and velocity. Self is the data structure of the boid for which the separation force
is being calculated and PerceivedBoids (see 3.1.4) is a set of perceived boid data structures.
Steering towards the desired calculated velocity {separation) is described i n subsection
3.2.2.

A l g o r i t h m 1: D E S I R E D V E L O C I T Y F O R S E P A R A T I O N

Input: Self, PerceivedBoids
Output: separation
total = 0

ownPosition = position(Self)
foreach boid in PerceivedBoids do

otherPosition = position(boid)

dist = euclidianDist(otherPosition, ownPosition)

diff = ownPosition — otherPosition

scaled = p

total = total + scaled
end foreach
N = count(PerceivedBoids)
if N > 0 then

average =
return average

end if
return 0

Figure 3.1 illustrates the separation behavior rule i n two dimensions. The grey area rep
resents the green (focused) boid's perception i n a circle centered on its origin. In this

14

i l lustrat ion, the perception angle is not considered, equivalent to it being 360 degrees. The
green lines can be interpreted as vectors (facing the green boid), which the bo id considers
for separation calculations. Other (blue) boids outside the perception circle are missing the
green lines; therefore, they are not considered. The result of this rule is i l lustrated as a
red arrow, which represents the desired velocity vector. Us ing the desired velocity vector is
described i n subsection 3.2.2.

Figure 3.1: Separation based on the posit ion of other perceived boids i n two dimensions.
Taken from [16].

3.1.2 A l i g n m e n t behav ior rule

Thanks to alignment, ind iv idua l boids tend to have similar velocity angles and magnitudes,
enabling the flock to travel i n the same direction. A s mentioned i n subsection 3.1.1, align
ment and separation are complementary. W h i l e separation forces a safe distance between
ind iv idua l boids, alignment helps maintain i t , because i f flockmates have a similar speed and
direction, collision is less likely. Calcula t ing the alignment force is based on the arithmetic
mean velocity of other local flockmates (see 3.1.4). [17]

Algorithm 2 describes how to calculate the desired velocity for alignment w i th Perceived-
Boids (see 3.1.4) being a set of perceived boid data structures that allow retrieving informa
t ion about ind iv idua l boids. Steering towards the desired calculated velocity {alignment)
is described in subsection 3.2.2.

A l g o r i t h m 2: D E S I R E D V E L O C I T Y F O R A L I G N M E N T

4

2

1

Input: PerceivedBoids
Output: alignment
total = 0
foreach boid in PerceivedBoids do

otherV elocity = velocity(boid)

5

1: total = total + otherV elocity
end foreach
N = count(PerceivedBoids)

7: if N >0 then

8: average = t-g^L

l i

10:

9: return average
end if
return 0

15

Figure 3.2: Al ignment rule i l lustrat ion in two dimensions. Taken from [16].

Figure 3.2 depicts the alignment behavior in two-dimensional space. The focused boid, for
which the rule is i l lustrated, is colored green. The grey circle represents the focused boid's
perception. In this example, perception is based only on a radius, while the angle is not
considered. E a c h perceived boid, colored blue, has a blue line - their respective velocities.
The focused bo id has a green and a blue line representing the current and desired velocity,
respectively. The red arrow represents the acceleration vector. Acqu i r ing and using the
acceleration vector is described i n subsection 3.2.2.

3.1.3 C o h e s i o n behav ior rule

Cohesion causes ind iv idua l boids to steer towards the center of the flock. Due to l imited
boid perception, it refers to the local center. W h i l e deep inside a flock w i t h a mostly
homogeneous populat ion around it, this force becomes very small , because the bo id is
already very close to the local center. O n the other hand, when a bo id is on the boundary
of the flock, the cohesion force becomes much more prominent and deflects the boid's path
towards the local center. Cohesion also enables flock splitting to prevent coll ision w i t h an
object in the environment. Spl i t t ing is enabled by limited boid perception and absence of
an explicitly designated flock leader. If the bo id can stay close to the local flock, it does not
care about the rest steering away. For determining the local flock center, it is required to
calculate the arithmetic mean position of other local flockmates. [17]

Algorithm 3 describes how to calculate the center of the local flock for cohesion. It takes
data structures as inputs that allow retrieving various information about the boid, such as
posit ion and velocity. Self is the data structure of the bo id for which the center posit ion is
being calculated and PerceivedBoids (see 3.1.4) is a set of perceived bo id data structures.
Steering towards the calculated posit ion (cohesion) is described in subsection 3.2.3.

Figure 3.3: Cohesion rule causing steering towards the local center. Taken from [16].

16

A l g o r i t h m 3: A V E R A G E P O S I T I O N F O R C O H E S I O N

2

1

Input: Self, PerceivedBoids
Output: cohesion
total = 0
foreach boid in PerceivedBoids do

otherPosition = position(boid)

5

1: total = total + otherPosition
end foreach
N = count(PerceivedBoids)

7: if N > 0 then

I):
8: average =

return average

11

10: end if
return position(Self)

A n i l lustrat ion of the cohesion behavior rule is visible i n figure 3.3. It is i l lustrated for the
green boid . The perception area for the green boid is represented as the grey circle. The
essential element is the green point, the average location of other perceived boids (colored
blue, inside the grey circle). The red arrow represents the desired velocity vector. Using
the desired velocity vector is discussed i n subsection 3.2.2.

3.1.4 B o i d p e r c e p t i o n

Rather than s imulat ing real an imal senses, the boids model tries to expose a similar amount
of information to the behavioral model as is available to real animals based on their senses.
G i v i n g every bo id complete information about its surroundings is unrealistic, and it would
lead to mistakes in the behavior of the model . In an early version of the model, a central
force model was used, which led to undesired behavior. It caused a l l members of a flock
to converge towards the center even when scattered far apart simultaneously. This early
model led to the conclusion that flocking is based on a limited, local area. [17]

The neighborhood or the local flock of each boid is defined as a spherical zone centered
around the boid, inside of which it can sense other boids. The magnitude of sensitivity
is the inverse exponential of the distance because real animals tend to be more influenced
more by other animals that are closer. A possible improvement is to exaggerate the field of
sensitivity in the boid's forward direction by an amount proport ional to the boid's speed.
W h i l e in motion, increased awareness of what is ahead is required. [17]

In a software program that implements the boids model, a bo id has available informa
t ion about every boid, including itself. Thus simulat ing perception is merely filtering out
redundant information based on some rules for every ind iv idua l boid . One of the rules
should usually be removing itself from the perceived set because the flocking behavior is
based on others. [17]

The perception of a bo id i n two dimensions is i l lustrated i n figure 3.4. A boid can sense
other entities wi th in the area outl ined by the dashed lines and curves. A n angle and a radius
define the perception area. The radius is calculated from the boid's origin point, and the
perception angle represents the whole field of view. For correct angle interpretation, it is
required to add half of it i n both directions starting from the angle of velocity.

17

Angle S
t

Velocity
« — - 4 -

Figure 3.4: Abst rac t symmetr ical perception of a bo id i n two dimensions.

3.2 Physics and locomotion

The behavior rules listed in section 3.1 listed the „wha t " , while this section describes the
„how". Specifically, a basic physics model enabling locomotion, steering or applying steering
requests to entities, making entities steer towards a target (seek a target), and combining
multiple steering requests.

Despite sharing the author, these models are not directly related to the boids model
and are usable on their own.

3.2.1 B a s i c physics m o d e l

For al lowing any mot ion i n a model, a basic physics model is required. The following model
is based on point mass approximation. It is intended to encompass a wide range of moving
entities on which it can be applied. Thanks to its s implic i ty and generality, it is also
computationally feasible. [18]

Each physicalized entity in this model is defined by a position vector, a velocity vector, a
mass scalar, a maximum force scalar, and a maximum speed scalar property. The max imum
force and speed are abstract summaries of various locomotion limitations. The number of
vector components must be greater than or equal to the number of dimensions of the
environment entities exist i n . [18]

The physics in this model is based on forward Euler integration. A t each simulation
step, physics is calculated using the following formula for each physicalized entity [18]:

steering _f or ce = limit (steering _force, max_force)
acceleration = steering_f orce / mass
velocity = limit (velocity + acceleration, max_speed)
position = position + velocity

The behavioral model may request steering represented as a steering_f orce vector. Th is
force has its magnitude limited by the max_f orce scalar value. Acceleration is calculated
by dividing the steering_f orce w i t h the mass. Next , the velocity is updated based on the
acceleration and limited by the max_speed. F ina l ly , the position is updated based on the
new velocity.

3.2.2 S teer ing m o d e l

A steering request is usually the result of a behavioral model . A steering request can be
defined as a request to change velocity to a different velocity. A n instantaneous change in

18

velocity would result i n an unrealistic looking motion. It would also introduce mistakes to
the entity locomotion model . Therefore, change in velocity is modeled as a steering force,
allowing a smooth transi t ion from current to the desired velocity. Such steering force can be
expressed as a vector and may be passed to the physics model (see 3.2.1), which transforms
it into acceleration. The behavioral model may often produce multiple steering requests,
which would need to be combined into one (see 3.2.4), before passing to the physics model.
Calcula t ing the steering force is based on the following formula (illustrated i n figure 3.5)
[18]:

steering _ force = desired _velocity — current_velocity

This formula allows an unrealistic infinite steering force, possibly bel i t t l ing any other steer
ing/acceleration request. A n improved formula limits every ind iv idua l steering force, which
can improve merging mult iple steering forces [19]:

steering_force = limit(desired_velocity — current_velocity, max_force),

where max_force is a scalar defining the m a x i m u m magnitude of each steering_f orce
vector.

Figure 3.5: V i s u a l representation of steering calculation without l imi ta t ion . Taken from
[19].

3.2.3 Seeking m o d e l

Seeking urges an entity to steer towards a part icular target or point i n space by adjusting
its velocity to align w i th the target. The seeking force is not diminished even when the
target is close, meaning that the entity w i l l fly over it at some point. [18]

The seeking abi l i ty is based on steering. The desired velocity, in this CctS6, IS cl vector
point ing from the bo id to the target. It can be calculated using the following formula [18]:

desired _velocity = target — current _position

The result can be used to steer towards the desired velocity using the formula described in
subsection 3.2.2.

Seeking w i th a l imi ted desired velocity magnitude is depicted i n figure 3.6. The effect
of varying maximum force magnitudes on a trajectory is shown i n figure 3.7. The left figure
shows the effect of a higher m a x i m u m force, al igning the entity's velocity towards the target
quicker. The figure on the right depicts the result of a lower m a x i m u m force. The entity
is able to align its velocity w i t h the target after significantly slowing down, resulting i n a

19

spiral trajectory. A significant slow down happens when the target is almost behind the
entity.

•en = max speed

desired velocity
target

vehicle

Figure 3.6: I l lustrat ion of seeking wi th a l imi ted desired velocity. Taken from [19].

Figure 3.7: Effect of various m a x i m u m force magnitudes on steering. Taken from [19].

3.2.4 C o m b i n i n g a set of s teering forces

The result of every entity movement rule is a different isolated behavior expressed as a
steering request. The navigational module of each entity has to combine these requests,
which includes resolving conflicts. C. Reynolds proposes two different options for combining
forces [17]:

1. averaging - the easiest way to combine mult iple acceleration forces is to average them.
Because every request has a certain magnitude, the result is a weighted average. Th is
approach works reasonably well but might not be sufficient dur ing critical situations.
The problem is w i th the lack of decision making about which force is to be accepted
and discarded. Some forces might be canceled out when they are i n approximately
opposite directions. Th is indecision can lead to cr i t ica l errors.

2. force accumulation - this approach is based on strict acceleration request ordering.
Every request is considered in priority order and is added into an accumulator un t i l
the sum of magnitudes is less than a m a x i m u m acceleration value. Thanks to this
in cr i t ica l situations, only the most essential requests are considered. For example,
this would allow a bo id to temporari ly ignore the urge to flock and leave the flock to
prevent collision wi th an obstacle.

There are several other, more sophisticated techniques for decision making, such as expert
systems1 i n artificial intelligence [17]. However, discussing such techniques is beyond the
scope of this thesis.

x h t t p s : //en.wikipedia.org/wiki/Expert_system

path with high max force path with low max force

20

http://wikipedia.org/wiki/Expert_system

Chapter 4

Designing the application

The following chapter is an overview of the application design. I present the initial, m in ima l
design based on the first two steps of the modeling process (see 2.2). In section 4.1, I define
the purpose of the model, and the questions that the model is meant to answer (1. step of the
modeling process). Next , in section 4.2, I list the bare min imum, most essential elements
that are meant to express the idea of the model . I also define the element representations
using a class diagram and describe the connections between them (2. step of the modeling
process). F ina l ly , in section 4.3,1 present a basic, simple user interface mockup that contains
the required elements and can show everything mentioned in previous sections.

4.1 Formulating the problem

In the following section, I attempt to capture the model's fundamental idea, define the
questions that are meant to be answered by the model, and formulate the problem as
precisely as possible.

The assignment has two ma in requirements for the implementat ion. One of them is visual
ization, which is discussed i n section 4.3. The other is the predator-prey model s imulation
(see 2.4) combined wi th the boids model (see 3). The model also needs to be flexible enough
to allow simulat ing different scenarios and produce different results. W h a t problems are
to be solved or what observations are to be made are not specifically defined in the assign
ment. The idea behind predator-prey models is usually s tudying the respective populations.
If we mix in the boid model's flocking behavior, the idea of the model becomes clear. The
questions that the model is supposed to answer could be:

• How does flocking affect the respective populations?

• How does the lack of flocking affect the respective populations?

• How is one population affected with the complete lack of the other?

• How are the populations affected with varying perception parameters?

To summarize, this list is not exhaustive. The questions are usually, but not necessarily,
related to the effect of flocking on the respective populations. Other questions include how
a certain property affects the populations. The important element found i n every question
is the population. Therefore a more general question that captures the essence of the model
is:

21

How does X affect the respective populations?.

Because we wish to study populations, the t ime domain for this model is many multiples
of the expected life durat ion of a single entity. We are not modeling any specific real
organisms; therefore, the t ime domain cannot be expressed wi th specific t ime units.

The spatial domain is a plane, meaning that the world is defined by two dimensions.
A two-dimensional domain is more of a design decision than a requirement. It also makes
implementation and visualizat ion simpler.

4.2 Designing the model

In this section, I present a model design that should be able to answer the questions men
tioned in section 4.1. In subsection 4.2.1, I list the most significant elements and their
behavior. I describe the proposed representation of these elements in subsection 4.2.2 using
a class diagram.

4.2.1 D e f i n i n g the m o d e l e lements

The most viable approach to modeling the ideas discussed i n section 4.1 is an agent-based
model (see 2.3.3). Thus, the most important elements in the model are agents (entities),
agents' behavior, and the agent environment. In an agent-based predator-prey model, there
are two important entities: predators and prey. The entity behavior is the result of two
separate models: the predator-prey model and the boids model. Th is behavior can also
be expressed as simpler behavior models (sub-models). The following list defines the sub
models for the boids model:

• A 2D geometric flight model (see 3.1) that allows the entities to move in the v i r tua l
space. For enabling physics and geometric flight, every ind iv idua l entity needs to
know its position, and velocity represented by vectors (see 3.2.1). Enti t ies also need
to be able to respond to the passing of t ime, which means they need to be able to
update these vector values based on elapsed time, creating the i l lusion of continuous
movement.

• Steering (see 3.2.2) and seeking (see 3.2.3) enabling entities to achieve goals, such as
flocking.

• Behavior rules: separation (see 3.1.1), alignment (see 3.1.2), and cohesion (see 3.1.3).
Combin ing these rules give the entities the abi l i ty to form a flock.

• Because flocking rules are based on other entities, a fundamental requirement becomes
perception (see 3.1.4). A simple 2D perception model requires a perception radius and
a perception angle.

The requirements for a predator-prey behavioral model can be broken down into the following
sub-models:

• One of the basic ideas of a predator-prey model is that predators consume preys. For
enabling this behavior, a simple hunger model is required, including keeping track of
the current hunger and change in hunger for every ind iv idua l entity.

22

• For a hunger model to make sense, a health model is required. W h e n a predator
consumes prey, the prey is killed. The model assumes that the v i r tua l environment
contains some food for the prey. Thanks to this, the prey are fed randomly based on
an interval. Us ing this model also enables starvation of entities when there is a lack
of food. For modeling health, ind iv idua l entities need to keep track of their current
health and health delta. The decrease i n health by the health delta value occurs when
an entity goes below a certain hunger threshold representing starvation. In contrast,
entities regain health when above a different hunger threshold representing a healing
ability when adequately fed. A health model also enables determining whether an
entity is alive or dead. W h e n dead, it is removed from the v i r tua l environment.

• One of the fundamental goals of life is reproduction. Because predators consume preys,
they require prey reproduction. Otherwise, they would starve to death after eating a l l
the in i t i a l prey. A straightforward reproduction model requires a reproduction interval
and a current progress property. Th is model is quite abstracted because it does not
involve a mating process or the idea of gender.

• W h e n a predator wants to consume prey, it has to seek it and then „ touch i t" or
collide w i th i t . For enabling collision, an entity has to take up some space. A simple
collision model only requires a position and a collision radius resulting in a circular
area occupied by the entity. Determining collision in this model is s imply a matter of
comparing the distance between the two positions wi th the sum of the two collision
radii. If the distance is less than or equal to the sum of radi i , the entities collided.

Most of the listed sub-models are depending on the passing of time. In a computer simula
t ion, this can be approximated by repeatedly re-calculating (updating) the necessary values
as rapidly as possible. Thus in each update cycle, delta values (health delta, hunger delta,
and others) need to be adjusted w i t h respect to the elapsed t ime. W i t h this approach, the
delta values are independent of the applicat ion frame rate.

The environment in this model is rather simple. It has the following behavior:

• Feeding prey on a random basis, which is the abstraction of containing prey food.

• Removing dead entities from the environment, which is the abstraction of natural
decomposition.

The environment also has to be l imi ted to a finite area. For intuit ive and simple visualiza
t ion, a square area should be sufficient.

4.2.2 E l e m e n t representat ion a n d connec t ion design

Based on the ind iv idua l models discussed i n subsection 4.2.1,1 designed classes that contain
the required information and functionality. Because the environment is modeled as a plane,
vector types i n both classes are appended w i t h 2D, meaning they contain two components.

The Context class (as seen i n figure 4.1) holds a l l entities and information about the
v i r tua l environment. It allows adding entities, clearing all entities to possibly set up a
new simulation, modifying the virtual area, and also provides statistical data about their
respective counts. It also contains two update methods:

• The drawAll method that s imply displays a l l the entities registered i n the context
using the draw method of the Entity class.

23

• The updateAll method that updates every entity in the context by delegating the
updat ing to ind iv idua l entities and cal l ing their update method. This method provides
the random prey feeding mechanism too. Because entities do not know the context
they belong to, updateAll is also responsible for filtering out dead entities. The
updat ing is based on a time delta to make sure updat ing is based on actual elapsed
time rather than the applicat ion frame rate.

The applicat ion would also require a system that creates the Context instance, provide an
update loop, calls the Context update methods, and provide a timing system. Th i s system
is an implementat ion detai l and is not relevant to the model.

Entity

-health: float
-healthDelta: float
- hunger: float
- hungerDelta: float
- reproduction: float
- reproductionlnterval: float
- position: vector2D
- velocity: vector2D
- acceleration: vector2D
- maxSpeed: float
- maxForce: float
- perceived: Entity[]
- perception Angle: float
- perceptionRadiws: float

- draw(): void
- updateftimeDelta: float.

contest: Context): void
-killQ: void
- isAlivei;: boolean
- collide(conte*t: Context): void
- reproduced: void
- steer[desired: vector2D): void
- seek*position: vector2D): void

5

- preys: Prey[]
- predators: Predatorf
- area: vector2D

- addEntity{) void
- clearEntitiesO: void
- getEntitlesO" EntitylJ
- setAreaO: void
- getArea(): vector2D
- drawAII{): void
- updateAII(timeDelta: float): void
- predatorCount[): int
- ;re, CCL n : nt

Prey Predator

+• align{): void
+• coihere[): void
+ separatee): void
+ evadePredatorsQ: void

+• seeKPreyQ: void +• align{): void
+• coihere[): void
+ separatee): void
+ evadePredatorsQ: void

Figure 4.1: Class diagram proposing the representation and functionality of entities and
their environment (context).

The Entity class (illustrated i n figure 4.1) represents a physicalized, movable being. W i t h a
basic physics model i n mind , it holds a position vector, a velocity vector, and maxSpeed and
maxForce scalars. In my model , the mass of entities is not modeled (it is always equal to
one), and therefore there is no mass class member. A n acceleration vector is also present to
make it available i n mult iple methods if needed. Besides being physicalized, the entities are
also modeled to be alive. Therefore, they hold information about their health, hunger, and
their respective deltas. Furthermore, they are able to reproduce and thus hold information
about the current reproduction progress and the reproduction interval. Enti t ies also need
to be able to sense other entities. The sensing area is defined by the perception radius and
angle properties. The perceived property represents a cache of perceived entities for a given
update cycle. The most important methods of the Entity class are the update, draw, and
isAlive methods. They are called by the Context in every update cycle. The other methods
are present for expressing functionality and improving decomposition. The update method
is responsible for invoking other update methods (such as collide) and changing the state
of the entity or context based on the elapsed t ime and the context. The draw method
is straightforward - it visualizes the entity. The isAlive method s imply states whether an
entity instance should remain in the context.

24

The Predator and Prey classes inherit from Entity class, adding their own required func
tionality, such as flocking present only i n the Prey class.

4.3 User interface design

In this section, I present the applicat ion user interface design. The purpose of the interface
is to visualize the s imulat ion in real-time, set up a s imulat ion wi th different settings, control
the simulation, and display gathered statistical results.

The user interface mockup consists of the following elements (visible in figure 4.2):

1. A simulation real-time rendering displaying entities (rendering figure is based on [5]).

2. Simulation control and display elements that enable pausing/resuming the simulation,
allow controll ing the s imulat ion speed, and display the current speed.

3. Setup elements that enable loading specific pre-loaded scenarios and their customiza
t ion for both entity types individual ly.

4. A chart displaying the number of predators and preys respectively over a certain
period. This element also allows exporting/saving this chart, making it uti l izable
outside the applicat ion. Char t figure is taken from [2].

To summarize, there are no elements for closing or minimizing the appl icat ion as those
are provided by the browser the appl icat ion runs in . The interface is also designed to take
up a l l the available space in the browser window. Unless the browser window is too small ,
vert ical or horizontal scrolling is unnecessary to reveal parts of the interface. The placement
of ind iv idua l elements is simple and straightforward. A s there are not too many elements,
a l l are visible at a l l times. D u r i n g the mockup design, function was chosen over form.

y » v v v V v _ r y y
y y v v Y v
r * •

V v r

 y

ri:al
hunger

I nerval

Figure 4.2: A simple and minimal is t ic appl icat ion user interface mockup.

25

Chapter 5

Implementation description

In this chapter, I provide an overview of the utilized technologies and a selection of the most
significant libraries, a thorough implemented model description, and visualization results.

5.1 Ut i l ized technologies and tools

This section contains a non-exhaustive list of the most significant tools that I ut i l ized to
develop the applicat ion. I provide a short introduction to every mentioned technology,
and how or why I decided to use i t . It is meant to viewed as a list of the most important
bui lding blocks that can be used i n a similar application or an introduct ion to the application
architecture.

5.1.1 N o d e . j s a n d N P M tools

Node.js1 is a JavaScript runtime environment that enables execution of JavaScript code
without a browser. Node.js itself has a very simple role i n this implementation: running a
simple server that serves the client. Node.js also provides a package manager tool called
Node Package Manager (N P M) , which, on the other hand, was very significant for the
development of this applicat ion. N P M provides a huge repository2 of various libraries,
scripts, and tools that make developing JavaScript applications very compelling.

I ut i l ized N P M for managing a l l project dependencies and running various scripts, such
as bui ld ing the applicat ion (building and running the applicat ion is described in appendix
A .2) , or bootstrapping a React.js applicat ion from a template (see 5.1.2). To create a
Node.js project managed by N P M , use the following command i n the desired project direc
tory, and fill out the requested information:

npm init

A n alternative to N P M is Yarn3, which can be faster i n some situations enabled by better
ut i l iza t ion of available system resources.

x h t t p s : //www.node js.org/
https: //www.npmj s.com/

3 h t t p s : //www.yarnpkg.com/

26

http://www.node
http://js.org/
http://www.npmj
http://www.yarnpkg.com/

5.1.2 React . j s c o m p o n e n t l i b r a r y

React.js is a l ibrary for creating isolated, reusable, dynamic components. React.js enables
creating dynamic single-page applications that do not require reloading to display changes.
It includes component state management, which is immutable, meaning that state updates
are done using a callback function that creates an updated copy of the original state.
React.js detects changes i n state, and applies them to the DOM (document object model)
only if needed.

I used React to create state components that manage and provide their state to visual
izat ion components, and visualization components that display a certain state by modifying
the D O M . I bootstrapped the client applicat ion using the create-react-app command line
tool w i th the following command:

npx create-react-app client --template typescript

where the client argument represents the name of the project directory. The resulting
application supports type checking provided by Typescript, and JSX7. J S X is a language
extension that enables HTML-like declarative syntax for component creation. To create an
application without typescript support, omit the —template typescript arguments.

Note: The command is cal l ing a program called npx , which is an N P M package for
executing package binaries. W h e n using npx, always the latest version of create-react-app
is being used.

I also ut i l ized a React-based component l ibrary called MaterialUL9, which provided
most of the user interface components, such as buttons, icons, and menus.

5.1.3 T y p e S c r i p t language extens ion

JavaScript is a dynamically typed, interpreted language. W h i l e this allows great code ar
chitecture flexibility, it also means there is massive potential for type-based errors during
runtime.

Typescript10 is an essential development tool that extends the language by adding type
information al lowing a static code analysis preventing a vast number of potential crashes
during runtime. The Typescript compiler provides the type checking mechanism and also
removes the type information by transpiling11 it to pla in JavaScript. Therefore, the re
sulting code does not contain any computational overhead added by TypeScr ip t . Another
benefit is that an integrated development environment w i th TypeScr ip t support can provide
better suggestions based on types.

5.1.4 R e d u x . j s , R e d u x T o o l k i t , a n d state management

In short, Redux.js12 is a state management library. In contrast w i th React, it is responsible
for managing one, application-wide state. Redux by itself requires a lot of boilerplate code1A.

4 h t t p s : //www.react j s.org/
5 h t t p s : //en. wikipedia.org/wiki/Document_Object_Model
6 h t t p s : //www.create-react-app.dev
7 h t t p s : //www.w3schools.com/react/react_j sx.asp
8 h t t p s : //www.npmj s.com/package/npx
9 h t t p s : //www.material-ui.com/

1 0 h t t p s : //www.typescriptlang.org/
n h t t p s : //en. wikipedia.org/wiki/Source-to-source_compiler
1 2 h t t p s : //redux.js. org/
1 3 h t t p s : //en. wikipedia.org/wiki/Boilerplate_code

27

http://www.react
http://wikipedia.org/wiki/Document_Object_Model
http://www.create-react-app.dev
http://www.w3schools.com/react/react_j
http://www.npmj
http://www.material-ui.com/
http://www.typescriptlang.org/
http://wikipedia.org/wiki/Source-to-source_compiler
http://wikipedia.org/wiki/Boilerplate_code

Instead of pla in Redux, I used an opinionated l ibrary buil t on top of Redux called Redux
Toolkit11. It provides utili t ies for usual Redux use-cases, significantly reducing boilerplate
code and making the resulting code easier to read and much more maintainable. Redux
Toolki t also allows updat ing the state in a seemingly mutable-like fashion by u t i l iz ing Im-
mer.js15 under the hood.

In Redux, any state changes or updates are defined by actions (F lux Standard A c t i o n 1 6) .
A n action defines what should happen, not how. Ini t ia t ing an action is done by dispatching,
which is usually the result of a user action or an interval callback. Requested actions are
then processed by the reducer, which has to create a copy of the state, modify the copy, and
return the modified copy. F ina l ly , a l l subscribed components are notified about the state
changes and are updated. The described flow is i l lustrated i n figure 5.1.

The state i n my applicat ion can be divided into two categories:

• Global application state containing various settings that do not change very often, such
as the area dimensions, current s imulat ion speed, hotkey sequences, or the currently
selected language. For the management of this state, I used Redux Toolkit.

• Simulation state containing a l l the entity instances. T h i s state is managed using Re-
act's context API1', and because it changes very often, updat ing is done i n a mutable
fashion for performance reasons. For the P5.js renderer, this is acceptable because
it redraws the scene every frame, and thus it queries the current state every frame
and does not require to be notified of changes. O n the other hand, React.js compo
nents that display parts of the simulation state require a force updating mechanism
that forces them to query the current state and display it without being notified of
changes based on state immutability.

To summarize, I ut i l ized Redux Toolkit to manage the global application state that does not
change too often.

Figure 5.1: Redux.js state update flowchart. Taken from [1].

https: //redux-toolkit.js.org/
'https: //immer j s.github.io/immer
'https://www.github.com/redux-utilities/flux-standard-action
https: //www.react j s.org/docs/context.html

28

http://edux-toolkit.js.org/
https://www.github.com/redux-utilities/flux-standard-action
http://www.react

5.1.5 P5. js m u l t i - m e d i a l i b r a r y

P5.js1H is a creative mult i -media library. It includes drawing tools, transformations, color
manipulat ion, D O M manipulat ion, input handling, various u t i l i ty functions, and m o r e 1 9 .
It focuses on ease-of-use and accessibility. It also provides an interactive web editor20.

I u t i l ized P5.js for the simulation rendering i n real-time. The simulat ion is drawn on
an HTML canvas element. P5.js provides the loop mechanism, which is the basis for a l l
drawing and updat ing wi th in the applicat ion. It also provides a Vector class, which I used
for physics and locomotion calculations.

5.2 Implemented model description

In this section, I describe the implemented model. A s a whole, the model is complex and
best described in terms of its parts (sub-models) and connections between them.

The implemented model is based on the agent-based modeling approach (see 2.3.3).
Therefore, the essential elements i n the model are agents and their environment. In the
design phase, I propose having two distinct generic entities: predators and preys. The final
model, however, contains generic predators, preys, and also prey food.

Prey food is a very simple entity. Its own behavior is aging only. It is able to respond
to the passing of time and die when a specified m a x i m u m age has been reached. Its related
behavior is feeding prey and collision with prey. W h e n a prey wants to eat and collides
wi th a food entity, the food entity is killed. Th is behavior is specified as related because
the preys provide the collision and feeding mechanisms. The food entity does not do any
collision calculations, nor does it direct ly interact w i th other entities. I added the food
entity to make the visual izat ion of the simulat ion more interesting, and the movement of
prey more complex. The food entity is also a direct replacement for the random prey feeding
mechanism provided by the environment proposed in design.

Before discussing the specifics of predators and preys, I describe their shared properties.
B o t h entity types need to abi l i ty to move. Therefore, I implemented a custom physics and
locomotion model based on the models discussed i n section 3.2. Enti t ies store their position,
velocity, and acceleration vectors. The locomotion is l imi ted by three properties: maximum
magnitude for each ind iv idua l acceleration request, maximum acceleration angle, and target
speed. A n important part of the implemented physics and locomotion model is the abi l i ty to
steer and seek. Therefore i n every update iteration, the behavioral model of entities may ask
the physics and locomotion model to steer or seek a target. Each of these requests has its
magnitude limited by the maximum force magnitude. Mul t i p l e requests are combined using
the averaging method discussed i n subsection 3.2.4. Th is method is simpler to implement,
and it is sufficient for this model, as there are no obstacles. Next , the combined result has its
angle limited to a maximum acceleration angle relative to the velocity. Angle l imi ta t ion is
one of the custom features of the physics model . It improves flocking and fleeing, especially
when entities are heading towards each other. In that case, the acceleration request is in
the opposite direction of the velocity and would cause a slow-down only and no turning.
After the angle l imi ta t ion , comes a custom acceleration request to regain speed. It is based
on the following formula:

1 8 h t t p s : //www.p5 js.org
1 9 h t t p s : //www.p5 js.org/reference/
2 0 h t t p s : //editor.p5js.org/

29

http://www.p5
http://js.org
http://www.p5
http://js.org/refer
http://p5js.org/

target_magnitude = target_speed — magnitude{velocity)
adjustment = normalize{velocity) * target_magnitude
adjustment_j'actor = 1 — (abs(angle(adjustment, acceleration)) / PI)
adjustment = adjustment * adjustment_f actor
acceleration = acceleration + adjustment

The speed adjustment acceleration request has a direction based on the current velocity
and its magnitude based on the difference between the target and current speed. For
enabling steering, the speed adjustment needs to happen only when no steering is required
represented by the adjustment factor. The adjustment factor is inversely proportional to
the angle between the adjustment and acceleration vectors. Th is speed adjustment abi l i ty
is required because behavioral rules may often cause a slow-down. In an early version of the
model, entities would often slow down or stop entirely. Occasionally, the entities may also
exceed the target speed. In that case, the formula causes a slow-down. W i t h this custom
request, the acceleration calculat ion is finished. For finishing the physics calculation, the
velocity vector is updated based on the acceleration and has its magnitude limited to a
maximum speed scalar. The m a x i m u m speed is not an explicit property, and it is based on
the target speed. The m a x i m u m speed calculation is currently hard-coded and is 10% higher
than the target speed. Differentiating between a target and a m a x i m u m speed allows the
entities to travel slightly faster than usual introducing diversity and complexion. F ina l ly ,
the position is updated based on the limited velocity. A l l the mentioned calculations happen
every update cycle for both predators and preys based on the elapsed t ime. In addit ion,
the entities store the calculation results i n temporary draft properties. W i t h this approach,
each entity bases its update on other entities from the same time step. After each entity
is updated, the draft properties are wr i t ten to the actual properties. Th is approach comes
wi th a computational overhead, but it is necessary to prevent mistakes i n the physics and
locomotion model . A l l physics calculations are floating-point based. Therefore, floating
point errors are possible, but they are ignored in this implementat ion. There are available
techniques to prevent such errors, but they come w i t h an overhead, and no such techniques
were implemented. The mass of entities is not modeled i n the current implementat ion (the
physics model assumes that the mass of a l l entities is normalized to 1).

Next , bo th entity types are modeled as living organisms. Therefore, I modeled their
health, hunger, age, reproduction, and mutation. The hunger model adds current hunger,
hunger delta, and eating threshold properties to each entity. A l l values are expressed as
percentages instead of specific values. W i t h time, the current hunger s imply decreases by
the hunger delta value. The eating threshold defines the percentage of current hunger,
below which the entity attempts to eat, preventing excessive overeating. W h e n the entity
wants to eat, it asks the locomotion model to steer towards the closest perceived food
entity. The current hunger property modifies the force of steering towards the food entity.
Increasing the current hunger after eating is specific to each type and is discussed later.
The health model introduces a current health property and a health delta property. Aga in ,
both of them are expressed i n terms of percentages rather than specific values. A n entity is
alive when its health percentage is greater than zero. W h e n zero, the entity is considered
dead. Changes i n current health happen i n three situations:

1. starvation - health decreases by the health delta value if the entity's hunger percentage
is 0%

30

2. healing - health increases by the health delta value if the hunger percentage of the
entity is greater than 50%

3. getting eaten - when an entity eats its food, the food is killed without the possibil i ty
of healing (applies to predators eating preys, and preys eating food)

The healing and starvation thresholds are hard-coded i n the current implementation. One
of the obvious missing models in the design is the age model. It requires keeping track of
the current age and the maximum age for each entity expressed as properties. The aging is
not influenced by any other property. W h e n the current age reaches the m a x i m u m age, the
entity dies. In nature, to be alive means to have a specific set of functioning parts or organs.
Therefore, a l iv ing organism's m a x i m u m age is not defined by an arbi trary value. A s organs
or similar concepts are not modeled, the maximum age property is an abstraction of said
concepts. F ina l ly , the reproduction model is crucial for the v i r tua l ecosystem balance. In
the current implementation, reproduction is quite abstract, meaning that gender or mating
is not modeled. It is based on two properties: the current reproduction progress and the
maximum reproduction interval. F i r s t , the entity needs to be i n the required age. The
required age for reproduction is between 25% and 75% of the m a x i m u m age. Next , the
progress counter is incremented based on the following formula:

reproduction_progress_delta = time_delta * (1 + (hunger / 50%))

W h e n an entity is starving, it is s t i l l able to reproduce, hence the m a x i m u m reproduction
interval property. W h e n well-fed, it may reproduce up to three times faster. The mentioned
formula is quite abstract and somewhat arbitrary, but it introduces much-needed variety.
Final ly , when the progress reaches the m a x i m u m interval, and both health and hunger per
centages are over 80%, exactly one new entity of the same type is added to the environment
close to the parent. W h e n the new entity is generated, most of its properties are based on
the parent w i th intentional mistakes. These mistakes are referred to as mutations. The
mutated properties need to be clamped to reasonable values. For example, angles are always
between 0 and 360 degrees. Dur ing testing without the clamping, the entities eventually
developed the abi l i ty of negative hunger delta. Therefore, they „a te" only wi th the passing
of t ime. Even though this model is very simple, its impact on the model behavior is im
mense and subjectively exciting. The model does not contain an explicit scoring system for
various properties of any k ind . „Good" and „bad" property values are defined only by the
entity's abi l i ty to survive and reproduce, and thus, pass its properties to the next generation.
This process is referred to as natural selection, also described by the Darwinism theory21.

Another component of the entity model is the collision model. The collision model is
made up of two parts. Par t one is the collision w i t h the area boundary. It is based on the
origin point of the entity - the posit ion property. W h e n an entity would leave the area (or
its origin point is outside the area), it is instead s imply wrapped around to the opposite end.
Par t two of the collision model is the collision of entities. It is based on the origin point
and an arbitrary hard-coded collision radius. Thus, entities take up a circular collision area.
Predators and preys have a collision radius of 20 units, and the entity food has 10. It is
somewhat based on the actual drawings of the entities. Querying collision i n this model is
merely finding the distance between the two entity origin points in question and comparing
it to the sum of the two collision radi i . If the distance is smaller or equal, the entities
touched or collided. The collision is considered only i n the producer-consumer relationship

2 1 h t t p s : //en.wikipedia.org/wiki/Darwinism

31

http://wikipedia.org/wiki/Darwinism

(predators collide w i th prey and prey collide w i th prey food). Furthermore, the coll ision is
used only during eating. Therefore, when an entity has its current hunger percentage above
the eating threshold, collision is not considered. Enti t ies of the same type could also collide,
but it could make the flocking behavior more of a problem than a benefit. Furthermore,
real entities exist i n three spatial dimensions and can partially overlap when projected to
two dimensions.

The final shared component of the two entity types is the vicinity and perception model.
The vic in i ty is based on the origin point and the higher value between the perception and
collision radius. The v ic in i ty serves as an entity subset for any calculations involving other
entities. W h i l e the perception radius value is higher i n most cases, it is possible to have an
entity incapable of perceiving beyond its collision. Ca lcu la t ing the vic in i ty subset is based
on the same principle as collision - comparing distances. Perception is based on the entity
origin point, radius, and angle. Perceiving based on the radius is, again, based on the same
principle as the coll ision. The perception angle defines the whole angle of perception. H a l f
of the perception angle spans i n both directions relative to the velocity angle. Thus, entities
have symmetrical perception relative to their heading (visible i n figure 3.4).

The only specific behavior of the predators is the feeding model. W h e n a predator eats
prey, its current hunger percentage is set to 100%.

Preys have three addi t ional behaviors. W h e n feeding, they consider flock mates in their
vicini ty. W h e n a prey eats and its v ic in i ty has no other preys, its hunger percentage is set
to 100%. O n the other hand, when its v ic in i ty has preys, the eating prey has its hunger
percentage increased by 50%. The remaining 50% is equally shared between a l l the other
preys i n the vicini ty. Th is behavior is the abstraction of improved odds of feeding i n a flock.
A s the hunger model is direct ly t ied to the reproduction model, food sharing also improves
the odds of reproduction i n a flock. Wi thou t this abstraction, the preys at the back of
the flock would be at a disadvantage, as preys that are i n front of the flock have a much
higher l ikel ihood of coll iding w i t h the food entities, effectively causing starvation at the
back. Thanks to this behavior, flocking is more appealing.

Next , preys have the abi l i ty to form flocks. The flocking behavior is based on C.
Reynolds's boids model (see 3.1). Each of the three behavior rules has an associated modifier
value. The modifier values may mutate, enabling the observation of flocking importance over
time, caused by natural selection.

Final ly , preys are able to flee from perceived predators. The implementat ion of this
behavior is based on the separation rule defined in the boids model.

The last component of the model is the entity environment. It is modeled as a plane
and therefore defined by a width and a height property. It also keeps track of a l l the
entities in the model by storing their instances. It also contains a l l entities in the sense
of logical space. A s it stores instances, it can provide statistical information about their
respective properties. The environment enables setting up a simulation. Setup involves
clearing a l l previous entities, adding new ones, and resetting statistics. The environment
is also responsible for spawning prey food entities i n a random location. Furthermore, it is
responsible for clearing dead entities. A unique feature of the environment absent i n the
design is the entity regeneration ability. W h e n the number of entities of a part icular type
drop below a given threshold, the environment spawns new entities of said type based on
the in i t i a l parameters (all mutations are lost). A s the area is finite and relatively small ,
the extinction of an entity type is very l ikely at some point. Furthermore, as the parts of
the s imulat ion are based on randomness, finding population equilibrium is challenging and
not the focus of the applicat ion. W i t h this optional abstraction, the s imulat ion may go on

32

indefinitely i n a reasonable manner. The regeneration abi l i ty may also be used to spawn
the in i t i a l entities gradually.

5.3 Quad-tree optimization

One of the model's properties is that every entity may access any other entity, as a l l of
them are stored in the environment instance. Enti t ies that base their behavior on other
entities have to consider every entity i n the environment. Such behavior has quadratic
complexity: 0 (n 2) . In my model, when an entity considers another entity, it has to calculate
their distance and angle. Ca lcu la t ing the distance is based on the Pythagorean theorem22

containing the square root operation, which is relatively slow. In this section, I briefly
describe the quad-tree data structure used in the implementation, and I present the results.

A quad-tree is a data structure whose internal nodes have precisely four children. It
allows the divis ion of two-dimensional space by recursively subdividing it into quadrants.
The posit ion of entities in my model is defined by a point. Therefore, I used a point quad-tree
that bases the quadrants on points. The divided area causes a performance improvement.
W h e n looking up points i n a circle (defined by a point of interest and a radius), only the
points in intersected quadrants need to be considered, instead of a l l points. I used an existing
implementa t ion 2 3 that allows finding the closest node to a point wi th in a radius. I modified
the l ibrary by adding the abi l i ty to find all nodes wi th in a radius. The modification was
not implemented by me either, as it is a part of an unmerged pull request on the original
repository.

The impact of a quad-tree on the simulation performance is i l lustrated in figure 5.2.
Right and left figures show the FPS (frames per second) of simulations wi th and without
the quad-tree opt imizat ion, respectively. In both cases, there are 500 entities, as the
opt imizat ion is observable only wi th a higher number of entities. W i t h a deficient number
of entities, the s imulat ion may be faster without the quad-tree, as it comes wi th a slight
overhead. The quad-tree needs to be recreated every i terat ion as the entities are moving.
The current FPS, shown wi th red, may fluctuate due to implementat ion details and the
single-threaded nature of JavaScript . The v i t a l information is the average F P S . In this
specific case, the average F P S is more than doubled. Specific results can be influenced by
many factors, including hardware configurations, operating systems, browsers, and others.

Figure 5.2: Performance comparison without and wi th a quad-tree.

2 2 h t t p s : //en.wikipedia.org/wiki/Pythagorean_theorem
2 3Quad-tree implementation repository: https://github.com/d3/d3-quadtree

33

http://wikipedia.org/wiki/Pythagorean_theor
https://github.com/d3/d3-quadtree

5.4 Simulation visualization

A s the simulation visualization is one of the main goals of the applicat ion, I present figures
w i th the visualizat ion results i n this section.

9
• I
S i

Figure 5.3: Example of a s imulat ion visualizat ion.

Bp = H

m

V
I

>
AM

• i

tfffB
m

V
I

>
AM

• i

tfffB
•
i v • IK
1 1

• Mi ^

«k •1

m 11 mm
I H • m
H E • k

Figure 5.4: Visua l iza t ion of a se
lected entity's perception.

Figure 5.5: Par t of the user inter
face showing various properties of a
selected entity.

34

Visua l iza t ion of the entities is visible i n figure 5.3. The background of the figure represents
a part of the entity environment. Next , a regular grid is drawn to provide a sense of scale.
Note: The gr id cells are purely visual and are not part of the model . P rey food entities
are drawn as orange circles. The drawing opacity represents a visual indicator of the food
entity age. A s they age, their opacity decreases. F ina l ly , the predators and preys are drawn
as red and green triangles, respectively. A n optional visualizat ion of the quad-tree quadrants
is also present.

It is also possible to select a predator or prey (food entities are intentionally not se
lectable) by cl icking on them. Figure 5.4 depicts a highlighted entity shown in yellow
together w i th its perception area. Various properties of a selected entity are part of the
user interface (visible i n figure 5.5). Properties include position, health, hunger, velocity,
acceleration, and others. Hovering over any of the properties brings up a tool t ip w i th their
name.

35

Chapter 6

Results of simulations and
suggested improvements

The implemented applicat ion allows the loading of mult iple setting templates. Every tem
plate can be further customized. In the following chapter, a setting template is referred to
as a scenario. I simulated each of the pre-loaded scenarios, and in this chapter, I present
their results. The results are expressed wi th charts directly extracted from the applicat ion
and brief text descriptions. Mul t i p l e figures t ied to a specific scenario are always from the
same simulat ion. In the end, I provide a summary of a l l the results, and a list of suggested
improvements w i t h brief descriptions.

6.1 Scenario 1 - The need for predation

The following scenario presents the importance of predation. In this scenario, there are no
predators, and the preys have seemingly infinite food. The infinite food is achieved wi th
0% hunger delta and not w i th abundant food entities.

Figure 6.1: Exponent ia l prey populat ion growth caused by infinite food resources and the
lack of predators.

36

The in i t i a l number of preys is 10. After only 260 seconds, the number of preys rose to nearly
7000 (visible i n figure 6.1). A small , temporary decrease i n the populat ion may occur due
to the age model . W i t h this number of entities, the simulation gets very slow, and it is
not reasonable to continue. W h i l e this scenario is not very realistic, it quickly presents the
need for predators i n an environment. In a real situation, food can never be unl imited,
but it can be so abundant, we can consider it as such. A similar problem1 can be found in
Aus t ra l ia caused by rabbits and lack of their natural predators. Assuming unl imi ted food
resources, exponential prey populat ion growth is also one of the predict ions/ implicat ions
of the Lotka-Volterra model (see 2.4.1).

6.2 Scenario 2 - Controlling prey population with food

In my model, the predator-prey, or more generally, the producer-consumer relationship is
present twice. Predators consume preys, and preys consume prey food. The following
scenario demonstrates the latter.

Figure 6.2: Stable prey populat ion caused by l imi ted food resources only.

The result is presented in figure 6.2. Despite the complete lack of predators, the prey
populat ion stabilized after approximately 5 minutes. The stabi l izat ion is caused purely
by the l imi ted input of food entities. The populat ion can be considered stable despite the
slight oscil lation. The number of preys oscillates between -90 and -150 caused by the age
model and the random nature of the simulat ion. A s mutat ion is disabled i n this scenario,
the populat ion is expected remain i n this closed range indefinitely.

6.3 Scenario 3 - Absence of nocking

In this scenario, bo th predators and preys are present. F lock ing and mutat ion are entirely
disabled. The in i t i a l number of predators and preys is 5 and 30, respectively.

In the beginning, the prey populat ion grows exponentially, and after about three min
utes, it reaches an all-time high (presented in figure 6.3). A t this point, the prey populat ion

x h t t p s : //www.nat ionalgeographic.org/article/how-european-rabbits-took-over-australia/

37

http://www.nat
http://ionalgeographic.org/article/how-european-rabbits-took-over-australia/

is controlled mostly by the l imi ted food. In i t i a l ly the predators are struggling because they
have a hard t ime finding the preys as they are very scattered. A t this stage, the environment
regeneration is beneficial, as the simulation's in i t i a l state is usually the most challenging
to get right. After the preys reached a decent populat ion, predators can survive and re
produce. In this specific case, a visible predator populat ion promotion, and simultaneously
prey populat ion reduction, happened after about 5 minutes. The cycl ica l populat ion equi
libria are visible i n figure 6.4. Even without flocking, the populations can stabilize. In this
scenario, the steady-state is to have approximately 2 to 3 times more preys than predators.

6.4 Scenario 4 - Presence of nocking

The following scenario is nearly identical i n terms of its parameters to scenario 3 (see 6.3),
and the description of this scenario often references it for comparison. The cr i t ical difference
is the presence of flocking and its impact on the populations. E a c h of the flocking behavior
modifiers is set to 1.

The effect of flocking on the populations is somewhat unexpected. The first difference is
that the populat ion d id not reach an all-t ime high ini t ial ly, but after the predator populat ion
promotion (visible i n figure 6.5). Majo r predator populat ion promotion happens slightly
later, as preys are less scattered around the environment, and perceiving them is less likely.
Another effect of flocking is that the cycl ical populat ion equil ibria are more pronounced
(visible in figure 6.6). A t one point, the predator populat ion even managed to exceed the
prey populat ion. Perhaps to most interesting effect can be found i n the specific numbers of
entities. W i t h flocking enabled, the number of individuals i n both respective populations
is slightly lower. A t first sight, the flocking seems like bad or undesired behavior. However,
the improvement can be found i n the ratio. Wi thou t flocking, the steady-state is to have
about 2 to 3 times more preys than predators. In this case, it can be up to 4 times. Th is
improvement is l ikely the result of decreased odds of predators finding prey. In other words,
the gap between the red and green lines is bigger in figure 6.6 than i n figure 6.4.

Figure 6.3: Populat ions without
flocking at the beginning.

Figure 6.4: C y c l i c a l relationship
without flocking.

38

Figure 6.5: Populat ions w i t h flock
ing at the beginning.

Figure 6.6: C y c l i c a l relationship
wi th flocking.

6.5 Scenario 5 - Muta t ing towards ideal properties

The final scenario utilizes a l l the available abstractions present in the model . The most
crucial parameter i n this scenario is the 5% mutation for both predators and preys.

In this scenario, the populat ion numbers behaved the most chaotically (observable in
figure 6.7). A s predators and preys rapidly evolve or mutate together, the only steady
property i n this scenario seems to be chaos and change. A n indirect scoring system of a l l
properties i n my model is the natural selection. Figures 6.8 and 6.9 present a dramatic drop
i n average hunger delta and average separation modifier prey properties. These jumps hap
pen when the prey populat ion also significantly decreases. Therefore, the survivors shared
a common property that natural selection deemed better and more important for survival .
I present the average separation modifier specifically, as the other flocking modifiers d id not
change significantly and remained close to 1 throughout the simulat ion. Separation is the
force that prevents very dense groups, but it seems that dense grouping results i n better
survival chances. Next , figures 6.10 and 6.11 display the mutation of speed and maximum
age over t ime, respectively. The cycl ical relationship is present in the mutat ion of both
properties, l ikely caused by the simultaneous mutat ion of both types. Predators are evolv
ing the abi l i ty to hunt better, while preys are evolving to escape better. W h i l e the speed
tends to increase for both types, the m a x i m u m age seems to go down. Longevi ty seems
to be unimportant, l ikely caused by delayed reproduction. F ina l ly , figure 6.12 presents the
mutat ion of perception radius. W h i l e the perception radius values are always different, the
difference itself is almost constant. In other words, the two curves have very similar shapes.

39

Displayed property

Count

D

Q Preys: 246

702s 1187s 1743s 2335s 3157s

Figure 6.7: Popula t ion relationship
wi th 5% mutat ion.

Displayed pi operty

Average separation modifier »

•
Q Preys: 0.77

L 2 -

0.9-

0.6-

0 3

1022s 1578s 2173s 2823s 3590s

Figure 6.9: M u t a t i o n of average sep
aration modifier over time.

Displayed property

Average maximum age

D

Q Preys: 161.51

2178s 2827s 3426s 4035s 4836s

Figure 6.11: M u t a t i o n of max imum
age over t ime.

Displayed property

Average hunger delta -
D

Q Preys: 2.07

3.2 „ ^ >«w\A

1 6- 1
0.8-

0 962s 1467s 2073s 2727a 3456s

Figure 6.8: M u t a t i o n of average
hunger delta over time.

Displayed property

Average speed

D

Q Preys: 173.9

1425s 2019s 2646s 3263s 4007s

Figure 6.10: M u t a t i o n of average
speed over t ime.

Displayed property

Average perception radius •

Q

Q Preys: 212.37

2178s 2827s 3426s 4035a 4836s

Figure 6.12: M u t a t i o n of perception
radius over time.

40

6.6 Summary of results

To summarize, i n this chapter, I presented the results of different scenarios. Due to the
random nature of the simulation, obtaining similar results may not succeed on the first try.
I added the most relevant and interesting charts extracted direct ly from the applicat ion to
each scenario. However, the applicat ion gathers much more statist ical information allowing
additional studies.

In the design phase, I defined the problems that the model attempts to solve (see 4.1).
Studying any specific property is not part of the assignment, and therefore, it is neither
the focus of this thesis. I defined the problems to give the model a purpose and make the
results of simulations sensible and meaningful. A s the boids model is one of the focus points
of this thesis, I simulated scenarios in which the flocking is absent (see 6.3) and present
(see 6.4), respectively. In short, the flocking behavior d id improve the prey populat ion,
but unexpectedly. The improvement is visible in the ratio of predators and preys. Wi thou t
flocking, the steady-state is about 1:3 ratio of predators and preys. W i t h flocking, the ratio
grows to roughly 1:4-

6.7 Suggested improvements and future work

In this section, I propose a set of improvements to various aspects of the currently imple
mented applicat ion wi th varying degrees of complexity.

• Modeling of obstacles. Obstacles could provide a more diversified environment, result
ing i n even more complex behavior. Thanks to obstacles, the preys might sometimes
be forced to split up the flock to prevent a collision. Obstacle avoidance could also
enable steering away from the simulated area boundary, while i n the current im
plementation, entities that collide w i th the area boundary are wrapped around. The
challenge w i th obstacles is that they should be considered in the perception model and
the collision model. Improvements to the locomotion model would also be necessary.

• Improved reproduction. The current reproduction model is based on a m a x i m u m re
production interval, the passing of t ime, amplif ication based on hunger status, and
str ict ly defined age requirements. A possible improvement is to model genders and
mating. Another possible improvement to reproduction could be the modeling of
pregnancy and congenital disabilities making pregnant entities possibly more vulner
able, and congenital disabilities could introduce high priority targets for predators.
Another improvement to reproduction could be varying the number of newly born
entities. In the current implementation, always one entity is added when reproducing.

• Mass modeling. The implemented physics model assumes that a l l entities have equal
mass regardless of other traits. E n t i t y mass could par t ia l ly be based on the hunger
model, making overeating entities slower and a higher priority target.

• Adjusting an ongoing simulation. Currently, after a simulation is started, it is impos
sible to influence the entities or the environment i n any way. In this improvement,
I propose the abi l i ty to edit existing entity properties, adding or removing entities,
changing environment properties such as prey food spawning rate or prey food ex
pected m a x i m u m age. Such an adjustment could make the s imulat ion more interactive
and allow the creation of unexpected events.

41

• Saving custom template settings. It is currently possible to load pre-defined simulation
scenarios and edit them, but it is impossible to save them as custom user template
settings. I propose the abi l i ty to save custom template settings, possibly t ied to a user
account, which I propose next.

• Server-side services. The currently implemented server has a single role: to serve
the client-side of the applicat ion. There is great potential for creating server-side
services. A s an example, I propose the addi t ion of user accounts that could store
certain information about the users. The stored information could mean storing
custom user templates, simulation states, user preferences, or statistics.

• Improving the user experience. To make the applicat ion more flexible and user
friendly, I propose adding the abi l i ty to change various settings currently hard-coded.
The changeable settings could include: hotkey mapping, area grid size, grid highlight
interval, toggling the drawing of the grid, or camera movement speed.

• Adding the third spatial dimension. M y implementat ion models and simulates the
v i r tua l environment i n two dimensions. Therefore, I propose an improvement to
transform the model into 3D. W h i l e some implemented behaviors could easily work
in 3D w i th min ima l or no changes, others would require a complete re-design. The
P Vector class i n the P5.js l ibrary supports three dimensions out of the box. Therefore
the geometric physics model could easily be transformed into 3D. One of the most
challenging aspects of this transformation would be the bo id perception model, which
would require perception inside a cone. Another aspect of this improvement would
be the visualization of the 3D world.

• Modeling eyes. Improving the perception model by considering the entity eye posi
tion. In nature, predators often have eyes facing forward, while preys have their eyes
positioned on the side of their heads to a id predator spotting.

• Improved statistics presentation and saving. Currently, it is possible to choose a single
property that is drawn on the chart. Therefore, I propose the abi l i ty to choose multiple
properties. For helping clarity, different properties would require different colors or
line types. A l so , it is currently possible to save a given chart as an image. I propose
the abi l i ty to save the chart as raw data (using JSON2 or CSV3, for example). Th is
improvement could a id i n comparing mult iple charts, possibly using other software.

• Additional simulation parameters. Increasing the number of parameters could enable
simulating more varied situations. Examples of such parameters include enabling/dis
abling food sharing among preys, changing the ratio of shared food among preys,
setting a maximum speed, fine-tuning mutation, defining the collision parameters, or
setting the age requirements for reproduction.

2 h t t p s : //en. wikipedia.org/wiki/JSON
3 h t t p s : //en. wikipedia.org/wiki/Comma-separated_values

42

http://wikipedia.org/wiki/
http://wikipedia.org/wiki/Comma-separated_values

Chapter 7

Conclusions

The first goal of this thesis is the analysis of predator-prey systems. I discussed the most
significant predator-prey model i n detail , the Lotka-Volterra mathematical model. I also
provided a more advanced alternative, the Rolling-Tanner model containing more param
eters. The next important goal is the discussion of implementat ion methods. Therefore, I
first discussed the generic process of modeling, using a set of steps. Next , I discussed three
specific approaches to modeling wi th their respective properties and possible use-cases:
mathematical modeling, cellular-automaton based modeling, and agent-based modeling. The
mentioned modeling steps can be applied to any modeling approach, as the approach itself
refers to entity, state, behavior, or connection representation. A n y of the approaches can be
used to model a predator-prey system, but i n this case, I ut i l ized the agent-based approach.
The m a i n reason is the next focus point of the thesis, C. Reynolds's boids flocking model. I
discussed the perception model and behavior rules defined in the boids model i n detail . In
addit ion, I discussed a physics and locomotion model, also created by C . Reynolds. Whi l e
this was not an explicit requirement, I included it, as the boids model requires the abi l i ty
of geometric flight and goal achieving.

Next , I designed and implemented a browser-based applicat ion. Thanks to Electron.js,
the applicat ion can also be executed in desktop environments. For the implementation,
I ut i l ized modern open-source technologies, such as React.js, or JavaScript extended wi th
TypeScript. The resulting applicat ion is capable of controlling and visualizing a predator-
prey model simulation, allows setting simulation parameters, contains pre-defined setting
templates, and gathers statistical information. Meaningful results and conclusions can be
extracted from the applicat ion wi th in minutes of s imulat ion run-time. The implemented
model contains three generic entities: predators, preys, and prey food. Therefore, the
producer-consumer relationship is present twice. Predators and preys have the abi l i ty to
mutate, while preys have an addi t ional abi l i ty to flock based on the boids model.

I simulated each of the pre-defined setting templates and evaluated their results. The
important conclusion from the simulations is that flocking d id improve the prey populat ion
but i n an indirect, unexpected manner. The improvement is present i n the populat ion
ratio. W h i l e flocking is enabled, the ratio of predators and preys rises from 1:3 to 1:4-
Another conclusion is that entity muta t ion causes constant chaos and that the cyclical
relationship is observable i n specific entity properties as well . W h i l e the appl icat ion can
provide sensible results, it may be seen as a proof of concept and has great potential for
future work. Therefore to finalize the thesis, I proposed a set of improvements.

43

Bibliography

[1] A R R O Y O , Y . DOCS need one or more diagrams #653 [online], 25. february 2018 [cit.
2020-06-09]. Available at: https://www.github.com/reduxjs/redux/issues/653.

[2] B E A L S , M . , G R O S S , L . and H A R R E L L , S. PREDATOR-PREY DYNAMICS:

LOTKA-VOLTERRA [online]. 1999 [cit. 2020-05-05]. Available at:
http ://www.t iem.utk.edu/~gross/bioed/bealsmodules/predator-prey.html.

[3] H A S S A N I , B . and T A V A K K O L I , M . A multi-objective s t ructural opt imizat ion using
opt imal i ty cri teria and cellular automata. ASIAN JOURNAL OF CIVIL
ENGINEERING (BUILDING AND HOUSING) [online]. January 2007, vol . 8,
p. 77-88, [cit. 2020-06-05]. Available at:
https: //www.researchgate.net/publication/228522976_A_multi-objective_
structural_optimization_using_optimality_criteria_and_cellular_automata.

[4] J A C K S O N , J . , L E W I S , K . , N O R T O N , M . et a l . Agent-Based Model ing : A Guide for
Social Psychologists. Social Psychological and Personality Science [online], december
2016, vol. 8, [cit. 2020-06-05]. D O I : 10.1177/1948550617691100. Available at:
https: //www.researchgate.net/publication/311425820_Agent-Based_Modeling_A_
Guide_for_Social_Psychologists.

[5] K U B L E R , R . R E A D M E . m d . UnitySD Flocking using Craig Reynolds' Boids [online] ,
19. Sep t ember 2018 [cit. 2020-02-19]. A v a i l a b l e a t :

https://www.github.com/RafaelKuebler/Flocking/blob/master/README.md.

[6] M A C A L , C . and N O R T H , M . Agent-based modeling and simulat ion. In: [online].
December 2009 [cit. 2020-06-07]. D O I : 10.1109/WSC.2009.5429318. Available at:
https: //www.researchgate.net/publication/216813135_Agent-based_modeling_and_
simulation.

[7] M A C P H E E , L . Predator-Prey Interaction [online], [cit. 2020-05-05]. Available at:
http://www2.nau.edu/lrm22/lessons/predator_prey/predator_prey.html.

[8] M A R O L T , D . , S C H E I B L E , J . , J E R K E , G . et a l . S W A R M : A Self-Organization

Approach for Layout Au tomat ion in Ana log IC Design. International Journal of
Electronics and Electrical Engineering [online]. January 2016, p. 374-385, [cit.
2020-05-05]. D O I : 10.18178/ijeee.4.5.374-385. Available at:
https://www.researchgate.net/publication/320019435_SWARM_A_Self-0rganization_
Approach_for_Layout_Automation_in_Analog_IC_Design.

[9] M E R R I T T , J . Cellular automata as emergent systems and models of physical behavior
[online]. December 2012 [cit. 2020-06-07]. Available at: https:
//guava.physics.uiuc.edu/~nigel/courses/569/Essays_Fall2012/Files/merritt.pdf.

44

https://www.github.com/reduxjs/redux/issues/653
http://www.t
http://iem.utk.edu/~gross/bioed/bealsmodules/predator-prey
http://www.researchgate.net/publication/228522976_A_multi-objective_
http://www.researchgate.net/publication/311425820_Agent-Based_Modeling_A_
https://www.github.com/RafaelKuebler/Flocking/blob/master/README.md
http://www.researchgate.net/publication/216813135_Agent-based_modeling_and_
http://www2.nau.edu/lrm22/lessons/predator_prey/predator_prey.html
https://www.researchgate.net/publication/320019435_SWARM_A_Self-0rganization_

[10] M O N T G O M E R Y , J . Predator-Prey Models [online]. 1180 Observatory Drive , Madison ,
W I 53706: Department of Sociology, Universi ty of Wiscons in - Madison , 2009-10-22
[cit. 2020-06-06]. Available at:
https : //www. ssc.wisc.edu/~jmontgom/predatorprey.pdf.

[11] M O S I M T E C B L O G . Notable Agent Based Mode l ing Examples . 4 Agent Based
Modeling Examples [online], 10. may 2019 [cit. 2020-06-05]. Available at:
h t tp s : //www.mosimtec.com/agent-based-modeling-examples/.

[12] O B A I D , T . The Predator-Prey M o d e l Simulat ion. Basrah Journal of Science [online].
January 2013, vol . 31, p. 103-109, [cit. 2020-02-18]. Available at: https://
www.researchgate .net/publication/308633701_The_Predator-Prey_Model_Simulation.

[13] P E L Á N E K , R . B u n ě č n é automaty a mode lován í za ložené na agentech. In: Modelování
a simulace komplexních systémů [online]. N a k l a d a t e l s t v í Masarykovy univerzity,
2011, chap. 2, p. 71-82 [cit. 2020-05-04]. I S B N 978-80-210-5318-2. Available at:
h t t p : / / www.radekpelanek. cz/dokumenty/ms-web.pdf.

[14] P E L Á N E K , R . M a t e m a t i c k é mode lován í a sy s t émová dynamika . In: Modelování a
simulace komplexních systémů [online]. N a k l a d a t e l s t v í Masarykovy univerzity, 2011,
chap. 2, p. 59-70 [cit. 2020-05-04]. I S B N 978-80-210-5318-2. Available at:
h t t p : / / www.radekpelanek. cz/dokumenty/ms-web.pdf.

[15] P E L Á N E K , R . Mode lován í a simulace. In: Modelování a simulace komplexních
systémů [online]. N a k l a d a t e l s t v í Masarykovy univerzity, 2011, chap. 1, p. 43-55 [cit.
2020-05-04]. I S B N 978-80-210-5318-2. Available at:
h t t p : / / www.radekpelanek. cz/dokumenty/ms-web.pdf.

[16] R E Y N O L D S , C . W . Boids Background and Update [online]. 2001-09-06 [cit. 2020-05-10].
Available at: http://www.red3d.com/cwr/boids/.

[17] R E Y N O L D S , C . W . Flocks , Herds, and Schools: A Dis t r ibuted Behavioral Mode l .
Computer Graphics [online]. July 1987, vol . 4, no. 21, p. 25-34, [cit. 2020-05-10].
Available at: ht tp: / /www.cs. toronto.edu/~dt/siggraph97-course/cwr87/.

[18] R E Y N O L D S , C . W . Steering Behaviors For Autonomous Characters. In: Proceedings
of the Game Developers Conference 1999 [online]. San Jose, California: [b.n.], 1999,
p. 763-782 [cit. 2020-05-15]. Available at: https://www.red3d.com/cwr/steer /gdc99/.

[19] S H I F F M A N , D . Autonomous Agents. In: The Nature of Code [online]. 2012, chap. 6
[cit. 2020-05-20]. I S B N 978-0985930806. Available at:
https : //www.natureofcode.com/book/.

[20] W O L F R A M , S . Cel lu lar Au tomata . Los Alamos Science [online]. F a l l 1983, vol . 9,
p. 2-21, [cit. 2020-05-04]. Available at: https://www.stephenwolfram.com/
pub l i c a t i ons / ce l l u l a r - au toma ta - complex i t y /pd fs / c e l l u l a r - au toma ta .pd f .

[21] Y A N G , J . , T A N G , G . and T A N G , S . Holl ing-Tanner Predator-Prey M o d e l w i t h
State-Dependent Feedback Cont ro l . Discrete Dynamics in Nature and Society
[online]. October 2018, vol . 2018, p. 1-18, [cit. 2020-05-10]. D O I :
10.1155/2018/3467405. Available at:
https : / /www.researchgate.net/publication/328376981_Holling-Tanner_Predator-
Prey_Model_with_State-Dependent_Feedback_Control.

45

http://ssc.wisc.edu/~jmontgom/predatorprey.pdf
http://www.mosimtec.com/agent-based-modeling-examples/
http://www.researchgate.net/publication/308633701_The_Predator-Prey_Model_Simulation
http://www.radekpelanek
http://www.radekpelanek
http://www.radekpelanek
http://www.red3d.com/cwr/boids/
http://www.cs.toronto.edu/~dt/
https://www.red3d.com/cwr/steer/gdc99/
http://www.natureofcode.com/book/
https://www.stephenwolfram.com/
http://www.researchgate.net/publication/328376981_Holling-Tanner_Predator-

[22] Y U E N , A . and K A Y , R . Applications of Cellular Automata [online]. 2010 [cit.

2020-05-05]. Available at: https://www.cs.bham.ac.uk/~rjh/courses/
NatureInspiredDesign/2009-10/StudentWork/Group2/design-report.pdf.

46

https://www.cs.bham.ac.uk/~rjh/courses/

Appendix A

Project overview and useful guides

In this appendix, I provide an overview of the project structure, a guide for building and
running the applicat ion, and I discuss the applicat ion compatibility and availability. Th is
appendix may be useful, especially for readers that wish to work on this or a similar
application.

A . l Project structure overview

The project is organized into logical directories (visible i n figure A . l , rendered by the
pr imary editor used during development - Visual Studio Code1). The whole project is i n the
Predator-Prey-Simulation directory. Th is directory is made up of two distinct directories
and a special .gitignore file used by the version control system. The local_packages directory
contains a single local , modified version of the d3-quadtree library (modification discussed
i n section 5.3).

v til Predator-Prey-Simulation

^ til application

> m build

v ^ client

> m build

> ti> electron-build

> 0 node_modules

> « public

> 0 src
0 3 5 1 package.json
0 3 package-lockjson

* tsconfig.json

> 41 node_modules

% build.bat

K. build.sh

^ package.json

^ package-lockjson

S README.txt

JS server.js

> local_packages \ quadtree

• .gitignore

Figure A . l : Project file structure visualizat ion.

x h t t p s : //code.visualstudio.com

47

http://visualstudio.com

A l l of my own work can be found in the application directory. This directory contains a
very simple server, NPM configuration files, builder scripts, a README text file containing
information about bu i ld ing / running the application, and the client directory. The client d i
rectory again contains NPM configuration files, a TypeScript configuration file (not present
in the applicat ion folder as the server is wri t ten i n JavaScript) . F ina l ly , the client directory
contains the public and src directories. The public directory contains static files, such as an
HTML file, into which the React.js appl icat ion is rendered. Some items in this directory
were generated by the create-react-app (see 5.1.2) command line tool . A l l the applicat ion
code resides in the src directory, which is further structured into various directories and
modules. The build, electron-build, and node_modules directories are generated by various
actions and may not always be present.

A.2 Bui lding and running the application

The text of the following section is dedicated to building and running the applicat ion. The
process of bui ld ing is described as a sequence of command-line commands.

Prerequisites (other version are l ikely to work, but were not tested):

• node.js - v l2 .11.0

• npm - v6.11.3 (usually installed together w i th node.js)

A l l the following command line commands and directory descriptions assume the working
directory to be the following directory (directory structure is discussed i n section A . l) :

Predator-Prey-Simulation/application.

Before the first bui ld , external package dependencies need to be installed from local/remote
locations w i th the following command:

npm run install:all

Running the client development server:

npm run client

W h e n the applicat ion is under development, this server automatical ly reloads when changes
are detected. W i t h addi t ional configuration, it is possible to reload specific parts only to
retain the appl icat ion state, further improving the development process. Such a technique
is referred to as hot reloading.

B u i l d i n g the client only:

• cd client

• n p m run bui ld

Now, it is possible to run the client by opening the index.html inside the client/build
directory wi th a browser. Note: A React.js applicat ion created by the create-react-app
tool (see 5.1.2) does not support this by default. It is required to add the following key-
value pair to the package.json configuration file, to make a l l the resource paths relative:

18

homepage: . /

B u i l d i n g the client and desktop application (using Electron.js):

• cd client

• n p m run bui ld :both

Note: For bui ld ing the desktop application, it is necessary to bu i ld the standalone client,
hence the „ :both" in the command. Now the client is available inside the client/build
directory, same as in the previous guide, and the portable executable desktop applicat ion
is inside client/electron-build. Electron.js might add other files i n this directory but they
are not needed to run the applicat ion.

B u i l d i n g the server, client and desktop application:

• O S Windows using a script:

— . \build.bat

• Linux based O S using a script:

— . /bui ld .sh

• Generic steps:

— run „ n p m run bui ld:both" inside the client directory

— create a build directory

— create a build/client directory

— copy server.js to the build directory

— copy contents of client/build to build/client

— the buil t portable desktop application is inside client/electron-build and is ready
to be used, moved or renamed

The server.js cannot be moved out of the development directory because its dependencies
are located i n the node_modules directory. The desktop applicat ion is also placed i n the
bu i ld directory for convenience but is not required by the server or client.

Runn ing the server:

• O S Windows:

— node build\server.js PORT

• Linux based OS:

— node build/server.js PORT

where PORT is an optional parameter and defaults to 5000. The applicat ion is now acces
sible at http://localhost.PORT

49

file:///build.bat
http://localhost.PORT

A.3 Applicat ion compatibility and availability

Tested desktop browsers (on O S Windows 10, x64)'-

• Google Chrome v83.0

• Opera v68.0

• M o z i l l a Firefox v76.0.1

In general, any reasonably modern browser should work, which supports newer CSS proper
ties, such as the CSS Grid. Outdated browsers such as Internet Explorer are not supported.
Mobile browsers were not tested as the applicat ion is not suited for mobile devices. Due to
the nature of the applicat ion, it should work on various operating systems, but the proper
bui lding and running are guaranteed on O S Windows 10, x64- Other operating systems
may require additional software or configuration.

A t the t ime of wri t ing , the applicat ion is available here:

h t t p : //www.stud.fit.vutbr.cz/~xmeryjOO/

50

http://www.stud.fit.vutbr.cz/~xmeryjOO/

Appendix B

Contents of attached D V D

• Archive Jozef-Mery-Predator-Prey-Simulation.zip containing:

— Predator-Prey-Simulation directory - scripts, project configuration and source
files, and others

— build directory - buil t desktop applicat ion (executable on O S Windows 10, x64),
and standalone client

— thesis-latex-src directory - thesis source files (extracted from Overleaf 1)

— predator-prey-simulation.pdf - thesis i n P D F format

x h t t p s : //www.overleaf .com

51

http://www.overleaf

