
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

CONVERSION OF WHISPERED TO NORMAL VOICE
KONVERZE ŠEPTANÉ ŘEČI NA NORMÁLNÍ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

RICHARD GAJDA

Ing. JAN BRUKNER

BRNO 2020

Brno University of Technology
Faculty of Information Technology

Department of Computer Graphics and Multimedia (DCGM) Academic year 2020/2021

Bachelor's Thesis Specification |||||||||||||||||||||||||
22505

Student: Gajda Richard
Programme: Information Technology
Title: Conversion of Whispered to Normal Voice
Category: Speech and Natural Language Processing
Assignment:

1. Get acquainted with techniques for speech parametrization and re-synthesis.
2. Study modern approaches for whispered to normal speech conversion based on machine

learning.
3. Acquire or collect dataset of parallel whispered and normal speech for training and

evaluation.
4. Implement an existing system using available signal processing and machine learning

libraries and evaluate the results.
5. Implement a mobile application utilizing the used method.
6. Create a short video or poster presenting your work.

Recommended literature:
• According to supervisor's advice

Requirements for the first semester:
• Items 1 to 4 of the assignment, start working on item 5.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Brukner Jan, Ing.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 12, 2021
Approval date: May 18, 2021

Bachelor's Thesis Specification/22505/2020/xgajda06 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
The aim of this thesis is to develop a working program, that converts whispered speech
input into voice using vocal excitation prediction, which is obtained from a neural network.
The work is based on a study from Indian Institute of Science in Bengalore, India. The
approach to the solution is the following: to acquire a dataset from training speakers, to
implement the speech parameterization using the W O R L D vocoder, to implement and train
the neural networks, to experiment, to evaluate the results and, finally, to propose future
applications and improvements.

Abstrakt
Cílem té to práce je vyvinout funkční program, který konvertuje vstupní šeptanou řeč na
neutrální za pomoci predikce hlasového buzení, která je získána pomocí neuronových sítí.
Práce je založena na studii z Indián Institute of Science v indickém Bengalúru. Řešení
je provedeno následovně: nejprve získáme trénovací dataset řečníků, poté implementujeme
zpracování řeči a její parametrizaci za pomoci vokodéru W O R L D , vytvoříme a natrénujeme
neuronovou síť, provedeme experimenty, které vyhodnotíme, a nakonec navrhneme použití
pro budoucí aplikace a vylepšení.

Keywords
Speech synthesis, whispered speech, W O R L D , B L S T M , conversion.

Klíčová slova
Syntéza řeči, šepot, W O R L D , B L S T M , konverze.

Reference
G A J D A , Richard. Conversion of Whispered to Normal Voice. Brno, 2020. Bachelor's
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Jan Brukner

Rozšířený abstrakt
Cílem je převést šepot na normální (znělým hlasem mluvenou) řeč za pomocí neuronových
sítí a použití této konverze v mobilní aplikaci. Použitý postup je popsán ve vědeckém článku
z Indického Institutu Věd v Bengalúru, který slouží jako předloha pro řešení popsané v této
práci.

Tento postup má využití například při tísňovém hovoru, kdy volající v nouzi nemůže
z jakéhokoliv důvodu mluvit nahlas, nebo pro lidi s anatomickou (ať už vrozenou, nebo
externě zapříčiněnou) vadou hlasového ústrojí, nebo infekční chorobou napadající hlasivky
a dýchací ústrojí.

Prvním úkolem je získání vhodného datasetu, na kterém se budou neuronové sítě tréno­
vat. Tento dataset je vytvořen šesti řečníky, třemi ženami a třemi muži, kteří namluví
zdrojový text jak šeptem, tak i znělou řečí.

Práce dále definuje techniky analýzy hlasu, čili získání hlasových excitačních a mod-
ifikačních příznaků. K této analýze je použit W O R L D , systém pro analýzu a syntézu
řeči založený na principu vokodérů. Následuje popis standartních postupů pro získávání
příznaků a následně popis jednotlivých algoritmů, které používá W O R L D . Příznaky jsou
získávány jak ze znělé, tak I šeptané řeči. Jelikož je cílem predikovat znělé příznaky šeptané
řeči, je tato šeptaná řeč upravována metodami analyzujícími spektrální chování a následně
zarovnána pomocí dynamického borcení času.

Samotné konverzi předchází definování vrstev a aktivačních funkcí neuronových sítí,
které se používají pro konverzi získaných spektrálních charakteristik šeptané řeči na jed­
notlivé příznaky řeči znělé.

Dále je rozebrán postup definovaný ve zdrojovém indickém článku a jeho nutné modi­
fikace pro splnění cílů této práce. Zdrojový článek se nese spíše v experimentálním duchu,
zatímco tato práce využívá výsledků těchto experimentů a aplikuje je do praxe.

V další kapitole je popsána implementace získávání a modifikace příznaků, trénování
neuronové sítě a provádění inference na natrénovaých modelech. Následně jsou získané
data z natrénovaných modelů porovnávány s originální znělou řečí. Výsledky naznačují, že
modely fungují velmi dobře na zdrojových řečnících (řečnících z datasetu) a to jak za použití
modelu trénovaného přímo na daném mluvčím, tak I za za použití modelu trénovaného na
více mluvčích. Nicméně konvertovaný vstup od mluvčího, který není součástí datasetu,
nabízí pouze omezené výsledky, kterým často nejde ani rozumět.

Následuje popis implementace cílové aplikace pro Android, která našeptanou zdrojovou
řeč od uživatele odesílá na R E S T A P I server, kde je nad ní provedena analýza příznaků a
konverze skrz natrénované modely. Tato konvertovaná řeč je zpětně poslána uživateli, který
si j i může přehrát.

Conversion of Whispered to N o r m a l Voice

Declaration
I hereby declare that this Bachelor's thesis has been written as an original work by the
author himself under the supervision of Ing. Jan Brukner. I have listed all the literary
sources, publications and other sources which were used during this thesis preparation .

Richard Gajda
May 18, 2021

Acknowledgements
Special thanks go to Vaclav Dreiseitl from B O M B J A C K Studio in Hranice na Morave for
his being so kind to assist me me with acquisition of used dataset. I would also like to
thank my supervisor Ing. Jan Brukner for his expert insight into the subject and assisting
me with any problem I have come upon.

Contents

1 In t roduc t ion 3

2 Theo ry 4
2.1 Voice Parameterization 4

2.1.1 Fundamental frequency 4
2.1.2 Aperiodicity levels (ap) 6
2.1.3 Spectral Envelope 7
2.1.4 M F C C 8

2.2 Dynamic Time Warping - D T W 11
2.3 W O R L D Vocoder 13

2.3.1 Signal analysis 13
2.4 Neural Network 14

2.4.1 Activation functions 14
2.4.2 Layers 15

3 Convers ion of whispered speech to neut ra l 16
3.1 Existing method description 16
3.2 Modification of proposed method 17
3.3 Goals 18

4 Dataset 19

5 Implementa t ion 20
5.1 Pre-processing 20

5.1.1 Silence Removal 20
5.1.2 W O R L D Analysis and whispered speech preparation 21
5.1.3 Dataset building 24

5.2 Neural network 25
5.2.1 Training loop 25
5.2.2 F0 models training and inference 26
5.2.3 Aperiodicity models training and inference 27
5.2.4 M C E P models training and inference 28

5.3 Evaluation 29

6 M o b i l e appl ica t ion 30

7 Conc lus ion 32
7.1 Future Works 32

1

B i b l i o g r a p h y 34

Append ices 36

A C o o k b o o k 37
A . l Source Code and Libraries 37
A.2 Media Content 38

2

Chapter 1

Introduction

The goal is to implement a procedure which processes whispered speech input and converts
it into synthesized normal speech using neural networks. This procedure is described in the
article published by G . Nisha Meenakshi from Indian Institute of Science, Bangalore [7],
which will be used as a reference and guide. The objective of this thesis is to a develop an
application, which will apply the implemented method on user request. Future uses for this
application may be numerous: e.g. a user who recieves a whispered voice message on any
messaging app, would like to convert the recording and play it back in normal voiced form.
Another model situation for its usage may be an emergency situation distress call, when the
calling person is in hiding and has to speak as quiet as possible. Yet another possible use
is for a user with such a health condition that would not allow him/her to speak normally.
This could be a condition ranging from sore throat to voice exhaustion, and, in extreme
cases, if one's vocal chords are damaged or even severed.

Therefore, the goal of this thesis is to obtain a dataset for neural network training, to
implement a conversion solution based on the reference article, and to develop a mobile
application that is capable of processing the said conversion in a reasonable amount of
time. This solution works with several technological methods and approaches for speech
analysis, speech parameterization, neural network principles and mobile application devel­
opment which are described in a theoretical chapter. The implementation chapter describes
the architecture and addressing problems of algorithmization of theoretical practices, and
implementation of user interface and functional components of the app. Lastly, fully func­
tional models will be deployed into the application for usage, user evaluation and feedback.

3

Chapter 2

Theory

The solution of the problem required understanding many signal and speech processing
concepts and methods. Understanding some of them proved to be absolutely critical for
the application to work, others were not so crucial and required only a „need-to-know"
knowledge base. Such concepts are mentioned only briefly, because they are not part of the
implementation (e.g. signal normalization, frame segmentation, feature extraction [19]),
they are extracted from working libraries and frameworks (e.g. W O R L D) . The methods
that are implemented are described in detail.

2.1 Voice Parameterization

Suppose the examined signal is already preprocessed and segmented into frames, parame­
terization (or „reading" information) can begin now. It is important to know which infor­
mation is important - in this case, it is desirable to know both excitation and modification
parameters (or signal excitation parameters and frequency modulation). Although sev­
eral conventional algorithms for feature extraction are mentioned for comparison purposes,
W O R L D vocoder-based native feature extraction algorithms are used exclusively in the
proposed solution.

2.1.1 F u n d a m e n t a l f r equency

Fundamental frequency, FO or pitch is the main foundation of the thesis. It describes
the frequency of oscillation of vocal chords. This is an important speech characteristic,
because whispered speech is devoid of it, whereas neutral speech is defined by it. FO
can be calculated using many varying methods and algorithms using temporal (e.g. auto­
correlation) or spectral (Cepstrum) signal characteristics [13]. For this thesis purpose, the
W O R L D ' S Harvest [11] FO estimation algorithm will be used.

Unlike conventional pitch obtaining auto-correlation function (ACF) , defined by equa­
tion [19]

N-l

R(m) = s(n)s(n — m) (2-1)
n=m

which measures statistical intensity of relationship between two instances (in this case
frames of segmented speech), Harvest algorithm proposes a different approach. Firstly,
numerous band-pass filters, each with different center frequencies are placed on the input

4

waveform. Since FO is unknown, many filters are required. Only the filters that output sine-
shaped waves, are considered as basic fundamental frequency candidates. FO candidates
are then estimated from FO basic candidates if they all output the same sine wave in a
certain bandwidth. Such FO candidates (many are overlapping) are further refined (using
instantaneous frequency), the unwanted ones (FO contour does not change rapidly in a
fundamental period, therefore the FO candidates with rapid changes above a set threshold
are considered unwanted) are removed and then FO contour is smoothed and returned. [11]

,' Basic FO candidates
estimation

Filter

Input • Filter 2

Filter N

Band-pass filtering
(40 ch/oct.)

FO candidates estimation
Overlapping
(7Mcandidates)

Estimation
(M candidates)

Candidate 1

Candidate 2

Candidate L

Refining &
selecting I

Figure 2.1: Harvest algorithm outline [11]

W O R L D also allows further FO contour refinement, using the W O R L D ' S StoneMask
algorithm. The StoneMask method is used to improve the noise robustness of the estimated
FO contour.

250

m 2 0 0

i

>, 150
u
% ICO
—
P
£ 50

Voiced speech FO contour

V ^ - i

FO contoi
FO contoi

jr est imated by Harvest
j r f r o m Harvest, refined with StoneMask

50 LOO 150 200
Time [frames)

250 300 350 400

Figure 2.2: F0 contour estimated using Harvest, refined with Stonemask.

Since pitch is gender-dependent, the F0 values span roughly in the interval of: 90 Hz <
F0 < 120 Hz for male speakers and in the interval of: 150 Hz < F0 < 300 Hz [19] for
female speakers.

5

2.1.2 A p e r i o d i c i t y levels (ap)

Since natural human speech does not contain only the periodic signal, produced by peri­
odically vibrating vocal chords, another parameter is used to describe these aperiodicities.
Aperiodic signal sources can be e.g. aspiration between the vocal chords, friction and tran­
sient discharge generated by loosening a contraction. The parameter has an important
utilization in the field of speaker recognition systems and can drastically increase the qual­
ity of speech synthesis systems, however it is not used by default very much. The parameter
can be obtained by several passive procedures (zero-crossing rate, high-low frequency ratios
[3]), but since the W O R L D vocoder with build-in algorithms (specifically D4C algorithm)
has been used, all which is needed to know is the following:

"D4C uses a group-delay-based parameter. This parameter forms a sine wave of FO Hz
from arbitrary periodic signals with a fundamental period of TO. Therefore, the power ratio
between the sine wave and the other frequency components corresponds to the aperiodicity."
[10]

Neutral speech aperiodicity
LOGO -

BOO -

0 50 100 150 200 250
Time (Frames)

Figure 2.3: Aperiodicity levels of a neutral speech utterance obtained by D4C [10]

(i

2.1.3 S p e c t r a l E n v e l o p e

Spectral Envelope (sp) is an encapsulating curve of the amplitude spectrum. To be precise,
it gives the value at one certain point in time (in this case one window). Again, many
algorithms (e.g. Cepstrum and linear predictive coding - L P C) can be used for estimation,
but since those are heavily reliant on time variance, W O R L D vocoder's own algorithm -
CheapTrick [9] - will be used.

Whispered spectrum

0.0008

< 0.<

200 400 600 BOO

Frequency (Hz)

Figure 2.4: Spectrum of a frame of a whispered utterance

Whispered speech spectrogram

5 600

S 400

I frfl
' M l

50 100 150 200 250 300 350

Time (Frames)

Figure 2.5: Spectrogram of the same whispered utterance obtained with CheapTrick [9]

CheapTrick design is based on conventional algorithms, namely FO adaptive windowing
and various cepstral methods. It consists of three components: FO-adaptive windowing,
power spectrum smoothing and liftering processing for spectral reconstruction and smooth­
ing. First, a windowing function is needed, that one which is ideal for the pitch analysis. A

7

Hanning windowing function is used for this method. Once the overall power of the periodic
signal within the window is temporally stable, the power spectrum obtained from the first
step can be smoothed. The power spectrum is reshaped into a logarithmic form to be used
for working in the quefrency domain. Lastly, a littering in the quefrency domain is done
to remove the frequency variation, which is caused by discretization. Spectral recovery is
done at the same time [9].

Neutral speech spectrogram

Time (Frames)

Figure 2.6: Neutral and whispered utterance spectrograms obtained using CheapTrick

As it can be seen in the bottom of both spectrograms, 2.6 there is a difference between
neutral and whispered speech spectrum - a fundamental frequency (FO) is missing in the
whispered spectrum.

Extracting spectral envelope for each frame is essential, since prediction of previous
parameters based on the sp will be performed. Since the feature vector for each win­
dow contains too much information, M F C C calculation over the spectral envelope will be
computed.

2.1.4 M F C C

The main issue that comes with the usage of cepstrums is that it uses D F T , which has the
same resolution for all frequencies. That is undesirable in the terms of human hearing, which
is not linearly sensitive to all frequencies. In the boundaries of speech analysis/synthesis it
is the aim to be able to align cepstrum to hearing.

This is achievable by employing Mel -F requency Ceps t r a l Coefficients or M F C C ,
which will place non-linear filters along the frequency axis, measure energy at filter output
and use that energy to calculate cepstrum, instead of using D F T . The used non-linear
filter modification uses Hertz (Fh z) to Mel (FMei) conversion which can be calculated with

8

following formula [19]:

F M e Z = 29591og1 0(l + - ^)

This is a baseline method for spectral envelope coding. A n advanced modification
of Mel-generalized spectral analysis, native to W O R L D vocoder, will be used. Spectral
envelope obtained from CheapTrick algorithm is coded using W O R L D coding algorithm.
It is possible to use various frequency warping functions (e.g. Bark or E R B scale [9]),
but for the purposes of this thesis, Mel scale is used. Used scale differs from the formula
mentioned above only in the coefficients used. W O R L D vocoder frequency warping formula
for spectral envelope coding is as follows [12]:

FMel = 1127.010481og10(l + ^) (2.3)

^ Logarithmic power spectrum ^

Frequency warping

Parameter: Warping function (Mel or Bark or E R B scales)

I
Equally spaced sampling on warped frequency axis

Parameters: Floor frequency (40 Hz), ceiling frequency
(20,000 Hz), and number of samplings (1024)

T
Discrete cosine transform (DCT)

Extraction of low-dimensional coefficients
Parameter: Number of dimensions

I
Inverse D C T

I
Frequency re-warping

Parameter: Inverse function of utilized warping function

I
^ Logarithmic spectral envelope ^

Figure 2.9: Outline of W O R L D spectral coding [12]

Resulting features are called M C E P s — M e l ceps t rum envelopes, which are the input
of the Neural Network training system (each output feature prediction will be trained on
whispered speech M C E P s) . Noticable fact is that the only thing that is directly derivable
from whispered speech M C E P is neutral speech M C E P . For predicting F 0 and ap additional
information of the dynamic transitions of the signal between each window (based on the
source article [7]) is needed.

10

D e l t a Features

Such dynamic information can be obtained from computing A and A A coefficients. The
idea is to compute the difference (A) of each frame of the feature. The interpretation of
such features is that they approximate the first and second derivatives of the signal [1]. The
computation of deltas for the feature vector and the time instance k is the following:

A f e = fk - / f c _ i (2.4)

A A f c = A f c - A f c _ i (2.5)

Delta feature vectors computed for each frame of M C E P s are then appended to M C E P
vector (for each frame). That gives enough information about the whispered speech dy­
namics as well as the spectral changes. However, it is nearly impossible for the speaker
to record the whispered and neutral utterances of identical length which is required for
effective neural network training. To solve this issue, a D T W method is applied.

2.2 Dynamic Time Warping — D T W

Both whispered and neutral paired utterances need to be time aligned prior to parsing
to the neural network. This can be done using a D T W algorithm. The principle of this
method is that an existing dictionary of reference matrices for words, that need to be
aligned, is given. Then a testing matrix of parameters (word to be aligned) is parsed to
the aligner. Resultingly, it should be possible to say which of the reference words matches
the tested word. This would be much easier, if words could be described using one vector
only. But as it has already been mentioned, multiple vectors of vectors - matrices are being
processed. D T W allows to adjust the vectors nonlinearly by employing a nonlinear time
warping function. In practice, all elements of the tested utterance with given element of
reference utterance and its neighbours are compared.

If a general time variable k is given, two transformational functions can be created:

• r{k) for reference sequence

• t(k) for testing sequence

Thus, the resulting warp ing pa th describes the two vector alignment. From such a path,
the r(k) and t(k) function courses are derivable, and the sequences can thus be described
step by step [19].

11

35
DTW warping path

Neutral speech sequence (frames)

Figure 2.10: Path for aligning two sequences

Given two sequences X and Y of lengths N G N and M G N , an (N, M)-warping
path of length L G N is a sequence P = (pi, • • • ,Pl) with each element of P satisfying
boundary, monotonicity and step-size conditions. Boundary condition guarantees that the
first and last elements of X and Y are aligned to each other. The monotonicity enforces
timing: if one element of X is followed by another element of X, it should be also applied
to their corresponding Y elements. Ultimately, step-size condition satisfies the continuity
requirement. No element can be skipped, and there can be no recurrence in alignment.

Next, the warping path quality should be measured. To achieve that, numerical com­
parison of the elements of the sequences has been done. J- is & feature space and assuming
xn,ym G J7, comparison of those two features is possible if a local cost measure exists:

c : J x 7 4 i . (2.6)

The cost is usually low, if two compared sequences are similar one another, which is the
case, in this thesis boundaries. To evaluate the cost measure, a cost matrix C G ̂ N x M is
obtained and defined as follows

C(n,m) := c(xn,ym) (2.7)

The total cost cp(X, Y) of a warping path P related to the local cost measure c is calculated
using following formula

L L
cP :=^2c(xne,yme) = ^2C(ne,me). (2.8)

l=i i=i
Now, the aim is to obtain an optimal warping path between X and Y, which is such

a warping path that has the lowest overall cost in the boundaries of all viable warping
paths [14].

12

The D T W algorithm is described in the following figure:

Algorithm: DTW

Input: Cost matrix C of sizeN xM
Output: Accumulated cost matrix D

Optima] warping path P*

Procedure: Initialize (N x M) matrix D by D(n, 1) = C(Jt, 1) for n <= [1 : Af] and
D(l,m) = Y!k=\ C(l i ^) form 6 [1 : M]. Then compute in a nested loop for n = 2,... ,N and
m — 2,... ,M:

D(n.m) = C(n.m) + min {D(n — I , m — l),D(n — l,m),D(n,m — 1)}.

Set ^ = 1 and = (N.M). Then repeat the following steps until ^£ = (1,1):

Increase ̂ by one and let (n,m) — qe-i.
If « —1, then qt — (l,m—1),
else if m = 1, then qe = (n—l,m),
else qt = argmin{D(n — \ .m — l),D(n — l ,m) ,D(n , ra — 1)}.

(If 'argmin' is not unique, take lexicographically smallest cell.)

Set L = t and return P* — <?L_I,. • • ,q\) as well as D.

Figure 2.11: Used D T W algorithm defined in Fundamentals of Music Processing [14]

2.3 W O R L D Vocoder

For this thesis purposes, the vocoder-based high-quality speech analysis and synthesis sys­
tem, called W O R L D , will be used. The reason for this decision is that it is capable of near
real-time speech processing and synthesis, which is crucial for the application purposes.
The experiments made by its developers have shown irrefutable superiority over any other
existing systems (e.g. S T R A I G H T [6]) in terms of both speech quality and processing time
[13].

2.3.1 S i g n a l ana ly s i s

The W O R L D vocoder is capable of using various feature extraction algorithms, which
can be generalized into three different categories: Fundamental frequency (FO) estimation
algorithms, spectral envelope (sp) estimation algorithms (which generally does not use only
the waveform but also the FO obtained in advance), and aperiodicity extraction algorithm
(which computes aperiodicity directly from the waveform, FO and sometimes sp).

13

Synthesis

FO estimation
algorithm

Waveform s sp estimation
' algorithm

3
aperiodicity
estimation

*H • algorithm

Waveform

Figure 2.12: W O R L D vocoder-based system overview [13]

2.4 Neural Network

As the core part of proposed application, it is required to have the obtained whispered
speech features converted into those of neutral speech, so that the relations between them
can be observed and described. Such relations need to be mathematically expressible. To
achieve this, recurrent neural networks (RNN) - specifially B L S T M — B i d i r e c t i o n a l
L o n g Short T e r m M e m o r y in combination with Linear Transform layers are employed.

2.4.1 Activation functions
L S T M layers use different activation functions. One of them is sigmoid function. The
function applies this element-wise operation:

^ ^ 1 + exp(-x) ^ ^

The second activation function is tanh function as an input shaper:

= exP(x) - exp(-x)
exp(x) + exp(-x)

Sigmo id ac t i va t i on f u n c t i o n

- 6 - 4 - 2 0 2 4 e

Tanh ac t i va t i on func t i on

- 6 - 4 - 2 0 2 4 e

Figure 2.13: Sigmoid and tanh activation functions [15]

14

2.4.2 Layers
• Linear Transform layers are the most straightforward and easy to use layer types.

The layers work as a multiplier of input data with weights and their adder. The
linear transformation on the input data is applied as follows [15]:

y = xAT + b (2.11)

Where x is the input sequence, y is the output sequence. AT and b are weights to be
trained.

• LSTM layers' most notable feature is that they allow to remember the previous
states of the N N , so each neuron (cell) has two inputs - one input from the data,
and the other describing previous cell state. The network is thus able to work with a
longer context of time. B L S T M is a modification of an L S T M layer that is not only
connected to the past, but also to the future. The basic idea of B L S T M is to pre-send
each training sequence forwards and backwards into a pair of separate RNNs which
are connected to one unique output layer. That way, the network has full information
about all points before and after time t at any given point in t of the sequence. [18]

Since PyTorch [15] is being used for the purposes of this thesis, a following computa­
tion is performed on every element of the input sequence:

it = a(Wuxt + bu + Whiht-i + bhi)
ft = a(Wifxt + bif + Whfht-i + bhf)
gt = tanh(Wigxt + big + Whght-i + bhg)
ot = a(Wioxt + bio + Whoht-i + bho)

ct = ft® ct-i + kOgt
ht = otQ tanh(ct),

"where ht is the hidden state at time t, ct is the cell state at time t, xt is the input at
time t, ht-i is the hidden state of the layer at time t — 1 or the initial hidden state at
time 0, and it, ft, gt, ot are the input, forget, cell, and output gates, respectively, a
is the sigmoid function and 0 is the Hadamard [17] product [15]."

Chapter 3

Conversion of whispered speech to
neutral

3.1 Exist ing method description

This thesis builds on the work of an existing paper [7]. The procedure described in the
article uses B L S T M neural networks in order to predict behaviour of synthesized voiced pa­
rameters. The original method used the S T R A I G H T vocoder [6] as a tool for extracting
features and later synthesis. The idea was to obtain spectral envelopes of both whispered
and neutral speech, converting them to M C E P s and computing the A and A A features for
whispered utterances. In the next step, using a D T W obtained path, features from both
whispered and neutral utterances are aligned, so both are of exactly the same length. Then
all aligned whispered features are taken and passed into separate B L S T M s - each for one of
neutral features - namely aperiodicity, spectral envelope and base frequency. The method
also calculates with a vuv parameter, which describes voiced - unvoiced phoneme decisions.
The B L S T M s are then trained to predict neutral speech parameters based on fed whispered
data. When the training is completed, the models can be used to convert whispered pa­
rameters into voiced ones, which are then used to synthesize a neutral utterance through
S T R A I G H T vocoder.

16

Whispered Speech I STRAIGHT
> Vocoder

Analysis

BLSTM Training

> Spectrum to
MCEP

Neutral Speech

Delta
Coefficients

Spectrum to
MCEP

STRAIGHT
Vocoder
Analysis

T

STRAIGHT
Vocoder
Analysis

Whispered Speech

Spectrum to
MCEP

BLSTM

p
5LSTM

BLSTM

ap
BLSTM

MCEP to
Spectrum

STRAIGHT Vocoder
Synthesis

Neutral Synthesis
using BLSTM

Delta
Coefficients

Neutral Speech
(synthesized)

Figure 3.1: Illustration of existing method for training and employing B L S T M s

3.2 Modification of proposed method

The approach to certain aspects of solution is different than those presented above. The
first distinction is a usage of different vocoder. Since near real-time processing is desirable,
the S T R A I G H T [6] vocoder, used in the model work, is not suitable. That is why the
W O R L D vocoder-based speech analysis system will be used. Since W O R L D uses different
algorithms for speech analysis, it returns the spectral envelope, aperiodicity levels and the
fundamental frequency only. Therefore, instead of training four B L S T M models, only the
three of them will have to be trained. Unlike in the experimental paper, the efficiency and
the best results possible (provided by the paper) will be focused on. Therefore, one L S T M
layer, 2 hidden layers with 256 cells and one linear output layer will be used for each model.
The input layer for FO and ap B L S T M s is of dimension 78, consisting of 26 dimensions for
M C E P of whispered speech and 26 + 26 for A + A A , respectively. Input layer for the
M C E P training consists of 50 + 50 + 50 instead based on informal evaluation after the
first training.

17

Whispered Speech

Neutral Speech

Delta
Coefficients

Spectrum to
MCEP

STRAIGHT
Vocoder
Analysis

T
Whispered Speech

BLSTM Training
WORLD
Vocoder
Analysis

Spectrum to WORLD
Vocoder
Analysis MCEP

WORLD
Vocoder
Analysis

Spectrum to
MCEP

WORLD
Vocoder
Analysis

Spectrum to
MCEP

Coding
A per od city

p
BLSTM

U f 0 L
^ B L S T M P

ap
BLSTM

MCEP to
Spectrum

Decoding
A periodicity

5

Neutral Synthesis
using BLSTM

Delta
Coefficients

WORLD Vocoder
Synthesis Neutral Speech

(synthesized)

Figure 3.2: Illustration of modified procedure for training B L S T M and predicting neutral
features using B L S T M s and synthesis (notice the missing vuv parameter)

3.3 Goals

Although the aim of the original paper was purely experimental and research based, this
thesis' approach focuses on practical use of the proposed method. Specifically, the aim is
to develop a smartphone app, with an intuitive and responsive user interface, for trained
models evaluation and on-demand user-provided whispered utterances conversion.

18

Chapter 4

Dataset

The first challenge was to find a dataset suitable for the purposes of this thesis. Although
the Indian Institute of Science in Bangalore were willing to help, they refused to provide
the dataset, so putting together an unique dataset tailored for the purposes of this thesis
seemed to be a better option (not to mention the fact that the dataset from the original
article was recorded in a different language). The same setup was used - three male and
three female speakers. The utterances were recorded by professional actors from National
Theatre Brno. They all were asked to record a 1990 New-Year's speech by Vaclav Havel, the
first democratic Czechoslovakian president after the Velvet Revolution, in 1989. The speech
contains 2390 words contained in 121 sentences. The source text was recorded twice by each
speaker - once speaking naturally and once whispering. Manual examination followed,
consisting of editing and rarely discarding mispronounced utterances, removing excessive
inhaling and exhaling and cutting into utterances of varying lenghts. It is important to
note, that each speaker has developed a certain way of recitation, therefore number of
utterances and their lenghts (after silence removal) vary for each speaker as listed below:

Utterance Table
Speaker No.utterances Neutral duration Whispered duration
Male 1 243 15m 32s 11m 49s
Male 2 241 13m 32s 11m 56s
Male 3 305 14m 8s 13m 9s

Female 1 312 15m 7s 13m 22s
Female 2 323 15m 47s 14m 58s
Female 3 322 18m 57s 18m 41s

Table 4.1: Number of utterance pairs and their respective lengths

The recording took place in a acoustically treated rooms in a recording studio. Follow­
ing audio signal path was set up: Neumann U87i condenser microphone with a cardioid
directional characteristic. Signal was then passed through a Warm Audio WA73-EQ preamp
with no E Q in place and through a Warm Audio WA-2A compressor with slight compression
on. Afterwards, the signal has been digitally processed using M O T U A D / D A converters
and USB audio interface and recorded into Cubase 8 Pro D A W software. As for creating
the source files, a 44.1 kHz sampling frequency and a 24-bit depth have been used.

19

Chapter 5

Implementation

5.1 Pre-processing

It is important to note, that many of the further mentioned procedures have been per­
formed on encoded input waveforms, using PySoundFile library. The processed signals
are NumPy [5] n-dimensional arrays (arrays of arrays). For simplification purposes, these
multidimensional vectors will be further referenced only as „arrays".

5.1.1 Silence Removal

A l l manually edited utterances have had their sequences of silence removed prior to W O R L D
analysis. First, a windowing function has been implemented. Then short-term energy [19]
has been calculated for each frame

1 t'frarne 1

E = - * 2 N (5-1)
Iframe n = Q

where E is the short-term energy, I is the number of frames in the utterance, n is the current
frame and x is the amplitude of the current frame.

Short term energy has then been compared to a threshold constant (which has been set
to 0.0025). The input array elements, that are marked as noise have been removed and a
waveform that is rid of silence has been returned.

20

£

-0.2

OJ

•u

-0.2

Silence Removal Comparison

50000 100000 150000 200000
Time (frames)

250000 300000

50000 100000 150000
Time (frames)

200000

Figure 5.1: Silence removal comparison for neutral speech utterence from dataset.

5.1.2 WORLD Analysis and whispered speech preparation

As all the utterances pairs have been rid of silent parts, loading them into W O R L D was
the following step. PyWorld wrapper 1 has been used for easy array data manipulation.
The waveform array from PySoundFile (x), along with the 44.1 kHz recording sampling
frequency's) has been parsed into the PyWorld harvest method, which extracts fundamen­
tal frequency FO and the time context (frames information). Frame overlap is set to 5 ms.
This procedure is the same for both whispered and neutral speech utterances. From this
moment forward, a different implementation will be done on neutral speech and different
on whispered speech.

N e u t r a l speech W O R L D analysis

As the 2.12 outline suggests, the input waveform xn, the sampling frequency fsn the fun­
damental frequency FOnh and the time context tnh (n standing for neutral speech, h for
harvest method) are parsed into different methods to compute other speech parameters.
The CheapTrick method is called to obtain spectral envelope, the D4C for aperiodicity
feature and the Stone Mask for refining the FO curve. The coding of spectral envelope is
called upon next, with input parameter m standing for target number of M C E P s , returning
the desired M C E P s for B L S T M training. It is important to note that unlike in the source
article [7], this method requires coding the aperiodicity parameter in a similar manner.

x h t t p s : //github.com/JeremyCCHsu/Python-Wrapper-f or-World-Vocoder

21

Neutral speech spectral envelope - reduced

Time (Frames)

Figure 5.2: Spectral envelope of neutral utterance after coding [12]

Neutral speech aperiodicity
Ü! 1000 H

0 100 200 300 400 500 600 700

Time (Frames)

Neutral speech aperiodicity - reduced

600 700
Time (Frames)

Figure 5.3: Aperiodicity of neutral utterance before and after coding

At this point, neutral utterances have been parameterized, outputing arrays with di­
mensions of 1, 5 and 50, for FO, ap and MCEP respectively.

W h i s p e r e d speech W O R L D analysis and preparat ion

Similar to neutral speech parameter extraction, the four parameters xw, fsw, FOwh and
tWh are used to obtain a spectral envelope using CheapTrick. The spectral envelope is
then encoded into M C E P s in the same fashion as in neutral speech. A and A A features
are computed from the M C E P array 2 . The delta function works with 2 frames before
the current frame, and the 2 following current frame. After that, A and A A values of all
M C E P array indexes are concatenated with the corresponding M C E P array indexes. The
resulting array shall be referred to as w§eatures from this point forth.

2 h t t p s : //https : //github.com/ jameslyons/python_speech_f eatures

22

The next step is to employ D T W to align the lengths of whispered speech to neutral
speech using warping path. For that, a Matt Shannon's library is used 3 . First, a cost
matrix is calculated from MCEPn, MCEPW and cost function. A n euclidean cost function
is used.

eucCost(x,y) = \J {x — y)2 (5-2)

Subsequently, the cummulative cost matrix which stores all cost matrices, is calculated.
From those cost matrices, minimal cost matrix is selected and best path is returned.

DTW log cost DTW accumulated log cost

Neu t r a l s p e e c h s e q u e n c e (f r ames ! Neu t r a l s p e e c h s e q u e n c e (f r ames)

Figure 5.4: D T W log cost matrices, along with optimal warping path

Now that the WfeatUres sequences are aligned with neutral features, they are saved using
the NumPy compressed save method. That is done because it is faster to access the data
in the form of the NumPy arrays, rather than having to open the source waveform files all
over again. Each file is named using xxx^s format, where the xxx stand for utterance index
number. Each utterance file contains F0n, apn, MCEPn and WfeatUres arrays (which are
all the same length). The saving operation concludes the preprocessing phase.

3 h t t p s : //https : //https : //github. com/MattShannon/mcd

23

5.1.3 Dataset building
Since the PyTorch deep learning framework is being used, the input data needs to be
further processed into corresponding format. Two datasets types need to be constructed
- an input (wfeatUres) dataset and a target (FO \\ ap \\ MCEP) datasets. Here, two
options of feeding data into the L S T M architecture are presented. One option was to
approach the input sequences frame-wise. That being said, L S T M would only work within
a narrowed data context data and possibly would not be able to converge to a desired
output, at all. For instance, in a shuffled dataset input, there is a possibility, that the
network would recieve only one type of speech signal (e.g. periodic), therefore it might
misinterpret next batch of data, which would consist only of aperiodic signals. To eliminate
that, the second, utterance-wise approach is selected. Such approach (called mini-batch
sequential training) should be drastically faster than using batchs ize=l . To use mini-
batch sequential training, all sequences must have the same lengths. For that, a padding
function is employed. Firstly, all the speaker's utterances are iterated in search of maximum
length utterance. For example, the first male speaker's longest utterance consists of 2319
frames. Then a second iteration over the whole utterance set is made, extracting all the
features, getting the utterance length, padding the features (adding zeros at the end of array
up to array [2318] and saving both length and padded features into a file, once again using
compression method. The resulting files are saved in xxxpa(i format now.

The dataset constructor from PyTorch' t o r c h . u t i l s . d a t a is used. It is important to
note that the method does not keep all the data in memory, but rather loads features on
demand during iterations in a neural network loop. Firstly, it requires speaker and mode
(either train or test) specification. That specification is required only for the source files
localization purposes. Next, the compressed padded data files are opened and the features
extracted. At this point, it is important to mention that three different dataset constructor
classes are implemented: TrainFODataset, TrainAPDataset, TrainMCEPDataset. Each
constructor extracts WfeatUres, utteranceiength, utter ancemdex and their respective features.
Any needed data type or array shape conversion is done, so when the getitem method is
called, all values are now returned as tensors.

24

5.2 Neural network

A PyTorch Module that defines the model is being implemented. This model consists of
two layers: one L S T M layer that processes the inputs into hidden layer and one linear layer
that processes the hidden layer into target outputs. The L S T M layer uses hiddensize=256
with two hidden layers. Bidirectional mode and batch first are enabled and dropout of
0.1 is used. Mean Square Error (MSE) loss function is selected. The input dimension
is set to MCEPwsize + A.siZe + A A s j z e . The linear layer takes the double of the hidden
layer size (that's because bidirectional L S T M is used) as an input dimension, and varying
output dimension, based upon target feature being trained. Forward method uses the
torch packpaddedsequence for mini-batch sequential training. That is the reason to keep
utterance lengths in our dataset. Those packed sequence tensors are parsed into the L S T M
layer. The torch padpackedsequence is then used on L S T M output and that output is
parsed into the linear layer.

Datasets for each neutral speech features are loaded using the PyTorch DataLoader. The
sequences in batches are shuffled. Each dataset is divided into three parts: Train dataset,
test dataset and validation dataset. Ten utterances are selected as test samples on which
the neural networks performance will be tested. The remaining utterances are divided
in a 9:1 ratio as train and validation dataset. That number (as opposed to the original
article, which uses 3:1 ratio [7]) was chosen because the source datasets have not been very
numerous, so the highest possible amount of train utterances is desirable. It is important to
note, that both individual and (gender) generalized models have been trained - specifically,
to demonstrate the difference between the conversion of out of dataset whispered speech
into neutral speech using the one-speaker model only and the attempted generalized model.

5.2.1 Training loop
As per training loop, firstly a corresponding feature model has been initialized, then passed
into C U D A environment. Datasets are loaded separately, for both training and testing
phases. Then epoch-wise iteration was started. From experimenting with different training
loop parameters and model layer sizes, 750 epochs were selected as a sufficient number to
completely train target B L S T M models. Each epoch starts with sorting sequences in a
batch length-wise. Hidden states are initialized and all variables are passed onto C U D A
environment as well. As the forward function is called, the optimizer performs a parameter
update based on the current gradient and the update rule. Model's state dictionary is being
saved every 20 epochs, in case of overtraining the network. Running loss is being calculated
for each phase (test and train phase) at the end of each epoch, so the record of loss history
can be kept for selection purposes.

running _loss

aataset_sizevhase

Its visualization allows selecting the optimal network model's state.

25

5.2.2 FO models training and inference

5ingle speaker FO model train and test loss

Train loss
Test loss

D 100 200 300 400 500 600 700
Epochs

Gender generalized FO model train and test loss

Train loss
Test loss

0 100 200 300 400 500 600 700
Epochs

Figure 5.5: FO loss differences between single and multiple speaker models

Voiced speech FO contour

200

150

_L

tu 100

SC

Original neutral FO contour

Predicted neutral FO contour using single speaker

Predicted neutral FO contour using general ized model

ICO 2 CD 300 400
Time (frames)

i: ' 600

Figure 5.6: Inference comparison of FO models

As expected, generalized models struggle with fundamental frequency prediction (the loss
is significantly higher), because each speaker has a different pitch. Inferencing pitch using
a single speaker model for the out-of-dataset whispered utterance results in a converted ut­
terance resembling the dataset speaker. Whereas using the generalized model does result in
a conversion that resembles quick changing through the pitch of the three dataset speakers,
rather than the input out-of-dataset speaker's natural voice.

26

5.2.3 Aperiodicity models training and inference

Single speaker ap model train and test loss Gender generalized ap model train and test loss

0 1D0 100 300 100 500 500 700 0 10 0 200 300 100 500 500 700
Epochs Epochs

Figure 5.7: Aperiodicity loss differences between single and multiple speaker models

It should be stressed, that the dataset built for FO training has not been normalized,
resulting in longer training to achieve desired outputs. Aperiodicity training was executed
on normalized data (values ranging from -1 to 1) and, therefore, as the graph suggests,
better results in earlier epochs of training have been achieved. After restoring the full
dimensionality, graphic interpretation has shown that aperiodicity prediction worked rather
nicely, with generalized models showing more detailed results.

Original neutral speech

-

0 1G
—

3
•

200 300 400 500
Time fframes)

Predicted by single speaker model

GO

500 -

Time fframes)

Predicted by generalized speaker model
1000 -j

500 -

Time fframes)

Figure 5.8: Inference comparison of aperiodicity models after decoding

27

5.2.4 MCEP models training and inference

Single speaker MCEP model train and test loss

Train loss
Test loss

0 100 200 300. 400 500 600 700
Epochs

^ 0.4

Gender generalized MCEP model train and test loss

Train loss
Test loss

100 200 300 400 500 600 700
Epochs

Figure 5.9: M C E P loss differences between single and multiple speaker models

The M C E P training has shown a steep decline in training loss especially on generalized
speaker models, and after decoding and restoring the full dimensionality, the resulting
predicted spectral envelope looked promising. However after evaluation phase, an increase
of M C E P s was suggested, from 26 M C E P s to 50 M C E P s for both whispered and neutral
speech, as the original method values seemed insufficient.

„ 1000

y 500

Original neutral speech

I
200 300 400 500

Time [f rames)
Predicted by single speaker model

1000

500

100 200 300 400 500
Time [f rames)

Predicted by generalized speaker model

300 400
Time [f rames)

600

600

Figure 5.10: Inference comparison of M C E P models after decoding

28

5.3 Evaluation

Upon synthesizing converted waveforms from each speaker's test datasets using models
trained on the corresponding speaker only, the B L S T M s have been able to replicate nearly
all excitation and filtering trends of speaker's vocal tract. Surprisingly, using a gender
generalized model on a dataset speaker worked comparably with the corresponding speaker
single model. A n important fact to note is that only a certain level of „naturalness" could be
synthesized, since some of the data have been lost due to spectral envelope and aperiodicity
coding.

However, using gender generalized models on out-of-dataset (or input) whispered ut­
terances have shown limited results. One of the factors being the usage of varying input
devices (microphones) working at different volume levels. Resulting synthesized audio was
almost incomprehensible, so the M C E P number increase has been implemented, and has
yielded better results in the terms of intelligibility, however, the outcome has still been far
from desired „tailor-made" voice conversion.

Mel Cepstral Distortion comparison

Figure 5.11: Mel-Cepstral Distortion differences between single-speaker and gender-
generalized models

As can be seen in the figure 5.11, the male generalized model yields (surprisingly)
slightly better results for in-dataset speaker, than „his own" trained model. Similar trend
can be seen in the female models, however, the distortion is lower in general for both female
models. That can be explained by the fact, that all 3 speakers had similarly high-pitched
voices, whereas the male speakers voices differed marginally. Generally, lower M C D results
mean better conversion. The M C D was calculated on the test sequences of the first speaker
for each gender (meaning 10 utterances).

29

Chapter 6

Mobile application

The Android operating system has been selected as a host for the target application deploy­
ment. The development has been done in Java programming language, hosted on Android
Studio 1 . The min-sdk = 16 A P I requirement has been set, meaning any Android device
hosted on older versions of the S D K platform could not run the application. However,
the S D K guarantees support for 99,8% of the existing devices. The MVVM (Model- View-
ViewModel) architecture has been used, separating the user interface from the application
logic. Firstly, the user interface was implemented. The next step was implementing the
inner application logic - the navigation between the UI fragments, storage and media access
permissions and, finally, the recording method. At that point, the audio file (WAV format
and 44100 Hz sampling frequency) was stored in the phone. At that moment, the conversion
needed to be done, using the prepared python script and torch models. There, two courses
of actions were possible. The first one was to deploy and execute the python code directly
inside the Android OS. Such method has been enabled by several python-to-Java convertors
and wrappers. One of those was ChaquoPy 2 , which hosted a python interpreter inside the
Java code and allowed importing dependencies and executing python code. However, the
framework did not support all of the dependencies needed (namely PyWorld Wrapper), so
the other course of action, a R E S T A P I , was selected.

Upon user request, the recorded whispered has been sent to a R E S T A P I hosted on
Heroku [8] via a H T T P P O S T request. The implementation of the H T T P communication
has been done using the OkHttpS 3 module. The hosting server has been implemented using
Flask [4] and handles both P O S T and G E T request methods. When the P O S T request
with the file reaches the server, firstly a codec conversion is done in order to allow the
script to load the file using SoundFile. The conversion is necessary, since Android uses
the M P E G - 4 container for audio media. That means that the libsndfile 1 based libraries
cannot read the R I F F header of the file, therefore the conversion fails. To solve this issue,
ffmpeg multimedia framerowk is installed for codec support. Then, input file is converted
to standard W A V format using PyDub AudioSegment 6 .

x h t t p s : //developer.android.com/studio
2 h t t p s : //chaquo.com/chaquopy/
3 h t t p s : //square.github.io/okhttp/
4 h t t p : / / www.mega-nerd. com/libsndf i l e /
5 h t t p s : //www.ffmpeg.org/
6 h t t p s : //github.com/jiaaro/pydub

30

http://android.com/studio
http://chaquo.com/
http://www.mega-nerd
http://www.ffmpeg.org/

Then, the whispered to neutral speech conversion is done on the server side using the
same inference method used at evaluating the results of N N training i.e. W O R L D whispered
speech parameterization, calculation of deltas, D T W and feeding the data to the trained
models. Obtained predicted neutral features are passed into W O R L D for resynthesis and
the resulting sound file is sent back to the user for playback.

Figure 6.1: Android application outline

It is important to note, that the R E S T A P I is running on a free hosted environment,
therefore has limited cababilities in the terms of computation power. That being said,
when the conversion is taking longer than 30 seconds, the process is killed. This issue could
be solved by upgrading server hosting. Therefore, it is advised that the input whispered
utterance lengths should not exceed 5 seconds.

31

Chapter 7

Conclusion

The aspects of whispered speech analysis and voiced speech synthesis have been studied
in this thesis. It follows up on the research article published by G . Nisha Meenakshi from
Indian Institute of Science, Bangalore [7].

The emphasis is on on-demand near real-time conversion of whispered speech. A size­
able dataset has been acquired and further processed. B L S T M models have been trained,
validated and tested on that dataset, for each individual speaker and for the gender ge­
neralized purposes. The synthesized output speech from inferenced models had been tested
subjectively and the following results have been yielded: the converted whispered speech
from the dataset speaker using single speaker model is clear, intelligible, and, in the bound­
aries of the vocoder (and feature coding), sounds naturally. The converted speech from
dataset speaker using gender generalized model has yielded similar results, however, the
synthesized pitch seemes to be „oscillating" among the dataset speakers pitches. Lastly,
converted whispered speech from out-of-dataset speaker using gender generalized model has
returned limited results in the terms of intelligibility and those results have been highly de­
pendant on the recording. The results are considerably influenced by the background noise,
the microphone quality and the microphone placement. Some converted utterances can be
understood, some are completely unintelligible. This issue could be fixed either by expand­
ing the dataset and training in different acoustic conditions, or by data augmentation -
augmenting the existing dataset - e.g. generating noise, adding reverb, etc.

The android application has been developed to employ trained B L S T M models for
on-demand conversion. The conversion times are considerably dependant on hardware of
the device that executes the conversion. When the conversion has been done on a local
server, with high computational capabilities, the conversion took slightly more time than
the utterance length. Which is, by definition, near real-time. When the conversion is done
on the remote server with limited processing capabilities, the resulting conversion times
may exceed utterance lengths multiple times. Conversion taking longer than 30 seconds is
automatically suspended by server.

7.1 Future Works

The real time on-demand voice conversion is a trend with a rising popularity amongst
users and researchers alike. Limited results of this thesis could be expanded by upsizing
the dataset, using different parameterization and N N training techniques. One of such
techniques could be an algorithm for defining the speaker's pitch, which could prove helpful

32

in removing the „oscillating" pitch effect in the converted speech. Another addition could
be a post-NN spectral envelope refinement using post-net 1 (mentioned in [16]).

x h t t p s : //github.com/NVIDIA/tacotron2

33

Bibliography

[1] B A C K S T R O M , T. Introduction to Speech Processing [online]. Aalto University, april
2019 [cit. 2021-04-18]. Available at:
https://wiki.aalto.fi/display/ITSP/Deltas+and+Delta-deltas.

[2] C H E V A L I E R , G . L A R N N : Linear Attention Recurrent Neural Network. CoRR. 2018,
abs/1808.05578. Available at: http://arxiv.org/abs/1808.05578.

[3] D E S H M U K H , O., E S P Y W I L S O N , C , S A L O M O N , A . and S I N G H , J . Use of temporal

information: detection of periodicity, aperiodicity, and pitch in speech. IEEE
Transactions on Speech and Audio Processing. I E E E . 2005, vol. 13, no. 5, p. 776-786.
ISSN 1063-6676.

[4] G R I N B E R G , M . Flask web development: developing web applications with python. ,,
O'Reilly Media, Inc.", 2018.

[5] H A R R I S , C. R., M I L L M A N , K . J. , W A L T , S. J . van der, G O M M E R S , R., V I R T A N E N , P.
et al. Array programming with NumPy. Nature. 2020, vol. 585, p. 357-362. DOI:
10.1038/s41586-020-2649-2.

[6] K A W A H A R A , H . , M A S U D A K A T S U S E , I. and D E C H E V E I G N E , A . Restructuring speech
representations using a pitch-adaptive time-frequency smoothing and an
instantaneous-frequency-based F0 extraction: Possible role of a repetitive structure
in soundslSpeech files available. See http://www.elsevier.nl/locate/specoml. Speech
Communication. 1999, vol. 27, no. 3, p. 187-207. DOI:
https://doi.org/10.1016/S0167-6393(98)00085-5. ISSN 0167-6393. Available at:
https: //www. sciencedirect.com/science/article/pii/S0167639398000855.

[7] M E E N A K S H I , G . N . and G H O S H , P. K . Whispered Speech to Neutral Speech
Conversion Using Bidirectional LSTMs . In: Proc. Interspeech 2018. 2018, p. 491-495.
DOI: 10.21437/Interspeech.2018-1487. Available at:
http://dx.doi.org/10.21437/Interspeech.2018-1487.

[8] M I D D L E T O N , N . and S C H N E E M A N , R. Heroku: Up and Running, lst th ed. O'Reilly
Media, Inc., 2013. ISBN 144934139X.

[9] M O R I S E , M . CheapTrick, a spectral envelope estimator for high-quality speech
synthesis. Speech communication. Elsevier B . V . 2015, vol. 67, p. 1-7. ISSN
0167-6393.

[10] M O R I S E , M . D4C, a band-aperiodicity estimator for high-quality speech synthesis.
Speech Communication. 2016, vol. 84, p. 57 - 65. DOI:

34

https://wiki.aalto.fi/display/ITSP/Deltas+and+Delta-deltas
http://arxiv.org/abs/1808.05578
http://www.elsevier.nl/locate/specoml
https://doi.org/10.1016/S0167-6393(98)00085-5
http://sciencedirect.com/science/article/pii/S0167639398000855
http://dx.doi.org/10.21437/Interspeech.2018-1487

https://doi.Org/10.1016/j.specom.2016.09.001. ISSN 0167-6393. Available at:
http://www. sciencedirect.com/science/art icle/pii/S0167639316300413.

[11] M O R I S E , M . Harvest: A High-Performance Fundamental Frequency Estimator from
Speech Signals. In: Proc. Interspeech 2017. 2017, p. 2321-2325. DOI:
10.21437/Interspeech.2017-68. Available at:
http: //dx.doi.org/10.21437/Interspeech.2017-68.

[12] M O R I S E , M . , M I Y A S H I T A , G . and O Z A W A , K . Low-Dimensional Representation of
Spectral Envelope Without Deterioration for Full-Band Speech Analysis/Synthesis
System. In: Proc. Interspeech 2017. 2017, p. 409-413. DOI:
10.21437/Interspeech.2017-67. Available at:
http: //dx.doi.org/10.21437/Interspeech.2017-67.

[13] M O R I S E , M . , Y O K O M O R I , F . and O Z A W A , K . W O R L D : A Vocoder-Based
High-Quality Speech Synthesis System for Real-Time Applications. IEICE
Transactions on Information and Systems. 2016, E99.D, no. 7, p. 1877-1884. DOI:
10.1587/transinf.2015EDP7457.

[14] M U L L E R , M . Fundamentals of Music Processing: Audio, Analysis, Algorithms,
Applications. 2015. ISBN 9783319219455.

[15] P A S Z K E , A . , G R O S S , S., M A S S A , F. , L E R E R , A . , B R A D B U R Y , J . et al. PyTorch: A n
Imperative Style, High-Performance Deep Learning Library. In: W A L L A C H , H . ,
L A R O C H E L L E , H . , B E Y G E L Z I M E R , A . , A L C H É B u c , F . ď, F o x , E . et al.,
ed. Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
2019, p. 8024-8035. Available at: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

[16] S H E N , J . , P A N G , R., W E I S S , R. J . , S C H U S T E R , M . , J A I T L Y , N . et al. Natural TTS
Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions. CoRR. 2017,
abs/1712.05884. Available at: http://arxiv.org/abs/1712.05884.

[17] X u , Y . , L i , Y . and L i , Z . Some Results on the Hadamard Product of Tensors.
Bulletin of the Iranian Mathematical Society. Singapore: Springer Singapore.
2019081, vol. 45, no. 4, p. 1193-1219. ISSN 1017-060X.

[18] Z H A N G , S., Z H E N G , D. , H U , X . and Y A N G , M . Bidirectional long short-term memory
networks for relation classification. In: Proceedings of the 29th Pacific Asia
conference on language, information and computation. 2015, p. 73-78.

[19] Č E R N O O K Ý , J . Zpracování řečových signálů — studijní opora [online]. F IT V U T
v Brně, december 2006 [cit. 2021-04-18]. Available at:
https: //www. fit.vutbr.cz/study/courses/ZRE/public/opora/zre_opora.pdf.

35

https://doi.Org/10.1016/j.specom.2016.09.001
http://www
http://sciencedirect.com/
http://papers.neurips.cc/paper/9015-pytorch-an-
http://arxiv.org/abs/1712.05884
http://fit.vutbr.cz/

Appendices

36

Appendix A

Cookbook

A . l Source Code and Libraries

Following list contains libraries and frameworks used for speech parameterization and neural
network training. Newer versions might also work.

. Python => 3.9

. C U D A 10.2

• PyTorch 1.8.1 for neural network datasets, model training and inference

. NumPy 1.20.2

• SoundFile 0.10.3 for waveform read/write operations

• PyWorld 0.2.12 as a python wrapper for the W O R L D vocoder

. mcd 0.4 for D T W

• Flask 1.1.2 for hosting cloud server on which the conversion is done

• PyDub 0.25.1 for server-side codec conversion

• Werkzeug 1.0.1 for flask server utilities.

• Java SE 11 for Android application development.

• OkHttp3 as an efficient H T T P client for android-server communication.

As per source code, the solution composes of consequent execution of python scripts,
which are all dependent on the previous ones.

First, the silence removal script s i l _ r m . p y needs to be used. After that, the feature
extraction is done with f l o a d e r . p y script. Extracted features need to be padded using
sep_f t r . py script and separated into three datasets. That is done using t r a i n _ t e s t _ s e p . py.
The lstm.py and dataTest .py contain the definition of the N N datasets and models. Neu­
ral network training loop from main.py follows. The trained models are then saved, and
can be inferenced with the last script - test_models .py.

37

The inference can be also done from already trained models using the f ina l_conver tor
scripts. One uses the single speaker trained models, the other works with the generalized
models.

A.2 Media Content

The attached media card consists of two directories: app and conversion. The application
directory contains the source directory with all the source files for both the application
and the server. The directory also contains an app. apk file, which is a packaged application
file, which can be run on an Android device. The conversion folder consists of:

• models: trained neural networks for each speaker type.

• setup_new: subfolders with source files and speaker utterances for training the neural
networks from scratch.

• source codes for conversion from already trained models.

38

