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Abstract 
This diploma thesis focuses on the automatic network traffic description using models 
of communication. The main aim is at industrial control system protocols, especially 
IEC 60870-5-104- We propose a method of characterizing the network state using both 
communication content and behavior in time viewpoints. These aspects are described us
ing finite state automata, prefix trees, and recurrence analysis. In the second part of this 
thesis, we focus on the implementation of a program, which is capable to use the obtained 
model to verify network traffic in real-time. 

Abstrakt 
Tato práce se zabývá problematikou popisu síťového provozu pomocí automaticky vytvoře
ného modelu komunikace. Hlavním zaměřením jsou komunikace v řídicích systémech, které 
využívají speciální protokoly, jako je například IEC 60870-5-104- V této práci představu
jeme metodu charakteristiky síťového provozu z pohledu obsahu komunikace i chování 
v čase. Tato metoda k popisu využívá deterministické konečné automaty, prefixové stromy 
a analýzu opakovatelnosti. Ve druhé části této diplomové práce se zaměřujeme na imple
mentaci programu, který je schopný na základě takového modelu komunikace verifikovat 
síťový provoz v reálném čase. 
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Rozšířený abstrakt 
Analýza síťového provozu hraje důležitou roli v oblasti počítačové bezpečnosti. Díky ní 
můžeme sledovat chování jednotlivých zařízení v síti, monitorovat výkon, ale také předví
dat budoucí komunikaci za účelem včasného odhalení nežádocího chování. Za tímto účelem 
bylo v minulosti navrženo mnoho metod se snahou poskytnout co nejlepší možný popis 
aktuálního stavu sítě. Ovšem sestavení modelu sítě, který přesně popisuje aktuální stav ko
munikace všech zařízení, je téměř nemožný úkol, protože v síti se přirozeně vyskytuje mnoho 
chyb. Za chyby považujeme například ztráty, zpoždění a duplicity paketů. K predikci bu
doucích stavů se proto využívají metody strojového učení. Tyto metody, a obzvláště ty 
z nich, které jsou založeny na učení s učitelem, jsou však velmi závislé na velikosti a kvalitě 
datové sady. Právě trénovací datová sada se tedy v mnoha případech stává klíčovou pro 
kvalitu výsledného modelu a je velmi důležité zajistit, aby v ní bylo obsaženo co nejvíce 
různých situací síťového provozu. 

V této práci se zaměřujeme na metody učení bez učitele, obzvláště na ty, které jsou 
postaveny na konečných automatech. Naší snahou je vytvořit metodu, která není příliš 
závislá na kvalitě a velikosti datové sady. Navržená metoda by zároveň měla být schopna 
vytvořit co nejpřesnější model na základě informací dostupných ze samotného toku paketů, 
bez toho, aby jí byly poskytnuty dodatečné informace o prostředí, hostiteli nebo zařízeních, 
se kterými hostitel komunikuje. Za účelem implementace a následné verifikace řešení nám 
byla poskytnuta datová sada skládající se ze 688 979 paketů, které byly zachyceny v rozmezí 
977.997794 sekund. V této datové sadě je zachycena komunikace prostřednictvím protokolu 
IEC 60870-5-104 a je v ní nasimulován útok na zařízení. 

Protokol IEC 60870-5-104 je aplikační protokol nad transportním protokolem TCP, 
který se primárně využívá ke komunikaci mezi zařízeními v řidičích systémech. Protokol 
definuje 3 základní rámce paketů: I-Type, U-Type a S-Type. Tyto rámce se rozlišují na 
základě 7. a 8. bitu v prvním ze čtyř řídích polí v hlavičce paketu. Typ I má 8. bit nastaven 
na hodnotu 0 a slouží primárně k obousměrné výměně dat. Typ U, identifikován pomocí 
posledních bitů „01", a typ S, s posledními dvěma bity „11", jsou určeny k jednosměrné 
komunikaci. Účelem takových paketů je zejména zaslání potvrzení nebo řídicího příkazu 
druhému zařízení. 

V první části této diplomové práce se zaměřujeme na identifikaci jednotlivých toků 
takové komunikace za účelem volby co nejvhodnější struktury modelu. Hlavním účelem 
je rozhodnout variabilitu kombinací informací v hlavičkách IEC 104 paketů. Na základě 
analýzy datové sady bylo zjištěno, že různorodost kombinací těchto informací je napříč 
všemi toky paketů velmi malá. Proto je výhodné neseparovat modely jednotlivých toků, 
ale vytvořit jediný komplexní model popisující toky mezi všemi zařízeními, a poté pro 
jednotlivé dvojice zařízení definovat nad tímto modelem konkrétní limity jejich komunikace. 
Byly proto vytvořeny třídy paketů, které shlukují pakety určitých rysů, přičemž každý 
paket náleží právě jedné této třídě. Tyto třídy označujeme jako modely paketů. Každý 
tok paketů lze poté generalizovať na řetězec modelů paketů. Taková reprezentace odhaluje 
velmi zřetelnou opakovatelnost podsekvencí modelů paketů. Tyto podsekvence označujeme 
za vzory komunikace. Model celé komunikace je poté postaven na identifikaci všech vzorů, 
které se vyskytují v datové sadě. 

V druhé části této práce se zabýváme implementací programu, který je schopný nalézt 
všechny vzory v poskytnuté datové sadě. Kromě toho se také zabývá opakovatelností 
daných vzorů v rámci konkrétních datových toků. Zkoumá, zda neexistuje perioda, na 
základě které by se mohl předvídat další výskyt daného vzoru. Byly zkoumány dvě metody 
zjišťování periodicity. První z nich je založena čistě na statistice - ukázalo se však, že tento 



přístup je velmi závislý na datové sadě, odhad je velmi nepřesný a každá odchylka velmi 
ovlivňuje výsledek. Statistické metody se tedy ukázaly být nevhodné pro tento případ. 
Druhá metoda byla proto postavena na diskretizaci času příchodu vzoru. Neuvažujeme 
tedy konkrétní čas výskytu, nýbrž počet výskytů v rámci časového úseku. V tomto případě 
byly zvoleny úseky o velikosti jedné sekundy. Takový sekundový interval označujeme za 
segment. Časové okno představuje poté jednu periodu a skládá se z několika segmentů. 
Například periodu 0.6 sekund můžeme vyjádřit nekonečnou sekvencí časových výskytů 
t = {0.0, 0.6,1.2,1.8, 2.4, 3.0, 3.6, 4.2,4.8, 5.4,... }, uvažujeme-li však počet výskytů každou 
sekundu, můžeme sekvenci vyjádřit posloupností U> = {2,2,1,2,2,1,...}. V této sekvenci 
se evidentně opakuje podsekvence {2,2,1}, která představuje časové okno složené ze tří 
segmentů. Výstupem algoritmu je také jistota (anglicky confidence), s jakou bylo okno 
určeno. Pokud je tato jistota alespoň 0.5, tedy 50% shoda, považujeme vzor za periodický. 
Touto metodou byly v poskytnuté datové sadě odhaleny všechny opakující se vzory, pro 
krátké periody (0.6 sekund) s jistotou kolem 0.9, pro dlouhé periody (20 sekund) s jistotou 
v rozmezí 0.8 až 1.0. 

Výsledná komunikace je tedy popsána jediným modelem, reprezentujícím všechny vzory 
napříč všemi toky komunikace. Tento model je reprezentován jako prefixový strom. Na 
model navazují deterministické konečné automaty popisující jednotlivé toky paketů, které 
jsou specifické pro každou dvojici zařízení. Tyto komunikace označujeme jako oboustranný 
tok. 

Model komunikace je vygenerován jako modul programu, který má schopnost verifikovat 
síťový tok v reálném čase. Protože síťový provoz probíhá velmi rychle, tento program 
musí pracovat s co největší efektivitou a být schopen zpracovat desetitisíce paketů každou 
sekundu. Proto je nutné eliminovat počet časově náročných operací, jako je například 
alokace a dealokace paměti. Modul vygenerovaný v rámci analýzy paketů je tedy sestaven 
tak, aby postačil ve většině případů přímý přístup do paměti a také aby bylo možné pracovat 
s konstatní velikostí paměti. 

Program provádějící verifikaci paketů se skládá ze dvou vláken. Hlavní vlákno přijímá 
tok paketů a uzpůsobuje tomuto toku interní stav proměnlivé části modelu komunikace, což 
je prováděno v podobě přechodů mezi stavy automatů reprezentujících jednotlivé obous
tranné toky. Zároveň také zapisuje počty výskytů jednotlivých vzorů do kruhového sez
namu o velikosti periody vypočítané během analýzy. Tento kruhový seznam je poté každou 
sekundu kontrolován druhým vláknem, které jej porovnává s očekávaným počtem výskytů. 
Pomocí vzorce založeném na Hammingově vzdálenosti poté vypočítává jistotu, s jakou se 
reálné výskyty shodují s očekáváním. Pokud komunikace dospěje do neznámého stavu nebo 
pokud se počet výskytů výrazně liší od očekávání, problém je nahlášen. 

Oba programy byly testovány na obdržené datové sadě. První třetina byla využita na 
trénování modelu, na dalších dvou třetinách byl model otestován. Na základě testů byly 
postupně provedeny tři optimalizace, díky kterým je program schopný zotavení v případě, 
že komunikace je pozastavena a poté znovu započata, nebo také v situaci, kdy je v síti příliš 
velká latence a výskyty se začnou vychylovat ze segmentů. 

Z výsledků vyplývá, že s pomocí kontroly periodicity jsme schopni odhalit velké množství 
chyb, protože každé nestandardní chování se projevilo na jistotě, se kterou se reálný počet 
výskytů shoduje s očekávaným. Velká část útoku je také reflektována ve výstupních sou
borech, do kterých jsou hlášeny nestandardní výskyty. 
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Chapter 1 

Introduction 

Network traffic anaiysis has a speciai roie in current computer science. It helps us to predict 
the behavior of devices, monitor their performance, and reveal anomalous manners. Many 
techniques have been studied in order to develop a model providing as accurate system 
description as possible. However, the construction of a precise model is an almost impossible 
task because the network environment is very noisy and erroneous. Dealing with the noise 
is usually the biggest challenge in network traffic modeling because, without a sufficient 
dataset, it is impracticable to precisely determine the impact of the environment and specify 
exact patterns in network communication. Therefore, supervised learning techniques have 
become very popular in network traffic analysis for their capability of dealing with these 
aspects. However, these methods are very dependent on the quality of the given dataset. 
In this work, we focus on unsupervised learning using finite automata. Our algorithms are 
built to do not be too dependent on dataset size and quality. We focus on acquiring as 
much information as possible from a raw packet stream without any additional information 
about the host, connected devices, or the network itself. 

The main goal of this diploma thesis is to develop an algorithm that automatically 
creates a model of network traffic, which can be later used for traffic flow verification. 
The described analysis specializes in Supervisory Control and Data Acquisition (SCADA) 
systems modeling with the main focus on IEC 60870-5-104, which is an application protocol 
over TCP, commonly used for master/slave communication in industrial control systems. 
The gathered information is then used to create a reduced packet representation taking 
into account the importance of particular header fields. The reduction of data attributes 
associates similar packets together, despite some of their fields may be distinct. Moreover, 
appropriate data reduction brings benefits to subsequent analysis because it significantly 
reduces both space and time complexity of model computation. In the construction phase, 
we first investigate related works and algorithms, and then we combine several techniques 
with the objective to create a model, which is as accurate as possible. Furthermore, we 
analyze recurrence intending to estimate periods in flows because, as ascertained from 
initial investigations, periodicity has an important role in these systems. The obtained 
model and additional information are generated as a module of software that evaluates 
network behavior based on the given specification in runtime. The system that verifies 
traffic in real-time is a program that is capable to accept received packet, adjust its internal 
state to the current network situation, and determine, whether the state is correct or not. If 
there is any uncertainty about the network situation, it is reported as a vulnerability. Using 
this software, we are able to obtain valuable error logs and recurrent behavior monitoring 
across the whole process. Finally, we test our solution aiming to determine whether it meets 
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requirements or not, discuss obtained results, and contributions of this work in furtherance 
of proposing improvements and future continuation. 

1.1 Thesis Structure 

This diploma thesis is further divided into 8 chapters. At first, we focus on the analy
sis of recent studies in the field of network flow monitoring and content examination. In 
Chapter 2, we study IEC 60870-5-104 protocol description and structure in pursuance of 
estimating its variety and investigate its behavior in a network. Chapter 3 discusses related 
works and algorithms intending to identify advantages and disadvantages of the mentioned 
approaches. Based on these observations, we investigate possibilities of generic model con
struction, which is applicable to any unknown dataset. 

Based on related works and also own observations, in Chapter 4, we introduce the given 
dataset and focus on appropriate preprocessing, which includes data reduction. The prin
cipal purpose of this chapter is to find a uniform lossless data representation. Such a repre
sentation helps to associate similar packets together and also reduces both space and time 
complexity of large dataset processing. Processed data is used in Chapter 5 to describe 
the proof of concept of an algorithm that automatically recognizes a model in any dataset 
using deterministic finite state automata and prefix trees. Additionally, it analyzes flow 
patterns in order to reveal recurrent occurrences in the given packet stream and estimate 
their period. The network model is used in Chapter 6, which proposes a proof of concept 
of a system, which can verify traffic in real-time based on the model which is provided as 
a part of the system. 

Finally; in Chapter 7, we compare the obtained results with expectations for the purpose 
of verifying capabilities and insufficiencies of the implemented solution. Based on the result 
evaluation, Chapter 8 summarizes our results and briefly introduce future work. 
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Chapter 2 

IEC 60870-5-104 Protocol 

Supervisory Control and Data Acquisition (SCADA) is a control system architecture playing 
a critical role in power system operation and communications. These systems are designed 
not only to gather, analyze, and store data, but also to transfer it to a central computer 
facility and display the information to the operator in graphical or textual representation, 
thereby, allowing the operator to monitor or control an entire system from a central location 
in real-time [1, 44]. 

International Electrotechnical Commission (IEC) has established IEC 60870 standard 
defining telecontrol systems. This standard has 6 parts describing general principles, char
acteristics of interfaces, performance requirements, etc. IEC 60870-5 is the fifth part, 
known as Transmission Protocols. It was developed by the IEC Technical Committee 571 

and the main goal is describing a profile of communication between devices. Five documents 
specify the base of IEC 60870-5 including Transmission Frame Formats (IEC 60870-5-1), 
Data Link Transmission Services (IEC 60870-5-2), Security Extensions (IEC TS 60870-5-7) 
and more. The IEC Technical Committee 57 has also created companion standards. One of 
these standards is IEC 60870-5-101 presenting protocol that provides a communication pro
file for sending basic telecontrol messages between a central telecontrol station and telecon
trol outstations. The IEC 60870-5-104 protocol is an extension combining the application 
layer of IEC 60870-5-101 and the transport functions provided by TCP/IP [15, 30, 31]. 

2.1 Protocol Description 

IEC 60870-5-104 is a Master/Slave protocol, what means there is one device or process con
trolling other (one or more) connected devices or processes (Figure 2.1). Master and Slaves 
communicate in two alternative ways. Either Master controls the data traffic by Polling 
(Master invokes communication with Slaves itself by sending periodic queries) and Slave 
passively sends responses, this process is called Unbalanced Transmission, or every Slave 
station can immediately initiate a message transfer to Master itself, what is known as 
a Balanced Transmission. 

IEC 60870-5-101/105 standards define a hierarchical architecture, where every con
nected system is either Master or Slave. In terms of these protocols, we use conventions 
Controlled Station, the monitored system (Slave), and Controlling Station, the system that 
performs control of other systems (Master). 

1 I E C Technical Committee 57 develops and maintains international standards used i n planning, opera
tion, and maintenance of power systems, h t t p : / / t c 5 7 . i e c . c h / i n d e x - t c 5 7 . h t m l 
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Slave 
(Controlled Station) 

Master 
(Controlling Station) 

Slave 
(Controlled Station) 

# Monitor direction 
0 Control direction 

Slave 
(Controlled Station) 

Figure 2.1: Controlling/Controlled stations and transmissions 

Controlling and Controlled stations communicate in 3 types of direction: 

• Monitor Direction, transmission is performed from Controlled to Controlling station, 

• Control Direction, transmission is accomplished from Controlling to Controlled sta
tions, and 

• Reversed Direction, what is a combination of both principles enabling Controlling sta
tion to send commands and Controlled stations to send response/data (Figure 2.1) [30]. 

IEC 60870-5-101 defines addressing on two different levels: the Link Address, which 
uniquely identifies device, and a Common Address of ASDU (COA), what in combination 
with information object address creates unique identification/address for each data element. 

2.2 Protocol Header Parameters 

IEC 60870-5-104 protocol header information is represented in Application Protocol Data 
Unit (APDU), which is further divided into two parts. The first component is Application 
Protocol Control Information (APCI), which starts with value 0x68, called Start Byte, fol
lowed by 1-byte APDU Length field, and four 1-byte Control Fields (CF). The second part 
is Application Service Data Units (ASDU), which is attached optionally. Thus, A P D U con
tains either a 6-byte APCI or an APCI with Application Service Data Units (ASDU) (Fig
ure 2.2). 

The format of IEC 60870-5-104 APCI is slightly different from IEC 60870-5-101 APCI 
structure, which duplicates the APDU Length field and also repeats Start Byte. The main 
purpose of creating redundancy is the possible absence of a reliable transmission guarantee. 
IEC 60870-5-104 uses TCP, which provides a reliable transport guarantee, thus, the rep
etition of any field is dispensable. Each IEC 60870-5-104 APCI consists of a frame that 
appertains to one of three standard types. The type of frame determines the format of 
Control Fields. 

2.2.1 A P C I Control Fields 

The APCI of IEC 60870-5-104 also contains four control fields. These fields differ according 
to the ACPI frame type. We identify three basic types of frames: I-format, U-format, and 
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S-format recognized by the last bit/2-bits of the first control field. Despite the size of APCI 
remains the same for all frame types, each frame type has a specific role and also determines 
whether an ASDU is attached or only single APCI is contained in APDU. 

APDU 

APDU 
Length 

Start Byte (0x68) 
1 byte 

APDU Length (max. 253) 
1 byte  

Control Fields 
4 bytes 

ASDU data 
(Optional) 

APCI 

ASDU 

APCI Application Protocol Control Information 
ASDU Application Service Data Unit 
APDU Application Protocol Data Unit 

Figure 2.2: IEC 60870-5-104 APDU structure 

Send sequence number (LSB) 0 
7 bit 1 bit 

Send sequence number (MSB) 
8 bit 

Receive sequence number (LSB) 0 
7 bit 1 bit 

Receive sequence number (MSB) 
8 bit 

0 
1 bit 

1 
1 bit 

TESTFR 
2 bit 

STOPDT 
2 bit 

STARTDT 
2 bit 

1 
1 bit 

1 
1 bit 

Receive sequence number (LSB) 
7 bit 

0 
1 bit 

Receive sequence number (MSB) 
8 bit 

S-Format 

Figure 2.3: Comparison of I-format, S-format, and U-format APCI CF 

Information Transfer Format (I-format) 

The I-format header is identified by the 8th bit (the last bit of the first CF) set to value "0". 
It consists of a 15-bit Send Sequence Number (SSN) and also a 15-bit Receiver Sequence 
Number (RSN) (Figure 2.3). Both SSN and RSN are initially set to zero and sequentially 
incremented with every sent/received packet. The I-format APDU always contains an APCI 
and ASDU. 

Whenever a transmitter sends a packet, it increases the SSN and stores packet's APDU 
to a buffer until it receives an acknowledgment from the receiver. The acknowledgment 
contains SSN of the received packet in the RSN field. When it sends more than one APDU 
and receives RSN equal to any of APDU's SSN, it is considered as a valid acknowledgment 
for all APDUs with lower SSN than received RSN. 

When a station transmits a large batch of packets, it may lead to a situation where 
the buffer is overfilled by unacknowledged APDUs. To prevent overflow or acknowledge 
timeout, the receiving station sends a packet with the S-format APCI to signalize packet 
receipt. 
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Numbered Supervisory Functions (S-format) 

The S-format APCI header is defined by value "01" in the 7th and 8th bit position (the last 
two bits of the first CF in the header). The other six bits of the first CF and also whole 
second CF are kept unused because, oppositely to the I-format, this header format does 
not contain a SSN (Figure 2.3). The I-format A P D U always contains only one APCI. 

The main and only purpose of this APCI is to signalize APDUs receipt to prevent buffer 
overfilling, which was described in the I-format section. Thus, RSN is a piece of essential 
information, it notifies the APDU transmitter that packets containing SSN in the received 
I-format APCI of lower or equal value than RSN in the sent S-format APCI were correctly 
received. On the contrary, the SSN in the S-format header is redundant because the S-
format APCI is not intended to be acknowledged as it is acknowledgment itself. 

Unnumbered Control Functions (U-format) 

The U-format header is defined by the 7th and 8th bit both set to value "1". Contrarily 
to the I-format and S-format APCIs, the U-format APCI contains neither Sender sequence 
number or Receiver sequence number. On the other hand, the same as the S-format, the U-
format APDU of this format always contains one APCI only. 

In this case, the first CF has a special role. As shown in Figure 2.3, the first 6 bits 
are divided into three 2-bit fields: TESTFR (Test Frame Activation, Test Frame Confir
mation), STOPDT (Stop Data Transfer Activation, Stop Data Transfer Confirmation), 
and STARTDT (Start Data Transfer Activation, Start Data Transfer Confirmation). Only 
one of these fields can be activated at a time, i.e., its value can be either set to "01" or "10" 
depending on the action, other fields are always set to "00". 

2.2.2 A S D U Fields 

The ASDU consists of a 6-byte Data Unit Identifier and the data itself. The data can be 
composed of up to 127 information objects. ASDU contains the following fields: 

• Type Identification (8 bits) characterizes the whole ASDU content; it denotes the di
rection of the packet and also its purpose, i.e., whether the content is a piece of process 
information, system information, parameter, or a file transfer: 

• Structure Qualifier (1 bit) is either "0", when a sequence of information objects is 
attached, or "1", when a single information object is included: 

• Number of Objects (7 bits) defines the exact number of information objects in ASDU: 

• Test Bit (1 bit) defines whether the ASDU was created during test conditions; "1" stands 
for "test", "0" means "no test"; 

• Positive/Negative bit (1 bit) indicates the positive or negative confirmation of an ac
tivation; the value is "0" when the confirmation is positive, otherwise "1"; 

• Cause of Transmission (6 bits) is used to provide an information that helps to interpret 
the message on the target device; 

• Originator Address (8 bits) is used by controlling station to identify itself; 

• Common Address of ASD U (24 bits) identifies all ojects contained within the ASDU. [30] 
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Chapter 3 

Related Works and Studies 

This chapter introduces existing studies and algorithms focused on network traffic analy
sis. Their concepts will be later used for automatic traffic model construction. We have 
identified three main approaches to generic network traffic modeling and analysis: 

• inspection of packet header fields and also its content details in order to create an au
tomaton that simulates the process of packet transmission between two monitored 
devices, which is later used to verify network traffic: 

• observation of network traffic as an unknown system, which processes cannot be ac
curately specified, and construction of a supervised learning algorithm that improves 
over time; and 

• measurement of the statistical aspects of a network flow such as time between two 
succeeding packet arrivals. 

The following sections briefly introduce all three approaches and related algorithms. 
At last, we summarize their results and make conclusions about their usage for generic 
modeling and IEC 104 protocol traffic description. 

3.1 Automata and Pattern Recognition 

Pattern Recognition is a technique focused on a description or classification of measure
ments. It may be characterized as an information mapping, information reduction, or in
formation labeling process. Pattern Matching is the act of checking an input sequence for 
the purpose of finding constituents of some template. 

Pattern recognition in terms of packet stream analysis proceeds from an assumption 
that a substantial part of communication consists of recurrent, in many cases even periodic, 
events. This property utilized to construct "templates" describing some characteristics of 
these recurrent events. Considering a packet flow, a pattern usually represents the identity 
of communicating devices and other packet header parameters depending on a specific 
protocol, although, there are also studies taking into consideration other packet parameters 
such as packet size or the data content of the packet, what is usually referred to as Deep 
Packet Inspection (DPI) [35]. 

Using a characteristic summary, we can effectively describe an abundant amount of 
properties that contribute to efficient membership (pattern match) affirmation. Packet 
pattern matching/recognition is typically implemented using Regular Expressions, Finite 
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State Automata (FSM), and (Prefix) Trees, but also by less conventional techniques, such 
as Spectral Analysis. 

3.1.1 Deterministic Finite State Automata 

Definition 3.1.1 Finite State Automaton (FA) is a 5-tuple M = (Q, E ; 5, qo, F), where: 

1. Q is a non-empty finite set of states; 

2. E is a non-empty finite set of input symbols called alphabet; 

3. 5 is a state-transition function 5 : Q x E —> 2®; 

1 qo is an initial state, qo G Q; and 

5. F is a non-empty finite set of final states, F C Q [^6]. 

Definition 3.1.2 Deterministic Finite State Automaton (DFA) is a FA, where 

Vq G Q Va G E : \5(q,a)\ < 1; 

contrarily, Non-deterministic Finite State Automaton (NFA) is a FA, where 

3q G Q 3a G E : \8(q,a)\ > 1. 

In previous studies, automata-based models (Definition 3.1.1) have been observed to be 
a very efficient solution for SCADA systems traffic modeling. However, dealing with high 
network error-rate and growing complexity, such as multi-periodic patterns, have appeared 
to be problematic due to their high sensibility [17]. 

In the simplest scenario, states of the FA model are representing moments between 
packet arrivals. Whenever a packet is received/transmitted, it is represented as a single 
transition. Therefore the transition function needs to be total, i.e., defined for every com
bination (q,a), q G Q, a G E; and defined exactly once for each pair (q,a). Thus, FA is 
usually required to be deterministic (Definition 3.1.2). Intuitively, such an approach pro
vides a very clear overview of system behavior. Despite this property may be assumed to 
be an advantage, actually, it is also the most influential limitation of the before-mentioned 
systems. As described earlier, network traffic contains lots of anomalies, which are difficult 
to predict and/or describe, what constitutes the biggest challenge for systems built on exact 
match principles. 

Niv & Goldenberg (2013) [17] have used an DFA to construct a model of communication 
based on Modbus [38, 21], what is an application protocol over TCP used for master/slave 
communication in industrial control systems. For the purpose of representing traffic by 
an DFA, they have made the following DFA adjustments: 

1. There are not any final states - an input stream is considered as endless, therefore 
acceptance states are not needed: 

2. every state transition is associated with an action: 

3. the start state (qo) is defined as a state corresponding to the first query that was 
recognized in the flow; and 
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4. a symbol in alphabet E is defined as a concatenation of several Modbus fields, i.e., each 
symbol is represented 33-bit key. 

As mentioned above, the transition function is associated with a set of actions. Four 
basic types of actions were identified: Normal is an action identifying arrival of a known pat
tern element, Retransmission is an occurrence of a symbol identical to the previous symbol, 
Miss stands for an arrival of a known symbol but on unexpected position, and Unknown 
denotes an occurrence of a not yet identified symbol. The model is then automatically 
"learned" from captured traffic. Initially, the algorithm estimates pattern length 2, i.e., 
each flow consists of a single request and one response. In every following iteration, one 
symbol is processed, i.e., one step of adjusted DFA is performed, and the pattern is validated 
by Equation 3.1. 

p normals normals 
total normals + misses + retransmissions + unknowns 

The authors have also set a threshold, which is the lowest acceptable P rate. This limit is 
constructed of pattern lengths and components observation. If the result P is lower than 
the threshold, it means that too short pattern was selected. In this case, the algorithm 
continues with consequential iteration; otherwise, the algorithm stops. These patterns are 
then combined to a single model that is capable to verify traffic in run-time. The final model 
was validated using two datasets composed of packets obtained during long-drawn traffic 
capturing. Despite DFA models are very sensible, the model was successful in the network 
analysis. The "unrecognized packets" rate was less than 1%. Unfortunately, the authors 
did not test the algorithm in malicious or noisy environment. 

Kleinmann & Wool (2016) [26] have followed the work of Niv & Goldenberg. They have 
observed that the quality of the DFA models is degrading by anomalies in the network during 
the unsupervised learning phase because they cause large expansion of the automaton. 
Thus, they have focused on improving the simple DFA model by creating additional steps 
preventing automaton growth. At first, an automaton is built for each pattern in the flow 
using the algorithm described by Niv & Goldenberg [17]. To deal with the size growth, 
they have created Statechart DFA that consists of many DFAs, one per cyclic pattern. 
These DFAs are combined together with a DFA-selector that de-multiplexes the incoming 
packets into sub-channels, represented by the DFAs. The authors improved the algorithm 
of pattern borders estimation using Deterministic Time Markov Chain (DTMC) and graph 
theory concepts. After building DTMC from the stream, cycles in the DTMC are detected 
and extracted, then each sub-graph is investigated in order to find Euler cycle, the test is 
done by evaluating simple condition that each of graph verticles has an in-degree equal to 
out-degree. If the sub-graph cycle condition is evaluated negatively, the sub-graph is "fixed" 
by adding a missing edge and/or dropping redundant edges. The last step of the algorithm 
is an estimation of the time between successive symbols in each of the cyclic patterns. For 
this purpose, each DFA retains timestamps of accepted symbols during the enforcement 
phase. This information helps the DFA-selector to decide which DFA to use in case of 
pattern symbols overlap as the time gap between successive symbols of the same pattern 
is usually very small. Experiments with the final model have shown that the Statechart 
DFA model has promising characteristics: it exhibits a low false-positive rate, it is effective 
in both time and space complexity, and it is scalable for multiplexed streams. However, it 
still does not completely deal with false-positive alarms. 
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3.1.2 Sequence Analysis 

The previous section described automata as the models of the network state. Similar 
principles may be used in the static analysis that considers packet stream as a sequence 
of some pattern elements. With a compact representation of packet streams, for example, 
grouping described in Chapter 4, conventional pattern recognition algorithms might be 
an effective solution. These algorithms are based on the principle of determining the longest 
possible patterns in a given sequence. Typical pattern matching and recognition algorithms 
are based on regular expressions, prefix/suffix trees and finite automata [32, 34]. 

In the network traffic analysis and modeling, we do not usually search only for pat
terns themselves but we also research and analyze their relations, e.g., sequential order, for 
the purpose of investigating associations between pattern occurrences. Another interesting 
property of element sequences is periodicity of specific sub-sequences [9, 40]. Especially 
in industrial control systems, where most of the communication is recurrent, this infor
mation may be critical for further analysis as it may help to identify recurrent behavior 
and requests. 

Despite this approach (with an appropriate algorithm) potentially mines all useful pat
terns, in the case of network traffic it cannot provide a complete model for complex commu
nication using exact patterns because these algorithms do not consider anomalies or arrival 
times at all. Nevertheless, these principles can be used as a support for other algorithms 
to identify element's (in our case packet) context. 

3.2 Probabili ty Estimation 

A network state is not a well defined notion. The same as most of the other realistic situa
tions, it can be highly impacted by environmental aspects so the next state of the network 
is not securely predictable. As observers, we can evaluate this influence only from the re
ceiver and/or sender viewpoints, which makes a precise analysis impossible. Hence we can 
consider these aspects as an impact of a random source on an "abstract variable" defining 
the current state of the network and instead of creating a deterministic model precisely 
predicting future behavior, we can observe events on end-stations and create a stochastic 
model with respect to a certain level of randomness. 

3.2.1 Stochastic (Learning) Automata 

As follow-up to Definition 3.1.1, we define Stochastic Finite Automaton (SFA) as [10]: 

Definition 3.2.1 Let M be a stochastic finite automaton defined as M = ( E , Q, P, s), where 
S is an alphabet, Q is a finite set of nodes, where Q = q\, q\,..., qn, s is the initial node, 
and P is a set of probability matrices Pij(a) giving the probability of transition from node qi 
to node qj, qi, qj £ Q, led by symbol "a", where a G S . The probability p(w) for string w to 
be generated by £ is defined as follows: 

where pjf is the probability that state qj is the final state for string w. 

For each state, we can generalize the probability equation to: 

(3.3) 
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where (u>a_1) represents prefix a of string w. Let's consider pif to be the probability that 
the string ends in node For each state qi G Q, the transition function is limited by 
the following constraint: 

I > i » = L (3-4) 

Language L is defined as a set of strings generated over alphabet E, formally L C E*. 
Analogously, Stochastic Languages are specified as [11]: 

Definition 3.2.2 j4 Stochastic language L is defined by a probability density function over 
E* giving the probability p{w\L) that the string w G E* appears in the language. The prob
ability of any subset I C S * is given by 

p(A|L) = 5>(*|L), (3.5) 

and the identity of stochastic languages are interpreted as follows: 

L1 = L 2 4=> p{w\Ll) = p(w\L2) G E*. (3.6) 

Considering the models described in Section 3.1.1, stochastic automata models might 
be one of the possible solutions to the sensitivity issue. These models introduce probability 
to the classical finite automata definition what removes the "precise behavior definition" 
problem, which led to the high false-positive rate of the final model. However, the random
ness opens new issues in the network state modeling and requires a certain size and quality 
of the dataset to make the correct predictions. Thus, these automata are usually used in 
an adaptive form. In the adaptive learning strategies, the behavior of a system slightly 
improves every sampling period. The first idea of applying this concept on the basic au
tomata was proposed by Mikhail Lvovich Tsetlin et. al in a series of papers describing the 
proof of concept. However, the term Learning automata was first introduced by Naren-
dra & Thathachar (1974) [33]. In the stochastic learning automata theory, the probability 
distribution over automaton states is recursively updated to optimize some learning goals: 
initially, the distribution may not be known at all [36]. Due to the capability to adapt to 
changes, these automata are considered as suitable for unstable environment modeling. 

However, the construction of the model that precisely predicts network behavior is 
a challenging task, which requires a large dataset of a certain quality. Moreover, the network 
state may be changing rapidly with significant fluctuation. Thus, usage of these automata 
is not the preferred technique for network state modeling. Nonetheless, their principles are 
used to build more complex probabilistic models, such as Markov models. 

3.2.2 Markov Chains and Models 

Markov Model is a stochastic model of a (randomly) changing system. It assumes that 
the future state of a system always depends only on the current state, past states are 
not considered. This characteristic is called Markov Property. According to the system 
characteristics, we distinguish 4 basic types of Markov models: 

• Markov Chain, used for autonomous but fully observable systems: 

• Hidden Markov Model (HMM), when a system is autonomous and only partially ob
servable: 
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• Markov Decision Process, in the case of a controlled and absolutely observable system: 

• Partially observable Markov Decision Process, when a system is not well-observable 
but controlled. 

Network state is usually treated as an autonomous system, hence both Markov Chains 
and HMMs are widely used for modelling, since the observability is disputable, depending 
on the position of the observer. 

A Markov Chain refers to a sequence of random variables and changes between them, 
appointed as the probability of a transition occurrence. Let's suppose we have a set of 
states {s\, S2, • • •, sn} in a chain that is currently in state Si, then it may move to Sj with 
probability pij or remain in the state S j with probability pa. Transition probabilities are 
commonly represented as a matrix, where rows/columns represent states and values denote 
probabilities between them. Considering P to be the transition matrix, and u be the prob
ability array representing the starting distribution, then the probability that the chain is in 
the state Si after n transitions is the array un = uPn. Formally, a Markov chain is defined as 
(Q, A, 7r), where Q = {qi,qi, • • •, qN} is a set of N states, A = {an, a i 2 , . . . , a „ i , . . . , ann} is 
a transition probability matrix, where Y^=\ aij = 1> a n d TT = {7ri,7r2, • • •, TTN} is an initial 
probability distribution over states, X^ILi 7 1"* = 1 [23, 18]. 

Contrarily to the Markov Chain, a Hidden Markov Model (HMM) represents a system 
which states cannot be observed. However, we know the output of the system, represented 
as a sequence of observations, and the probability distribution over specific observations for 
each state. Based on output stream order and the probability distribution, we can make 
"a guess" about possible sequence of states producing such an output. Formally, a H M M 
is specified as a tuple (Q, A, O, B, TT), where Q = {qi,qi, • • • ,qN} is a set of N states, 
A = {an, a i 2 , . . . , an\,..., ann} is a transition probability matrix, where Y^=i aij = 1> 
O = {o\, 0 2 , . . . , OT} is a sequence of T observations, each one is drawn from a vocabu
lary V = {vi,V2, • • • ,vy}, B = bi(ot) is a sequence of observation likelihoods, also called 
emission probabilities, expressing the probability of an observation ot being generated from 
the state i, and TT = {TTI, 7 T 2 , . . . , TTN} is an initial probability distribution over states, 
EIL iVr , = 1[23]. 

Markov models have become a popular technique for network traffic modeling due to 
their ability to represent a system which is not well-observable [7, 29], and also to identify 
anomalies, such as end-to-end loss process [39]. 

Insert 

Match 

Delete 

Figure 3.1: H M M Profiles 
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Wrigh et al. (2004) [43] have focused on identifying patterns in encrypted traffic. Pre
vious studies have shown that examination of packet size and/or time analysis are very 
successful techniques for inferring encrypted communication over SSL/SSH. Therefore their 
goal was to create a general model using HMM Profiles with a capability to deduce infor
mation also from other forms of encrypted networks without specialization. 

HMM Profiles are left-right H M M built around a central chain, creating groups of states 
(denoted by numbers in Figure 3.1). The original idea of H M M profiles comes from biology, 
S. Forrest (1997) [16] has adapted this idea to usage in computer security. Originally, H M M 
profiles consist of the following components: 

• Match state, capturing the essential behavior that is being analyzed: 

• Insert state, representing an unexpected insertion in known pattern; and 

• Delete state, allowing some pattern elements to be omitted. 

The authors have modified this model by splitting match states to two separate states 
to represent packet direction and interpreted state group as following: match states repre
sent valid packets, insert states denote duplicates, and delete states stand for lost packets. 
They have used this structure to build two models, one focuses on the packet size, the other 
emphasizes packet inter-arrival times. Initially, all packets are supposed to be in every posi
tion equally likely, then 400 flows are randomly selected and used to re-estimate the initial 
parameters of the model. To classify a sequence, the probability of being generated for 
each model is computed and assigned to a label of the model that generates the sequence 
with the highest probability. Then, a confusion matrix is generated, illustrating the results 
of each classifier. Both models reached over 60% of correct classifications, for example, 
classification of AIM protocol was successful in more than 80% cases, on the other hand, 
models did not reach good results in classifying SSH and Telnet. 

3.3 Arr iva l Time Analysis 

This section focuses on studies where time is the principal property. Information about time 
can be implicitly available, explicitly recorded, or originally not available at all. According 
to this data property, we can divide time records into the following categories: 

• Event Sequence, if time is explicitly recorded and together with data we can put 
records in a sequence of pairs of the form {(ii , o\), ( £ 2 , 0 2 ) , • • • , (tn, on)}; 

• Irregular Time Series, when time information is provided but it is inaccurate, the time 
does not play special role in such records (usually roughly measured in number 
of hours/days); 

• Point Sequence, if the time series, denoted as an ordered collection of occurrences 
{ti, ti,..., tn}, are the only measured property and no further details are stored; 

• Periodic Point Sequence, when a Point Sequence has period p with time tolerance 5 
and every point occurs repeatedly in every p ± 5 time units; 

• Value Sequence, in a case where only values, which can be denoted as set {o\, 02, • • •, on} 
called symbol sequence, are provided and time is not recorded at all [41]. 
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In experiments focused on gathering description from time characteristics, periodicity 
has a special place. It can be defined as a sequence of same/similar observations occurring 
in (more or less) regular intervals. Although, in a noisy environment, periodicity may be 
difficult to detect because of the following aspects: 

• Non-persistence, despite the periodical behavior can be observed, it may be only 
a temporal state (dependent on another event): 

• Impreciseness, although time information is provided, it can be inaccurate due to many 
aspects, e.g., network latency, overloading, and packet loss: 

• Magnitude, the scope of possible interval values can be from milliseconds to days: 

• Quantity, above all in high period streams, low amount of samples can be provided: 

• Noisiness, because packet flows representing two samples of the same occurrences may 
significantly vary, it is important to include mechanism providing tolerance of vari-
ety [28]. 

In pursuit of avoiding impact of these aspects, Ma & Hellerstein (2001) [28] have intro
duced term p-pattern, representing intermittent periodic occurrences. P-pattern is defined 
in the following Definition (3.3.1), where w is a predefined time window demarcating tempo
ral association; D is a sequence of all events; A is a set of all event types and Ai is a subset 
A\ C A. S\ is a set of events, where every occurrence belongs to a specific event type 
Ai; 5 is a predefined time tolerance of period length for specific events in Si; p is a period 
length; and minsup is a minimum support (i.e., the minimum number of occurrences) for 
p-pattern: 

Definition 3.3.1 A set of event types Ai C A is partially periodic temporal association 
(p-pattern) with parameters p, 5, w, and minsup, if the number of qualified instances of Ai 
in D exceeds a support threshold minsup. A qualified instance Si C D satisfies the following 
two conditions: 
(CI) The set of event types of events in Si is equal to event types Ai and there is a t such 
that for all ei <E Si, t < ti < t + w. 
(C2) The point sequences for each event type in Si occur partially periodically with the pa
rameters p and 5. 

Flow 1 • ( # ) 

Flow 2 • 

Flow 3 • 

p = 2 < -

10 12 13 

5= 1 

14 15 

Time 

Figure 3.2: Example of periodic behavior in packet flows 
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Figure 3.2 shows 3 packet streams in a timeline. Each dot represents one packet arrival. 
Supposing time window p = 2 ± 1 and restriction to a single arrival in the window, we 
can observe that Flow 3 is indisputably periodic. On the other hand, in Flow 2, there 
are some diverging arrivals from the expected moments of occurrences. Despite there are 
inter-arrival time dissimilarities, the deviation is always lower than 5, therefore this flow 
can be also considered as periodic. Considering Flow 1, divergence became higher than 5 
in two occurrences (marked as "A" and "B"), so this stream cannot be taken as periodic. 

The time segmentation approach helps to deal with situations when periodic behav
ior is not constant but appears only in particular time intervals (e.g. it is invoked by 
another event). On-segments are the parts when we expect periodic behavior, contrarily 
off-segments are the parts when we do not expect any occurrence, if present, we consider 
it as a noise. 

Flow 4 

Flow 5 # 

.... A .... B 

Flow 6 • • • 

on-segment off-segment 

• • • 
on-segment 

10 12 13 

p = 2<-
5 = 1 

14 15 

T ime 

Figure 3.3: Example of periodic behavior in segments 

Figure 3.3 shows 3 packets streams in a timeline, taking into account a time window 
with period p = 2 ± 1 and restriction to a single packet in the window, and also with 
respect to segmentation, which includes on-segments of length 4 interspersed with the off-
segment of length 6. Despite Flow 6 is fully periodic in all moments, only intervals <1,5> 
and <11,15> are taken as valid because events in interval (5,11) happened inside off-
segment, so they are recognized as noise. Flow 5 is also periodic, although there are 
arrivals with deviation higher than ô, they are found only outside on-segments. Oppositely 
Flow 4 is periodic inside off-segments only, otherwise it violates periodicity restrictions 
(denoted as "A", "B", and "C"). 

As mentioned earlier, analyses based purely on time series analyses have proved to be 
surprisingly successful. In the following two sections, we discuss two of the most widely 
used techniques for behavior estimation without any investigation of the packet content. 

3.3.1 Estimation Using Statistics 

Since periodicity in a network stream is a well-known characteristic of packet flows, there 
have been done many studies focused on flow analysis based on packet arrival or inter-arrival 
times, defined as: 

Definition 3.3.2 Let S = {Si, S2, Sn} be a set of timestamps denoting sequence of 
packet arrival times. Inter-arrival time tki = \Sk — Si\ is a time between arrivals Sk and 
Si; Sk, Si e S; I. 
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Hubbali & Goyal (2013) [22] have studied network summarization techniques in order 
to detect network anomalies. They have observed that periodic behavior exhibit very low 
variance (a2) and standard deviation (a), which is given as: 

a 
1 N 

at^tE^-^) 2 ' (3-7) 
i=l 

where N is the total number of items and x is average, computed as: 

N 

X N 
i=l 

On the other hand, in (near) random streams we can observe very high variance. Hub
bali &: Goyal have also introduced term Biff Time. Considering P\, Pi,..., PN as a series 
of packets exchanged between host H and other devices addressed as I Pi, IP2 , IPM , 
M < N, over a period of time, there may be one or more single-directional flows repre
sented as F[PK,FIPK, F J P k , J < N - M + 1, with t[PK, tlfK,..., tIPK representing 
timestamps of the first packets of these flows. DiffTime is the difference tjP^ — tIPK, denot
ing inter-arrival time of the first packets from two distinct successive flows. Communica
tion is determined to be periodic if the DiffTime standard deviation is below a predefined 
threshold. Every (single-directional) network traffic between two hosts can be defined as 
FlowSummary, denoted as SrcIP, DstIP, LS, SS, M,ti, where SrcIP and DstIP are IP 
addresses of endpoints, L S is a linear sum of DiffTime Ez=i(íí+f " t\PK), S S is a squared 
sum of DiffTime YliĹÁ^i+i ~ tiPK)2, M is the number of flows during the period, and 
t is a timestamp of the first packet in the last flow. FlowSummary represents all flows 
with avoidance of keeping packet or inter-arrival times details and provides essential details 
to calculate standard deviation at any time. When the DiffTime standard deviation is 
lower than the estimated threshold, communication between two devices is considered as 
a periodic one in a particular direction. Although the algorithm has proved to be a very 
effective method of periodicity detection, it reveals periods only in a purely periodic single-
directional stream. The algorithm does not consider protocol at all, what is the biggest 
issue for complex multi-periodic communication, as well as it does not consider any stream 
noise. 

3.3.2 Spectral Analysis and Fourier Transformation 

Packet arrival times can be taken as a series of indexed data points, called Time Series. 
A time serie is defined by its 3 main components: 

• A trend component represented as a long-term pattern of time series: 

• a periodic component, denoted by a repeating pattern of a certain period and shape: 

• a random component, symbolizing an impact of uncontrollable variation on demand, 
expressed by non-periodic patterns. 

In time series analysis, the observed part is the periodic component. Two types of pe
riodic time series were analyzed: Seasonal, which means an interval of recurrence cannot 
be precisely defined and is not constant, and Cyclical, which stands for patterns that are 
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repeating in a constant time [37]. Time series analysis regards event occurrences as a dis
crete signal. Thus, several well-established signal processing tools and techniques such as 
Fourier Transform and Autocorrelation can be used to analyze periodicity [5]. 

Fourier Transform (FT) identifies underlying periodic patterns by transforming a signal 
into frequency domain. It decomposes the original signal in a linear combination of complex 
sinusoids called Fourier Series. The main frequencies within the signal are corresponding 
to amplitude, a measure of its change over a single period, and phase, a relative variable 
describing how far along the wave is in its cycle, of these sinusoids. The phase and amplitude 
are recorded in Fourier Coefficients. Discrete Fourier Transorm (DFT) then helps to obtain 
corresponding Periodogram of the discrete signal, which is an estimate of the spectral 
density. The periodogram is provided by the squared length of each Fourier coefficient, 
which gives information about the strength at a given frequency. Finding the power at 
each frequency provides us a piece of information about the dominant frequency. The main 
disadvantage of this method is that the accuracy of the discovered periods deteriorates for 
large periods [42, 4]. 

Autocorrelation is a method to measure a similarity between values in a signal by corre
lating the time series with itself. It is defined by Autocolerration Function. Unlike Fourier 
transform, the autocorrelation function estimates periods precisely for both short and long 
time intervals. To determine the dominant period significance threshold needs to be speci
fied, which is difficult to set automatically [24, 37]. 

Kleinmann & Wool (2016) [25] have followed up their previous work, described in Sec
tion 3.1.1. They have suggested an extension of the Statechart model to make the analysis 
more accurate. The authors have observed that the major reason for the false alarms is an 
inaccuracy of the algorithm that splits channel to sub-channels (what determines patterns in 
the stream). This inaccuracy is caused by the strict combinatorial requirements that char
acterize Euler cycles. Therefore, a new construction algorithm based on spectral analysis 
was proposed. The new algorithm treats the captured trace of SCADA packets as a binary 
signal, where "1" indicates the presence of the packet at a particular time. Then, they 
calculated the Fourier transform for the signal and its periodogram to identify dominant 
periods. Each dominant period corresponds to a cyclic pattern in the packet stream. After 
transforming results back to the time domain, each symbol in the trace can be associated 
with one of the dominant periods, sub-sequences of symbol streams associated with a period 
are treated as sub-channels so finally, a DFA is created for each sub-channel. By combining 
these DFAs, the authors have created full Statechart, similarly as in Section 3.1.1. Proposed 
Statechart improvement has consistently outperformed the previous combinatorial State-
charts. During stress-testing, the algorithm exhibited reduced false-positive rate (0.16%) 
for synthetic dataset and 0% false-positive rate on production traffic. 

3.3.3 Timed Automata 

Timed Automata (TA) are a compromise between naive FA model and time analysis. These 
automata have the ability to consider the time aspect of a system behavior. They were 
proposed by Alur & Dill (1994) [3] to model systems where time is an important parameter, 
such as real-time systems. 

In the original form, every TA has one or more Clocks, which are variables representing 
real-time. Clocks are initially set to zero and their value constantly and monotonically 
increments. The main purpose of including such a variable is to define constraints over 
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Timed automata Supported features Timed automata 
Hierarch. 
structures 

Number 
of clocks 

Absolute 
time 

Relative 
time 

Non-
determinism 

Value changes 
within a state 

Basic TA X multiple / X X X 
Hierarchical TA / multiple / X X X 
R-T Statechart / multiple / / / X 
Scenario TA X multiple / X X X 
R-T automata X single X / X X 
Prob. TA X multiple / X / X 
Prob. hybrid TA X multiple / partially / / 

Table 3.1: Comparison of timed automata based models. Data retrieved from [27]. 

transitions to limit the transition function. These time constraints are explained in Defini
tion 3.3.3. 

Definition 3.3.3 For a set X of clock variables, a set &(X) of clock constraints 5 is defined 
inductively by 

5 := x < c | c < x | -K5 | 5\ A 82, 

where x is a clock in X and c is a rational number. 

Formally, we define Timed Automata as: 

Definition 3.3.4 Timed Automaton is a tuple (£, Q, qo, T, C) where: 

• £ is a finite set of symbols (actions), 

• Q is a finite set of states, 

• C is a finite set of clocks, 

• qo ^ Q is a finite set of start locations, and 

• T C Q x E x 2 c x ^(C) x Q is a finite set of transitions. An edge (q, a, A, 5, q') is 
a transition from the state q to state q' reading symbol "a". A C C is a set of clocks 
that will be reset by the transition and 5 is a clock constraint over C. 

The authors have defined timed word as a pair (a, r), where a = o\02 . . . crn is a finite 
word over alphabet S and r is a time sequence. On the basis of previous definition, they 
have described a timed language as a set of timed words over alphabet S. Timed languages 
are usually defined with a set of constraints over their timed words. For example, a lan
guage with constraint allowing all transitions after the time has passed constant z may be 
characterized as L = {(a, r)|Vi.((rj > z))}. 

From the automaton definition, we can intuitively deduce that TA, oppositely to the clas
sical FA, does not define any final states, thus, computation of the automaton is an infinite 
sequence. A computation is called recurring iff it contains infinitely many configurations in 
which the location counter has the value 1. A problem of deciding the automaton recurrence 
has been proven to be NP-complete (proved [20]) [3]. 

The concept of timed automata has been used to extend existing models to be able to 
express behavior in time. Kumar & Niggemann & Jasperneite (2009) [27] have observed 
their characteristics and advantages in network modeling, some of their conclusions are 
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shown in Table 3.1. Compared to the standard finite automata, expressiveness has greatly 
increased in all discussed models. In most cases, apart from the basic timed automata, 
a modeling power is also stronger than the basic finite automata. 

3.4 Evaluation of Approaches 

Previous sections have introduced several algorithms and techniques used to build a model 
of network traffic. In the first section, we have introduced algorithms based on deterministic 
finite state automata. Although DFA have the ability to model a behavior of a well-defined 
system, dealing with traffic noise is usually a challenging task as we are not able to describe 
it precisely. The noise led to false-positive alarms in both mentioned algorithms, naive DFA 
and Statechart. 

Algorithms based on probabilistic models, such as stochastic automata and Markov 
models, countenance the fact that the network state cannot be well-defined as we can 
observe it only from the point of view of the sender and/or receiver. To deal with this fact, 
these algorithms use probability estimation in order to predict system (network) behavior. 
Although these algorithms are adaptive and evince required characteristics, they are mostly 
based on supervised learning, which requires a learning phase and convenient dataset that 
demonstrates various situations. In our case, we perform unsupervised learning on any 
unknown dataset, which might be very small, containing a few packets. 

At last, we have introduced algorithms based on statistics, which mostly include time 
series analysis. Time was observed to be critical information in periodic streams such as 
traffic between devices in industrial control systems, where the communication is mostly 
recurrent. However, we consider models based on time analysis inconvenient, because in our 
case, the traffic is multi-periodic, i.e., there are many periodic patterns over time, which we 
need to differ. One of the possible solutions are timed automata because of their capability 
to represent real-time systems. 
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Chapter 4 

Data Preprocessing 

This chapter introduces our dataset and methods of processing that were applied to make 
this data more suitable for further analyses. In our case, the dataset consists of 688 979 pack
ets; and initially, there is not any information provided about its content. To process data, 
we require a consistent form enabling to match some data pieces together and find associa
tions between them. To reach a uniform data representation, we perform data preprocessing 
to make the data form and volume more convenient for further analyses. Preprocessing in 
terms of packet streams focuses mainly on data filtering and reduction in order to reduce 
data volume and also remove some needless data attributes. The following paragraphs 
briefly introduce the most common data reduction strategies [2, 19, 45]. 

Dimensionality Reduction (Figure 4.1) is a technique of suppressing redundant and non-
critical attributes in order to select only the most critical parameters and get rid of attribute 
redundancy. This strategy includes techniques such as: 

• Feature Selection, a process of selecting the smallest subset of attributes with the least 
possible information loss. 

• Attribute Construction, which is based on merging related attributes together and 
creating new "summary" attributes: 

• Feature Extraction, a method of searching descriptors in source data, it usually in
cludes mapping to a new (smaller) set of attributes: 

Feature Selection Attribute Construction Feature Extraction 

21̂ 1 |>|<-|—=jv> 

Figure 4.1: Dimensionality reduction strategies 

Data Compression is a process of modifying data to optimize its storage size. It com
monly includes data encoding, converting bit structures, and removing repetitive elements 
and symbols. Depending on the storage size reduction and selected algorithm, the process 
is lossless or lossy. 
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Data Cube Aggregation (Figure 4.2) is a process where aggregation operations are ap
plied to the data in the construction of a data cube, which stores multidimensional aggre
gated information. 

Discretization and concept 
hierarchy generation Data cube aggregation 

Figure 4.2: Data cube aggregation and discretization and concept hierarchy generation re
duction strategies 

Numerosity Reduction reduces the data volume by replacing the original form of data by 
a smaller form of representation. It can be either parametric or non-parametric. Parametric 
methods, for example, regression, typically use some model to estimate new data, thus only 
parameters need to be stored. Non-parametric methods, such as clustering, are used to 
store a reduced representation of data. 

Discretization and concept hierarchy generation (Figure 4.2) is used to reduce and sim
plify continuous values using discretization. These techniques can be categorized based 
on the type of discretization (supervised or unsupervised) and its direction (top-down or 
bottom-up). 

Sampling (Figure 1.3) is a process of selecting a subset of data in order to create a com
plete (or as accurate as possible) representation of dataset with fewer records. This tech
nique is usually based on selecting a random or stratified sample, which guarantees even 
distribution. 

Random Sampl ing Stratified sampling 

Figure 4.3: Sampling reduction strategies 

4.1 Reduction of Packet Stream Data 

Network traffic has a high error rate that complicates the analysis process. Packet streams 
commonly include anomalies, such as a single packet failure, or even larger scale issues, 
e.g., multiple packet losses caused by network overload. Moreover, it needs to be taken into 
consideration that packet stream consists of different protocol types and we need the ability 
to recognize packets, which should be considered during analysis and monitoring. 
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At first, we need to filter out packets where the IEC-104 non-membership is evident. 
In our case, we do analysis based on L7 protocol information (considering ISO/OSI model) 
and previous layers are used only for addressing purposes. Hence, despite TCP Acknowl
edgement is considered as a part of the response to an I-format packet frame, it is considered 
to be a noise. The first analysis is focused on determining header control field variety with 
the main intention of identifying all possible combinations for packet aggregation. We use 
a dataset consisting of 688 979 packets that were sent/received during 977.997794 seconds 
of capturing. Dataset does not contain only IEC 104 packets but also a plentiful amount 
of TCP operations (over 30% of packets), DNS, NBNS, and ARP packets. 

4.1.1 Header Fields Variety 

The first step in data volume reduction is focused on the header field variety investigation. 
The main goal of this analysis is to determine, whether there are some evident patterns 
in packet sequences. By "pattern" we understand a set of succeeding packets with some 
specific values in protocol headers. We search for patterns that appear repetitively. 
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Figure 4.4: Variability of header parameters 

Figure 4.4 shows the number of different values in every field of the IEC 104 protocol. 
Analysis has shown that the dataset consists of 44 unique senders and 47 receivers which 
communicate (or try to communicate) from 48 (senders) and 47 (receivers) different ports. 
Surprisingly, the variety of protocol-specific fields (described in Section 2.2.2) is rather small 
even for fields without predefined value groups. 

According to this observation, dimensionality reduction appears to be a profitable ap
proach. Generalization of some fields by grouping them together without information loss 
may significantly reduce data dimensionality. Because variety seems to be low, header fields 
type, u_type, sq, numix, cot, oa, and coa were grouped together by exact field match. 
This approach creates 16 different abstract models of IEC 104 packets. These models con
sist of 1 S-format, 4 U-format and 11 I-format frames. Packet data content is not considered 
at all in described models. 
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Table 4.1 shows the field specification of the identified packet model groups in the dataset. 
Every group is assigned to a single number from a successive number sequence. Every packet 
processing corresponds to one of the following scenarios: 

1. The packet corresponds to some known model, its timestamp and identification (sender 
and addressee) are recorded. Then, the packet is thrown and replaced by the group 
identifier of the matching model. 

2. The packet does not correspond to any known model, a new model, which conforms 
packet fields, is created. The successive number from the sequence counter is assigned 
to the new model and the counter is incremented. Then, the process described in (1) is 
performed. 

3. The packet contains an invalid field value (a value that is outside defined field scope) 
and/or some essential protocol field values are missing. In this case, the packet is 
considered as unrelated (not IEC 104) and thrown away. 

Using this algorithm, the data amount is substantially reduced. Instead of storing 
17 fields for every I-format packet, only 2 attributes for each packet are stored in a global 
table. This approach brings profit in both space and time complexity of processing al
gorithms described in the following chapters because both memory usage and number of 
comparisons are significantly reduced. 

Group ID First occurence Type UType SQ Numix COT OA COA 
0 1 0 100 1 6 0 1 
1 3 0 100 1 7 0 1 
2 4 1 
3 5 0 1 2 20 0 1 
4 8 0 11 9 20 0 1 
5 9 0 100 1 10 0 1 
6 102 0 1 4 20 0 1 
7 103 0 11 15 20 0 1 
8 190 3 16 
9 192 3 32 
10 23406 0 100 1 6 0 3 
11 23407 0 100 1 7 0 3 
12 336912 0 45 1 6 0 1 
13 336914 0 45 1 47 0 1 
14 360622 3 1 
15 360520 3 2 

Table 4.1: Packet Summary Groups 

4.2 Flow Extraction 

Packet stream can be considered as a bi-directional flow. Thus, we implicitly do not differ 
sender and receiver of a packet but contemplate the packet as a part of a flow identified 
by two endpoints, between which the packet is transmitted. Although exact identification 
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of sender/receiver does not play a critical role in initial flow analysis, this information is 
kept as one of the packet summary model parameters to be able to separate individual flows 
during final model construction. 

Whenever a new packet is received, its TCP header is extracted in order to record 
sender_ip, receiver_ip, sender_port, and receiver_port. Based on these four param
eters, a string called "identity key" is created to represent the bi-directional flow. Such 
an identification is then stored in a map, which associates these identity keys with specific 
packet flows. After the received packet is linked to a specific packet summary model (de
scribed in Section 1.1), its Group ID and timestamp are stored in a list-represented packet 
stream associated with the particular identity key. 

An output of the described algorithm is a set of endpoint pairs and packet streams 
between them. Keeping sent and received packets in a single stream helps to evaluate 
associations of sub-flows inside flow such as recognition of requests and related responses. 
We also keep the timestamp of every sent/received packet intending to track time gaps 
between succeeding packets. 

4.3 Behavior Observations 

A deep investigation of packet streams led to several observations of protocol behavior. 
As mentioned in Section 4.1, protocol fields combination variety is rather small so 

grouping fields together into "packet models" is a profiting technique. After splitting traffic 
into separate streams based on source and target endpoints (Section 4.2), there are evident 
patterns in communication, which indicate periods in packet streams. Despite periodic 
patterns contain a large amount of "noise" (inserted packets, missing packets, interchanged 
position of packets...), two patterns are never fused; however, they may be sent right after 
the other. Besides periodic patterns, there are also noticeable occurrences of asynchronous 
events, such as asynchronous reset. 
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Chapter 5 

Implementation of Automatic 
Model Recognition 

This Chapter focuses on the implementation of a program able to describe network traffic 
and represent the description as a model of communication. Proposed algorithm is based 
on the combination of both existing solutions and own observations. Henceforward we 
suppose packet streams in the form defined in Chapter 1: IEC 104 packet header fields are 
summarized as a pair of packet group ID and timestamp. Such a packet representation 
is then assigned to a specific couple of endpoints, identified from the packet TCP header, 
which creates a single packet sequence for each identified bi-directional packet stream. 

The further analysis focuses on the examination of specific bi-directional streams, which 
are from now on considered separately (identified by endpoints). We aim on the identifi
cation of patterns in flows in order to find associations between them. Such an approach 
enables generalization of a stream, using which we can determine packet correctness from 
both content and position viewpoints. 

5.1 Splitting Flows to Sub-flows 

The first stage in the bi-directional stream examination is the separation of independent 
parts of the flow. We consider a part of the packet stream as "independent" if it is sur
rounded by significantly larger packet arrival delays than all delays inside the part. Such 
a part of a stream can be considered as a separate piece of communication, which is not 
directly dependent on surrounding packet exchanges. We define several naming conventions 
that will be used in this chapter (Figure 5.1): 

• A Flow denotes a packet sequence between two particular endpoints, i.e., consists 
of packets transmitted through the same bi-directional channel. 

• A Sub-flow denotes a part of a flow consisting of succeeding packets (their inter-arrival 
times are very low). Each flow consists of one or many sub-flows. 

• An Inter-arrival time inside sub-flow denotes a moment between the arrival of directly 
succeeding packets (of the same sub-flow), i.e., inter-arrival of packets inside the same 
sub-flow. 
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• An Inter-arrival time between sub-flows denotes a moment occurring between two 
sub-flows, i.e., a situation when one sub-flow has already ended but the other has 
not started yet. 

• A Sub-flow pattern is a template of sub-flow. The number of patterns is always lower 
than the number of sub-flows. Such a template defines sub-flow as a sequence of 
packet models. 

Bi-directional packet 
sequence for two 

endpoints 

Flow A 

Sub-flow A 1 

Inter-arrival 
inside 

sub-flow 

Inter-arrival 
between 
sub-flows 

Sub-flow A 2 < • 

Figure 5.1: Naming conventions definition 

We also consider a threshold to be the maximal inter-arrival time inside a single sub-
flow. Whenever an inter-arrival time is higher than the threshold, the succeeding packet is 
considered as the start of a new sub-flow. In further analysis, we proceed from the following 
observations that will be considered as facts: 

• Considering (/ i , f2, • • •, fn) to be a sequence of n sub-flows denoted by k patterns, 
k < n, and fi, fj are two subsequent sub-flows, where j = i + and (pn,Pi2, • • • ,Pim), 
(pji,Pj2, • • • ,Pjn) are sequences of packets inside sub-flows fi and fj, respectively. In 
valid recurring sub-flows, the inter-arrival time \pim — pj\\ is always higher than any 
inter-arrival time of two subsequent packets inside sub-flow fi or fj. 

• In every periodic flow, the period of recurrent sub-flow is always higher than average 
inter-arrival time inside all sub-flows of the flow. 

Our approach is concentrating on sub-flows that can be securely demarcated; i.e., 
the inter-arrival times of preceding and succeeding sub-flows are "high enough" to be con
sidered as distinct. Despite inter-arrival times variety is large and we cannot precisely 
determine the threshold, we can estimate a very low threshold with the purpose to separate 
the most obvious independent sub-flows with a high certitude. Despite this approach does 
not delimit all sub-flows, many of them might still be united, it provides certain information 
about possible patterns. 

To select an appropriate minimal threshold, we have chosen a method of finding a con
venient midpoint value. We proceed from the assumption that the difference between suc
ceeding packets inside sub-flow and between sub-flows is significant. A midpoint value of 
such time series should be impacted enough by the high inter-arrival times so the midpoint 
is securely higher than directly succeeding packets. There are several basic techniques of 
midpoint estimation: 

• Mean (defined in Section 3.3.1) computation is impacted by all inter-arrival values. 
For the given dataset (described in Chapter 4), average value is around 120000/xs. 
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• Median is the middle value in a sorted time series. If the number of arrival times 
is even, we compute it as an average of two middle values. For the given dataset, 
the median is around 7000/xs. 

• Mode is the most frequent value in given sequence, it can be roughly estimated by 
an equation (average — mode) = 3 x (average — median). In our case, we do not 
consider mode at all because arrival times are continuous, absolutely same inter-arrival 
times are a very rare occurrence. 

• Midrange is a difference between the lowest and highest inter-arrival times. For 
the given dataset, it is around 2000000/xs. 

• Interquartile Mean is a mean that takes into consideration values between the first 
and fourth quartile, in our case 18000/xs. 

For the initial estimation, we have selected a mean of all inter-arrival times as a threshold 
because it evinced the best accuracy from all naive approaches. Median and mode are 
unsuitable for streams consisting of long patterns because most of the inter-arrival times in 
such streams are very low. On the other hand, midrange considers the highest and lowest 
inter-arrival times which causes a selection of abnormalities. Interquartile/bounded mean 
cuts off a substantial part of the lowest and highest inter-arrival times what might be also 
problematic for short patterns containing only a few packets (all inter-arrival times between 
two sub-flows might be excluded). Therefore, we consider mean as the most suitable naive 
approach. 

After setting the threshold, every flow is processed in order to detect packet inter-
arrival times higher than the estimated threshold, these packets are marked as the start 
of a new sub-flow. The output of the described algorithm is an ordered group of short 
packet sequences (called sub-flows) for each pair of communicating devices. Although, 
some sub-flows might still be attached together due to low inter-arrival time. 

The algorithm described above was applied to the given dataset (described in Chapter 4) 
in order to verify correctness of our suppositions. We can observe that the inter-arrival time 
of two packets inside the same sub-flow is usually in the scope of several microseconds. On 
the other hand, the inter-arrival time between two sub-flows matching the same pattern 
is usually higher than 0.5 second, which is approximately 100 000 times more. Approxi
mately, we separate a sub-flow after finding a packet which arrived after longer time than 
0.27 second, what securely keeps all inter-arrival times inside one sub-flow united. Al 
though, recognition of such inter-arrival time differences is getting complicated by the fact 
that despite the communication is mostly purely periodic, there are usually many recurrent 
events at a time (with different periods), which complicates the recognition of periodic sub-
flows with a long period. For these periods, there is a high probability that the most of their 
occurrences arrive right after/before different sub-flow (typically with smaller period). This 
issue causes a situation, where most of the pattern occurrences are attached to different 
sub-flow. Hence the knowledge of patterns in flow is required for splitting flow to sub-flows 
with a certain level of confidence. 

5.2 Complete Traffic Mode l 

After splitting streams as described above, every bi-directional flow is represented as a set of 
sub-flows. These sub-flows can be generalized into patterns, where each pattern represents 
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a unique sub-flow. Because packet models describe only packet header fields, without con
sidering any endpoint-specific information, patterns are very similar across all bi-directional 
flows. Thus, instead of describing communication separately for each bi-directional flow, 
we have selected an approach of describing the whole network environment uniformly. Such 
a complete model consists of all possible patterns across all streams. 

To describe the whole network environment, we use a special tree structure, called 
Prefix Tree. A prefix tree, which is also known as a trie, is a special type of a search 
tree. It was invented by Briandais (1959) [13]. The main idea of creating this structure 
was to extend a binary tree structure with the capability of string representation. To 
reach this property, every node represents exactly one character (in a compressed version 
of the structure may represent a string). In such a tree, nodes are not binary but contain 
maximally one outgoing edge for each possible character that can follow the character in 
the specific position the node represents. The degree of any node is always lower or equal 
to the size of the tree alphabet [8]. The root is considered as a special node, which stands 
for an empty string. Traversal of a trie creates a string, called tree prefix, consisting of all 
passed nodes. Any two distinct traversals always produce different prefixes. 

Using a prefix tree, we can define the complete model of monitored communications. 
The complete model is gradually constructed by matching sub-flows of all flows with a tem
poral general tree representation. A temporal tree representation contains initially only 
the root node. With every new pattern, the size of the tree progressively enlarges. For 
each sub-flow in every flow, we perform a tree traversal intending to find the longest prefix 
of the tree matching with some prefix of the pattern that is verified. If the longest prefix 
does not correspond to the whole pattern that is under verification, the temporal tree is 
elongated to cover the sub-flow the pattern represents. The temporal tree structure is final 
when its prefixes cover all possible sub-flows. 

Root 

Leaf 2 Leaf 3 Leaf 4 

Figure 5.2: Prefix tree representing generic model 

The main advantage of such a structure is the effectiveness of inserting patterns and pat
tern presence verification. Moreover, every pattern prefix is stored only once for all existing 
patterns. Intuitively, in such a tree, some patterns become a part of a longer pattern. For 
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example, a pattern representing a sequence of packet models "1225" is absorbed by pattern 
"122572" and represented as the longer pattern without any reference to the shorter pattern 
existence. Therefore the complete model represents only the longest possible sequences by 
their prefixes. Specific flow is then represented as a "partial sub-tree" of the prefix tree and 
sub-flow is denoted as a sequence of nodes which begins from the tree root and ends in any 
child node (not necessarily a leaf). Figure 5.2 visualizes the described architecture, colored 
squares represent packet sub-flows. 

A Tree pattern is any part of a tree consisting of directly succeeding nodes. An example 
of tree patterns is shown in Figure 5.3. Thus, considering a flow as a set of general prefix 
tree traversals, where each traversal represents one valid sub-flow; these traversals can be 
combined together into a single pattern of the general prefix tree. Applying this approach 
to all monitored flows, all valid communications can be denoted as a subset of all tree 
patterns. 

Original Tree Tree Patterns 

Figure 5.3: Example of a tree and its patterns 

Using the described algorithm, we have obtained a structure representing all stream 
patterns across the whole environment. However, as mentioned above, there are short 
valid patterns hidden inside longer patterns. Furthermore, some patterns are valid for one 
bi-directional flow but invalid for the other. Thus, in the following section, we focus on 
restricting the set of expected patterns for each bi-directional flow and also specify patterns, 
which are hidden inside a prefix of others. 

5.3 Bi-directional Flow Analysis 

After the complete model is constructed, flows are analyzed separately for each pair of end-
points. Considering a group of all patterns that are valid for a particular bi-directional 
flow, our main goal is to create an automaton, which accepts all these patterns and nothing 
else. Such an automaton represents a complete communication of the specific bi-directional 
flow. Figure 5.4 visualizes the connection of the general tree and a flow automaton; note 
that this automaton is defined for each bi-directional flow but general prefix tree is one for 
the whole environment. 

For further analysis, we consider a traffic between two devices to be one pattern of 
the general traffic model. Let's suppose T to be a general traffic model tree described 
in the previous section. This tree can be delineated as a set of all possible patterns of 
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Figure 5.4: Mapping of flow automaton to the general prefix tree model 

this tree, denoted as T = {ti, ti, £3, • • •, U}- Tp C T is a subset including only patterns 
that correspond to at least one complete flow. Each flow pattern in Tp contains a set of 
subsequent nodes, where each node has a single attribute gi of a value equal to the group 
ID of the packet that the node represents. Let's consider A = {Ai, A2, • • •, Am} to be a set 
of deterministic automata, where each automaton represents one tree pattern from the set 
Tp. An automaton representing a pattern of a prefix tree accepts all valid prefixes that 
can be denoted by the pattern. These automata correspond with the general tree model 
as following: Every automaton Ai, 1 < i < m, is defined as a tuple (Qi, Ej, Si, q^, Fj) 
where symbols correspond to Definition 3.1.2 with an addition that transition function is 
defined with a limitation that every state q 7^ qo has a unique rule containing the state 
on the right-hand side, i.e., every state excluding start states has always single incoming 
transition. Components of these automata are specified as: 

• Qi is a set of states corresponding to the inter-arrival moments, i.e., edges of the gen
eral tree model. 

• Ej corresponds to group numbers of packets contained in the sub-flow. 

• qio is a state representing a moment between any two sub-flows. 

• is a set of final states, Fi C Qi, that represents the situation occurring after the last 
pattern element arrived. 

A language generated by the described automaton is evidently finite, by definition it does 
not contain any cycles. 
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Such a structure provides us a complete model of the flow. As we mentioned at the start 
of this Section, a flow model expressed as an automaton generating patterns is mapped 
to the general tree model (each state transition points at a particular tree node). This 
property helps us to compare distinct flows in order to find a pattern applicable to both 
of these flows. Furthermore, using this representation, we can perform a basic verification 
of packet position correctness. Henceforth, we focus on verifying other communication 
aspects, such as recurrence and time analysis. Up to now, we were not limited by the fact 
that two occurrences of the same pattern might be a little bit distinct. Currently, the only 
issue it causes is a potential model growth. In the following analysis, we focus on finding 
associations between flows. However, such an analysis is significantly impacted by every 
deviation, for example, swapped packet order. Thus, in the following section, we focus 
on the correction of the most evident errors in streams to minimize the impact of minor 
deviations. 

5.3.1 Noise Correction 

In this section, we focus on the detection of invalid patterns. As an "invalid pattern", we 
consider any pattern that: 

• consists of two sub-flows which should have been separated, 

• has swapped packet order, 

• has duplicated packet, or 

• misses packet. 

At first, we construct all flow patterns by creating a set of unique sub-flows (or generating 
all sentences of the automaton). Then, we assign arrival times to these patterns. For 
example, considering pattern "1322" which occurs 3 times in the flow, we merge these 
occurrences together and assign their timestamps to the pattern, so we obtain pattern: 

1 : {tsn,tsi2,tsi3};3 : {ts2i,ts22,ts23};2 • {ts3i,ts32,ts33};2 : {ts^i,is42,ts±3}. 

After forming unique patterns, the attached sub-flows are detected by searching for their 
components that are isolated. To separate a pattern, we need to find two distinct patterns, 
which together can construct the joined pattern. Furthermore, we require that the separated 
form should have more occurrences than the joined form. This scenario is visualized in 
Figure 5.5. The 4th row consists of two previous patterns, the 1st row is a prefix ("C"), 
the second row is a suffix ("D"). Similarly, the 5th row contains pattern from the 1st 
row ("B"), appended to the pattern from the 3rd row ("E"). After a fusion is detected, 
timestamps from the joined pattern are attached to timestamps of the isolated patterns. 

In the third stage, we reduce swapped packets. Incorrect packet order is usually caused 
by network delay or packet loss. This situation is visualized as "A" in Figure 5.5. The 3rd 
row is similar to the 4th row; however, two packets are swapped. The matching algorithm 
should respect these deviations and consider given patterns as the same. 

Detection of corrupted patterns is a challenging task because a strict algorithm does 
not recognize pattern swaps, on the other hand, a lenient algorithm may match unrelated 
patterns. Hence, we have built an algorithm that accepts single failure in a window. We 
define the window as a dynamic group of packets of a floating size which starts at a moment 
when the first error occurs, i.e., the first position index where non-matching packets are 
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Figure 5.5: Resolution of noise and deviations 

found, and ends at a moment when patterns are equal. Algorithm has two input parameters: 
inserting pattern and original pattern. The inserting pattern is a pattern that is considered 
as the noisy one and the original pattern is the target pattern form. When the first mismatch 
is found, it is considered as an inserted packet in the inserting pattern and its value is saved 
until this element is found in the original pattern. Intuitively, this algorithm needs to 
be executed for all non-matching pattern pairs twice, so each of these patterns is tested 
as both "inserting", what reveals potential packet insertion, and "original", what reveals 
packet deletions. 

If two patterns are considered as matching in one way or the other, timestamps of the pat
tern with lesser occurrences are joined to timestamps of the pattern of higher occurrence. 
Figure 5.6 visualizes 4 scenarios of such a comparison. Multiple failures are accepted in 
the case, where there is only one "held failure" at a time, which is shown in scenarios 
2 and 3. Scenario 4 holds packet 4. At a point when 2 is expected but 3 is given and 4 
is still not released, the pattern is considered as "too noisy" so patterns are evaluated as 
mismatching. This algorithm naturally respects also a single missing element and a single 
inserted element. Detailed steps of described algorithm are provided in Algorithm 1. 

0 1 2 3 2 4 

0 1 2 2 4 3 
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\ \ 
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/ 
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Figure 5.6: Pattern swap in a window 
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Data: inserting and original 
Result: True when patterns are matching, otherwise False 
if abs(inserting.size-original.size) > 1 then 
| return False: 

end 
while not the last index of longer pattern do 

if current original is equal to held element then 
move to following index in original: 
release held element: 

else 
take both current elements: 
if current elements not matching then 

if we already hold something then 
return False: 

else 
hold current inserting element: 
move to following element in inserting: 

end 
else 

move to following element in both inserting and original: 
end 

end 
end 

Algorithm 1: Single failure in a window algorithm pseudocode 

5.3.2 Periodicity Estimation 

Finally, we estimate the periodicity of extracted patterns. Previous steps joined some groups 
of patterns in order to narrow time gaps of missing segments in an arrival time series. In 
the final part, we calculate approximate inter-arrival times between pattern occurrences in 
flows, which later helps to detect recurrent behavior and ideally also estimate a relevant 
period. 

In a perfectly periodic stream, all sub-flow inter-arrival times should be identical. How
ever, due to latency and other aspects, there might be deviations that need to be respected. 
In related studies, we have discussed algorithm FlowSummary (Section 3.3.1), which com
putes standard deviation and compares it to the threshold to determine whether it is low 
enough to be periodic. The authors set the threshold to 10 seconds. In our case, we have 
observed two recurring patterns and estimated their periods to 0.5 and 2 seconds. We 
consider the analysis based on the strict threshold as inconvenient for generic modeling, 
because initially, we do not have any information about periods in packet streams. 

To provide as accurate result as possible, we have implemented two algorithms. The first 
one is inspired by FlowSummary, thus, completely constructed on stream statistics. The sec
ond one is built on Dynamic Time Warping (DTW) [6] with an adjustment of using Ham
ming distance. In the following sections, we discuss both these approaches. 
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FlowSummary-based Algorithm 

We have established a measure that determines periodicity using available general infor
mation obtained from the given dataset. The main goal is to avoid manual selection or 
a requirement of additional information. Before the algorithm is performed, the following 
preprocessing steps are required to be performed, in order to guarantee consistency of input 
data: 

1. For each sub-flow f i in flow F where i > 1, we calculate the difference in arrival 
timestamps between the last packet of and the first packet of 

2. For each /j we set arrival time of the first packet to zero. 

Then, the sequence of inter-arrival times between sub-flows is sorted into an ascending 
order what reveals the minimal and maximal time it took between two pattern occurrences 
in the given flow. Although it needs to be taken into account that large periods might 
be impacted by unmatched patterns, i.e., pattern occurrences that were too noisy to be 
considered the same as the original pattern. 

Following processes proceed from the assumption that in periodic streams, the number 
of mentioned "too noisy sub-flows" is minimal. These occurrences should be surely lesser 
than 20% of the longest inter-arrivals, otherwise we consider the given flow as a recurrent 
without established period. Compliantly with previous assumptions, it is expected that 
the middle 60% of inter-arrival times are nearly the same or "very similar". Therefore, both 
20% of the largest and the smallest intervals are filtered out. 

The generalization of defining "very similar" inter-arrival times is a challenging task. 
Intuitively, this measure cannot be no matter how dependent on the inter-arrival value 
itself. The reason is simple, if we supposed acceptable deviation as a proportion of average 
value, the result would be very high acceptable deviations for large periods. On the other 
hand, small periods would have unattainably low maximal deviation requirements. In 
reality, there should not be any difference in acceptable delay for both small and large 
periods because this measure is not dependent on the period length but on other aspects, 
such as network state, load, device condition, etc. However, these conditions are hardly 
observable/unobservable in a short continuous packet stream without any initial knowledge 
or estimation. 

For initial analysis, we have selected the mean of middle 60% of inter-arrival times 
as expected period. The acceptable deviation value is set to the duration of the longest 
sub-flow in the particular flow. This approach proceeds from the assumption that involved 
devices invoke communication based on an internal clock, which is expected to be accurate. 
The delay is mostly caused by one of the following four aspects: 

• internal processing on stations, 

• network latency, 

• packet losses and retransmissions, or 

• waiting for the finish of the previous communication. 

In the common state, the fourth aspect has the biggest impact on packet sub-flow delay. 
Supposing multi-periodic flow where distinct periodic patterns have different periods, sooner 
or later, some periods will overlap the others. In the worst scenario, the longer pattern 
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precedes the shorter, which needs to wait until the whole packet exchange passes off. This 
process might critically impact the waiting exchange process. These assumptions led to 
the approach of selecting the longest duration of the stream of directly succeeding packets 
(i.e., the longest sub-flow duration). This duration is expected to be "high enough" to 
cover common latency and delay. Moreover, despite this measure is different for each bi
directional flow, it is the same for all sub-flows in the particular flow, i.e., it does not depend 
on the period length. 

DTW-based Approach 

As we have already discussed earlier in this Section, statistical methods are too dependent of 
the training dataset and every deviation is reflected in the result. To avoid this issue, current 
periodicity mining studies usually assume the input to be a sequence of symbols instead of 
time series [12]. For example, let's consider a communication between two devices where A, 
B, and C denote different packet sequences. Let's suppose a time window t = {1, 2 , . . . , 6}, 
where sequence A occurs at times t A = {1,4, 6}, B at ts = {2} and C at tc = {3, 5}. We 
can represent such a situation as a string "ABCACA". This is usually called a symbolic 
sequence. Intuitively, such a representation is suitable for purely periodic sequences where 
we expect events to happen in a fixed order. When we search for a periodic event in a set 
of non-periodic events, representation of a stream should not mix these events together, 
otherwise, the periodicity detection might be impossible. Thus, the timestamp stream 
t = Í1Í2Í3 ••• in can be represented as a binary sequence, where U = 1 denotes "event 
occurred at V , contrarily, ty = 0 denotes "event did not occur at ty". Hamming distance is 
one of the most popular algorithms for comparing symbol-represented streams. It compares 
sequences position-wise symbol by symbol; the output of this algorithm is the number of 
non-matching symbols. 

Elfeky et al. [14] (2005) have focused on finding periodicity in noisy streams, i.e., they 
assumed insertions, deletions, and swaps to be a part of a packet sequence, what is usually 
not considered in previous algorithms based on Hamming distance. Let's consider strings 
A = adbcde and B = abcde; comparing these sequences position-wise, the number of mis
matches would be 5, on the other hand, considering symbol "d" to be an insertion, the 
number of mismatches would be 1. Such an approach is called time warping (TW) [6]. 
TW is usually computed dynamically, thus, it is also referred to as Dynamic Time Warp
ing (DTW). Considering X = [xo, xi,..., xn] and Y = [yo, yi, • • •, yn] to be two sequences 
of symbols and X = [xi,..., xn] and Y = [yi, • • • ,yn] a r e X and Y after the first symbol is 
removed; we can define DTW as 

Í
DTW(X, Ý) 
DTW{X,Y) (5.1) 
DTW(X, Ý) 

where d(xi, yj) is the distance between the ith symbol in sequence X and the jth symbol in 
sequence Y. The distance is determined as "0" when symbols match and "1" when symbols 
do not match. To compare two strings, a matrix is created, where columns denote symbols 
of the first string and rows denote symbols of the second string. Cell then contains 
the result of comparison of symbols x% and y j. A Warping Path of a matrix n x n is the path 
between cell (0, 0) and (n — 1, n — 1). A Warping Cost is then a sum of all cells crossed by 
the particular warping path. In this algorithm, we search for the minimum warping path, 
which is the total DTW distance (Figure 5.7). 
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Figure 5.7: Comparison between Hamming distance and WARP 

Elfeky et al. have used the time warping algorithm to construct a new algorithm called 
The Warping for Periodicity, which has the main aim to detect periodicity in symbolic se
quences. They proceed from the assumption that when we cut off p symbols from a periodic 
string with period p, the shortened string will be matching to the initial non-contracted 
string. For example, let's consider string T = abcabcabc. Obviously, this string is purely pe
riodic. When we start cutting off symbols from the beginning of this string, earlier or later, 
we will get to the second period of the string, which is detected by a very low difference 
rate in comparison with the complete string. The authors define perfect period as a period, 
after which all symbols match with the non-contracted string version. Correspondingly, 
a period, where several mismatches are detected is referred to as candidate period. To 
determine string similarity, they use a measure called confidence, calculated as 

n — p DTW(T, t W ) 
n — p 

(5.2) 

where n is the string length and p is the number of removed symbols. 
In our case, we combine both Hamming distance and WARP principles to construct 

an algorithm that automatically detects periodicity in any packet stream. As far as two 
distinct patterns in a packet stream never depend on each other, we need to perform peri
odicity detection for each pattern separately, i.e., we consider only one event in the system, 
therefore, instead of considering symbols to be (different) events, we consider symbols to 
be the number of occurrences of a single event in a time segment of a specific length. 
The time segment length is set to 1 second and it is represented as the number of partic
ular occurrences during this period. For example, let's suppose event X occurred at times 
tx = {0.2,0.5,0.7,1.2, 2.8, 2.9,4.l}[s], considering time window that starts at 0s and ends 
at 5s, time series tx can be represented as sequence a "31201". Intuitively, symbols in this 
representation are ordinal. Hence, in contrast to nominal representations discussed earlier, 
this representation not only determines whether symbols are different but also concludes 
how much. A distance between two symbols is calculated as 

d(x,y) x y\ (5.3) 

where wmax is the maximum of occurrences in a single segment across all segments. This 
capability ensures that two nearly the same windows, such as A = 8788 and B = 9678, are 
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considered as similar. On the other hand, segments C = 1011 and D = 1100 are considered 
as different. Note that in the first case, A and B have very low Hamming distance on every 
index because the unit of distance is 1/9; contrarily, in the case of C and D, the unit of 
distance is 1, thus, these sequences significantly differ. We have combined this approach 
with the principle of the Warping for periodicity algorithm proposed by Elfeky et al. At 
first, we represent time series as described above, and then we remove the first element 
from the sequence. Both strings are then aligned to start at the same index and compared 
to obtain error rate. The error rate is characterized as 

n 
err = ^d(Ti^p)) (5.4) 

i=0 
where n is the length of the shortened string, T denotes input string and stands for its 
left-shifted version by p symbols. 

We also consider that the value of information about 0 occurrences is different than 
about (at least) 1 occurrence. The information that 1 event was expected and 1 occurred 
is intuitively much more valuable than the information that 0 events were expected and 0 
occurred. Hence a situation where both indexes have 0 are not considered as a "match" but 
are excluded from the calculation. Thanks to this approach, a comparison between "0100" 
and "0001" is not considered similarity. 

Based on described assumptions, the confidence calculation was adjusted to 

n — p — err — z ,_ _. 
ce = (5.5) 

n — p — z 

where z denotes the number of matching zeros in given strings, and n, p correspond to 
symbols in DTW definition. 

Comparison of Algorithms 

In previous Sections, we have introduced two algorithms estimating periodicity in streams. 
The FlowSummary-based algorithm focuses on statistical aspects of periodic streams 

and proceeds from the assumption that in a purely periodic stream, inter-arrival times 
between the same pattern occurrences are nearly identical in all cases. However, using 
this algorithm, some not negligible differences are difficult to predict. For one stream, 
there might be a deviation up to ±10% of its period; but for the other, there may be 
a deviation up to ±25% of the period. This estimation is even more complicated if we 
consider environmental aspects. We may respect deviation ±10% but in real-time analysis, 
there may be deviation ±13% due to temporal latency. Moreover, after trying different 
approaches of estimation, we have reached maximally around 70% of correctly guessed 
periods. Despite we were successful in 93% of short period estimations, in the case of 
very long periods, only 47% of calculations were correct. Long periods are influenced 
more because up to 40% of the boundary values are removed, which significantly reduces 
the dataset. 

Then, we have introduced a customized WARP algorithm. This algorithm aims not 
to be too dependent on minor deviations and more focused on the number of occurrences 
during a particular time window. In this case, we are not dependent on statistics at all, 
we include all values to calculation, and treat all streams the same. Moreover, using this 
approach, we are able to appropriately identify all periods in the given dataset. Based on 
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these arguments, we assume the WARP-based approach to be the more convenient solution 
for our case. 

5.4 Model Generation 

The final stage of model construction is a generation of convenient representation of all 
valuable information that can be provided to the software that verifies traffic based on 
the given model in runtime. The main requirement for this functionality is to provide 
a complete model, which can be used without any additional processing needed not to slow 
down the target device. Thus, the target model is provided as a C file, which consists of 
related information represented as constants and initialized structures/arrays. The model 
is split into three separated components: packet models, general model, and bi-directional 
flows models. 

Packet Models 

Packet fields 
0 1 2 3 

{0,0} {8,1} {0,0} {32,5} {8,1} 
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{0,0} {8,0} {8,1} {0,0} {0,0} 

{0,0} {8,2} {0,0} {32,1} {8,1} 

3 1 

< 2 

General Model 

Packet model groups 
0 1 2 3 

0 1 2 0 

0 0 0 2 

0 0 0 0 

N _D . . Not defined 
N _A. . Not allowed 
N P . . Not periodic T5 

CD 
Q3 

S 2 

Flow Models 

Automaton states 

0 1 2 
0 13823923 2382323 Final state period 

N_D N_D N_D Latest occurrences 
0 0 0 Current occurrences 

1323 Longest sub-flow 
122.0.10.112320182.1.0.21212 Flow identification 

0 N_A 2321313 
N_D N_A N_D 

0 0 0 
23232 

123.19.0.221328.23.33.12323 
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23.23.1.92672319.178.1.82322 

Figure 5.8: Model components 

The first part represents packet fields and model identification that stands for a specified 
combination of values (referred to as "packet group ID"). To keep this model as generic 
as possible, every packet header field consists of two parameters: the number of bits n 
and the value v. The combination of these parameters creates pairs {ni,v{\. If the field 
value is considered as unimportant, it is denoted by the pair {0,0}, which signalizes that 
the field value should be skipped during parsing. Despite the field length is applicable 
for all values in a given column, we represent it separately. The added value of such 
an approach is that specific IEC 104 types use different fields, for example, U-type keeps 
all protocol-related fields empty. This representation was selected in order to distinguish 
different interpretations/usages of the same fields. 

This way represented packet fields are merged into a sequence, what creates a matrix 
where rows denote packet model identifiers and columns denote specific field values. Intu
itively, the number of rows is equal to the number of packets that vary from others and 
the number of columns is equal to the number of all captured packet fields. Whole struc
ture is represented as "Packet Models" in Figure 5.8. The matrix is accompanied by several 
convenient constants, what facilitates process of going through the matrix. 
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The second part of the model represents the general model described in Section 5.2. 
The described model is transformed to a transition function of automaton, represented as 
a matrix where columns denote symbols and rows denote states. In cells, there are target 
states of specific transitions. We call this component "General model", which is visualized 
in the middle of Figure 5.8. 

Finally, the third part of the model represents specific packet streams. These streams 
are the only non-constant part of the model as they are created to reflect current state 
of the network. Each flow is represented by 5 records: 

1. flow endpoints identification, 

2. final state period, 

3. latest occurrences, 

4. current occurrences, and 

5. the longest sub-flow duration. 

The first item uniquely identifies both communicating devices by their IPs and ports. 
Items 2,3, and 4 are represented as arrays of 64-bit timestamps. Their length is the same 
as the number of states, i.e., the number of rows in the general model. 

The Final state period is an array, which denotes accessibility and periodicity of states, 
i.e., whether the general model's state is a member of the particular model patterns. Items 
of this array can take a value from one of the following groups: 

• "0" when the state is not final: 

• " N _ A " when the state is not allowed, i.e., it is final but not a member of any pattern 
in the flow: 

• "N_P" when the state is allowed but not periodic, i.e., it can occur in any time: 

• period in microseconds when the final state is periodic. 

The Latest occurrences element is an array, which is initially completely set to generic 
values: 

• " N _ A " when the state is not the final state of allowed periodic pattern or 

• " N _ D " when the state is an allowed periodic final state. 

Contrarily to the Final state period element, these values are changeable in time, so they 
can represent the current state of the network. Their main purpose is to trace periodic 
occurrences and guarantee that once they start occurring, they continue. At the same 
time, it helps to track that a recurrent event does not occur more often than expected. 

The last element is an array of "current occurrences". These values are all set to zero 
because, initially, we suppose network with 0 received packets. When the first packet is 
received, it is set to the value of the current timestamp. Succeeding packets do not refresh 
this time, they only move the value to other states; at the end, we can compare the initial 
value in the case of long delay somewhere during a packet exchange. This component is 
shown as the "Flow model" in Figure 5.8. Intuitively, this array might have been merged 
with the Latest occurrences array, as they both represent the current state. However, we 
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need to take into consideration the situation when patterns overlap, i.e., a pattern might 
be a part of the other. Therefore, we cannot consider the first reached accepting state as 
the completion of a pattern. 

These components are merged together into a single C module which represents all 
information obtained during analysis. We refer to this module in the following chapters 
while dealing with verification of network traffic in real-time. 
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Chapter 6 

Implementation of Runtime Traffic 
Analyzer 

This chapter describes the construction of software that has the capability to verify traffic 
in real-time. This program proceeds from the model described in the previous chapter. 
The generated model is compiled as a part of the runtime analyzer, which dramatically 
lowers the time of initial processing and also prevents the need to allocate memory dynam
ically. Usage of constant memory size in runtime very positively affects both performance 
and security. 

The analyzer consists of two threads, each of them has a specific role. The main thread 
reads packets from standard input (stdin) in CSV format, where every line represents a single 
packet and columns represent its header fields. Based on the acquired information, it verifies 
packet correctness in terms of position in the packet stream. Oppositely, the secondary 
thread verifies communication from the statistical point of view, e.g., when the traffic is 
expected to be periodic, this thread verifies its periodicity confidence. These threads are 
implemented separately to maximize the performance of packet processing and to create 
a precise timing of periodicity checking, which should happen in a strictly defined period to 
ensure a required amount of data for confidence calculation was gathered. The most reliable 
way of reaching this property is to create a dedicated thread with the only competency to 
check statistical correctness and to produce details of time analysis. Both threads together 
verify communication from the time perspective, content correctness, and a specific packet 
occurrence with respect to a specific context/state. In the following sections, we introduce 
the technical details of these threads and their connection. 

For further description, we consider the model to be a part of the runtime analyzer. 
Thus, both threads can access data generated in the training phase and have information 
about expected communication and its occurrence frequency. Generated module consists 
of a model part and runtime part (Figure 6.1). In the model part, there are only constant 
data, used for behavior verification. Oppositely, in the runtime part, there are mostly 
dynamic data reflecting the current network state. Although data content is mentioned to 
be changing, its size is stable. New values are never added; whenever the state is changed, 
existing values are updated. The internal state always reflects the current situation; there 
are not any historical records (however, past states are certainly mirrored in the current 
state). Besides performance benefits, this property also ensures stability from the point of 
view of memory usage and prevents increasing memory consumption. 
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Figure 6.1: Model components usage by threads 

6.1 The M a i n Traffic Analyzer Thread 

The main thread uses packet models to verify fields of packets coming to stdin. Moreover, 
it employs the general traffic model and relevant flow automata to verify packet correctness 
in a given context. When the execution starts, all automata are set to the initial state 
and windows for periodicity checking are empty. These structures represent the internal 
state of the program, which simultaneously reflects the network state. The following para
graphs briefly introduce actions performed by the main thread, i.e., processes executed 
when a packet arrives to stdin. 

In the first phase, after a packet is received, the analyzer parses it to obtain details 
from the packet header and matches these details with a known model. If it is not able to 
associate the packet with any known model, it throws the packet away and logs this event 
as an error. Otherwise, it continues to the second stage. 

In the second stage, happening only in the case where the packet was successfully 
matched with a known model in the first phase; the packet is associated with a particular 
bi-directional flow. Comparisons are performed using IP header information. Again, if 
the packet cannot be matched with any known flow, it is thrown away and a corresponding 
error is logged. 

In the third processing phase, the main goal is to retrieve the current state of the au
tomaton appertaining to the specific flow and perform a move to the state corresponding 
with the flow situation. The target state is obtained using a reference to the general pre
fix tree and a knowledge about the arrived packet model. Based on these details, we can 
find the correct transition using direct memory access. However, a confident (and correct) 
decision of the following move might be an impossible task. Figure 6.2 visualizes state uncer
tainty issue. Let's suppose a network communication to be in the state Bl. The automaton 
on the left shows the situation where the state is not final. When we receive a packet of 
model "2", intuitively, we should move to state CI . However, in a real situation, there are 
4 possible scenarios: 

1. Packet "2" is valid and succeeds current state; thus, the automaton state should 
change to CI . 
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2. Packet "2" is an insertion; hence automaton should not move anywhere and log this 
occurrence. 

3. Packet "2" should be preceded by other packets, which were lost; consequently, there 
was a packet deletion before. In this case, automaton should be reset and the occur
rence reported. 

4. Packet "2" is the start of new communication and current communication was ended; 
therefore the automaton state should be changed to B2. 

The situation gets even more complicated when Bl is a final state. This scenario is 
shown in the right automaton (Figure 6.2). In addition to possible situations mentioned 
above, the current state might be final, thus, we should accept the current sequence. But, 
how can we be sure that the sequence will not continue by "2" or "23" as there are an
other two accepting states? Because automaton always reflects only current network status, 
we are not capable to certainly determine current or future states even for the most sim
ple automata. Hence, in the following paragraphs, we describe an approach of reflecting 
the current network state, which respects a certain level of uncertainty. 

Current state Current state 

Figure 6.2: State uncertainty 

6.1.1 Dealing with Network State Uncertainty 

To keep a track of network events properly, we need to perform an estimation of the cur
rent state. Considering scenario in Figure 6.2, the situation after receiving packet "2" is 
visualised in Figure 6.3, where: 

• errors are represented as a transition to state A, which denotes the network state 
before any (valid) packet is received; 

• acceptance of "1" followed by the start of a new communication with packet "2" is 
represented in state B2; and 

• communication continuance is denoted in CI. 

Based on these behavior observations, we can define an important property of automata 
representing the current network state in the runtime part of network model (shown in 
Figure 6.1): The current automaton state is unknown; however, there is a set of states, in 
which it can be with the same probability. This set of states is called candidate states. 
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Figure 6.3: State uncertainty after "12" sequence is received 

From given examples, we can deduce that whenever a packet, which can be used for 
a transition from the initial state, is received, it creates a new candidate state. Although, 
there is always maximally one new candidate state for each packet arrival because automa
ton is deterministic. Thus, after n packets are received, there is a maximum of n candidate 
states, in which the network can be with the same probability. This principle can be used 
to define another automaton property: A set of candidate states has a maximum of k 
members, where k is the length of the input stream. 

With such an approach, every time, after a new packet is received, a move is performed 
for all automaton candidate states. Intuitively, it causes the generation of many "blind" can
didates that get stuck after a few moves, because there is not any transition for the received 
packet. This situation cannot be allowed for a valid sequence, thus, after a candidate state 
gets stuck, it is removed from the candidate set, however, with the condition that the stuck 
candidate is not the most distant candidate from the initial state. The distance condition 
was introduced because of the requirement to have all packets as a part of the accepted 
stream and, intuitively, there is always only one candidate state including all packets, which 
is the most distant one. Hence, stuck candidates can be safely removed as far as the most 
distant one can continue. For example, considering the situation in Figure 6.3, if a packet 
of model "3" was received, CI still could continue to Dl but A and B2 would be stuck. In 
this case, if the following packet after "3" was "1" or "2", we could securely accept the Dl 
candidate and start a new stream by a move from i to 51 or B2. Such an approach 
is simply applicable for all valid sequences. However, non-acceptance of the most distant 
candidate does not necessarily mean a communication failure. 

As mentioned in Chapter 5, one stream may come right after the other one and, as 
a consequence, they could be considered as one. Such a situation is displayed in Figure 6.4. 
This automaton does not accept the "1233" sequence, however, it does accept "12" and 
"33" sequences separately. After "123" is received, the most distant candidate is able to 
continue with "4" only, but "3" is received. Despite this situation is correct, the most 
distant candidate is stuck. Albeit C2 is in a valid end state, this stream does not cover all 
packets in sequence, hence the automaton cannot accept. 

One of the possible resolutions of such a situation is displayed in Figure 6.5. Whenever 
any flow passes a final state, it sets a mark on it and continues normally. When the most 
distant candidate gets stuck, runtime analyzer looks behind and searches for passed final 
states. If there are final states that can together cover the whole packet stream, the sequence 
can be accepted. In Figure 6.5, "1233" can be folded up using CI and C2. 

6.1.2 Preparing Statistical Data 

Besides flow content verification, another responsibility of this thread is to prepare data for 
processing by the secondary thread. In Section 5.3.2, we have introduced an algorithm that 
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Figure 6.4: State uncertainty after "1233" is received 

Figure 6.5: Resolution of state uncertainty after "1233" is received 

produces an array of 1-second segments. Every segment carries two values - the number 
of packets that passed through during this time and the confidence of this distribution. In 
the runtime phase, these windows of segments are used to verify the number of occurrences 
by constructing these windows again and aligning them with their expected form. Albeit 
this is the competency of the second thread, the main thread collects data during packet 
processing and records the number of occurrences to segments. 

In the beginning, all segments are set to zero. Then, whenever a packet sequence is 
accepted and assigned to some specific pattern, the main thread increments the value in 
the corresponding segment, which represents the specific pattern occurrence. Intuitively, 
the number of these segments constantly increments with passing execution time, which 
is unacceptable in the view of the fact that we require constant memory allocation. To 
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achieve this property, these segments are represented as a circular linked list of length 
equal to the expected period. Segment index is then calculated using a simple equation: 

i j = tsec mod pj (6.1) 

where i j is an index of jth segment window, tsec is current time in seconds from the start 
of program execution, and pj is the period of jth segment window. 

6.2 Periodicity Verifying Thread 

The secondary thread has a single competency - it wakes up every second, aligns the ex
pected window to the actual number of occurrences, and calculates a difference in the same 
way as described in Section 5.3.2, respectively. The difference is then used to calculate 
a cumulative confidence, which summarizes confidences through all past states. Cumula
tive confidence is calculated using Equations 6.2, 6.3, and 6.4, where x denotes a segment 
value (which is the number of occurrences during a particular time period), i is the current 
index, z is the number of segments with value 0 considering all previous indexes, dif is 
the distance between real and expected number of occurrences in the segment, and c is 
the confidence. 

Comparing ith segment of expected occurrences window and real occurrences window, 
Equation 6.3 denotes the number of segments that were non-zero at least in one of these 
two cases and Equation 6.2 denotes the same for previous time segment. For example, in 
Figure 6.6, there are 2 zeros for i = 6 - on the second and the fourth position (we consider 
only segments, where 0 is in both windows). Hence we set z = 2 and x% = 5. Generally, Zi 
stands for the number of segments that were zero in both windows at the same time, where 
for Zi we count segments 1 < j < i. Intuitively, the difference between Xi and Xi-i is either 
0 or 1. We can calculate cumulative confidence 6.4 based on 6.3, 6.2, previous confidence 
Ci-i, and difi, denoting the distance between ith number of occurrences in comparison with 
ith expectation, which is in interval <0;1>. We initially consider CQ = 1 and XQ = 1. 

This process is repeated for each periodic pattern. Oppositely to the window construc
tion process described in Section 5.3.2 (where the aim is to reach the highest confidence), 
the goal is to have the same confidence as the expectation, measured during training phase. 
However, in some cases, where the confidence estimation is around 0.5 (i.e., it was created 
with a 50% window mismatch rate), it might seem to be a piece of information with very 
low value. Let's suppose a set of partially periodic occurrences that can be split to segments 
{1, 6, 3} and estimated window {3, 3, 6}; mismatches correspond to {0.3, 0.5, 0.5}, thus, con
fidence correspond to 0.63. As far as the model consists of the estimations only and real 
occurrences are not provided in any form, the runtime analyzer receives very inaccurate 
information. Obviously, we cannot consider such pattern as purely periodic. However, even 
inaccurate partial periodicity provides certain information, based on which we can build 
rough recurrence expectation. When a pattern is considered random, we can hardly create 
limitations on the pattern occurrence. The only possibility how to keep track of these oc
currences is to count the number of these events in a large period and expect more or less 

X{—\ — % Z{—\ 

X{ — % ~\~ 1 Zi 

(cj_i * Xi-i) + (zi-i - Zi) + (1.0 - difi) 

(6.3) 

(6.4) 
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the same. However, even very rough information about occurrences in Is segment may be 
valuable, e.g., when 6 is expected with 0.5 confidence in three segments in a row but 20 is 
received in all these segments, we can quickly reveal odd behavior. 

C \ 
Maximum of expected 

occurrences -> the smallest 
unit of distance is 1/3 

i 1 2 3 4 5 6 7 
> 

Expectation 0 0 2 0 2 0 2 2 0 0 3 1 • • • 

i k 

Difference 1/3 0 0 0 0 1/3 2/3 

\ r 

Occurrences 1 0 2 0 2 1 0 1 0 0 4 1 • • • 

z2=1 z4=2 

Zeros 0 1 0 1 0 0 0 

i + 1 - z 2 2 3 3 4 5 6 

Confidence 0.83 0.83 0.89 0.89 0.92 0.81 0.73 

Figure 6.6: Cumulative window comparison 

6.3 Handling the Moment of Connection 

Until now, all discussed algorithms supposed that monitored traffic starts when the analyzer 
is already connected and listens to the interface. Albeit, in real-time analysis, the analyzer 
can be connected to the network at any moment. Thus, the analyzer, especially the sec
ondary thread, needs the capability to familiarize itself with the environment as quickly as 
possible. 

In the case of the main thread, the only inconsistency that might occur is the situation 
where the analyzer connects during some packet exchange stream, which would be normally 
represented as a pattern occurrence but starting packets were not appropriately captured. 
Hence the thread is unsure about the pattern start symbols. We can resolve this issue using 
an initial error tolerance. For a certain time, if the main thread cannot map an incoming 
packet to any known packet type, the packet is thrown away. However, this tolerance is not 
applicable to failures of type "unknown device" or "unexpected packet type", these errors 
are never tolerable. 

For the secondary thread, this situation is more troublesome. The thread always ex
pects a flow starts at the segment of index 0 in a specific window. However, in runtime, 
the analyzer may be connected in any state of communication. As mentioned in this sec
tion, this thread aligns windows to calculate the difference. In such a situation, there might 
be a false positive alarm of mismatch because of incorrect window alignment. Thus, when 
the thread starts, at first it tries to find the current point for each periodic pattern. It 

49 



waits until the main thread writes to the penultimate index in the window and then tries 
to align the window with expectation. It searches for the most exact match by calculating 
the best possible offset, i.e., the value by which the window has to be moved to provide the 
best result. Considering two windows of length 4, A = {1, 2, 3,4} and B = {5, 6, 7, 8}, we 
align them as following: 

• {1, 2, 3,4} to {5, 6, 7, 8} with offset 0, 

• {1, 2, 3,4} to {6, 7, 8, 5} with offset 1, 

• {1, 2, 3,4} to {7, 8, 5, 6} with offset 2, and 

• {1, 2, 3,4} to {8, 5, 6, 7} with offset 3. 

For each pair of sets, we calculate total difference using Equation 5.3, which is applied to 
values on the same indexes. Then, we search for the minimum variance. The offset associ
ated with the most similar pair is then considered as the starting phase for the particular 
pattern. Using this offset, all values in the window of expected occurrences are circularly 
moved by this offset. 

6.4 Prevention of Log Overflow 

In previous sections, we have described methods of anomalous manners detection. In
troduced techniques react to every unexpected occurrence, which may be problematic in 
the case where an error state persists. For example, if a periodic communication starts to 
occur randomly, sooner or later, there will be a report of periodicity confidence drop. After 
the drop, the confidence is reset to 1.0 and measured again. If the communication does not 
resume its standard period, it will cause another drop, and so forth. Another example is 
when an unallowed device connects to the network. Without any adjustments, every packet 
sent by this device would be reported as a vulnerability. Furthermore, there can be cases of 
false-positive reports because of packets that were not correctly captured by the monitoring 
device. Thus, in the following sections, we focus on minimizing the number of redundant 
reports. 

6.4.1 Report Curtailment 

To prevent excessive vulnerability reporting, we introduce an interval, during which logging 
is interrupted. This interval is specified separately for each error type as there are different 
measurements for packet errors, confidence drops, unexpected devices, etc. Also, the inter
val start/end is different for each bi-directional flow. For example, if we set the curtailment 
value for confidence drops to 24 hours and all devices shut down at some point; during 
the next 24-hour interval, there will be one report for each bi-directional flow. The curtail
ment interval start depends on the point when periodicity confidence decreases to a critically 
low value, thus, it may be different for each of these flows. 

The curtailment only sets logging restrictions. When an error occurs, it is evaluated 
whether the error type is not paused for the given flow at the particular point in time. If 
a report curtailment is in progress, reporting is skipped but analysis continues in a standard 
way. Otherwise, the error is logged, and a curtailment record is created for the bi-directional 
flow and specific error type. 
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Figure 6.7: Curtailment adjustment 

The whole process is displayed in Figure 6.7. The red array represents records of "low 
confidence error" cutback, the purple array stands for "invalid communication state error" 
pause records. Indexes in both arrays represent the identification of known bi-directional 
flows. Curtailment is set to 2 seconds for confidence drops and 0.4 seconds for invalid 
states. The blue array represents bi-directional flow with identification 4, the green array 
is bi-directional flow 5. In the case of the blue flow, there are two periodicity confidence 
errors. The first one occurs at 0.3 seconds and the other at 1.2 seconds. Without any 
adjustments, there would be 2 reports. However, after the first report, a curtailment record 
is created with the current timestamp. When the second drop occurs at 1.2 seconds, before 
it is logged, it is checked whether the flow reporting is paused. As we can see, there is 
a report curtailment in progress, which will be released at 2.3 seconds, thus, reporting is 
skipped. Contrarily, in the case of green flow, there were 2 invalid state occurrences during 
the first second. However, they were delayed enough so both are reported and curtailment 
is set to the time of the second error. 

The situation gets complicated in the case of error type unallowed flow. Other errors 
can be associated with specific bi-directional flows, so they are easy to monitor. In this 
case, we miss the flow reference. Hence, we need a mechanism of handling unknown flow 
communication recurrence. The method is based on keeping records of new bi-directional 
flows to track related reports. Therefore, there is a special buffer, which contains two 
kinds of information: unknown device identification and time of the error. Whenever an 
error of type "unallowed flow" occurs, related flow identification is searched in the buffer 
of unknown identifications. If a reference is found in the buffer, its timestamp is checked 
in order to detect possible expiration. If the record is not expired, reporting is skipped. 
Otherwise, the record is invalidated, an error is logged and a new record is inserted to the 
end of the buffer, respectively. To avoid memory consumption by a growing number of 
unallowed flows, the buffer size is limited to 256 flow records. After it is filled, records are 
circularly rewritten (the oldest first). 
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As mentioned earlier in this section, all curtailment intervals are configurable for specific 
errors. The configuration is performed using program arguments so they are fully optional. 
Details are described in Appendix A. 

6.4.2 Single Packet Deletion Acceptance 

In this section, we focus on handling single deletion errors, so it is possible to skip reporting 
of this error kind. This error is handled using a look-ahead method. Using the generated 
traffic model, we have a reference to all "potentially future" automaton states. Hence we 
can look for all states following the succeeding states of the current state. Intuitively, 
every captured packet can be considered as a packet after a potential deletion. To avoid 
superfluous processing, this detection is performed only in the case where an error is revealed 
and it is about being reported. 

Deletion correction always considers packet miss inside sub-flow, i.e., excludes the first 
state. Every communication is required to be started appropriately. Let's consider a stream, 
which currently consists of n packets, thus, it has already performed n automaton state 
moves, which we refer to as "is at nth automaton level". Packet n + 1 is already received 
but using it the stream cannot pass to any following state. Instead of logging this situation, 
we look into all possible states at (n + l)st automaton level. If any of these states have 
a transition with the received (n + l)s£ packet, we move to this state and perform the tran
sition instead of logging an error. Thus, we skip one state and (n + l)st packet becomes 
(n + 2)nd. 

Level n Level n+1 Level n+2 

O O O 

Figure 6.8: Following state uncertainty 

The situation is more complicated when there is more than one possible state. It causes 
that one candidate state splits to two candidates that are at the same level. This scenario 
is visualized in Figure 6.8, where we move from state A to both D and F states. As 
we mentioned in Section 6.1.1, we always require maximally one candidate on a specific 
level. This situation is problematic for the most distant candidate representing the whole 
packet stream. Having two candidates there, we cannot correctly reveal the situation where 
the correct most distant candidate accepts/fails. To resolve this problem, we select one of 
these candidates and consider it the most distant one, despite there are multiple "the most 
distant" candidates. The selection is performed based on state ID. Every state has its own 
ID, which is based on its position in the automaton. The ID of a state at automaton level 
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n is always higher than ID of all states on lower levels. Correspondingly, all states on 
levels higher than n have higher ID than nth level. States at the same level have sequential 
IDs, the highest is selected and considered as the longest flow. Other processes are kept 
unchanged. Whenever the most distant candidate cannot continue, other candidates are 
searched in order to match the whole packet sequence. 

5:5 



Chapter 7 

Verification and Consequent 
Adjustments 

This chapter focuses on the verification of the proposed solution. There are three main 
demands on the analyzer functionality: 

• monitoring of "standard" traffic with some common deviations, such as temporarily 
higher latency, without reporting serious issues: 

• revealing an unknown communication or unknown devices in the network; and 

• warranting permanent frequency of the communication between known devices. 

To demonstrate required behavior, we have used obtained dataset of simulated attack (Sec
tion 4.1) and also a custom-developed generator of IEC 104 packet headers that allow 
customizing streams from many points of view (packet losses, latency, periodicity, pat
tern length, number of patterns, etc.) so we can demonstrate some specific situations and 
incidents (details in Appendix B). 

7.1 Analysis of the Simulated Attack 

At first, we focus on the verification of the model, generated during the training process. 
The generated model is compared to data representation in Wireshark1 to roughly estimate 
expected representation. Then, we verify whether the analyzer would recognize malicious 
manners based on the generated model. To construct the model, we use the first third of 
the dataset, which includes 200 000 packets captured during 258 seconds of monitoring. 

7.1.1 Generated Model 

After running the model recognition onto the CSV file with limitation to 200 000 lines, 
we have received .c and .h modules (their structure is described in Section 5.4). These 
files contain a definition of communication inside 37 bi-directional flows, what indicates 
that there are 38 devices in the network. During runtime analysis, these 38 addresses are 
the only allowed as senders and receivers of IEC 104 packets. 

xhttps: //www.wireshark.org/ 
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Evidently, in all bi-directional flows, there are 2 major periodic patterns, the first one 
repeats every 0.6 seconds, the other repeats once per 20 seconds. In all 37 cases, the an
alyzer has recognized window {1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, what ex
actly represents a window of pattern that occurs every 20 seconds. In the second case, we 
can observe a much shorter window with a higher frequency: 

• in 31 cases, the window is represented as {2,2,2,1,2,2}, 

• in three Cctses cts {2,2,2,1,1,2}, 

• in two cases as {2,2,1,1,2,2}, and 

• in one case as {2,2,2,1,2,1}. 

Obviously, all these cases, more or less, match the estimated 0.6s recurrence. However, in 
one case, devices do not communicate in this way at all. 

Besides the period window, there is another important attribute: a confidence, guar
anteeing the window matched real occurrences during the training phase with a certain 
accuracy. In the case of the pattern with 20s period, the count of samples in the training 
dataset is small (statistically less than 10 in all cases). Nevertheless the lowest recogni
tion confidence is 0.55, contrarily, the highest confidence is 1.0, and the median is 0.8. In 
the case of the pattern with the shorter period, the highest confidence is 0.92, oppositely, 
the lowest is 0.88, and the median is 0.91, which is much more consistent than the pat
tern with the longer period. Al l recognized devices and their confidences for both periodic 
patterns are summarized in Appendix C. 

7.2 Runtime Traffic Verification Results 

To demonstrate real-time environment, we use a custom replay utility that is capable to 
read packets from CSV file and redirects them to standard input with a respect to arrival 
times, what simulates real traffic. Because we use the same dataset for both training and 
testing, we do not focus only on the result itself but also on the trend after runtime analyzer 
processes packets, on which its traffic model has been trained. 

After the whole file is processed, there is a series of failures in the log file. The first 
log occurred at 467 seconds from the beginning of monitoring, reporting unknown packet 
arrival, followed by many reports of packets from non-permitted devices. Also, from this 
time, we can observe a sudden drop of periodicity confidence in the case of the more 
frequent pattern. Figure 7.1 displays the periodicity confidence during runtime. Axis x 
denotes the number of seconds from the start of monitoring (the model was trained on data 
from 0s to 268s) and y denotes confidence of the more frequent pattern (implicitly 1.0). 
A complete overview of all monitored flows is shown in Appendix D . l . 

Besides the periodicity drop, observable in the case of all streams, there are two notice
able anomalies. The first one is the red curve in Figure D . l , the second one is the pink curve 
in Figure D.3. These two flows exhibit significantly odd behavior compared to the other 
35 streams. In most cases, the confidence drop was around 10 percent of confidence. In 
the case of the mentioned two flows, the confidence drop is immense, causes the value 
approximates to zero. We can observe that in both cases, at around 800 seconds from 
the beginning of monitoring, the confidence is suddenly shifted to 1.0, what is caused by 
the periodicity checking thread, which has detected very low confidence, reported it, and 
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Figure 7.1: Pattern 106 for devices with ID 10-19 

reset the value, respectively. However, the confidence trend seems to be forthwith dropping 
again after the reset. 

Further investigation of the mentioned anomalies showed that at around 450 seconds 
from the analysis start, these two flows stopped all communication of the specific pattern. 
It follows that the drop is not caused by differences in periodicity but by a total absence of 
the pattern from the point when some unexpected communications were reported; whereas 
the impact on other devices is also significant but evidently temporal. After this anomaly, 
in most cases, there is a slight recovery during the next 200 seconds, disturbed by another, 
this time milder, confidence drop. 

Although the source of confidence drop is unknown, it probably does relate to the error 
in the log file described at the beginning of this section. Despite real-time confidence is in 
general smaller than expected values (specified in Appendix C ) , after a certain amount of 
time, it gains stability and oscillates around 0.77. Even after the outage, there is a noticeable 
convergence towards this value. 

These observations have proven that for short periods, there is not continuous groundless 
degradation of confidence and the algorithm handles a certain level of error rate in the time 
aspect of the communication. 

However, the situation is different when it comes to streams with a very long period. In 
the field of confidence, our current approach takes into account only moments (i.e., Is seg
ments), where at least one of expectation/reality is non-zero; because "both zero" situations 
are considered as beneficially inferior. Hence considering a 1-minute interval (which is rep
resented as a 60-segment window), if the noise is absent, there are exactly 3 segments taken 
into account and others are evaluated as non-valuable. Such an approach may be problem
atic in noisy streams because every minor deviation dramatically lowers total confidence. 
Moreover, there is not any guarantee of period stability. There might be some external 
aspects (or imprecision may accumulate over time) affecting the period length. In the cur
rent approach, such a situation would cause occurrences that do not fit with the expected 
moments of these events, which causes false-positive alarms. 

Figure 7.2 shows confidence for the pattern with long period (20s). Complete graphs are 
included in Appendix D.2. Likewise the previous case, sudden confidence grows are caused 
by a reset, occurring when a critically low confidence is detected. In this case, we can notice 
a slower confidence drop after a pattern is reset than in the previous case; however, in this 
case, there are observable drops even in the first part of monitoring. Albeit a moment, in 
which pattern may come to be considered as fitting to period, is set to one-second segment; 
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Figure 7.2: Pattern 9 for devices with ID 10-19 

obviously, it is not large enough and the trend keeps stagnating during the whole process, 
which is unacceptable. Notwithstanding making segments larger might seem to be the cor
rect approach, it may only be a temporal solution. Let's consider a situation, where we 
have a periodic pattern with period 5s in a noisy environment, where streams are gradually 
getting delayed. If every stream has approximately 0.005-second delay from the preceding 
one, after 1000 seconds, the pattern occurrence does not come in the 5th segments but 
one segment later, thus, the 200th occurrence has hypothetically period 6 seconds. De
spite the following 199 occurrences have period 5 seconds again, window segments do not 
match anymore. Such situation is displayed in Figure 7.3. If we resolve such a situation 
by extending the segment range, sooner or later, this issue appears again, independently 
on the period length. In the following sections, we focus on narrowing this inconsistency in 
order to avoid false-positive alarms. 

ID 0 1 5 10 11 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1006 

Expected arrivals 1 0 ooo 1 ooo 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 

ID 0 1 5 10 11 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1006 

Real arrivals 1 0 ooo 1 ooo 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 

Arrival limes 0.000 5.005 10.010 995.995 1001.000 1006.005 
6 seconds 5 seconds 

Figure 7.3: Enlarged period 

7.2.1 Dealing with Low Frequency 

This section discusses a possible approach to handle streams occurring with a long period. 
The resolution of this issue needs to be generic and work for both long and short periods, 
as determination of the boundary between "short" and "long" is in general very vague. 

One of the possible solutions may be making segments of expected occurrences slightly 
indistinct, however, assuredly limited. We apply this approach to windows where the num
ber of occurrences is lower than half of the window length. The main principle is very 
simple: whenever a pattern appears next to an expectation, with a maximum distance of 
one segment, it is accepted as a valid pattern presence. Using this principle, the window of 
expected arrivals behaves as following: 

1. Whenever an occurrence appears at index i and it is expected at this index, it counts 
as a valid occurrence: 
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2. when a pattern arrives at index i but it is not expected at indexes i, i — and neither 
i + 1, it is considered mismatch: 

3. if an occurrence appears at index i but it is expected at index i — 1, it is considered 
as a valid occurrence; however, the previous mismatch (at time i — has already 
affected confidence, thus, the difference is -1 to narrow the previous mismatch; 

4. whenever a pattern comes at index i but it is presumed to appear at index i + 1, it 
counts as a match but oppositely to the previous case, the difference is 0. 

In the 3rd and 4th situation, this principle might cause an acceptance of duplicate values. 
For example, let's consider a situation where we expect an occurrence only at index 5, 
however, we receive a pattern at i = 4, so we consider it a match. One second later, 
we receive another occurrence of the same pattern, thus, we count it as a match again. 
The same may happen at i = 6; this time, we, even more, increase the confidence by 
dif = —1. Finally, after double duplicate, the difference is -1, which may critically distort 
total confidence. The problem is resolved using the following 3 adjustments: 

• whenever a non-matching situation is accepted using one of two techniques mentioned 
above, we (circularly) move the window of expected occurrences to match given situ-

• we keep track of the previous situation by clearing index i — 1 instead of the current 
one, what is performed at the end of every periodicity checking epoch; 

• a match of non-matching situation does not consider only index i in real occurrences 
and i ± 1 in expectations but we compare these indexes in both windows. To apply 
the discussed algorithm, we require either Equation 7.1 or 7.2 to be evaluated as true, 
considering e is a value in the window of expected occurrences and a is a value in real 
occurrences. 

Intuitively, such an approach causes that the model part is no more static; however, the win
dow of expected arrivals dynamically moves and adjusts to the current network state. 

Figure 7.4 (and related Appendix D.3) depicts the situation after described algorithm 
is applied. Comparably to Figure 7.1, we can observe a rapid confidence drop beginning at 
450 seconds from the monitoring outset. In this case, it is more significant because until 
this time, there were much fewer occurrences than in the previous case; thus, every failure 
impacts confidence much more. Contrarily to the situation before applying adjustments, 
Figure D.5 is the only one, where we can observe total confidence drop before 450 seconds. 
Albeit we can observe decreases also in Figures D.6 and D.8, they are only temporal and 
the confidence has raised again by itself without any interventions. In the following section, 
we focus on the investigation of these confidence drops. At first, we need to determine 
the source of this event to verify the analyzer's behavior is correct. Then, we focus on 
the investigation of this issue. 

ation; 
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Figure 7.4: Pattern 9 for devices with ID 10-19 

7.2.2 Investigation of Unexpected Confidence Drops 

In this section, we focus on the investigation of confidence drops, displayed in confidence 
timelines, and describe specific cases of these events. 

At first, we focus on the issue in the pattern with the smaller period, depicted in 
Figures D . l and D.3. There are two flows unable to recover after the confidence drop, we 
identify them as stream 10 (the red one in D.l) and stream 27 (the purple one in D.3), which 
refers their identity described in Appendix C. A deeper investigation of pattern occurrences 
has shown that at a certain point, these devices completely stop the communication flow. 
However, an examination of the associated log file in detail has revealed that there are 
pertained errors, referring unknown channels between these two couples of devices. This 
fact implies that these devices continued communication but used different ports, which are 
not allowed by the model. If only IP addresses are considered as identification and ports are 
not taken into account at all, statistics of these flows are narrowed to precisely correspond 
to the confidence timeline of other streams. 

In the case of the longer period (referred to as pattern 9), the situation is different. After 
the confidence drop at approximately 450 seconds from the monitoring outset, the confi
dence recovery seems to be problematic for most of the devices. A closer investigation 
has shown that at a certain point in time, all devices had stopped to communicate for ap
proximately one minute. After the recovery, they started to communicate again; however, 
the first two occurrences of this pattern are sent twice. In our case, these duplicates are 
not the mandatory impact decreasing periodicity; actually, the main issue is that they do 
not fit the expected period. Despite the future flow is theoretically valid, it is moved by 
a couple of segments from the expectation. 

Based on these observations, we assume that in all cases, devices completely stopped 
standard communication for around one minute. In the case of the short period, proper 
recovery is not an issue, because all segments of expected occurrences are the same (1-2 ar
rivals expected every second). Thus, it is not dependent on the point where communication 
starts or stops and continues. The situation is more problematic for long periods because it 
is not possible to estimate the reason why the expected occurrence has not arrived. There
fore, we cannot even guess the periodic occurrence arrived earlier or later than expected 
because of reset and that we should adapt our expectations to the situation. 

7.2.3 Dealing with Runtime Resets 

This section proposes a possible resolution of handling the moment when communication 
is renewed after device reconnection. Described practices are based on the approach intro
duced in Section 6.3. 
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As we only track the history of communication between two devices using a confidence 
measure, there is not any possibility of how to precisely pursue past specific matches/mis
matches in streams. Hence at a certain point of traffic monitoring, we can guess device avail
ability from two parameters: total confidence of the stream and current expectation/reality 
difference. However, from this information, we cannot precisely determine when the poten
tial reset occurred. Also, we should take into account that outages are not the only reason 
for mismatching confidence windows, e.g., there might be an asynchronous event impacting 
the period, which also leads to mismatch. Thus, instead of focusing on the reason causing 
mismatch, we concentrate on an opportune correction. 

As introduced earlier, the periodicity checking thread has the capability to detect crit
ically low confidence and perform an appropriate reaction. This competency may be also 
used to narrow gaps in confidence checking. After a confidence counter is reset, all check
ing activities of the given pattern are suspended for an amount of time, which is equal to 
the number of segments in the confidence window. After this time expires, we consider 
all occurrences that appeared during this period. Based on this information, we narrow 
the time in the window of expected arrivals in the same way as at the beginning of mon
itoring (Section 6.3). We only perform a segment move, the content itself is not changed, 
inasmuch as periodic events are expected to keep the same period even after resets. 

—4̂— —+ t w — 

Figure 7.5: Pattern 9 for devices with ID 10-19 

Figure 7.5 shows the result of applying all proposed adjustments. Correspondingly, 
Appendix Section D.4 delineates results for all captured streams. Despite there are streams 
that are gradually decreasing because of losing track of expected occurrences, after the reset, 
all expectations in terms of periodicity were appropriately aligned with the present state. 
We can observe the pink and blue streams in Figure 7.5, which dropped between 600 and 
800 seconds from the start of monitoring. After the reset, these flows continue with very 
stable confidence, before the global slight confidence drop at about 850 seconds, what is 
presumed behavior. 

7.2.4 Examination of Log File 

In this section, we concentrate on particular events, which were appraised as potentially 
malicious and reported to the log file. As we already discussed earlier, there are reports 
warning about unknown communications, which are unaccepted by the model automaton. 
This suspicion of malicious behavior has arisen from downtime, during which all commu
nications stopped and started packet exchange again from a different port. Furthermore, 
we can observe reports about unallowed states of particular bi-directional flows. To pre
clude acceptance of ensuing packet exchange, the automaton is reset to the initial state and 
an exception is logged. 
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Demonstration on Real Flow 

To verify correct behavior, we have tracked the existing packet stream and logged all re
ceived packets and related errors. Results are compared to captured packets in Wireshark. 

We have used stream 19 (number refers its identification in Appendix C) for the behavior 
verification. The selected stream exhibits behavior representing the majority of allowed bi
directional flows. An example of standard log output, proving the communication fits 
automaton language, is shown in Figure 7.6. 

[DEBUG] 825 446433000 (STREAM 19) Received packet 0 

[DEBUG] 825 447159000 (STREAM 19) Received TCP ACK. 

[DEBUG] 825 447247000 (STREAM 19) Received packet 1 

[DEBUG] 825 447898000 (STREAM 19) Received packet 2 

[DEBUG] 825 449144000 (STREAM 19) Received packet 6 

[DEBUG] 825 456187000 (STREAM 19) Received packet 7 

[DEBUG] 825 456361000 (STREAM 19) Received packet 5 

[DEBUG] 825 457059000 (STREAM 19) Received TCP ACK. 

[DEBUG] 825 468056000 (STREAM 19) Received packet 2 

Figure 7.6: Standard communication in stream 19 (in log file) 

Apart from presumed behavior, we can observe several warnings about malicious man
ners. During standard packet exchange, we can observe several errors (Figure 7.7) notifying 
about automaton halt. This situation is also reflected in Wireshark (Figure 7.8), where we 
can see two incongruous packets. As we consider only application (L7) information from 
the packet header, the position of reported warning in both sources slightly differs. In our 
case, instead of verifying sequence numbers in TCP header, we investigate the continuation 
of IEC 104 headers, where the error is reflected at a different point. Nevertheless, it has 
led to errors correlating with inconsistencies in TCP fields. 

[DEBUG] 296 013964000 (STREAM 19) Received TCP ACK. 

[DEBUG] 296 022189000 (STREAM 19) Received packet 2. 

[DEBUG] 296 063554000 (STREAM 19) Received TCP ACK. 

[DEBUG] 296 063664000 (STREAM 19) Received TCP ACK. 

[DEBUG] 296 063922000 (STREAM 19) Received TCP ACK. 

[DEBUG] 296 604682000 (STREAM 19) Received packet 0. 

[DEBUG] 296 604703000 (STREAM 19) Received packet 2. 

[DEBUG] 296 604775000 (STREAM 19) Received TCP ACK. 

[DEBUG] 296 604800000 (STREAM 19) Received packet 1. 

[DEBUG] 296 604805000 (STREAM 19) Received packet 6. 

[DEBUG] 296 607223000 (STREAM 19) Received packet 7. 

[WARN] 296.607223000: (STREAM 19, PACKET 7): Unknown communication 

[DEBUG] 296 607246000 (STREAM 19) Received TCP ACK. 

[DEBUG] 296 607251000 (STREAM 19) Received packet 5. 

[WARN] 296.607251000: (STREAM 19, PACKET 5): Unknown communication 

[DEBUG] 296 614444000 (STREAM 19) Received packet 2. 

Figure 7.7: Standard communication of stream 19 (in log file) 

However, there are also uncommon situations, which are visible in Wireshark but are 
not reported by our analyzer. The source of this incongruity is in the training phase. These 
errors have been observed during the training process, thus, they are considered as a valid 
part of communication. 

Failures are getting more frequent between 830 and 870 seconds from the monitoring 
outset. During this period, every pattern occurrence ends as a failure, which explains 
the second confidence drop, observable in Figure 7.1. 

From the time when the confidence starts decreasing, there are logs about unknown 
automaton state. As depicted in Figure 7.9, none of the pattern occurrences is accepted 
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No. T ime Source Destination Protocol Length Info 

223973 296 013964 172 17 1 20 172 17 2 100 TCP 60 50345 -> 2404 [ACK] Seq=19987 Ack=80745 Win=256 Len=0 

223074 296 022189 172 17 1 20 172 17 2 100 104apci 60 <- S (5364) 
223104 296 063554 172 17 2 100 172 17 1 20 TCP 60 2404 -> 50345 [ACK] Seq=80761 Ack=19993 Win=457 Len=0 

223105 296 063664 172 17 1 20 172 17 2 100 104apci 66 <- S (5365) | <- S (5366) 

223106 296 063922 172 17 2 100 172 17 1 20 TCP 60 2404 -> 50345 [ACK] Seq=80761 Ack=20005 Win=457 Len=0 

223510 296 604682 172 17 1 20 172 17 2 100 104asdu 70 <- I (17726,5366) ASDU=1 C_IC_NA_1 Act IOA=0 

223511 296 604703 172 17 1 20 172 17 2 100 104-apci 60 [TCP ACKed unseen segment] | <- S (5367) 
} 223512 296 604775 172 17 2 100 172 17 1 20 TCP 60 2404 -> 50345 [ACK] Seq=80761 Ack=20021 Win=457 Len=0 

223513 296 604800 172 17 2 100 172 17 1 20 104asdu 70 [TCP Spurious Retransmission] | -> I (5366,17727) ASDU=1 

223514 296 604805 172 17 2 100 172 17 1 20 104asdu 82 -> I (5367,17727) ASDU=1 M_SP_NA_1 Inrogen IOA[4]=10016,.. 

223515 296 607223 172 17 2 100 172 17 1 20 104asdu 156 -> I (5368,17727) ASDU=1 M_ME_NB_1 Inrogen IOA[15]=10017,. 

223516 296 607246 172 17 1 20 172 17 2 100 TCP 60 50345 -> 2404 [ACK] Seq=20027 Ack=80907 Win=256 Len=0 

223517 296 607251 172 17 2 100 172 17 1 20 104asdu 70 -> I (5369,17727) ASDU=1 C_IC_NA_1 ActTerm IOA=0 

223521 296 614444 172 17 1 20 172 17 2 100 104apci 60 <- S (5368) 

Figure 7.8: Pattern 9 for devices with ID 10-19 (in Wireshark) 

by automaton because of duplicated IEC 104 packets; what precisely corresponds with 
confidence trend at this point. There are also analogous records in Wireshark packet 
stream (Figure 7.10). Equivalently to the previous pictured situation, there are errors 
reported on the L4 (ISO/OSI) layer, which are undetectable from our position. Thus, these 
failures are detected at the moment, when they are reflected in the application layer. 

[DEBUG] 841 .015643000 (STREAM 19) Received TCP ACK. 

[DEBUG] 841 .015673000 (STREAM 19) Received TCP ACK. 

[DEBUG] 841 .077562000 (STREAM 19) Received TCP ACK. 

[DEBUG] 841 .077576000 (STREAM 19) Received packet 1. 

[DEBUG] 841 .077588000 (STREAM 19) Received packet 6. 

[DEBUG] 841 .077598000 (STREAM 19) Received packet 7. 

[WARN] 841.077598000: (STREAM 19, PACKET 7): Unknown communication state 

[DEBUG] 841 .077611000 (STREAM 19) Received packet 5. 

[WARN] 841.077611000: (STREAM 19, PACKET 5): Unknown communication state 

[DEBUG] 841 .077621000 (STREAM 19) Received TCP ACK. 

[DEBUG] 841 .077629000 (STREAM 19) Received TCP ACK. 

[DEBUG] 841 .120876000 (STREAM 19) Received TCP ACK. 

[DEBUG] 841 .120888000 (STREAM 19) Received packet 1. 

[DEBUG] 841 .120901000 (STREAM 19) Received packet 6. 

[DEBUG] 841 .120916000 (STREAM 19) Received packet 7. 

[WARN] 841. 120916000: (STREAM 19, PACKET 7): Unknown communication state 

[DEBUG] 841 .120930000 (STREAM 19) Received packet 5. 

[WARN] 841. 120930000: (STREAM 19, PACKET 5): Unknown communication state 

[DEBUG] 841 .120943000 (STREAM 19) Received TCP ACK. 

[DEBUG] 841 .120954000 (STREAM 19) Received TCP ACK. 

[DEBUG] 841 .153254000 (STREAM 19) Received packet 0. 

[DEBUG] 841 .153265000 (STREAM 19) Received packet 2. 

[DEBUG] 841 .153277000 (STREAM 19) Received TCP ACK. 

[DEBUG] 841 .153284000 (STREAM 19) Received packet 2. 

[DEBUG] 841 .163469000 (STREAM 19) Received TCP ACK. 

[DEBUG] 841 .192714000 (STREAM 19) Received TCP ACK. 

Figure 7.9: Standard communication in stream 19 (in log file) 

7.3 Testing Using Own Generated Data 

We have implemented a program, which is capable to generate packet streams in a config
ured format (Appendix B). Constructing data artificially allows customizing its content to 
demonstrate individual situations in network traffic. Henceforth, all discussed datasets are 
created using this generator. 
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Time 

595179 841.015643 
595187 841.015673 
595373 841.077562 

. c . 

172.17.2.100 
172.17.2.100 
172.17.2.100 

i'.Kn Protoco 

172.17.1.20 TCP 

172.17.1.20 TCP 

172.17.1.20 TCP 

595383 841.077621 

595385 841.077629 

595559 841.120876 

172.17.2. 

172.17.2. 

172.17.2. 

100 
100 
100 

595560 841.120888 172.17.2.100 172.17.1.20 

595561 841.120901 172.17.2.100 172.17.1.20 

595562 841.120916 172.17.2.100 172.17.1.20 

595563 841.120939 172.17.2.100 172.17.1.20 

595564 841.120943 
595565 841.120954 

Length Info 

60 2404 -> 50345 [ACK] Seq=215389 Ack=53361 Win=457 Len= 
60 2484 -> 50345 [ACK] Seq=215389 Ack=53373 Uin=457 Len= 

69 2494 -> 50345 [ACK] Seq=215389 Ack=53389 Win=457 Len= 

595375 841.077576 172.17.2.100 172.17.1.20 194asdu 

595377 841.077588 172.17.2.100 172.17.1.20 194asdu 

595379 841.077598 172.17.2.100 172.17.1.20 194asdu 

595381841.077611 172.17.2.100 172.17.1.20 194asdu 
172.17.1.20 TCP 

172.17.1.20 TCP 

172.17.1.20 TCP 

172.17.2.100 172.17.1.20 TCP 

172.17.2.100 172.17.1.20 TCP 

595648 841.153254 172.17.1.20 172.17.2.100 194asdu 
595649 841.153265 172.17.1.20 172.17.2.100 194apci 
595650 841.153277 172.17.1.20 172.17.2.100 TCP 
595651 841.153284 172.17.1.20 172.17.2.100 194apci 
595666 841.163469 172.17.1.20 172.17.2.100 194anci 

595779 841.192714 172.17.2.100 172.17.1.20 TCP 

70 [TCP Spurious Retransmission] 

82 [TCP Spurious Retransmission] 

156 [TCP Spurious Retransmission] 

79 [TCP Spurious Retransmission] 

-> I (8686,18557) ASDU=1 C_IC_NA_1 

-> I (8687,18557) A5DU=1 M_SP_NA_1 

-> I (8688,18557) ASDU=1 M_ME_NE!_1 

-> I (8689,18557) ASDU=1 C_IC_NA_1 
60 2404 -» 50345 [ACK] Seq=215551 Ack=53401 Win=457 Len= 

60 2404 -> 50345 [ACK] Seq=215551 Ack=53413 Win=457 Len= 

60 2404 -> 50345 [ACK] Seq=215551 Ack=53429 Min=457 Len= 

70 [TCP Spurious Retransmission] 

82 [TCP Spurious Retransmission] 

156 [TCP Spurious Retransmission] 

70 [TCP Spurious Retransmission] 

-> I (8690,18558) ASDL=1 C_IC_NA_1 

-> I (8691,18558) ASDU=1 M_SP_NA_1 

-> I (8692,18558) ASDU=1 M_ME_NB_1 

-> I (8693,18558) ASDU=1 C_IC_NA_1 
69 2494 -> 50345 [ACK] Seq=215713 Ack=53441 Win=457 Len= 

69 2494 -» 50345 [ACK] Seq=215713 Ack=53453 Win=457 Len= 

70 [TCP ACKed unseen segment] | <- I (18559,8698) ASDLbl C_IC_NA_1 Act 
60 [TCP ACKed unseen segment] | <- S (8699) 
60 [TCP ACKed unseen segment] 50345 -. 2404 [ACK] Seq=53515 Ack=216021 U 
60 [TCP ACKed unseen segment] | <- S (8700) 

66 [TCP ACKed unseen segment] | <- S (8701) | <- S (8702) 

I 2494 ̂  50345 [ACK] Seq=215713 Ack=53469 Win=457 Len=9 

Figure 7.10: Pattern 9 for devices with ID 10-19 (in Wireshark) 

7.3.1 Purely Periodic Stream 

At first, we have generated a stream, which contains 3 bi-directional flows and 3 peri
odic patterns, each device communicate using a different pattern. Simulated traffic lasts 
50 seconds and consists of: 

1. 200 x pattern of length 4 with period 0.5 seconds, referred to as pattern 1: 

2. 100 x pattern of length 2 with period 1 second, called pattern 2; and 

3. 2x pattern of length 3 with period 50 seconds, referred to as pattern 3. 

Using these patterns, we aim to demonstrate undisturbed traffic, which consists of 
expected packets only. Thus, the application should not report any alarms. 

The training phase has produced a model which includes two periodic patterns. As 
there are only two occurrences of pattern 3, it was correctly excluded from the periodicity 
estimation. Generally, at least 5 occurrences are required to deliberate about pattern 
period. Thus, the last pattern is considered as valid, however, random. For pattern 1, 
the periodicity is estimated to window {2,2,2,2,2,2} and confidence 0.955 due to some 
segments, where belongs only single packet. In the case of pattern 2, the window is estimated 
to {1,1,1,1,1,1} with confidence 1.0. 

This model was used as a base for the runtime traffic analyzer. For reference, we have 
used both training and testing sets as inputs. In the case of the training set, we reached 
final confidence 0.980 for pattern 1 and 1.0 for pattern 2. Using testing set, we have reached 
0.980 for pattern 1 and 0.990 for pattern 2; thus, results are very similar to the modelled 
confidence. In both of these tests, there were not any reports about malicious manners. 

7.3.2 Denial of Service Attack 

In this test, we have used the same dataset as in Section 7.3.1 with a modification. At 
97 seconds from the monitoring begin, we have multiplied traffic to 100 pattern occurrences 
instead of 3. 

Because the traffic stream is not invalidated and the communication still corresponds 
to expected patterns, there is a single exception in logs after test execution. The error 
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is related to unexpectedly low confidence of the periodicity checking and ensuing reset. 
This event is clearly visible in overall confidence statistics, depicted in Figure 7.11. After 
an abrupt number of occurrences is noticed, confidence significantly drops within a single 
second at around 98 seconds from the monitoring outset. 
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Figure 7.11: Denial of service reflected on periodicity confidence. 

7.3.3 Single Packet Failures 

This test demonstrates individual packet failures separately. In these tests, we do not 
consider periodicity confidence monitoring as a source of failure reveal. Despite it might 
play a critical role in potential misbehavior reveal, we contemplate log files only. We focus 
on the following situations: 

1. communication initialization is duplicated, 

2. communication is not initialized, 

3. valid packet appears on unexpected place, 

4. invalid packet arrives, 

5. unknown device connects to network and starts to communicate in a valid way. 

These individual failures were applied to the generated dataset, described in Section 7.3.1, 
and executed separately in the standard way. 

In both examples (1) and (2) of failures during initialization, the error was correctly 
reported. In the case of (1), after the second initialization is received, the first one is thrown 
away, the event is logged, and the program continues with the second initialization, respec
tively. In the case (2), all subsequent packets are refused and logged before we capture 
a packet, which may be the start of a new pattern. In the case of (3), it strongly depends 
on a specific situation. In our case, there appeared a packet that might be the start of a new 
communication (despite it was not). Then, if the stream is currently in the state of automa
ton acceptance, it is ended in a standard way, and a new communication is commenced, 
respectively. Otherwise, the pattern is considered as corrupted and the unexpected arrival 
is logged. In the case of (4) and (5), packets were thrown away immediately at the beginning 
of their processing and reported. 
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7.4 Results Evaluation 

In this chapter, we have discussed the capabilities of the final real-time packet analyzer. 
We have focused on both periodicity checking and records in the log file. In the first phase, 
we have revealed an issue caused by periodicity instability. The fluctuation has two major 
reasons: 

1. One non-fitting occurrence, e.g., an arrival with high latency, may critically impact 
subsequent flow part; and 

2. in the field of periodicity checking, bi-directional flows are often unable to recover 
after device downtime. 

Based on these observations, we have introduced two adjustments to deal with envi
ronmental aspects and unexpected situations, which significantly improved the statistics of 
monitoring, so it correctly reflects the current network state. 

Thereafter, we have investigated associated log files and compared particular records 
with captured packets in Wireshark to evaluate whether revealed anomalies correspond to 
real flaws. Deep investigation has shown that the analyzer is capable to detect failures 
that have not occurred during the training phase. In the case of unrecognized failures; 
arising from a situation where an automaton representing flow is halted and unable to 
perform a move, the analyzer is competent to detect a wide range of errors. However, only 
the application layer is considered during analysis. Al l failures reflected on this layer are 
detected but there might be potentially unrecognized failures, which are only reflected on 
lower layers. 
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Chapter 8 

Conclusions and Future Work 

In this work, we have focused on the investigation of network traffic between two devices 
in industrial control systems. Our main goal was to construct a program, which is able 
to automatically recognize a model of network communication. This model should grant 
the competency to verify traffic between particular devices in real-time. 

In the first part, we have investigated a given dataset and protocol description with 
the following observations: 

• Variety of packet header attributes is rather small even for continuous values. 

• Flows between specific devices contain observable patterns, which indicate periods in 
flows. 

• Network traffic is noisy and interspersed with a significant amount of packets un
related to IEC 104 communication. Almost 40% of captured data consists of TCP 
signalization packets and other protocols (ARP, DNS, NBNS. . . ) . 

Based on the first observation, we have decided to reduce the number of considered fields 
using the feature selection technique, which is based on the analysis of packet field variety. 
These sets of attributes are aggregated, which creates a group of "packet models" repre
senting all packets in the flow. This technique reduces all IEC 104 fields to a single number 
representing a model identifier. Using this algorithm, 16 unique models have been found 
for the given dataset. Matching each packet to one of these models reveals obvious patterns 
in traffic between connected devices. 

In the second part of the thesis, we have studied related works that were focused on 
network traffic modeling with the main focus on automata-based approaches. We have 
discussed many possible approaches based on automata, such as deterministic finite state 
automata, statecharts, stochastic automata, timed automata, but also other widely used 
techniques, such as Fourier transform and Markov models. 

Based on related works results and also own observations, we have proposed an algorithm 
with the ability to automatically detect model in an unknown dataset. This algorithm 
consists of three main stages. At first, a single prefix tree is created to represent the whole 
network traffic. The purpose of creating such a model is to be able to track similarities 
across streams between different devices. Then, specialized models using deterministic finite 
automata are constructed to represent specific sub-flows that are mapped to the general 
model nodes. At last, we have discussed the suitability of different approaches in terms of 
periodicity estimation. We have appraised algorithms independent on statistics to be more 
convenient for periodicity determination. Information gathered during these steps is used to 
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construct a group of matrices and structures, which contain both constant and changeable 
parts, describing presumptive network behavior. Such a representation is generated as a C 
module, which provides a core for runtime traffic verification. 

Afterward, we have implemented a program capable to verify traffic in real-time. This 
software consists of two separate threads. The main thread has the ability to 

1. read captured packets: 

2. verify their sender/receiver and assign the packet to a specific bi-directional flow: 

3. confirm the packet belongs to some known group of packets (referred to as packet 
models), and generalize packet identity to the identification of associated packet 
model; and 

4. adjust the current state of related automaton to reflect the state of the network after 
the packet is received. 

Whilst the main thread is adjusting its internal state, it provides a piece of valuable 
information for the secondary thread, which has the competency to verify time aspects 
of the flow. This thread uses gathered information in combination with the estimated 
recurrence from the traffic model and uses this data to compute periodicity confidence. 
This confidence expresses the trend of communication recurrence and whether it meets 
expectations or not. 

At last, we have collected results by executing the analyzer on the given dataset and 
discussed the contribution of our outputs. We have realized that periodicity checking is 
inaccurate for long periods, which caused immense confidence deviations, leading to false-
positive alarms. To narrow this inaccuracy, we have implemented two adjustments, dealing 
with environmental aspects and helping analyzer to recover after communication downtime. 
Results have revealed that a combination of time aspect checking and reported anomalies 
provides a decent overview of the network state. 

8.1 Future Work 

We are planning to extend current behavior by the capability to precisely determine the rea
son for individual packet errors, as we are currently competent to only reveal a generic 
inconsistency in packet stream. Furthermore, current periodicity checking algorithms have 
already proven their benefits from many aspects; however, their appropriate recognition 
strongly depends on the quality of the training dataset. Thus, we will focus on making 
our solution more resistant to deviations during the training phase. Moreover, similar al
gorithms may be then used to deal with deviations during real-time monitoring to be able 
to recognize malicious manners earlier than after a critical confidence drop. 
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Appendix A 

Real-time Analyzer Configuration 

Runtime analyzer can be configured using 5 command line options and a help option (_h). 
Option -o sets the error reporting format. It can be either "LOG" or "JSON". The "JSON" 
selection formats reports to JSON objects. Every object consists of 4 attributes: 

1. type, which is "DEVICE", "MODEL", "CONFIDENCE", or "STATE" depending on 
the error source: 

2. time, when the error occurred: 

3. devices, containing identification of bi-directional flow; and 

4. message, providing error description. 

Contrarily, the "LOG" format creates reports in a plain text form, represented as 

{time}: [ERROR:{type}] [DEVICES:{devices}] {message} 

where value placeholders represent the same values as JSON attributes above. 
Additionally, we can configure curtailment intervals for each error type. There are 

4 configuration options. Each of these options expects a value which has to be numeric. 
This value represents a time in microseconds, for which subsequent errors are paused. 
The following options stand for specific error types: 

• -d stands for unknown device reports, 

• -c represents confidence drops, 

• -m denotes packet model assignment failures, and 

• -s symbolizes communication state errors. 
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Appendix B 

Packet Stream Generator 

To verify Analyzer behavior in specific situations and environments, we have implemented 
a packet generator with the capability to produce customized CSV packet streams based 
on selected header patterns, in our case, used to create a pure IEC 104 stream. 

Program stream-generator-l.O.jar produces two CSV files, one used for training, 
the other for testing. These sets can optionally contain more or less the same or distinct 
patterns. Implicitly, even files generated from identical stream patterns are slightly different 
in packet arrival timestamps, thus, the order of particular packets always subtly differs. 
Generated content is managed using program arguments; it accepts an optional number of 
arguments, each of them has one of the four forms: 

• p denotes a periodic pattern, generated into both training and testing set; 

• n stands for a non-periodic pattern, produced to both training and testing set; 

• tp symbolizes a periodic pattern, which is added to testing set only; and 

• tn indicates a non-periodic pattern, attached to testing set only. 

Arguments need to correspond a pattern associated with the argument type. Every 
type has a specific pattern form: 

• "pI{1}I{2}|{4}|{3}I{5}I{6}", 

• "n|{l>K2>|{3>", 

• "tpI{1}I{2}|{4}|{3}I{5}I{6}", 

• "tn|{l}|{2}|{3}". 

These patterns can be represented as regular expressions, their meaning is described in 
Table B . l . Patterns are generated without any dependencies between them, hence, they 
are combined together in the target file and two patterns of distinct communication flows 
may overlap. Training set is generated into test raw folder, testing set is generated into 
test noised folder. Both of them are named generated sequence {identity}.csv, 
were identity is a random hash, uniquely distinguishing generated packet streams. 
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ID Regular 
expression Minimum Maximum Description 

1 \d+ 1 L 0 N G _ M A X The number of streams 
corresponding to this pattern. 

2 \d+ 1 L 0 N G _ M A X The number of packets in 
this pattern. 

3 \d+.\d+ 0.0 1.0 

Repetition of packets in 
the stream (i.e. one packet 
arrives multiple times in 
one stream). 

4 \d+ 1 L 0 N G _ M A X Period length in micro
seconds. 

5 \d+.\d+ 0.0 1.0 
The probability of 'getting 
lost' for each pattern 
occurrence in the stream. 

6 \d+.\d+ 0.0 1.0 The probability that a pattern 
occurrence arrives twice. 

Table B . l : Meaning of symbols in argument patterns. 

B . l Example of Generated Streams 

In this section, we demonstrate an execution of described packet stream generator. We 
have selected arguments "p |4|3|500000|0.2|0.0|0.0" "p12 12 1100000011.010.010.0". 
These arguments generated 2 bi-directional flows, one contains 3 packets with period 0.5s, 
the other consists of 2 packets with period Is. The result is shown in Figure B . l . 

0.511630000,182.207.233.229,157.220.216.147,221,50,,,,,0x00000003,0x00000001,141,147,134,36,41207 

0.511910000,182.207.233.229,157.220.216.147,221,50,,,,,0x00000002,0x00000000,109,189,113,221,31249 

0.511960000,182.207.233.229,157.220.216.147,221,50,,,,,0x00000000,0x00000002,30,50,149,155,27114 

1.006400000,105.195.55.63,50.151.Ill.12,256,55 0x00000000,0x00000002,185,250,50,252,5651 

1.007940000,105.195.55.63,50.151.Ill.12,256,55 0x00000000,0x00000002,185,250,50,252,5651 

1.018580000,182.207.233.229,157.220.216.147,221,50 0x00000003,0x00000001,141,147,134,36,41207 

1.019250000,182.207.233.229,157.220.216.147,221,50,,,,,0x00000002,0x00000000,109,189,113,221,31249 

1.019470000,182.207.233.229,157.220.216.147,221,50,,,,,0x00000000,0x00000002,30,50,149,155,27114 

1.576380000,182.207.233.229,157.220.216.147,221,50 0x00000003,0x00000001,141,147,134,36,41207 

1.576590000,182.207.233.229,157.220.216.147,221,50,,,,,0x00000002,0x00000000,109,189,113,221,31249 

1.578280000,182.207.233.229,157.220.216.147,221,50,,,,,0x00000000,0x00000002,30,50,149,155,27114 

2.011220000,105.195.55.63,50.151.Ill.12,256,55 0x00000000,0x00000002,185,250,50,252,5651 

2.012430000,105.195.55.63,50.151.Ill.12,256,55 0x00000000,0x00000002,185,250,50,252,5651 

2.086940000,182.207.233.229,157.220.216.147,221,50 0x00000003,0x00000001,141,147,134,36,41207 

2.087050000,182.207.233.229,157.220.216.147,221,50,,,,,0x00000002,0x00000000,109,189,113,221,31249 

2.088380000,182.207.233.229,157.220.216.147,221,50,,,,,0x00000000,0x00000002,30,50,149,155,27114 

Figure B . l : Generated (training) CSV packet stream 
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Appendix C 

Recognized Bi-directional Flows 

Table C . l shows an identification of devices that were recognized in the training phase. 
Additionally, every record is associated with the confidence of its recognized period. In this 
work, we refer to these devices only as their ID. 

I D I P 1 I P 2 
20s period 0.5s period 

I D I P 1 I P 2 
confidence confidence 

1 172.17.1.20 172.17.2.116 0.8182 0.9070 
2 172.17.2.114 0.8182 0.9186 
3 172.17.2.102 1.0000 0.9109 
4 172.17.2.109 0.8000 0.8760 
5 172.17.2.8 0.8333 Not present 
6 172.17.2.134 1.0000 0.8992 
7 172.17.2.101 1.0000 0.9225 
8 172.17.2.125 1.0000 0.9109 
9 172.17.2.104 1.0000 0.9070 
10 172.17.2.132 0.8000 0.9047 
11 172.17.2.136 1.0000 0.8953 
12 172.17.2.127 0.8000 0.9124 
13 172.17.2.123 1.0000 0.9147 
14 172.17.2.118 0.8000 0.8992 
15 172.17.2.106 1.0000 0.9186 
16 172.17.2.129 0.7778 0.9241 
17 172.17.2.103 0.8000 0.9222 
18 172.17.2.111 0.8182 0.9070 
19 172.17.2.120 1.0000 0.9086 
20 172.17.2.100 0.8889 0.8953 
21 172.17.2.108 1.0000 0.8876 
22 172.17.2.107 1.0000 0.8953 
23 172.17.2.115 1.0000 0.9031 
24 172.17.2.124 1.0000 0.9128 
25 172.17.2.110 0.6364 0.8876 
26 172.17.2.133 0.8000 0.9008 
27 172.17.2.131 1.0000 0.9202 
28 172.17.2.105 1.0000 0.9070 
29 172.17.2.135 1.0000 0.9047 
30 172.17.2.117 0.6364 0.9109 
31 172.17.2.113 0.8000 0.9167 
32 172.17.2.126 0.8000 0.9070 
33 172.17.2.122 1.0000 0.9128 
34 172.17.2.119 0.7500 0.9186 
35 172.17.2.128 0.5556 0.9222 
36 172.17.2.130 0.8182 0.8930 
37 172.17.2.121 1.0000 0.9031 
38 172.17.2.112 0.7778 0.9031 

Table C . l : Recognized devices and their communication periodicity. 
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Appendix D 

Monitoring Results 

In this Appendix Chapter, we present complete results of monitoring, described in Chap
ter 7. This chapter is further divided into four sections. Section D . l shows the results of 
tracking a pattern with period 0.6 seconds, which we refer to as pattern 106, which relates 
to its identification during pattern analysis. 

In the second phase, we focus on a pattern with a period of 20 seconds, called pattern 9. 
As discussed in Chapter 7, confident pattern tracking is problematic due to environmen
tal impacts, thus, it is divided into 3 parts, further describing applied processes in order 
to reach results corresponding to reality. Section D.2 shows complete results of monitor
ing without any adjustments, which revealed the impact of the environment erroneous on 
analysis results. Section D.3 displays the same measurements with adjustments allowing 
infinitesimal deviations in packet arrivals, based on which window slightly adapts to the net
work situation. Finally, we introduce the result of monitoring with all applied adjustments. 
Al l measurements were performed using the same model and identical condition, so we can 
evaluate the contribution of applied enhancements. 

D . l Pattern 106 

ss 

0 200 400 600 aoo 1k * t
s

] 

Figure D . l : Pattern 106 for devices with ID 1-9. 
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Figure D.2: Pattern 106 for devices with ID 10-19. 
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Figure D.3: Pattern 106 for devices with ID 20-29. 
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Figure D.4: Pattern 106 for devices with ID 30-38. 
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D.2 Pattern 9 without Adjustments 
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Figure D.5: Pattern 9 for devices with ID 1-9. 
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Figure D.6: Pattern 9 for devices with ID 10-19. 

Figure D.7: Pattern 9 for devices with ID 20-29. 
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Figure D.8: Pattern 9 for devices with ID 30-38. 
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D.3 Pattern 9 with Sliding Window 
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Figure D.9: Pattern 9 sliding window for devices with ID 1-9. 
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Figure D.10: Pattern 9 sliding window for devices with ID 10-19. 
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Figure D . l l : Pattern 9 sliding window for devices with ID 20-29. 
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Figure D.12: Pattern 9 sliding window for devices with ID 30-38. 
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D.4 Pattern 9 with Sliding Window and Periodicity Recov
ery 
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Figure D.13: Pattern 9 periodicity recovery for devices with ID 1-9. 
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Figure D.14: Pattern 9 periodicity recovery for devices with ID 10-19. 
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Figure D.15: Pattern 9 periodicity recovery for devices with ID 20-29. 
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Figure D.16: Pattern 9 periodicity recovery for devices with ID 30-38. 
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Appendix E 

C D Content 

The attached CD contains the following items: 

• src folder, which contains the source files, 

• doxy gen folder, which contains documentation of the source code, 

• output examples, a folder containing examples of analysis results (confidence re
ports and failures in both LOG and JSON format), these results are a part of reports 
collected during execution on the dataset with the simulated attack, which was dis
cussed in this work, 

• the text of this thesis in DT xjanco06.pdf, 

• text folder, which contains DT^K source files, 

• R E A D M E file, describing both training and testing phases and usage of both im
plemented programs, 

• LICENSE file, providing license details, 

• TEST CASES.txt file, describing a short step-by-step tutorial to test the func
tionality in real-time. 
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