
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

OPTIMIZING INDUCTIVE CONTROLLER SYNTHESIS
METHODS FOR POMDPS WITH DISCOUNTED RE-
WARDS PROPERTIES
OPTIMALIZACE INDUKTIVNÍ SYNTÉZY KONTROLÉRŮ PRO POMDP S ČASOVĚ OMEZENÝMI

CENAMI

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ONDŘEJ KŘÍŽ
AUTOR PRÁCE

SUPERVISOR doc. RNDr. MILAN ČEŠKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023



 

Institut: Department of Intelligent Systems (UITS)
 

Student: Kříž Ondřej
 

Programme: Information Technology
 

Specialization: Information Technology
 

 

Category: Formal Verification
 

Academic year: 2022/23
  

Assignment:
 

1. Study state-of-the-art controller synthesis methods for Partially Observable MDPs (POMDPs) with
the focus on inductive synthesis and discounting reward specifications

2. Design optimisations improving inductive synthesis methods for discounting reward specifications.
3. Implement the optimisations within the tool PAYNT.
4. Using suitable benchmarks, perform a detailed experimental evaluation of the implemented

optimisations.
 

Literature: 
Kochenderfer, M.J., Wheeler, T.A., and Wray K.H, Algorithms for Decision Making, MIT Press
2021.
Andriushchenko, R., Češka, M., Junges, S., and Katoen, J.P. Inductive synthesis of finite-state
controllers for POMDPs. In UAI’22. Proceedings of Machine Learning Research.
Andriushchenko, R., Češka, M., Junges, S., Katoen, J.P. and Stupinský, Š. PAYNT: A Tool for
Inductive Synthesis of Probabilistic Programs. In CAV 2021. Springer.
Hensel, C., Junges, S., Katoen, J.-P., Quatmann, T., and Volk, M. The probabilistic model checker
Storm. Int. J. Softw. Tools Technol. Transf.2022.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
 

Supervisor: Češka Milan, doc. RNDr., Ph.D.
 

Consultant: Ing. Roman Andriushchenko
 

Head of Department: Hanáček Petr, doc. Dr. Ing.
 

Beginning of work: 1.11.2022
 

Submission deadline: 10.5.2023
 

Approval date: 3.11.2022

Bachelor's Thesis Assignment
148661

Optimizing Inductive Controller Synthesis Methods for POMDPs with 
Discounted Rewards Properties

Title:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno



Abstract
Probabilistic model checking is essential for verifying systems in diverse domains. A key
limitation of the PAYNT tool, which synthesises probabilistic programs satisfying given
specifications, lies in its handling of discounted properties. This thesis extends the STORM
framework upon which PAYNT is built, incorporating the discounted value iteration method
within inductive synthesis process to address this issue. The discounted value iteration func-
tion was developed within STORM, involving solver environment identification, decision-
making segments in the code, and Gauss-Seidel multiplication for enhanced computational
capabilities. The necessity for a PRISM formula in PAYNT’s model checking process pre-
sented challenges for bypassing the discount factor transformation step. To overcome this, a
discount factor transformation with a factor close to one was employed, comparing potential
optima vectors between discounted and undiscounted iterations. This study improves dis-
counted property handling in PAYNT and the STORM framework, providing a foundation
for further advancements in the development of PAYNT.

Abstrakt
Pravděpodobnostní kontrola modelů je nezbytnou součástí verifikace systémů v různých
prostředích. Klíčová limitace nástroje PAYNT, který syntetizuje pravděpodobnostní pro-
gramy splňující danou specifikaci, leží v jeho zacházení s diskontními vlastnostmi. Tato
práce rozšiřuje rámec nástroje STORM, na němž je postaven PAYNT, implementací diskontní
iterace hodnot v rámci procesu induktivní syntézy. Diskontní iterace hodnot byla implemen-
tována v rámci STORMu, včetně identifikace vhodného prostředí pro řešitele, rozhodovacích
segmentů v kódu a Gauss-Seidelovým násobením pro vylepšené výpočetní schopnosti. Nezbyt-
nost použití vzorce v jazyce PRISM v rámci kontroly modelů v PAYNTu představuje
problém pro vynechání diskontní transformace, která ztěžuje kontrolu modelu. Proto
byla diskontní transformace ponechána s diskontním faktorem blízkým k jedné, a jsou
porovnávány hodnoty potenciálních optim, které vrací diskontní a nediskontní iterace hod-
not. Tato práce zlepšuje práci PAYNTu a STORMu s diskontními hodnotami a poskytuje
základ pro další pokroky ve vývoji PAYNTu a STORMu.
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Rozšířený abstrakt
Ve světě plném nejistoty stále narůstá potřeba přesného modelování systémů s pravděpodob-
nostní nejistotou. Pravděpodobnostní ověřování modelů je technika, která se nachází
na pomezí umělé inteligence, informatiky a formálních metod. Je převážně používáno k
ověřování správnosti systémů, které zahrnují pravděpodobnostní nejistotu, a nachází uplat-
nění v různých oblastech, jako jsou počítačové sítě, kybernetická bezpečnost, robotika, ves-
tavěné systémy a dokonce i biologické modelování. Vzhledem k rostoucí složitosti systémů
poskytuje přístup pravděpodobnostního ověřování modelů pevnou matematickou metodologii,
která zajišťuje, že tyto systémy se chovají tak, jak se očekává za různých podmínek, a
umožňuje odhalování potenciálních problémů před tím, než vedou k vážným selháním.

Implementace nástrojů pro pravděpodobnostní ověřování modelů umožňuje syntézu
pravděpodobnostních programů, které splňují dané specifikace, čímž rozšiřuje použitelnost
tohoto přístupu. Navíc, v době, kdy se stáváme stále více závislými na systémech umělé
inteligence a strojového učení, nabývá pravděpodobnostní modelování ještě většího výz-
namu. Díky své schopnosti poskytovat podrobné informace o chování systémů přispívá tato
ověřovací technika, spolu s pokroky v oblasti vysvětlitelné umělé inteligence, k vytvoření
transparentních, srozumitelných a důvěryhodných systémů umělé inteligence.

Částečně pozorovatelné Markovovy rozhodovací procesy (POMDP) poskytují matem-
atický rámec pro modelování rozhodovacích problémů, kde je stav systému nejistý. Hledání
optimálních strategií pro tyto modely je klíčovým aspektem procesu pravděpodobnost-
ního ověřování modelů. Je však důležité poznamenat, že nalezení optimální strategie pro
POMDP je obecně nerozhodnutelné, což znamená, že neexistuje univerzální algoritmus,
který by mohl určit optimální strategii pro každý možný POMDP [2]. To představuje
významnou výpočetní výzvu a zdůrazňuje potřebu pokročilých technik v této oblasti.

Protipříklady řízená induktivní syntéza (CEGIS), která se používá k výpočtu optimál-
ních strategií, zahrnuje uhádnutí kandidátního řešení, jeho ověření proti počáteční speci-
fikaci a učení se z nesprávných odhadů pro zlepšení odhadů následujících. Hlavní výhodou
tohoto přístupu je vyhnout se vyčerpávajícího procházení všemi možnými řešeními. PAYNT
(Probabilistic progrAm sYNThesizer) je nástroj, který využívá řízenou induktivní syntézu
[4].

V nástroji PAYNT funguje řízená induktivní syntéza jako metoda učení z analýzy po-
tenciálních řešení nebo "realizací". "Učící se algoritmus" vybere jednu realizaci a předá
ji "učiteli", který posoudí, zda daná realizace splňuje danou specifikaci. Pokud ne, učitel
poskytne další informace, často ve formě protipříkladu [4].

Nicméně, metoda iterace hodnot v PAYNTu, která je základním stavebním prvkem při
hledání optimálních strategií, není tak účinná při diskontních vlastnostech ve srovnání s
dříve navrženým algoritmem SARSOP od Kurniawati a kolektivu, který pracuje s aproxi-
mací prostoru všech dosažitelných přesvědčení pod optimálními strategiemi [13].

V této práci představuji optimalizaci pro metody induktivní syntézy kontrolerů apliko-
vané na částečně pozorovatelné Markovovy rozhodovací procesy (POMDP) s diskontními
vlastnostmi. Můj přístup se zaměřuje na integraci nové metody do nástroje STORM,
pravděpodobnostního ověřovače modelů, na kterém je PAYNT postaven. Tato metoda
zlepšuje výkon iterace hodnot s diskontními vlastnostmi pomocí rychlého a efektivního
násobení vektorů. Pro PAYNT je výsledkem optimalizovaný výpočet, který potenciálně
obejde náročný výpočetní krok transformace kontrolovaného modelu do formy bez diskont-
ního faktoru. Tato optimalizace má za cíl snížit čas ověřování modelu a zvýšit efektivitu
hledání optimálních strategií.



Funkce iterace hodnot s diskontními vlastnostmi byla vyvinuta v rámci STORMu a
zahrnuje identifikaci řešitelského prostředí, segmenty rozhodování v kódu a Gauss-Seidelovu
metodu pro vylepšení výpočetních schopností. Nutnost použití PRISM formule v procesu
modelového ověřování PAYNTu představovala výzvu při obejití kroku transformace mod-
elu na bezdiskontní model. Pro překonání tohoto problému byla použita transformace
slevového faktoru s faktorem blízkým jedné. Pro kontrolu správnosti postupu je prováděno
porovnávání potenciálních optimálních vektorů mezi diskontní a bezdiskontní iterací hod-
notami. Tato studie zlepšuje zpracování slevových vlastností v nástroji PAYNT, mírně
zrychluje proces ověřování modelu a poskytuje základ pro další rozvoj nástroje PAYNT.
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Chapter 1

Introduction

In a world rife with uncertainty, the necessity for accurately modeling systems with prob-
abilistic uncertainty is continually increasing. Probabilistic model checking is a technique
situated at the intersection of artificial intelligence, computer science, and formal meth-
ods. It is primarily used for verifying the correctness of systems that include probabilistic
uncertainty, and has found applications in diverse fields such as computer networks, cy-
bersecurity, robotics, embedded systems, and even biological modeling. As systems grow
increasingly complex, the probabilistic model checking approach offers a rigorous, mathe-
matically grounded methodology to ensure that these systems behave as expected under a
range of conditions, and to pinpoint potential issues before they lead to serious failures.

The implementation of probabilistic model checking tools allows for the synthesis of
probabilistic programs that satisfy given specifications, thereby expanding the applicabil-
ity of this approach. Furthermore, as we step into an era of increasing dependence on
artificial intelligence and machine learning systems, the importance of probabilistic model
checking, with its capacity to provide detailed insights into system behavior, becomes even
more critical. This verification technique, in concert with advancements in explainable AI,
contributes to the broader goal of creating transparent, understandable, and trustworthy
AI systems.

Partially Observable Markov Decision Processes (POMDPs) provide a mathematical
framework for modeling decision-making problems where the system state is uncertain.
Finding optimal policies for these models is a critical aspect of the probabilistic model
checking process. However, it is important to note that finding an optimal policy for a
POMDP is generally undecidable, meaning there is no universal algorithm that can de-
termine the optimal policy for every possible POMDP [2]. This presents a significant
computational challenge and underscores the need for advanced techniques in the field.

Counter-example guided inductive synthesis (CEGIS), used for computing optimal poli-
cies, involves guessing a candidate solution, validating it against the initial specification,
and learning from incorrect guesses to improve subsequent ones. This approach’s primary
advantage is avoiding exhaustive traversal of all possible solutions. PAYNT (Probabilistic
progrAm sYNThesizer) is a tool that utilizes oracle-guided inductive synthesis [4].

In PAYNT, oracle-guided inductive synthesis operates as a method of learning from the
analysis of potential solutions or ”realizations“. A ”learner“ selects a realization and passes
it to an ”oracle“ which evaluates whether the realization satisfies a given specification. If it
doesn’t, the oracle provides additional information, often in the form of a counter-example
[4].
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However, PAYNT’s value iteration, a basic building block in finding optimal policies,
falls short for discounted properties when compared to the earlier proposed SARSOP algo-
rithm by Kurniawati et al., which works by approximating the space of all reachable belief
states under optimal policies [13].

In this thesis, I present an optimization for inductive controller synthesis methods ap-
plied to Partially Observable Markov Decision Processes (POMDPs) with discounted re-
wards properties. My approach focuses on integrating a novel method within STORM, the
probabilistic model checker that underpins PAYNT. This method enhances the performance
of discounted value iteration by leveraging fast and effective vector multiplication. As a
result, it offers PAYNT an optimized path that potentially bypasses the computationally
demanding step of transforming the checked model into an undiscounted form. Conse-
quently, this optimization aims to reduce the model checking time, increasing the efficiency
of finding optimal policies.

Structure

This thesis is organized as follows: In Chapter 2, we lay the groundwork for the subsequent
discussions and analyses by introducing the fundamental concepts and definitions relevant
to our study, particularly Markov Decision Processes (MDPs) and partially observable
MDPs. In Chapter 3, we delve into the complexities of Partially Observable Markov De-
cision Processes (POMDPs) and present Finite State Controllers and Inductive Synthesis
as promising approaches for synthesizing policies for POMDPs, including an introduction
to the concept of Abstraction Refinement. Then, in Chapter 4, having established the
theoretical groundwork, we explore the practical aspects of model checking, focusing on
tools significant for my work. In Chapter 5, we present the author’s contributions to the
development of the PAYNT tool, along with an experimental evaluation of the implemented
enhancements, discussing their impact on the tool’s capabilities and performance. In the
final Chapter 6, we summarize the findings of the thesis, discuss potential future work in the
area, and provide concluding remarks on the significance and implications of the research
undertaken.

5



Chapter 2

Preliminaries

Following chapter lays the groundwork for the subsequent discussions and analyses by
introducing the fundamental concepts and definitions relevant to my study. I’ll start by
providing an overview of the basic definitions and concepts, which form the foundation of
decision-making problems in the context of Markov Decision Processes (MDPs). Then we
will delve into problematics of MDPs and partially observable MDPs and inherent concepts
important to my work. The theoretical concepts discussed in this chapter have been adapted
from the book ”Algorithms for Decision Making“ authored by M. J. Kochenderfer [12].

2.1 Markov Decision Processes
In this section, we introduce the foundational concepts of Markov Decision Processes
(MDPs) and their underlying Markov Chains, covering states, actions, transitions, rewards,
and policies, which together form the basis for understanding decision-making problems un-
der uncertainty. These core ideas pave the way for our exploration of Partially Observable
Markov Decision Processes (POMDPs) and related controller synthesis methods, while also
emphasizing the connection between MDPs and the probabilistic models of Markov Chains.

2.1.1 Markov Chains

Definition 1 (Markov Chains). A Markov Chain is defined by tuple 𝑀 = (𝑆, 𝑠𝐼 , 𝑃 ) where
S is a finite set of states, 𝑠𝐼 ∈ 𝑆 is initial state and 𝑃 : 𝑆 × 𝑆 is the transition probability
matrix where

∑︀
𝑠′∈𝑆 𝑃 (𝑠, 𝑠

′) = 1.

A Markov chain is a simple state space model composed of states and probabilistic tran-
sitions between them. An agent in a Markov chain explores the state space, transitioning
from one state to another or remaining in the same state according to the transition prob-
abilities. The sum of transition probabilities from each state to all other states, including
itself, is always equal to one. By definition, a Markov chain possesses the Markov property,
which states that the future behavior of a stochastic process depends only on its current
state and not on its past history [15].

Example 1. In figure 2.1 we can see classical problem introduced by Knuth and Yao [11],
where they use a Markov chain to model a 6-sided die using coin flipping. Starting from
initial state 𝑠0, one has probability of 0.5 (heads) of transitioning to state 𝑠1 and probability
of 0.5 (tails) of transitioning to state 𝑠2. Every following state in middle layers states

6



the same, ultimately resulting in terminating states labeled 1 to 6. In span of few steps,
probability of reaching each terminating state is equal to 1/6.

Figure 2.1: Markov chain simulating six sided die

2.1.2 Markov Decision Processes

While Markov chains provide a useful tool for modeling stochastic processes with the Marko-
vian property, they lack the ability to include decision-making and goal-directed behavior,
which is reason, why Markov chains are extended by Markov decision processes (MDPs).

Definition 2 (Markov Decision Process). MDP is a tuple 𝑀 = (𝑆, 𝑠𝐼 , 𝐴, 𝑃𝑎, 𝑅𝑎), where
S is finite set of states, 𝑠𝐼 ∈ 𝑆 is initial state, A is set of actions, 𝑃𝑎(𝑠, 𝑠

′) is probability
of transitioning from state 𝑠 to state 𝑠′ when action 𝑎 is taken, and 𝑅𝑎(𝑠, 𝑠

′) is immediate
reward received upon transitioning from state 𝑠 to state 𝑠′.

Markov Decision Processes (MDPs) represent an advancement over Markov chains by
incorporating actions into the state-transition model. In MDPs, an agent, which could be
a real or hypothetical entity, performs actions to interact with the modeled system. Each
action results in a probability distribution over a subset of possible states, influencing the
transitions between states. In an MDP, the ultimate goal is usually to find an optimal policy
that can guide the decision-making of an agent within the model to optimize a specified
objective, such as maximizing the expected cumulative reward over time, minimizing a cost
function, or satisfying certain constraints.
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2.1.3 Value Function for MDP

The value function serves as a versatile tool for analyzing and resolving MDPs. The value
function assigns a real number to each state within the state space, which corresponds to
the anticipated cumulative reward an agent can achieve by following a specific policy from
a given state [12, p. 136].

Definition 3 (Value Function). Formal specification of value function is:

𝑉 (𝑠) = max
𝑎∈𝐴

[︃
𝑅(𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈𝑆

𝑃 (𝑠′|𝑠, 𝑎)𝑉 (𝑠′)

]︃
,

where 𝑠 ∈ 𝑆 is state from the state space, 𝑎 ∈ 𝐴 represent action from the action space,
𝑅(𝑠, 𝑎) is immediate reward received upon taking action a from state s, 𝑃 (𝑠′|𝑠, 𝑎) is transi-
tion probability of transition into state 𝑠′ from state 𝑠 after taking action 𝑎 and 𝛾 is discount
factor, 0 ≤ 𝛾 < 1.

The value function provides a measure of the desirability of each state, as it quantifies
the long-term reward the agent can expect by following the best possible course of action.
As such, it serves as a foundation for determining optimal policies in MDPs, as the agent
should choose actions that lead to states with higher values.

To find the optimal value function and the corresponding optimal policy, dynamic pro-
gramming algorithms such as value iteration and policy iteration are often utilized. These
algorithms use Bellman equation, a recursive relationship that the value function must sat-
isfy, to iteratively converge to the optimal solution, which we will discuss in next section.

2.1.4 Bellman Equation

The Bellman equation has strong connection with problem of determining an optimal policy
of an MDP. It defines a recursive relationship of the value function of a specific state and
the value functions of the following states. The value function represents the expected
cumulative reward that an agent can obtain from a given state while following a specific
policy. The Bellman equation is the main cornerstone in dynamic programming algorithms
like value iteration and policy iteration and is essential for calculating policies [12, p. 142].

Definition 4 (Bellman equation). In its general form, Bellman equation is defined as:

𝑉 𝜋(𝑠) =
∑︁
𝑎∈𝐴

𝜋(𝑎|𝑠)
∑︁
𝑠′∈𝑆

𝑃 (𝑠′|𝑠, 𝑎)
[︀
𝑅(𝑠′|𝑠, 𝑎) + 𝛾𝑉 𝜋(𝑠′)

]︀
where 𝑉 𝜋(𝑠) is the value function of state 𝑠 under policy 𝜋, 𝜋(𝑎|𝑠) is the probability of taking
action 𝑎 in state 𝑠 under policy 𝜋, 𝑃𝑎(𝑠, 𝑠

′) is the transition probability from state 𝑠 to state
𝑠′ when taking action 𝑎, 𝑅𝑎(𝑠, 𝑠

′) is the immediate reward received when transitioning from
state 𝑠 to state 𝑠′ after taking action 𝑎, 𝛾 is the discount factor and 𝑉 𝜋(𝑠′) is the value
function of state 𝑠′ under policy 𝜋 - the recursive part of equation.

2.1.5 Value Iteration

Having discussed value function and Bellman equation, we can now delve into the issue
of searching for optimal solutions of MDPs. Value iteration is a dynamic programming
algorithm used to find the optimal value function and policy for an MDP [12, p. 141].
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It iteratively updates the value function using the Bellman equation until convergence, at
which point the optimal value function is obtained. The update equation for value iteration
is:

Definition 5 (Value Iteration).

𝑉 (𝑖+1)(𝑠) = max
𝑎

[︃
𝑅(𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈𝑆

𝑃 (𝑠′|𝑠, 𝑎)𝑉 (𝑖)(𝑠′)

]︃
, 0 ≤ 𝛾 < 1

where 𝑉 (𝑖+1)(𝑠) denotes Value function of state 𝑠 ∈ 𝑆 in iteration 𝑖 + 1, 𝑅(𝑠, 𝑎) is reward
obtained when taking action 𝑎 ∈ 𝐴 in state 𝑠, 𝛾 is discount factor, 𝑃 (𝑠′|𝑠, 𝑎) is probability
of transfering to state 𝑠′ from state 𝑠 upon taking action 𝑎.

Algorithm 1 MDP Value Iteration Algorithm
1: procedure MDPValueIteration(𝑆,𝐴, 𝑃,𝑅, 𝛾, 𝜖)
2: Initialize 𝑉 (0)(𝑠)← 0 for all 𝑠 ∈ 𝑆
3: 𝑘 ← 0
4: while not converged do
5: for each 𝑠 ∈ 𝑆 do
6: 𝑉 (𝑘+1)(𝑠)← max𝑎∈𝐴

[︀
𝑅(𝑠, 𝑎) + 𝛾

∑︀
𝑠′∈𝑆 𝑃 (𝑠

′|𝑠, 𝑎)𝑉 (𝑘)(𝑠′)
]︀

7: end for
8: if max𝑠∈𝑆 |𝑉 (𝑘+1)(𝑠)− 𝑉 (𝑘)(𝑠)| < 𝜖 then
9: converged ← True

10: else
11: 𝑘 ← 𝑘 + 1
12: end if
13: end while
14: for each 𝑠 ∈ 𝑆 do
15: 𝜋*(𝑠)← argmax𝑎∈𝐴

[︀
𝑅(𝑠, 𝑎) + 𝛾

∑︀
𝑠′∈𝑆 𝑃 (𝑠

′|𝑠, 𝑎)𝑉 *(𝑠′)
]︀

16: end for
17: return 𝜋*, 𝑉 *

18: end procedure

For each state in model, in each iteration of value iteration, value function is updated
based on the maximum of the sum of the immediate reward for taking an action from that
state and the discounted value function of the successor states. This process continues
iteratively, until conditions of value iteration are met. Typically, the goal is to achieve
convergence of the value function, which is recognized when a desired level of accuracy,
denoted by 𝜖, is reached.

Example 2. Let’s consider simple Markov decision process on figure 2.2 with discount
factor 𝛾 = 0.9 and 𝜖 = 0.2.

To calculate first iteration of value iteration, we initialize value function for each state
as 0. Then, we iteratively apply value iteration equation for each state. Let’s compute first
iteration of value iteration.
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Figure 2.2: Simple Markov decision process

𝑉 (1)(𝑠1) = max
𝑎

[3 + 0.9 · (0.9 · 0 + 0.1 · 0),−1 + 0.9 · (0.2 · 0 + 0.8 · 0)] = 3.0 (2.1)

𝑉 (1)(𝑠2) = max
𝑎

[−10 + 0.9 · (1 · 0)] = −10.0 (2.2)

𝑉 (1)(𝑠3) = max
𝑎

[20 + 0.9 · (1 · 0)] = 20.0 (2.3)

Value function for states 𝑠4 and 𝑠5 remain 0. Now let’s continue with second iteration.

𝑉 (2)(𝑠1) = max
𝑎

[3 + 0.9 · (0.9 · (−10) + 0.1 · (20)),−1 + 0.9 · (0.2 · (−10) + 0.8 · 20)] = 11.6

(2.4)
𝑉 (2)(𝑠2) = max

𝑎
[−10 + 0.9 · (1 · 0)] = −10.0 (2.5)

𝑉 (2)(𝑠3) = max
𝑎

[20 + 0.9 · (1 · 0)] = 20.0 (2.6)

As we can see, value function for 𝑠1 has been updated, while the others have remained
unchanged. In the table below (Table 2.1), it is evident that after 5 iterations, the conver-
gence criterion is satisfied. For every state, the difference between the value functions for
iteration 5 and the previous iteration 4 is less than the specified epsilon (0.2).
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Iteration 𝑉 (𝑠1) 𝑉 (𝑠2) 𝑉 (𝑠3) 𝑉 (𝑠4) 𝑉 (𝑠5)

0 0 0 0 0 0
1 3.0 -10 20 0 0
2 11.6 -10 20 0 0
3 14.34 -10 20 0 0
4 14.706 -10 20 0 0
5 14.7354 -10 20 0 0

Table 2.1: Table 1: First five iterations of value iteration over MDP on Figure 2.2

2.2 Partially Observable Markov Decision Processes
Until now, we have not adressed uncertainty in the sense of imperfect information about
observed system. In Markov decision process, agent always has perfect knowledge about
system and its state, and based on trained policy, we can accurately predict agent’s next
move. To fully incorporate uncertainty into our model, we will use Partially observable
Markov decision processes - POMDPs. Partially observable Markov decision processes
extend MDPs by addition of observation models, reflecting the uncertainty in perception
of the environment’s true state [2].

Definition 6 (Partially Observable Markov Decision Process). POMDP is a tuple
ℳ = (𝑀,𝑍,𝑂), where the 𝑀 is Markov decision process being extended, 𝑍 is finite set
of observations, 𝑂 is (optionally deterministic) observation function that returns observa-
tion 𝑂(𝑠) = 𝑧 ∈ 𝑍 for every state 𝑠. The observation 𝑧 ∈ 𝑍 is trivial, if there is only one
state 𝑠 ∈ 𝑆 with 𝑂(𝑠) = 𝑧.

2.2.1 Example - Crying Baby Problem

To better illustrate this concept, let’s examine classic example of Partially Observable
Markov Decision Process called ”Problem of crying baby“, described in the book Algorithms
for Decision Making [12, p. 382]. Problem is defined as following:

Example 3 (Crying Baby Problem). An agent is taking care of a baby by choosing whether
to feed the baby at each timestep. Initially, the baby is hungry. When the agent chooses to
feed the baby, the probability of the baby becoming full is 100 %. If the baby is hungry and the
agent does not feed it, the baby stays hungry with a 100 % probability. When the baby is full,
there is a 10 % probability of it becoming hungry in the next timestep. However, the current
state of the baby cannot be precisely known. The baby cries with a 10 % probability when
full, whereas a hungry baby cries with an 80 % probability. When baby becomes hungry,
agent receives reward of −10, and when baby is fed, agent receives reward of −5. Discount
factor is 0.9.

From this description, we can extract formal specification of described POMDP.

• States: 𝑆 = {Hungry,Full}

• Actions: 𝐴 = {Feed,Don’t Feed}

• Transition probabilities:

– 𝑃 (Hungry|Hungry,Feed) = 0
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– 𝑃 (Full|Hungry,Feed) = 1

– 𝑃 (Hungry|Hungry,Don’t Feed) = 1

– 𝑃 (Full|Hungry,Don’t Feed) = 0

– 𝑃 (Hungry|Full,Feed) = 0

– 𝑃 (Full|Full,Feed) = 1

– 𝑃 (Hungry|Full,Don’t Feed) = 0.1

– 𝑃 (Full|Full,Don’t Feed) = 0.9

• Rewards:

– 𝑅(Feed) = −5
– 𝑅(Hungry) = −10

• Observations: 𝑍 = {Crying,Not Crying}

• Observation probabilities:

– 𝑃 (Crying|Hungry) = 0.8

– 𝑃 (Not Crying|Hungry) = 0.2

– 𝑃 (Crying|Full) = 0.1

– 𝑃 (Not Crying|Full) = 0.9

• Discount factor: 𝛾 = 0.9

This formal specification can be displayed as follows in the figure 2.3, where the arrows
symbolize that next state (𝑠𝑡+1) and reward (𝑟𝑡) depends on current state (𝑠𝑡) and action
(𝑎𝑡) taken in current timestamp, and observation (𝑜𝑡) depends on current state.

2.2.2 Beliefs and Observations

A belief state is a probability distribution over the possible states in the environment,
representing the agent’s current knowledge about the true state of the system. As the
agent interacts with the environment, it updates its belief state based on the actions it
takes and the observations it receives.

Observations in POMDPs serve as the agent’s incomplete and potentially noisy infor-
mation about the true state of the environment, which is used to model the uncertainty
inherent in these models. Unlike MDPs, the agent does not have complete knowledge of
the current state, relying instead on the gathered observations.

Belief-based algorithms, such as SARSOP, present methods for solving Partially Ob-
servable Markov Decision Processes. These algorithms leverage the concept of belief states,
which encapsulate the agent’s knowledge about the system state, providing a principled
approach to handle uncertainties. SARSOP, in particular, distinguishes itself by focusing
on the optimally reachable subset of the belief space, effectively reducing the computational
complexity [13]. However, this approach was proven less efective than inductive synthesis
[2], which we will discuss later in 3.
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Figure 2.3: Partially Observable MDP modelling the Crying Baby Problem

2.2.3 The Bayesian Update Rule

The agent updates its belief about the state of model using the observation function, taking
into account the actions performed and the observations received. To better understand
this process, let’s consider the Bayesian update rule, taken from the book Algorithm for
Decision Making [12, p. 408], that governs the transition of belief states in a POMDP:

𝑇 (𝑏′|𝑏, 𝑎) = 𝑃 (𝑏′|𝑏, 𝑎) (2.7)

=
∑︁
𝑜

𝑃 (𝑏′|𝑏, 𝑎, 𝑜)𝑃 (𝑜|𝑏, 𝑎) (2.8)

=
∑︁
𝑜

𝑃 (𝑏′|𝑏, 𝑎, 𝑜)
∑︁
𝑠

𝑃 (𝑜|𝑏, 𝑎, 𝑠)𝑃 (𝑠|𝑏, 𝑎) (2.9)

=
∑︁
𝑜

𝑃 (𝑏′|𝑏, 𝑎, 𝑜)
∑︁
𝑠

𝑃 (𝑜|𝑏, 𝑎, 𝑠)𝑏(𝑠) (2.10)

=
∑︁
𝑜

[︀
𝑏′ = Update(𝑏, 𝑎, 𝑜)

]︀∑︁
𝑠

𝑂(𝑜|𝑎, 𝑠′)
∑︁
𝑠′

𝑇 (𝑠′|𝑠, 𝑎)𝑏(𝑠) (2.11)

This equation represents the belief update process, which computes the probability of
the next belief state, 𝑏′, given the current belief state, 𝑏, the action taken, 𝑎, and the
observation received, 𝑜. The update rule incorporates both the observation function and
the transition function, ensuring that the agent’s belief state is updated accordingly as it
interacts with the environment.
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2.2.4 Bayes-Adaptive Markov Decision Process

Next I want to briefly mention Bayesian Adaptive MDPs as an example of transforming a
POMDP with continuous belief states into a discrete representation, which can facilitate
the development of more efficient algorithms and decision-making strategies.

In the book Algorithms for Decision Making, it is stated that: ”We can formulate the
problem of acting optimally in an MDP with an unknown model as a higher-dimensional
MDP with a known model. This MDP is known as a Bayes-adaptive Markov decision
process“ [12, p. 329].

In other words, we can transform a POMDP, which features an agent with uncertain
knowledge of its true state, into an equivalent MDP with an enlarged state space. By
making this transformation, we can utilize existing MDP solutions and techniques while
preserving uncertainty inherent in the model.

The state space of such MDP is product of 𝑆 × 𝐵, where 𝑆 is discrete state space of
previous POMDP and 𝐵 is the belief state space, so the state is a pair (𝑠, 𝑏), 𝑠 ∈ 𝑆 and
𝑏 ∈ 𝐵.

Transition in Bayes-adaptive MDP is defined as 𝑇 (𝑠′, 𝑏′|𝑠, 𝑏, 𝑎) – probability of transi-
tioning to state 𝑠′ with a belief state 𝑏′ assuming agent’s initial state 𝑠 with belief state 𝑏
when agent chooses action 𝑎.

2.3 POMDP Solving Methods
Finding optimal policies of partially observable MDPs can be exceptionally challenging due
to the uncertainty of agent’s knowledge of true state of environment and belief being part
of continuous space, rather than discrete state space of MDPs. In addition, the problem of
finding optimal policies is generally undecidable, meaning there is no algorithm that will
determine, for all inputs, whether the problem has a solution [2]. Various approaches can be
taken when searching for optimal policy, including exact methods, approximate methods,
online methods or reinforcement learning approaches. Because my work is based on exact
methods, I will mainly focus on them. This section of the document was primarily grounded
in the concepts presented in [5].

2.3.1 POMDP-specific Value Iteration

Previously, we discussed the Value Iteration algorithm for solving Markov Decision Pro-
cesses. In this chapter, we will explore the Value Iteration algorithm for Partially Observable
Markov Decision Processes, from which we will move onto another exact methods.

While the core idea of the Value Iteration algorithm remains the same for both MDPs
and POMDPs, there are key differences that arise due to the partial observability of the
environment in POMDPs. In MDP Value Iteration, we operate directly on the state space,
whereas in POMDP Value Iteration, we work with the belief space, which is a continuous
representation of the agent’s uncertainty about the environment.

Another important distinction is the introduction of an observation model that governs
the probability of receiving specific observations given the agent’s belief state and action.
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Algorithm 2 POMDP Value Iteration Algorithm
1: procedure POMDPValueIteration(𝑆,𝐴,𝑂, 𝑃,𝑅,𝑍, 𝛾, 𝜖)
2: Initialize 𝑉 (0)(𝑏)← 0 for all 𝑏 ∈ 𝐵 (belief space)
3: 𝑘 ← 0
4: while not converged do
5: for each 𝑏 ∈ 𝐵 do
6: 𝑉 (𝑘+1)(𝑏)← max𝑎∈𝐴

[︀
𝑅(𝑏, 𝑎) + 𝛾

∑︀
𝑜∈𝑂 𝑍(𝑜|𝑏, 𝑎)

∑︀
𝑠′∈𝑆 𝑃 (𝑠

′|𝑏, 𝑎)𝑉 (𝑘)(𝑏′)
]︀

7: end for
8: if max𝑏∈𝐵 |𝑉 (𝑘+1)(𝑏)− 𝑉 (𝑘)(𝑏)| < 𝜖 then
9: converged ← True

10: else
11: 𝑘 ← 𝑘 + 1
12: end if
13: end while
14: for each 𝑏 ∈ 𝐵 do
15: 𝜋*(𝑏)← argmax𝑎∈𝐴

[︀
𝑅(𝑏, 𝑎) + 𝛾

∑︀
𝑜∈𝑂 𝑍(𝑜|𝑏, 𝑎)

∑︀
𝑠′∈𝑆 𝑃 (𝑠

′|𝑏, 𝑎)𝑉 *(𝑏′)
]︀

16: end for
17: return 𝜋*, 𝑉 *

18: end procedure

In the POMDP Value Iteration algorithm, the main differences from the MDP Value
Iteration are the use of belief states 𝑏 ∈ 𝐵 and the observation model 𝑍(𝑜|𝑏, 𝑎). 𝐵 is
the belief space, which represents probability distributions over the underlying state space
𝑆, 𝑉 (𝑘)(𝑏) is the value function at iteration 𝑘 for a belief state 𝑏, 𝑅(𝑏, 𝑎) is the expected
immediate reward for taking action 𝑎 in belief state 𝑏. 𝑃 (𝑠′|𝑏, 𝑎) is the probability of
transitioning to state 𝑠′ given belief state 𝑏 and action 𝑎, 𝑍(𝑜|𝑏, 𝑎) is the probability of
observing 𝑜 given belief state 𝑏 and action 𝑎, 𝑉 *(𝑏′) is the optimal value function for belief
state 𝑏′ and 𝜋*(𝑏) is the optimal action to take in belief state 𝑏.

The algorithm starts by initializing the value function for all belief states to zero. Then,
it enters a loop that continues until convergence is achieved (i.e., the maximum change in
the value function is less than the specified threshold 𝜖).

In each iteration, the algorithm updates the value function for each belief state by taking
the maximum over all actions of the sum of the immediate reward and the expected future
rewards, considering both the state transition probabilities and observation probabilities.
After convergence, the optimal policy is computed by selecting the action that maximizes
the sum of immediate and expected future rewards for each belief state.

The key difference between the MDP and POMDP Value Iteration algorithms is that
the POMDP version operates on belief states instead of directly on the states of the envi-
ronment. This allows it to account for the inherent uncertainty in the POMDP setting.

2.3.2 Policy Iteration

Policy Iteration is another powerful technique for solving both Markov Decision Processes
(MDPs) and Partially Observable Markov Decision Processes (POMDPs). While the pre-
viously discussed Value Iteration method focuses on iteratively updating the value function
until convergence, Policy Iteration takes a different approach by alternately improving the
policy and evaluating it. This approach can often lead to faster convergence, as it directly
optimizes the policy rather than the value function.
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The Policy Iteration algorithm for solving MDPs and POMDPs consists of two main
steps: policy evaluation and policy improvement. The algorithm starts by initializing an
arbitrary policy 𝜋(0) and setting an iteration counter 𝑘 to zero. The algorithm then proceeds
iteratively until convergence is achieved:

Algorithm 3 Policy Iteration Algorithm
1: procedure PolicyIteration(𝑆,𝐴, 𝑃,𝑅, 𝛾)
2: Initialize an arbitrary policy 𝜋(0)
3: 𝑘 ← 0
4: while not converged do
5: Perform policy evaluation to compute 𝑉 𝜋(𝑘)

6: for each 𝑠 ∈ 𝑆 do
7: 𝜋(𝑘+1)(𝑠)← argmax𝑎∈𝐴

[︁
𝑅(𝑠, 𝑎) + 𝛾

∑︀
𝑠′∈𝑆 𝑃 (𝑠

′|𝑠, 𝑎)𝑉 𝜋(𝑘)
(𝑠′)

]︁
8: end for
9: if 𝜋(𝑘+1) = 𝜋(𝑘) then

10: converged ← True
11: else
12: 𝑘 ← 𝑘 + 1
13: end if
14: end while
15: return 𝜋(𝑘), 𝑉 𝜋(𝑘)

16: end procedure

Let us walk through this algorithm:
Policy Evaluation: In this step, the algorithm computes the value function 𝑉 𝜋(𝑘) for

the current policy 𝜋(𝑘). This can be done using various methods, such as solving a system of
linear equations, dynamic programming, or iterative methods like the Bellman Expectation
Equation. The goal of this step is to obtain an accurate estimate of the value function for
the current policy, which will be used to improve the policy in the next step.

Policy Improvement: Once the value function has been computed, the algorithm
proceeds to update the policy by selecting the action that maximizes the expected return
at each state. This is achieved by iterating through all states 𝑠 ∈ 𝑆 and choosing the action
𝑎 ∈ 𝐴 that maximizes the following expression: 𝑅(𝑠, 𝑎) + 𝛾

∑︀
𝑠′∈𝑆 𝑃 (𝑠

′|𝑠, 𝑎)𝑉 𝜋(𝑘)
(𝑠′). The

updated policy 𝜋(𝑘+1) is then obtained by assigning the chosen action to each state.
The algorithm checks for convergence by comparing the current policy 𝜋(𝑘+1) with

the previous policy 𝜋(𝑘). If the policies are identical, the algorithm is considered to have
converged, and the final policy 𝜋(𝑘) and its associated value function 𝑉 𝜋(𝑘) are returned.
Otherwise, the iteration counter 𝑘 is incremented, and the process is repeated from the
policy evaluation step.

One of the key advantages of Policy Iteration is that it often converges faster than Value
Iteration, as it directly optimizes the policy rather than the value function. However, it
may require solving more complex systems of equations during the policy evaluation step,
which can be computationally expensive for large or continuous state spaces.

2.3.3 Point Based Value Iteration

Point-based Value Iteration (PBVI) is a approximate algorithm for solving Partially Ob-
servable Markov Decision Processes, which addresses the challenges posed by continuous
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belief spaces by focusing on a finite set of representative belief points. PBVI aims to estab-
lish a balance between computational efficiency and solution quality by selectively updating
the value function only at these representative points.

Algorithm 4 Point-Based Value Iteration
Require: POMDP model (𝑆,𝐴,𝑂, 𝑇,𝑅,Ω, 𝛾), set of belief points 𝐵, max iterations 𝑁

1: Initialize 𝑉 0 = {𝛼1, 𝛼2, . . . , 𝛼|𝑆|} where 𝛼𝑖(𝑠) = 𝑅(𝑠, 𝑎𝑖)
2: for 𝑛 = 1 to 𝑁 do
3: 𝑉 𝑛 ← ∅
4: for each 𝑏 ∈ 𝐵 do
5: 𝛼*

𝑏 ← argmax
𝛼∈Γ(𝑉 𝑛−1)

∑︀
𝑠∈𝑆 𝑏(𝑠) · 𝛼(𝑠)

6: Add 𝛼*
𝑏 to 𝑉 𝑛

7: end for
8: end for
9: Derive the final policy 𝜋 from 𝑉 𝑁

In the Point-Based Value Iteration (PBVI) algorithm, the focus is on a finite set of
representative belief points 𝐵, instead of updating the value function for the entire continu-
ous belief space. This significantly reduces the computational complexity of the algorithm,
making it more efficient than Value Iteration (VI) and Policy Iteration (PI) when dealing
with large or continuous belief spaces.

The PBVI algorithm begins by initializing the value function 𝑉 0 with 𝛼-vectors corre-
sponding to the immediate rewards for each action. Then, for a given number of iterations
𝑁 , the algorithm iteratively updates the value function by selecting the best 𝛼-vector for
each belief point 𝑏 ∈ 𝐵 from the set Γ(𝑉 𝑛−1), which is the cross-sum of the 𝛼-vectors in
the previous iteration. Once the iterations are complete, the final policy 𝜋 is derived from
the resulting value function 𝑉 𝑁 .

The primary advantage of PBVI over VI and PI is its computational efficiency, as
it selectively updates the value function at a finite set of belief points rather than the
entire belief space. This allows the algorithm to scale better to large POMDPs with high-
dimensional or continuous belief spaces.

However, it is important to note that PBVI is an approximate algorithm and may
not always find the optimal policy. The quality of the solution depends on the choice of
representative belief points and the number of iterations.

2.4 Conclusion
In this chapter, we have delved into the principles of Markov Decision Processes (MDPs) and
their extension, Partially Observable Markov Decision Processes (POMDPs). These serve
as pivotal tools for decision-making optimization problems under uncertainty. MDPs enable
the modeling of complex systems and the computation of optimal policies via algorithms
like value iteration and policy iteration, which exploit the recursive nature of the Bellman
equation.

We introduced POMDPs as an advanced layer, adding observations to represent the
agent’s incomplete knowledge of the environment. We discussed belief states and the
Bayesian update rule for managing belief state transitions, capturing decision-making dy-
namics within a probabilistic framework.
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Finally, we explored three key POMDP-solving algorithms: Value Iteration, Policy
Iteration, and Point-Based Value Iteration. While the first two offer exact methods, they
may be computationally demanding for larger belief spaces. To mitigate this, Point-Based
Value Iteration provides a near-optimal solution with reduced computational complexity,
demonstrating diverse strategies to tackle decision-making under uncertainty.
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Chapter 3

Inductive Synthesis

Partially Observable Markov Decision Processes (POMDPs) pose significant challenges
when it comes to finding optimal policies, mainly due to the inherent uncertainty and the
continuous nature of belief states. Finite State Controllers (FSCs) and Inductive Synthesis
are two closely related concepts that have emerged as promising approaches for addressing
these challenges and synthesizing policies for POMDPs.

In this chapter, we will first introduce the concept of Finite State Controllers, a family of
memory structures that can represent policies for POMDPs, and discuss their properties and
advantages. Next, we will delve into the idea of Inductive Synthesis, a technique for learning
FSCs with the goal of reducing memory requirements and computational complexity while
maintaining the desired level of performance. We will introduce Abstraction Refinement
concept and mention probabilistic programming.

The theoretical framework and methodologies discussed in this chapter are largely
drawn from the research presented in ”Inductive Synthesis of Finite-State Controllers for
POMDPs“ by R. Andriushchenko, M. Češka et al. [2].

3.1 Finite State Controllers
A Finite State Controller (FSC) serves as a compact mechanism to represent policies or
control strategies for an agent operating in partially observable environments, like Partially
Observable Markov Decision Processes. FSCs are structured as directed graphs, where
nodes symbolize controller states and edges denote transitions based on actions and obser-
vations.

Finite State Controllers can be categorized as Moore machines or Mealy machines.
In the context of Moore machines, an action is associated with each node (or controller
state), whereas for Mealy machines, the action is determined by the transitions. This work
particularly focuses on Mealy machines.

Upon receiving an observation, the agent transitions from its current controller state to a
new one via the corresponding edge, executing the action linked to the new controller state.
The FSC provides a deterministic framework for decision-making, which is computationally
efficient, especially when dealing with large or continuous state spaces.

FSCs are integral to various POMDP solution methods, such as policy iteration, point-
based value iteration, and reinforcement learning algorithms, among others. The primary
objective of these algorithms is to identify an FSC that maximizes the agent’s expected
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cumulative reward over time, given the constraints of operating in a partially observable
environment.

Finite State Controllers and belief-based approaches, like SARSOP, provide distinct
strategies to handle the complexities of decision-making within Partially Observable Markov
Decision Processes (POMDPs), with FSCs offering a deterministic and computationally
efficient approach, while belief-based methods like SARSOP provide a principled and direct
way to handle uncertainty. However, in the context of efficient model checking, FSC are
better suited for the role, as they offer more compact representation of policies [2].

Definition 7 (Finite State Controller). A Finite State Controller (FSC) for a POMDP
can be formally described as a tuple: 𝐹𝑆𝐶 = (𝑁,𝑛0, 𝛾, 𝛿) where 𝑁 is a finite set of nodes
(controller states), 𝑛0 ∈ 𝑁 is the initial node, 𝛾 : 𝑁 ×𝑍 → 𝐴 is a function that determines
the action when the agent is in node 𝑛 and observes 𝑧, and 𝛿 : 𝑁 × 𝑍 → 𝑁 is a function
that updates the memory node to 𝛿(𝑛, 𝑧), when the agent is in node 𝑛 and observes 𝑧.

In an FSC, when the agent in node 𝑛 observes 𝑧, it executes the action determined
by 𝛾(𝑛, 𝑧) and transitions to the next node 𝛿(𝑛, 𝑧) as per the function 𝛿. This process
aligns with the description of the FSC as a Mealy machine, where the output (action) is
determined by the transition taken based on the observation.

3.1.1 Families of Finite State Controllers

When considering decision-making strategies in Partially Observable Markov Decision Pro-
cesses, it is valuable to explore different structures of Finite State Controllers which can be
grouped into collections, referred to as families of FSCs. These families represent various
configurations of FSCs with respect to their memory usage, providing a versatile tool for
investigating diverse policy representations.

A family of FSCs corresponds to a set of FSCs that are induced by a POMDP, yielding
a set of Markov Chains. These FSCs are categorized into two main types: full and reduced
FSCs, based on the number of memory nodes and their usage with observations.

A full k-FSC family, denoted as 𝐹𝑘 = (𝑁,𝑛0,𝐾), comprises k nodes (𝑁), an initial node
(𝑛0), and a finite set of parameters (𝐾 = 𝑁 ×𝑍) each having a domain 𝑉 (𝑛, 𝑧) ⊆ Act×𝑁 .
Each parameter helps determine the action 𝛾(𝑛, 𝑧) and the next node 𝛿(𝑛, 𝑧). In other
words, a family of full k-FSCs defines a set of FSCs varying by the substitutions of the
parameters.

On the other hand, a reduced family 𝐹𝜇, characterized by a memory model 𝜇 : 𝑍 → 𝑁 ,
is a sub-family of 𝐹𝑘 for 𝑘 = max𝑧∈𝑍 𝜇(𝑧). In this case, the number of memory nodes used
in the observation 𝑧 is given by 𝜇(𝑧). This form of family induces a smaller design space
and requires less memory, which can aid in interpretability.

3.1.2 Constraints and Optimization Specifications

Specifications are a useful tool that allow us to formally define the desirable properties and
goals of our system, thereby guiding the decision-making process of the agent. By defining
constraints as quantitative properties, we can impose specific requirements on the system’s
behavior.

These constraints can be indefinite-horizon reachability properties or expected reward
properties, with thresholds serving as the quantitative benchmarks that the system is ex-
pected to achieve. Additionally, we also define an optimization objective, which is the
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primary goal that the system aims to maximize or minimize. This can be either reachabil-
ity probabilities or expected reward properties. Together, the constraints and optimization
objective shape the behavior of the FSC, driving it towards the desired outcomes while
respecting the imposed limitations.

3.2 Inductive Synthesis
This overview of Inductive Synthesis is based on work of Andriushchenko, Češka et al. [2].
Inductive Synthesis is a technique originally developed in the context of program synthesis,
where the goal is to construct a program that provably satisfies a given formal specification.
Inductive Synthesis can be used to learn an optimal or near-optimal FSC with reduced
memory requirements and computational complexity.

The Inductive Synthesis framework for FSC learning consists of two main stages: an
outer stage, where the learner constructs a design space containing finitely many FSCs,
and an inner stage, where the teacher provides the best FSC within the design space, along
with potentially additional diagnostic information.

The learner begins with a small design space and strategically modifies it based on
the feedback obtained from the teacher. The teacher, on the other hand, determines the
best FSC within the design space using various methods, such as enumeration, branch-and-
bound [9], or mixed-integer linear programming (MILP) [1].

Both the learner and teacher have access to an additional oracle that over-approximates
the design space. This abstract design space can be efficiently analyzed as it resembles the
analysis of fully observable policies. The oracle provides constraints on what the best FSC
within the original design space can achieve, which is essential for guiding the search in
both stages.

3.3 Counterexample-Guided Inductive Synthesis
The theoretical foundations for this part of work were primarily drawn from the work of
[6].The central idea of Counterexample-Guided Inductive Synthesis (CEGIS) is to itera-
tively refine the design space by using counterexamples. These counterexamples, which are
generated from failed attempts at satisfying the specification, provide essential feedback
that helps to constrain and guide the synthesis process. This iterative process continues
until an FSC is found that meets the desired specifications, or until it is proven that no
such FSC exists within the defined design space.

The following image 3.1 represents principle of Counterexample-guided Inductive Syn-
thesis. In this context, a sketch represents a space of potential solutions, with certain parts
left unspecified. As we’ll explore later in this chapter, CEGIS progressively prunes this
solution space by iteratively refining the sketch based on counterexamples from failed veri-
fication attempts. This process continues until a solution satisfying the given specification
is found or until all possible solutions have been examined.

The following algorithm 5 represents an adaptation of the Counterexample-Guided In-
ductive Synthesis algorithm, as detailed in [3]. This revised version is designed to work with
a family of FSCs, as opposed to the original version which works with a family of Markov
Chains. The objective remains the same: to discover a realization of the FSC that fulfills
a specified reachability property, or alternatively, to return UNSAT if no such realization
can be found.
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Figure 3.1: Principle of CEGIS procedure. Image has been adapted from the paper by
Češka et al. [7].

Algorithm 5 Counterexample-guided Inductive Synthesis for FSCs
Require: A family ℱ𝑘 = (𝑁,𝑛0,𝐾) of FSCs, a reachability property 𝜙.
Ensure: Realization 𝑟 ∈ 𝑅ℱ𝑘 such that ℱ𝑘,𝑟 |= 𝜙, or UNSAT if no such realization exists.

1: procedure CEGIS(ℱ𝑘 = (𝑁,𝑛0,𝐾), 𝜙)
2: 𝜓 ← Initialize(ℱ𝑘)
3: 𝑟 ← GetRealization(𝜓)
4: while 𝑟 ̸= ∅ do
5: 𝐶 ← Verify(ℱ𝑘,𝑟, 𝑟, 𝜙)
6: if 𝐶 then
7: return 𝑟
8: end if
9: 𝜓 ← 𝜓 ∧

(︀⋀︀
𝑟∈𝐶 LearnFromConflict(ℱ𝑘,𝑟, 𝑟)

)︀
10: 𝑟 ← GetRealization(𝜓)
11: end while
12: return UNSAT
13: end procedure

The algorithm takes as input a family ℱ𝑘 = (𝑁,𝑛0,𝐾) of FSCs and a reachability
property 𝜙. The family of FSCs is composed of a set of nodes 𝑁 , an initial node 𝑛0, and
a finite set of parameters 𝐾 = 𝑁 × 𝑍. Each parameter helps determine the action 𝛾(𝑛, 𝑧)
and the next node 𝛿(𝑛, 𝑧). The reachability property 𝜙 is a formal specification that the
FSC should satisfy.

CEGIS algorithm outputs a realization 𝑟 ∈ 𝑅ℱ𝑘 such that the FSC ℱ𝑘, 𝑟 satisfies the
reachability property 𝜙. If no such realization exists, the algorithm returns UNSAT.

The function Initialize takes the family of FSCs ℱ𝑘 as an input and returns an initial
set of realizations.

The GetRealization function takes the set of realizations and returns a particular re-
alization 𝑟. This can be done in any manner, for example, by choosing a random realization
from the set.

The Verify function takes the family of FSCs ℱ𝑘, a realization 𝑟, and the reachability
property 𝜙 as inputs. It checks whether the FSC ℱ𝑘, 𝑟 satisfies the reachability property 𝜙.
If it does, it returns None. Otherwise, it returns a counterexample, which is a subsystem
of the FSC that violates the reachability property.
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The LearnFromConflict function takes the family of FSCs ℱ𝑘 and a counterexample
as inputs. It returns a set of constraints that exclude the invalid realization from the set
of realizations. These newly generated constraints, when combined with the existing ones,
prevent the algorithm from considering similar invalid realizations in subsequent iterations,
thereby refining the search space towards valid solutions.

3.4 Counterexample-Guided Abstraction Refinement
Counterexample-Guided Abstraction Refinement (CEGAR) is a powerful technique in the
field of formal verification [8]. It is designed to increase the efficiency of system verification
by working with simplified or abstracted versions of the system model. The key idea behind
CEGAR is to iterate between two phases: abstraction, where the system model is simplified,
and verification, where the simplified model is checked against a specific specification. If
the model fails to meet the specification, a counterexample is produced that guides the
refinement of the abstraction in the next iteration. Through this iterative process, CEGAR
allows for the verification of complex systems without having to examine every single detail
of the system in every iteration.

CEGAR is particularly beneficial when dealing with large and complex systems where
traditional verification methods would be computationally expensive or practically infea-
sible. By focusing on abstracted models and only refining these models when necessary,
CEGAR significantly reduces the computational burden. This technique is widely used in
software model checking, hardware verification, and control synthesis.

3.5 Probabilistic Programs
Probabilistic programs are an advanced modelling framework utilized to depict systems
that include elements of stochastic uncertainty. They aim to satisfy a set of temporal
constraints that define their correctness and efficiency. During the early stages of system
design, these programs often remain incomplete or contain ’holes’, representing undefined
or partially implemented components. This necessitates a process called design space ex-
ploration, which involves analyzing and filling these holes with appropriate behaviors or
subsystems. A significant challenge in this process is to efficiently represent and reason
about various possible designs or ’realizations’. To address this, the concept of ’sketching’
is often employed, providing a concise representation of the family of potential designs. This
section is based on the theory and methodology outlined in Paynt: A Tool for Inductive
Synthesis of Probabilistic Programs by Andriushchenko, Češka et al. [4].

3.6 Conclusion
In this chapter, we have established the foundational concepts necessary to comprehend
the nuances of inductive synthesis. Our discussion commenced with an exploration of
finite-state controllers, elaborating on their family structures, constraints, and optimiza-
tion objectives. Subsequently, we ventured into the problematics of inductive synthesis,
with a specific focus on the Counterexample-Guided Inductive Synthesis (CEGIS) and
Counterexample-Guided Abstraction Refinement (CEGAR) methodologies.

Furthermore, we introduced the concept of probabilistic programs, a key aspect in
understanding the broader context of formal verification. This discussion served as a step-
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ping stone to our examination of specific examples of formal model checking tools, namely
Prism, Storm, and Paynt. Through this concise overview, we have paved the way for
deeper exploration and application of these essential tools and techniques in next chapter.
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Chapter 4

Exploring Formal Methods Tools:
PRISM, STORM and PAYNT

Having laid the theoretical groundwork in the preceding chapters, we are now well prepared
to delve into the practical nuances of model checking. In this chapter, we will focus on some
of the most prominent tools in this domain: PRISM, a renowned tool for formal modeling
and analysis; STORM, a formidable stochastic model checker; and PAYNT, a probabilistic
program synthesizer. The optimization of PAYNT, in particular, will be the main focus of
our discussion, as it forms the primary objective of this work.

4.1 PRISM
The information presented in this section has been gathered from the following sources
[16, 14]. According to the official PRISM model checker manual [16]: ”PRISM is a prob-
abilistic model checker, a tool for formal modelling and analysis of systems that exhibit
random or probabilistic behaviour. It has been used to analyse systems from many differ-
ent application domains, including communication and multimedia protocols, randomised
distributed algorithms, security protocols, biological systems and many others.“

PRISM is a versatile probabilistic model checker that supports a wide variety of proba-
bilistic models, including discrete-time Markov chains (DTMCs), continuous-time Markov
chains (CTMCs), Markov decision processes (MDPs) or Partially observable Markov deci-
sion processes (POMDPs). These models are defined using the PRISM language, which is
a state-based language designed for simplicity and effectiveness.

PRISM allows for the automated analysis of numerous quantitative properties related
to these models, such as failure probabilities within specified timeframes, worst-case error
probabilities across all possible configurations, expected queue sizes, and worst-case ex-
pected termination times. This is facilitated through the property specification language
of PRISM, which incorporates temporal logics like PCTL, CSL, LTL and PCTL*, and
includes extensions for quantitative specifications and costs/rewards.

4.1.1 PRISM language

The PRISM language, based on the Reactive Modules formalism of Alur and Henzinger,
is a simple, state-based language used to specify the models that PRISM supports for
construction and analysis. The language is constructed from fundamental components
called modules and variables. A model in PRISM is composed of several modules, each
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containing local variables. The state of a module is determined by the values of these local
variables at a given time, and the global state of the model is the aggregate of the local
states of all modules.

The behavior of each module is dictated by a set of commands. A command consists of
a guard, which is a predicate over all variables in the model, and a set of updates. If the
guard’s conditions are met, the module can make a transition, which is specified by each
update. Each update not only provides the new values of the module’s variables (potentially
as a function of other variables) but also assigns a probability or a rate to the corresponding
transition. Commands can optionally include an action for annotation or synchronization
purposes.

Presented below is an example of a simple Markov Decision Process described using
the PRISM language, sourced directly from the PRISM manual [16]. The accompanying
explanation of the code, also quoted from the manual, describes the functioning of the
system modeled by the code:

Example 4. ”Consider a system comprising two identical processes which must operate
under mutual exclusion. Each process can be in one of 3 states: 0,1,2. From state 0, a
process will move to state 1 with probability 0.2 and remain in the same state with probability
0.8. From state 1, it tries to move to the critical section: state 2. This can only occur if
the other process is not in its critical section. Finally, from state 2, a process will either
remain there or move back to state 0 with equal probability.“

mdp

module M1

x : [0..2] init 0;

[] x=0 -> 0.8:(x’=0) + 0.2:(x’=1);
[] x=1 & y!=2 -> (x’=2);
[] x=2 -> 0.5:(x’=2) + 0.5:(x’=0);

endmodule

module M2

y : [0..2] init 0;

[] y=0 -> 0.8:(y’=0) + 0.2:(y’=1);
[] y=1 & x!=2 -> (y’=2);
[] y=2 -> 0.5:(y’=2) + 0.5:(y’=0);

endmodule

In this example, we can see how the concept of mutual exclusion, as well as dynamic
behaviours within models supported by PRISM, can be succinctly expressed using the PRISM
language.
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4.1.2 Reward-based Properties in PRISM

Given that reward mechanisms are central to my work, let’s explore the different reward-
based properties implemented within the PRISM language.

PRISM allows for models to be supplemented with rewards or costs, providing the
capability to analyze properties associated with these expected values. A variety of reward
properties can be defined and analyzed, including reachability reward, co-safe LTL reward,
cumulative reward, total reward, instantaneous reward, and steady-state reward.

Reachability Rewards: Reachability reward properties pertain to the rewards accu-
mulated along a model path until a specified point is reached. For example, the reward
property ”F prop“ signifies the reward accumulated along a path until a state satisfying
the property ’prop’ is reached. This type of property is commonly used when model re-
wards correspond to time, allowing for the expectation of time to reach a certain state to
be expressed.

Example 5. For a simple illustration, consider the following formula:

R{"rew0"}max=? [F "target"]

This represents a query for the maximum possible accumulated value in the data variable

”rew0“ when the agent reaches the state labeled ”target“.

Cumulative and Total Rewards: Cumulative reward properties denote the reward
accumulated along a model path until a given time has passed, as denoted by the property
C<=t. Total reward properties, on the other hand, refer to the indefinite accumulation
of rewards along a path. Unless a path consistently stays in states with zero rewards, the
total reward will be infinite.

For example, a query that computes the expected total cumulative reward over the
entire run of model is written as follows:

R=? [ C ]

Steady-State Rewards: Steady-state reward properties relate to the long-term re-
ward in the model. A common application of this type of property is when model rewards
correspond to resources like power consumption.

4.2 STORM
Information about STORM have been sourced from the paper ”The probabilistic model
checker STORM“ by Hensel, Junges, and Katoen [10].

STORM is a sophisticated probabilistic model checker that is designed to tackle the veri-
fication of systems that incorporate stochastic uncertainty. This tool, which stands out with
its unique features, supports the analysis of both discrete and continuous-time variations of
Markov chains and Markov decision processes. STORM accepts multiple input languages
for Markov models, including PRISM and JANI modeling languages, dynamic fault trees,
generalized stochastic Petri nets, and the probabilistic guarded command language, thereby
offering a wide range of applicability.

The tool is distinguished by its modular setup that allows for the easy exchange of solvers
and symbolic engines. This flexibility complements its Python API, which enables rapid
prototyping by encapsulating STORM’s high-speed and scalable algorithms. STORM thus
provides a comprehensive toolkit for the quantitative evaluation of system performance
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alongside correctness, making it an invaluable asset in the realm of probabilistic model
checking.

The quantile plot depicted in 4.1 from the study ’The probabilistic model checker
STORM’ [10], illustrates how STORM outperforms other model checkers, solving more
benchmark instances and generally doing so faster.

Figure 4.1: Graph depicting the performance of STORM compared to other model checkers,
as detailed in the study ’The probabilistic model checker STORM’ [10].

4.2.1 Architecture of STORM

STORM’s architecture is designed for performance and modularity, with the logical struc-
ture of the software divided into various libraries and executables, all dependent on the
core ’storm’ library. It features two different in-memory representations of Markov models:
sparse matrices and Multi-Terminal Binary Decision Diagrams (MTBDDs). Sparse ma-
trices, which use memory roughly proportional to the number of transitions with nonzero
probability, are suited for small to medium-sized models, while MTBDDs are better suited
for larger models due to their ability to store models compactly.

An interesting aspect of STORM’s architecture is the concept of solvers. The tasks
related to probabilistic verification often revolve around solving subproblems, and STORM
provides abstract interfaces for different solver types that facilitate the solution of these sub-
problems. It currently includes multiple implementations for each solver interface, further
enhancing the tool’s flexibility.

STORM is primarily written in C++, with extensive use of template meta-programming.
This coding choice allows for high performance through fine-grained control over implemen-
tation details like memory allocations and enables type-dependent optimizations at compile
time. A large part of the code is written agnostic of the data type (floating point, rational
number, or even rational functions), with only the core parts specialized based on the data
type.

However, the use of C++ and advanced templating patterns can also present challenges.
While it permits easy interfacing with high-performance solvers and data structure libraries,
it can be difficult to understand for those unfamiliar with advanced templating patterns and
can significantly increase compile times. Despite these challenges, the overall architecture
of STORM demonstrates a powerful and flexible approach to probabilistic model checking.
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STORM also leverages Python bindings to extend its functionality and accessibility. By
employing pybind11, a lightweight header-only library that exposes C++ types in Python
and vice versa, STORM is able to offer a Python interface. This allows for use-cases where
scripting in Python is preferred to utilize the power and performance of STORM’s C++
architecture.

4.2.2 POMDP Analysis in STORM

STORM exhibits notable capabilities in the analysis of Partially Observable Markov De-
cision Processes. It supports three methods for POMDP analysis including (quantitative)
reachability verification, policy synthesis under observation-based policies with a fixed mem-
ory, and qualitative variant of reachability. These methodologies enable STORM to handle
nondeterminism and synthesize policies even in complex, real-world systems where non-
determinism is controllable. These features are particularly important for systems where
decision-making is based on incomplete or imperfect observations, further broadening the
range of applications STORM can handle.

4.3 PAYNT
This section introduces and discusses PAYNT, an innovative tool that automates the syn-
thesis of finite-state probabilistic programs. Developed by R. Andriushchenko and M.
Češka, PAYNT represents a significant leap forward in the sphere of probabilistic program
synthesis, using program sketches to describe a finite family of program candidates [4].
At the heart of this tool lies a powerful synergy between inductive oracle-guided methods
and advanced probabilistic model checking, enabling PAYNT to reason about all potential
program candidates effectively. This section explores the inner workings of PAYNT and its
performance in different application domains.

4.3.1 Architecture of PAYNT

PAYNT’s architecture 4.2 is built upon the probabilistic model checker, Storm, utilizing
a Python API for the synthesis loop’s flexible construction, with the high-performance
components implemented in C++. The tool accepts either a PRISM or JANI sketch along
with a set of temporal properties, and provides a satisfying realization, if available, or
reports the absence of such realization [4].

The architecture of PAYNT is organized into multiple modules, including family han-
dlers, chain builders, and model checkers, among others. Family handlers store data about
the previously explored design space, employing various methods such as member enumer-
ation and SAT representation. Chain builders generate representations of Markov chains
or quotient MDPs based on the provided realizations, which are then verified by the model
checkers.

PAYNT also incorporates counterexample generation, using either a MaxSat or a greedy
state-expansion approach. It operates through three analysis loops—1-by-1 enumeration,
CEGIS, and AR—each with a different approach to the exploration of realizations. The
hybrid approach, in particular, combines AR and CEGIS approaches, alternating between
the two mid-execution for a comprehensive analysis.
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Figure 4.2: Diagram illustrating the architecture of the PAYNT tool, as presented in the
paper PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs [4].

4.3.2 Efficient Synthesis Using PAYNT

The utilization of PAYNT can be demonstrated through a synthesis problem originally
listed in PAYNT article [4]. This problem involves a request-processing server with a queue
capacity of 𝑄𝑚𝑎𝑥, captured in image 4.3. When the queue is full, incoming requests are
discarded. The server has three power states – sleeping, idle, and active, with the latter
being the only one that processes requests. Transitioning from lower-energy states to active
requires additional energy and time. The server’s power consumption during processing
depends on the queue size, and the server’s operational time is random but limited.

Figure 4.3: The server for request processing [4].

Control over the server’s power state is in the hands of a power manager (PM), which
determines the power state based on the current queue size, divided into four occupancy lev-
els set by thresholds T1, T2, and T3. Each threshold is a parameter representing a fraction
of the queue capacity, and each is associated with a power profile P1 to P4, corresponding
to the three power states.

PAYNT operates on a sketch – a PRISM or JANI language program with undefined
parameters (holes). Each module in the program has variables and state transitions, ex-
pressed as guarded commands. When a guard condition is met, variables are updated based
on a probabilistic distribution. The sketch inputs include the queue capacity (𝑄_𝑚𝑎𝑥 ∈
{1, . . . , 10}), thresholds (𝑇1 ∈ {0, 0.1, 0.2, 0.3, 0.4}, 𝑇2 ∈ {0.5}, 𝑇3 ∈ {0.6, 0.7, 0.8, 0.9}),
and corresponding power profiles (P1 to P4 ∈ {0, 1, 2}), leading to a design space of 16,200
different power managers.

PAYNT’s objective is to instantiate the holes such that power consumption is minimized
and the expected number of lost requests is less than 1. Given a sketch and a specification,
PAYNT searches the design space for a hole assignment that satisfies the specification, or
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reports that none exists. For example, PAYNT found an optimal power manager config-
uration in just one minute, three times faster than naive enumeration. Furthermore, in
a complex problem with about 43M solutions, PAYNT found the optimal power manager
within 10 hours, compared to over a month using enumeration [4].

4.3.3 Algorithmic overview of PAYNT

Presented below is an overview of the procedural steps involved in the PAYNT algorithm.

Algorithm 6 PAYNT
1: procedure PAYNT(sketch, properties)
2: Load the sketch and properties.
3: Initialize the appropriate synthesizer.
4: Synthesize an assignment for the design space of the problem.
5: If a valid assignment is synthesized, build a Markov chain from it.
6: Check the satisfiability of the assignment against the problem’s specification.
7: if Synthesis was able to find a solution then
8: Use the synthesized assignment and its satisfiability.
9: else

10: Split the problem into smaller subfamilies
11: Repeat the process from step 6 for each.
12: end if
13: for each sub-problem do
14: Verify feasibility of sub-problem.
15: Analyze each sub-problem to determine if it can be improved
16: if a sub-problem can be improved then
17: Find an improving assignment
18: else
19: Explore other branches of the problem space.
20: end if
21: end for
22: end procedure

The PAYNT algorithm proceeds through several steps to solve a given problem using
sketch and properties. Firstly, the sketch and properties are loaded into the system, which
represents the initial problem. Then, an appropriate synthesizer is initialized to generate
potential solutions for the problem.

The synthesizer begins by trying to synthesize an assignment for the design space of the
problem. If a valid assignment is synthesized, the algorithm builds a Markov chain from
this assignment. It then checks the satisfiability of the assignment against the problem’s
specification.

If the synthesized assignment is a solution to the problem, the algorithm uses the syn-
thesized assignment and its satisfiability.

However, if the synthesizer does not find a solution in the initial attempt, it splits the
problem into smaller subfamilies. It then repeats the process of synthesizing an assignment
and checking its satisfiability for each subfamily.

For each sub-problem (subfamily), the algorithm verifies the feasibility of the sub-
problem and analyzes it to determine if it can be improved. If a sub-problem can be
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improved, the algorithm finds an improving assignment for it. If it cannot be improved,
the algorithm explores other branches of the problem space.

This procedure continues until either a satisfactory solution is found or all branches of
the problem space have been explored.

4.4 Conclusion
In conclusion, PRISM, STORM, and PAYNT each bring unique and powerful capabilities
to the table in the field of probabilistic model checking and program synthesis. PRISM’s
robust language and model checking capabilities provide a solid foundation, handling a wide
variety of probabilistic models. STORM takes this further, offering a highly performant
and extensible framework that deals with larger models and complex properties with great
efficiency. PAYNT takes advantage of both worlds. It not only leverages the PRISM
language for its inductive synthesis technique of probabilistic programs but also utilizes
STORM’s computational power for efficient exploration of design spaces and delivery of
optimal solutions. Each of these tools has its strengths, and together, they comprise a
comprehensive toolkit for addressing a wide range of challenges in probabilistic modeling
and synthesis. Their combined capabilities pave the way for exciting future advancements
in this field [14, 10, 4].
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Chapter 5

Implementation and Experimental
Evaluation

In this chapter, I aim to comprehensively articulate contributions to the development of
the PAYNT tool made throughout this work. This exploration will include a experimental
evaluation of the implemented enhancements. The intention is to discuss the impact of
these changes and their role in advancing the tool’s capabilities and performance.

5.1 Discount Factor Transformation
The primary objective of this thesis is to address an identified limitation within the PAYNT
tool, specifically, the issue of discount factor transformation. This section of the present
chapter is devoted to elucidating this concept and detailing the specific concerns associated
with it in the context of PAYNT.

In the context of Markov decision processes (MDPs), the discount factor 𝛾 plays a crucial
role in determining the trade-off between immediate and future rewards. To transform a
discounted MDP into an undiscounted one, a sink state was introduced. A sink state is an
absorbing state where the process remains once it is entered, with no possibility of leaving.
In the transformed MDP, we add transitions to this sink state for every existing state, with
a probability of (1−𝛾). Simultaneously, we scale the rewards of all transitions by a factor of
𝛾. Consequently, the transformed MDP now operates in an undiscounted setting (𝛾 = 1),
while preserving the essence of the original discounted problem. By doing so, we effectively
capture the essence of the discount factor through the sink state, enabling the utilization
of undiscounted MDP algorithms for solving the original problem.

In following example, discount factor transformation is displayed on specific values.

Example 6. Let’s consider simple Markov chain with three states, as depicted on 5.1 with
discount 𝛾 = 0.9.
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Figure 5.1: Simple Markov chain before application of discount factor transformation

To apply discount factor transformation, we add new state (”sink state“) and transitions
from each of previous states into sink states with transition probability of 1− 𝛾 = 0.1. All
rewards are multiplied by 𝛾 and all previous transition probabilities are also multiplied by
𝛾. Markov chain now fully operates in an undiscounted setting. Result is shown in 5.2.

Figure 5.2: Simple Markov chain after applying discount factor transformation

However, it is important to note that this transformation inevitably increases the size of
the model. The addition of new transitions to the sink state from all existing states results
in a more complex model, which can present challenges when processing or analyzing the
MDP. Larger models are inherently more difficult to work with due to their increased
computational demands and the greater potential for complexity in their structure and
dynamics.

5.2 Discounted Value Iteration
The primary objective of this research was to address a key limitation of PAYNT concerning
the handling of discounted properties. This was accomplished by extending the functionality
of the STORM tool to incorporate the discounted variant of the value iteration method.
This task was fraught with multiple challenges. Specifically, it necessitated the expansion
of data classes within PAYNT and the addition of Python bindings to STORM, thereby
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ensuring an interface between the Python scripts and the STORM library. Furthermore,
it also required the implementation of abstract template methods, which was essential to
ensure conformity with the existing structure of STORM.

5.2.1 Discount Factor

In the original PAYNT pipeline, the model was parsed and transformed prior to being
checked, resulting in the discount factor becoming redundant during the subsequent value
iteration stage. To ensure the accessibility of the discount factor throughout the entire
process of model checking, I introduced a series of extensions and modifications.

The first step was to augment the MinMaxSolverEnvironment class in PAYNT with an
additional attribute named discount. This attribute required corresponding getter and
setter methods, which were defined within the MinMaxSolverEnvironment in STORM.
Finally, I established a connection between STORM and the Python scripts by creating a
binding in STORMPY.

Through these modifications, the discount factor was made readily available during all
stages of the model checking process, significantly enhancing the versatility and effectiveness
of the PAYNT tool.

5.2.2 Value Iteration Enhancement

With the discount factor now accessible throughout the model checking process, I was able
to proceed with the development of the discounted value iteration function. A preliminary
step was to identify the appropriate solver environment, given the multiple minmax solver
environments implemented within STORM. The IterativeMinMaxLinearEquationSolver
was established as the environment in use.

My next task was to identify a section of the code where the program could discern
whether or not the discount factor was being utilized. If the discount was not in use, the
process should continue with the undiscounted value iteration. Conversely, if the discount
was in play, the discounted version of value iteration should be used.

I pinpointed this critical juncture in the solveEquationsValueIteration function,
which controls the execution of the value iteration. I introduced a decision-making condition
that checks whether the discount factor differs from 1. If this is the case, the discounted
value iteration is initiated by calling the newly added performValueIterationDiscounted
method. This effectively integrates the use of discounted value iteration within the existing
framework of STORM.

Delving further into the code, I discovered that Gauss-Seidel multiplication was em-
ployed to enhance STORM’s computational capabilities. This operation ultimately triggers
the MultiplyAndReduceBackwardDiscounted method, a template function which imple-
ments pointer arithmetic and vector multiplication - foundational elements of value itera-
tion.

The discount factor is passed down to this level, ensuring its inclusion in the most critical
computational step. By integrating the discount factor into the heart of the computation
process, I ensured its impact was felt throughout the entirety of the value iteration, thereby
advancing the overall capacity of the PAYNT tool in handling discounted properties.
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5.2.3 Limitations of STORM

Upon implementing the discounted value iteration, my next step was to attempt to bypass
the discount factor transformation step, relying solely on the newly integrated discounted
value iteration. However, I encountered a challenge. For PAYNT to effectively check the
model on which value iteration is applied, it requires a PRISM formula. This formula,
parsed within STORM, serves as a determinant for the properties that are being checked.
Therefore, the elimination of the discount factor transformation step was not feasible, as it
would compromise the integrity of the model checking process.

With the optimality objective defined as R[exp]”reward“max=?[F ”discount_sink“],
STORM essentially seeks the maximum expected reward that can be accumulated, given
optimal action choices, before reaching a state labeled ’discount_sink’. After the removal
of the discount factor transformation, this ’discount_sink’ state was no longer present in
the model. Consequently, I attempted to utilize other formulas, such as those concerning
steady state or total cumulative reward, which query about rewards over an infinite time
horizon. However, I discovered that these formulas were not yet implemented within the
STORM framework.

5.2.4 Evaluation of Discounted Value Iteration

Incorporating additional optimality objectives into STORM extended beyond scope of this
project, presenting a significant challenge. To bypass this issue and test the functionality of
my implementation, I chose to employ the discount factor transformation once more, albeit
with a discount factor approaching one (0.99999...) to mimic as closely as possible the
behavior of the untransformed model. This step, however, meant sacrificing the benefits
of model size efficiency for the chance to validate the outcomes of the discounted value
iteration. The value iteration process generates vectors of potential optima at each iteration,
from which the appropriate optimum is later selected by PAYNT. As such, I decided to
compare these vectors between the discounted and undiscounted value iterations.

5.3 Experimental Evaluation
In the Experimental Evaluation section, we conduct an in-depth analysis of various models,
focusing on the model’s optima, the error associated with the Discounted Value Iteration
(Discounted VI) in comparison to the Value Iteration with Discount Factor Transformation
(VI + DTF), and the time difference required for model checking. These evaluations were
performed using models available in the PAYNT’s GitHub repository1.

A summary of these experiments is presented in Table 5.1. This table provides a sample
of the models tested, detailing the optimum value, the absolute error by which Discounted
VI differs from VI + DTF, and the respective original time and improvement with Dis-
counted VI for each model.

It is critical to highlight that the results of the Discounted VI synthesis are skewed due
to the presence of the discount factor transformation, a necessity previously discussed in
Section 5.2.4.

1Accessible at https://github.com/randriu/synthesis
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Model Name Model Optimum Error Original Time [s] Improvement [s]
1d.noisy 1.0693 0.0000 1.6763 0.2179
4x5x2.95 0.2323 0.0142 1.7600 0.2202
shuttle.95 18.8960 0.0000 1.7025 -0.1149
cheng.D5-1 64899.0102 5447.7890 20.2912 -0.2396
stand-tiger.95 0.0 69.2908 2.0791 -1.1588
ejs5 1.0 0.0 1.7848 0.2889
cheng.D3-4 61510.4417 9449.3947 5.0684 1.0694
web-mall 0.4005 0.0 1.8546 -0.0245
cheese.95 0.6523 0.1025 1.7507 -0.0209
network 82.9761 62.3134 1.8036 -0.1218
ejs6 1.0 0.0 2.0416 0.2015
4x4.95 0.5167 0.0383 1.9749 0.0701
learning.c2 1.0182 0.4111 8.4710 3.9977
1d 0.9536 0.0 2.045 0.1575
concert 0.0 0.0 1.9391 0.0717
ejs7 1.0 0.0007 1.7914 -0.1205
ejs2 15156.5455 0.0159 2.3354 -0.0920
ejs1 25003.3153 0.0 2.1903 0.1207
cheng.D3-5 117600.8146 0.0714 2.8518 0.1853
line4-2goals 0.4658 0.0 1.9216 0.0575
milos-aaai97 29.4586 1.0924 49.0348 46.9239
mini-hall2 2.5581 0.9625 1.9629 0.0254
cheng.D3-1 74656.3104 5025.017 5.9109 1.7440
4x3.95 0.4418 0.6189 2.1347 -0.9012

Table 5.1: Results for selected models.

To facilitate comprehension of the table, we provide some statistical measurements:
The median error of the Discounted VI is 4.92 %, while the mean time improvement of the
Discounted VI over the VI + DTF is 2.1067 s, with a median time improvement of 0.0962 s.
On average, the Discounted VI took 3.297 s for model checking, while the VI + DTF took
5.4037 s.

The results suggest that the Discounted Value Iteration (Discounted VI) method delivers
results of sufficient precision. However, to determine its absolute precision, we would need
to test the Discounted VI without the involvement of discount factor transformation, a
process which is not currently feasible. Moreover, it can be deduced from the results that
Discounted VI doesn’t hinder the model checking process. On the contrary, it appears to
enhance the speed of the process, albeit marginally.
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Chapter 6

Final Considerations

In this thesis, my primary objective was to optimize the synthesis of POMDP controllers
with discounted reward properties. My initial efforts were focused on understanding the
current state-of-the-art methods in model checking, with particular emphasis on abstraction
refinement and inductive synthesis. Subsequently, I delved into the realm of existing proba-
bilistic model checking tools to gain a comprehensive understanding of their functionalities
and limitations. In the next phase, I proposed an optimization strategy for the PAYNT
tool by incorporating a discounted value iteration method within the STORM tool. Upon
successful implementation, a modest increase in the speed of the model checking process
was observed, indicating that this approach surpasses the previous one in terms of efficiency.
It can be inferred that eliminating the discount factor transformation step would further
enhance this process.

Future enhancements to the approach I’ve proposed are both necessary and promis-
ing. Within the context of STORM, there is potential for the implementation of additional
optimality objectives, which could broaden the tool’s applicability. As for PAYNT, a signifi-
cant advancement could be achieved by successfully eliminating the need for discount factor
transformation, which would streamline the process and further optimize the synthesis of
POMDP controllers.
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