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Abstract 
Probabi l is t ic model checking is essential for verifying systems i n diverse domains. A key 
l imi ta t ion of the P A Y N T tool , which synthesises probabil ist ic programs satisfying given 
specifications, lies i n its handling of discounted properties. Th is thesis extends the S T O R M 
framework upon which P A Y N T is bui l t , incorporat ing the discounted value i teration method 
wi th in inductive synthesis process to address this issue. The discounted value i teration func­
t ion was developed wi th in S T O R M , involving solver environment identification, decision­
making segments i n the code, and Gauss-Seidel mul t ip l ica t ion for enhanced computat ional 
capabilities. The necessity for a P R I S M formula i n P A Y N T ' s model checking process pre­
sented challenges for bypassing the discount factor transformation step. To overcome this, a 
discount factor transformation wi th a factor close to one was employed, comparing potential 
opt ima vectors between discounted and undiscounted iterations. This study improves dis­
counted property handling i n P A Y N T and the S T O R M framework, providing a foundation 
for further advancements i n the development of P A Y N T . 

Abstrakt 
P r a v d ě p o d o b n o s t n í kontrola m o d e l ů je nezbytnou součás t í verifikace s y s t é m ů v různých 
p ros t řed ích . Klíčová l imitace n á s t r o j e P A Y N T , k t e r ý syntetizuje p r a v d ě p o d o b n o s t n í pro­
gramy splňující danou specifikaci, leží v jeho zacházen í s d i skon tn ími vlastnostmi. Tato 
p ráce rozšiřuje r á m e c n á s t r o j e S T O R M , na n ě m ž je postaven P A Y N T , i m p l e m e n t a c í d i skon tn í 
iterace hodnot v r á m c i procesu i n d u k t i v n í syntézy. D i skon tn í iterace hodnot byla implemen­
t o v á n a v r á m c i S T O R M u , vče tně identifikace v h o d n é h o p r o s t ř e d í pro řeši te le , rozhodovac ích 
s e g m e n t ů v k ó d u a Gauss -Se ide lovým n á s o b e n í m pro vy lepšené v ý p o č e t n í schopnosti. Nezbyt­
nost použ i t í vzorce v jazyce P R I S M v r á m c i kontroly m o d e l ů v P A Y N T u p ředs t avu je 
p r o b l é m pro v y n e c h á n í d i skon tn í transformace, k t e r á z těžuje kontrolu modelu. Pro to 
byla d i skon tn í transformace p o n e c h á n a s d i s k o n t n í m faktorem b l í zkým k j edné , a jsou 
p o r o v n á v á n y hodnoty po tenc i á ln í ch opt im, k t e r é v rac í d i skon tn í a ned i skon tn í iterace hod­
not. Tato p r á c e zlepšuje p rác i P A Y N T u a S T O R M u s d i skon tn ími hodnotami a poskytuje 
zák lad pro dalš í pokroky ve vývoji P A Y N T u a S T O R M u . 
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Rozšířený abstrakt 
Ve světě p l n é m nejistoty s tá le n a r ů s t á p o t ř e b a p ře sného mode lován í s y s t é m ů s p r a v d ě p o d o b ­
nos tn í nejistotou. P r a v d ě p o d o b n o s t n í ověřování m o d e l ů je technika, k t e r á se nacház í 
na p o m e z í umě lé inteligence, informatiky a formálních metod. Je p řevážně použ íváno k 
ověřování sp r ávnos t i sy s t émů , k t e r é zahrnu j í p r a v d ě p o d o b n o s t n í nejistotu, a nacház í uplat­
něn í v různých oblastech, jako jsou poč í t ačové sí tě , k y b e r n e t i c k á bezpečnos t , robotika, ves­
t a v ě n é s y s t é m y a dokonce i biologické mode lován í . Vzhledem k ros touc í s loži tost i s y s t é m ů 
poskytuje p ř í s t u p p r a v d ě p o d o b n o s t n í h o ověřování m o d e l ů pevnou matematickou metodologii , 
k t e r á zajišťuje, že tyto s y s t é m y se chovají tak, jak se očekává za r ů z n ý c h p o d m í n e k , a 
umožňu je odha lován í po tenc iá ln í ch p r o b l é m ů p ř e d t í m , než vedou k v á ž n ý m se lhán ím. 

Implementace n á s t r o j ů pro p r a v d ě p o d o b n o s t n í ověřování m o d e l ů umožňu je syn t ézu 
p r a v d ě p o d o b n o s t n í c h p r o g r a m ů , k t e r é splňují d a n é specifikace, č ímž rozšiřuje použ i t e lnos t 
tohoto p ř í s t u p u . Navíc , v d o b ě , kdy se s t á v á m e s tá le více závis lými na sys t émech umělé 
inteligence a s t ro jového učení , n a b ý v á p r a v d ě p o d o b n o s t n í mode lován í j e š t ě vě t š ího výz­
namu. Díky své schopnosti poskytovat p o d r o b n é informace o chování s y s t é m ů př i sp ívá tato 
ověřovací technika, spolu s pokroky v oblasti vysvě t l i t e lné u mě lé inteligence, k vy tvo řen í 
t r a n s p a r e n t n í c h , s rozumi te lných a d ů v ě r y h o d n ý c h s y s t é m ů u mě lé inteligence. 

Č á s t e č n ě pozorova te lné Markovovy rozhodovac í procesy ( P O M D P ) posky tu j í matem­
a t ický r á m e c pro mode lován í rozhodovac ích p r o b l é m ů , kde je stav s y s t é m u nejistý. H ledán í 
op t imá ln í ch s t r a t eg i í pro tyto modely je k l íčovým aspektem procesu p r a v d ě p o d o b n o s t ­
n ího ověřování m o d e l ů . Je však dů lež i t é poznamenat, že na lezení o p t i m á l n í strategie pro 
P O M D P je obecně n e r o z h o d n u t e l n é , což z n a m e n á , že neexistuje un ive rzá ln í algoritmus, 
k t e r ý by mohl u rč i t o p t i m á l n í strategii pro k a ž d ý m o ž n ý P O M D P [2]. To p ředs t avu je 
v ý z n a m n o u v ý p o č e t n í výzvu a zdů razňu j e p o t ř e b u pokroč i lých technik v t é t o oblasti. 

P r o t i p ř í k l a d y ř ízená i n d u k t i v n í syn t éza ( C E G I S ) , k t e r á se použ ívá k v ý p o č t u op t imá l ­
ních s t ra teg i í , zahrnuje u h á d n u t í k a n d i d á t n í h o řešení , jeho ověření prot i p o č á t e č n í speci­
fikaci a učen í se z n e s p r á v n ý c h o d h a d ů pro z lepšení o d h a d ů následuj íc ích. H lavn í v ý h o d o u 
tohoto p ř í s t u p u je vyhnout se vyčerpávaj íc ího p r o c h á z e n í všemi m o ž n ý m i řešen ími . P A Y N T 
(Probabil is t ic p r o g r A m sYNThes izer ) je n á s t r o j , k t e r ý využ ívá ř ízenou i n d u k t i v n í syn t ézu 

[4]- _ 
V nás t ro j i P A Y N T funguje ř í zená i n d u k t i v n í syn téza jako metoda učen í z a n a l ý z y po­

tenc iá ln ích řešení nebo "realizací". "Učící se algoritmus" vybere jednu realizaci a p ř e d á 
j i "učiteli", k t e r ý posoud í , zda d a n á realizace splňuje danou specifikaci. P o k u d ne, uči te l 
poskytne dalš í informace, čas to ve formě p r o t i p ř í k l a d u [4]. 

Nicméně , metoda iterace hodnot v P A Y N T u , k t e r á je z á k l a d n í m s t a v e b n í m prvkem př i 
h l edán í o p t i m á l n í c h s t ra teg i í , nen í tak ú č i n n á př i d i skon tn ích vlastnostech ve s r o v n á n í s 
dř íve n a v r ž e n ý m algori tmem S A R S O P od Kurn i awa t i a kolekt ivu, k t e r ý pracuje s aproxi­
m a c í prostoru všech dosaž i t e lných p řesvědčen í pod o p t i m á l n í m i strategiemi [13]. 

V t é t o p rác i p ředs t avu j i opt imal izaci pro metody i n d u k t i v n í syn tézy kon t ro l é rů apliko­
vané na čás t ečně pozorova te lné Markovovy rozhodovac í procesy ( P O M D P ) s d i skon tn ími 
vlastnostmi. Můj p ř í s t u p se zaměřu je na integraci nové metody do n á s t r o j e S T O R M , 
p r a v d ě p o d o b n o s t n í h o ověřovače m o d e l ů , na k t e r é m je P A Y N T postaven. Tato metoda 
zlepšuje výkon iterace hodnot s d i skon tn ími vlastnostmi p o m o c í rych lého a efekt ivního 
n á s o b e n í vek to rů . P r o P A Y N T je výs l edkem op t ima l i zovaný v ý p o č e t , k t e r ý po t enc i á lně 
obejde n á r o č n ý v ý p o č e t n í krok transformace kon t ro lovaného modelu do formy bez diskont­
n ího faktoru. Tato optimalizace m á za cíl sníži t čas ověřování modelu a zvýši t efektivitu 
h ledán í o p t i m á l n í c h s t ra teg i í . 



Funkce iterace hodnot s d i skon tn ími vlastnostmi byla vyv inu ta v r á m c i S T O R M u a 
zahrnuje identifikaci řeš i te lského p ros t ř ed í , segmenty rozhodován í v k ó d u a Gauss-Seidelovu 
metodu pro vylepšení v ý p o č e t n í c h schopnos t í . Nutnost použ i t í P R I S M formule v procesu 
mode lového ověřování P A Y N T u p ředs t avova la výzvu př i obej i t í k roku transformace mod­
elu na bezd i skon tn í model . P ro p ř e k o n á n í tohoto p r o b l é m u byla p o u ž i t a transformace 
slevového faktoru s faktorem b l í zkým j e d n é . P r o kontrolu sp r ávnos t i postupu je p r o v á d ě n o 
p o r o v n á v á n í po tenc iá ln í ch o p t i m á l n í c h v e k t o r ů mezi d i skon tn í a bezd i skon tn í i t e rac í hod­
notami. Tato studie zlepšuje zpracován í s levových v l a s t n o s t í v nás t ro j i P A Y N T , m í r n ě 
zrychluje proces ověřování modelu a poskytuje zák lad pro dalš í rozvoj n á s t r o j e P A Y N T . 
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Chapter 1 

Introduction 

In a world rife w i th uncertainty, the necessity for accurately modeling systems wi th prob­
abilistic uncertainty is continually increasing. Probabi l i s t ic model checking is a technique 
situated at the intersection of art if icial intelligence, computer science, and formal meth­
ods. It is pr imar i ly used for verifying the correctness of systems that include probabilist ic 
uncertainty, and has found applications in diverse fields such as computer networks, cy-
bersecurity, robotics, embedded systems, and even biological modeling. A s systems grow 
increasingly complex, the probabil ist ic model checking approach offers a rigorous, mathe­
matical ly grounded methodology to ensure that these systems behave as expected under a 
range of conditions, and to pinpoint potential issues before they lead to serious failures. 

The implementat ion of probabil ist ic model checking tools allows for the synthesis of 
probabilist ic programs that satisfy given specifications, thereby expanding the applicabi l­
ity of this approach. Furthermore, as we step into an era of increasing dependence on 
artificial intelligence and machine learning systems, the importance of probabil ist ic model 
checking, w i th its capacity to provide detailed insights into system behavior, becomes even 
more cr i t ica l . T h i s verification technique, in concert w i th advancements in explainable A I , 
contributes to the broader goal of creating transparent, understandable, and trustworthy 
A I systems. 

Par t ia l ly Observable Markov Decision Processes ( P O M D P s ) provide a mathematical 
framework for modeling decision-making problems where the system state is uncertain. 
F i n d i n g op t imal policies for these models is a cr i t ica l aspect of the probabil ist ic model 
checking process. However, it is important to note that finding an opt imal policy for a 
P O M D P is generally undecidable, meaning there is no universal a lgori thm that can de­
termine the op t imal pol icy for every possible P O M D P [2]. Th is presents a significant 
computat ional challenge and underscores the need for advanced techniques i n the field. 

Counter-example guided inductive synthesis ( C E G I S ) , used for computing opt imal pol i ­
cies, involves guessing a candidate solution, val idat ing it against the in i t i a l specification, 
and learning from incorrect guesses to improve subsequent ones. Th is approach's pr imary 
advantage is avoiding exhaustive traversal of a l l possible solutions. P A Y N T (Probabil is t ic 
p r o g r A m sYNThes izer ) is a tool that utilizes oracle-guided inductive synthesis [4]. 

In P A Y N T , oracle-guided inductive synthesis operates as a method of learning from the 
analysis of potential solutions or Realizat ions". A „learner" selects a realization and passes 
it to an „oracle" which evaluates whether the realization satisfies a given specification. If it 
doesn't, the oracle provides addi t ional information, often in the form of a counter-example 
[4]-

4 



However, P A Y N T ' s value iteration, a basic bui ld ing block i n finding opt imal policies, 
falls short for discounted properties when compared to the earlier proposed S A R S O P algo­
r i thm by Kurn i awa t i et a l . , which works by approximat ing the space of a l l reachable belief 
states under op t imal policies [13]. 

In this thesis, I present an opt imizat ion for inductive controller synthesis methods ap­
plied to Pa r t i a l ly Observable Markov Decision Processes ( P O M D P s ) w i th discounted re­
wards properties. M y approach focuses on integrating a novel method wi th in S T O R M , the 
probabilist ic model checker that underpins P A Y N T . This method enhances the performance 
of discounted value i teration by leveraging fast and effective vector mul t ip l ica t ion. A s a 
result, it offers P A Y N T an opt imized path that potential ly bypasses the computat ional ly 
demanding step of transforming the checked model into an undiscounted form. Conse­
quently, this opt imizat ion aims to reduce the model checking time, increasing the efficiency 
of finding opt imal policies. 

S t r u c t u r e 

This thesis is organized as follows: In Chapter 2, we lay the groundwork for the subsequent 
discussions and analyses by introducing the fundamental concepts and definitions relevant 
to our study, par t icular ly Markov Decision Processes ( M D P s ) and par t ia l ly observable 
M D P s . In Chapter 3, we delve into the complexities of Pa r t i a l ly Observable Markov De­
cision Processes ( P O M D P s ) and present F in i t e State Controllers and Inductive Synthesis 
as promising approaches for synthesizing policies for P O M D P s , including an introduct ion 
to the concept of Abs t rac t ion Refinement. Then, i n Chapter 4, having established the 
theoretical groundwork, we explore the pract ical aspects of model checking, focusing on 
tools significant for my work. In Chapter 5, we present the author's contributions to the 
development of the P A Y N T tool , along wi th an experimental evaluation of the implemented 
enhancements, discussing their impact on the tool's capabilities and performance. In the 
final Chapter 6, we summarize the findings of the thesis, discuss potential future work in the 
area, and provide concluding remarks on the significance and implications of the research 
undertaken. 

5 



Chapter 2 

Preliminaries 

Following chapter lays the groundwork for the subsequent discussions and analyses by 
introducing the fundamental concepts and definitions relevant to my study. I ' l l start by 
providing an overview of the basic definitions and concepts, which form the foundation of 
decision-making problems in the context of Markov Decision Processes ( M D P s ) . T h e n we 
w i l l delve into problematics of M D P s and par t ia l ly observable M D P s and inherent concepts 
important to my work. The theoretical concepts discussed in this chapter have been adapted 
from the book „Algor i thms for Decision M a k i n g " authored by M . J . Kochenderfer [12]. 

2.1 Markov Decision Processes 

In this section, we introduce the foundational concepts of Markov Decision Processes 
( M D P s ) and their underlying Markov Chains, covering states, actions, transitions, rewards, 
and policies, which together form the basis for understanding decision-making problems un­
der uncertainty. These core ideas pave the way for our exploration of Pa r t i a l ly Observable 
Markov Decision Processes ( P O M D P s ) and related controller synthesis methods, while also 
emphasizing the connection between M D P s and the probabil ist ic models of Markov Chains . 

2.1.1 M a r k o v C h a i n s 

Definition 1 (Markov Chains) . A Markov Chain is defined by tuple M = (S,sj,P) where 
S is a finite set of states, sj G S is initial state and P : S x S is the transition probability 
matrix where X ] s ' e S ^ * ( s ' s ' ) = 

A Markov chain is a simple state space model composed of states and probabil ist ic tran­
sitions between them. A n agent i n a Markov chain explores the state space, transit ioning 
from one state to another or remaining i n the same state according to the transi t ion prob­
abilities. The sum of transi t ion probabilit ies from each state to a l l other states, including 
itself, is always equal to one. B y definition, a Markov chain possesses the Markov property, 
which states that the future behavior of a stochastic process depends only on its current 
state and not on its past history [15]. 

Example 1. In figure 2.1 we can see classical problem introduced by Knuth and Yao [11], 
where they use a Markov chain to model a 6-sided die using coin flipping. Starting from 
initial state sO, one has probability of 0.5 (heads) of transitioning to state si and probability 
of 0.5 (tails) of transitioning to state s2. Every following state in middle layers states 
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the same, ultimately resulting in terminating states labeled 1 to 6. In span of few steps, 
probability of reaching each terminating state is equal to 1/6. 

1 1 1 1 1 

Figure 2 . 1 : Markov chain s imulat ing six sided die 

2.1.2 M a r k o v D e c i s i o n Processes 

W h i l e Markov chains provide a useful tool for modeling stochastic processes w i th the Marko-
vian property, they lack the abi l i ty to include decision-making and goal-directed behavior, 
which is reason, why Markov chains are extended by Markov decision processes ( M D P s ) . 

Definition 2 (Markov Decision Process). MDP is a tuple M = (S, sj, A, Pa, Ra), where 
S is finite set of states, sj G S is initial state, A is set of actions, Pa(s, s') is probability 
of transitioning from state s to state s' when action a is taken, and Ra(s, s') is immediate 
reward received upon transitioning from state s to state s'. 

Markov Decision Processes ( M D P s ) represent an advancement over Markov chains by 
incorporating actions into the state-transition model . In M D P s , an agent, which could be 
a real or hypothet ical entity, performs actions to interact w i th the modeled system. Each 
action results in a probabil i ty dis t r ibut ion over a subset of possible states, influencing the 
transitions between states. In an M D P , the ul t imate goal is usually to find an op t imal policy 
that can guide the decision-making of an agent wi th in the model to optimize a specified 
objective, such as maximiz ing the expected cumulative reward over t ime, min imiz ing a cost 
function, or satisfying certain constraints. 
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2.1.3 V a l u e F u n c t i o n for M D P 

The value function serves as a versatile tool for analyzing and resolving M D P s . The value 
function assigns a real number to each state wi th in the state space, which corresponds to 
the anticipated cumulative reward an agent can achieve by following a specific policy from 
a given state [12, p. 136]. 

Definition 3 (Value Funct ion) . Formal specification of value function is: 

a ) + 7 ^ ( ^ , 0 ) ^ 0 , 
s'es 

where s G S is state from the state space, a G A represent action from the action space, 
R(s,a) is immediate reward received upon taking action a from state s, P(s'\s,a) is transi­
tion probability of transition into state s' from state s after taking action a and 7 is discount 
factor, 0 < 7 < 1. 

The value function provides a measure of the desirabili ty of each state, as it quantifies 
the long-term reward the agent can expect by following the best possible course of action. 
A s such, it serves as a foundation for determining opt imal policies in M D P s , as the agent 
should choose actions that lead to states wi th higher values. 

To find the op t imal value function and the corresponding opt imal policy, dynamic pro­
gramming algorithms such as value i teration and pol icy i teration are often ut i l ized. These 
algorithms use Be l lman equation, a recursive relationship that the value function must sat­
isfy, to i teratively converge to the op t imal solution, which we w i l l discuss i n next section. 

2.1.4 B e l l m a n E q u a t i o n 

The Be l lman equation has strong connection wi th problem of determining an opt imal policy 
of an M D P . It defines a recursive relationship of the value function of a specific state and 
the value functions of the following states. The value function represents the expected 
cumulative reward that an agent can obtain from a given state while following a specific 
policy. The Be l lman equation is the main cornerstone i n dynamic programming algorithms 
like value i teration and pol icy i teration and is essential for calculat ing policies [12, p. 142]. 

Definition 4 (Bel lman equation). In its general form, Bellman equation is defined as: 

aeA s'es 

where Vw(s) is the value function of state s under policy TT, 7r(a|s) is the probability of taking 
action a in state s under policy TT, Pa(s, s') is the transition probability from state s to state 
s' when taking action a, Ra(s,s') is the immediate reward received when transitioning from 
state s to state s' after taking action a, 7 is the discount factor and V7T(s') is the value 
function of state s' under policy ir - the recursive part of equation. 

2.1.5 V a l u e I terat ion 

Having discussed value function and Be l lman equation, we can now delve into the issue 
of searching for op t imal solutions of M D P s . Value i teration is a dynamic programming 
algori thm used to find the op t imal value function and policy for an M D P [12, p. 141]. 

V(s) = max 
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It i teratively updates the value function using the Be l lman equation unt i l convergence, at 
which point the opt imal value function is obtained. The update equation for value i teration 
is: 

Definition 5 (Value Iteration). 

V * + i ) ( 4 max i ? ( s , a ) + 7 ^ P ( s ' | s , a ) F ( i ) ( s ' ) 
s ' es 

, 0 < 7 < 1 

where V(l+1\s) denotes Value function of state s G S in iteration i + 1, R(s, a) is reward 
obtained when taking action a G A in state s, 7 is discount factor, P(s'\s,a) is probability 
of transfering to state s' from state s upon taking action a. 

A l g o r i t h m 1 M D P Value Iteration A l g o r i t h m 

procedure M D P V A L U E I T E R A T I O N ( S , A, P, R, 7 , e) 

Initialize V^°\s) < - 0 for a l l s G S 
k^O 
while not converged do 

for each s £ S do 
l**+i ) ( a ) ^ m a x a e A [R(s,a) + 7 J 2 s / ( , s P(s'\s,a)V^(s')] 

end for 
if m a x s e 5 \V(k+1\s) - VW(s)\ < e then 

converged <— True 
else 

k i- k + 1 

end if 
end while 
for each s 6 S do 

TT*(S) ^ a r g m a x a £ j 4 [R(s,a) + "/Y.s'cSP(s'\s>a)V*(s')] 
end for 
return 7r*, V* 

end procedure 

For each state in model, i n each i teration of value iteration, value function is updated 
based on the m a x i m u m of the sum of the immediate reward for taking an action from that 
state and the discounted value function of the successor states. Th is process continues 
iteratively, un t i l conditions of value iteration are met. Typical ly , the goal is to achieve 
convergence of the value function, which is recognized when a desired level of accuracy, 
denoted by e, is reached. 

Example 2. Let's consider simple Markov decision process on figure 2.2 with discount 
factor 7 = 0 . 9 and e = 0 . 2 . 

To calculate first iteration of value iteration, we initialize value function for each state 
as 0 . Then, we iteratively apply value iteration equation for each state. Let's compute first 
iteration of value iteration. 
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Figure 2.2: Simple Markov decision process 

VW(sl) = max [3 + 0.9 • (0.9 • 0 + 0.1 • 0), - 1 + 0.9 • (0.2 • 0 + 0.8 • 0)] = 3.0 (2.1) 

a 
VW(s2) = max [-10 + 0.9 • (1 • 0)] = - 1 0 . 0 (2.2) 

a 
VW (s3) = max [20 + 0.9 • (1 • 0)] = 20.0 (2.3) 

a 

Value function for states s4 and s5 remain 0. Now let's continue with second iteration. 

V(2\sl) = max [3 + 0.9 • (0.9 • ( -10) + 0.1 • (20)), - 1 + 0.9 • (0.2 • ( -10) + 0.8 • 20)] = 11.6 
a 

(2.4) 

V(i\s2) = max [-10 + 0.9 • (1 • 0)] = - 1 0 . 0 (2.5) 
a 

V(i) (s3) = max [20 + 0.9 • (1 • 0)] = 20.0 (2.6) 
a 

As we can see, value function for si has been updated, while the others have remained 
unchanged. In the table below (Table 2.1), it is evident that after 5 iterations, the conver­
gence criterion is satisfied. For every state, the difference between the value functions for 
iteration 5 and the previous iteration 4 is less than the specified epsilon (0.2). 
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Iteration V(si) V(s2) V(s3) V(s4) V(s5) 
0 0 0 0 0 0 
1 3.0 -10 20 0 0 
2 11.6 -10 20 0 0 
3 14.34 -10 20 0 0 
4 14.706 -10 20 0 0 
5 14.7354 -10 20 0 0 

Table 2.1: Table 1: F i rs t five iterations of value i teration over M D P on Figure 2.2 

2.2 Partially Observable Markov Decision Processes 

U n t i l now, we have not adressed uncertainty i n the sense of imperfect information about 
observed system. In Markov decision process, agent always has perfect knowledge about 
system and its state, and based on trained policy, we can accurately predict agent's next 
move. To fully incorporate uncertainty into our model, we w i l l use Par t i a l ly observable 
Markov decision processes - P O M D P s . Pa r t i a l ly observable Markov decision processes 
extend M D P s by addi t ion of observation models, reflecting the uncertainty in perception 
of the environment's true state [2]. 

Definition 6 (Par t ia l ly Observable Markov Decision Process). POMDP is a tuple 
M. = (M,Z,0), where the M is Markov decision process being extended, Z is finite set 
of observations, O is (optionally deterministic) observation function that returns observa­
tion O(s) = z G Z for every state s. The observation z G Z is trivial, if there is only one 
state s G S with 0(s) = z. 

2.2.1 E x a m p l e - C r y i n g B a b y P r o b l e m 

To better il lustrate this concept, let's examine classic example of Par t i a l ly Observable 
Markov Decision Process called „ P r o b l e m of crying baby", described i n the book Algor i thms 
for Decision M a k i n g [12, p. 382]. P rob lem is defined as following: 

Example 3 (Cry ing Baby Prob lem) . An agent is taking care of a baby by choosing whether 
to feed the baby at each timestep. Initially, the baby is hungry. When the agent chooses to 
feed the baby, the probability of the baby becoming full is 100 %. If the baby is hungry and the 
agent does not feed it, the baby stays hungry with a 100 % probability. When the baby is full, 
there is a 10 % probability of it becoming hungry in the next timestep. However, the current 
state of the baby cannot be precisely known. The baby cries with a 10 % probability when 
full, whereas a hungry baby cries with an 80 % probability. When baby becomes hungry, 
agent receives reward of —Id, and when baby is fed, agent receives reward of—5. Discount 
factor is 0.9. 

From this description, we can extract formal specification of described POMDP. 

• States: S = {Hungry, Full} 

• Actions: A = {Feed, Don't Feed} 

• Transition probabilities: 

— P(Hungry\Hungry, Feed) = 0 
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- P(Full\ Hungry, Feed) = 1 

- P(Hungry\Hungry, Don't Feed) = 1 

- P(Full\ Hungry, Don't Feed) = 0 

- P(Hungry\Full, Feed) = 0 

- P(Full\ Full, Feed) = 1 

- P(Hungry\Full, Don't Feed) = 0.1 

- P(Full\Full, Don't Feed) = 0.9 

• Rewards: 

- R(Feed) = - 5 

- R(Hungry) = —10 

• Observations: Z = { Crying, Not Crying} 

• Observation probabilities: 

- P(Crying\Hungry) = 0.8 

- P(Not Crying\ Hungry) = 0.2 

- P(Crying\Full) = 0.1 

- P(Not Crying\Full) = 0.9 

• Discount factor: 7 = 0.9 

This formal specification can be displayed as follows in the figure 2.3, where the arrows 
symbolize that next state (st+i) and reward (rt) depends on current state (st) and action 
(at) taken in current timestamp, and observation (ot) depends on current state. 

2.2.2 Beliefs a n d Observat ions 

A belief state is a probabi l i ty dis t r ibut ion over the possible states in the environment, 
representing the agent's current knowledge about the true state of the system. A s the 
agent interacts w i th the environment, it updates its belief state based on the actions it 
takes and the observations it receives. 

Observations i n P O M D P s serve as the agent's incomplete and potential ly noisy infor­
mat ion about the true state of the environment, which is used to model the uncertainty 
inherent i n these models. Unl ike M D P s , the agent does not have complete knowledge of 
the current state, relying instead on the gathered observations. 

Belief-based algorithms, such as S A R S O P , present methods for solving Par t i a l ly Ob­
servable Markov Decision Processes. These algorithms leverage the concept of belief states, 
which encapsulate the agent's knowledge about the system state, providing a principled 
approach to handle uncertainties. S A R S O P , i n particular, distinguishes itself by focusing 
on the opt imal ly reachable subset of the belief space, effectively reducing the computat ional 
complexity [13]. However, this approach was proven less efective than inductive synthesis 
[2], which we w i l l discuss later in 3. 
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Feed, Don't Feed 

reward 

Hungry, Full 

Crying, Not Crying 

Figure 2.3: Pa r t i a l ly Observable M D P model l ing the C r y i n g Baby Prob lem 

2.2.3 T h e B a y e s i a n U p d a t e R u l e 

The agent updates its belief about the state of model using the observation function, taking 
into account the actions performed and the observations received. To better understand 
this process, let's consider the Bayesian update rule, taken from the book A l g o r i t h m for 
Decision M a k i n g [12, p . 408], that governs the transi t ion of belief states i n a P O M D P : 

T(b'\b,a) = P(b'\b,a) 

= J2P(b'\b,a,o)P(o\b, 

P(b'\b, a, o) ^2 P(o\b, a, s)P(s\b, a) 
o s 

J2P(b'\b,a,o)J2P(o\b,a,s)b(s) 
o s 

[b' = Update(6, a, o)] 0(o\a, s') T(s'\s, a)b(s) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

This equation represents the belief update process, which computes the probabil i ty of 
the next belief state, 6', given the current belief state, 6, the action taken, a, and the 
observation received, o. The update rule incorporates bo th the observation function and 
the t ransi t ion function, ensuring that the agent's belief state is updated accordingly as it 
interacts w i th the environment. 
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2.2.4 B a y e s - A d a p t i v e M a r k o v D e c i s i o n Process 

Next I want to briefly mention Bayesian Adapt ive M D P s as an example of transforming a 
P O M D P wi th continuous belief states into a discrete representation, which can facilitate 
the development of more efficient algorithms and decision-making strategies. 

In the book Algor i thms for Decision M a k i n g , it is stated that: „We can formulate the 
problem of act ing opt imal ly in an M D P wi th an unknown model as a higher-dimensional 
M D P wi th a known model . Th is M D P is known as a Bayes-adaptive Markov decision 
process" [12, p. 329]. 

In other words, we can transform a P O M D P , which features an agent w i t h uncertain 
knowledge of its true state, into an equivalent M D P wi th an enlarged state space. B y 
making this transformation, we can uti l ize existing M D P solutions and techniques while 
preserving uncertainty inherent i n the model. 

The state space of such M D P is product of S x B, where S is discrete state space of 
previous P O M D P and B is the belief state space, so the state is a pair (s,b), s G S and 
beB. 

Transi t ion i n Bayes-adaptive M D P is defined as T(s', b'\s, b,a) - probabi l i ty of transi­
t ioning to state s' w i t h a belief state b' assuming agent's in i t i a l state s w i t h belief state b 
when agent chooses action a. 

2.3 P O M D P Solving Methods 

F i n d i n g op t imal policies of par t ia l ly observable M D P s can be exceptionally challenging due 
to the uncertainty of agent's knowledge of true state of environment and belief being part 
of continuous space, rather than discrete state space of M D P s . In addit ion, the problem of 
finding opt imal policies is generally undecidable, meaning there is no algori thm that w i l l 
determine, for a l l inputs, whether the problem has a solution [2]. Various approaches can be 
taken when searching for opt imal policy, including exact methods, approximate methods, 
online methods or reinforcement learning approaches. Because my work is based on exact 
methods, I w i l l main ly focus on them. This section of the document was pr imar i ly grounded 
i n the concepts presented i n [5]. 

2.3.1 P O M D P - s p e c i f i c V a l u e I terat ion 

Previously, we discussed the Value Iteration algori thm for solving Markov Decision Pro­
cesses. In this chapter, we w i l l explore the Value Iteration algori thm for Par t i a l ly Observable 
Markov Decision Processes, from which we w i l l move onto another exact methods. 

W h i l e the core idea of the Value Iteration algori thm remains the same for both M D P s 
and P O M D P s , there are key differences that arise due to the par t ia l observability of the 
environment i n P O M D P s . In M D P Value Iteration, we operate directly on the state space, 
whereas i n P O M D P Value Iteration, we work wi th the belief space, which is a continuous 
representation of the agent's uncertainty about the environment. 

Another important dis t inct ion is the introduct ion of an observation model that governs 
the probabi l i ty of receiving specific observations given the agent's belief state and action. 
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A l g o r i t h m 2 P O M D P Value Iteration A l g o r i t h m 

procedure P O M D P V A L U E I T E R A T I O N ( S , A, O, P, R, Z, 7 , e) 

Initialize (6) <- 0 for a l l b G B (belief space) 
k <- 0 
while not converged do 

for each b £ B do 

F(fc+D(6) <_ m a X a e A [R(b, a) + 7 E o e o «) E s ' e S a)V^{b')] 
end for 
if maxi.gs \V^k+1\b) - V^k\b)\ < e then 

converged <— True 
else 

k i- k + 1 
end if 

end while 
for each b £ B do 

vr*(6) ^ a r g m a x a e A [i2(6, a) + 7 E o e o a) E s ' e S 

end for 
return ir*, V* 

end procedure 

In the P O M D P Value Iteration algori thm, the main differences from the M D P Value 
Iteration are the use of belief states b £ B and the observation model Z(o\b,a). B is 
the belief space, which represents probabi l i ty distributions over the underlying state space 
S, V^k\b) is the value function at i teration k for a belief state 6, R(b,a) is the expected 
immediate reward for taking action a i n belief state b. P(s'\b,a) is the probabil i ty of 
transi t ioning to state s' given belief state b and action a, Z(o\b, a) is the probabil i ty of 
observing o given belief state b and action a, V*(b') is the op t imal value function for belief 
state b' and 7r*(6) is the op t imal action to take i n belief state b. 

The algori thm starts by in i t ia l iz ing the value function for a l l belief states to zero. Then , 
it enters a loop that continues unt i l convergence is achieved (i.e., the m a x i m u m change in 
the value function is less than the specified threshold e). 

In each iteration, the a lgori thm updates the value function for each belief state by taking 
the m a x i m u m over a l l actions of the sum of the immediate reward and the expected future 
rewards, considering both the state transi t ion probabilities and observation probabilities. 
After convergence, the op t imal pol icy is computed by selecting the action that maximizes 
the sum of immediate and expected future rewards for each belief state. 

The key difference between the M D P and P O M D P Value Iteration algorithms is that 
the P O M D P version operates on belief states instead of directly on the states of the envi­
ronment. Th is allows it to account for the inherent uncertainty i n the P O M D P setting. 

2.3.2 P o l i c y I terat ion 

Pol icy Iteration is another powerful technique for solving both Markov Decision Processes 
( M D P s ) and Par t i a l ly Observable Markov Decision Processes ( P O M D P s ) . W h i l e the pre­
viously discussed Value Iteration method focuses on iteratively updat ing the value function 
unt i l convergence, Po l i cy Iteration takes a different approach by alternately improving the 
policy and evaluating i t . Th is approach can often lead to faster convergence, as it directly 
optimizes the policy rather than the value function. 
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The Po l i cy Iteration algori thm for solving M D P s and P O M D P s consists of two main 
steps: policy evaluation and policy improvement. The algori thm starts by in i t ia l iz ing an 
arbitrary pol icy ir^ and setting an iteration counter k to zero. The algori thm then proceeds 
iteratively un t i l convergence is achieved: 

A l g o r i t h m 3 Po l i cy Iteration A l g o r i t h m 
1: procedure P O L I C Y I T E R A T I O N ( S , A, P, R, 7 ) 

2: Initialize an arbi trary pol icy ir^ 
3: k < - 0 

4: while not converged do 
5: Perform policy evaluation to compute Vw 

6: for each s £ S do 
7: 7r( f c + 1)(,s) «— a r g m a x A £ J 4 

8: end for 
9: if vr( f c + 1 ) = vr(fc) then 

10: converged <— True 
11: else 
12: k ^ k + l 
13: end if 
14: end while 
15: return TT^\ Vw(h) 

16: end procedure 

Let us walk through this algori thm: 
Policy Evaluation: In this step, the algori thm computes the value function Vw for 

the current pol icy ir(k\ Th is can be done using various methods, such as solving a system of 
linear equations, dynamic programming, or iterative methods like the Be l lman Expec ta t ion 
Equat ion . The goal of this step is to obtain an accurate estimate of the value function for 
the current policy, which w i l l be used to improve the pol icy in the next step. 

Policy Improvement: Once the value function has been computed, the algori thm 
proceeds to update the pol icy by selecting the action that maximizes the expected return 
at each state. This is achieved by iterating through a l l states s G S and choosing the action 
a G A that maximizes the following expression: R(s,a) + 7 Yls'es P(s'\si a)Vn («')• The 
updated pol icy 7 r ( f c + 1 ) is then obtained by assigning the chosen action to each state. 

The a lgor i thm checks for convergence by comparing the current pol icy 7 i " ( f e + 1 ) w i th 
the previous pol icy TT^ . If the policies are identical, the algori thm is considered to have 

(h\ CO 
converged, and the final pol icy 7 P ' and its associated value function Vw are returned. 
Otherwise, the i teration counter k is incremented, and the process is repeated from the 
policy evaluation step. 

One of the key advantages of Po l i cy Iteration is that it often converges faster than Value 
Iteration, as it directly optimizes the pol icy rather than the value function. However, it 
may require solving more complex systems of equations during the policy evaluation step, 
which can be computat ional ly expensive for large or continuous state spaces. 

2.3.3 P o i n t B a s e d V a l u e I terat ion 

Point-based Value Iteration ( P B V I ) is a approximate a lgori thm for solving Par t i a l ly Ob­
servable Markov Decision Processes, which addresses the challenges posed by continuous 

R(s,a)+1j:sl€SP(s'\s,a)V«ik\s') 
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belief spaces by focusing on a finite set of representative belief points. P B V I aims to estab­
lish a balance between computat ional efficiency and solution quali ty by selectively updat ing 
the value function only at these representative points. 

A l g o r i t h m 4 Point -Based Value Iteration 

Require: P O M D P model (S, A, O, T, R, f2, 7 ) , set of belief points B, max iterations iV 
1: Initialize V° = {ai, « 2 , . . . , aigi} where ai(s) = R(s, ai) 
2: for n = 1 to iV do 
3: Vn < - 0 

4: for each b G B do 
5: al <— argmax ^ 2 s e S b(s) • a(s) 

Q, e r (y»- i ) 
6: A d d a*b to Vn 

7: end for 
8: end for 
9: Derive the final pol icy ir from VN 

In the Point-Based Value Iteration ( P B V I ) algori thm, the focus is on a finite set of 
representative belief points B, instead of updat ing the value function for the entire continu­
ous belief space. Th is significantly reduces the computat ional complexity of the algori thm, 
making it more efficient than Value Iteration (VI) and Po l i cy Iteration (PI) when dealing 
wi th large or continuous belief spaces. 

The P B V I a lgori thm begins by in i t ia l iz ing the value function V° w i th a-vectors corre­
sponding to the immediate rewards for each action. Then , for a given number of iterations 
N, the a lgori thm iteratively updates the value function by selecting the best a-vector for 
each belief point b £ B from the set r ( V ™ - 1 ) , which is the cross-sum of the a-vectors in 
the previous i teration. Once the iterations are complete, the final pol icy IT is derived from 
the resulting value function VN. 

The pr imary advantage of P B V I over V I and P I is its computat ional efficiency, as 
it selectively updates the value function at a finite set of belief points rather than the 
entire belief space. Th is allows the a lgori thm to scale better to large P O M D P s w i t h high-
dimensional or continuous belief spaces. 

However, it is important to note that P B V I is an approximate a lgori thm and may 
not always find the op t imal policy. The quali ty of the solution depends on the choice of 
representative belief points and the number of iterations. 

2.4 Conclusion 

In this chapter, we have delved into the principles of Markov Decision Processes ( M D P s ) and 
their extension, Par t i a l ly Observable Markov Decision Processes ( P O M D P s ) . These serve 
as p ivota l tools for decision-making opt imizat ion problems under uncertainty. M D P s enable 
the modeling of complex systems and the computat ion of op t imal policies v ia algorithms 
like value i teration and policy iteration, which exploit the recursive nature of the Be l lman 
equation. 

We introduced P O M D P s as an advanced layer, adding observations to represent the 
agent's incomplete knowledge of the environment. We discussed belief states and the 
Bayesian update rule for managing belief state transitions, capturing decision-making dy­
namics wi th in a probabil ist ic framework. 
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Final ly , we explored three key P O M D P - s o l v i n g algorithms: Value Iteration, Po l icy 
Iteration, and Point-Based Value Iteration. W h i l e the first two offer exact methods, they 
may be computat ionally demanding for larger belief spaces. To mitigate this, Point-Based 
Value Iteration provides a near-optimal solution w i t h reduced computat ional complexity, 
demonstrating diverse strategies to tackle decision-making under uncertainty. 
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Chapter 3 

Inductive Synthesis 

Par t ia l ly Observable Markov Decision Processes ( P O M D P s ) pose significant challenges 
when it comes to finding opt imal policies, mainly due to the inherent uncertainty and the 
continuous nature of belief states. F in i t e State Controllers (FSCs) and Inductive Synthesis 
are two closely related concepts that have emerged as promising approaches for addressing 
these challenges and synthesizing policies for P O M D P s . 

In this chapter, we w i l l first introduce the concept of F in i t e State Controllers, a family of 
memory structures that can represent policies for P O M D P s , and discuss their properties and 
advantages. Next , we w i l l delve into the idea of Inductive Synthesis, a technique for learning 
F S C s wi th the goal of reducing memory requirements and computat ional complexity while 
maintaining the desired level of performance. We w i l l introduce Abs t rac t ion Refinement 
concept and mention probabil ist ic programming. 

The theoretical framework and methodologies discussed i n this chapter are largely 
drawn from the research presented i n „ Induc t ive Synthesis of Fini te-State Controllers for 
P O M D P s " by R . Andriushchenko, M . Češka et a l . [2]. 

3.1 Finite State Controllers 

A F in i t e State Control ler ( F S C ) serves as a compact mechanism to represent policies or 
control strategies for an agent operating i n par t ia l ly observable environments, like Par t i a l ly 
Observable Markov Decision Processes. F S C s are structured as directed graphs, where 
nodes symbolize controller states and edges denote transitions based on actions and obser­
vations. 

F in i te State Controllers can be categorized as Moore machines or Mea ly machines. 
In the context of Moore machines, an action is associated wi th each node (or controller 
state), whereas for Mea ly machines, the action is determined by the transitions. Th is work 
part icularly focuses on Mea ly machines. 

U p o n receiving an observation, the agent transitions from its current controller state to a 
new one v ia the corresponding edge, executing the action l inked to the new controller state. 
The F S C provides a deterministic framework for decision-making, which is computat ional ly 
efficient, especially when dealing wi th large or continuous state spaces. 

F S C s are integral to various P O M D P solution methods, such as pol icy iteration, point-
based value i teration, and reinforcement learning algorithms, among others. The pr imary 
objective of these algorithms is to identify an F S C that maximizes the agent's expected 
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cumulative reward over time, given the constraints of operating in a par t ia l ly observable 
environment. 

F in i te State Controllers and belief-based approaches, like S A R S O P , provide distinct 
strategies to handle the complexities of decision-making wi th in Par t i a l ly Observable Markov 
Decision Processes ( P O M D P s ) , w i th F S C s offering a deterministic and computat ional ly 
efficient approach, while belief-based methods like S A R S O P provide a pr incipled and direct 
way to handle uncertainty. However, i n the context of efficient model checking, F S C are 
better suited for the role, as they offer more compact representation of policies [2]. 

Definition 7 (Fini te State Control ler) . A Finite State Controller (FSC) for a POMDP 
can be formally described as a tuple: FSC = (N, no, 7,6) where N is a finite set of nodes 
(controller states), no £ N is the initial node, 7 : N x Z —>• A is a function that determines 
the action when the agent is in node n and observes z, and 5 : N x Z —>• N is a function 
that updates the memory node to 5(n,z), when the agent is in node n and observes z. 

In an F S C , when the agent i n node n observes z, it executes the act ion determined 
by 7 ( n , z) and transitions to the next node S(n, z) as per the function 5. Th is process 
aligns w i t h the description of the F S C as a Mea ly machine, where the output (action) is 
determined by the transi t ion taken based on the observation. 

3.1.1 Fami l ies of F i n i t e State C o n t r o l l e r s 

W h e n considering decision-making strategies in Par t i a l ly Observable Markov Decision Pro­
cesses, it is valuable to explore different structures of F in i t e State Controllers which can be 
grouped into collections, referred to as families of F S C s . These families represent various 
configurations of F S C s wi th respect to their memory usage, providing a versatile tool for 
investigating diverse pol icy representations. 

A family of F S C s corresponds to a set of F S C s that are induced by a P O M D P , yielding 
a set of Markov Chains . These F S C s are categorized into two main types: full and reduced 
F S C s , based on the number of memory nodes and their usage wi th observations. 

A full k - F S C family, denoted as Fk = (N, no, K), comprises k nodes ( iV), an in i t i a l node 
(no), and a finite set of parameters (K = N x Z) each having a domain V(n, z) C A c t x N. 
Each parameter helps determine the action 7 ( 7 1 , 2 ) and the next node S(n,z). In other 
words, a family of full k - F S C s defines a set of F S C s varying by the substitutions of the 
parameters. 

O n the other hand, a reduced family F^, characterized by a memory model \x : Z —>• N, 
is a sub-family of for k = m a x z e ^ fi(z). In this case, the number of memory nodes used 
in the observation z is given by fi(z). Th is form of family induces a smaller design space 
and requires less memory, which can aid i n interpretability. 

3.1.2 C o n s t r a i n t s a n d O p t i m i z a t i o n Specif ications 

Specifications are a useful tool that allow us to formally define the desirable properties and 
goals of our system, thereby guiding the decision-making process of the agent. B y defining 
constraints as quantitative properties, we can impose specific requirements on the system's 
behavior. 

These constraints can be indefinite-horizon reachability properties or expected reward 
properties, w i th thresholds serving as the quantitative benchmarks that the system is ex­
pected to achieve. Addi t ional ly , we also define an opt imizat ion objective, which is the 
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primary goal that the system aims to maximize or minimize . T h i s can be either reachabil­
i ty probabilit ies or expected reward properties. Together, the constraints and opt imizat ion 
objective shape the behavior of the F S C , dr iv ing it towards the desired outcomes while 
respecting the imposed l imitat ions. 

3.2 Inductive Synthesis 

This overview of Inductive Synthesis is based on work of Andriushchenko, Češka et a l . [2]. 
Inductive Synthesis is a technique originally developed i n the context of program synthesis, 
where the goal is to construct a program that provably satisfies a given formal specification. 
Inductive Synthesis can be used to learn an opt imal or near-optimal F S C wi th reduced 
memory requirements and computat ional complexity. 

The Inductive Synthesis framework for F S C learning consists of two ma in stages: an 
outer stage, where the learner constructs a design space containing finitely many F S C s , 
and an inner stage, where the teacher provides the best F S C wi th in the design space, along 
wi th potential ly addi t ional diagnostic information. 

The learner begins w i th a smal l design space and strategically modifies it based on 
the feedback obtained from the teacher. The teacher, on the other hand, determines the 
best F S C wi th in the design space using various methods, such as enumeration, branch-and-
bound [9], or mixed-integer linear programming ( M I L P ) [1]. 

B o t h the learner and teacher have access to an addi t ional oracle that over-approximates 
the design space. Th is abstract design space can be efficiently analyzed as it resembles the 
analysis of fully observable policies. The oracle provides constraints on what the best F S C 
wi th in the original design space can achieve, which is essential for guiding the search in 
both stages. 

3.3 Counterexample-Guided Inductive Synthesis 

The theoretical foundations for this part of work were pr imar i ly drawn from the work of 
[6].The central idea of Counterexample-Guided Inductive Synthesis ( C E G I S ) is to itera-
t ively refine the design space by using counterexamples. These counterexamples, which are 
generated from failed attempts at satisfying the specification, provide essential feedback 
that helps to constrain and guide the synthesis process. T h i s iterative process continues 
unt i l an F S C is found that meets the desired specifications, or un t i l it is proven that no 
such F S C exists wi th in the defined design space. 

The following image 3.1 represents principle of Counterexample-guided Inductive Syn­
thesis. In this context, a sketch represents a space of potential solutions, w i th certain parts 
left unspecified. A s we ' l l explore later i n this chapter, C E G I S progressively prunes this 
solution space by iteratively refining the sketch based on counterexamples from failed veri­
fication attempts. This process continues unt i l a solution satisfying the given specification 
is found or un t i l a l l possible solutions have been examined. 

The following algori thm 5 represents an adaptat ion of the Counterexample-Guided In­
ductive Synthesis algori thm, as detailed in [3]. Th is revised version is designed to work wi th 
a family of F S C s , as opposed to the original version which works w i th a family of Markov 
Chains . The objective remains the same: to discover a realization of the F S C that fulfills 
a specified reachability property, or alternatively, to return U N S A T i f no such realization 
can be found. 
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sketch properties 

accept 

unsatisfiable synthesised program 

Figure 3.1: Pr inc ip le of C E G I S procedure. Image has been adapted from the paper by 
Češka et a l . [7]. 

A l g o r i t h m 5 Counterexample-guided Inductive Synthesis for F S C s 
Require: A family Th = (N,no, K) of F S C s , a reachability property (p. 
Ensure: Real izat ion r £ RJ-k such that J-^ r \= ip, or U N S A T if no such realization exists. 

1: procedure C E G I S ^ = (N,n0,K),<p) 
2: tp <— I N I T I A L I Z E R ^ ) 

3: r «— G E T R E A L I Z A T I O N ( V > ) 

4: while r / 0 do 
5: C <S— V E R I F Y ^ f e ^ , r, if) 
6: if C then 
7: return r 
8: end if 
9: tp ^ tp A (Arec L E A R N F R O M C O N F L I C T ( J : J , r , r)) 

10: r <(— G E T R E A L I Z A T I O N ( V ' ) 

11: end while 
12: return U N S A T 
13: end procedure 

The algori thm takes as input a family J-^ = (N,UQ,K) of F S C s and a reachability 
property (p. The family of F S C s is composed of a set of nodes N, an in i t i a l node no, and 
a finite set of parameters K = N x Z. Each parameter helps determine the action j(n, z) 
and the next node S(n, z). The reachability property ip is a formal specification that the 
F S C should satisfy. 

C E G I S algori thm outputs a realization r G .RFA; such that the F S C Fk, r satisfies the 
reachability property ip. If no such realization exists, the a lgori thm returns U N S A T . 

The function I N I T I A L I Z E takes the family of F S C s J-^ as an input and returns an in i t i a l 
set of realizations. 

The G E T R E A L I Z A T I O N function takes the set of realizations and returns a part icular re­
al izat ion r . Th is can be done i n any manner, for example, by choosing a random realization 
from the set. 

The V E R I F Y function takes the family of F S C s J-k, a realization r , and the reachability 
property ip as inputs. It checks whether the F S C Fk, r satisfies the reachability property (p. 
If it does, it returns None. Otherwise, it returns a counterexample, which is a subsystem 
of the F S C that violates the reachability property. 
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The L E A R N F R O M C O N F L I C T function takes the family of F S C s J-^ and a counterexample 
as inputs. It returns a set of constraints that exclude the inval id realization from the set 
of realizations. These newly generated constraints, when combined w i t h the existing ones, 
prevent the a lgori thm from considering similar inval id realizations i n subsequent iterations, 
thereby refining the search space towards val id solutions. 

3.4 Counterexample-Guided Abstraction Refinement 

Counterexample-Guided Abs t rac t ion Refinement ( C E G A R ) is a powerful technique i n the 
field of formal verification [8]. It is designed to increase the efficiency of system verification 
by working wi th simplified or abstracted versions of the system model . The key idea behind 
C E G A R is to iterate between two phases: abstraction, where the system model is simplified, 
and verification, where the simplified model is checked against a specific specification. If 
the model fails to meet the specification, a counterexample is produced that guides the 
refinement of the abstraction i n the next i teration. Through this iterative process, C E G A R 
allows for the verification of complex systems without having to examine every single detail 
of the system in every iteration. 

C E G A R is par t icular ly beneficial when dealing wi th large and complex systems where 
t radi t ional verification methods would be computat ional ly expensive or pract ical ly infea-
sible. B y focusing on abstracted models and only refining these models when necessary, 
C E G A R significantly reduces the computat ional burden. This technique is widely used in 
software model checking, hardware verification, and control synthesis. 

3.5 Probabilistic Programs 

Probabi l is t ic programs are an advanced model l ing framework ut i l ized to depict systems 
that include elements of stochastic uncertainty. They a im to satisfy a set of temporal 
constraints that define their correctness and efficiency Dur ing the early stages of system 
design, these programs often remain incomplete or contain 'holes', representing undefined 
or par t ia l ly implemented components. Th is necessitates a process called design space ex­
ploration, which involves analyzing and fill ing these holes w i t h appropriate behaviors or 
subsystems. A significant challenge i n this process is to efficiently represent and reason 
about various possible designs or 'realizations'. To address this, the concept of 'sketching' 
is often employed, providing a concise representation of the family of potential designs. Th is 
section is based on the theory and methodology outl ined i n P A Y N T : A Too l for Inductive 
Synthesis of Probabi l is t ic Programs by Andriushchenko, Češka et a l . [4]. 

3.6 Conclusion 

In this chapter, we have established the foundational concepts necessary to comprehend 
the nuances of inductive synthesis. O u r discussion commenced wi th an exploration of 
finite-state controllers, elaborating on their family structures, constraints, and opt imiza­
t ion objectives. Subsequently, we ventured into the problematics of inductive synthesis, 
w i th a specific focus on the Counterexample-Guided Inductive Synthesis ( C E G I S ) and 
Counterexample-Guided Abs t rac t ion Refinement ( C E G A R ) methodologies. 

Furthermore, we introduced the concept of probabil ist ic programs, a key aspect in 
understanding the broader context of formal verification. Th is discussion served as a step-
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ping stone to our examination of specific examples of formal model checking tools, namely 
P R I S M , S T O R M , and P A Y N T . Through this concise overview, we have paved the way for 
deeper exploration and applicat ion of these essential tools and techniques in next chapter. 
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Chapter 4 

Exploring Formal Methods Tools: 
P R I S M , S T O R M and P A Y N T 

Having la id the theoretical groundwork i n the preceding chapters, we are now well prepared 
to delve into the pract ical nuances of model checking. In this chapter, we w i l l focus on some 
of the most prominent tools in this domain: P R I S M , a renowned tool for formal modeling 
and analysis; S T O R M , a formidable stochastic model checker; and P A Y N T , a probabilist ic 
program synthesizer. The opt imizat ion of P A Y N T , in particular, w i l l be the main focus of 
our discussion, as it forms the pr imary objective of this work. 

4.1 P R I S M 

The information presented i n this section has been gathered from the following sources 
[16, 14]. Accord ing to the official P R I S M model checker manual [16]: „ P R I S M is a prob­
abilistic model checker, a tool for formal modell ing and analysis of systems that exhibit 
random or probabil ist ic behaviour. It has been used to analyse systems from many differ­
ent applicat ion domains, including communicat ion and mul t imedia protocols, randomised 
distr ibuted algorithms, security protocols, biological systems and many others." 

P R I S M is a versatile probabil ist ic model checker that supports a wide variety of proba­
bilist ic models, including discrete-time Markov chains ( D T M C s ) , continuous-time Markov 
chains ( C T M C s ) , Markov decision processes ( M D P s ) or Par t i a l ly observable Markov deci­
sion processes ( P O M D P s ) . These models are defined using the P R I S M language, which is 
a state-based language designed for s implic i ty and effectiveness. 

P R I S M allows for the automated analysis of numerous quantitative properties related 
to these models, such as failure probabilit ies wi th in specified timeframes, worst-case error 
probabilities across a l l possible configurations, expected queue sizes, and worst-case ex­
pected terminat ion times. This is facilitated through the property specification language 
of P R I S M , which incorporates temporal logics like P C T L , C S L , L T L and P C T L * , and 
includes extensions for quantitative specifications and costs/rewards. 

4.1.1 P R I S M language 

The P R I S M language, based on the Reactive Modules formalism of A l u r and Henzinger, 
is a simple, state-based language used to specify the models that P R I S M supports for 
construction and analysis. The language is constructed from fundamental components 
called modules and variables. A model i n P R I S M is composed of several modules, each 

2 5 



containing local variables. The state of a module is determined by the values of these local 
variables at a given time, and the global state of the model is the aggregate of the local 
states of a l l modules. 

The behavior of each module is dictated by a set of commands. A command consists of 
a guard, which is a predicate over a l l variables in the model, and a set of updates. If the 
guard's conditions are met, the module can make a transit ion, which is specified by each 
update. E a c h update not only provides the new values of the module's variables (potentially 
as a function of other variables) but also assigns a probabil i ty or a rate to the corresponding 
transit ion. Commands can optionally include an action for annotation or synchronization 
purposes. 

Presented below is an example of a simple Markov Decision Process described using 
the P R I S M language, sourced directly from the P R I S M manual [16]. The accompanying 
explanation of the code, also quoted from the manual, describes the functioning of the 
system modeled by the code: 

Example 4. „Consider a system comprising two identical processes which must operate 
under mutual exclusion. Each process can be in one of 3 states: 0,1,2. From state 0, a 
process will move to state 1 with probability 0.2 and remain in the same state with probability 
0.8. From state 1, it tries to move to the critical section: state 2. This can only occur if 
the other process is not in its critical section. Finally, from state 2, a process will either 
remain there or move back to state 0 with equal probability." 

mdp 

module Ml 

x : [0 

[] x=0 
• x=l 
[] x=2 

endmodule 

module M2 

y : [0 

[] y=o 
• y=i 
[] y=2 

endmodule 

In this example, we can see how the concept of mutual exclusion, as well as dynamic 
behaviours within models supported by PRISM, can be succinctly expressed using the PRISM 
language. 
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.2] i n i t 0; 

-> 0.8:(x'=0) + 0.2:(x'=l); 
i y!=2 -> (x'=2); 
-> 0.5:(x'=2) + 0.5:(x'=0); 

..2] i n i t 0; 

-> 0.8:(y'=0) + 0.2:(y'=l); 
& x!=2 -> (y'=2); 
-> 0.5:(y'=2) + 0.5:(y'=0); 



4.1.2 R e w a r d - b a s e d P r o p e r t i e s i n P R I S M 

Given that reward mechanisms are central to my work, let's explore the different reward-
based properties implemented wi th in the P R I S M language. 

P R I S M allows for models to be supplemented wi th rewards or costs, providing the 
capabil i ty to analyze properties associated wi th these expected values. A variety of reward 
properties can be defined and analyzed, including reachability reward, co-safe L T L reward, 
cumulative reward, to ta l reward, instantaneous reward, and steady-state reward. 

Reachability Rewards: Reachabi l i ty reward properties pertain to the rewards accu­
mulated along a model path un t i l a specified point is reached. For example, the reward 
property „F prop" signifies the reward accumulated along a pa th unt i l a state satisfying 
the property 'prop' is reached. This type of property is commonly used when model re­
wards correspond to time, al lowing for the expectation of t ime to reach a certain state to 
be expressed. 

Example 5. For a simple illustration, consider the following formula: 

R{"rewO"}max=? [F "target"] 

This represents a query for the maximum possible accumulated value in the data variable 
,fewO" when the agent reaches the state labeled „target". 

Cumulat ive and Total Rewards: Cumula t ive reward properties denote the reward 
accumulated along a model path un t i l a given t ime has passed, as denoted by the property 
C < = t . Tota l reward properties, on the other hand, refer to the indefinite accumulation 
of rewards along a path. Unless a path consistently stays in states w i t h zero rewards, the 
to ta l reward w i l l be infinite. 

For example, a query that computes the expected total cumulative reward over the 
entire run of model is wri t ten as follows: 

R=? [ C ] 

Steady-State Rewards: Steady-state reward properties relate to the long-term re­
ward i n the model . A common applicat ion of this type of property is when model rewards 
correspond to resources like power consumption. 

4.2 S T O R M 

Information about S T O R M have been sourced from the paper „ T h e probabil ist ic model 
checker S T O R M " by Hensel, Junges, and K a t o e n [10]. 

S T O R M is a sophisticated probabil ist ic model checker that is designed to tackle the veri­
fication of systems that incorporate stochastic uncertainty. T h i s tool , which stands out w i th 
its unique features, supports the analysis of both discrete and continuous-time variations of 
Markov chains and Markov decision processes. S T O R M accepts mult iple input languages 
for Markov models, including P R I S M and J A N I modeling languages, dynamic fault trees, 
generalized stochastic Pe t r i nets, and the probabil ist ic guarded command language, thereby 
offering a wide range of applicabili ty. 

The tool is distinguished by its modular setup that allows for the easy exchange of solvers 
and symbolic engines. Th is flexibil i ty complements its P y t h o n A P I , which enables rapid 
prototyping by encapsulating S T O R M ' s high-speed and scalable algorithms. S T O R M thus 
provides a comprehensive toolki t for the quantitative evaluation of system performance 
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alongside correctness, making it an invaluable asset i n the realm of probabil ist ic model 
checking. 

The quantile plot depicted i n 4.1 from the study 'The probabil ist ic model checker 
S T O R M ' [10], illustrates how S T O R M outperforms other model checkers, solving more 
benchmark instances and generally doing so faster. 

solved instances (out of 43) 

Figure 4.1: G r a p h depicting the performance of S T O R M compared to other model checkers, 
as detailed i n the study 'The probabil ist ic model checker S T O R M ' [10]. 

4.2.1 A r c h i t e c t u r e of S T O R M 

S T O R M ' s architecture is designed for performance and modularity, w i th the logical struc­
ture of the software divided into various libraries and executables, a l l dependent on the 
core 's torm' l ibrary. It features two different in-memory representations of Markov models: 
sparse matrices and Mul t i -Te rm ina l B i n a r y Decision Diagrams ( M T B D D s ) . Sparse ma­
trices, which use memory roughly proport ional to the number of transitions wi th nonzero 
probability, are suited for smal l to medium-sized models, while M T B D D s are better suited 
for larger models due to their abi l i ty to store models compactly. 

A n interesting aspect of S T O R M ' s architecture is the concept of solvers. The tasks 
related to probabil ist ic verification often revolve around solving subproblems, and S T O R M 
provides abstract interfaces for different solver types that facilitate the solution of these sub-
problems. It currently includes mult iple implementations for each solver interface, further 
enhancing the tool 's flexibility. 

S T O R M is pr imar i ly wri t ten i n C + + , w i th extensive use of template meta-programming. 
This coding choice allows for high performance through fine-grained control over implemen­
tat ion details like memory allocations and enables type-dependent optimizations at compile 
t ime. A large part of the code is wri t ten agnostic of the data type (floating point, rat ional 
number, or even rat ional functions), w i th only the core parts specialized based on the data 
type. 

However, the use of C + + and advanced templat ing patterns can also present challenges. 
W h i l e it permits easy interfacing wi th high-performance solvers and data structure libraries, 
it can be difficult to understand for those unfamiliar w i th advanced templat ing patterns and 
can significantly increase compile times. Despite these challenges, the overall architecture 
of S T O R M demonstrates a powerful and flexible approach to probabil ist ic model checking. 
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S T O R M also leverages P y t h o n bindings to extend its functionality and accessibility. B y 
employing p y b i n d l l , a lightweight header-only l ibrary that exposes C + + types i n P y t h o n 
and vice versa, S T O R M is able to offer a P y t h o n interface. This allows for use-cases where 
scripting in P y t h o n is preferred to uti l ize the power and performance of S T O R M ' s C + + 
architecture. 

4.2.2 P O M D P A n a l y s i s in S T O R M 

S T O R M exhibits notable capabilities i n the analysis of Pa r t i a l ly Observable Markov De­
cision Processes. It supports three methods for P O M D P analysis including (quantitative) 
reachability verification, pol icy synthesis under observation-based policies w i th a fixed mem­
ory, and qualitative variant of reachability. These methodologies enable S T O R M to handle 
nondeterminism and synthesize policies even i n complex, real-world systems where non-
determinism is controllable. These features are part icular ly important for systems where 
decision-making is based on incomplete or imperfect observations, further broadening the 
range of applications S T O R M can handle. 

4.3 P A Y N T 

This section introduces and discusses P A Y N T , an innovative tool that automates the syn­
thesis of finite-state probabil ist ic programs. Developed by R . Andriushchenko and M . 
Češka , P A Y N T represents a significant leap forward in the sphere of probabil ist ic program 
synthesis, using program sketches to describe a finite family of program candidates [4]. 
A t the heart of this tool lies a powerful synergy between inductive oracle-guided methods 
and advanced probabil ist ic model checking, enabling P A Y N T to reason about a l l potential 
program candidates effectively. This section explores the inner workings of P A Y N T and its 
performance i n different applicat ion domains. 

4.3.1 A r c h i t e c t u r e of P A Y N T 

P A Y N T ' s architecture 4.2 is buil t upon the probabil ist ic model checker, Storm, u t i l iz ing 
a P y t h o n A P I for the synthesis loop's flexible construction, w i th the high-performance 
components implemented i n C + + . The tool accepts either a P R I S M or J A N I sketch along 
wi th a set of temporal properties, and provides a satisfying realization, if available, or 
reports the absence of such realization [4]. 

The architecture of P A Y N T is organized into mult iple modules, including family han­
dlers, chain builders, and model checkers, among others. Fami ly handlers store data about 
the previously explored design space, employing various methods such as member enumer­
ation and S A T representation. C h a i n builders generate representations of Markov chains 
or quotient M D P s based on the provided realizations, which are then verified by the model 
checkers. 

P A Y N T also incorporates counterexample generation, using either a M a x S a t or a greedy 
state-expansion approach. It operates through three analysis loops—1-by- l enumeration, 
C E G I S , and A R — e a c h wi th a different approach to the exploration of realizations. The 
hybr id approach, i n particular, combines A R and C E G I S approaches, al ternating between 
the two mid-execution for a comprehensive analysis. 
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Figure 4.2: Diagram i l lustrat ing the architecture of the P A Y N T tool , as presented i n the 
paper P A Y N T : A Too l for Inductive Synthesis of Probabi l i s t ic Programs [4]. 

4.3.2 Efficient Synthesis U s i n g P A Y N T 

The ut i l iza t ion of P A Y N T can be demonstrated through a synthesis problem originally 
listed i n P A Y N T article [4]. Th is problem involves a request-processing server w i th a queue 
capacity of Qmax, captured in image 4.3. W h e n the queue is full, incoming requests are 
discarded. The server has three power states - sleeping, idle, and active, w i t h the latter 
being the only one that processes requests. Transi t ioning from lower-energy states to active 
requires addi t ional energy and time. The server's power consumption dur ing processing 
depends on the queue size, and the server's operational t ime is random but l imi ted. 

service 
requester generate 

request 

observe 
queue size 

request queue 
T2 r3 

J I I I L 
Qmax 

_ l _ 

power 
manager 

determine 
power profile 

service 
provider 
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Figure 4.3: The server for request processing [4]. 

Cont ro l over the server's power state is in the hands of a power manager ( P M ) , which 
determines the power state based on the current queue size, d ivided into four occupancy lev­
els set by thresholds T l , T 2 , and T 3 . E a c h threshold is a parameter representing a fraction 
of the queue capacity, and each is associated wi th a power profile P I to P4 , corresponding 
to the three power states. 

P A Y N T operates on a sketch - a P R I S M or J A N I language program wi th undefined 
parameters (holes). E a c h module i n the program has variables and state transitions, ex­
pressed as guarded commands. W h e n a guard condit ion is met, variables are updated based 
on a probabil ist ic dis t r ibut ion. The sketch inputs include the queue capacity (Q_max G 
{ 1 , . . . , 1 0 } ) , thresholds ( T l G {0,0.1,0.2,0.3,0.4}, T 2 G {0.5}, T 3 G {0.6,0.7,0.8,0.9}), 
and corresponding power profiles ( P I to P4 G {0 ,1 , 2}), leading to a design space of 16,200 
different power managers. 

P A Y N T ' s objective is to instantiate the holes such that power consumption is minimized 
and the expected number of lost requests is less than 1. G iven a sketch and a specification, 
P A Y N T searches the design space for a hole assignment that satisfies the specification, or 
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reports that none exists. For example, P A Y N T found an opt imal power manager config­
urat ion in just one minute, three times faster than naive enumeration. Furthermore, in 
a complex problem wi th about 4 3 M solutions, P A Y N T found the opt imal power manager 
wi th in 10 hours, compared to over a month using enumeration [4]. 

4.3.3 A l g o r i t h m i c overview of P A Y N T 

Presented below is an overview of the procedural steps involved in the P A Y N T algori thm. 

A l g o r i t h m 6 P A Y N T 
procedure P A Y N T (sketch, properties) 

L o a d the sketch and properties. 
Initialize the appropriate synthesizer. 
Synthesize an assignment for the design space of the problem. 
If a val id assignment is synthesized, bu i ld a Markov chain from it. 
Check the satisfiability of the assignment against the problem's specification. 
if Synthesis was able to find a solution then 

Use the synthesized assignment and its satisfiability, 
else 

Split the problem into smaller subfamilies 
Repeat the process from step 6 for each, 

end if 
for each sub-problem do 

Verify feasibility of sub-problem. 
Analyze each sub-problem to determine i f it can be improved 
if a sub-problem can be improved then 

F i n d an improving assignment 
else 

Explore other branches of the problem space, 
end if 

end for 
end procedure 

The P A Y N T algori thm proceeds through several steps to solve a given problem using 
sketch and properties. Firs t ly , the sketch and properties are loaded into the system, which 
represents the in i t i a l problem. Then , an appropriate synthesizer is ini t ia l ized to generate 
potential solutions for the problem. 

The synthesizer begins by t ry ing to synthesize an assignment for the design space of the 
problem. If a val id assignment is synthesized, the algori thm builds a Markov chain from 
this assignment. It then checks the satisfiability of the assignment against the problem's 
specification. 

If the synthesized assignment is a solution to the problem, the algori thm uses the syn­
thesized assignment and its satisfiability. 

However, if the synthesizer does not find a solution in the in i t i a l attempt, it splits the 
problem into smaller subfamilies. It then repeats the process of synthesizing an assignment 
and checking its satisfiability for each subfamily. 

For each sub-problem (subfamily), the algori thm verifies the feasibility of the sub-
problem and analyzes it to determine i f it can be improved. If a sub-problem can be 
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improved, the a lgori thm finds an improving assignment for i t . If it cannot be improved, 
the a lgori thm explores other branches of the problem space. 

This procedure continues unt i l either a satisfactory solution is found or a l l branches of 
the problem space have been explored. 

4.4 Conclusion 

In conclusion, P R I S M , S T O R M , and P A Y N T each br ing unique and powerful capabilities 
to the table i n the field of probabil ist ic model checking and program synthesis. P R I S M ' s 
robust language and model checking capabilities provide a solid foundation, handling a wide 
variety of probabil ist ic models. S T O R M takes this further, offering a highly performant 
and extensible framework that deals w i th larger models and complex properties w i th great 
efficiency. P A Y N T takes advantage of both worlds. It not only leverages the P R I S M 
language for its inductive synthesis technique of probabil ist ic programs but also utilizes 
S T O R M ' s computat ional power for efficient exploration of design spaces and delivery of 
opt imal solutions. Each of these tools has its strengths, and together, they comprise a 
comprehensive toolkit for addressing a wide range of challenges i n probabil ist ic modeling 
and synthesis. The i r combined capabilities pave the way for excit ing future advancements 
in this field [14, 10, 4]. 
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Chapter 5 

Implementation and Experimental 
Evaluation 

In this chapter, I a i m to comprehensively articulate contributions to the development of 
the P A Y N T tool made throughout this work. This exploration w i l l include a experimental 
evaluation of the implemented enhancements. The intention is to discuss the impact of 
these changes and their role i n advancing the tool's capabilities and performance. 

5.1 Discount Factor Transformation 

The pr imary objective of this thesis is to address an identified l imi ta t ion wi th in the P A Y N T 
tool , specifically, the issue of discount factor transformation. This section of the present 
chapter is devoted to elucidating this concept and detail ing the specific concerns associated 
wi th it i n the context of P A Y N T . 

In the context of Markov decision processes ( M D P s ) , the discount factor 7 plays a crucial 
role i n determining the trade-off between immediate and future rewards. To transform a 
discounted M D P into an undiscounted one, a sink state was introduced. A sink state is an 
absorbing state where the process remains once it is entered, w i th no possibil i ty of leaving. 
In the transformed M D P , we add transitions to this sink state for every existing state, w i th 
a probabil i ty of ( 1 — 7 ) . Simultaneously, we scale the rewards of a l l transitions by a factor of 
7 . Consequently, the transformed M D P now operates i n an undiscounted setting ( 7 = 1 ) , 
while preserving the essence of the original discounted problem. B y doing so, we effectively 
capture the essence of the discount factor through the sink state, enabling the ut i l iza t ion 
of undiscounted M D P algorithms for solving the original problem. 

In following example, discount factor transformation is displayed on specific values. 

Example 6. Let's consider simple Markov chain with three states, as depicted on 5.1 with 
discount 7 = 0.9. 
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Figure 5.1: Simple Markov chain before applicat ion of discount factor transformation 

To apply discount factor transformation, we add new state (,pink state") and transitions 
from each of previous states into sink states with transition probability of 1 — 7 = 0.1. All 
rewards are multiplied by 7 and all previous transition probabilities are also multiplied by 
7 . Markov chain now fully operates in an undiscounted setting. Result is shown in 5.2. 

Figure 5.2: Simple Markov chain after applying discount factor transformation 

However, it is important to note that this transformation inevi tably increases the size of 
the model . The addi t ion of new transitions to the sink state from a l l existing states results 
in a more complex model, which can present challenges when processing or analyzing the 
M D P . Larger models are inherently more difficult to work w i t h due to their increased 
computat ional demands and the greater potential for complexity i n their structure and 
dynamics. 

5.2 Discounted Value Iteration 

The pr imary objective of this research was to address a key l imi ta t ion of P A Y N T concerning 
the handling of discounted properties. This was accomplished by extending the functionality 
of the S T O R M tool to incorporate the discounted variant of the value i teration method. 
This task was fraught w i t h mult iple challenges. Specifically, it necessitated the expansion 
of data classes wi th in P A Y N T and the addi t ion of P y t h o n bindings to S T O R M , thereby 
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ensuring an interface between the P y t h o n scripts and the S T O R M library. Furthermore, 
it also required the implementat ion of abstract template methods, which was essential to 
ensure conformity w i th the existing structure of S T O R M . 

5.2.1 D i s c o u n t F a c t o r 

In the original P A Y N T pipeline, the model was parsed and transformed prior to being 
checked, resulting in the discount factor becoming redundant during the subsequent value 
iteration stage. To ensure the accessibility of the discount factor throughout the entire 
process of model checking, I introduced a series of extensions and modifications. 

The first step was to augment the MinMaxSolverEnvironment class i n P A Y N T wi th an 
addi t ional at tr ibute named discount. Th is attr ibute required corresponding getter and 
setter methods, which were defined wi th in the MinMaxSolverEnvironment in S T O R M . 
Final ly , I established a connection between S T O R M and the P y t h o n scripts by creating a 
binding i n S T O R M P Y . 

Through these modifications, the discount factor was made readily available during a l l 
stages of the model checking process, significantly enhancing the versatili ty and effectiveness 
of the P A Y N T tool . 

5.2.2 V a l u e I terat ion E n h a n c e m e n t 

W i t h the discount factor now accessible throughout the model checking process, I was able 
to proceed wi th the development of the discounted value i teration function. A prel iminary 
step was to identify the appropriate solver environment, given the mult iple minmax solver 
environments implemented wi th in S T O R M . The IterativeMinMaxLinearEquationSolver 
was established as the environment i n use. 

M y next task was to identify a section of the code where the program could discern 
whether or not the discount factor was being ut i l ized. If the discount was not i n use, the 
process should continue wi th the undiscounted value i teration. Conversely, if the discount 
was i n play, the discounted version of value i teration should be used. 

I pinpointed this cr i t ica l juncture i n the solveEquationsValuelteration function, 
which controls the execution of the value i teration. I introduced a decision-making condit ion 
that checks whether the discount factor differs from 1. If this is the case, the discounted 
value i teration is ini t ia ted by cal l ing the newly added perf ormValuelterationDiscounted 
method. This effectively integrates the use of discounted value i teration wi th in the existing 
framework of S T O R M . 

Delv ing further into the code, I discovered that Gauss-Seidel mul t ip l ica t ion was em­
ployed to enhance S T O R M ' s computat ional capabilities. This operation ul t imately triggers 
the MultiplyAndReduceBackwardDiscounted method, a template function which imple­
ments pointer ari thmetic and vector mul t ip l ica t ion - foundational elements of value itera­
t ion. 

The discount factor is passed down to this level, ensuring its inclusion in the most cr i t ical 
computat ional step. B y integrating the discount factor into the heart of the computat ion 
process, I ensured its impact was felt throughout the entirety of the value i teration, thereby 
advancing the overall capacity of the P A Y N T tool in handling discounted properties. 
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5.2.3 L i m i t a t i o n s of S T O R M 

U p o n implementing the discounted value i teration, my next step was to attempt to bypass 
the discount factor transformation step, relying solely on the newly integrated discounted 
value i teration. However, I encountered a challenge. For P A Y N T to effectively check the 
model on which value i teration is applied, it requires a P R I S M formula. Th is formula, 
parsed wi th in S T O R M , serves as a determinant for the properties that are being checked. 
Therefore, the el iminat ion of the discount factor transformation step was not feasible, as it 
would compromise the integrity of the model checking process. 

W i t h the opt imal i ty objective defined as R[exp] Mreward"max=? [F Mdiscount_sink"], 
S T O R M essentially seeks the m a x i m u m expected reward that can be accumulated, given 
opt imal action choices, before reaching a state labeled 'discount_sink' . After the removal 
of the discount factor transformation, this 'd iscount_sink ' state was no longer present in 
the model . Consequently, I at tempted to uti l ize other formulas, such as those concerning 
steady state or to ta l cumulative reward, which query about rewards over an infinite time 
horizon. However, I discovered that these formulas were not yet implemented wi th in the 
S T O R M framework. 

5.2.4 E v a l u a t i o n of D i s c o u n t e d V a l u e I terat ion 

Incorporating addi t ional opt imal i ty objectives into S T O R M extended beyond scope of this 
project, presenting a significant challenge. To bypass this issue and test the functionality of 
my implementation, I chose to employ the discount factor transformation once more, albeit 
w i th a discount factor approaching one ( 0 . 9 9 9 9 9 . . . ) to mimic as closely as possible the 
behavior of the untransformed model. This step, however, meant sacrificing the benefits 
of model size efficiency for the chance to validate the outcomes of the discounted value 
iteration. The value i teration process generates vectors of potential opt ima at each iteration, 
from which the appropriate op t imum is later selected by P A Y N T . A s such, I decided to 
compare these vectors between the discounted and undiscounted value iterations. 

5.3 Experimental Evaluation 

In the Exper imenta l Eva lua t ion section, we conduct an in-depth analysis of various models, 
focusing on the model's opt ima, the error associated wi th the Discounted Value Iteration 
(Discounted V I ) i n comparison to the Value Iteration wi th Discount Factor Transformation 
(VI + D T F ) , and the t ime difference required for model checking. These evaluations were 
performed using models available i n the P A Y N T ' s G i t H u b reposi tory 1 . 

A summary of these experiments is presented i n Table 5.1. Th is table provides a sample 
of the models tested, detail ing the op t imum value, the absolute error by which Discounted 
V I differs from V I + D T F , and the respective original t ime and improvement w i th Dis­
counted V I for each model. 

It is cr i t ica l to highlight that the results of the Discounted V I synthesis are skewed due 
to the presence of the discount factor transformation, a necessity previously discussed in 
Section 5.2.4. 

accessible at https://github.com/randriu/synthesis 
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M o d e l Name M o d e l O p t i m u m E r r o r Original T i m e [s] Improvement [s] 
ld .noisy 1.0693 0.0000 1.6763 0.2179 
4x5x2.95 0.2323 0.0142 1.7600 0.2202 
shuttle.95 18.8960 0.0000 1.7025 -0.1149 
cheng.D5-l 64899.0102 5447.7890 20.2912 -0.2396 
stand-tiger.95 0.0 69.2908 2.0791 -1.1588 
ejs5 1.0 0.0 1.7848 0.2889 
cheng.D3-4 61510.4417 9449.3947 5.0684 1.0694 
web-mall 0.4005 0.0 1.8546 -0.0245 
cheese.95 0.6523 0.1025 1.7507 -0.0209 
network 82.9761 62.3134 1.8036 -0.1218 
ejs6 1.0 0.0 2.0416 0.2015 
4x4.95 0.5167 0.0383 1.9749 0.0701 
learning. c2 1.0182 0.4111 8.4710 3.9977 
I d 0.9536 0.0 2.045 0.1575 
concert 0.0 0.0 1.9391 0.0717 
ejs7 1.0 0.0007 1.7914 -0.1205 
ejs2 15156.5455 0.0159 2.3354 -0.0920 
ejs l 25003.3153 0.0 2.1903 0.1207 
cheng.D3-5 117600.8146 0.0714 2.8518 0.1853 
line4-2goals 0.4658 0.0 1.9216 0.0575 
milos-aaai97 29.4586 1.0924 49.0348 46.9239 
mini-hal l2 2.5581 0.9625 1.9629 0.0254 
cheng.D3-l 74656.3104 5025.017 5.9109 1.7440 
4x3.95 0.4418 0.6189 2.1347 -0.9012 

Table 5.1: Results for selected models. 

To facilitate comprehension of the table, we provide some statistical measurements: 
The median error of the Discounted V I is 4.92 %, while the mean time improvement of the 
Discounted V I over the V I + D T F is 2.1067 s, w i t h a median t ime improvement of 0.0962 s. 
O n average, the Discounted V I took 3.297 s for model checking, while the V I + D T F took 
5.4037 s. 

The results suggest that the Discounted Value Iteration (Discounted VI ) method delivers 
results of sufficient precision. However, to determine its absolute precision, we would need 
to test the Discounted V I without the involvement of discount factor transformation, a 
process which is not currently feasible. Moreover, it can be deduced from the results that 
Discounted V I doesn't hinder the model checking process. O n the contrary, it appears to 
enhance the speed of the process, albeit marginally. 
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Chapter 6 

Final Considerations 

In this thesis, my pr imary objective was to optimize the synthesis of P O M D P controllers 
w i th discounted reward properties. M y in i t i a l efforts were focused on understanding the 
current state-of-the-art methods i n model checking, w i th part icular emphasis on abstraction 
refinement and inductive synthesis. Subsequently, I delved into the realm of existing proba­
bilist ic model checking tools to gain a comprehensive understanding of their functionalities 
and l imitat ions. In the next phase, I proposed an opt imizat ion strategy for the P A Y N T 
tool by incorporat ing a discounted value i teration method wi th in the S T O R M tool . U p o n 
successful implementation, a modest increase in the speed of the model checking process 
was observed, indicat ing that this approach surpasses the previous one i n terms of efficiency. 
It can be inferred that el iminat ing the discount factor transformation step would further 
enhance this process. 

Future enhancements to the approach I've proposed are both necessary and promis­
ing. W i t h i n the context of S T O R M , there is potential for the implementat ion of addi t ional 
opt imal i ty objectives, which could broaden the tool's applicabil i ty. A s for P A Y N T , a signifi­
cant advancement could be achieved by successfully el iminat ing the need for discount factor 
transformation, which would streamline the process and further optimize the synthesis of 
P O M D P controllers. 
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