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Abstract

This diploma thesis focuses on the automatic network traffic description using models
of communication. The main aim is at industrial control system protocols, especially
IEC 60870-5-104. We propose a method of characterizing the network state using both
communication content and behavior in time viewpoints. These aspects are described us-
ing finite state automata, prefix trees, and recurrence analysis. In the second part of this
thesis, we focus on the implementation of a program, which is capable to use the obtained
model to verify network traffic in real-time.

Abstrakt

Tato prace se zabyva problematikou popisu siftového provozu pomoci automaticky vytvore-
ného modelu komunikace. Hlavnim zamétfenim jsou komunikace v 7idicich systémech, které
vyuzivaji specidlni protokoly, jako je naptiklad IEC 60870-5-104. V této praci predstavu-
jeme metodu charakteristiky sitového provozu z pohledu obsahu komunikace i chovani
v c¢ase. Tato metoda k popisu vyuziva deterministické konecné automaty, prefizové stromy
a analyzu opakovatelnosti. Ve druhé ¢asti této diplomové préce se zamérujeme na imple-
mentaci programu, ktery je schopny na zakladé takového modelu komunikace verifikovat
sitovy provoz v redlném case.
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Rozsireny abstrakt

Analyza sitového provozu hraje dilezitou roli v oblasti pocitacové bezpecnosti. Diky ni
miizeme sledovat chovani jednotlivych zarizeni v siti, monitorovat vykon, ale také predvi-
dat budouci komunikaci za Gcelem v¢asného odhaleni nezddociho chovani. Za timto Gcelem
bylo v minulosti navrzeno mnoho metod se snahou poskytnout co nejlepsi mozny popis
aktualniho stavu sité. Ovsem sestaveni modelu sité, ktery presné popisuje aktualni stav ko-
munikace vSech zafizeni, je témér nemozny tikol, protoze v siti se prirozené vyskytuje mnoho
chyb. Za chyby povazujeme napriklad ztraty, zpozdéni a duplicity paketi. K predikci bu-
doucich stavi se proto vyuzivaji metody strojového uceni. Tyto metody, a obzvlasté ty
z nich, které jsou zalozeny na uceni s ucitelem, jsou vsak velmi zavislé na velikosti a kvalité
datové sady. Pravé trénovaci datovd sada se tedy v mnoha ptipadech stava klicovou pro
kvalitu vysledného modelu a je velmi dulezité zajistit, aby v ni bylo obsazeno co nejvice
riznych situaci sifového provozu.

V této praci se zamérujeme na metody uceni bez ucitele, obzvlasté na ty, které jsou
postaveny na konecnych automatech. Nasi snahou je vytvorit metodu, kterd neni prilis
zavisla na kvalité a velikosti datové sady. Navrzena metoda by zaroven méla byt schopna
vytvorit co nejpresnéjsi model na zakladé informaci dostupnych ze samotného toku paketii,
bez toho, aby ji byly poskytnuty dodatecné informace o prostredi, hostiteli nebo zafizenich,
se kterymi hostitel komunikuje. Za tcelem implementace a néasledné verifikace reseni nam
byla poskytnuta datova sada skladajici se ze 688 979 paketi, které byly zachyceny v rozmezi
977.997794 sekund. V této datové sadé je zachycena komunikace prostrednictvim protokolu
IEC 60870-5-104 a je v ni nasimulovan tutok na zafizeni.

Protokol TEC 60870-5-104 je aplikac¢ni protokol nad transportnim protokolem TCP,
ktery se primarné vyuziva ke komunikaci mezi zatizenimi v ridicich systémech. Protokol
definuje 3 zakladni ramce pakett: I-Type, U-Type a S-Type. Tyto ramce se rozlisuji na
zakladé 7. a 8. bitu v prvnim ze ¢tyr ridich poli v hlaviéce paketu. Typ I ma 8. bit nastaven
na hodnotu 0 a slouzi primarné k obousmérné vymeéné dat. Typ U, identifikovdn pomoci
poslednich bita ,,01¢, a typ S, s poslednimi dvéma bity ,, 11%, jsou urcéeny k jednosmérné
komunikaci. U¢elem takovych paketil je zejména zaslani potvrzeni nebo fidictho pifkazu
druhému zarizeni.

V prvni ¢asti této diplomové prace se zamérujeme na identifikaci jednotlivych toku
takové komunikace za tcelem volby co nejvhodnéjsi struktury modelu. Hlavnim ucelem
je rozhodnout variabilitu kombinaci informaci v hlavickdch TEC 104 paketti. Na zdkladé
analyzy datové sady bylo zjisténo, ze riznorodost kombinaci téchto informaci je napric
vsemi toky paketd velmi mala. Proto je vyhodné neseparovat modely jednotlivych toki,
ale vytvorit jediny komplexni model popisujici toky mezi vSemi zarizenimi, a poté pro
jednotlivé dvojice zarizeni definovat nad timto modelem konkrétni limity jejich komunikace.
Byly proto vytvoreny tiidy paketl, které shlukuji pakety urcitych rysa, pricemz kazdy
paket nalezi pravé jedné této tridé. Tyto tfidy oznacujeme jako modely paketu. Kazdy
tok paketi lze poté generalizovat na retézec modeld pakett. Takova reprezentace odhaluje
velmi zretelnou opakovatelnost podsekvenci modelt paketi. Tyto podsekvence oznacujeme
za vzory komunikace. Model celé komunikace je poté postaven na identifikaci vSech vzoru,
které se vyskytuji v datové sadé.

V druhé casti této prace se zabyvame implementaci programu, ktery je schopny nalézt
vSechny vzory v poskytnuté datové sadé. Kromé toho se také zabyva opakovatelnosti
danych vzori v ramci konkrétnich datovych tokti. Zkoumad, zda neexistuje perioda, na
zakladé které by se mohl predvidat dalsi vyskyt daného vzoru. Byly zkoumany dvé metody
zjistovani periodicity. Prvni z nich je zalozena Cisté na statistice — ukazalo se vsak, Ze tento



pristup je velmi zavisly na datové sadé, odhad je velmi nepresny a kazda odchylka velmi
ovliviiuje vysledek. Statistické metody se tedy ukéazaly byt nevhodné pro tento pripad.
Druhé metoda byla proto postavena na diskretizaci c¢asu prichodu vzoru. Neuvazujeme
tedy konkrétni ¢as vyskytu, nybrz pocet vyskyti v rdmci casového tiseku. V tomto pripadé
byly zvoleny tuseky o velikosti jedné sekundy. Takovy sekundovy interval oznacujeme za
segment. Casové okno pfedstavuje poté jednu periodu a sklddd se z nékolika segmentii.
Naptiklad periodu 0.6 sekund mutzeme vyjadrit nekonecnou sekvenci casovych vyskyti
t = {0.0,0.6,1.2,1.8,2.4,3.0,3.6,4.2,4.8,5.4, ... }, uvazujeme-li vsak pocet vyskytu kazdou
sekundu, muzeme sekvenci vyjadfit posloupnosti w = {2,2,1,2,2,1,...}. V této sekvenci
se evidentné opakuje podsekvence {2,2,1}, kterd predstavuje ¢asové okno slozené ze tii
segmentl. Vystupem algoritmu je také jistota (anglicky confidence), s jakou bylo okno
urceno. Pokud je tato jistota alespon 0.5, tedy 50% shoda, povazujeme vzor za periodicky.
Touto metodou byly v poskytnuté datové sadé odhaleny vsechny opakujici se vzory, pro
kratké periody (0.6 sekund) s jistotou kolem 0.9, pro dlouhé periody (20 sekund) s jistotou
v rozmezi 0.8 az 1.0.

Vysledna komunikace je tedy popsana jedinym modelem, reprezentujicim vSechny vzory
napii¢ vsemi toky komunikace. Tento model je reprezentovan jako prefixovy strom. Na
model navazuji deterministické konecné automaty popisujici jednotlivé toky paketu, které
jsou specifické pro kazdou dvojici zarizeni. Tyto komunikace oznacujeme jako oboustranng
tok.

Model komunikace je vygenerovan jako modul programu, ktery ma schopnost verifikovat
sitovy tok v redlném case. Protoze sitovy provoz probihd velmi rychle, tento program
musi pracovat s co nejvétsi efektivitou a byt schopen zpracovat desetitisice pakett kazdou
sekundu. Proto je nutné eliminovat pocet ¢asové naroc¢nych operaci, jako je naptiklad
alokace a dealokace paméti. Modul vygenerovany v ramci analyzy paketl je tedy sestaven
tak, aby postacil ve vétsiné pripadu primy pristup do paméti a také aby bylo mozné pracovat
s konstatni velikosti paméti.

Program provadéjici verifikaci paketii se sklada ze dvou vlaken. Hlavni vldkno prijima
tok paketu a uzpisobuje tomuto toku interni stav proménlivé ¢asti modelu komunikace, coz
je provadéno v podobé prechodt mezi stavy automatt reprezentujicich jednotlivé obous-
tranné toky. Zaroven také zapisuje pocty vyskyta jednotlivych vzoriu do kruhového sez-
namu o velikosti periody vypocitané béhem analyzy. Tento kruhovy seznam je poté kazdou
sekundu kontrolovan druhym vlaknem, které jej porovnava s o¢ekavanym poctem vyskytu.
Pomoci vzorce zalozeném na Hammingové vzdalenosti poté vypocitava jistotu, s jakou se
realné vyskyty shoduji s oéekdvanim. Pokud komunikace dospéje do nezndmého stavu nebo
pokud se pocet vyskyta vyrazné lisi od ocekavani, problém je nahlasen.

Oba programy byly testovany na obdrzené datové sadé. Prvni tretina byla vyuzita na
trénovani modelu, na dalsich dvou tfetinach byl model otestovan. Na zakladé testt byly
postupné provedeny tii optimalizace, diky kterym je program schopny zotaveni v pripadeé,
ze komunikace je pozastavena a poté znovu zapocata, nebo také v situaci, kdy je v siti prilis
velka latence a vyskyty se zacnou vychylovat ze segment.

Z vysledkt vyplyva, ze s pomoci kontroly periodicity jsme schopni odhalit velké mnozstvi
chyb, protoze kazdé nestandardni chovani se projevilo na jistoté, se kterou se redlny pocet
vyskyti shoduje s ocekdavanym. Velkd c¢ast ttoku je také reflektovana ve vystupnich sou-
borech, do kterych jsou hldseny nestandardni vyskyty.
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Chapter 1

Introduction

Network traffic analysis has a special role in current computer science. It helps us to predict
the behavior of devices, monitor their performance, and reveal anomalous manners. Many
techniques have been studied in order to develop a model providing as accurate system
description as possible. However, the construction of a precise model is an almost impossible
task because the network environment is very noisy and erroneous. Dealing with the noise
is usually the biggest challenge in network traffic modeling because, without a sufficient
dataset, it is impracticable to precisely determine the impact of the environment and specify
exact patterns in network communication. Therefore, supervised learning techniques have
become very popular in network traffic analysis for their capability of dealing with these
aspects. However, these methods are very dependent on the quality of the given dataset.
In this work, we focus on unsupervised learning using finite automata. Our algorithms are
built to do not be too dependent on dataset size and quality. We focus on acquiring as
much information as possible from a raw packet stream without any additional information
about the host, connected devices, or the network itself.

The main goal of this diploma thesis is to develop an algorithm that automatically
creates a model of network traffic, which can be later used for traffic flow verification.
The described analysis specializes in Supervisory Control and Data Acquisition (SCADA)
systems modeling with the main focus on IEC 60870-5-104, which is an application protocol
over TCP, commonly used for master/slave communication in industrial control systems.
The gathered information is then used to create a reduced packet representation taking
into account the importance of particular header fields. The reduction of data attributes
associates similar packets together, despite some of their fields may be distinct. Moreover,
appropriate data reduction brings benefits to subsequent analysis because it significantly
reduces both space and time complexity of model computation. In the construction phase,
we first investigate related works and algorithms, and then we combine several techniques
with the objective to create a model, which is as accurate as possible. Furthermore, we
analyze recurrence intending to estimate periods in flows because, as ascertained from
initial investigations, periodicity has an important role in these systems. The obtained
model and additional information are generated as a module of software that evaluates
network behavior based on the given specification in runtime. The system that verifies
traffic in real-time is a program that is capable to accept received packet, adjust its internal
state to the current network situation, and determine, whether the state is correct or not. If
there is any uncertainty about the network situation, it is reported as a vulnerability. Using
this software, we are able to obtain valuable error logs and recurrent behavior monitoring
across the whole process. Finally, we test our solution aiming to determine whether it meets



requirements or not, discuss obtained results, and contributions of this work in furtherance
of proposing improvements and future continuation.

1.1 Thesis Structure

This diploma thesis is further divided into 8 chapters. At first, we focus on the analy-
sis of recent studies in the field of network flow monitoring and content examination. In
Chapter 2, we study IEC 60870-5-104 protocol description and structure in pursuance of
estimating its variety and investigate its behavior in a network. Chapter 3 discusses related
works and algorithms intending to identify advantages and disadvantages of the mentioned
approaches. Based on these observations, we investigate possibilities of generic model con-
struction, which is applicable to any unknown dataset.

Based on related works and also own observations, in Chapter 4, we introduce the given
dataset and focus on appropriate preprocessing, which includes data reduction. The prin-
cipal purpose of this chapter is to find a uniform lossless data representation. Such a repre-
sentation helps to associate similar packets together and also reduces both space and time
complexity of large dataset processing. Processed data is used in Chapter 5 to describe
the proof of concept of an algorithm that automatically recognizes a model in any dataset
using deterministic finite state automata and prefix trees. Additionally, it analyzes flow
patterns in order to reveal recurrent occurrences in the given packet stream and estimate
their period. The network model is used in Chapter 6, which proposes a proof of concept
of a system, which can verify traffic in real-time based on the model which is provided as
a part of the system.

Finally; in Chapter 7, we compare the obtained results with expectations for the purpose
of verifying capabilities and insufficiencies of the implemented solution. Based on the result
evaluation, Chapter 8 summarizes our results and briefly introduce future work.



Chapter 2

IEC 60870-5-104 Protocol

Supervisory Control and Data Acquisition (SCADA ) is a control system architecture playing
a critical role in power system operation and communications. These systems are designed
not only to gather, analyze, and store data, but also to transfer it to a central computer
facility and display the information to the operator in graphical or textual representation,
thereby, allowing the operator to monitor or control an entire system from a central location
in real-time [1, 44].

International Electrotechnical Commission (IEC) has established IEC 60870 standard
defining telecontrol systems. This standard has 6 parts describing general principles, char-
acteristics of interfaces, performance requirements, etc. IEC 60870-5 is the fifth part,
known as Transmission Protocols. It was developed by the IEC Technical Committee 57"
and the main goal is describing a profile of communication between devices. Five documents
specify the base of IEC 60870-5 including Transmission Frame Formats (IEC 60870-5-1),
Data Link Transmission Services (IEC 60870-5-2), Security Extensions (IEC T'S 60870-5-7)
and more. The IEC Technical Committee 57 has also created companion standards. One of
these standards is IEC 60870-5-101 presenting protocol that provides a communication pro-
file for sending basic telecontrol messages between a central telecontrol station and telecon-
trol outstations. The IEC 60870-5-104 protocol is an extension combining the application
layer of IEC 60870-5-101 and the transport functions provided by TCP/IP [15, 30, 31].

2.1 Protocol Description

IEC 60870-5-104 is a Master/Slave protocol, what means there is one device or process con-
trolling other (one or more) connected devices or processes (Figure 2.1). Master and Slaves
communicate in two alternative ways. KEither Master controls the data traffic by Polling
(Master invokes communication with Slaves itself by sending periodic queries) and Slave
passively sends responses, this process is called Unbalanced Transmission, or every Slave
station can immediately initiate a message transfer to Master itself, what is known as
a Balanced Transmission.

IEC 60870-5-101/105 standards define a hierarchical architecture, where every con-
nected system is either Master or Slave. In terms of these protocols, we use conventions
Controlled Station, the monitored system (Slave), and Controlling Station, the system that
performs control of other systems (Master).

'IEC Technical Committee 57 develops and maintains international standards used in planning, opera-
tion, and maintenance of power systems. http://tc57.iec.ch/index-tc57.html
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Figure 2.1: Controlling/Controlled stations and transmissions

Controlling and Controlled stations communicate in 3 types of direction:

e Monitor Direction, transmission is performed from Controlled to Controlling station,

e (Control Direction, transmission is accomplished from Controlling to Controlled sta-
tions, and

e Rewversed Direction, what is a combination of both principles enabling Controlling sta-
tion to send commands and Controlled stations to send response/data (Figure 2.1) [30].

IEC 60870-5-101 defines addressing on two different levels: the Link Address, which
uniquely identifies device, and a Common Address of ASDU (COA ), what in combination
with information object address creates unique identification/address for each data element.

2.2 Protocol Header Parameters

IEC 60870-5-104 protocol header information is represented in Application Protocol Data
Unit (APDU), which is further divided into two parts. The first component is Application
Protocol Control Information (APCI), which starts with value 0x68, called Start Byte, fol-
lowed by 1-byte APDU Length field, and four 1-byte Control Fields (CF). The second part
is Application Service Data Units (ASDU), which is attached optionally. Thus, APDU con-
tains either a 6-byte APCI or an APCI with Application Service Data Units (ASDU) (Fig-
ure 2.2).

The format of IEC 60870-5-104 APCI is slightly different from TEC 60870-5-101 APCI
structure, which duplicates the APDU Length field and also repeats Start Byte. The main
purpose of creating redundancy is the possible absence of a reliable transmission guarantee.
TEC 60870-5-104 uses TCP, which provides a reliable transport guarantee, thus, the rep-
etition of any field is dispensable. Each IEC 60870-5-104 APCI consists of a frame that
appertains to one of three standard types. The type of frame determines the format of
Control Fields.

2.2.1 APCI Control Fields

The APCI of IEC 60870-5-104 also contains four control fields. These fields differ according
to the ACPI frame type. We identify three basic types of frames: I-format, U-format, and



S-format recognized by the last bit/2-bits of the first control field. Despite the size of APCI
remains the same for all frame types, each frame type has a specific role and also determines
whether an ASDU is attached or only single APCI is contained in APDU.

0 Start Byte (0x68) A
1 byte
APDU Length (max. 253)
p— J i APCI
Control Fields
4 bytes
APDU | —""——F-- X
APDU
Length
ASDU data ASDU
(Optional)

APCI  Application Protocol Control Information
ASDU Application Service Data Unit
APDU Application Protocol Data Unit

Figure 2.2: TEC 60870-5-104 APDU structure

Send sequence number (LSB) | 0 0 1 TESTFR | STOPDT [STARTDT| 1 1
7 bit 1 bit 1 bit | 1 bit 2 bit 2 bit 2 bit 1 bit | 1 bit

Send sequence number (MSB)
8 bit

Receive sequence number (LSB)| 0 Receive sequence number (LSB)| 0O
7 bit 1 bit 7 bit 1 bit
Receive sequence number (MSB) Receive sequence number (MSB)
8 bit 8 bit

Figure 2.3: Comparison of I-format, S-format, and U-format APCI CF

Information Transfer Format (I-format)

The I-format header is identified by the 8th bit (the last bit of the first CF) set to value “0”.
It consists of a 15-bit Send Sequence Number (SSN) and also a 15-bit Receiver Sequence
Number (RSN) (Figure 2.3). Both SSN and RSN are initially set to zero and sequentially
incremented with every sent/received packet. The I-format APDU always contains an APCI
and ASDU.

Whenever a transmitter sends a packet, it increases the SSN and stores packet’s APDU
to a buffer until it receives an acknowledgment from the receiver. The acknowledgment
contains SSN of the received packet in the RSN field. When it sends more than one APDU
and receives RSN equal to any of APDU’s SSN, it is considered as a valid acknowledgment
for all APDUs with lower SSN than received RSN.

When a station transmits a large batch of packets, it may lead to a situation where
the buffer is overfilled by unacknowledged APDUs. To prevent overflow or acknowledge
timeout, the receiving station sends a packet with the S-format APCI to signalize packet
receipt.



Numbered Supervisory Functions (S-format)

The S-format APCI header is defined by value “01” in the 7th and 8th bit position (the last
two bits of the first CF in the header). The other six bits of the first CF and also whole
second CF are kept unused because, oppositely to the I-format, this header format does
not contain a SSN (Figure 2.3). The I-format APDU always contains only one APCI.

The main and only purpose of this APCI is to signalize APDUs receipt to prevent buffer
overfilling, which was described in the I-format section. Thus, RSN is a piece of essential
information, it notifies the APDU transmitter that packets containing SSN in the received
I-format APCI of lower or equal value than RSN in the sent S-format APCI were correctly
received. On the contrary, the SSN in the S-format header is redundant because the S-
format APCI is not intended to be acknowledged as it is acknowledgment itself.

Unnumbered Control Functions (U-format)

The U-format header is defined by the 7th and 8th bit both set to value “1”. Contrarily
to the I-format and S-format APCIs, the U-format APCI contains neither Sender sequence
number or Receiver sequence number. On the other hand, the same as the S-format, the U-
format APDU of this format always contains one APCI only.

In this case, the first CF has a special role. As shown in Figure 2.3, the first 6 bits
are divided into three 2-bit fields: TESTFR (Test Frame Activation, Test Frame Confir-
mation), STOPDT (Stop Data Transfer Activation, Stop Data Transfer Confirmation),
and STARTDT (Start Data Transfer Activation, Start Data Transfer Confirmation). Only
one of these fields can be activated at a time, i.e., its value can be either set to “01” or “10”
depending on the action, other fields are always set to “00”.

2.2.2 ASDU Fields

The ASDU consists of a 6-byte Data Unit Identifier and the data itself. The data can be
composed of up to 127 information objects. ASDU contains the following fields:

o Type Identification (8 bits) characterizes the whole ASDU content; it denotes the di-
rection of the packet and also its purpose, i.e., whether the content is a piece of process
information, system information, parameter, or a file transfer;

o Structure Qualifier (1 bit) is either “0”, when a sequence of information objects is
attached, or “1”, when a single information object is included;

e Number of Objects (7 bits) defines the exact number of information objects in ASDU;

o Test Bit (1 bit) defines whether the ASDU was created during test conditions; “1” stands
for “test”, “0” means “no test”;

e Positive/Negative bit (1 bit) indicates the positive or negative confirmation of an ac-
tivation; the value is “0” when the confirmation is positive, otherwise “1”;

o Cause of Transmission (6 bits) is used to provide an information that helps to interpret
the message on the target device;

e Originator Address (8 bits) is used by controlling station to identify itself;
e Common Address of ASDU (24 bits) identifies all ojects contained within the ASDU. [30]



Chapter 3

Related Works and Studies

This chapter introduces existing studies and algorithms focused on network traffic analy-
sis. Their concepts will be later used for automatic traffic model construction. We have
identified three main approaches to generic network traffic modeling and analysis:

e inspection of packet header fields and also its content details in order to create an au-
tomaton that simulates the process of packet transmission between two monitored
devices, which is later used to verify network traffic;

e observation of network traffic as an unknown system, which processes cannot be ac-
curately specified, and construction of a supervised learning algorithm that improves
over time; and

e measurement of the statistical aspects of a network flow such as time between two
succeeding packet arrivals.

The following sections briefly introduce all three approaches and related algorithms.
At last, we summarize their results and make conclusions about their usage for generic
modeling and IEC 104 protocol traffic description.

3.1 Automata and Pattern Recognition

Pattern Recognition is a technique focused on a description or classification of measure-
ments. It may be characterized as an information mapping, information reduction, or in-
formation labeling process. Pattern Matching is the act of checking an input sequence for
the purpose of finding constituents of some template.

Pattern recognition in terms of packet stream analysis proceeds from an assumption
that a substantial part of communication consists of recurrent, in many cases even periodic,
events. This property utilized to construct “templates” describing some characteristics of
these recurrent events. Considering a packet flow, a pattern usually represents the identity
of communicating devices and other packet header parameters depending on a specific
protocol, although, there are also studies taking into consideration other packet parameters
such as packet size or the data content of the packet, what is usually referred to as Deep
Packet Inspection (DPI) [35].

Using a characteristic summary, we can effectively describe an abundant amount of
properties that contribute to efficient membership (pattern match) affirmation. Packet
pattern matching/recognition is typically implemented using Regular Expressions, Finite



State Automata (FSM), and (Prefix) Trees, but also by less conventional techniques, such
as Spectral Analysis.

3.1.1 Deterministic Finite State Automata

Definition 3.1.1 Finite State Automaton (FA) is a 5-tuple M = (Q, ¥, 0, qo, F), where:
1. Q is a non-empty finite set of states;
2. ¥ is a non-empty finite set of input symbols called alphabet;
3. 8 is a state-transition function § : Q x ¥ — 29;
4. qo is an initial state, qo € Q; and
5. F is a non-empty finite set of final states, FF C Q [/0].
Definition 3.1.2 Deterministic Finite State Automaton (DFA) is a FA, where
VgeQVaeX:|6(ga) <1
contrarily, Non-deterministic Finite State Automaton (NFA) is a FA, where
dgeQ JaeX:|6(qa)l>1.

In previous studies, automata-based models (Definition 3.1.1) have been observed to be
a very efficient solution for SCADA systems traffic modeling. However, dealing with high
network error-rate and growing complexity, such as multi-periodic patterns, have appeared
to be problematic due to their high sensibility [17].

In the simplest scenario, states of the FA model are representing moments between
packet arrivals. Whenever a packet is received/transmitted, it is represented as a single
transition. Therefore the transition function needs to be total, i.e., defined for every com-
bination (q,a), ¢ € Q, a € ¥; and defined exactly once for each pair (¢,a). Thus, FA is
usually required to be deterministic (Definition 3.1.2). Intuitively, such an approach pro-
vides a very clear overview of system behavior. Despite this property may be assumed to
be an advantage, actually, it is also the most influential limitation of the before-mentioned
systems. As described earlier, network traffic contains lots of anomalies, which are difficult
to predict and/or describe, what constitutes the biggest challenge for systems built on exact
match principles.

Niv & Goldenberg (2013) [17] have used an DFA to construct a model of communication
based on Modbus [38, 21], what is an application protocol over TCP used for master/slave
communication in industrial control systems. For the purpose of representing traffic by
an DFA, they have made the following DFA adjustments:

1. There are not any final states — an input stream is considered as endless, therefore
acceptance states are not needed;

2. every state transition is associated with an action;

3. the start state (qp) is defined as a state corresponding to the first query that was
recognized in the flow; and
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4. a symbol in alphabet 3 is defined as a concatenation of several Modbus fields, i.e., each
symbol is represented as a 33-bit key.

As mentioned above, the transition function is associated with a set of actions. Four
basic types of actions were identified: Normal is an action identifying arrival of a known pat-
tern element, Retransmission is an occurrence of a symbol identical to the previous symbol,
Miss stands for an arrival of a known symbol but on unexpected position, and Unknown
denotes an occurrence of a not yet identified symbol. The model is then automatically
“learned” from captured traffic. Initially, the algorithm estimates pattern length 2, i.e.,
each flow consists of a single request and one response. In every following iteration, one
symbol is processed, i.e., one step of adjusted DFA is performed, and the pattern is validated
by Equation 3.1.

normals normals

P = = (3.1)

total normals + misses + retransmissions + unknowns

The authors have also set a threshold, which is the lowest acceptable P rate. This limit is
constructed of pattern lengths and components observation. If the result P is lower than
the threshold, it means that too short pattern was selected. In this case, the algorithm
continues with consequential iteration; otherwise, the algorithm stops. These patterns are
then combined to a single model that is capable to verify traffic in run-time. The final model
was validated using two datasets composed of packets obtained during long-drawn traffic
capturing. Despite DFA models are very sensible, the model was successful in the network
analysis. The “unrecognized packets” rate was less than 1%. Unfortunately, the authors
did not test the algorithm in malicious or noisy environment.

Kleinmann & Wool (2016) [26] have followed the work of Niv & Goldenberg. They have
observed that the quality of the DFA models is degrading by anomalies in the network during
the unsupervised learning phase because they cause large expansion of the automaton.
Thus, they have focused on improving the simple DFA model by creating additional steps
preventing automaton growth. At first, an automaton is built for each pattern in the flow
using the algorithm described by Niv & Goldenberg [17]. To deal with the size growth,
they have created Statechart DFA that consists of many DFAs, one per cyclic pattern.
These DFAs are combined together with a DFA-selector that de-multiplexes the incoming
packets into sub-channels, represented by the DFAs. The authors improved the algorithm
of pattern borders estimation using Deterministic Time Markov Chain (DTMC) and graph
theory concepts. After building DTMC from the stream, cycles in the DTMC are detected
and extracted, then each sub-graph is investigated in order to find Euler cycle, the test is
done by evaluating simple condition that each of graph verticles has an in-degree equal to
out-degree. If the sub-graph cycle condition is evaluated negatively, the sub-graph is “fixed”
by adding a missing edge and/or dropping redundant edges. The last step of the algorithm
is an estimation of the time between successive symbols in each of the cyclic patterns. For
this purpose, each DFA retains timestamps of accepted symbols during the enforcement
phase. This information helps the DFA-selector to decide which DFA to use in case of
pattern symbols overlap as the time gap between successive symbols of the same pattern
is usually very small. Experiments with the final model have shown that the Statechart
DFA model has promising characteristics: it exhibits a low false-positive rate, it is effective
in both time and space complexity, and it is scalable for multiplexed streams. However, it
still does not completely deal with false-positive alarms.
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3.1.2 Sequence Analysis

The previous section described automata as the models of the network state. Similar
principles may be used in the static analysis that considers packet stream as a sequence
of some pattern elements. With a compact representation of packet streams, for example,
grouping described in Chapter 4, conventional pattern recognition algorithms might be
an effective solution. These algorithms are based on the principle of determining the longest
possible patterns in a given sequence. Typical pattern matching and recognition algorithms
are based on regular expressions, prefix/suffix trees and finite automata [32, 34].

In the network traffic analysis and modeling, we do not usually search only for pat-
terns themselves but we also research and analyze their relations, e.g., sequential order, for
the purpose of investigating associations between pattern occurrences. Another interesting
property of element sequences is periodicity of specific sub-sequences [9, 40]. Especially
in industrial control systems, where most of the communication is recurrent, this infor-
mation may be critical for further analysis as it may help to identify recurrent behavior
and requests.

Despite this approach (with an appropriate algorithm) potentially mines all useful pat-
terns, in the case of network traffic it cannot provide a complete model for complex commu-
nication using exact patterns because these algorithms do not consider anomalies or arrival
times at all. Nevertheless, these principles can be used as a support for other algorithms
to identify element’s (in our case packet) context.

3.2 Probability Estimation

A network state is not a well defined notion. The same as most of the other realistic situa-
tions, it can be highly impacted by environmental aspects so the next state of the network
is not securely predictable. As observers, we can evaluate this influence only from the re-
ceiver and/or sender viewpoints, which makes a precise analysis impossible. Hence we can
consider these aspects as an impact of a random source on an “abstract variable” defining
the current state of the network and instead of creating a deterministic model precisely
predicting future behavior, we can observe events on end-stations and create a stochastic
model with respect to a certain level of randomness.

3.2.1 Stochastic (Learning) Automata

As follow-up to Definition 3.1.1, we define Stochastic Finite Automaton (SFA) as [10]:

Definition 3.2.1 Let M be a stochastic finite automaton defined as M = (X, Q, P, s), where
> s an alphabet, Q) is a finite set of nodes, where Q = q1,q1,...,qn, S s the initial node,
and P is a set of probability matrices p;j(a) giving the probability of transition from node g;
to node qj, gi,q; € Q, led by symbol “a”, where a € ¥. The probability p(w) for string w to
be generated by X is defined as follows:

p(w) = Z p1i(w)pjf, (3.2)
7 EQ
where p; ¢ is the probability that state q; is the final state for string w.
For each state, we can generalize the probability equation to:

pij(w) =YY pir(wa )i (a), (3.3)

qLEQ aEX
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where (wa™1) represents prefix a of string w. Let’s consider p; to be the probability that
the string ends in node ¢;. For each state ¢; € @, the transition function is limited by

the following constraint:
pirt >, Y pila) =1 (3.4)
qLEQ aEX

Language L is defined as a set of strings generated over alphabet X, formally L C ¥*.
Analogously, Stochastic Languages are specified as [11]:

Definition 3.2.2 A Stochastic language L is defined by a probability density function over
¥* giving the probability p(w|L) that the string w € ¥* appears in the language. The prob-
ability of any subset X C ¥* is given by

p(X|L) =Y pl|L), (3.5)

zeX

and the identity of stochastic languages are interpreted as follows:
Ly =Ly < p(w|Ly) = p(w|L2) Yw € ¥*. (3.6)

Considering the models described in Section 3.1.1, stochastic automata models might
be one of the possible solutions to the sensitivity issue. These models introduce probability
to the classical finite automata definition what removes the “precise behavior definition”
problem, which led to the high false-positive rate of the final model. However, the random-
ness opens new issues in the network state modeling and requires a certain size and quality
of the dataset to make the correct predictions. Thus, these automata are usually used in
an adaptive form. In the adaptive learning strategies, the behavior of a system slightly
improves every sampling period. The first idea of applying this concept on the basic au-
tomata was proposed by Mikhail Lvovich Tsetlin et. al in a series of papers describing the
proof of concept. However, the term Learning automata was first introduced by Naren-
dra & Thathachar (1974) [33]. In the stochastic learning automata theory, the probability
distribution over automaton states is recursively updated to optimize some learning goals;
initially, the distribution may not be known at all [36]. Due to the capability to adapt to
changes, these automata are considered as suitable for unstable environment modeling.

However, the construction of the model that precisely predicts network behavior is
a challenging task, which requires a large dataset of a certain quality. Moreover, the network
state may be changing rapidly with significant fluctuation. Thus, usage of these automata
is not the preferred technique for network state modeling. Nonetheless, their principles are
used to build more complex probabilistic models, such as Markov models.

3.2.2 Markov Chains and Models

Markov Model is a stochastic model of a (randomly) changing system. It assumes that
the future state of a system always depends only on the current state, past states are
not considered. This characteristic is called Markov Property. According to the system
characteristics, we distinguish 4 basic types of Markov models:

e Markov Chain, used for autonomous but fully observable systems;

o Hidden Markov Model (HMM), when a system is autonomous and only partially ob-
servable;
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o Markov Decision Process, in the case of a controlled and absolutely observable system:;

e Partially observable Markov Decision Process, when a system is not well-observable
but controlled.

Network state is usually treated as an autonomous system, hence both Markov Chains
and HMMs are widely used for modelling, since the observability is disputable, depending
on the position of the observer.

A Markov Chain refers to a sequence of random variables and changes between them,
appointed as the probability of a transition occurrence. Let’s suppose we have a set of
states {s1,s2,...,s,} in a chain that is currently in state s;, then it may move to s; with
probability p;; or remain in the state s; with probability p;;. Transition probabilities are
commonly represented as a matrix, where rows/columns represent states and values denote
probabilities between them. Considering P to be the transition matrix, and u be the prob-
ability array representing the starting distribution, then the probability that the chain is in
the state s; after n transitions is the array u™ = uP". Formally, a Markov chain is defined as
(Q, A, m), where @ = {q1,q1,...,qn} is aset of N states, A = {a11,a12,...,an1,.-.,Ann} is
a transition probability matrix, where Z?zl a;j =1, and 7 = {m,m2,..., 7N} is an initial
probability distribution over states, ., m; =1 [23, 18].

Contrarily to the Markov Chain, a Hidden Markov Model (HMM) represents a system
which states cannot be observed. However, we know the output of the system, represented
as a sequence of observations, and the probability distribution over specific observations for
each state. Based on output stream order and the probability distribution, we can make
“a guess” about possible sequence of states producing such an output. Formally, a HMM
is specified as a tuple (Q, A, O, B, ), where Q = {q1,q1,...,qn} is a set of N states,
A = {an,a12,...,0an1,...,ap,} is a transition probability matrix, where Z?:l a;; = 1,
O = {01,02,...,0r} is a sequence of T observations, each one is drawn from a vocabu-
lary V' = {v1,v2,...,vv}, B = b;(0¢) is a sequence of observation likelihoods, also called
emission probabilities, expressing the probability of an observation o; being generated from
the state i, and m# = {m,m9,...,7n} is an initial probability distribution over states,
Srymo= 1[23).

Markov models have become a popular technique for network traffic modeling due to
their ability to represent a system which is not well-observable [7, 29], and also to identify
anomalies, such as end-to-end loss process [39].

Delete

Figure 3.1: HMM Profiles
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Wrigh et al. (2004) [43] have focused on identifying patterns in encrypted traffic. Pre-
vious studies have shown that examination of packet size and/or time analysis are very
successful techniques for inferring encrypted communication over SSL/SSH. Therefore their
goal was to create a general model using HMM Profiles with a capability to deduce infor-
mation also from other forms of encrypted networks without specialization.

HMM Profiles are left-right HMM built around a central chain, creating groups of states
(denoted by numbers in Figure 3.1). The original idea of HMM profiles comes from biology,
S. Forrest (1997) [16] has adapted this idea to usage in computer security. Originally, HMM
profiles consist of the following components:

o Match state, capturing the essential behavior that is being analyzed;
e Insert state, representing an unexpected insertion in known pattern; and
e Delete state, allowing some pattern elements to be omitted.

The authors have modified this model by splitting match states to two separate states
to represent packet direction and interpreted state group as following: match states repre-
sent valid packets, insert states denote duplicates, and delete states stand for lost packets.
They have used this structure to build two models, one focuses on the packet size, the other
emphasizes packet inter-arrival times. Initially, all packets are supposed to be in every posi-
tion equally likely, then 400 flows are randomly selected and used to re-estimate the initial
parameters of the model. To classify a sequence, the probability of being generated for
each model is computed and assigned to a label of the model that generates the sequence
with the highest probability. Then, a confusion matriz is generated, illustrating the results
of each classifier. Both models reached over 60% of correct classifications, for example,
classification of AIM protocol was successful in more than 80% cases, on the other hand,
models did not reach good results in classifying SSH and Telnet.

3.3 Arrival Time Analysis

This section focuses on studies where time is the principal property. Information about time
can be implicitly available, explicitly recorded, or originally not available at all. According
to this data property, we can divide time records into the following categories:

o Fuvent Sequence, if time is explicitly recorded and together with data we can put
records in a sequence of pairs of the form {(¢1,01), (t2,02),..., (tn,0n)};

o Irreqular Time Series, when time information is provided but it is inaccurate, the time
does not play special role in such records (usually roughly measured in number
of hours/days);

e Point Sequence, if the time series, denoted as an ordered collection of occurrences
{t1,t2,...,ty}, are the only measured property and no further details are stored;

e Periodic Point Sequence, when a Point Sequence has period p with time tolerance
and every point occurs repeatedly in every p & ¢ time units;

e Value Sequence, in a case where only values, which can be denoted as set {01, 02, ...,0,}
called symbol sequence, are provided and time is not recorded at all [41].
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In experiments focused on gathering description from time characteristics, periodicity
has a special place. It can be defined as a sequence of same/similar observations occurring
in (more or less) regular intervals. Although, in a noisy environment, periodicity may be
difficult to detect because of the following aspects:

e Non-persistence, despite the periodical behavior can be observed, it may be only
a temporal state (dependent on another event);

o Impreciseness, although time information is provided, it can be inaccurate due to many
aspects, e.g., network latency, overloading, and packet loss;

e Magnitude, the scope of possible interval values can be from milliseconds to days;
e Quantity, above all in high period streams, low amount of samples can be provided;

e Noisiness, because packet flows representing two samples of the same occurrences may
significantly vary, it is important to include mechanism providing tolerance of vari-
ety [28].

In pursuit of avoiding impact of these aspects, Ma & Hellerstein (2001) [28] have intro-
duced term p-pattern, representing intermittent periodic occurrences. P-pattern is defined
in the following Definition (3.3.1), where w is a predefined time window demarcating tempo-
ral association; D is a sequence of all events; A is a set of all event types and A; is a subset
A; C A. Sy is a set of events, where every occurrence belongs to a specific event type
Aq; 9 is a predefined time tolerance of period length for specific events in S7; p is a period
length; and minsup is a minimum support (i.e., the minimum number of occurrences) for
p-pattern:

Definition 3.3.1 A set of event types A1 C A is partially periodic temporal association
(p-pattern) with parameters p, §, w, and minsup, if the number of qualified instances of A;
in D exceeds a support threshold minsup. A qualified instance S1 C D satisfies the following
two conditions:

(C1) The set of event types of events in Sy is equal to event types A1 and there is a t such
that for all e; € S1,t <t; <t+ w.

(C2) The point sequences for each event type in S1 occur partially periodically with the pa-
rameters p and 6.

Fowi @ @ @ = @ (X} ° ° °
Fow2 @ = © @ o o o ° °®
Fows @ = © = @ ° °® ° °® °®
] | | | | | | | | | | | | | |
! I | [ [ [ [ [ [ [ [ [ [ [ [
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

«——> ;
=2 €——> Time

P o=1

Figure 3.2: Example of periodic behavior in packet flows
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Figure 3.2 shows 3 packet streams in a timeline. Each dot represents one packet arrival.
Supposing time window p = 2 + 1 and restriction to a single arrival in the window, we
can observe that Flow & is indisputably periodic. On the other hand, in Flow 2, there
are some diverging arrivals from the expected moments of occurrences. Despite there are
inter-arrival time dissimilarities, the deviation is always lower than §, therefore this flow
can be also considered as periodic. Considering Flow 1, divergence became higher than ¢
in two occurrences (marked as “A” and “B”), so this stream cannot be taken as periodic.

The time segmentation approach helps to deal with situations when periodic behav-
ior is not constant but appears only in particular time intervals (e.g. it is invoked by
another event). On-segments are the parts when we expect periodic behavior, contrarily
off-segments are the parts when we do not expect any occurrence, if present, we consider
it as a noise.

: A : . ..B c
Flow4 ® 0 ( J o o : Pl e
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: on-segment _: off-segment on-segment :
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1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
2 €<——> Time
P 5=1

Figure 3.3: Example of periodic behavior in segments

Figure 3.3 shows 3 packets streams in a timeline, taking into account a time window
with period p = 2 + 1 and restriction to a single packet in the window, and also with
respect to segmentation, which includes on-segments of length 4 interspersed with the off-
segment of length 6. Despite Flow 6 is fully periodic in all moments, only intervals <1,5>
and <11,15> are taken as valid because events in interval (5,11) happened inside off-
segment, so they are recognized as noise. Flow & is also periodic, although there are
arrivals with deviation higher than §, they are found only outside on-segments. Oppositely
Flow 4 is periodic inside off-segments only, otherwise it violates periodicity restrictions
(denoted as “A”, “B”, and “C”).

As mentioned earlier, analyses based purely on time series analyses have proved to be
surprisingly successful. In the following two sections, we discuss two of the most widely
used techniques for behavior estimation without any investigation of the packet content.

3.3.1 Estimation Using Statistics

Since periodicity in a network stream is a well-known characteristic of packet flows, there
have been done many studies focused on flow analysis based on packet arrival or inter-arrival
times, defined as:

Definition 3.3.2 Let S = {51, 59,...,S,} be a set of timestamps denoting sequence of

packet arrival times. Inter-arrival time ty; = |Sx — Si| is a time between arrivals Sy and
Si; Sk, S €85 k#£1.
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Hubbali & Goyal (2013) [22] have studied network summarization techniques in order
to detect network anomalies. They have observed that periodic behavior exhibit very low
variance (02) and standard deviation (o), which is given as:

;X
i=1
where N is the total number of items and T is average, computed as:

N
7= > . (3.8)

i=1
On the other hand, in (near) random streams we can observe very high variance. Hub-
bali & Goyal have also introduced term DiffTime. Considering P, Ps,..., Py as a series

of packets exchanged between host H and other devices addressed as 1Py, IPs,..., 1Py,
M < N, over a period of time, there may be one or more single-directional flows repre-

sented as F{PK,FZIPK, e ,F}PK, J <N - M+ 1, with t{PK,tng, .. .,tSPK representing
timestamps of the first packets of these flows. DiffTime is the difference tllff — tlI P , denot-

ing inter-arrival time of the first packets from two distinct successive flows. Communica-
tion is determined to be periodic if the DiffTime standard deviation is below a predefined
threshold. Every (single-directional) network traffic between two hosts can be defined as
FlowSummary, denoted as SrcIP, DstIP, LS, 5SS, M,t;, where SrcIP and DstIP are IP

addresses of endpoints, LS is a linear sum of DiffTime Zl]‘il(tl[ff — tlIPK ), SS is a squared

sum of DiffTime Zf\il(tl]f:{( - tlIPK)2, M is the number of flows during the period, and
t is a timestamp of the first packet in the last flow. FlowSummary represents all flows
with avoidance of keeping packet or inter-arrival times details and provides essential details
to calculate standard deviation at any time. When the DiffTime standard deviation is
lower than the estimated threshold, communication between two devices is considered as
a periodic one in a particular direction. Although the algorithm has proved to be a very
effective method of periodicity detection, it reveals periods only in a purely periodic single-
directional stream. The algorithm does not consider protocol at all, what is the biggest
issue for complex multi-periodic communication, as well as it does not consider any stream

noise.

3.3.2 Spectral Analysis and Fourier Transformation

Packet arrival times can be taken as a series of indexed data points, called Time Series.
A time serie is defined by its 3 main components:

e A trend component represented as a long-term pattern of time series;
e a periodic component, denoted by a repeating pattern of a certain period and shape;

e a random component, symbolizing an impact of uncontrollable variation on demand,
expressed by non-periodic patterns.

In time series analysis, the observed part is the periodic component. Two types of pe-
riodic time series were analyzed: Seasonal, which means an interval of recurrence cannot
be precisely defined and is not constant, and Cyclical, which stands for patterns that are
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repeating in a constant time [37]. Time series analysis regards event occurrences as a dis-
crete signal. Thus, several well-established signal processing tools and techniques such as
Fourier Transform and Autocorrelation can be used to analyze periodicity [5].

Fourier Transform (FT)identifies underlying periodic patterns by transforming a signal
into frequency domain. It decomposes the original signal in a linear combination of complex
sinusoids called Fourier Series. The main frequencies within the signal are corresponding
to amplitude, a measure of its change over a single period, and phase, a relative variable
describing how far along the wave is in its cycle, of these sinusoids. The phase and amplitude
are recorded in Fourier Coefficients. Discrete Fourier Transorm (DFT) then helps to obtain
corresponding Periodogram of the discrete signal, which is an estimate of the spectral
density. The periodogram is provided by the squared length of each Fourier coefficient,
which gives information about the strength at a given frequency. Finding the power at
each frequency provides us a piece of information about the dominant frequency. The main
disadvantage of this method is that the accuracy of the discovered periods deteriorates for
large periods [42, 4].

Autocorrelation is a method to measure a similarity between values in a signal by corre-
lating the time series with itself. It is defined by Autocolerration Function. Unlike Fourier
transform, the autocorrelation function estimates periods precisely for both short and long
time intervals. To determine the dominant period significance threshold needs to be speci-
fied, which is difficult to set automatically [24, 37].

Kleinmann & Wool (2016) [25] have followed up their previous work, described in Sec-
tion 3.1.1. They have suggested an extension of the Statechart model to make the analysis
more accurate. The authors have observed that the major reason for the false alarms is an
inaccuracy of the algorithm that splits channel to sub-channels (what determines patterns in
the stream). This inaccuracy is caused by the strict combinatorial requirements that char-
acterize Euler cycles. Therefore, a new construction algorithm based on spectral analysis
was proposed. The new algorithm treats the captured trace of SCADA packets as a binary
signal, where “1” indicates the presence of the packet at a particular time. Then, they
calculated the Fourier transform for the signal and its periodogram to identify dominant
periods. Each dominant period corresponds to a cyclic pattern in the packet stream. After
transforming results back to the time domain, each symbol in the trace can be associated
with one of the dominant periods, sub-sequences of symbol streams associated with a period
are treated as sub-channels so finally, a DFA is created for each sub-channel. By combining
these DFAs, the authors have created full Statechart, similarly as in Section 3.1.1. Proposed
Statechart improvement has consistently outperformed the previous combinatorial State-
charts. During stress-testing, the algorithm exhibited reduced false-positive rate (0.16%)
for synthetic dataset and 0% false-positive rate on production traffic.

3.3.3 Timed Automata

Timed Automata (TA) are a compromise between naive FA model and time analysis. These
automata have the ability to consider the time aspect of a system behavior. They were
proposed by Alur & Dill (1994) [3] to model systems where time is an important parameter,
such as real-time systems.

In the original form, every TA has one or more Clocks, which are variables representing
real-time. Clocks are initially set to zero and their value constantly and monotonically
increments. The main purpose of including such a variable is to define constraints over
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Timed automata Supported features
Hierarch. | Number | Absolute | Relative | Non- Value changes
structures | of clocks | time time determinism | within a state
Basic TA X multiple v X X X
Hierarchical TA v multiple v X X X
R-T Statechart v multiple v v v X
Scenario TA X multiple v X X X
R-T automata X single X v X X
Prob. TA X multiple v X v X
Prob. hybrid TA X multiple v partially v v

Table 3.1: Comparison of timed automata based models. Data retrieved from [27].

transitions to limit the transition function. These time constraints are explained in Defini-
tion 3.3.3.

Definition 3.3.3 For a set X of clock variables, a set ®(X) of clock constraints 0 is defined
inductively by
di=x<cl|lc<z| | A,

where © is a clock in X and c is a rational number.
Formally, we define Timed Automata as:

Definition 3.3.4 Timed Automaton is a tuple (3,Q, qo, T, C) where:
e Y is a finite set of symbols (actions),

e () is a finite set of states,

C is a finite set of clocks,

q0 C Q is a finite set of start locations, and

T CQxXx29xd(C)xQ is a finite set of transitions. An edge (q,a,\,0,q') is
a transition from the state q to state ¢’ reading symbol “a”. X C C is a set of clocks
that will be reset by the transition and § is a clock constraint over C.

The authors have defined timed word as a pair (o, 7), where 0 = 0102...0y, is a finite
word over alphabet > and 7 is a time sequence. On the basis of previous definition, they
have described a timed language as a set of timed words over alphabet . Timed languages
are usually defined with a set of constraints over their timed words. For example, a lan-
guage with constraint allowing all transitions after the time has passed constant z may be
characterized as L = {(o, 7)|Vi.((1; > 2))}.

From the automaton definition, we can intuitively deduce that TA, oppositely to the clas-
sical FA, does not define any final states, thus, computation of the automaton is an infinite
sequence. A computation is called recurring iff it contains infinitely many configurations in
which the location counter has the value 1. A problem of deciding the automaton recurrence
has been proven to be NP-complete (proved [20]) [3].

The concept of timed automata has been used to extend existing models to be able to
express behavior in time. Kumar & Niggemann & Jasperneite (2009) [27] have observed
their characteristics and advantages in network modeling, some of their conclusions are

20



shown in Table 3.1. Compared to the standard finite automata, expressiveness has greatly
increased in all discussed models. In most cases, apart from the basic timed automata,
a modeling power is also stronger than the basic finite automata.

3.4 Evaluation of Approaches

Previous sections have introduced several algorithms and techniques used to build a model
of network traffic. In the first section, we have introduced algorithms based on deterministic
finite state automata. Although DFA have the ability to model a behavior of a well-defined
system, dealing with traffic noise is usually a challenging task as we are not able to describe
it precisely. The noise led to false-positive alarms in both mentioned algorithms, naive DFA
and Statechart.

Algorithms based on probabilistic models, such as stochastic automata and Markov
models, countenance the fact that the network state cannot be well-defined as we can
observe it only from the point of view of the sender and/or receiver. To deal with this fact,
these algorithms use probability estimation in order to predict system (network) behavior.
Although these algorithms are adaptive and evince required characteristics, they are mostly
based on supervised learning, which requires a learning phase and convenient dataset that
demonstrates various situations. In our case, we perform unsupervised learning on any
unknown dataset, which might be very small, containing a few packets.

At last, we have introduced algorithms based on statistics, which mostly include time
series analysis. Time was observed to be critical information in periodic streams such as
traffic between devices in industrial control systems, where the communication is mostly
recurrent. However, we consider models based on time analysis inconvenient, because in our
case, the traffic is multi-periodic, i.e., there are many periodic patterns over time, which we
need to differ. One of the possible solutions are timed automata because of their capability
to represent real-time systems.
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Chapter 4

Data Preprocessing

This chapter introduces our dataset and methods of processing that were applied to make
this data more suitable for further analyses. In our case, the dataset consists of 688 979 pack-
ets; and initially, there is not any information provided about its content. To process data,
we require a consistent form enabling to match some data pieces together and find associa-
tions between them. To reach a uniform data representation, we perform data preprocessing
to make the data form and volume more convenient for further analyses. Preprocessing in
terms of packet streams focuses mainly on data filtering and reduction in order to reduce
data volume and also remove some needless data attributes. The following paragraphs
briefly introduce the most common data reduction strategies [2, 19, 45].

Dimensionality Reduction (Figure 4.1) is a technique of suppressing redundant and non-
critical attributes in order to select only the most critical parameters and get rid of attribute
redundancy. This strategy includes techniques such as:

e Feature Selection, a process of selecting the smallest subset of attributes with the least
possible information loss.

o Attribute Construction, which is based on merging related attributes together and
creating new “summary” attributes;

e Feature Extraction, a method of searching descriptors in source data, it usually in-
cludes mapping to a new (smaller) set of attributes;

Feature Selection Attribute Construction Feature Extraction
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Figure 4.1: Dimensionality reduction strategies

Data Compression is a process of modifying data to optimize its storage size. It com-
monly includes data encoding, converting bit structures, and removing repetitive elements
and symbols. Depending on the storage size reduction and selected algorithm, the process
is lossless or lossy.
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Data Cube Aggregation (Figure 4.2) is a process where aggregation operations are ap-
plied to the data in the construction of a data cube, which stores multidimensional aggre-
gated information.

Discretization and concept
hierarchy generation Data cube aggregation

L7 77

==

-

Figure 4.2: Data cube aggregation and discretization and concept hierarchy generation re-
duction strategies

Numerosity Reduction reduces the data volume by replacing the original form of data by
a smaller form of representation. It can be either parametric or non-parametric. Parametric
methods, for example, regression, typically use some model to estimate new data, thus only
parameters need to be stored. Non-parametric methods, such as clustering, are used to
store a reduced representation of data.

Discretization and concept hierarchy generation (Figure 4.2) is used to reduce and sim-
plify continuous values using discretization. These techniques can be categorized based
on the type of discretization (supervised or unsupervised) and its direction (top-down or
bottom-up).

Sampling (Figure 4.3) is a process of selecting a subset of data in order to create a com-
plete (or as accurate as possible) representation of dataset with fewer records. This tech-
nique is usually based on selecting a random or stratified sample, which guarantees even

Random Sampling Stratified sampling

distribution.
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Figure 4.3: Sampling reduction strategies

4.1 Reduction of Packet Stream Data

Network traffic has a high error rate that complicates the analysis process. Packet streams
commonly include anomalies, such as a single packet failure, or even larger scale issues,
e.g., multiple packet losses caused by network overload. Moreover, it needs to be taken into
consideration that packet stream consists of different protocol types and we need the ability
to recognize packets, which should be considered during analysis and monitoring.
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At first, we need to filter out packets where the IEC-104 non-membership is evident.
In our case, we do analysis based on L7 protocol information (considering ISO/OSI model)
and previous layers are used only for addressing purposes. Hence, despite TCP Acknowl-
edgement is considered as a part of the response to an I-format packet frame, it is considered
to be a noise. The first analysis is focused on determining header control field variety with
the main intention of identifying all possible combinations for packet aggregation. We use
a dataset consisting of 688 979 packets that were sent/received during 977.997794 seconds
of capturing. Dataset does not contain only IEC 104 packets but also a plentiful amount
of TCP operations (over 30% of packets), DNS, NBNS, and ARP packets.

4.1.1 Header Fields Variety

The first step in data volume reduction is focused on the header field variety investigation.
The main goal of this analysis is to determine, whether there are some evident patterns
in packet sequences. By “pattern” we understand a set of succeeding packets with some
specific values in protocol headers. We search for patterns that appear repetitively.
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Figure 4.4: Variability of header parameters

Figure 4.4 shows the number of different values in every field of the IEC 104 protocol.
Analysis has shown that the dataset consists of 44 unique senders and 47 receivers which
communicate (or try to communicate) from 48 (senders) and 47 (receivers) different ports.
Surprisingly, the variety of protocol-specific fields (described in Section 2.2.2) is rather small
even for fields without predefined value groups.

According to this observation, dimensionality reduction appears to be a profitable ap-
proach. Generalization of some fields by grouping them together without information loss
may significantly reduce data dimensionality. Because variety seems to be low, header fields
type, u_type, sq, numix, cot, oa, and coa were grouped together by exact field match.
This approach creates 16 different abstract models of IEC 104 packets. These models con-
sist of 1 S-format, 4 U-format and 11 I-format frames. Packet data content is not considered
at all in described models.

24



Table 4.1 shows the field specification of the identified packet model groups in the dataset.
Every group is assigned to a single number from a successive number sequence. Every packet
processing corresponds to one of the following scenarios:

1. The packet corresponds to some known model, its timestamp and identification (sender
and addressee) are recorded. Then, the packet is thrown and replaced by the group
identifier of the matching model.

2. The packet does not correspond to any known model, a new model, which conforms
packet fields, is created. The successive number from the sequence counter is assigned
to the new model and the counter is incremented. Then, the process described in (1) is
performed.

3. The packet contains an invalid field value (a value that is outside defined field scope)
and/or some essential protocol field values are missing. In this case, the packet is
considered as unrelated (not IEC 104) and thrown away.

Using this algorithm, the data amount is substantially reduced. Instead of storing
17 fields for every I-format packet, only 2 attributes for each packet are stored in a global
table. This approach brings profit in both space and time complexity of processing al-
gorithms described in the following chapters because both memory usage and number of
comparisons are significantly reduced.

Group ID | First occurence | Type | UType | SQ | Numix | COT | OA | COA
0 1 0 100 | 1 6 0

1 3 0 100 | 1 7 0 1
2 4 1

3 5 0 1 2 20 0 1
4 8 0 1 19 20 0 1
) 9 0 100 | 1 10 0 1
6 102 0 1 4 20 0 1
7 103 0 11 | 15 20 0 1
8 190 3 16

9 192 3 32

10 23406 0 100 | 1 6 0 3
11 23407 0 100 | 1 7 0 3
12 336912 0 45 |1 6 0 1
13 336914 0 45 |1 47 0 1
14 360622 3 1

15 360520 3 2

Table 4.1: Packet Summary Groups

4.2 Flow Extraction

Packet stream can be considered as a bi-directional flow. Thus, we implicitly do not differ
sender and receiver of a packet but contemplate the packet as a part of a flow identified
by two endpoints, between which the packet is transmitted. Although exact identification
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of sender/receiver does not play a critical role in initial flow analysis, this information is
kept as one of the packet summary model parameters to be able to separate individual flows
during final model construction.

Whenever a new packet is received, its TCP header is extracted in order to record
sender_ip, receiver_ip, sender_port, and receiver_port. Based on these four param-
eters, a string called “identity key” is created to represent the bi-directional flow. Such
an identification is then stored in a map, which associates these identity keys with specific
packet flows. After the received packet is linked to a specific packet summary model (de-
scribed in Section 4.1), its Group ID and timestamp are stored in a list-represented packet
stream associated with the particular identity key.

An output of the described algorithm is a set of endpoint pairs and packet streams
between them. Keeping sent and received packets in a single stream helps to evaluate
associations of sub-flows inside flow such as recognition of requests and related responses.
We also keep the timestamp of every sent/received packet intending to track time gaps
between succeeding packets.

4.3 Behavior Observations

A deep investigation of packet streams led to several observations of protocol behavior.

As mentioned in Section 4.1, protocol fields combination variety is rather small so
grouping fields together into “packet models” is a profiting technique. After splitting traffic
into separate streams based on source and target endpoints (Section 4.2), there are evident
patterns in communication, which indicate periods in packet streams. Despite periodic
patterns contain a large amount of “noise” (inserted packets, missing packets, interchanged
position of packets. .. ), two patterns are never fused; however, they may be sent right after
the other. Besides periodic patterns, there are also noticeable occurrences of asynchronous
events, such as asynchronous reset.
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Chapter 5

Implementation of Automatic
Model Recognition

This Chapter focuses on the implementation of a program able to describe network traffic
and represent the description as a model of communication. Proposed algorithm is based
on the combination of both existing solutions and own observations. Henceforward we
suppose packet streams in the form defined in Chapter 4: IEC 104 packet header fields are
summarized as a pair of packet group ID and timestamp. Such a packet representation
is then assigned to a specific couple of endpoints, identified from the packet TCP header,
which creates a single packet sequence for each identified bi-directional packet stream.

The further analysis focuses on the examination of specific bi-directional streams, which
are from now on considered separately (identified by endpoints). We aim on the identifi-
cation of patterns in flows in order to find associations between them. Such an approach
enables generalization of a stream, using which we can determine packet correctness from
both content and position viewpoints.

5.1 Splitting Flows to Sub-flows

The first stage in the bi-directional stream examination is the separation of independent
parts of the flow. We consider a part of the packet stream as “independent” if it is sur-
rounded by significantly larger packet arrival delays than all delays inside the part. Such
a part of a stream can be considered as a separate piece of communication, which is not
directly dependent on surrounding packet exchanges. We define several naming conventions
that will be used in this chapter (Figure 5.1):

e A Flow denotes a packet sequence between two particular endpoints, i.e., consists
of packets transmitted through the same bi-directional channel.

e A Sub-flow denotes a part of a flow consisting of succeeding packets (their inter-arrival
times are very low). Each flow consists of one or many sub-flows.

e An Inter-arrival time inside sub-flow denotes a moment between the arrival of directly
succeeding packets (of the same sub-flow), i.e., inter-arrival of packets inside the same
sub-flow.
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e An Inter-arrival time between sub-flows denotes a moment occurring between two
sub-flows, i.e., a situation when one sub-flow has already ended but the other has
not started yet.

o A Sub-flow pattern is a template of sub-flow. The number of patterns is always lower
than the number of sub-flows. Such a template defines sub-flow as a sequence of
packet models.

P Flow A o
D Sub-flow At Sub-flow A2
Y Ll
Bi-directional packet
sequence for two A>l 2 /> 8 [t
endpoints T
Inter-arrival Inter-arrival
inside between
sub-flow sub-flows

Figure 5.1: Naming conventions definition

We also consider a threshold to be the maximal inter-arrival time inside a single sub-
flow. Whenever an inter-arrival time is higher than the threshold, the succeeding packet is
considered as the start of a new sub-flow. In further analysis, we proceed from the following
observations that will be considered as facts:

e Considering (f1, fo,..., fn) to be a sequence of n sub-flows denoted by k patterns,
k < n,and f;, f; are two subsequent sub-flows, where j = i+1, and (pi1, pi2, - - -, Pim)>
(pj1,pj2, - - -, Pjn) are sequences of packets inside sub-flows f; and f;, respectively. In
valid recurring sub-flows, the inter-arrival time |p;m, — p;1| is always higher than any
inter-arrival time of two subsequent packets inside sub-flow f; or f;.

e In every periodic flow, the period of recurrent sub-flow is always higher than average
inter-arrival time inside all sub-flows of the flow.

Our approach is concentrating on sub-flows that can be securely demarcated; i.e.,
the inter-arrival times of preceding and succeeding sub-flows are “high enough” to be con-
sidered as distinct. Despite inter-arrival times variety is large and we cannot precisely
determine the threshold, we can estimate a very low threshold with the purpose to separate
the most obvious independent sub-flows with a high certitude. Despite this approach does
not delimit all sub-flows, many of them might still be united, it provides certain information
about possible patterns.

To select an appropriate minimal threshold, we have chosen a method of finding a con-
venient midpoint value. We proceed from the assumption that the difference between suc-
ceeding packets inside sub-flow and between sub-flows is significant. A midpoint value of
such time series should be impacted enough by the high inter-arrival times so the midpoint
is securely higher than directly succeeding packets. There are several basic techniques of
midpoint estimation:

e Mean (defined in Section 3.3.1) computation is impacted by all inter-arrival values.
For the given dataset (described in Chapter 4), average value is around 120000us.
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e Median is the middle value in a sorted time series. If the number of arrival times
is even, we compute it as an average of two middle values. For the given dataset,
the median is around 7000us.

e Mode is the most frequent value in given sequence, it can be roughly estimated by
an equation (average —mode) = 3 X (average —median). In our case, we do not
consider mode at all because arrival times are continuous, absolutely same inter-arrival
times are a very rare occurrence.

o Midrange is a difference between the lowest and highest inter-arrival times. For
the given dataset, it is around 2000000ps.

o Interquartile Mean is a mean that takes into consideration values between the first
and fourth quartile, in our case 18000us.

For the initial estimation, we have selected a mean of all inter-arrival times as a threshold
because it evinced the best accuracy from all naive approaches. Median and mode are
unsuitable for streams consisting of long patterns because most of the inter-arrival times in
such streams are very low. On the other hand, midrange considers the highest and lowest
inter-arrival times which causes a selection of abnormalities. Interquartile/bounded mean
cuts off a substantial part of the lowest and highest inter-arrival times what might be also
problematic for short patterns containing only a few packets (all inter-arrival times between
two sub-flows might be excluded). Therefore, we consider mean as the most suitable naive
approach.

After setting the threshold, every flow is processed in order to detect packet inter-
arrival times higher than the estimated threshold, these packets are marked as the start
of a new sub-flow. The output of the described algorithm is an ordered group of short
packet sequences (called sub-flows) for each pair of communicating devices. Although,
some sub-flows might still be attached together due to low inter-arrival time.

The algorithm described above was applied to the given dataset (described in Chapter 4)
in order to verify correctness of our suppositions. We can observe that the inter-arrival time
of two packets inside the same sub-flow is usually in the scope of several microseconds. On
the other hand, the inter-arrival time between two sub-flows matching the same pattern
is usually higher than 0.5 second, which is approximately 100 000 times more. Approxi-
mately, we separate a sub-flow after finding a packet which arrived after longer time than
0.27 second, what securely keeps all inter-arrival times inside one sub-flow united. Al-
though, recognition of such inter-arrival time differences is getting complicated by the fact
that despite the communication is mostly purely periodic, there are usually many recurrent
events at a time (with different periods), which complicates the recognition of periodic sub-
flows with a long period. For these periods, there is a high probability that the most of their
occurrences arrive right after /before different sub-flow (typically with smaller period). This
issue causes a situation, where most of the pattern occurrences are attached to different
sub-flow. Hence the knowledge of patterns in flow is required for splitting flow to sub-flows
with a certain level of confidence.

5.2 Complete Traffic Model

After splitting streams as described above, every bi-directional flow is represented as a set of
sub-flows. These sub-flows can be generalized into patterns, where each pattern represents
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a unique sub-flow. Because packet models describe only packet header fields, without con-
sidering any endpoint-specific information, patterns are very similar across all bi-directional
flows. Thus, instead of describing communication separately for each bi-directional flow,
we have selected an approach of describing the whole network environment uniformly. Such
a complete model consists of all possible patterns across all streams.

To describe the whole network environment, we use a special tree structure, called
Prefiz Tree. A prefix tree, which is also known as a trie, is a special type of a search
tree. It was invented by Briandais (1959) [13]. The main idea of creating this structure
was to extend a binary tree structure with the capability of string representation. To
reach this property, every node represents exactly one character (in a compressed version
of the structure may represent a string). In such a tree, nodes are not binary but contain
maximally one outgoing edge for each possible character that can follow the character in
the specific position the node represents. The degree of any node is always lower or equal
to the size of the tree alphabet [8]. The root is considered as a special node, which stands
for an empty string. Traversal of a trie creates a string, called tree prefiz, consisting of all
passed nodes. Any two distinct traversals always produce different prefixes.

Using a prefix tree, we can define the complete model of monitored communications.
The complete model is gradually constructed by matching sub-flows of all flows with a tem-
poral general tree representation. A temporal tree representation contains initially only
the root node. With every new pattern, the size of the tree progressively enlarges. For
each sub-flow in every flow, we perform a tree traversal intending to find the longest prefix
of the tree matching with some prefix of the pattern that is verified. If the longest prefix
does not correspond to the whole pattern that is under verification, the temporal tree is
elongated to cover the sub-flow the pattern represents. The temporal tree structure is final
when its prefixes cover all possible sub-flows.
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Figure 5.2: Prefix tree representing generic model
The main advantage of such a structure is the effectiveness of inserting patterns and pat-

tern presence verification. Moreover, every pattern prefix is stored only once for all existing
patterns. Intuitively, in such a tree, some patterns become a part of a longer pattern. For
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example, a pattern representing a sequence of packet models “1225” is absorbed by pattern
“122572” and represented as the longer pattern without any reference to the shorter pattern
existence. Therefore the complete model represents only the longest possible sequences by
their prefixes. Specific flow is then represented as a “partial sub-tree” of the prefix tree and
sub-flow is denoted as a sequence of nodes which begins from the tree root and ends in any
child node (not necessarily a leaf). Figure 5.2 visualizes the described architecture, colored
squares represent packet sub-flows.

A Tree pattern is any part of a tree consisting of directly succeeding nodes. An example
of tree patterns is shown in Figure 5.3. Thus, considering a flow as a set of general prefix
tree traversals, where each traversal represents one valid sub-flow; these traversals can be
combined together into a single pattern of the general prefix tree. Applying this approach
to all monitored flows, all valid communications can be denoted as a subset of all tree
patterns.

Original Tree Tree Patterns

A
%

Figure 5.3: Example of a tree and its patterns
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Using the described algorithm, we have obtained a structure representing all stream
patterns across the whole environment. However, as mentioned above, there are short
valid patterns hidden inside longer patterns. Furthermore, some patterns are valid for one
bi-directional flow but invalid for the other. Thus, in the following section, we focus on
restricting the set of expected patterns for each bi-directional flow and also specify patterns,
which are hidden inside a prefix of others.

5.3 Bi-directional Flow Analysis

After the complete model is constructed, flows are analyzed separately for each pair of end-
points. Considering a group of all patterns that are valid for a particular bi-directional
flow, our main goal is to create an automaton, which accepts all these patterns and nothing
else. Such an automaton represents a complete communication of the specific bi-directional
flow. Figure 5.4 visualizes the connection of the general tree and a flow automaton; note
that this automaton is defined for each bi-directional flow but general prefix tree is one for
the whole environment.

For further analysis, we consider a traffic between two devices to be one pattern of
the general traffic model. Let’s suppose T to be a general traffic model tree described
in the previous section. This tree can be delineated as a set of all possible patterns of
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Figure 5.4: Mapping of flow automaton to the general prefix tree model

this tree, denoted as T = {ti,t2,t3,...,t}. T, C T is a subset including only patterns
that correspond to at least one complete flow. Each flow pattern in 7}, contains a set of
subsequent nodes, where each node has a single attribute g; of a value equal to the group
ID of the packet that the node represents. Let’s consider A = {A1, Aa, ..., Ap} to be a set
of deterministic automata, where each automaton represents one tree pattern from the set
T,. An automaton representing a pattern of a prefix tree accepts all valid prefixes that
can be denoted by the pattern. These automata correspond with the general tree model
as following: Every automaton A;, 1 < ¢ < m, is defined as a tuple (Q;, %;, 0i, gio, F;)
where symbols correspond to Definition 3.1.2 with an addition that transition function is
defined with a limitation that every state ¢ # ¢o has a unique rule containing the state
on the right-hand side, i.e., every state excluding start states has always single incoming
transition. Components of these automata are specified as:

e (); is a set of states corresponding to the inter-arrival moments, i.e., edges of the gen-
eral tree model.

e 3, corresponds to group numbers of packets contained in the sub-flow.
® (o is a state representing a moment between any two sub-flows.

o [} is a set of final states, F; C @Q;, that represents the situation occurring after the last
pattern element arrived.

A language generated by the described automaton is evidently finite, by definition it does
not contain any cycles.
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Such a structure provides us a complete model of the flow. As we mentioned at the start
of this Section, a flow model expressed as an automaton generating patterns is mapped
to the general tree model (each state transition points at a particular tree node). This
property helps us to compare distinct flows in order to find a pattern applicable to both
of these flows. Furthermore, using this representation, we can perform a basic verification
of packet position correctness. Henceforth, we focus on verifying other communication
aspects, such as recurrence and time analysis. Up to now, we were not limited by the fact
that two occurrences of the same pattern might be a little bit distinct. Currently, the only
issue it causes is a potential model growth. In the following analysis, we focus on finding
associations between flows. However, such an analysis is significantly impacted by every
deviation, for example, swapped packet order. Thus, in the following section, we focus
on the correction of the most evident errors in streams to minimize the impact of minor
deviations.

5.3.1 Noise Correction

In this section, we focus on the detection of invalid patterns. As an “invalid pattern”, we
consider any pattern that:

e consists of two sub-flows which should have been separated,
e has swapped packet order,

e has duplicated packet, or

e misses packet.

At first, we construct all flow patterns by creating a set of unique sub-flows (or generating
all sentences of the automaton). Then, we assign arrival times to these patterns. For
example, considering pattern “1322” which occurs 3 times in the flow, we merge these
occurrences together and assign their timestamps to the pattern, so we obtain pattern:

1:{tsi1,ts12,ts13};3 : {tso1, 8502, ts23};2 : {tsa1,ts32,ts33}; 2+ {tsa1,tsa2,tsa3}.

After forming unique patterns, the attached sub-flows are detected by searching for their
components that are isolated. To separate a pattern, we need to find two distinct patterns,
which together can construct the joined pattern. Furthermore, we require that the separated
form should have more occurrences than the joined form. This scenario is visualized in
Figure 5.5. The 4th row consists of two previous patterns, the 1st row is a prefix (“C”),
the second row is a suffix (“D”). Similarly, the 5th row contains pattern from the 1lst
row (“B”), appended to the pattern from the 3rd row (“E”). After a fusion is detected,
timestamps from the joined pattern are attached to timestamps of the isolated patterns.

In the third stage, we reduce swapped packets. Incorrect packet order is usually caused
by network delay or packet loss. This situation is visualized as “A” in Figure 5.5. The 3rd
row is similar to the 4th row; however, two packets are swapped. The matching algorithm
should respect these deviations and consider given patterns as the same.

Detection of corrupted patterns is a challenging task because a strict algorithm does
not recognize pattern swaps, on the other hand, a lenient algorithm may match unrelated
patterns. Hence, we have built an algorithm that accepts single failure in a window. We
define the window as a dynamic group of packets of a floating size which starts at a moment
when the first error occurs, i.e., the first position index where non-matching packets are
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Figure 5.5: Resolution of noise and deviations

found, and ends at a moment when patterns are equal. Algorithm has two input parameters:
inserting pattern and original pattern. The inserting pattern is a pattern that is considered
as the noisy one and the original pattern is the target pattern form. When the first mismatch
is found, it is considered as an inserted packet in the inserting pattern and its value is saved
until this element is found in the original pattern. Intuitively, this algorithm needs to
be executed for all non-matching pattern pairs twice, so each of these patterns is tested
as both “inserting”, what reveals potential packet insertion, and “original”, what reveals
packet deletions.

If two patterns are considered as matching in one way or the other, timestamps of the pat-
tern with lesser occurrences are joined to timestamps of the pattern of higher occurrence.
Figure 5.6 visualizes 4 scenarios of such a comparison. Multiple failures are accepted in
the case, where there is only one “held failure” at a time, which is shown in scenarios
2 and 3. Scenario 4 holds packet 4. At a point when 2 is expected but 3 is given and 4
is still not released, the pattern is considered as “too noisy” so patterns are evaluated as
mismatching. This algorithm naturally respects also a single missing element and a single
inserted element. Detailed steps of described algorithm are provided in Algorithm 1.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Point of
failure

Figure 5.6: Pattern swap in a window
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Data: inserting and original
Result: True when patterns are matching, otherwise False
if abs(inserting.size-original.size) > 1 then
‘ return False;
end
while not the last index of longer pattern do
if current original is equal to held element then
move to following index in original;
release held element;
else
take both current elements;
if current elements not matching then
if we already hold something then
‘ return False;
else
hold current inserting element;
move to following element in inserting;

end
else
‘ move to following element in both inserting and original;
end
end
end

Algorithm 1: Single failure in a window algorithm pseudocode

5.3.2 Periodicity Estimation

Finally, we estimate the periodicity of extracted patterns. Previous steps joined some groups
of patterns in order to narrow time gaps of missing segments in an arrival time series. In
the final part, we calculate approximate inter-arrival times between pattern occurrences in
flows, which later helps to detect recurrent behavior and ideally also estimate a relevant
period.

In a perfectly periodic stream, all sub-flow inter-arrival times should be identical. How-
ever, due to latency and other aspects, there might be deviations that need to be respected.
In related studies, we have discussed algorithm FlowSummary (Section 3.3.1), which com-
putes standard deviation and compares it to the threshold to determine whether it is low
enough to be periodic. The authors set the threshold to 10 seconds. In our case, we have
observed two recurring patterns and estimated their periods to 0.5 and 2 seconds. We
consider the analysis based on the strict threshold as inconvenient for generic modeling,
because initially, we do not have any information about periods in packet streams.

To provide as accurate result as possible, we have implemented two algorithms. The first
one is inspired by FlowSummary, thus, completely constructed on stream statistics. The sec-
ond one is built on Dynamic Time Warping (DTW) [6] with an adjustment of using Ham-
ming distance. In the following sections, we discuss both these approaches.
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FlowSummary-based Algorithm

We have established a measure that determines periodicity using available general infor-
mation obtained from the given dataset. The main goal is to avoid manual selection or
a requirement of additional information. Before the algorithm is performed, the following
preprocessing steps are required to be performed, in order to guarantee consistency of input
data:

1. For each sub-flow f; in flow F' where ¢ > 1, we calculate the difference in arrival
timestamps between the last packet of f;_1 and the first packet of f;.

2. For each f; we set arrival time of the first packet to zero.

Then, the sequence of inter-arrival times between sub-flows is sorted into an ascending
order what reveals the minimal and maximal time it took between two pattern occurrences
in the given flow. Although it needs to be taken into account that large periods might
be impacted by unmatched patterns, i.e., pattern occurrences that were too noisy to be
considered the same as the original pattern.

Following processes proceed from the assumption that in periodic streams, the number
of mentioned “too noisy sub-flows” is minimal. These occurrences should be surely lesser
than 20% of the longest inter-arrivals, otherwise we consider the given flow as a recurrent
without established period. Compliantly with previous assumptions, it is expected that
the middle 60% of inter-arrival times are nearly the same or “very similar”. Therefore, both
20% of the largest and the smallest intervals are filtered out.

The generalization of defining “very similar” inter-arrival times is a challenging task.
Intuitively, this measure cannot be no matter how dependent on the inter-arrival value
itself. The reason is simple, if we supposed acceptable deviation as a proportion of average
value, the result would be very high acceptable deviations for large periods. On the other
hand, small periods would have unattainably low maximal deviation requirements. In
reality, there should not be any difference in acceptable delay for both small and large
periods because this measure is not dependent on the period length but on other aspects,
such as network state, load, device condition, etc. However, these conditions are hardly
observable /unobservable in a short continuous packet stream without any initial knowledge
or estimation.

For initial analysis, we have selected the mean of middle 60% of inter-arrival times
as expected period. The acceptable deviation value is set to the duration of the longest
sub-flow in the particular flow. This approach proceeds from the assumption that involved
devices invoke communication based on an internal clock, which is expected to be accurate.
The delay is mostly caused by one of the following four aspects:

e internal processing on stations,

e network latency,

e packet losses and retransmissions, or

e waiting for the finish of the previous communication.

In the common state, the fourth aspect has the biggest impact on packet sub-flow delay.
Supposing multi-periodic flow where distinct periodic patterns have different periods, sooner
or later, some periods will overlap the others. In the worst scenario, the longer pattern
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precedes the shorter, which needs to wait until the whole packet exchange passes off. This
process might critically impact the waiting exchange process. These assumptions led to
the approach of selecting the longest duration of the stream of directly succeeding packets
(i.e., the longest sub-flow duration). This duration is expected to be “high enough” to
cover common latency and delay. Moreover, despite this measure is different for each bi-
directional flow, it is the same for all sub-flows in the particular flow, i.e., it does not depend
on the period length.

DTW-based Approach

As we have already discussed earlier in this Section, statistical methods are too dependent of
the training dataset and every deviation is reflected in the result. To avoid this issue, current
periodicity mining studies usually assume the input to be a sequence of symbols instead of
time series [12]. For example, let’s consider a communication between two devices where A,
B, and C denote different packet sequences. Let’s suppose a time window ¢ = {1,2,...,6},
where sequence A occurs at times t4 = {1,4,6}, B at tp = {2} and C at t¢ = {3,5}. We
can represent such a situation as a string “ABCACA”. This is usually called a symbolic
sequence. Intuitively, such a representation is suitable for purely periodic sequences where
we expect events to happen in a fixed order. When we search for a periodic event in a set
of non-periodic events, representation of a stream should not mix these events together,
otherwise, the periodicity detection might be impossible. Thus, the timestamp stream
t = tytots...t, can be represented as a binary sequence, where ¢; = 1 denotes “event
occurred at ¢;”, contrarily, ¢, = 0 denotes “event did not occur at t,”. Hamming distance is
one of the most popular algorithms for comparing symbol-represented streams. It compares
sequences position-wise symbol by symbol; the output of this algorithm is the number of
non-matching symbols.

Elfeky et al. [14] (2005) have focused on finding periodicity in noisy streams, i.e., they
assumed insertions, deletions, and swaps to be a part of a packet sequence, what is usually
not considered in previous algorithms based on Hamming distance. Let’s consider strings
A = adbcde and B = abede; comparing these sequences position-wise, the number of mis-
matches would be 5, on the other hand, considering symbol “d” to be an insertion, the
number of mismatches would be 1. Such an approach is called time warping (TW) [6].
TW is usually computed dynamically, thus, it is also referred to as Dynamic Time Warp-
ing (DTW). Considering X = [xg,x1,...,2,] and Y = [yo,y1, ..., Yn] to be two sequences
of symbols and X = [z1,...,2,) and Y = [y1,...,y,] are X and Y after the first symbol is
removed; we can define DTW as

DTW(X,Y)
DTW(X,Y) = d(xo,y0) + min { DTW(X,Y) (5.1)
DTW (X,Y)

where d(z;,y;) is the distance between the ith symbol in sequence X and the jth symbol in
sequence Y. The distance is determined as “0” when symbols match and “1” when symbols
do not match. To compare two strings, a matrix is created, where columns denote symbols
of the first string and rows denote symbols of the second string. Cell (i,7) then contains
the result of comparison of symbols z; and y;. A Warping Path of a matrix n x n is the path
between cell (0,0) and (n —1,n —1). A Warping Cost is then a sum of all cells crossed by
the particular warping path. In this algorithm, we search for the minimum warping path,
which is the total DTW distance (Figure 5.7).
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WARP Hamming distance

dp(abcab, ababb) = 2

d,(abcab, ababb) = 1

Figure 5.7: Comparison between Hamming distance and WARP

Elfeky et al. have used the time warping algorithm to construct a new algorithm called
The Warping for Periodicity, which has the main aim to detect periodicity in symbolic se-
quences. They proceed from the assumption that when we cut off p symbols from a periodic
string with period p, the shortened string will be matching to the initial non-contracted
string. For example, let’s consider string T' = abcabcabe. Obviously, this string is purely pe-
riodic. When we start cutting off symbols from the beginning of this string, earlier or later,
we will get to the second period of the string, which is detected by a very low difference
rate in comparison with the complete string. The authors define perfect period as a period,
after which all symbols match with the non-contracted string version. Correspondingly,
a period, where several mismatches are detected is referred to as candidate period. To
determine string similarity, they use a measure called confidence, calculated as

_ n—p—DTW(T,T®)
c= n_p

where n is the string length and p is the number of removed symbols.

In our case, we combine both Hamming distance and WARP principles to construct
an algorithm that automatically detects periodicity in any packet stream. As far as two
distinct patterns in a packet stream never depend on each other, we need to perform peri-
odicity detection for each pattern separately, i.e., we consider only one event in the system,
therefore, instead of considering symbols to be (different) events, we consider symbols to
be the number of occurrences of a single event in a time segment of a specific length.
The time segment length is set to 1 second and it is represented as the number of partic-
ular occurrences during this period. For example, let’s suppose event X occurred at times
tx ={0.2,0.5,0.7,1.2,2.8,2.9,4.1}[s], considering time window that starts at Os and ends
at bs, time series tx can be represented as sequence a “31201”. Intuitively, symbols in this
representation are ordinal. Hence, in contrast to nominal representations discussed earlier,
this representation not only determines whether symbols are different but also concludes
how much. A distance between two symbols is calculated as

(5.2)

[z —y|
d(z,y) = — (5.3)
wmam
where Wy, is the maximum of occurrences in a single segment across all segments. This

capability ensures that two nearly the same windows, such as A = 8788 and B = 9678, are
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considered as similar. On the other hand, segments C = 1011 and D = 1100 are considered
as different. Note that in the first case, A and B have very low Hamming distance on every
index because the unit of distance is 1/9; contrarily, in the case of C and D, the unit of
distance is 1, thus, these sequences significantly differ. We have combined this approach
with the principle of the Warping for periodicity algorithm proposed by Elfeky et al. At
first, we represent time series as described above, and then we remove the first element
from the sequence. Both strings are then aligned to start at the same index and compared
to obtain error rate. The error rate is characterized as

err = Z d(T;, Ti(p)) (5.4)
i=0

where n is the length of the shortened string, 7' denotes input string and T® stands for its
left-shifted version by p symbols.

We also consider that the value of information about 0 occurrences is different than
about (at least) 1 occurrence. The information that 1 event was expected and 1 occurred
is intuitively much more valuable than the information that 0 events were expected and 0
occurred. Hence a situation where both indexes have 0 are not considered as a “match” but
are excluded from the calculation. Thanks to this approach, a comparison between “0100”
and “0001” is not considered as a similarity.

Based on described assumptions, the confidence calculation was adjusted to

n—p—err—z

— 5.5
Ce n—p—=z (5:5)

where 2z denotes the number of matching zeros in given strings, and n, p correspond to
symbols in DTW definition.

Comparison of Algorithms

In previous Sections, we have introduced two algorithms estimating periodicity in streams.

The FlowSummary-based algorithm focuses on statistical aspects of periodic streams
and proceeds from the assumption that in a purely periodic stream, inter-arrival times
between the same pattern occurrences are nearly identical in all cases. However, using
this algorithm, some not negligible differences are difficult to predict. For one stream,
there might be a deviation up to +£10% of its period; but for the other, there may be
a deviation up to £25% of the period. This estimation is even more complicated if we
consider environmental aspects. We may respect deviation ££10% but in real-time analysis,
there may be deviation +13% due to temporal latency. Moreover, after trying different
approaches of estimation, we have reached maximally around 70% of correctly guessed
periods. Despite we were successful in 93% of short period estimations, in the case of
very long periods, only 47% of calculations were correct. Long periods are influenced
more because up to 40% of the boundary values are removed, which significantly reduces
the dataset.

Then, we have introduced a customized WARP algorithm. This algorithm aims not
to be too dependent on minor deviations and more focused on the number of occurrences
during a particular time window. In this case, we are not dependent on statistics at all,
we include all values to calculation, and treat all streams the same. Moreover, using this
approach, we are able to appropriately identify all periods in the given dataset. Based on
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these arguments, we assume the WARP-based approach to be the more convenient solution
for our case.

5.4 Model Generation

The final stage of model construction is a generation of convenient representation of all
valuable information that can be provided to the software that verifies traffic based on
the given model in runtime. The main requirement for this functionality is to provide
a complete model, which can be used without any additional processing needed not to slow
down the target device. Thus, the target model is provided as a C file, which consists of
related information represented as constants and initialized structures/arrays. The model
is split into three separated components: packet models, general model, and bi-directional
flows models.

Packet Models General Model Flow Models
Packet fields Packet model groups Automaton states
0 1 2 3 4 0 1 2 3 0 1 2
. 0 0 13823923 | 2382323 | Final state period
» 0]{0,0} | {81} | {0,0} |{32,5}| {8,1} © 0| 0 1 2 0
s k5] N_D N_D N_D Latest occurrences
2]
% c 0 0 0 Current occurrences
2 1 |{0,0} | {8,1} | {8,1} [{32,8}|{8,12} 21 0 0 0 2
3 g s 1323 Longest sub-flow
g % T 122.0.10.112320182.1.0.21212 Flow identification
5 2 |{00} | {80} | {81} | {0,0} | {0,0} < 2| 0 0 0 0 £
E 81 o NA [2s21313
2]
3 [{0,0} | {8,2} | {0,0} [{32,1}| {8,1} = N_D N_A N_D
o
= 0 0 0
©
5 23232
§ 123.19.0.221328.23.33.12323
3
m 2 0 N_P N_P
N_D N_D N_D
0 0 0

0
l 23.23.1.92672319.178.1.82322

Figure 5.8: Model components

The first part represents packet fields and model identification that stands for a specified
combination of values (referred to as “packet group ID”). To keep this model as generic
as possible, every packet header field consists of two parameters: the number of bits n
and the value v. The combination of these parameters creates pairs {n;,v;}. If the field
value is considered as unimportant, it is denoted by the pair {0,0}, which signalizes that
the field value should be skipped during parsing. Despite the field length is applicable
for all values in a given column, we represent it separately. The added value of such
an approach is that specific IEC 104 types use different fields, for example, U-type keeps
all protocol-related fields empty. This representation was selected in order to distinguish
different interpretations/usages of the same fields.

This way represented packet fields are merged into a sequence, what creates a matrix
where rows denote packet model identifiers and columns denote specific field values. Intu-
itively, the number of rows is equal to the number of packets that vary from others and
the number of columns is equal to the number of all captured packet fields. Whole struc-
ture is represented as “Packet Models” in Figure 5.8. The matrix is accompanied by several
convenient constants, what facilitates process of going through the matrix.
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The second part of the model represents the general model described in Section 5.2.
The described model is transformed to a transition function of automaton, represented as
a matrix where columns denote symbols and rows denote states. In cells, there are target
states of specific transitions. We call this component “General model”, which is visualized
in the middle of Figure 5.8.

Finally, the third part of the model represents specific packet streams. These streams
are the only non-constant part of the model as they are created to reflect current state
of the network. Each flow is represented by 5 records:

1. flow endpoints identification,
2. final state period,

3. latest occurrences,

4. current occurrences, and

5. the longest sub-flow duration.

The first item uniquely identifies both communicating devices by their IPs and ports.
Items 2, 3, and 4 are represented as arrays of 64-bit timestamps. Their length is the same
as the number of states, i.e., the number of rows in the general model.

The Final state period is an array, which denotes accessibility and periodicity of states,
i.e., whether the general model’s state is a member of the particular model patterns. Items
of this array can take a value from one of the following groups:

e “0” when the state is not final;

e “N__A” when the state is not allowed, i.e., it is final but not a member of any pattern
in the flow;

e “N_P” when the state is allowed but not periodic, i.e., it can occur in any time;
e period in microseconds when the final state is periodic.

The Latest occurrences element is an array, which is initially completely set to generic
values:

e “N__A” when the state is not the final state of allowed periodic pattern or
e “N_D” when the state is an allowed periodic final state.

Contrarily to the Final state period element, these values are changeable in time, so they
can represent the current state of the network. Their main purpose is to trace periodic
occurrences and guarantee that once they start occurring, they continue. At the same
time, it helps to track that a recurrent event does not occur more often than expected.
The last element is an array of “current occurrences”. These values are all set to zero
because, initially, we suppose network with 0 received packets. When the first packet is
received, it is set to the value of the current timestamp. Succeeding packets do not refresh
this time, they only move the value to other states; at the end, we can compare the initial
value in the case of long delay somewhere during a packet exchange. This component is
shown as the “Flow model” in Figure 5.8. Intuitively, this array might have been merged
with the Latest occurrences array, as they both represent the current state. However, we
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need to take into consideration the situation when patterns overlap, i.e., a pattern might
be a part of the other. Therefore, we cannot consider the first reached accepting state as
the completion of a pattern.

These components are merged together into a single C module which represents all
information obtained during analysis. We refer to this module in the following chapters
while dealing with verification of network traffic in real-time.
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Chapter 6

Implementation of Runtime Traffic
Analyzer

This chapter describes the construction of software that has the capability to verify traffic
in real-time. This program proceeds from the model described in the previous chapter.
The generated model is compiled as a part of the runtime analyzer, which dramatically
lowers the time of initial processing and also prevents the need to allocate memory dynam-
ically. Usage of constant memory size in runtime very positively affects both performance
and security.

The analyzer consists of two threads, each of them has a specific role. The main thread
reads packets from standard input (stdin)in CSV format, where every line represents a single
packet and columns represent its header fields. Based on the acquired information, it verifies
packet correctness in terms of position in the packet stream. Oppositely, the secondary
thread verifies communication from the statistical point of view, e.g., when the traffic is
expected to be periodic, this thread verifies its periodicity confidence. These threads are
implemented separately to maximize the performance of packet processing and to create
a precise timing of periodicity checking, which should happen in a strictly defined period to
ensure a required amount of data for confidence calculation was gathered. The most reliable
way of reaching this property is to create a dedicated thread with the only competency to
check statistical correctness and to produce details of time analysis. Both threads together
verify communication from the time perspective, content correctness, and a specific packet
occurrence with respect to a specific context/state. In the following sections, we introduce
the technical details of these threads and their connection.

For further description, we consider the model to be a part of the runtime analyzer.
Thus, both threads can access data generated in the training phase and have information
about expected communication and its occurrence frequency. Generated module consists
of a model part and runtime part (Figure 6.1). In the model part, there are only constant
data, used for behavior verification. Oppositely, in the runtime part, there are mostly
dynamic data reflecting the current network state. Although data content is mentioned to
be changing, its size is stable. New values are never added; whenever the state is changed,
existing values are updated. The internal state always reflects the current situation; there
are not any historical records (however, past states are certainly mirrored in the current
state). Besides performance benefits, this property also ensures stability from the point of
view of memory usage and prevents increasing memory consumption.
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Figure 6.1: Model components usage by threads

6.1 The Main Traffic Analyzer Thread

The main thread uses packet models to verify fields of packets coming to stdin. Moreover,
it employs the general traffic model and relevant flow automata to verify packet correctness
in a given context. When the execution starts, all automata are set to the initial state
and windows for periodicity checking are empty. These structures represent the internal
state of the program, which simultaneously reflects the network state. The following para-
graphs briefly introduce actions performed by the main thread, i.e., processes executed
when a packet arrives to stdin.

In the first phase, after a packet is received, the analyzer parses it to obtain details
from the packet header and matches these details with a known model. If it is not able to
associate the packet with any known model, it throws the packet away and logs this event
as an error. Otherwise, it continues to the second stage.

In the second stage, happening only in the case where the packet was successfully
matched with a known model in the first phase; the packet is associated with a particular
bi-directional flow. Comparisons are performed using IP header information. Again, if
the packet cannot be matched with any known flow, it is thrown away and a corresponding
error is logged.

In the third processing phase, the main goal is to retrieve the current state of the au-
tomaton appertaining to the specific flow and perform a move to the state corresponding
with the flow situation. The target state is obtained using a reference to the general pre-
fix tree and a knowledge about the arrived packet model. Based on these details, we can
find the correct transition using direct memory access. However, a confident (and correct)
decision of the following move might be an impossible task. Figure 6.2 visualizes state uncer-
tainty issue. Let’s suppose a network communication to be in the state B1. The automaton
on the left shows the situation where the state is not final. When we receive a packet of
model “2” intuitively, we should move to state C'1. However, in a real situation, there are
4 possible scenarios:

1. Packet “2” is valid and succeeds current state; thus, the automaton state should
change to C1.
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2. Packet “2” is an insertion; hence automaton should not move anywhere and log this
occurrence.

3. Packet “2” should be preceded by other packets, which were lost; consequently, there
was a packet deletion before. In this case, automaton should be reset and the occur-
rence reported.

4. Packet “2” is the start of new communication and current communication was ended;
therefore the automaton state should be changed to B2.

The situation gets even more complicated when B1 is a final state. This scenario is
shown in the right automaton (Figure 6.2). In addition to possible situations mentioned
above, the current state might be final, thus, we should accept the current sequence. But,
how can we be sure that the sequence will not continue by “2” or “23” as there are an-
other two accepting states? Because automaton always reflects only current network status,
we are not capable to certainly determine current or future states even for the most sim-
ple automata. Hence, in the following paragraphs, we describe an approach of reflecting
the current network state, which respects a certain level of uncertainty.

Current state Current state

1
Where to move Should we accept
after 2 is received? or wait for the next
2 packet?
@ 2»..( : ) '—@ 2«)‘.{ : )

Figure 6.2: State uncertainty

2

6.1.1 Dealing with Network State Uncertainty

To keep a track of network events properly, we need to perform an estimation of the cur-
rent state. Considering scenario in Figure 6.2, the situation after receiving packet “2” is
visualised in Figure 6.3, where:

e errors are represented as a transition to state A, which denotes the network state
before any (valid) packet is received;

e acceptance of “1” followed by the start of a new communication with packet “2” is
represented in state B2; and

e communication continuance is denoted in C1.

Based on these behavior observations, we can define an important property of automata
representing the current network state in the runtime part of network model (shown in
Figure 6.1): The current automaton state is unknown; however, there is a set of states, in
which it can be with the same probability. This set of states is called candidate states.
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Figure 6.3: State uncertainty after “12” sequence is received

From given examples, we can deduce that whenever a packet, which can be used for
a transition from the initial state, is received, it creates a new candidate state. Although,
there is always maximally one new candidate state for each packet arrival because automa-
ton is deterministic. Thus, after n packets are received, there is a maximum of n candidate
states, in which the network can be with the same probability. This principle can be used
to define another automaton property: A set of candidate states has a maximum of k
members, where k is the length of the input stream.

With such an approach, every time, after a new packet is received, a move is performed
for all automaton candidate states. Intuitively, it causes the generation of many “blind” can-
didates that get stuck after a few moves, because there is not any transition for the received
packet. This situation cannot be allowed for a valid sequence, thus, after a candidate state
gets stuck, it is removed from the candidate set, however, with the condition that the stuck
candidate is not the most distant candidate from the initial state. The distance condition
was introduced because of the requirement to have all packets as a part of the accepted
stream and, intuitively, there is always only one candidate state including all packets, which
is the most distant one. Hence, stuck candidates can be safely removed as far as the most
distant one can continue. For example, considering the situation in Figure 6.3, if a packet
of model “3” was received, C1 still could continue to D1 but A and B2 would be stuck. In
this case, if the following packet after “3” was “1” or “2”, we could securely accept the D1
candidate and start a new stream by a move from A to Bl or B2. Such an approach
is simply applicable for all valid sequences. However, non-acceptance of the most distant
candidate does not necessarily mean a communication failure.

As mentioned in Chapter 5, one stream may come right after the other one and, as
a consequence, they could be considered as one. Such a situation is displayed in Figure 6.4.
This automaton does not accept the “1233” sequence, however, it does accept “12” and
“33” sequences separately. After “123” is received, the most distant candidate is able to
continue with “4” only, but “3” is received. Despite this situation is correct, the most
distant candidate is stuck. Albeit C2 is in a valid end state, this stream does not cover all
packets in sequence, hence the automaton cannot accept.

One of the possible resolutions of such a situation is displayed in Figure 6.5. Whenever
any flow passes a final state, it sets a mark on it and continues normally. When the most
distant candidate gets stuck, runtime analyzer looks behind and searches for passed final
states. If there are final states that can together cover the whole packet stream, the sequence
can be accepted. In Figure 6.5, “1233” can be folded up using C1 and C2.

6.1.2 Preparing Statistical Data

Besides flow content verification, another responsibility of this thread is to prepare data for
processing by the secondary thread. In Section 5.3.2, we have introduced an algorithm that
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Figure 6.5: Resolution of state uncertainty after “1233” is received

produces an array of 1-second segments. Every segment carries two values — the number
of packets that passed through during this time and the confidence of this distribution. In
the runtime phase, these windows of segments are used to verify the number of occurrences
by constructing these windows again and aligning them with their expected form. Albeit
this is the competency of the second thread, the main thread collects data during packet
processing and records the number of occurrences to segments.

In the beginning, all segments are set to zero. Then, whenever a packet sequence is
accepted and assigned to some specific pattern, the main thread increments the value in
the corresponding segment, which represents the specific pattern occurrence. Intuitively,
the number of these segments constantly increments with passing execution time, which
is unacceptable in the view of the fact that we require constant memory allocation. To
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achieve this property, these segments are represented as a circular linked list of length
equal to the expected period. Segment index is then calculated using a simple equation:

ij = tsec mod p; (6.1)

where i; is an index of jth segment window, .. is current time in seconds from the start
of program execution, and p; is the period of jth segment window.

6.2 Periodicity Verifying Thread

The secondary thread has a single competency — it wakes up every second, aligns the ex-
pected window to the actual number of occurrences, and calculates a difference in the same
way as described in Section 5.3.2, respectively. The difference is then used to calculate
a cumulative confidence, which summarizes confidences through all past states. Cumula-
tive confidence is calculated using Equations 6.2, 6.3, and 6.4, where x denotes a segment
value (which is the number of occurrences during a particular time period), ¢ is the current
index, z is the number of segments with value 0 considering all previous indexes, dif is
the distance between real and expected number of occurrences in the segment, and c is
the confidence.

Ti—1 — 7 — Zi—1 (62)

r,=1+1—z (6.3)

c; = (Ci—l * xi—l) + (Zi—l — Zi) + (1.0 — dlfl) (64)
T

Comparing ith segment of expected occurrences window and real occurrences window,
Equation 6.3 denotes the number of segments that were non-zero at least in one of these
two cases and Equation 6.2 denotes the same for previous time segment. For example, in
Figure 6.6, there are 2 zeros for i = 6 — on the second and the fourth position (we consider
only segments, where 0 is in both windows). Hence we set z = 2 and x; = 5. Generally, z;
stands for the number of segments that were zero in both windows at the same time, where
for z; we count segments 1 < j < 4. Intuitively, the difference between x; and x;_1 is either
0 or 1. We can calculate cumulative confidence 6.4 based on 6.3, 6.2, previous confidence
¢;i—1, and di f;, denoting the distance between ith number of occurrences in comparison with
1th expectation, which is in interval <0;1>. We initially consider ¢g = 1 and zg = 1.

This process is repeated for each periodic pattern. Oppositely to the window construc-
tion process described in Section 5.3.2 (where the aim is to reach the highest confidence),
the goal is to have the same confidence as the expectation, measured during training phase.
However, in some cases, where the confidence estimation is around 0.5 (i.e., it was created
with a 50% window mismatch rate), it might seem to be a piece of information with very
low value. Let’s suppose a set of partially periodic occurrences that can be split to segments
{1,6, 3} and estimated window {3, 3, 6}; mismatches correspond to {0.3,0.5,0.5}, thus, con-
fidence correspond to 0.63. As far as the model consists of the estimations only and real
occurrences are not provided in any form, the runtime analyzer receives very inaccurate
information. Obviously, we cannot consider such pattern as purely periodic. However, even
inaccurate partial periodicity provides certain information, based on which we can build
rough recurrence expectation. When a pattern is considered random, we can hardly create
limitations on the pattern occurrence. The only possibility how to keep track of these oc-
currences is to count the number of these events in a large period and expect more or less
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the same. However, even very rough information about occurrences in 1s segment may be
valuable, e.g., when 6 is expected with 0.5 confidence in three segments in a row but 20 is
received in all these segments, we can quickly reveal odd behavior.

Maximum of expected
occurrences -> the smallest
unit of distance is 1/3

Expectation 0 0 2 0 2 0 2 2 0 0 3 1 e o o

Difference | 1/3 | 0 0o 0 0

Occurrences 1 0 2 0 2 1 0 1 0 0 4 1 ¢ o o
z,=1 z4=2
zeos o [ 1 o[ 1 ]0o o o
i+1-z 2 2 3 3 4 5 6

[Confidence 0.83 083 089 089 092 081 0.73

Figure 6.6: Cumulative window comparison

6.3 Handling the Moment of Connection

Until now, all discussed algorithms supposed that monitored traffic starts when the analyzer
is already connected and listens to the interface. Albeit, in real-time analysis, the analyzer
can be connected to the network at any moment. Thus, the analyzer, especially the sec-
ondary thread, needs the capability to familiarize itself with the environment as quickly as
possible.

In the case of the main thread, the only inconsistency that might occur is the situation
where the analyzer connects during some packet exchange stream, which would be normally
represented as a pattern occurrence but starting packets were not appropriately captured.
Hence the thread is unsure about the pattern start symbols. We can resolve this issue using
an initial error tolerance. For a certain time, if the main thread cannot map an incoming
packet to any known packet type, the packet is thrown away. However, this tolerance is not
applicable to failures of type “unknown device” or “unexpected packet type”, these errors
are never tolerable.

For the secondary thread, this situation is more troublesome. The thread always ex-
pects a flow starts at the segment of index 0 in a specific window. However, in runtime,
the analyzer may be connected in any state of communication. As mentioned in this sec-
tion, this thread aligns windows to calculate the difference. In such a situation, there might
be a false positive alarm of mismatch because of incorrect window alignment. Thus, when
the thread starts, at first it tries to find the current point for each periodic pattern. It
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waits until the main thread writes to the penultimate index in the window and then tries
to align the window with expectation. It searches for the most exact match by calculating
the best possible offset, i.e., the value by which the window has to be moved to provide the
best result. Considering two windows of length 4, A = {1,2,3,4} and B = {5,6,7,8}, we
align them as following:

e {1,2,3,4} to {5,6,7,8} with offset 0,
e {1,2,3,4} to {6,7,8,5} with offset 1,
o {1,2,3,4} to {7,8,5,6} with offset 2, and
o {1,2,3,4} to {8,5,6,7} with offset 3.

For each pair of sets, we calculate total difference using Equation 5.3, which is applied to
values on the same indexes. Then, we search for the minimum variance. The offset associ-
ated with the most similar pair is then considered as the starting phase for the particular
pattern. Using this offset, all values in the window of expected occurrences are circularly
moved by this offset.

6.4 Prevention of Log Overflow

In previous sections, we have described methods of anomalous manners detection. In-
troduced techniques react to every unexpected occurrence, which may be problematic in
the case where an error state persists. For example, if a periodic communication starts to
occur randomly, sooner or later, there will be a report of periodicity confidence drop. After
the drop, the confidence is reset to 1.0 and measured again. If the communication does not
resume its standard period, it will cause another drop, and so forth. Another example is
when an unallowed device connects to the network. Without any adjustments, every packet
sent by this device would be reported as a vulnerability. Furthermore, there can be cases of
false-positive reports because of packets that were not correctly captured by the monitoring
device. Thus, in the following sections, we focus on minimizing the number of redundant
reports.

6.4.1 Report Curtailment

To prevent excessive vulnerability reporting, we introduce an interval, during which logging
is interrupted. This interval is specified separately for each error type as there are different
measurements for packet errors, confidence drops, unexpected devices, etc. Also, the inter-
val start/end is different for each bi-directional flow. For example, if we set the curtailment
value for confidence drops to 24 hours and all devices shut down at some point; during
the next 24-hour interval, there will be one report for each bi-directional flow. The curtail-
ment interval start depends on the point when periodicity confidence decreases to a critically
low value, thus, it may be different for each of these flows.

The curtailment only sets logging restrictions. When an error occurs, it is evaluated
whether the error type is not paused for the given flow at the particular point in time. If
a report curtailment is in progress, reporting is skipped but analysis continues in a standard
way. Otherwise, the error is logged, and a curtailment record is created for the bi-directional
flow and specific error type.
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Figure 6.7: Curtailment adjustment

The whole process is displayed in Figure 6.7. The red array represents records of “low
confidence error” cutback, the purple array stands for “invalid communication state error”
pause records. Indexes in both arrays represent the identification of known bi-directional
flows. Curtailment is set to 2 seconds for confidence drops and 0.4 seconds for invalid
states. The blue array represents bi-directional flow with identification 4, the green array
is bi-directional flow 5. In the case of the blue flow, there are two periodicity confidence
errors. The first one occurs at 0.3 seconds and the other at 1.2 seconds. Without any
adjustments, there would be 2 reports. However, after the first report, a curtailment record
is created with the current timestamp. When the second drop occurs at 1.2 seconds, before
it is logged, it is checked whether the flow reporting is paused. As we can see, there is
a report curtailment in progress, which will be released at 2.3 seconds, thus, reporting is
skipped. Contrarily, in the case of green flow, there were 2 invalid state occurrences during
the first second. However, they were delayed enough so both are reported and curtailment
is set to the time of the second error.

The situation gets complicated in the case of error type unallowed flow. Other errors
can be associated with specific bi-directional flows, so they are easy to monitor. In this
case, we miss the flow reference. Hence, we need a mechanism of handling unknown flow
communication recurrence. The method is based on keeping records of new bi-directional
flows to track related reports. Therefore, there is a special buffer, which contains two
kinds of information: unknown device identification and time of the error. Whenever an
error of type “unallowed flow” occurs, related flow identification is searched in the buffer
of unknown identifications. If a reference is found in the buffer, its timestamp is checked
in order to detect possible expiration. If the record is not expired, reporting is skipped.
Otherwise, the record is invalidated, an error is logged and a new record is inserted to the
end of the buffer, respectively. To avoid memory consumption by a growing number of
unallowed flows, the buffer size is limited to 256 flow records. After it is filled, records are
circularly rewritten (the oldest first).
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As mentioned earlier in this section, all curtailment intervals are configurable for specific
errors. The configuration is performed using program arguments so they are fully optional.
Details are described in Appendix A.

6.4.2 Single Packet Deletion Acceptance

In this section, we focus on handling single deletion errors, so it is possible to skip reporting
of this error kind. This error is handled using a look-ahead method. Using the generated
traffic model, we have a reference to all “potentially future” automaton states. Hence we
can look for all states following the succeeding states of the current state. Intuitively,
every captured packet can be considered as a packet after a potential deletion. To avoid
superfluous processing, this detection is performed only in the case where an error is revealed
and it is about being reported.

Deletion correction always considers packet miss inside sub-flow, i.e., excludes the first
state. Every communication is required to be started appropriately. Let’s consider a stream,
which currently consists of n packets, thus, it has already performed n automaton state
moves, which we refer to as “is at nth automaton level”. Packet n + 1 is already received
but using it the stream cannot pass to any following state. Instead of logging this situation,
we look into all possible states at (n + 1)st automaton level. If any of these states have
a transition with the received (n+ 1)st packet, we move to this state and perform the tran-
sition instead of logging an error. Thus, we skip one state and (n + 1)st packet becomes
(n + 2)nd.

Level n Level n+1 Level n+2
Current state

Received

Figure 6.8: Following state uncertainty

The situation is more complicated when there is more than one possible state. It causes
that one candidate state splits to two candidates that are at the same level. This scenario
is visualized in Figure 6.8, where we move from state A to both D and F states. As
we mentioned in Section 6.1.1, we always require maximally one candidate on a specific
level. This situation is problematic for the most distant candidate representing the whole
packet stream. Having two candidates there, we cannot correctly reveal the situation where
the correct most distant candidate accepts/fails. To resolve this problem, we select one of
these candidates and consider it the most distant one, despite there are multiple “the most
distant” candidates. The selection is performed based on state ID. Every state has its own
ID, which is based on its position in the automaton. The ID of a state at automaton level
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n is always higher than ID of all states on lower levels. Correspondingly, all states on
levels higher than n have higher ID than nth level. States at the same level have sequential
IDs, the highest is selected and considered as the longest flow. Other processes are kept
unchanged. Whenever the most distant candidate cannot continue, other candidates are
searched in order to match the whole packet sequence.
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Chapter 7

Verification and Consequent
Adjustments

This chapter focuses on the verification of the proposed solution. There are three main
demands on the analyzer functionality:

e monitoring of “standard” traffic with some common deviations, such as temporarily
higher latency, without reporting serious issues;

e revealing an unknown communication or unknown devices in the network; and
e warranting permanent frequency of the communication between known devices.

To demonstrate required behavior, we have used obtained dataset of simulated attack (Sec-
tion 4.1) and also a custom-developed generator of IEC 104 packet headers that allow
customizing streams from many points of view (packet losses, latency, periodicity, pat-
tern length, number of patterns, etc.) so we can demonstrate some specific situations and
incidents (details in Appendix B).

7.1 Analysis of the Simulated Attack

At first, we focus on the verification of the model, generated during the training process.
The generated model is compared to data representation in Wireshark' to roughly estimate
expected representation. Then, we verify whether the analyzer would recognize malicious
manners based on the generated model. To construct the model, we use the first third of
the dataset, which includes 200 000 packets captured during 258 seconds of monitoring.

7.1.1 Generated Model

After running the model recognition onto the CSV file with limitation to 200 000 lines,
we have received .c and .h modules (their structure is described in Section 5.4). These
files contain a definition of communication inside 37 bi-directional flows, what indicates
that there are 38 devices in the network. During runtime analysis, these 38 addresses are
the only allowed as senders and receivers of IEC 104 packets.

"https://www.wireshark.org/
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Evidently, in all bi-directional flows, there are 2 major periodic patterns, the first one
repeats every 0.6 seconds, the other repeats once per 20 seconds. In all 37 cases, the an-
alyzer has recognized window {1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, what ex-
actly represents a window of pattern that occurs every 20 seconds. In the second case, we
can observe a much shorter window with a higher frequency:

e in 31 cases, the window is represented as {2,2,2,1,2,2},
e in three cases as {2,2,2,1,1,2},
e in two cases as {2,2,1,1,2,2}, and

e in one case as {2,2,2,1,2,17}.

Obviously, all these cases, more or less, match the estimated 0.6s recurrence. However, in
one case, devices do not communicate in this way at all.

Besides the period window, there is another important attribute: a confidence, guar-
anteeing the window matched real occurrences during the training phase with a certain
accuracy. In the case of the pattern with 20s period, the count of samples in the training
dataset is small (statistically less than 10 in all cases). Nevertheless the lowest recogni-
tion confidence is 0.55, contrarily, the highest confidence is 1.0, and the median is 0.8. In
the case of the pattern with the shorter period, the highest confidence is 0.92, oppositely,
the lowest is 0.88, and the median is 0.91, which is much more consistent than the pat-
tern with the longer period. All recognized devices and their confidences for both periodic
patterns are summarized in Appendix C.

7.2 Runtime Traffic Verification Results

To demonstrate real-time environment, we use a custom replay utility that is capable to
read packets from CSV file and redirects them to standard input with a respect to arrival
times, what simulates real traffic. Because we use the same dataset for both training and
testing, we do not focus only on the result itself but also on the trend after runtime analyzer
processes packets, on which its traffic model has been trained.

After the whole file is processed, there is a series of failures in the log file. The first
log occurred at 467 seconds from the beginning of monitoring, reporting unknown packet
arrival, followed by many reports of packets from non-permitted devices. Also, from this
time, we can observe a sudden drop of periodicity confidence in the case of the more
frequent pattern. Figure 7.1 displays the periodicity confidence during runtime. Axis z
denotes the number of seconds from the start of monitoring (the model was trained on data
from 0Os to 268s) and y denotes confidence of the more frequent pattern (implicitly 1.0).
A complete overview of all monitored flows is shown in Appendix D.1.

Besides the periodicity drop, observable in the case of all streams, there are two notice-
able anomalies. The first one is the red curve in Figure D.1, the second one is the pink curve
in Figure D.3. These two flows exhibit significantly odd behavior compared to the other
35 streams. In most cases, the confidence drop was around 10 percent of confidence. In
the case of the mentioned two flows, the confidence drop is immense, causes the value
approximates to zero. We can observe that in both cases, at around 800 seconds from
the beginning of monitoring, the confidence is suddenly shifted to 1.0, what is caused by
the periodicity checking thread, which has detected very low confidence, reported it, and
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Figure 7.1: Pattern 106 for devices with ID 10-19

reset the value, respectively. However, the confidence trend seems to be forthwith dropping
again after the reset.

Further investigation of the mentioned anomalies showed that at around 450 seconds
from the analysis start, these two flows stopped all communication of the specific pattern.
It follows that the drop is not caused by differences in periodicity but by a total absence of
the pattern from the point when some unexpected communications were reported; whereas
the impact on other devices is also significant but evidently temporal. After this anomaly,
in most cases, there is a slight recovery during the next 200 seconds, disturbed by another,
this time milder, confidence drop.

Although the source of confidence drop is unknown, it probably does relate to the error
in the log file described at the beginning of this section. Despite real-time confidence is in
general smaller than expected values (specified in Appendix C), after a certain amount of
time, it gains stability and oscillates around 0.77. Even after the outage, there is a noticeable
convergence towards this value.

These observations have proven that for short periods, there is not continuous groundless
degradation of confidence and the algorithm handles a certain level of error rate in the time
aspect of the communication.

However, the situation is different when it comes to streams with a very long period. In
the field of confidence, our current approach takes into account only moments (i.e., 1s seg-
ments), where at least one of expectation/reality is non-zero; because “both zero” situations
are considered as beneficially inferior. Hence considering a 1-minute interval (which is rep-
resented as a 60-segment window), if the noise is absent, there are exactly 3 segments taken
into account and others are evaluated as non-valuable. Such an approach may be problem-
atic in noisy streams because every minor deviation dramatically lowers total confidence.
Moreover, there is not any guarantee of period stability. There might be some external
aspects (or imprecision may accumulate over time) affecting the period length. In the cur-
rent approach, such a situation would cause occurrences that do not fit with the expected
moments of these events, which causes false-positive alarms.

Figure 7.2 shows confidence for the pattern with long period (20s). Complete graphs are
included in Appendix D.2. Likewise the previous case, sudden confidence grows are caused
by a reset, occurring when a critically low confidence is detected. In this case, we can notice
a slower confidence drop after a pattern is reset than in the previous case; however, in this
case, there are observable drops even in the first part of monitoring. Albeit a moment, in
which pattern may come to be considered as fitting to period, is set to one-second segment;
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obviously, it is not large enough and the trend keeps stagnating during the whole process,
which is unacceptable. Notwithstanding making segments larger might seem to be the cor-
rect approach, it may only be a temporal solution. Let’s consider a situation, where we
have a periodic pattern with period 5s in a noisy environment, where streams are gradually
getting delayed. If every stream has approximately 0.005-second delay from the preceding
one, after 1000 seconds, the pattern occurrence does not come in the 5th segments but
one segment later, thus, the 200th occurrence has hypothetically period 6 seconds. De-
spite the following 199 occurrences have period 5 seconds again, window segments do not
match anymore. Such situation is displayed in Figure 7.3. If we resolve such a situation
by extending the segment range, sooner or later, this issue appears again, independently
on the period length. In the following sections, we focus on narrowing this inconsistency in
order to avoid false-positive alarms.
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Figure 7.3: Enlarged period

7.2.1 Dealing with Low Frequency

This section discusses a possible approach to handle streams occurring with a long period.
The resolution of this issue needs to be generic and work for both long and short periods,
as determination of the boundary between “short” and “long” is in general very vague.

One of the possible solutions may be making segments of expected occurrences slightly
indistinct, however, assuredly limited. We apply this approach to windows where the num-
ber of occurrences is lower than half of the window length. The main principle is very
simple: whenever a pattern appears next to an expectation, with a maximum distance of
one segment, it is accepted as a valid pattern presence. Using this principle, the window of
expected arrivals behaves as following:

1. Whenever an occurrence appears at index 7 and it is expected at this index, it counts
as a valid occurrence;
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2. when a pattern arrives at index ¢ but it is not expected at indexes i, i — 1, and neither
1+ 1, it is considered as a mismatch;

3. if an occurrence appears at index ¢ but it is expected at index ¢ — 1, it is considered
as a valid occurrence; however, the previous mismatch (at time ¢ — 1) has already
affected confidence, thus, the difference is -1 to narrow the previous mismatch;

4. whenever a pattern comes at index 7 but it is presumed to appear at index ¢ + 1, it
counts as a match but oppositely to the previous case, the difference is 0.

In the 3rd and 4th situation, this principle might cause an acceptance of duplicate values.
For example, let’s consider a situation where we expect an occurrence only at index 5,
however, we receive a pattern at ¢ = 4, so we consider it a match. One second later,
we receive another occurrence of the same pattern, thus, we count it as a match again.
The same may happen at ¢ = 6; this time, we, even more, increase the confidence by
dif = —1. Finally, after double duplicate, the difference is -1, which may critically distort
total confidence. The problem is resolved using the following 3 adjustments:

e whenever a non-matching situation is accepted using one of two techniques mentioned
above, we (circularly) move the window of expected occurrences to match given situ-
ation;

e we keep track of the previous situation by clearing index ¢ — 1 instead of the current
one, what is performed at the end of every periodicity checking epoch;

e a match of non-matching situation does not consider only index ¢ in real occurrences
and ¢ + 1 in expectations but we compare these indexes in both windows. To apply
the discussed algorithm, we require either Equation 7.1 or 7.2 to be evaluated as true,
considering e is a value in the window of expected occurrences and «a is a value in real
occurrences.

diff(e;, a;—1) + diff(ei—1,a;) =0 (7.1)
diff(ei, ait1) + diff(ejy1,a;) =0 (7.2)

Intuitively, such an approach causes that the model part is no more static; however, the win-
dow of expected arrivals dynamically moves and adjusts to the current network state.

Figure 7.4 (and related Appendix D.3) depicts the situation after described algorithm
is applied. Comparably to Figure 7.1, we can observe a rapid confidence drop beginning at
450 seconds from the monitoring outset. In this case, it is more significant because until
this time, there were much fewer occurrences than in the previous case; thus, every failure
impacts confidence much more. Contrarily to the situation before applying adjustments,
Figure D.5 is the only one, where we can observe total confidence drop before 450 seconds.
Albeit we can observe decreases also in Figures D.6 and D.8, they are only temporal and
the confidence has raised again by itself without any interventions. In the following section,
we focus on the investigation of these confidence drops. At first, we need to determine
the source of this event to verify the analyzer’s behavior is correct. Then, we focus on
the investigation of this issue.
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Figure 7.4: Pattern 9 for devices with ID 10-19

7.2.2 Investigation of Unexpected Confidence Drops

In this section, we focus on the investigation of confidence drops, displayed in confidence
timelines, and describe specific cases of these events.

At first, we focus on the issue in the pattern with the smaller period, depicted in
Figures D.1 and D.3. There are two flows unable to recover after the confidence drop, we
identify them as stream 10 (the red one in D.1) and stream 27 (the purple one in D.3), which
refers their identity described in Appendix C. A deeper investigation of pattern occurrences
has shown that at a certain point, these devices completely stop the communication flow.
However, an examination of the associated log file in detail has revealed that there are
pertained errors, referring unknown channels between these two couples of devices. This
fact implies that these devices continued communication but used different ports, which are
not allowed by the model. If only IP addresses are considered as identification and ports are
not taken into account at all, statistics of these flows are narrowed to precisely correspond
to the confidence timeline of other streams.

In the case of the longer period (referred to as pattern 9), the situation is different. After
the confidence drop at approximately 450 seconds from the monitoring outset, the confi-
dence recovery seems to be problematic for most of the devices. A closer investigation
has shown that at a certain point in time, all devices had stopped to communicate for ap-
proximately one minute. After the recovery, they started to communicate again; however,
the first two occurrences of this pattern are sent twice. In our case, these duplicates are
not the mandatory impact decreasing periodicity; actually, the main issue is that they do
not fit the expected period. Despite the future flow is theoretically valid, it is moved by
a couple of segments from the expectation.

Based on these observations, we assume that in all cases, devices completely stopped
standard communication for around one minute. In the case of the short period, proper
recovery is not an issue, because all segments of expected occurrences are the same (1-2 ar-
rivals expected every second). Thus, it is not dependent on the point where communication
starts or stops and continues. The situation is more problematic for long periods because it
is not possible to estimate the reason why the expected occurrence has not arrived. There-
fore, we cannot even guess the periodic occurrence arrived earlier or later than expected
because of reset and that we should adapt our expectations to the situation.

7.2.3 Dealing with Runtime Resets

This section proposes a possible resolution of handling the moment when communication
is renewed after device reconnection. Described practices are based on the approach intro-
duced in Section 6.3.
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As we only track the history of communication between two devices using a confidence
measure, there is not any possibility of how to precisely pursue past specific matches/mis-
matches in streams. Hence at a certain point of traffic monitoring, we can guess device avail-
ability from two parameters: total confidence of the stream and current expectation /reality
difference. However, from this information, we cannot precisely determine when the poten-
tial reset occurred. Also, we should take into account that outages are not the only reason
for mismatching confidence windows, e.g., there might be an asynchronous event impacting
the period, which also leads to mismatch. Thus, instead of focusing on the reason causing
mismatch, we concentrate on an opportune correction.

As introduced earlier, the periodicity checking thread has the capability to detect crit-
ically low confidence and perform an appropriate reaction. This competency may be also
used to narrow gaps in confidence checking. After a confidence counter is reset, all check-
ing activities of the given pattern are suspended for an amount of time, which is equal to
the number of segments in the confidence window. After this time expires, we consider
all occurrences that appeared during this period. Based on this information, we narrow
the time in the window of expected arrivals in the same way as at the beginning of mon-
itoring (Section 6.3). We only perform a segment move, the content itself is not changed,
inasmuch as periodic events are expected to keep the same period even after resets.
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Figure 7.5: Pattern 9 for devices with ID 10-19

Figure 7.5 shows the result of applying all proposed adjustments. Correspondingly,
Appendix Section D.4 delineates results for all captured streams. Despite there are streams
that are gradually decreasing because of losing track of expected occurrences, after the reset,
all expectations in terms of periodicity were appropriately aligned with the present state.
We can observe the pink and blue streams in Figure 7.5, which dropped between 600 and
800 seconds from the start of monitoring. After the reset, these flows continue with very
stable confidence, before the global slight confidence drop at about 850 seconds, what is
presumed behavior.

7.2.4 Examination of Log File

In this section, we concentrate on particular events, which were appraised as potentially
malicious and reported to the log file. As we already discussed earlier, there are reports
warning about unknown communications, which are unaccepted by the model automaton.
This suspicion of malicious behavior has arisen from downtime, during which all commu-
nications stopped and started packet exchange again from a different port. Furthermore,
we can observe reports about unallowed states of particular bi-directional flows. To pre-
clude acceptance of ensuing packet exchange, the automaton is reset to the initial state and
an exception is logged.
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Demonstration on Real Flow

To verify correct behavior, we have tracked the existing packet stream and logged all re-
ceived packets and related errors. Results are compared to captured packets in Wireshark.

We have used stream 19 (number refers its identification in Appendix C) for the behavior
verification. The selected stream exhibits behavior representing the majority of allowed bi-
directional flows. An example of standard log output, proving the communication fits
automaton language, is shown in Figure 7.6.

[DEBUG] 825.446433000: (STREAM 19): Received packet O.
[DEBUG] 825.447159000: (STREAM 19): Received TCP ACK.
[DEBUG] 825.447247000: (STREAM 19): Received packet
[DEBUG] 825.447898000: (STREAM 19): Received packet
[DEBUG] 825.449144000: (STREAM 19): Received packet
[DEBUG] 825.456187000: (STREAM 19): Received packet
[DEBUG] 825.456361000: (STREAM 19): Received packet
[DEBUG] 825.457059000: (STREAM 19): Received TCP ACK.
[DEBUG] 825.468056000: (STREAM 19): Received packet 2.

g ~NoON -

Figure 7.6: Standard communication in stream 19 (in log file)

Apart from presumed behavior, we can observe several warnings about malicious man-
ners. During standard packet exchange, we can observe several errors (Figure 7.7) notifying
about automaton halt. This situation is also reflected in Wireshark (Figure 7.8), where we
can see two incongruous packets. As we consider only application (L7) information from
the packet header, the position of reported warning in both sources slightly differs. In our
case, instead of verifying sequence numbers in TCP header, we investigate the continuation
of IEC 104 headers, where the error is reflected at a different point. Nevertheless, it has
led to errors correlating with inconsistencies in TCP fields.

[DEBUG] 296.013964000: (STREAM 19): Received TCP ACK.
[DEBUG] 296.022189000: (STREAM 19): Received packet 2.
[DEBUG] 296.063554000: (STREAM 19): Received TCP ACK.
[DEBUG] 296.063664000: (STREAM 19): Received TCP ACK.
[DEBUG] 296.063922000: (STREAM 19): Received TCP ACK.
[DEBUG] 296.604682000: (STREAM 19): Received packet O.
[DEBUG] 296.604703000: (STREAM 19): Received packet 2.
[DEBUG] 296.604775000: (STREAM 19): Received TCP ACK.
[DEBUG] 296.604800000: (STREAM 19): Received packet 1.
[DEBUG] 296.604805000: (STREAM 19): Received packet 6.
[DEBUG] 296.607223000: (STREAM 19): Received packet 7.
[WARN] 296.607223000: (STREAM 19, PACKET 7): Unknown communication state.
[DEBUG] 296.607246000: (STREAM 19): Received TCP ACK.
[DEBUG] 296.607251000: (STREAM 19): Received packet 5.

[WARN] 296.607251000: (STREAM 19, PACKET 5): Unknown communication state.
[DEBUG] 296.614444000: (STREAM 19): Received packet 2.

Figure 7.7: Standard communication of stream 19 (in log file)

However, there are also uncommon situations, which are visible in Wireshark but are
not reported by our analyzer. The source of this incongruity is in the training phase. These
errors have been observed during the training process, thus, they are considered as a valid
part of communication.

Failures are getting more frequent between 830 and 870 seconds from the monitoring
outset. During this period, every pattern occurrence ends as a failure, which explains
the second confidence drop, observable in Figure 7.1.

From the time when the confidence starts decreasing, there are logs about unknown
automaton state. As depicted in Figure 7.9, none of the pattern occurrences is accepted
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Figure 7.8: Pattern 9 for devices with ID 10-19 (in Wireshark)

0 1 =1
(5367,17727) ASDU=1 M SP_NA 1 Inrogen I
(5368,17727) ASDU=1 M_ME_NB_1 Inrogen I0A[15]=10017,.
50345 » 2404 [ACK] Seq=20027 Ack=80907 Win=256 Len=0

100 TCP 60 50345 > 2404 [ACK] Seq=19987 Ack=88745 Win=256 Len=0

100 1@dapci 60 <- 5 (5364)

20 TCP 60 2404 > 50345 [ACK] Seq=80761 Ack=19993 Win=457 Len=0

160 1edapci 66 <- S (5365) | <- S (5366)

20 TCP 60 2404 » 50345 [ACK] Seq=80761 Ack=20005 Win=457 Len=0
104asdu C_IC_NA_ I0A=0

0A[4]=16016, . .

-> I (5369,17727) ASDU=1 C_IC_NA_1 ActTerm I0A=0

by automaton because of duplicated IEC 104 packets; what precisely corresponds with
There are also analogous records in Wireshark packet
stream (Figure 7.10). Equivalently to the previous pictured situation, there are errors
reported on the L4 (ISO/OSI) layer, which are undetectable from our position. Thus, these
failures are detected at the moment, when they are reflected in the application layer.
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Figure 7.9: Standard communication in stream 19 (in log file)

7.3 Testing Using Own Generated Data

We have implemented a program, which is capable to generate packet streams in a config-
ured format (Appendix B). Constructing data artificially allows customizing its content to
demonstrate individual situations in network traffic. Henceforth, all discussed datasets are
created using this generator.
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Figure 7.10: Pattern 9 for devices with ID 10-19 (in Wireshark)

7.3.1 Purely Periodic Stream

At first, we have generated a stream, which contains 3 bi-directional flows and 3 peri-
odic patterns, each device communicate using a different pattern. Simulated traffic lasts
50 seconds and consists of:

1. 200x pattern of length 4 with period 0.5 seconds, referred to as pattern 1;
2. 100x pattern of length 2 with period 1 second, called pattern 2; and
3. 2x pattern of length 3 with period 50 seconds, referred to as pattern 3.

Using these patterns, we aim to demonstrate undisturbed traffic, which consists of
expected packets only. Thus, the application should not report any alarms.

The training phase has produced a model which includes two periodic patterns. As
there are only two occurrences of pattern 3, it was correctly excluded from the periodicity
estimation. Generally, at least 5 occurrences are required to deliberate about pattern
period. Thus, the last pattern is considered as valid, however, random. For pattern 1,
the periodicity is estimated to window {2,2,2,2,2,2} and confidence 0.955 due to some
segments, where belongs only single packet. In the case of pattern 2, the window is estimated
to {1,1,1,1,1,1} with confidence 1.0.

This model was used as a base for the runtime traffic analyzer. For reference, we have
used both training and testing sets as inputs. In the case of the training set, we reached
final confidence 0.980 for pattern I and 1.0 for pattern 2. Using testing set, we have reached
0.980 for pattern 1 and 0.990 for pattern 2; thus, results are very similar to the modelled
confidence. In both of these tests, there were not any reports about malicious manners.

7.3.2 Denial of Service Attack

In this test, we have used the same dataset as in Section 7.3.1 with a modification. At
97 seconds from the monitoring begin, we have multiplied traffic to 100 pattern occurrences
instead of 3.

Because the traffic stream is not invalidated and the communication still corresponds
to expected patterns, there is a single exception in logs after test execution. The error
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is related to unexpectedly low confidence of the periodicity checking and ensuing reset.
This event is clearly visible in overall confidence statistics, depicted in Figure 7.11. After
an abrupt number of occurrences is noticed, confidence significantly drops within a single
second at around 98 seconds from the monitoring outset.

C

60 a0 t [S] 100

Figure 7.11: Denial of service reflected on periodicity confidence.

7.3.3 Single Packet Failures

This test demonstrates individual packet failures separately. In these tests, we do not
consider periodicity confidence monitoring as a source of failure reveal. Despite it might
play a critical role in potential misbehavior reveal, we contemplate log files only. We focus
on the following situations:

1. communication initialization is duplicated,

2. communication is not initialized,

3. valid packet appears on unexpected place,

4. invalid packet arrives,

5. unknown device connects to network and starts to communicate in a valid way.

These individual failures were applied to the generated dataset, described in Section 7.3.1,
and executed separately in the standard way.

In both examples (1) and (2) of failures during initialization, the error was correctly
reported. In the case of (1), after the second initialization is received, the first one is thrown
away, the event is logged, and the program continues with the second initialization, respec-
tively. In the case (2), all subsequent packets are refused and logged before we capture
a packet, which may be the start of a new pattern. In the case of (3), it strongly depends
on a specific situation. In our case, there appeared a packet that might be the start of a new
communication (despite it was not). Then, if the stream is currently in the state of automa-
ton acceptance, it is ended in a standard way, and a new communication is commenced,
respectively. Otherwise, the pattern is considered as corrupted and the unexpected arrival
is logged. In the case of (4) and (5), packets were thrown away immediately at the beginning
of their processing and reported.
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7.4 Results Evaluation

In this chapter, we have discussed the capabilities of the final real-time packet analyzer.
We have focused on both periodicity checking and records in the log file. In the first phase,
we have revealed an issue caused by periodicity instability. The fluctuation has two major
reasons:

1. One non-fitting occurrence, e.g., an arrival with high latency, may critically impact
subsequent flow part; and

2. in the field of periodicity checking, bi-directional flows are often unable to recover
after device downtime.

Based on these observations, we have introduced two adjustments to deal with envi-
ronmental aspects and unexpected situations, which significantly improved the statistics of
monitoring, so it correctly reflects the current network state.

Thereafter, we have investigated associated log files and compared particular records
with captured packets in Wireshark to evaluate whether revealed anomalies correspond to
real flaws. Deep investigation has shown that the analyzer is capable to detect failures
that have not occurred during the training phase. In the case of unrecognized failures;
arising from a situation where an automaton representing flow is halted and unable to
perform a move, the analyzer is competent to detect a wide range of errors. However, only
the application layer is considered during analysis. All failures reflected on this layer are
detected but there might be potentially unrecognized failures, which are only reflected on
lower layers.
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Chapter 8

Conclusions and Future Work

In this work, we have focused on the investigation of network traffic between two devices
in industrial control systems. Our main goal was to construct a program, which is able
to automatically recognize a model of network communication. This model should grant
the competency to verify traffic between particular devices in real-time.

In the first part, we have investigated a given dataset and protocol description with
the following observations:

e Variety of packet header attributes is rather small even for continuous values.

e Flows between specific devices contain observable patterns, which indicate periods in
flows.

e Network traffic is noisy and interspersed with a significant amount of packets un-
related to IEC 104 communication. Almost 40% of captured data consists of TCP
signalization packets and other protocols (ARP, DNS, NBNS...).

Based on the first observation, we have decided to reduce the number of considered fields
using the feature selection technique, which is based on the analysis of packet field variety.
These sets of attributes are aggregated, which creates a group of “packet models” repre-
senting all packets in the flow. This technique reduces all IEC 104 fields to a single number
representing a model identifier. Using this algorithm, 16 unique models have been found
for the given dataset. Matching each packet to one of these models reveals obvious patterns
in traffic between connected devices.

In the second part of the thesis, we have studied related works that were focused on
network traffic modeling with the main focus on automata-based approaches. We have
discussed many possible approaches based on automata, such as deterministic finite state
automata, statecharts, stochastic automata, timed automata, but also other widely used
techniques, such as Fourier transform and Markov models.

Based on related works results and also own observations, we have proposed an algorithm
with the ability to automatically detect model in an unknown dataset. This algorithm
consists of three main stages. At first, a single prefix tree is created to represent the whole
network traffic. The purpose of creating such a model is to be able to track similarities
across streams between different devices. Then, specialized models using deterministic finite
automata are constructed to represent specific sub-flows that are mapped to the general
model nodes. At last, we have discussed the suitability of different approaches in terms of
periodicity estimation. We have appraised algorithms independent on statistics to be more
convenient for periodicity determination. Information gathered during these steps is used to
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construct a group of matrices and structures, which contain both constant and changeable
parts, describing presumptive network behavior. Such a representation is generated as a C
module, which provides a core for runtime traffic verification.

Afterward, we have implemented a program capable to verify traffic in real-time. This
software consists of two separate threads. The main thread has the ability to

1. read captured packets;
2. verify their sender/receiver and assign the packet to a specific bi-directional flow;

3. confirm the packet belongs to some known group of packets (referred to as packet
models), and generalize packet identity to the identification of associated packet
model; and

4. adjust the current state of related automaton to reflect the state of the network after
the packet is received.

Whilst the main thread is adjusting its internal state, it provides a piece of valuable
information for the secondary thread, which has the competency to verify time aspects
of the flow. This thread uses gathered information in combination with the estimated
recurrence from the traffic model and uses this data to compute periodicity confidence.
This confidence expresses the trend of communication recurrence and whether it meets
expectations or not.

At last, we have collected results by executing the analyzer on the given dataset and
discussed the contribution of our outputs. We have realized that periodicity checking is
inaccurate for long periods, which caused immense confidence deviations, leading to false-
positive alarms. To narrow this inaccuracy, we have implemented two adjustments, dealing
with environmental aspects and helping analyzer to recover after communication downtime.
Results have revealed that a combination of time aspect checking and reported anomalies
provides a decent overview of the network state.

8.1 Future Work

We are planning to extend current behavior by the capability to precisely determine the rea-
son for individual packet errors, as we are currently competent to only reveal a generic
inconsistency in packet stream. Furthermore, current periodicity checking algorithms have
already proven their benefits from many aspects; however, their appropriate recognition
strongly depends on the quality of the training dataset. Thus, we will focus on making
our solution more resistant to deviations during the training phase. Moreover, similar al-
gorithms may be then used to deal with deviations during real-time monitoring to be able
to recognize malicious manners earlier than after a critical confidence drop.
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Appendix A

Real-time Analyzer Configuration

Runtime analyzer can be configured using 5 command line options and a help option (-h).
Option -o sets the error reporting format. It can be either “LOG” or “JSON”. The “JSON”
selection formats reports to JSON objects. Every object consists of 4 attributes:

1. type, which is “DEVICE”, “MODEL”, “CONFIDENCE”, or “STATE” depending on
the error source;

2. time, when the error occurred;

3. devices, containing identification of bi-directional flow; and

4. message, providing error description.
Contrarily, the “LOG” format creates reports in a plain text form, represented as
{time}: [ERROR:{type}] [DEVICES:{devices}] {message}

where value placeholders represent the same values as JSON attributes above.

Additionally, we can configure curtailment intervals for each error type. There are
4 configuration options. Each of these options expects a value which has to be numeric.
This value represents a time in microseconds, for which subsequent errors are paused.
The following options stand for specific error types:

e -d stands for unknown device reports,
e —c represents confidence drops,
e -m denotes packet model assignment failures, and

e -s symbolizes communication state errors.
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Appendix B

Packet Stream Generator

To verify Analyzer behavior in specific situations and environments, we have implemented
a packet generator with the capability to produce customized CSV packet streams based
on selected header patterns, in our case, used to create a pure IEC 104 stream.

Program stream-generator-1.0.jar produces two CSV files, one used for training,
the other for testing. These sets can optionally contain more or less the same or distinct
patterns. Implicitly, even files generated from identical stream patterns are slightly different
in packet arrival timestamps, thus, the order of particular packets always subtly differs.
Generated content is managed using program arguments; it accepts an optional number of
arguments, each of them has one of the four forms:

e p denotes a periodic pattern, generated into both training and testing set;

e n stands for a non-periodic pattern, produced to both training and testing set;
e tp symbolizes a periodic pattern, which is added to testing set only; and

e tn indicates a non-periodic pattern, attached to testing set only.

Arguments need to correspond a pattern associated with the argument type. Every
type has a specific pattern form:

o "pl{1}I{2}1{4}{3}I{5}I{63}",
o "n|{1}|{2}{3}",

o "tpl{1}[{2}1{4}|{3}I{5}I{63}",
o "tn|{1}[{2}I{3}".

These patterns can be represented as regular expressions, their meaning is described in
Table B.1. Patterns are generated without any dependencies between them, hence, they
are combined together in the target file and two patterns of distinct communication flows
may overlap. Training set is generated into test__raw folder, testing set is generated into
test__noised folder. Both of them are named generated__sequence__{identity}.csv,
were identity is a random hash, uniquely distinguishing generated packet streams.
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ID Regular: Minimum | Maximum | Description
expression

1 \d+ 1 LONG MAX The numbe'r of strez.mms
corresponding to this pattern.

9 \d+ 1 LONG MAX T}}e number of packets in
this pattern.
Repetition of packets in

3 \d+-\d+ 0.0 1.0 the‘ stream (‘1.e. one pa‘cket
arrives multiple times in
one stream).

4 \d+ 1 LONG MAX Period length in micro-
seconds.
The probability of 'getting

5 | \d+.\d+ 0.0 1.0 lost’ for each pattern
occurrence in the stream.

6 \d-+\d+ 0.0 1.0 The probablhty that ‘a pattern
occurrence arrives twice.

Table B.1: Meaning of symbols in argument patterns.

B.1 Example of Generated Streams

In this section, we demonstrate an execution of described packet stream generator. We
have selected arguments "p|4]3[500000/0.2[0.0/0.0" "p|2]2|1000000/1.0/0.010.0".
These arguments generated 2 bi-directional flows, one contains 3 packets with period 0.5s,

the other consists of 2 packets with period 1s. The result is shown in Figure B.1.

NNNMNNR,RRRPR,RRRPRRPR 2R OO0O0

.511630000,182.
.511910000,182.
.511960000,182.
.006400000,105.
.007940000,105.
.018580000,182.
.019250000,182.
.019470000,182.
.576380000,182.
.576590000,182.
.578280000,182.
.011220000,105.
.012430000,105.
.086940000,182.
.087050000,182.
.088380000,182.

207.
207.
207.
195.
195.
207.
207.
207.
207.
207.
207.
195.
195.
207.
207.
207.

233.229,157.220.216.147,221,50, , , , ,0x00000003, 0x00000001 , 141,147,134, 36, 41207
233.229,157.220.216.147,221,50, , , , ,0x00000002,0x00000000,109,189,113,221,31249
233.229,157.220.216.147,221,50, , , , ,0x00000000 , 0x00000002, 30,50, 149 ,155,27114
55.63,50.151.111.12,2586,55, , , , ,0x00000000,0x00000002, 185, 250,50, 252, 5651
55.63,50.151.111.12,2586,55, , , , ,0x00000000,0x00000002, 185,250, 50,252, 5651
233.229,157.220.216.147,221,50, , , , ,0x00000003, 0x00000001 , 141, 147,134, 36, 41207
233.229,157.220.216.147,221,50, , , , ,0x00000002,0x00000000,109, 189,113,221, 31249
233.229,157.220.216.147,221,50, , , , ,0x00000000 , 0x00000002, 30,50, 149 ,155,27114
233.229,157.220.216.147,221,50, , , , ,0x00000003 ,0x00000001 , 141,147,134 ,36,41207
233.229,157.220.216.147,221,50, , , , ,0x00000002, 0x00000000,109, 189,113,221, 31249
233.229,157.220.216.147,221,50,, , , ,0x00000000,0x00000002, 30,50, 149,155,27114
55.63,50.151.111.12,2586,55, , , , ,0x00000000,0x00000002, 185,250, 50,252, 5651
55.63,50.151.111.12,256,55, , , , ,0x00000000,0x00000002, 185,250, 50,252, 5651
233.229,157.220.216.147,221,50, , , , ,0x00000003,0x00000001 , 141,147,134, 36 ,41207
233.229,157.220.216.147,221,50, , , , ,0x00000002, 0x00000000,109, 189,113,221, 31249
233.229,157.220.216.147,221,50, , , , ,0x00000000 , 0x00000002, 30,50, 149,155,27114

Figure B.1: Generated (training) CSV packet stream
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Appendix C

Recognized Bi-directional Flows

Table C.1 shows an identification of devices that were recognized in the training phase.
Additionally, every record is associated with the confidence of its recognized period. In this
work, we refer to these devices only as their ID.

20s period | 0.5s period
ID | IP1 P 2 confidence | confidence
1 172.17.1.20 | 172.17.2.116 | 0.8182 0.9070
2 172.17.2.114 | 0.8182 0.9186
3 172.17.2.102 | 1.0000 0.9109
4 172.17.2.109 | 0.8000 0.8760
5 172.17.2.8 0.8333 Not present
6 172.17.2.134 1.0000 0.8992
7 172.17.2.101 | 1.0000 0.9225
8 172.17.2.125 1.0000 0.9109
9 172.17.2.104 | 1.0000 0.9070
10 172.17.2.132 | 0.8000 0.9047
11 172.17.2.136 | 1.0000 0.8953
12 172.17.2.127 | 0.8000 0.9124
13 172.17.2.123 1.0000 0.9147
14 172.17.2.118 | 0.8000 0.8992
15 172.17.2.106 1.0000 0.9186
16 172.17.2.129 0.7778 0.9241
17 172.17.2.103 | 0.8000 0.9222
18 172.17.2.111 0.8182 0.9070
19 172.17.2.120 | 1.0000 0.9086
20 172.17.2.100 | 0.8889 0.8953
21 172.17.2.108 | 1.0000 0.8876
22 172.17.2.107 1.0000 0.8953
23 172.17.2.115 1.0000 0.9031
24 172.17.2.124 | 1.0000 0.9128
25 172.17.2.110 | 0.6364 0.8876
26 172.17.2.133 | 0.8000 0.9008
27 172.17.2.131 1.0000 0.9202
28 172.17.2.105 | 1.0000 0.9070
29 172.17.2.135 1.0000 0.9047
30 172.17.2.117 | 0.6364 0.9109
31 172.17.2.113 0.8000 0.9167
32 172.17.2.126 | 0.8000 0.9070
33 172.17.2.122 | 1.0000 0.9128
34 172.17.2.119 0.7500 0.9186
35 172.17.2.128 | 0.5556 0.9222
36 172.17.2.130 | 0.8182 0.8930
37 172.17.2.121 | 1.0000 0.9031
38 172.17.2.112 0.7778 0.9031

Table C.1: Recognized devices and their communication periodicity.
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Appendix D

Monitoring Results

In this Appendix Chapter, we present complete results of monitoring, described in Chap-
ter 7. This chapter is further divided into four sections. Section D.1 shows the results of
tracking a pattern with period 0.6 seconds, which we refer to as pattern 106, which relates
to its identification during pattern analysis.

In the second phase, we focus on a pattern with a period of 20 seconds, called pattern 9.
As discussed in Chapter 7, confident pattern tracking is problematic due to environmen-
tal impacts, thus, it is divided into 3 parts, further describing applied processes in order
to reach results corresponding to reality. Section D.2 shows complete results of monitor-
ing without any adjustments, which revealed the impact of the environment erroneous on
analysis results. Section D.3 displays the same measurements with adjustments allowing
infinitesimal deviations in packet arrivals, based on which window slightly adapts to the net-
work situation. Finally, we introduce the result of monitoring with all applied adjustments.
All measurements were performed using the same model and identical condition, so we can
evaluate the contribution of applied enhancements.

D.1 Pattern 106
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Figure D.1: Pattern 106 for devices with ID 1-9.
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Figure D.2: Pattern 106 for devices with ID 10-19.

200 400 600 800
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Figure D.4: Pattern 106 for devices with ID 30-38.
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D.2 Pattern 9 without Adjustments
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Figure D.8: Pattern 9 for devices with ID 30-38.
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D.3 Pattern 9 with Sliding Window
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Figure D.9: Pattern 9 sliding window for devices with ID 1-9.
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Figure D.10: Pattern 9 sliding window for devices with ID 10-19.
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Figure D.11: Pattern 9 sliding window for devices with ID 20-29.
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Figure D.12: Pattern 9 sliding window for devices with ID 30-38.
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D.4 Pattern 9 with Sliding Window and Periodicity Recov-
ery
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Figure D.13: Pattern 9 periodicity recovery for devices with ID 1-9.
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Figure D.14: Pattern 9 periodicity recovery for devices with ID 10-19.

11

0.9
08
0.7
0.6

05
0.4
03
0.2

0.1

t[s]

0 100 200 300 400 500 600 700 800 900 1k

Figure D.15: Pattern 9 periodicity recovery for devices with ID 20-29.
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Figure D.16: Pattern 9 periodicity recovery for devices with ID 30-38.
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Appendix E

CD Content

The attached CD contains the following items:

src folder, which contains the source files,
doxygen folder, which contains documentation of the source code,

output__examples, a folder containing examples of analysis results (confidence re-
ports and failures in both LOG and JSON format), these results are a part of reports
collected during execution on the dataset with the simulated attack, which was dis-
cussed in this work,

the text of this thesis in DT__xjanco06.pdf,
text folder, which contains IATEX source files,

README file, describing both training and testing phases and usage of both im-
plemented programs,

LICENSE file, providing license details,

TEST__CASES.txt file, describing a short step-by-step tutorial to test the func-
tionality in real-time.
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