
B R N O U N I V E R S I T Y O F T E C H N O L O G Y

VYSOKÉ UCENI TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

S E L I N U X P O L I C Y A N A L Y S I S T O O L

NÁSTROJ PRO ANALÝZU BEZPEČNOSTNÍCH

POLITIK V SELINUX

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR VÍT MOJŽÍŠ
AUTOR PRÁCE

SUPERVISOR Prof. Ing. TOMÁŠ VOJNAR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2016

Master Thesis Specification 186O1/2015hmojziO5

Brno Univers i ty of Technology - Faculty of In fo rmat ion Technology

Department of Inte l l igent S y s t e m s A c a d e m i c year 201 5/2016

Master Thesis Specification

p 0 (Mo jž í š Vít , B e .

Branch of s tudy: In te l l i gent S y s t e m s

T j t i e S E L i n u x P o l i c y A n a l y s i s T o o l

Category: Secu r i t y

Instruct ions for p ro jec t wo r k :
1. Get a cqua i n t ed w i th S e c u r i t y E n h a n c e d L inux (S E L i n u x) .

2. Des ign SEL i nux po l i cy ana l y s i s too l c apab l e of (a) r e p r e s e n t i n g S E L i n u x po l i c ies as

well as g i ven in tegr i t y goa l s , (b) i den t i f y ing con f l i c t s b e t w e e n t h e m (i .e. , c a pab l e of

ana lys i s of i n t e r a c t i ons b e t w e e n po l i cy m o d u l e s) , a nd (c) p r o v i d i n g i n f o rma t i on

necessa ry for r e so l u t i on of such con f l i c t s .

3. Imp l emen t the too l so t ha t it can be i n t eg r a t ed w i th c u r r e n t S E L i n u x u s e r - s p a c e

too ls .
4. D emons t r a t e f unc t i ona l i t y of t he d e v e l o p e d too l on a non - t r i v i a l u se ca se .

5. Eva lua te the ob t a i n ed resu l t s a nd d i s cus s po s s i b l e f u t u r e i m p r o v e m e n t s of t h e

deve l oped too l .

Basic re fe rences:
• Ha ines , R.: The S E L i n u x No t ebook , 2 0 1 4 . h t t p : / / f r e e c o m p u t e r b o o k s . c o m

• Mayer , F., MacM i l l an , K . , C ap l a n , D.: S E L i n u x by E x a m p l e : Us i ng S e c u r i t y E n h a n c e d

L inux, Prent i ce Hal l PTR, 2 0 0 6 .

• Khedke r , U.P., S a n y a l , A. , K a r k a r e , B.: Da ta F low A n a l y s i s : T h e o r y and P rac t i ce , C R C

Press, 2 0 0 9 .

• Chess , B., Wes t , J . : S e c u r e P r o g r a m m i n g w i th S t a t i c A n a l y s i s . U p p e r S a d d l e R i v e r :

Add i s on -Wes l e y , 2 0 0 7 .

Requ i r emen t s for the s e m e s t r a l d e f e n s e :

The f irst i t em and s i gn i f i can t p r og r e s s on t he s e c o n d i t e m .

Deta i led f o rma l spec i f i c a t i ons can be f ound at h t t p : / / w w w . f i t . v u t b r . c z / i n f o / s z z /

The Master Thesis must define its purpose, describe a current state of the art, introduce the theoretical and
technical background relevant to the problems solved, and specify what parts have been used from earlier
projects or have been taken over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of
the complete program documentation, program source files, and a functional hardware prototype sample if
desired. The information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R,
etc.) in formats common at the FIT. In order to allow regular handling, the medium will be securely attached to
the printed report.

Superv i so r : V o j n a r T o m á š , p r o f . I n g . , P h . D . , D I TS FIT BUT

Beginn ing of work: N o v e m b e r 1, 2 0 1 5

Date of de l i ve ry : May 25 , 2 0 1 6

Božetéchova ?

Petr Hanáček
Associate Professor and Head of Department

http://freecomputerbooks.com
http://www.fit.vutbr.cz/info/szz/

Abstract
This thesis deals with mandatory access control (MAC)-based security module policy anal­
ysis, focusing on SELinux. Because of insufficient capabilities of available analysis tools,
new tool was designed and implemented with the needs of Red Hat SELinux team in mind.
Its main uses will be as aid in policy development and support in SELinux usefulness evalu­
ation. If the tool proves useful, it will be incorporated into SELinux userspace tools package
SETools 4.

Abstrakt
Tato práce se zabývá analýzou politik pro bezpečnostní moduly založené na mandatorním
řízení přístupu (M A C) , se zaměřením na SELinux. Vzhledem k omezeným schopnostem
dostupných nástrojů byl navržen a implementován nový nástroj. Jeho hlavní cíle jsou
usnadnění vývoje bezpečnostních politik a pomoc při odhadu role SELinuxu v zabezpečení
systému. V případě úspěšného nasazení bude nový nástroj začleněn do balíčku nástrojů
SETools 4.

Keywords
SELinux, analysis, security policy, mandatory access control.

Klíčová slova
SELinux, analýza, bezpečnostní politika, mandatorní řízení přístupu.

Reference
MOJŽÍŠ, Vít. SELinux Policy Analysis Tool. Brno, 2016. Master's thesis. Brno University
of Technology, Faculty of Information Technology. Supervisor Vojnar Tomáš.

S E L i n u x P o l i c y A n a l y s i s T o o l

Declaration
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením Prof. Ing
Tomáše Vojnara, Ph.D., jakožto akademického vedoucího, a Ing. Miroslava Grepla, jakožto
technického vedoucího. Další informace mi poskytli Bc. Lukáš Vrabec a Ing. Petr Lautr-
bach. Uvedl jsem všechny literární prameny a pulbikace, ze kterých jsem čerpal.

Vít Mojžíš
May 25, 2016

© Vít Mojžíš, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author's explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 3

2 Security Concepts 5
2.1 The Reference Monitor 5
2.2 Discretionary Access Control (DAC) 6
2.3 Mandatory Access Control (MAC) 6

3 SELinux 8
3.1 Structure 8

3.1.1 L S M Framework 10
3.2 Type Enforcement 11

3.2.1 Security Context 11
3.2.2 Types and Attributes 11
3.2.3 Object Classes and Permissions 12
3.2.4 Type Enforcement Rules 12
3.2.5 Process Domain Transition 13

4 Current State of SELinux Policy Analysis 14
4.1 Existing Analysis Tools 14

4.1.1 Apol 15
4.1.2 Gokyo 15
4.1.3 Security-Enhanced Linux Analysis Tool (SLAT) 15
4.1.4 Policy Visualization Analysis (PVA) 16

4.2 New Analysis Tool Proposition/concept 17
4.2.1 System T C B 17
4.2.2 Individual Service "Computing Bases" (type groups) 17
4.2.3 Queries 18

5 Design and Implementation 19
5.1 Analysis Focus 19

5.1.1 Examined SELinux Rules 19
5.1.2 Limitations 19

5.2 Type Grouping Development 19
5.2.1 Common Intermediate Language 20

5.3 Trusted Computing Base Equivalent 20
5.3.1 Selection of Security Related Types 21

5.4 Visualization 22
5.4.1 Attributes 23

1

5.4.2 Conditional Policy Statements 23
5.4.3 Permission Sets 23
5.4.4 Type Grouping 23

5.5 Policy-wide Query 24
5.5.1 Graph Construction 24
5.5.2 Graph Query 25

5.6 Future Development 26
5.6.1 Transitive Domain Reach 26
5.6.2 SELinux Users and Roles 26
5.6.3 Visualization 26
5.6.4 SEChecker 26
5.6.5 Policy Loading 27

6 Use Cases 2 8

6.1 Visualization 28
6.1.1 Bluetooth Daemon Example 28

6.2 Graph Query 29
6.2.1 Policy Graph 29
6.2.2 System Hardening 29

6.2.3 Regression Testing 32

7 Conclusion 33

Bibliography 34

Appendices 36
List of Appendices 37

A D V D Contents 3 8

2

Chapter 1

Introduction

In computing systems, security policies are means to precisely specify desired (and therefore
allowed) access to system resources. Systems where security is top priority, such as those
used by military or government, can make use of formal security models that are designed
and proven to deal with specific types of threats. Security policies, as well as the rest of
software equipment in such systems, unconditionally adhere to exact set of rules defined by
chosen model.

Creating policies for other environments, like enterprise systems or even personal com­
puters, proves significantly more challenging because the goal is to increase security while
not limiting normal activity of the system (no significant changes to the system). Instead
of complete formal models, policy writers are guided by general security goals and security
becomes only best effort endeavour. Among the most common security goals are, limiting
information flow to and from protected resources, resource isolation and separation of duty.
Policies , however, are written in low level languages to allow for fine grained control, which
makes achieving such goals challenging. Encapsulation and interdependence of policy rules
further complicates the task by clouding exact effects (reach) of policy statements. SELinux
policy files are clear example, since single policy statement can affect resources throughout
the whole system.

SELinux is focused on preventing unauthorised access to systems resources and miti­
gating effects of exploited application flaws by exercising principle of least privilege1. In
current default SELinux policy for Fedora (targeted), privileged processes (mostly daemons
run by the system) and highly used programs are assigned individual SELinux domains and
are allowed (only) the access required for their normal functions. This means that, in case
some process gets compromised, attacker is limited to domain of given process, which in
most cases prevents privilege escalation. But what is the minimum set of privileges neces­
sary for given application? Policy writers are often left to answer this question themselves
by studying documentation and access attempts from several test runs of the application,
since its developers are unaware of, or reluctant to learn SELinux. Ultimately, applications
are usually allowed more access than necessary due to assumed requirements, untraced ap­
plication changes or misused (or overreaching) policy rules. Making application policy too
"tight" shows as application failure and is, in the worst case, brought back to policy writers
attention by bug reports. Too "loose" policy, however, doesn't show unless exploited.

1 SELinux supports -multi level security as well, but that functionality is commonly not used and therefore
not considered in this thesis.

3

This work explores currently available tools for mandatory access control policy analysis
with particular focus on SELinux and describes a new tool developed in cooperation with
Redhat SELinux team. The tool was designed to help increase the quality of SELinux
policy through identifying the following.

• Reach (Access allowed by SELinux) of specified domain or group of domains used by
one service

• Possibly dangerous data pathways allowed by SELinux - eg. information flow between
(groups of) domains and security-critical resources

This information will be useful in several areas. For example, estimating impact of suc­
cessful attack on specific service, evaluating feasibility of exploiting common vulnerabilities
and exposures (CVE) on systems protected by SELinux, or explaining policy effects to non
SELinux aware audience (package developers, administrators, etc.).

The rest of the work is organised as follows. In chapter 2, basic security concepts used in
this thesis are explained. Chapter 3 provides overview of SELinux security module. Chapter
4 deals with currently available policy analysis tools, as well as the working scheme for new
tool. Chapter 5 describes development process of the new tool and explains the reasons
behind important design decisions. Suggested use cases for the new tool are outlined in
Chapter 6. Chapter 7 brings summary of the work.

4

Chapter 2

Security Concepts

A l l non-trivial software inherently contains flaws and even though there are ongoing efforts
to increase code quality, it will probably remain flawed in the foreseeable future. Reasons
may vary, but the fact remains that some people will always try to exploit these flaws.
This chapter describes concepts designed to protect computer systems from intrusions, or
mitigate their impact.

2.1 The Reference Monitor
One of the first steps to make multi-user systems more secure was the reference monitor
concept from the so-called Anderson Report [], created as part of research led by the U.S.
Department of Defence.

Subjects Access
Attempt 3 -

Rules
DB

Allowed
or not

Reference Validation Mechanism

Figure 2.1: The reference monitor concept. []

The function of the reference monitor is to validate all references (to pro­
grams, data, peripherals, etc.) made by programs in execution against those
authorized for the subject (user, etc.). The Reference Monitor not only is re­
sponsible to assure that the references are authorized to shared resource objects,
but also to assure that the reference is the right kind (i.e., read, or read and
write, etc.).

A) The reference validation mechanism must be tamper proof.

B) The reference validation mechanism must always be invoked.

5

C) The reference validation mechanism must be small enough to be subject to
analysis and tests to assure that it is correct.[]

For the reference monitor to work, system has to isolate passive resources into distinct
objects (eg. files) and active entities (running programs) into subjects. The reference vali­
dation mechanism then checks all access from subjects to objects against a security policy
consisting of access control rules (see Figure 2.1). Security-related characteristics of sub­
jects and objects are stored as security attributes. Examples of such characteristics are user
identities for processes and access permission modes (owner-group-world) for files in Linux.

2.2 Discretionary Access Control (D A C)

Basic access control currently prevalent in most Linux distributions for personal computers
is a form of D A C as defined in The Orange Book [10] (class C2). Access to objects is
restricted based on the identity of users or groups to which they belong. The security
policy rules are usually fixed leaving the security attributes as the only means of modifying
access rights. The controls are discretionary in the sense, that authorized users are allowed
to change the security attributes of objects, thereby specifying whether other users have
access to them.

The idea behind D A C was to emulate real world security. However, unlike in real
world, most of the actions we do in computer system are done by complex software not of
our design. Instead of users, the access rights are effectively given to software run by users.
Malicious, or flawed and exploited software is allowed the same access as the user running
it, which leaves the security of the system on its users.

(Object)
PUBLIC

Figure 2.2: Simple M L S model with two security levels Public and Secret []

2.3 Mandatory Access Control (M A C)

To overcome issues of D A C , it was necessary to provide more fine-grained access control
(process-level instead of user-level) and define policy base which would not be at the dis­
cretion of users or even system administrators (mandatory base). U . S. military provided

(i

significant part of funding for this work and added new focus which was protecting confiden­
tiality of classified data. So far most common form of M A C adheres to Multilevel Security
(MLS) concept based on Bell-LaPadula security model. In M L S , all objects are assigned
a security level and all subjects a security clearance. Subjects can access only objects for
which they are cleared and data can move only from lower levels to higher (no "read up",
no "write down", as shown in Figure 2.2).

In non-military environment (notably PC) , M L S has proven to be too restrictive, espe­
cially when confidentiality is a secondary objective. Instead, M A C for common systems has
to be more flexible and focused on the malicious software issue, working as an extension of
D A C . Currently there is several implementations of security modules for Linux based on
M A C , most popular of which are AppArmor 1 , SELinux 2 an S M A C K 3 . A l l three are imple­
mented as modules for Linux Security Modules (LSM) framework and provide program-level
access control. SELinux will be further discussed in chapter 3.

xhttp://wiki.apparmor.net/index.php/Main_Page
2 Security Enhanced Linux http://selinuxproject.org/page/Main_Page
s imp l i f i ed Mandatory Access Control Kernel http://schaufler-ca.com

7

http://wiki.apparmor.net/index.php/Main_Page
http://selinuxproject.org/page/Main_Page
http://schaufler-ca.com

Chapter 3

SELinux

SELinux is an implementation of M A C security module currently used in several Linux
distributions (Fedora, Ubuntu, Debian, Gentoo, . . .) . Starting as Flux Advanced Security
Kernel (F L A S K) development by the Utah university Flux team as part of US Department
of Defence contract, SELinux was later enhanced by the N S A and released as open source
software. Currently there are many independent contributors, most important of which are
NSA (main branch), Tresys Technology (Reference policy) and Red Hat (Fedora/RHEL
customisation)1. Following overview is based on [4] and [7].

3.1 Structure

This section provides an overview of main SELinux components and their role within the
system. Figure 3.1 shows a high level diagram of component interaction. Starting from the
bottom:

a) The SELinux security server resides in the kernel, while the policy is loaded from
userspace via functions in libselinux library, which allows for more complex policy
management (dynamic loading of policy modules). Decisions of the security server
are enforced by object managers. Object manager is a subsystem designed to create
and manage given set of resources (e.g. file system, interprocess communication,
windows or tables). There are two types of object managers based on their location:

kernel space — These object managers deal with kernel services (files, sockets, IPC,
etc.), utilising hooks into SELinux subsystem provided by Linux Security Modules
(LSM) framework. Single kernel access vector cache (AVC) service is used for caching
security server responses to all kernel-based object managers in order to decrease
response time of same requests in the future. Content of the A V C is invalidated upon
any policy change in order to allow for access revocation 2.

userspace — These object managers are contained within SELinux aware applica­
tions and provide M A C over special resources such as windows, or database tables.
Examples of SELinux aware applications and services are X-Windows, database ser­
vices (PostgreSQL), or G N U / L i n u x passwd command. Such applications have to
maintain their own AVC's (usually using libselinux), if A V C is to be used. Separate

1 O p e n source community significantly contributes to overall development.
2 SELinux does not fully implement access revocation. Access to some resources (memory mapped files,

connection oriented sockets, . . .) is validated only upon first use.

8

che ckmodule
Compiles the pol icy

source into
intermediate format.

5
Po l i cy Object

Files

semodule__package
Package the pol icy modules
with opt ional configuration

files.

H E

semodule
Manages the policy store by installing, loading, updating
and removing modules and their supporting configuration

files. Also builds the binary policy file.

Optional
Configuration

Files

Po l i cy Files

SELinux-aware Applications
Userspace Object Managers

Access These may use the
V e c t o r l i b s e l i n u x A V C
C a c h e services or build their

libselinux own.

TT

Linux commands
Linux commands modified to
support SELinux , such as I s .

p s , pam.

po l i cycoreu t i l s
SElinuxutilities, such as secon,

audi t2al low and system-
config-selinux .

File Labeling Utilities
Utilities that initialise or update

file security contexts, such as
setiiles and restorecon.

semanage
Configures elements o f
:he pol icy such as login,

users, and ports.

4 >

Y7 These libraries
are l inked into /
SELinux aware
applications as

required.

l i b s e l i n u x (supports security po l i cy , xattr file attribute and process APIs)

/ se l inuxor /sys / fs / se l inux(se l inuxfs)

SELinux
Kernel

Services

7Y

Access
Vector Cache

Security L o a d e d

Server Po l i cy

Figure 3.1: High Level SELinux Architecture - Showing the major supporting services.

policy servers can be used instead of relying on SELinux kernel. Such policy servers
can focus solely on resource classes provided by given object manager, significantly
simplifying policy writing.

b) SELinux policy can be monolithic, but more commonly consists of a base policy
containing mandatory data (object classes, permissions, etc.) and additional smaller
modules usually supporting single service/application. A l l policy modules are held in
policy store (managed by semodule) in order to be available for conversion to binary
format that can be loaded into the security server (libsepol/libsemanage).

c) Policy source (top left corner) can be supplied in following three ways:

• SELinux policy language source code with m4 macro support. Suitable for
smaller policies such as SE for Android.

• Using high level macros defined in the reference policy that significantly simplify
writing more complex and structured policies.

9

• Using Common Intermediate Language (CIL), recently added to SELinux frame­
work. CIL is currently used as intermediate step in compilation of all SELinux
policies.

Whole policy compilation process can be seen in the top portion of figure 3.1.

d) A l l security events are logged using audit services (even when SELinux is not en­
forcing access control). Log file location depends on which audit daemons are running
(auditd / rsyslogd / setroubleshootd).

[User-Mode Process") User Space

- - - - - - v—
(Open System CUP) K e r n e l s P a c e

I
[Look UpInodeJ

i
(Error Checks J

I
(DAC Checks) _
1 IT— /" S\

(LSM Hook) < ^S a ^ e s s f l owed?^ Yes or No?
J L

SELinux LSM Module

(Access Inode)

Figure 3.2: L S M hook architecture.[

3.1.1 L S M Framework

L S M Framework allows for security modules to be linked to the system kernel and further
restrict default identity-based D A C security. Compatible 3 r d party access control mecha­
nisms can be registered to the framework and are then consulted for access validation of
specific kernel calls (for list of affected kernel services, see table 3.1). This is done by set
of security function hooks and additional data structures, residing in the kernel system call
logic. These hooks take effect after the standard D A C access checks but before the resource
is actually accessed by the kernel on behalf of the caller (see figure 3.2). As a result L S M
is only used if standard access checks succeed and therefore there are no L S M logs of D A C
denials. Each L S M hook can deal with multiple access permissions for one or more object

Program execution Filesystem operations Inode operations
File operations Task operations Netlink messaging

Unix domain networking Socket operations X F R M operations
Key Management operations IPC operations Memory Segments

Semaphores Capability Sysctl
Syslog Audit

Table 3.1: Kernel services controlled by L S M hooks.

classes. L S M framework by itself doesn't provide any security services. If no other security

10

module is loaded, capabilities module is used, resulting in standard D A C access control.
The SELinux L S M module can be seen in bottom part of Figure 3.1. As it was derived
from the Flask architecture, it comprises of three parts: security server, object managers,
and the access vector cache.

3.2 Type Enforcement

The core of SELinux functionality is type enforcement. It consists of labels assigned to each
object (file, symbolic link, socket, pipe, . . .) and subject (process) in the system and a
set of rules governing their interaction. The fact that access rules operate (via labels) on
processes allows SELinux policy writers to control access based on the function and security
properties of individual programs in addition to restrictions placed on users.

3.2.1 Security Context

The labels are known as security context and are kept in extended attributes of each object3.
Security context is represented by variable-length string consisting of user, role, type and
optionally security range as follows:

user:role:type[:range] (system_u:object_r:passwd_file_t:sO)

user SELinux user that is mapped to Linux user (n to n relation). Can be associated
with roles, allowing the SELinux user to use them.

role SELinx role (object_r by default for objects). Can be associated with
types, allowing the SELinux user in given role to use them (limits SELinux user
to policy rules containing listed types).

type SELinux type is the main element in security context. Used in type enforcement
rules.

range Also known as level is only used in M C S or M L S modes'1. It is
made up of sensitivity (single level or range) and zero or more categories
(e.g. s0:cl0.cl5, s0-sl5:c0.cl023)

3.2.2 Types and Attributes

As expected, types are the most important part of type enforcement. Except for object
classes, SELinux types are the only means of distinguishing between different resources and
processes (from SELinux policy point of view). The use of types in policy writing is made
easier by attributes and aliases. Attributes are means of referring to a group of types by
a single identifier. Policy language supports using attributes in place of type identifiers in
most cases, including type enforcement rules. Aliases are used to define alternative names
for a type. It is only a convenience mechanism and does not provide any additional benefits
compared to using the original type identifier.

3 I n order to work properly, SELinux requires the filesystem to support extended attributes,
c o n s i d e r i n g only on type enforcement.

11

3.2.3 Object Classes and Permissions

Each object in the system is instance of a single class that defines its purpose. Each class
is associated with a set of permissions that describe what services can object of given class
handle. Object classes therefore represent categories of objects and interfaces for interaction
with them. SELinux works with kernel and userspace object lasses. The former represent all
objects accessible via kernel calls (files, sockets, . . .) , and permissions associated with them
are based on available L S M hooks. Userspace object classes represent resources available
via userspace object managers (windows, tables, . . .) .

3.2.4 Type Enforcement Rules

Only access vector rules6 will be mentioned, since they specify all access permissions relevant
to this work. As of now, the policy language supports four types of A V rules:

allow Translates into access allowed between two types,
dont audit Causes audit messages for specified access

not to be generated,
auditallow Causes audit messages to be generated even

in case specified access was allowed,
neverallow Translates into access that is never to be allowed.

Any rule allowing it will cause failure of policy compilation.

Despite different purpose, all mentioned rule types have the same syntax. Each rule consists
of five parts:

Rule type
Source type(s)

Target type(s)

Object class (es)
Permission(s)

Allow, dontaudit, auditallow, or neverallow.
SELinux type receiving (being granted) access.
Should be domain type.
Type of object(s) to which access is being allowed.
Can be both domain and resource type(s).
Class(es) of target object(s).
Set of access permissions being allowed.
Also called the access vector.
Has to be subset of permissions associated with specified classes.

By far the most common rules (and most important for this work) are of type allow, there­
fore further references to policy rules should be considered to mean allow rules. Neverallow
rules are mostly used in base policy module, guarding access to most restricted resources .
Special attributes are often used to create exceptions in such rules (never allow any type
without given attribute to be assigned specified access). Dontaudit rules are useful in cases
where process only tests availability of resources, not intending to use them (common in
network related daemons). Auditallow rules are used almost exclusively for testing/de­
bugging.

6 T h e resulting policy data (permissions to given object class) are stored in the form of bit mask (access
vector).

7 I t should be noted that neverallow rules can only prevent direct assignment of specified permissions,
which severely limits their application.

12

3.2.5 Process Domain Transition

Domain transitions are essential feature of type enforcement, since they facilitate change
of process type (domain) upon file execution 8. This allows processes to be confined in their
own domains. Process running in domain A can transition to domain B by execution of file
(entrypoint) labelled C when the following permissions are in place:

allow A C: f i l e {getattr execute]-;

allow B C: f i l e entrypoint;

allow A B: process transition;

8 D o m a i n transitions can (when specifically allowed to) be triggered without file execution. But that is
very rare occurrence (reserved for parts of SELinux itself and system kernel).

13

Chapter 4

Current State of SELinux Policy
Analysis

As of few recent years, most operating systems started to integrate some form of manda­
tory access control. As mentioned in the introduction, managing security policies for such
security modules can, with growing policy size, surpass abilities of policy writers. Policy
analysis offers tools to locate inconsistencies and evaluate attributes of the policy as a whole,
as opposed to individual policy files.

4.1 Exist ing Analysis Tools
Several analysis tools were developed to assist in successful policy development. This section
describes their capabilities in context of SELinux policy. Unfortunately, to the best of
authors knowledge, none of these tools are publicly available, except for Apol .

File Edit Query Tc

Analysis Type

_>c;r;: n I ryis I or1

Direct Relabel

Analysis Results
[1)DomairiTrar,S|

• NetworkManager t
•-abm "
»-abr1_upload vjatch :ibrl walr.-1 or; I

sir s d

Altatvsis Options
Direction Required Parameters

Source domain I resuh types using regular

Domain t ransi t ion f rom i n i t r c t to Ne two rkManage r t

insition Rules: 2
initrc_domain daemon :
initrc domain systemprc

:onfined unlabeled_t: process {fork sigchld s gkill s gituo s gr u I sign;i -ctscied setscI" ed gctsession getpgid setpgid getcap setcar.
Dnfined domain type domain : process {fork sigchld sigkill sigstop signull signal getsched setsched getsession getpgid setpgid getcap si

s:Sa Pcmi3:253 Types: 4626 ALtrib > AV - TEmlr;̂ :\Z:-iAl-

Figure 4.1: Apol user interface, showing results of domain transition query.

14

4.1.1 A p o l

Apol is a graphical tool developed by Tresys Technology as part of SETools Policy Analysis
Suite 1. Analysed policy can be in form of source, monolithic binary, or modular binary
files. Primary use is examining, searching, and relating policy components (types, object
classes, etc.), and policy rules (allow, type transition, etc.). Some more complex queries
are supported, including domain transitions, information flows, and relabelling permissions
(only single source/destination domain type is supported). The user needs to be well versed
in policy writing as it was developed for policy administrators. [8]

Prohibited Prohibited

Specified Unknowns

-i

Obligated Permissible

Figure 4.2: A realistic access control space: the specified space conflicts with the prohibited
space and the unknown space.

4.1.2 Gokyo

Jaeger et al. [] developed tool capable of identifying and resolving conflicting policy
specifications. Together with security policy, safety requirements in the form of constraints
are specified. Gokyo implements approach called access control spaces, dividing active
policy to three permission sets:

• Permissions assigned to a subject type.

• Permissions precluded from a subject type by a constraint.

• Permissions whose assignment or preclusion status is unknown.

Relations between those sets are then evaluated (see Figure 4.2). Permissions that are both
assigned and precluded form integrity conflicts, are further processed by the tool in order
to estimate optimal resolution. Similarly permissions that are neither allowed nor explicitly
prohibited might be interesting for policy writers 2. Example graphical output can be seen
in figure 4.3.

4.1.3 Security-Enhanced Linux Analysis Tool (S L A T)

Gutteman et al. [2], [3], defined information flow model and implemented it in tool named
SLAT. Flow transition (transitive property) represents a possibility of information transfer -
write operation transfers information from process to resource and read operation transfers

x

https://github.com/TresysTechnology/setools
2 T h i s case cannot occur in SELinux since it block any access that is not explicitly allowed.

15

https://github.com/TresysTechnology/setools

Legend
assignment attri b utes

inheritance p: perms

*- constraint r: roles

agg regatio n s: subjects

Perm p6

p: p4, p5 perms, p6

r: r2

s: r2 5ubjs

p : P 2

r: p5 roles

s: p5 SLibjs

Figure 4.3: Example access control representation by gokyo tool (the fields p:, r:, s: refer
to the permissions, subject types, and subjects assigned to these entities, respectively). [5]

information from resource to process. SELinux enforcement model together with security
policy were represented using formal language based on linear temporal logic. Simple logic
program queries were then used to analyze the policy. The flow model was later used by
Sarna-Sota et al. [9] to implement P A L (Policy Analysis using Logic Programming).

4 .1.4 Policy Visualization Analysis (P V A)

As the name suggests, P V A is focused on visual presentation of policy information. The
tool supports semantic substrates and adjacency matrix layouts for visualization as well as
query-by-example based visual query formulation. User study suggests that first-time users
were able to use P V A significantly more efficiently than Apol . As of query functions, P V A
offers the most complex queries, compared to the rest of listed tools. The framework allows
for specifying system T C B and domain groups which can then be used in user queries. [12]

Group to Groups Information Flow Reachability

Figure 4.4: P V A user interface. Results of two queries and visual query formulation (right).

16

4.2 New Analysis Tool Proposition/concept

Because of limited analysis capabilities of apol (no domain grouping or T C B awareness,
queries limited to single source/destination domain) and unavailability of any other analysis
tool, Red Hat SELinux team initiated new project aimed at creating new tool. This tool
will have two main purposes:

• A i d in policy development - detecting inconsistencies with security goals, regression
testing

• SELinux usefulness evaluation - limiting impact of successful attack (C V E examples)

To satisfy these requirements, I propose the following working scheme3:

1. Determine System T C B (trusted computing base) equivalent.

2. Automatically determine "computing base" for each service.

3. Identify information paths between individual "computing bases" (most importantly
those from/to System T C B) - query phase.

4.2.1 System T C B

The heart of a trusted computer system is the Trusted Computing Base
(TCB) which contains all of the elements of the system responsible for support­
ing the security policy and supporting the isolation of objects (code and data)
on which the protection is based. [10]

The T C B will be selected from types belonging to kernel and system categories, together
with types used by SELinux module itself. Most of this step will be done manually, but the
result will be saved as static resource and there will be no need to update it until significant
changes occur in target system kernel, or SELinux module. The selection process will take
place in the last project phase, as some of the tools query functions will be necessary. Work
of Jaeger et al. [6] will probably be used as reference point.

4.2.2 Individual Service "Computing Bases" (type groups)

This step will provide disjunct sets of domains (and corresponding resource types) concern­
ing each SELinux enabled service/application based on user-specified criteria. User will
decide upon types of pathways used in data flow analysis and sensitivity of the grouping
mechanism (merging threshold). This parametrisation should influence granularity of the
resulting domain groups (some services might be grouped together or divided into smaller
segments based on their security policy). Default setting should yield grouping correspond­
ing to policy files, where each domain was defined. Name-based scan may be used to
provide initial grouping. Concept of resulting simplified policy graph can be seen in figure
4.5. "Type groups" and "domain groups" will both be used throughout this document to
describe the same set of objects. Term "domain groups" should empathise subject types
contained in the group (e.g. when discussing access granted to given group - object types
have no access since they represent passive resources).

3 T h i s scheme is partially based upon work of professor X u et al. [12] and Jaeger et al. [6].

17

Figure 4.5: Concept of simplified policy graph generated by the second step (domain group­
ing).

4.2.3 Queries

The last step will entail user queries over the structure created so far. Grouping from the
last step will have significantly decreased number of vertices in the resulting policy graph,
hopefully resulting in reasonable query times (at least for basic queries). Available queries
will range from listing neighbouring nodes of specified service, to deep scans of the whole
policy graph in search for potentially dangerous information paths (eg. to system T C B) .
Queries concerning single service/application could be especially useful for users who are
not well versed in SELinux policy writing, because they will show relationships between
services, or services and resources, rather than SELinux types. More complex scans, on the
other hand, will be targeted on policy writers since they will assist in evaluating overall
security, or impact of more significant changes in policy. Query output will be mainly
text, in accord with other utilities in SETools package. Optionally, simple queries will be
visualised as graphs using NetworkX framework'1. Policy data will be drawn from currently
loaded system policy using SETools v4 package5.

4 N e t w o k X github repository h t t p s : / / n e t w o r k x . g i t h u b . i o /
5Tresys Technology SETools repository h t tp s : / / g i thub .com/TresysTechno logy / se too l s

18

https://networkx.github.io/
https://github.com/TresysTechnology/setools

Chapter 5

Design and Implementation

5.1 Analysis Focus
SELinux is a complex security system with wide range of applications from servers all the
way to mobile devices. Actual security level depends on the application since it is usually a
compromise between ease of use of the host system and its ability to resist possible attacks.

This work focuses on best effort security which is most widely used and has the most
room for improvement regarding security hardening. Primary target platforms are Fedora
and R H E L (Red Hat Enterprise Linux), but future versions should support wider range of
Linux distributions and possibly even Android OS.

5.1.1 Examined SELinux Rules

Both Fedora and R H E L are by default using SELinux in Targeted mode, which relies
almost solely on type enforcement1. Future references to permissions or any form of access
are meant only with respect to type enforcement (disregarding M L S rules).

5.1.2 Limitations

SELinux has several supporting features that allow for more fine grained control based on
system configuration. For example SELinux users and roles can be used to limit domain
transitions to a subset of existing domains, further tightening system security.

This work disregards such features, because they behave differently between systems
and can't be evaluated statically (.i.e without the use of live target system or specific
system configuration that could be used for simulation). Even without mentioned features,
existence of given permission in SELinux policy does not guarantee feasibility of executing
corresponding action. As a result, analysis described in this work considers only the worst
case scenarios2 and should be treated as such.

5.2 Type Grouping Development

At this point final SELinux policy (i.e. binary loaded into SELinux kernel) doesn't contain
any information about policy modules from which individual rules and types originated.

1 W i t h the exception of virtualization and container support, both of which use some M L S features.
2 W i t h few exceptions that are controlled by the user, such as conditional policy statements.

19

Parsing policy files to gather corresponding types would require complex M4 macro analysis
since type names often aren't assembled until first steps of policy compilation (checkmodule).

First attempts to form type groups involved mostly name based scanning of available
file types. This resulted in relatively accurate approximation of policy modules, except for
a few cases where the naming conventions were not followed properly or a service name
was a substring of another (e.g. rpc, rpcbind; su, sudo). Reliance on on specific naming
conventions would probably later cause portability issues.

Several attempts were made to utilise data flow analysis, but the resulting groups did
not match services and their resources. Even after excluding rules originating in attributes,
there are instances where a domain has more access to given resource than the primary
consumer (domain corresponding to the same service as given resource). Because of this,
dynamic type grouping was abandoned until its need arises during analysis process.

5.2.1 Common Intermediate Language

During implementation of this tool, SELinux in Fedora followed upstream example and in­
troduced new step in compilation involving CIL (Common Intermediate Language). Policy
files are now available in two different policy languages, where CIL files contain fully ex­
panded type names, while still keeping modules separate. This also provides more reliable
source for type grouping since CIL files reflect changes in policy caused by dynamic module
loading and are available without any additional package or repository as is the case of
"high level" policy files.

Namespacing, which was introduced together with CIL, should in future releases pro­
vide module names for type and rule definitions from binary policy, hence remove the
requirement of administrator rights necessary for gathering CIL files.

5.3 Trusted Computing Base Equivalent

The Orange Book [10] requires that the T C B implements the reference monitor concept,
i.e. it:

1. is tamper resistant

2. cannot be bypassed

3. is correctly implemented

Assuming SELinux is correctly implemented, policy can only influence the first two
conditions. The first one by not allowing any non-TCB domain write access to T C B types,
which will be our main focus, and the second one by ensuring that all processes are confined
in their respective domains.

As Fedora wasn't designed around strictly defined T C B , we can't expect that some part
of the system will completely fit the T C B requirements. In fact, the second reference mon­
itor condition cannot be fulfilled in Fedora because of unconfined_domain_type attribute
(and other less permissive ones3) that effectively disable SELinux control over processes
running in domains with said attribute.

At this point most programs executed directly by user obtain unconfined domain label'1,
which means that third-party software often has virtually unlimited access to almost all

3 F o r the complete list use #seinfo -a I grep unconfined
4 O n l y in default system configuration.

20

data in the system. Wi th such security breach in place, even perfectly constructed policy
can be bypassed by misslabelling key files or by directly exploiting one of the unconfined
domains. It is therefore vital that system administrators assign users confined SELinux
user profile.

That being said, we can label security-related part of the system as trusted and work
towards making it tamper resistant as it should be. Bypassing can be solved by gradually
reducing permissions of unconfined domains 5, because most of the currently unconfined
processes do not need access to security related parts of the system.

5.3.1 Selection of Security Related Types

The selection of security related types was inspired by R H E L - 7 Common Criteria work,
which includes minimal system build that still contains key security features. The first
step was to map essential objects from the minimal system build to SELinux types. Both
high level and CIL policy files were used in this step. CIL files contain fully expanded type
names, attribute assignments and allow rules, while high level policy provides context in
form of M4 macros and comments.

In order to speed up the process and make further adjustments easier, type grouping
gathered from the CIL files was used. Meaning that the security related set can be specified
using individual types or whole policy modules, where exceptions (i.e. types only marginally
connected to given module, that aren't necessarily security related) can be excluded.

Next step was making sure that the set of selected types is as close to approximating
T C B as possible. At this point only tamper resistance is in question because marking types
as security related will not influence whether SELinux control can be bypassed by non-TCB
processes. Therefore queries checking write and append access to security related resources
(e.g. executables, configuration files, ...) were used 6. Several iterations were necessary,
since marking new type as security related can introduce new undesired access. Results
are saved in security_related. conf and can be edited by the user (may be necessary for
older versions of Fedora/RHEL).

As expected, there are several domains with write access to the resulting set. Most no­
tably there are domains with write access to entrypoints (i.e. executables that can spawn
a process running in given domain) to security related domains, namely:

abrt_t, abrt_dump_oops_t, abrt_handle_event_t, prelink_t, gluster_t,

pegasus_openlmi_logicalfile_t, rpm_script_t, rpm_t

None of these, except for Pegasus which is deprecated, can work properly without the
access, but neither should they be treated as security related. This situation currently has
not practical solution, other than creating special domains for each of listed services that
would have the necessary permission, but would be entered only via secure entrypoints.
Dynamic transition would not work in this example, since successful attack on the less
privileged domains would result in gaining access to the new privileged domains as well.

5 W h i l e providing the necessary access via trusted mediator, or other controlled means.
6 A t first using only temporary tool TCB_checker .py and later utilising the main tool interface.

21

5.4 Visualization

One of the biggest current problems of SELinux is its complexity. In order to understand
even the most basic concepts and its implications towards operating system (e.g. security
context, explicit access rules, confined and unconfined domains), user has to spend signifi­
cant amount of time (at least a few hours) studying the topic. This fact discourages even
people who come in direct contact with SELinux (system administrators, confined service
developers/maintainers) and who could easily contribute. Wi th growing number of confined
services, policy writers are unable to keep track of changes that should be projected into
SELinux policy.

In order to reduce this problem I decided to provide graphical representation of simple
policy queries. This will allow the user to explore the surroundings (i.e. other services and
resources it can access, or can be accessed by) of selected service or part thereof. Main
target group of this feature will be confined service maintainers since their understanding
of policy settings is crucial for increasing policy quality. They can point out unnecessary
permissions or request specific access as the service evolves.

In order to simplify the output, I chose to limit the source or target of the query to single
type or group of types represented by single node 7. The user interface is based on sesearch,
sharing some of its search parameters (e.g. selection of specific classes or permissions).
Output example can be seen in figure 5.1

DAEMON LOGIN_PGM SSH_SERVER • • •
Figure 5.1: Visualization of write/append permissions granted to sshd_t domain with
respect to files.9

7 T h i s l imitation could be removed by utilizing more sophisticated graph visualization tool (ideally
interactive).

9

#visual_query.py -s sshd_t -fb -c f i l e -p write.append -fa domain

22

5.4.1 Attributes

Attributes play significant role in policy specification, allowing for sharing of given set of
rules. When dealing with only a subset of policy ,however, attributes can introduce permis­
sions that seem to be (or actually are) out of place. For example all types corresponding to
processes have to have attribute domain, which introduces 658 allow rules 1 0 . Permissions
granted to attribute of selected source or target type are therefore distinguished by colours
and can be filtered out using parameter "-fa" (filter attributes).

Attributes on the other side of allow rules are by default left untouched since they
usually serve better at describing given rule and often correspond to large number of types.
This behaviour can be changed by using parameter "-ea" (expand attributes), which will
replace all attributes by corresponding types. Type names end by convention with "_t"

which serves to distinguish them from other identifiers (in this case only attribute names).

5.4.2 Conditional Policy Statements

To deal with different system configurations, SELinux features set of user-configurable
boolean variables that can enable or disable corresponding rules. Policy rules can be de­
pendant on any boolean expression comprised of these variables (usually only single variable
is used).

The tool allows for filtering of such rules based on given boolean settings. The worst case
scenario is presented by default, meaning that all conditional rules are considered active.
After specifying parameter "-fb" (filter booleans), boolean values given as argument are
taken into account and the rest is loaded from active policy. In the graph representation,
conditional rules are represented by dashed lines and corresponding boolean names are part
of console output.

5.4.3 Permission Sets

The graph representation forced the aggregation of permissions from all selected classes to
a single edge. Given how fined grained SELinux permission control is, it became necessary
to group permissions together. Although not necessarily optimal in all cases1 3, SELinux
permission sets were used to fix this issue. To further distinguish permission sets form
individual permission identifiers, sets are shown in capitals.

5.4.4 Type Grouping

As opposed to distinguishing iter-service and intra-service access, type grouping in visu­
alization serves to further distance the user from SELinux inner workings. Whole groups
of types can serve as nodes, representing services rather than separate types (see figure
5.2). Type grouping can be seen as higher level of abstraction. Obviously it is than often
necessary to narrow down the search and/or filtering to decrease the amount of information
that is to be displayed. If requested, attribute expansion takes place before type grouping.
Unexpanded attribute names are shown in lower-case.

1 0 Curren t targeted policy, Fedora 23. Complete list can be obtained by
#sesearch -A -s domain -d and #sesearch -A -t domain -d

12

#visual_query.py -s sshd_t -fb -dg -c f i l e -p write.append -fa domain
1 3 Permission sets are often not disjunct, which may cause confusion if multiple rule classes are selected

and only permission set for one of the classes is shown (permissions of other classes did not match any other
permission set and were covered by the shown set).

23

Figure 5.2: Visualization of write/append permissions granted to sshd_t domain with
respect to files. Target types are grouped by policy module and access granted to domain
attribute is omitted. 1 2

5.5 Policy-wide Query

The main goal of this work is to take into account all policy rules at once as opposed to
human per-module approach and find (potentially) dangerous pathways that are hard to
locate for policy writers. In order to achieve this goal it was necessary to transform the
policy into more suitable representation than that available to us via SELinux tools (i.e. set
of rules allowing specific access). For this kind of search it is not important how was given
access pathway created (via attribute or only to specific type, whether there are multiple
rules allowing the same access, etc.), only that it was. Therefore graph representation was
chosen.

5.5.1 Graph Construction

Allow rules are collected via SETools query interface from selected policy file, or from active
policy if no file was specified. Depending on desired queries, subset of object classes can be
specified in order to reduce size of the resulting graph. Collected rules are then transformed
by the following steps.

• Boolean filtering - conditional statement of each rule is evaluated against given
boolean setting

• Attribute expansion - rules concerning attributes are expanded to set of rules con­
taining corresponding types

• Elimination of resource rules - rules giving access to resource types (usually via at­
tribute) are removed

24

• Type grouping - optional replacement of types by corresponding type groups

• Rule grouping - forming of graph edges from rules with the same source and target

Resulting graph edges are represented by dictionaries of object classes (e.g. file, process,
socket) containing sets of permissions. Sets were used for constant time of membership
check. Complete graph is than saved to designated file. Duration of this procedure strongly
depends on the amount of selected object classes and source policy size.

5.5.2 Graph Query

Graph_query is a modular tool that loads graph produced in previous step and executes
user defined queries. It is designed to be used in two different scenarios. First one is
system hardening, where selected queries are only applied on single policy graph, resulting
policy issues are evaluated by policy writers and resolved if possible. More common use case
should be regression testing, where selected set of queries is applied on two graphs generated
from subsequent policy versions (parameter " —dif f P0LICY_GRAPH2"). The second policy
graph (older version of policy) is used as baseline and only new issues are reported. This
form of regression testing should be applied after each new policy build to ensure that new
policy features or bug fixes do not have unforeseen consequences.

The difference between this approach and SEDiff tool is (except for significantly smaller
resource requirements1 4) that SEDiff simply shows individual allow rules that are not
contained in both given policies. However, such rules can have significant impact in context
of the whole policy (completion of dangerous permission pathway), which is not shown.

Query Functions

New queries can be specified in qraph_query_functions .py using general search functions
from evaluation_functions .py module. Tuples, sets or lists are expected as output from
query functions. In order to be able to use other data types or customised text output,
users can specify corresponding diff and to_string functions 1 5.

One of the most time consuming parts of this work was gathering information about
useful queries. So far I was only able to formulate a few queries that are useful both for
policy writers and testers. However I am confident that this will cease to be a problem once
the tool is in use by larger user base.

Type Grouping

Type grouping during graph construction serves only to speed up the query process. First,
given search function would be executed over type grouped graph, which is significantly
smaller, and results would be verified (i.e. false-positives would be removed) on full graph.
However, because of large number of false-positives and additional time required to load
the grouped graph, resulting speed improvements were only marginal 1 6 .

1 4 S E D i f f currently requires more than 12GB of R A M and several minutes to compare two recent Fedora
policies.

1 5 I t is necessary to use given naming scheme in order for the tool to recognise new function purpose
1 6 Tests were performed only on two query functions so far because query times are manageable even

without this optimisation.

25

5.6 Future Development

It is very likely that development of this tool will continue. Development and gathering
necessary information sparked interest in automated approach to policy analysis in both
testers and developers, resulting in demand of features that are out of scope of the tools
current working scheme.

5.6.1 Transitive Domain Reach

The closest goal is additional graph query interface for specific queries similar to sesearch
that would take into account indirect access. Meaning access utilising other domains that
can be manipulated by the source domain. Most of the code for determining complete
domain reach is already in place. Covering both direct (i.e. there exists an entrypoint
that can be written to and executed by the source domain, triggering transition to desired
domain) and indirect manipulation (i.e. source domain only has write access to target do­
main entrypoint, meaning that execution of new code id delayed until exploited entrypoint
is executed). Suitable form of relaying all the necessary information to the user is yet to
be established 1 7.

5.6.2 SELinux Users and Roles

As seen in chapter 6, unconfined domains and generally domains with broad access across
the system, can cause the current queries to produce false positives, or entries that cannot
be influenced without significant structural change in policy. Some of these domains are not
accessible for common users due to restricted SELinux users and roles that are commonly
used by responsible administrators. Taking such restrictions into account (i.e. generating
policy graph for specific SELinux user or set of roles) could increase usability of the tool.

5.6.3 Visualization

Utilising interactive graph visualization framework would allow for building significantly
more complex policy graphs (suitable node positioning is problematic in current framework).
Such graphs would be suitable for illustrating attribute expansion or as output of transitive
access queries.

5.6.4 SEChecker

SECecker was a tool for simple static policy checking. It was designed to find poor policy
writing practices, such as using single type for both domain and resources, unreachable
domains, etc. Unfortunately it was abandoned (even though user base does exist) and
eventually stopped working due to new SELinux features. Similar tests could be integrated
into the graph builder interface.

1 7 T h e output has to contain all the access as well as means of achieving it (i.e. via what domains, or files
in case of delayed access)

26

5.6.5 Policy Loading

Policy data are currently loaded via SETools 4 interface which provides allow rules as
specified in the policy source (after macro expansion). However, binary policy loaded into
the kernel is in the form of hash table using source type, target type and object class as keys
(much like the graph representation used in this work). Direct access to the binary policy
could mean significant speed improvements of graph building process. Further research of
this area could yield improvements in query times as well (kernel inspired optimisation).

27

Chapter 6

Use Cases

This chapter outlines suggested use cases for the tool and its interoperability with SETools.
Given examples should be reproducible on any recent Fedora/RHEL release after installa­
tion of SETools 4 (see readme for complete installation guide). A l l the necessary data are
available on the enclosed D V D .

6.1 Visualization

As explained in section 5.4, the visual representation of some policy sections is designed to
promote interaction between package maintainers/developers and SELinux policy writers.
It should make cooperation easier and give users insight into policy without the need to
understand SELinux inner workings.

6.1.1 Bluetooth Daemon Example

Let us consider bluetooth daemon.

$ ps -axZ | grep bluetooth

system_u:system_r:bluetooth_t:sO 791 ? Ss /usr/libexec/bluetooth/bluetoothd

Shows its SELinux context system_u: system_r :bluetooth_t: sO, containing its domain
type bluetooth_t. First we use type grouping to get a general idea of what service data
can be accessed. To shift focus on access allowed just to bluetooth deamon, rules assigned
to attributes domain and daemon are filtered out. See Figure 6.1.

$./visual_query.py -s bluetooth_t -c f i l e -fa domain,daemon -dg

Boolean conditioned edges (dashed lines):

nis_enabled:

SYSNETWORK

NIS

kerberos_enabled:

KERBEROS

authlogin_nsswitch_use_ldap:

LDAP

SYSNETWORK

MISCFILES

28

The output was shortened since it contains a list of permission sets and corresponding
permissions.

Figure 6.1: Visualization of permissions granted to bluetooth_t domain with respect to
files. Target types are grouped by policy module and access granted to attributes domain
and daemon is omitted.

Disabling type grouping gives us more detailed overview of permitted access (Figure 6.2).

$./visual_query.py -s bluetooth_t -c f i l e -fa domain,daemon,nsswitch_domain

6.2 Graph Query

As explained in section 5.5, policy-wide queries are designed to find potentially dangerous
pathways that are hard to locate for policy writers because they may have been created by
undesired policy module interaction, M4 macro expansion, or attribute assignment.

6.2.1 Policy Graph

Only rules concerning files and processes will be used since currently implemented query
functions do not require any other classes.

$./build_graph.py -fb -c file,process data/graph_3.13.1-158.16 -p

policy_data/selinux-policy-targeted-3.13.1-158.16/policy.29

6.2.2 System Hardening

Let us first consider system hardening scenario. Query functions will be executed on latest
Fedora 23 policy build. The output is shortened to first few entries per query function (full
text is available on enclosed D V D in examples).

29

hostname_etc_t bluetoothjockj

KERNEL_SYSTEM_STATE_READER

Figure 6.2: Visualization of permissions granted to bluetooth_t domain with respect to
files. Access granted to attributes domain, daemon and nsswitch_domain is omitted.

$./graph_query.py data/graph_3.13.1-158.16 write_executable

write_executable:

abrt_dump_oops_exec_t

prelink_t, sysadm_t, pegasus_openlmi_logicalfile_t, rpm_t,

systemd_tmpfiles_t, system_dbusd_t, abrt_dump_oops_t,

abrt_handle_event_t, glusterd_t, kernel_t, rpm_script_t, mount_t

abrt_etc_t

puppetagent_t, rpm_t, sysadm_t, pegasus_openlmi_logicalfile_t,

systemd_tmpfiles_t, abrt_t, system_dbusd_t, abrt_dump_oops_t,

abrt_handle_event_t, glusterd_t, kernel_t, rpm_script_t, mount_t

Write_executable finds labels of executable files (from SELinux policy point of view 1.),
that can be written to by some domain, and corresponding domains to which these entry-
points lead 2. Output can easily be switched to show domains with given write permission,
but showing both proved confusing. Even though it is very general (large percentage of the
output does not present security risk), this query function will be especially important for
regression testing.

What is interesting about this output is that file type designated for configuration
files abrt_etc_t is an entrypoint to several domains. The reason is that there are some
overreaching (unconfined) domains that can execute any file without domain transition.

1As explained before, files wi th given label might not have the D A C executable bit set
2 Including domains which can execute the file without domain transition

30

$sesearch -A -t abrt_etc_t -p execute_no_trans -c f i l e

allow files_unconfined_type file_type : f i l e { ioctl read write create

getattr setattr lock relabelfrom relabelto append unlink link rename

execute swapon quotaon mounton execute_no_trans open audit_access } ;

$./graph_query.py data/graph_3.13.1-158.16 transition_write

transition_write:

abrt_dump_oops_t, abrt_helper_t, abrt_helper_exec_t

abrt_handle_event_t, abrt_helper_t, abrt_helper_exec_t

abrt_t, sendmail_t, postfix_postdrop_t

auditadm_sudo_t, guest_t, user_home_t

boinc_t, boinc_project_t, boinc_project_var_lib_t

This query produces triples source_domain,target_domain,entrypoint where source_domain
can transition to target_domain by executing entrypoint to which it has write permission.
Such access pathway should always present a red flag, since it effectively increases reach
of source domain by access rights of target domain. Therefore it should also be a rare
occurrence, usually "joining" domains inside single policy module, or showing power of
unconfined domains, as seen in the example.

$./graph_query.py data/graph_3.13.1-158.16 write_to_security

write_to_security:

iscsid_t

systemd_passwd_var_run_t, sysfs_t

piranha_pulse_t

systemd_passwd_var_run_t, sysctl_rpc_t

yppasswdd_t

shadow_t, passwd_file_t

slapd_t

auth_cache_t, security_t

Write/append_to_security were created to promote isolation of security related types.
Output lists non-security domains and security related types to which they have write access
sorted by number of types that can be accessed from given domain.

Interesting error found during testing of this query is that security_t can be writ­
ten to by large number of non-security domains. The reason is that it was assigned
non_security_f ile_type attribute by mistake (the assignment was hidden inside a macro).

$sesearch -A -s glusterd_t -t security_t -c f i l e -p write

allow glusterd_t non_security_file_type : f i l e { ioctl read write create

getattr setattr lock append unlink link rename open } ;

31

$seinfo -tsecurity_t -x

security_t

boolean_type

file_type

filesystem_type

mountpoint

non_auth_file_type

non_security_file_type

base_typeattr_15

6.2.3 Regression Testing

Regression testing mode has the same output format and context except that entries found
in both specified policy graphs are not shown. When executing on two subsequent policy
versions, the output should contain small number of items and therefore should not have
significant effect on policy maintenance/development process.

$./graph_query.py data/graph_3.13.1-158.16 write_executable,

transition_write,write_to_security,append_to_security

-d data/graph_3.13.1-158.15

write_executable:

stunnel_log_t

kernel_t, syslogd_t, mount_t, sysadm_t, abrt_dump_oops_t,

abrt_handle_event_t, glusterd_t, rpm_script_t, logrotate_t,

sandbox_t, pegasus_openlmi_logicalfile_t, system_dbusd_t,

logadm_t, rpm_t, stunnel_t, systemd_tmpfiles_t

transition_write:

write_to_security:

append_to_security:

In this output we can see a new type introduced in policy version 3.13.1-158.16 and
write access caused by attributes logf i l e and non_security_f ile_type, combined with
unconfined domains.

$sesearch -A -t stunnel_log_t -p write -c f i l e

policy_data/selinux-policy-targeted-3.13.1-158.16/policy.29

Found 23 semantic av rules:

allow files_unconfined_type file_type : f i l e { ioctl read write create

getattr setattr lock relabelfrom relabelto append unlink link rename

execute swapon quotaon mounton execute_no_trans open audit_access } ;

allow abrt_dump_oops_t non_security_file_type : f i l e { ioctl read write

create getattr setattr lock append unlink link rename open } ;

allow syslogd_t logfile : f i l e { ioctl read write create getattr setattr

lock append unlink link rename open } ;

32

Chapter 7

Conclusion

This work explained why automated policy analysis is unavoidable in M A C based security
systems and described the state of the art in SELinux policy analysis. Because of insufficient
capabilities of available tools, new tool was designed and implemented. The tool was shown
to be useful in both policy development and testing.

Necessary prerequisite for starting this work was thorough understanding of SELinux
type enforcement and policy writing process. In order to achieve reasonable analysis speed
it was first necessary to convert policy data into new representation, featuring efficient
search of specific access pathways, and capable of storing all the required data. The most
substantial challenge was gathering use case data from potential users and designing the
tool interface to accommodate most important features. During implementation I had to
compensate for changes in SETools 4 interface, which is still undergoing final stages of
development.

It is expected that the tool development will continue outside of the scope of this
diploma project. Future work entails extending the tool interface to incorporate more
complex queries, refining query results (better filtering of false positives), and optimisations
to increase overall performance (policy graph creation as well as query speed).

33

Bibliography

[1] James P. Anderson. Computer Security technology planning study, volume II.
ESD-TR-73-51, Vol. II., Electronic Systems Division, A i r Force Systems Command,
1972. Available at http : / / c s r c . n i s t . g o v / p u b l i c a t i o n s / h i s t o r y / a n d e 7 2 . p d f .

[2] Joshua D. Guttman, Amy L . Herzog, and John D. Ramsdell. Information flow in
operating systems: Eager formal methods. In Workshop on Issues in the Theory of
Security (WITS), 2003.

[3] Joshua D. Guttman, Amy L . Herzog, John D. Ramsdell, and Clement W. Skorupka.
Verifying information flow goals in security-enhanced linux. J. Comput. Secur.,
13(1):115-134, January 2005.

[4] Richard Haines. The SELinux Notebook [online]. 4. edition, 2014 [cit. 2015-11-13].
Available at
http://freecomputerbooks.com/The-SELinux-Notebook-The-Foundations.html.

[5] Trent Jaeger. Gokyo policy analysis tool [online], May 2003. Available at
https://www.usenix.org/legacy/event/sec03/tech/full_papers/j aeger/
jaeger_html/node9.html#fig:example.

[6] Trent Jaeger, Xiaolan Zhang, and Antony Edwards. Policy management using access
control spaces. ACM Trans. Inf. Syst. Secur., 6(3):327-364, August 2003. Available
at http://www.cse.psu.edu/~trj1/papers/tissec2003.pdf.

[7] Frank Mayer, Kar l MacMillan, and David Caplan. SELinux by Example: Using
Security Enhanced Linux (Prentice Hall Open Source Software Development Series).
Prentice Hall P T R , Upper Saddle River, N J , USA, 2006.

[8] Red Hat, Inc. Red hat selinux guide [online], https : / /access . redhat .com/
documentation/en-US/Red_Hat_Enterprise_Linux/4/html/SELinux_Guide/, 2005
[cit. 2015-11-25].

[9] Beata Sarna-starosta and Scott D. Stoller. Policy analysis for security-enhanced
linux. In Proceedings of the 2004 Workshop on Issues in the Theory of Security
(WITS, pages 1-12, 2004.

[10] U . S. Department of Defense. Department of Defense Trusted Computer System
Evaluation Criteria, December 1985. D O D 5200.28-STD (supersedes
CSC-STD-001-83).
Available at http://csrc.nist.gov/publications/history/dod85.pdf.

34

http://csrc.nist.gov/publications/history/ande72.pdf
http://freecomputerbooks.com/The-SELinux-Notebook-The-Foundations.html
https://www.usenix.org/legacy/event/sec03/tech/full_papers/j
http://www.cse.psu.edu/~trj1/papers/tissec2003.pdf
https://access.redhat.com/
http://csrc.nist.gov/publications/history/dod85.pdf

[11] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg
Kroah-Hartman. Linux security modules: General security support for the linux
kernel. In Proceedings of the 11th USENIX Security Symposium, pages 17-31,
Berkeley, C A , USA, 2002. U S E N I X Association.

[12] Wenjuan X u , Mohamed Shehab, and Gail Joon Ahn. Visualization-based policy
analysis for selinux: Framework and user study. International Journal of Information
Security, 12(3):155-171, 6 2013. Available at h t tp : / / sefcom.asu .edu/
pub l i ca t ions /v i sua l i za t ion-based-po l i cy - sacmat2008 .pdf .

35

http://sefcom.asu.edu/

Appendices

36

List of Appendices

A D V D Contents

Appendix A

D V D Contents

The enclosed D V D contains following directory structure.

sepolicy_analysis/ (Selinux Policy Analysis Tool)

+- data

+- (Policy graph binaries)

+- examples

+- (Full output of examples demonstrated in Chapter 6)
+- policy_data

+- (SELinux policy binaries)

+- setools

+- (SETools 4 toolkit)
+- bool_config (Boolean setting configuration file)

+- build_graph.py (Tool for creating binary policy graph)

+- extract_cil.sh (Script for extracting CIL policy source files)

+- graph_query.py (Analysis interface)

+- readme (Installation instructions)

+- security_related.conf (Configuration file)

+- visual_query.py (Visual query interface)

+- (Other non-executable python source code)

latex/

+- (LaTeX thesis source code)

38

