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Abstract
Nonclassicality and quantum non-Gaussianity are properties of light that identify
genuine quantum states being key resources in optical quantum technology. �is
thesis derives new ab initio criteria revealing those two quantum aspects. �e crite-
ria provide conditions convenient for current experiments generating quantum states
of light. �e thesis also analyses robustness of both quantum aspects as an important
precondition for an applicability of realistic states.
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Abstrakt
Neklasičnost a kvantová ne-Gaussovost jsou vlastnosti světla identi�kujı́cı́ unikátnı́
kvantové stavy, které majı́ klı́čové aspekty pro kvantové technologie v optice. Tato
dizertačnı́ práce odvozuje nová ab-initio kritéria rozpoznávajı́cı́ tyto kvantové vlast-
nosti. Kritéria dávajı́ podmı́nky, které jsou vhodné pro současné experimenty generujı́cı́
kvantové stavy světla. Dizertačnı́ práce také analyzuje robustnost obou kvantových
vlastnostı́ jako důležitou podmı́nku pro aplikovatelnost realistických stavů.
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Chapter 1

Introduction

Since photons are bosons, many of them can have identical properties, and therefore
they can be treated collectively by a single wave function. �is collective behavior
is so signi�cant for the light that the classical optics investigates only the wave fea-
tures and ignore the corpuscular aspects completely. A fundamental property of the
waves that classical optics examines is the coherence [B1]. A row of experiments,
including the Young double slit experiment [B2] or the Arago white spot in the cen-
ter of a shadow, threw by a circular object [1], explored the coherence. �e physics
developed in the twentieth century showed that the wave description of light is in-
complete. First signals appeared in the thermodynamics where an idea to quantize
the electromagnetic �eld enabled clari�cation of the spectral properties of the ther-
mal radiation [B3]. It opened a path leading to an explanation of corpuscular aspects
of light that had been hidden so far by laws of nature.

�e corpuscular aspects say that the energy of light described by a wave function
gains an integer multiple of a unit of energy that corresponds to the smallest non-
vanishing energy of a single-photon. �e coherent aspects from classical optics are
kept even when light is so weak that it comprises only a single-photon, having the
indivisible unit of the energy. �us, all the interference experiments from the classical
optics can be repeated with a single-photon and interference fringes remain visible for
many independent repetitions [B2]. It strikes our intuitive concept of nature where
objects are either indivisible particles or waves, which can always split and spread
to the whole space. A photon picks the scenario of its behaving according to an
experiment and performed detection.

A theory explaining the classical theory of coherence by terms of the quantum
optics was established by R. Glauber and E. C. G. Sudarshan in 1963. �ey identi�ed
a narrow class of quantum states of light that behave like a classical waves when a
detector measures the intensity of these states [2–4]. �eir theory allows us to dis-
tinct a�ractive quantum states going beyond light �uctuation in classical statistical
optics. Remarkably, such states were achieved experimentally almost eight decades
a�er an explanation of the black-body radiation provided by Max Planck in the year
1900. �e concept of the quantized electromagnetic �eld had been only a subject to
theoretical considerations for those eight decades. �e �rst experiment verifying the
incompleteness of the classical wave optics was realized in the year 1977 by Kim-
ble, Dagenais and Mandel who observed antibunching [5] and, later in 1985, Slusher,
Hollberg, Yurke, Mertz and Valley won a race for the �rst squeezing generation [6,
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CHAPTER 1. INTRODUCTION

7].
Nowadays, modern technologies focus on the manipulation and detection of in-

dividual photons since they represent a useful resource in the applications as quan-
tum cryptography [8], quantum metrology [9] or quantum computing [10]. A simul-
taneously developing theory aims to recognize quantum properties challenging the
currently progressing experiments. A violation of the classical theory of coherence
has stimulated experiments since the 1970s [11]. As a response on rapid progress
in engineering quantum states during the last decade, quantum non-Gaussianity of
single-photons emerged as a more demanding benchmark for quantum aspects [12].
Moreover, it was recognized as a useful indicator for applications of the quantum op-
tics [13]. �e quantum non-Gaussianity inspects whether light overcomes linearized
dynamics in the quantum optics, which is su�cient to generate the squeezed states of
light [14]. �us, considering the quantum non-Gaussianity aims at two main points.
Firstly, it represents a strict reference challenging the experiments where nonclassi-
cal light is produced. Secondly, it reveals that the quantum nonlinearity beyond the
second order [B4] has been used to emit the light.

�is thesis focuses on a comprehensive analysis and comparison of the nonclassi-
cality and the quantum non-Gaussianity in the context of currently developing quan-
tum technologies. Chapter 2 provides methods for the thesis. In the beginning, it
mentions a path leading to a quantized electromagnetic �eld. Further, it introduces
formal representations of light and gives a concept of the nonclassicality in the quan-
tum optics. �e chapter also describes basic Gaussian operations in quantum op-
tics: coherent displacement, linear optical beam-spli�er and linearized single-mode
squeezing together with a description of the Gaussian states stemming from them.
Finally, it proposes calculations predicting how quantum states propagate through
linear optical networks.

Chapter 3 examines the nonclassicality manifested in the Hanbury Brown and
Twiss layout. Firstly, the chapter outlines a historical background together with con-
temporary research related to the nonclassicality. Further, it describes an approach
proposed in [12], which is applied for derivation of a reliable criterion of the nonclas-
sicality. �e usefulness of the criterion is analysed for a model of light source that
is relevant for the current experimental sources of quantum light. It is proved there
that the nonclassical light is not restricted only to weak light. Finally, the chapter
describes an experiment supporting the theory. �e chapter is based on publications
Lukáš Lachman, Lukáš Slodička and Radim Filip, Nonclassical light from a large num-
ber of independent single-photon emi�ers, Sci. Rep. 6, 19760 (2016) and Petr Obšil,
Lukáš Lachman, Minh Tuan Pham, Adam Lešundák, Václav Hucl, Martin Čı́žek, Jan
Hrabina, Ondřej Čı́p, Lukáš Slodička, and Radim Filip, Nonclassical Light from Large
Ensemble of Trapped Ions, Phys. Rev. Le�. 120, 253602 (2018).

Chapter 4 focuses on nonclassical manifestation in linear optical circuits, which
extends the nonclassicality observed in the Hanbury Brown and Twiss layout. Firstly,
the chapter mentions contemporary research relevant to this analysis. Further, the
chapter proposes a methodology enabling the criteria to be derived for a general lin-
ear optical circuit. It focuses on the nonclassical manifestation in particular circuits.
Namely, it is Mach-Zehnder interferometer, Hong-Ou-Mandel interferometer and a
layout where two-photon interference occurs. �e criteria are analysed for a model of
single-photon states. �e chapter is based on publication Lukáš Lachman and Radim
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CHAPTER 1. INTRODUCTION

Filip, Criteria for single photon sources with variable nonclassicality threshold, New. J.
Phys. 21, 083012 (2019).

Chapter 5 inspects quantum non-Gaussianity representing a fundamental prop-
erty challenging current quantum technologies. In the beginning, the quantum non-
Gaussianity is related to contemporary research. �e presented criteria recognizing
that quantum feature were derived analogically to the one introduced by Radim Filip
and Ladislav Mišta in [12]. Extending [12], the criteria form a sequence of condi-
tions, which can be exploited for detection of the quantum non-Gaussianity even
on multi-photon light sources. �e chapter analyses such applicability for realistic
states of light. �e theory is supported by an experimental realization of quantum
non-Gaussian light. �e chapter is based on publications Lukáš Lachman and Radim
Filip, �antum non-Gaussianity from a large ensemble of single photon emi�ers, Opt.
Express 24, 27352-27359 (2016) and Ivo Straka, Lukáš Lachman, Josef Hloušek, Mar-
tina Miková, Michal Mičuda, Miroslav Ježek and Radim Filip, �antum non-Gaussian
multiphoton light, npj �antum Information 4, 4 (2018).

Chapter 6 proposes a natural extension of the quantum non-Gaussianity. It intro-
duces a hierarchy of quantum features denoted as genuine n-photon quantum non-
Gaussianity. �ey identify quantum aspects that are possessed by the Fock state |n〉
but not possessed by the lower Fock states. �e recognition of such properties exploits
the methodology from [12] as well. �e chapter provides criteria for these quantum
features and analysis for relevant quantum states of light. Finally, it describes a real-
ized experiment where these quantum features were observed. �e chapter is based
on publication Lukáš Lachman, Ivo Straka, Josef Hloušek, Miroslav Ježek and Radim
Filip, Faithful Hierarchy of Genuine n-Photon�antumNon-Gaussian Light, Phys. Rev.
Le�. 123, 043601 (2019).
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Chapter 2

Methods

2.1 �antization of light

�e quantum theory of light assumes a form of Maxwell’s equations derived for clas-
sical electromagnetic �eld with a conjecture that the observables of the �eld are mea-
surable Hermitian operators. A solution of the equations for a situation when the
quantum �eld is con�ned in a virtual box is determined from behaving of a Her-
mitian operator A representing the vector potential [B2]. �e temporal and spatial
evolution of A works out

A(r, t) =
∑
k

(
h̄

2ωkε0V

)1/2

uk

[
ake

ik·r−iωkt + a†ke
−ik·r+iωkt

]
, (2.1)

where the wave vector k obtains only discrete values depending on size of the box, the
frequency ωk satis�es the dispersion relation with the wave vector k, V is the volume
of the box, uk is a unit vector identifying polarization, h̄ is the Planck constant and ε0
is the permitivity of the vacuum. Finally, ak and a†k are annihilation and the creation
operators obeying the commutation relation[

ak, a
†
k′

]
= δk,k′ . (2.2)

Although the annihilation and the creation operators are not Hermitian operators,
and therefore they do not correspond to any measurement, their introduction is useful
for building the quantum theory of light. �eir role in the theory stems from the
Hamiltonian of an electromagnetic �eld

H =
1

2

∫
(ε0E · E + µ0B ·B)dr, (2.3)

which is formulated in terms of the electric intensity E = −∂tA and the magnetic
induction B = ∇×A. Substituting the solution of the Maxwell equations (2.1) into
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CHAPTER 2. METHODS

the Hamiltonian (2.3) gives [B2]

H =
∑
k

ωk

(
a†kak +

1

2

)
. (2.4)

It is useful to de�ne the canonical coordinate Xk and the canonical momentum Pk
according to

Xk =
1
√
ωk

(
ak + a†k

)
Pk = i

√
ωk(ak − a†k). (2.5)

Using these operators, the Hamiltonian reads

H =
∑
k

(
P 2
k + ω2

kX
2
k

)
, (2.6)

which resembles the Hamiltonian of independent oscillators. It shows the light be-
haves formally as oscillators. So far, the formalism was introduced for light in the
virtual box with a �nite volume. Description of light propagating in the free space is
determined from (2.1), (2.3) and (2.6) in a limit of the box with the in�nite size. As a
consequence, the wave vector k can obtain arbitrary value and the summation over
the modes in (2.1), (2.3) and (2.6) is replaced by integration.

Let us further investigate the light occupying only a single mode with a given
wave vector, consider the frequency ωk = 1 and avoid the dependence of the oper-
ators on the wave vector in the notation for simplicity. �e impacts of the creation
and annihilation operators can be inspected on the eigenstates of the Hamiltonian,
which are identi�ed by

H|n〉 = En|n〉. (2.7)

Employing the commutation relation (2.2) reveals [B5]

Ha†|n〉 = a†(En + 1)|n〉
Ha|n〉 = a(En − 1)|n〉. (2.8)

It entails the creation operator increases the energy by a single unit whereas the
annihilation operator decreases the energy by a single unit. It means the single mode
light occupies the Hilbert space spanned by the eigenstates |n〉 where n is an integer.
�e states |n〉 are called Fock states. �e vacuum |0〉 is de�ned as a state whose energy
cannot be diminished, i. e. a|0〉 = 0. Any Fock state |n〉 is produced by a sequential
application of the creation operator on the vacuum

|n〉 = Zn
(
a†
)n |0〉, (2.9)

where Zn is a normalization constant determined from

a†a|n〉 = n|n〉. (2.10)
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CHAPTER 2. METHODS

It leads to Zn = 1/
√
n! and to identities

a†|n〉 =
√
n+ 1|n+ 1〉

a|n〉 =
√
n|n− 1〉. (2.11)

�e relations (2.11) show that the creation and the annihilation operators also change
the amplitudes in the Fock state basis. Although the annihilation and the creation
operators are not observables their acting on a quantum state was approached proba-
bilistically in an experiment [15]. �ese expressions represent a very convenient tool
for computation in quantum optics. �ey involve the quantization of the energy of the
light, which is a consequence of substituting the observables in Maxwell’s equations
by the non-commuting operators. �erefore, the Fock states have represented target
states and resources of the quantum optics since they were predicted theoretically.

2.2 Representation of the light

Light described in eigenstates of the Hamiltonian (2.4) is represented in the Fock state
basis. It is a convenient description when corpuscular features of light are measured.
Since multi-photon macroscopic light is manifested in nature mainly as a wave, it is
also appropriate to formulate a quantum description related to waves in the classical
optics. For that purpose, let us introduce a coherent state de�ned as an eigenstate of
the annihilation operator

a|α〉 = α|α〉. (2.12)

Acting of the Fock state 〈n| on the le� side of equation (2.12) together with identities
(2.11) leads to a representation of the state |α〉 in the Fock state basis

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉. (2.13)

Although the coherent states do not represent basis states, they constitute a unit op-
erator

1

π

∫
|α〉〈α|d2α = 1. (2.14)

�us, they can be used for an expansion of any state in a similar way as the Fock
states. A relation of the coherent state to the wave description is clari�ed in following
Section 2.3. One more available possibility for an expansion of the states of light stems
from the de�nition of the canonical coordinate and the canonical momentum (2.5),
which represent measurable observables. One can introduce the rotated canonical
coordinate

Xφ = cosφX + sinφP, (2.15)

where the operators X and P are de�ned in (2.5), and its eigenstate |xφ〉. An expan-
sion of a state into the states |xφ〉 is convenient for a broadly exploited homodyne
detection technique enabling measurement of the rotated canonical coordinate [16].
In summary, the introduced states (2.7), (2.12) and (2.15) allow us to express formally
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a state |ψ〉 according to

|ψ〉 =
∞∑
n=0

〈n|ψ〉|n〉

|ψ〉 =
1

π

∫
〈α|ψ〉|α〉d2α

|ψ〉 =

∫
〈xφ|ψ〉|xφ〉dxφ. (2.16)

An appropriate expansion is crucial for solving speci�c tasks in the quantum optics
since it can make calculations simpler comparing with an inappropriate expansion.

�e states taken into account have been pure states so far. However, when a state
interacts with an environment, the state collapses into pointer basis gradually [17]
and its coherence diminishes. For such situations, the ket-formalism is insu�cient
and they have to be expressed formally by a density matrix ρ. �e density matrix
provides a general identi�cation of any state of the light. Its elements depend on the
used expansion. According to it, the density matrix obtains

ρ =
∑
n,m

〈n|ρ|m〉|n〉〈m|

ρ =
1

π2

∫
〈α|ρ|β〉|α〉〈β|d2αd2β

ρ =

∫
〈yφ|ρ|xφ〉|yφ〉〈xφ|dxφdyφ. (2.17)

�e representation of light by the density matrix is not the only one possible. �e
quantum optics allows us to work with di�erent representations whose usage is ap-
propriate to a speci�c detection because they can be directly measured or constructed
conveniently from the measurement results. Formal expressions of all the represen-
tations exploit a characteristic function of a state ρ

χO(β, β∗) = Tr
[
ρO
(
eβa

†−β∗a
)]
, (2.18)

where O(A) denotes ordering of an operator A. For each ordering, a detector that
measures moments of the operators set in a respective order can be found. In this
sense, the orderings are inherent to some detection.

Symmetric ordering results in the characteristic function given by

χs(β, β
∗) = Tr

[
ρeβa

†−β∗a
]
. (2.19)

Employing the integral transformation de�nes the Wigner function

W (α, α∗) =
1

4π2

∫
χs(β, β

∗)e−βα
∗+β∗αd2β. (2.20)

Since the eigenstates of the symmetrically ordered operators are the eigenstates of
the rotated canonical coordinate (2.15) it is convenient to express the arguments of
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the Wigner function in terms of real quantities

xφ = (α + α∗) cosφ− i(α− α∗) sinφ

pφ = −(α + α∗) sinφ− i(α− α∗) cosφ. (2.21)

�en, the Wigner function obeys [18]

〈xφ|ρ|xφ〉 =

∫
W (xφ, pφ)dpφ. (2.22)

�us, the Wigner function allows us to get directly the density probability function
quantifying a measurement of the operator in (2.15). However, the Wigner function
does not always obey demands on the density probability function since it can ob-
tain negative values [19]. Moreover, the commutation relation does not allow the
Wigner function to become the Dirac delta function. �e Wigner function is called a
quasi-probability function meaning that only the integration (2.22) always leads to a
density probability function. �e negativity is a particular aspect of the quantum non-
Gaussianity, which represents a demanded quantum property of light. �e Wigner
function can be reconstructed from the homodyne measurement where moments of
the operator Xφ can be gained. Scanning the homodyne measurement for di�erent
φ enables a reconstruction of the Wigner function [16]. �e Wigner function can be
acquired directly by measuring the mean value of the parity operator since

W (0, 0) =
1

2π
〈(−1)a

†a〉. (2.23)

�is identity enables detection of the Wigner function in a single point belonging to
the origin. It provides an operationalistic de�nition of the Wigner function. A value in
a general point can be achieved when the state is a�ected by a displacement operator
transforming the arguments of the Wigner function [20]. A detail description of the
displacement operator is presented in Section 2.6.

For anti-normal ordering, when all the annihilation operators are on the le� of
the creation operators, the characteristic function obtains

χa = Tr
[
ρe−β

∗aeβa
†
]
. (2.24)

Its integral transformation results in the Husimi function [21]

Q(α, α∗) =
1

4π2

∫
χa(β, β

∗)e−βα
∗+β∗αd2β, (2.25)

which is identical with a projection of a state to the coherent states, i. e.

Q(α, α∗) =
1

π
〈α|ρ|α〉. (2.26)

It means the Husimi function is a density probability function quantifying results of
heterodyne detection where the canonical coordinates and momentum are measured
simultaneously [22]. �e Husimi function stems from convolution of the Wigner
function with a Gaussian function [23]. �e anti-normal ordering, leading to this
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representation, is measured by a detector whose response is based on the stimulated
emission [24]. However, such a detector is only hypothetical since the available detec-
tors measure due to photon absorption leading to measurement with normal ordering.

�e normal ordering requires that all creation operators are on the le� of the
annihilation operators. In that case, the characteristic function obtains

χn(β, β∗) = Tr
[
ρeβa

†
e−β

∗a
]
. (2.27)

Its integral transformation leads to [B2]

P (α, α∗) =
1

4π2

∫
χn(β, β∗)e−βα

∗+β∗αd2β. (2.28)

A density matrix of any state of light can obtain a form [3]

ρ =

∫
P (α, α∗)|α〉〈α|d2α. (2.29)

�e function P is a result of deconvolution of the Wigner function with a Gaussian
function. �e deconvolution causes the function P fails to be an ordinary function
for some states. It can become a generalized function, which is more singular then
the Dirac delta function [3]. �e representation in (2.29) is used for explaining the
correlation functions in classical theory of coherence from a view of the quantum
theory and, simultaneously, it enables a formulation of a class of states that behave
as classical waves [4].

2.3 Classical theory of coherence and coherent states

�e classical theory of the coherence investigates impacts of stochastic processes on
the coherence of waves in the optics. A fundamental object in the theory is an ideal
coherent wave with an amplitude α. Detectors measure the integrated intensity W
given by [B1]

W (t1,∆t) =
1

∆t

∫ t1+∆t

t1

α∗(t)α(t)dt, (2.30)

where the measurement is carried out between time t1 and t1+∆t and the continuous
amplitude α is considered as a function of the time. Because the amplitude α can
be in�uenced by random processes of a source or a detector, measurement results
are quanti�ed by the mean value of the integrated intensity 〈W 〉 that is averaged
over several realizations of the measurement. A broad class of physical situations
is described su�ciently with an assumptions that 〈α∗α〉 is independent on the time
[B1]. �en, the detectors enable direct measurement of the moments of the intensity
α∗α since

〈W n〉 = 〈(α∗α)n〉. (2.31)

�is identify justi�es exploiting the intensity α∗α instead of the integrated intensity
W in the following theory.

Normalized correlation functions describe in�uence of the stochastic processes
on the coherence. �ey quantify random changes of the amplitude α. �e correlation
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functions are ordered according to a moment of the intensity that they involve. �e
correlation function of the �rst-order g(1)(τ) = 〈α∗(τ)α(0)〉/〈(α∗(0)α(0))〉 responds
to the visibility in the Mach-Zehnder interferometer and as such, it is sensitive to the
mode properties of the light [B1]. For a single mode of radiation, g(1)(τ) = eiωτ with
ω being the angular frequency of the mode. �e second-order correlation function
g(2)(τ) = 〈α∗(τ)α∗(0)α(τ)α(0)〉/〈(α∗(0)α(0))〉2 inspects intensity �uctuations for
the stationary light. It is measured in a layout where light is split on a beam-spli�er
and measured by two detectors responding to the integrated intensity [25]. Since the
functions g(1)(τ) and g(2)(τ) do not provide complete information about the coher-
ence, one can introduce the nth-order correlation function [B1]

g(n)(τ1, .., τn−1) =

〈α∗(τn−1)× ...× α∗(τ1)× α∗(0)α(τn−1)× ...× α(τ1)× α(0)〉
〈α∗(0)α(0)〉n

. (2.32)

An ideal classical coherent wave obeys g(n) = 1 for every order n and any times τ1,
…, τn−1. R. Glauber provided a revolutional explanation of this classical theory by
terms of quantum optics. It stems from a substitution of the classical amplitudes by
normally ordered combinations of the annihilation and creation operators, i. e. [26]

g(n)(τ1, .., τn−1)→
〈a†(τn−1)× ...× a†(τ1)× a†(0)a(τn−1)× ...× a(τ1)× a(0)〉

〈a†(0)a(0)〉n
, (2.33)

where the times τi are ordered increasingly, i. e. τi ≥ τi−1. �e normal ordering is
chosen because the historically �rst available optical detectors used the photon ab-
sorption for the detection, and therefore they measured the operators in this ordering
[4]. �e relations g(n)(τ1, .., τn−1) = 1 specify unambiguously a pure quantum state
acting as a coherent classical wave [26]. Because of the normal ordering in the de�ni-
tion, the state is determined from a|α〉 = α|α〉. �e stochastic processes on coherent
states |α〉 establish a class of states corresponding to classical waves

ρ =

∫
P (α)|α〉〈α|d2α, (2.34)

where the function P (α) is the density probability function. According to (2.29), all
states can be expressed formally in that form. However, only states with P (α) being
the density probability function behave like classical waves in the detection based on
the photon absorption. On the other hand, a state of light is beyond classical wave
description when the function P (α) is negative or more singular than the Dirac delta
function [3]. �e mixtures of coherent states constitute a very broadly accepted def-
inition of classical states in the optics if the exploited classical detectors measure the
integrated intensity (2.30) [11]. �e boundary of the classical states is considered as a
reference for detection of quantum phenomena beyond the classical wave description.
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2.4 Nonclassical features

�e states with the P function not corresponding to any semi-positive ordinary func-
tion are called nonclassical if detectors measure by photon absorption. �eP function
can be achieved by transformations of data from homodyne detection only if the P
function is an ordinary function [27]. Since the nonclassicality is associated with
the P function not possessing features of an ordinary function in some cases, it is
necessary to develop criteria recognizing the nonclassicality from an available mea-
surement. �e correlation functions (2.33) can be expressed directly by the function
P due to the normal ordering, and therefore they can expose some cases when the
function P represents nonclassical states. �e simplest correlation function enabling
that is the second-order correlation function

g(2)(τ) =
〈a†(τ)a†(0)a(τ)a(0)〉
〈a†(0)a(0)〉〈a†(0)a(0)〉

, (2.35)

where τ is delay time involved for measurement of time correlations. Due to the
Cauchy-Schwarz inequality, only the nonclassical states can gain [28]

g(2)(τ) < 1 (2.36)

for some delay time τ . When measurement results obey the condition for τ = 0, it is
said that light manifests sub-Poissonian photon statistics [11]. �e inverse situation
when g(2)(0) > 1 corresponds to super-Poissonian photon statistics. Both classical
and nonclassical states can exhibit the super-Poissonian photon statistics [11]. �e
sub-Poissonian photon statistics can be also recognized from suppression of the shot-
noise, which is quanti�ed by the Fano factor [29]

F =
〈n2〉 − 〈n〉2

〈n〉
(2.37)

representing a ratio between the variance of the intensity and its mean value. �e
commutation relation (2.2) together with the de�nition of the function g(2)(0) leads
to an identity

F = 〈n〉
[
g(2)(0)− 1

]
+ 1, (2.38)

according to which the sub-Poissonian light exhibits F < 1. However, Fano factor
and g(2)(0) change di�erently when we manipulate the statistics of photons. �e Fock
states |n〉 de�ned in (2.7) yield

g(2)(0) = 1− 1

n
F = 0 (2.39)

showing the sub-Poissonian statistics. When τ grows the function (2.35) involves time
correlations and relations (2.39) do not hold anymore. In that case, time correlation
g(2)(τ) can identify the nonclassicality since the inequality

g(2)(τ2) > g(2)(τ1), (2.40)

11
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where τ2 > τ1 > 0, violates the Cauchy-Schwarz inequality as well [28]. �e phe-
nomenon when g(2)(τ) grows with the positive delay time τ is called antibunching.
It means, that photon correlation is weaker for smaller time delay, which opposes
the case for thermal radiation. Although the antibunching is o�en associated with
the sub-Poissonian statistics, the conditions (2.36) and (2.40) are not equal in general
[11]. It can be demonstrated on light radiated from a couple of single-photon emi�ers
where detection does not enable distinction which emi�er radiates the light. In this
case, the light manifests antibunching but super-Poissonian statistics [30].

Both sub-Poissonian light and antibunching represent only su�cient conditions
of the nonclassicality. �ere are many nonclassical states that obey neither (2.36) or
(2.40). A correlation function of a higher order than two or, generally, a function of
the creation and annihilation operators set in the normal order [31] can recognize the
nonclassicality in cases when (2.36) or (2.40) fails. However, a necessary condition of
the nonclassicality requires ful�lling of all possible conditions that can be formulated.

All the mentioned criteria are de�ned in terms of moments of the creation and
annihilation operators, which can be gained by measuring the integrated intensity of
strong beams of light in classical optics. However, those detectors cannot measure
weak light manifesting the nonclassicality due to their low detection e�ciency and
noise [32]. Detection of such weak light is performed by single-photon detectors in-
volving a phototube [5], a single-photon avalanche diode [33] or a transition edge
sensor [34]. �ese detectors are very sensitive to the light but they do not allow mea-
surement of the integrated intensity [35]. �erefore, the nonclassicality is revealed
approximately when the moments of the intensity are related to their outputs. Ac-
curate nonclassical recognition requires criteria incorporating only responses of the
employed detectors.

2.5 Nonclassical phenomena in the early experiments

Experiments carried out in the 1970s and 1980s observed phenomena that contra-
dicted the classical coherence theory. �e nonclassicality was revealed in an experi-
mental �rstly by observation of the antibunching [5]. It was followed by the detection
of the sub-Poissonian light [36, 37]. In all these experiments, an atom sca�ered light
resonantly, the sca�ered light impinged on a beam-spli�er and was measured by two
phototubes as depicted in Fig. 2.1. �e phototube is a detector that converts incom-
ing light to an electric current. �e electric current signals incoming photons without
distinguishing their number. �e phototube is a precursor of currently used single-
photon avalanche diodes, which are detectors having a binary response as well but
which operate with higher quantum e�ciency comparing the phototubes.

When an emi�ed light possessing the nonclassical properties is very weak its den-
sity matrix can be approximated by

ρ ≈ (1− η1 − η2)|0〉〈0|+ η1|1〉〈1|+ η2|2〉〈2|, (2.41)

where contributions of three and more photons are neglected and η1 � η2. In that
case, the moments of the annihilation and the creation operators of the state ρ can
be approximated by probabilities η1 ≈ 〈a†a〉 and η2 ≈ 〈

(
a†)2a2

〉
/2. �e phototube
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phototube A

BS
 

phototube B

Figure 2.1: A layout providing detection of nonclassicality in the experiments [5, 36, 37] re-
alized in the 1970s and 1980s. An impinging signal was split by a beam spli�er and pointed
then on two phototubes.

responds on the state by clicks quanti�ed by probabilities

Pa ≈ Tq〈a†a〉
Pb ≈ (1− T )q〈a†a〉
Pab ≈ T (1− T )q2〈

(
a†)2a2

〉
(2.42)

where Pa (Pb) is a probability that the phototube A (B) clicks, Pab denotes the prob-
ability of simultaneous clicks of both phototubes, q is the quantum e�ciency of the
phototubes and T is the transmission of the beam-spli�er. A comparison with the
de�nition of the second-order correlation function in (2.35) leads to

g(2)(0) ≈ Pab
PaPb

. (2.43)

In this approximation, the sub-Poissonian light is recognized from clicks of the pho-
totubes when

Pab
PaPb

< 1. (2.44)

�e antibunching can be also detected in the approximation if the phototubeB regis-
ters signal with a time delay τ against the phototubeA. In this case, the measurement
leads to

g(2)(τ) ≈ Pab(τ)

PaPb
, (2.45)

where Pab(τ) quanti�es the time correlation of clicks of both phototubes. �e prob-
abilities Pa,b are independent of the time delay τ since the light is assumed to be
stationary during the experiment. It justi�es an identity

PaPb = lim
τ→∞

Pab(τ) (2.46)

giving a physical meaning to the expression in (2.43) as a ratio comparing the proba-
bility Pab(τ) with itself measured for very large τ .

In all these cases, the nonclassical recognition depends on the accuracy of the
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approximation in (2.41). �e light sources realized in the experiments [5, 36, 37] ap-
proached the density matrix of the form (2.41) since they were very weak. �e current
sources of the nonclassical light can exceed this limit. Although a�enuating any state
can prepare the state in this approximation, it increases the experimental error bars,
which can cause the experimental recognition fails due to poor statistics of clicks.
�erefore, di�erent criteria derived for a response of the detector without approxi-
mations are required.

2.6 Displacement, squeezing and ”BS-type” operators

Methods for formal description and characterization of states of light have been in-
troduced so far without any exploration of an evolution of the light. Such evolution
can produce nonclassicality or can a�ect its manifestation. For our purposes, let us
restrict to the simplest examples of evolution where the formal description deals only
with the light and the ma�er, which mediates the dynamics, is traced over. In quan-
tum optics, the dynamics is represented by a transformation of a state to another state.
In closed systems, the transformation is determined by a unitary operator U obeying
U †U = 1. �e starting example considers classical driving of an optical mode, which
corresponds to a unitary operator de�ned as

D(α) = eα
∗a−αa† . (2.47)

�e operator is called a displacement operator because it transforms the annihilation
and creations operator according to

D(−α)aD(α) = a+ α

D(−α)a†D(α) = a† + α∗ (2.48)

by linear adding coherent classical energy to the optical mode. �e former relation
implies an identity

aD(α)|0〉 = D(α)D(−α)aD(α)|0〉 = D(α)(a+ α)|0〉 = αD(α)|0〉. (2.49)

Since the de�nition (2.12) determines the coherent state as an eigenstate of the anni-
hilation operator, the coherent state can be expressed as

|α〉 = D(α)|0〉. (2.50)

It represents an equivalent de�nition of the coherent state. According to that de�ni-
tion, a coherent state is a result of dynamics driven by a Hamiltonian H = i(αa† −
α∗a) in the interaction picture.

Another unitary operator is a squeezing operator obtaining a from

S(ξ) = eξ(a
†)

2
−ξ∗a2 . (2.51)

In the interaction picture, it arises from a Hamiltonian H = i
[
g
(
a†
)2
b− g∗a2b†

]
,

where b (b†) represents the annihilation (creation) operator of pumping light. When
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the pumping is an undepleted classical beam, which is not in�uenced by the inter-
action, the operators b and b† can be substituted by the amplitudes β and β∗ and the
Hamiltonian driving the evolution gets a linear form (2.51), which increases the en-
ergy of the light [B2]. �e parameter ξ in (2.51) is given by the product of gβ and time
of the evolution. It transforms the annihilation and the creation operators according
to

S(−ξ)aS(ξ) = a cosh 2|ξ|+ a†eiφ sinh 2|ξ|
S(−ξ)a†S(ξ) = ae−iφ sinh 2|ξ|+ a† cosh 2|ξ|, (2.52)

where φ is determined from ξ = |ξ|eiφ. Substituting the transformations into the
canonical coordinate X = (a + a†) and the canonical momentum P = i

(
a− a†

)
illustrates a role of the squeezing operator in measurement of these continuous ob-
servables. It results in

S(ξ)XS(−ξ) = X (cosh 2|ξ|+ cosφ sinh 2|ξ|)
− P sinφ sinh 2|ξ|

S(ξ)PS(−ξ) = P (cosh 2|ξ| − cosφ sinh 2|ξ|)
+ X sinφ sinh 2|ξ|. (2.53)

Apparently, when φ = 0 the squeezing operator ampli�es the canonical coordinate, i.
e. 〈X〉 grows, however, it increases simultaneously the quantum noise caused by the
commutation relation between X and P since 〈X2〉 − 〈X〉2 grows as well. Contrary,
it reduces 〈P 〉 and the quantum noise a�ecting the measurement of the canonical
momentum.

Analogically to the de�nition of the coherent states, one can introduce a state [14,
38]

|α, ξ〉 = S(−ξ)D(α)|0〉, (2.54)

which is yielded from squeezing a coherent state |α〉. Formally, the state |α, ξ〉 is also
determined from [14]

(aµ+ a†ν)|α, ξ〉 = (αµ+ α∗ν)|α, ξ〉, (2.55)

where µ = cosh 2|ξ| and ν = eiφ sinh 2|ξ|. �e states |α, ξ〉 are the only states that
saturate the uncertainty inequality [38]

var(X)var(P ) ≥ 1 (2.56)

stemming from the commutation relation [X,P ] = i. Since the coherent states rep-
resent a special case of the state (2.54), they saturates the uncertainty inequality as
well. When the rotated canonical coordinate Xφ is measured on the state |α, ξ〉 the
quantum noise surpasses the vacuum �uctuation, i. e.

〈α, ξ|X2
φ|α, ξ〉 − 〈α, ξ|Xφ|α, ξ〉2 < 1, (2.57)

for φ given by ξ = |ξ|e2iφ and |ξ| > 0. It is apparently a nonclassical aspect because
mixtures of the coherent states never reach (2.57). �ese states are sometimes called
squeezed states. �e displacement operator acting on the squeezed states can produce
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sub-Poissonian statistics although the squeezed vacuum does not exhibit that [39]. An
expansion of the squeezed states in the Fock state basis results in [14]

〈n|α, ξ〉 =
1√
n!µ

(
ν

2µ

)n/2
Hn

(
β√
2νµ

)
e−

1
2
|β|2+ ν∗

2µ
β2

, (2.58)

where β = αµ + α∗ν and Hn is the Hermite polynomial of order n. In the Wigner
representation, described in Section 2.8, the state |α, ξ〉 obtains a Gaussian form.
�erefore, the �rst and second moments of the canonical momentum and coordi-
nate identify the states |α, ξ〉 unambiguously, which is convenient for calculations.
In Chapter 5, such Gaussian states will be used to de�ne a threshold for the quantum
non-Gaussianity beyond the negative values of the Wigner function.

�e squeezed state |α, ξ〉 can be generalized to

|α, ξ, n〉 = S(−ξ)D(α)|n〉 (2.59)

corresponding to a squeezed and displaced Fock state. �e states with n > 0 are
not Gaussian anymore, and therefore their Wigner functions exhibit negative values.
Although these states do not saturate the uncertainty inequality, they can suppress
the quantum noise below the quantum noise of the vacuum. In Chapter 6, the states
|β, n〉 will be exploited for an ordering of the non-Gaussian quantum aspects of the
light, which the Fock states possess. An extensive description of the features of these
states is presented in [40].

A last introduced operator describing mixing of two distinct light modes obtains
a form

U(κ) = eκa1a
†
2−κ∗a∗1a2 , (2.60)

where the subscripts of the annihilation and creation operators denote the respective
modes. �e operator describes interference occurring in a beam-spli�er (BS) in the
free-space optics and, simultaneously, it corresponds to interference in linear optical
couplers in the �ber optics. �e operator acts on the annihilation operator as

UBS(−κ)a1UBS(κ) = a1 cos |κ| − e−iφa2 sin |κ|
UBS(−κ)a2UBS(κ) = eiφa1 sin |κ|+ a2 cos |κ| (2.61)

with κ = |κ|eiφ. Let us set φ = 0 for simplicity and inspect how the operator in�u-
ences the displacement operator. We arrive at an identity

UBS(−κ)D1(α)D2(β)UBS(κ) = D1(
√
Tα +

√
1− Tβ)D2(−

√
1− Tα +

√
Tβ),

(2.62)
where T = cos |κ| is the transmission of a BS and subscripts distinguish the modes.
It holds due to the Baker – Campbell – Hausdor theorem [B6]. Because the coherent
state is de�ned as a result of acting of the displacement operator on the vacuum, they
are a�ected by

UBS(T )|α〉|β〉 = |
√
Tα +

√
1− Tβ〉| −

√
1− Tα +

√
Tβ〉. (2.63)

�e amplitudes α and β transform identically with the amplitudes of classical coher-
ent waves that are split on a BS with the transmission T . �e relations (2.61) establish
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also how the Fock states interfere on a BS. Since any Fock state can be expressed as
|n〉 = (a†)n/

√
n!|0〉, the interference on a BS leads to

UBS(T )|m〉1|n〉2 =
1√
m!n!

(√
Ta†1 +

√
1− Ta†2

)m
×

(
−
√

1− Ta†1 +
√
Ta†2

)n
|0〉1|0〉2. (2.64)

As a particular case, let us consider the second mode is occupied by the vacuum. It
follows in

UBS(T )|m〉1|0〉2 =
m∑
k=0

√(
n

k

)
(−1)m−kT k/2(1− T )(m−k)/2|k〉1|m− k〉2. (2.65)

Apparently, the state |m〉 behaves asm classical particles that are transmi�ed accord-
ing to the binomial distribution. When more BSs are used the light is split among
several modes. Since such networks are used commonly for increasing the knowl-
edge about a distribution of photons in measured light, we focus on these networks
in more details.

2.7 Multi-channel detector

A number of arriving photons can be estimated by a multi-channel detector [41]. �e
detector consists of N − 1 BSs guiding the light towards N single-photon avalanche
diodes (SPAD) as depicted in Fig. 2.2. When an emerging mode is occupied by at
least one photon, the SPAD measuring that mode provides a click. When N is suf-
�ciently large the statistics of clicks approaches the statistics of photons. To inspect
the convergence, we explore the results of positive-operator valued measure (POVM)

QD = Πi∈D ⊗ (1i − |0〉i〈0|) (2.66)

carried out in the spli�ing network by SPADs. In expression (2.66), the subscript
i denotes individual emerging modes and the symbol D stands for a set where the
measured emerging modes belong. A probability PD that all SPADs measuring the
set of modes D provide a click is given by

PD = Tr [ρQD] , (2.67)

where ρ is a state propagating through the spli�ing network. For simplicity, let us
further inspect balanced network spli�ing the light equally among all SPADs and
let us allow for a set D where belong only n emerging modes and let us denote the
respective probability (2.67) by Pn. �e probability Pn exhibited by a state with the
density matrix ρ can be expressed generally in terms of an auxiliary probability P0(τ)
de�ned as

P0(τ) = Tr
[
(|0〉〈0| ⊗ 1) · UBS(τ)(ρ⊗ |0〉〈0|) · U †BS(τ)

]
, (2.68)
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a) b)

Figure 2.2: Examples of networks spli�ing a state of light among several emerging modes
detected by SPAD. �e network can have a tree structure (a) or split the light successively by
a series of BSs (b).

where the unitary operator UBS(τ) corresponds to interference of the state ρ with
the vacuum on a BS with the transmission τ and P0(τ) determines the probability
the transmi�ed state is the vacuum. �e click statistics of detectors reads

Pn = 1 +
n∑
k=0

(−1)k
(
n

k

)
P0(k/N), (2.69)

where Pn stands for a probability of simultaneous click of n SPADs and N denotes a
total number of SPADs. Let us survey the formula on examples of states of light. �e
coherent state |α〉 yields P0(τ) = exp(−|α|2τ), which leads to

Pn =
(

1− e−|α|2/N
)n
. (2.70)

It indicates that the SPADs click independently when they respond to the coherent
states. �e Fock state |m〉 having P0(τ) = (1− τ)m results in

Pn = 1 +
n∑
k=0

(−1)k
(
n

k

)(
1− k

N

)m
. (2.71)

�e expression is summed up for some particular cases. Speci�cally, when n > m,
Pn = 0 and

Pn =
n!

Nn
… (n = m)

Pn =
(n+ 1)!

Nn

(
1− n

2N

)
… (n = m− 1)

Pn =
(n+ 2)!

Nn+2
(n+ 3n2 − 12nN + 12N2) … (n = m− 2). (2.72)

�e remaining introduced states are the states |α, ξ, n〉. An analytic solution of the
distribution of clicks the states exhibit will be derived for |α, ξ, 0〉, having the Wigner
function with a Gaussian shape. Since the Gaussian functions are easy for calculation
we derive the click statistics from the Wigner representation.
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2.8 �e Wigner function of the Gaussian states

�e Wigner function is a very powerful tool for a description of quantum states of
light in continuous variables. According to the relation (2.23), the Wigner function in
the origin represent a mean value of the parity operator. It entails

W (α, α∗) =
1

2π

∫
〈x|D(α)ρD†(α)| − x〉dx, (2.73)

where D(α) = exp(αa† − α∗a) is a displacement operator. Substituting the annihi-
lation and creation operators by the canonical coordinate and momentum (2.5) and
le�ing them act on the state |x〉 gives rise to [B2]

W (x, p) =
1

2π

∫
〈x+ β2|ρ|x− β2〉eipβ2dβ2, (2.74)

where x = α + α∗ and p = i(α − α∗). �us, the Wigner function works out as the
Fourier transformation of elements of the density matrix expressed in eigenstates of
the canonical coordinate. �e identity (2.74) allows a direct derivation of the Wigner
function from a knowledge of the wave function. For instance, it can be shown easily
that the vacuum with the wave function

|0〉 =
1

(2π)1/4

∫
e−

x2

4 |x〉dx (2.75)

possesses the Wigner function with a Gaussian form

W0(x, p) =
1

2π
e−

x2+p2

2 , (2.76)

saturating the uncertainty inequality. Wigner functions of other states stemming
from unitary evolution of the vacuum state are given by transformation of the argu-
ments in the Wigner function [B6]. Let us assume an initial state possesses W (x, p).
�e unitary operator D(α) e�ects

W (x, p)→ W (x+ α + α∗, p+ i(α− α∗)). (2.77)

�e squeezing operator (2.51) with ξ = |ξ|eiφ, scaling the rotated coordinate and the
rotated momentum, transforms the arguments according to

W (x, p)→ W
(
x′e2|ξ|, p′e−2|ξ|) , (2.78)

where x′ = cos(φ/2)x + sin(φ/2)p and p′ = − sin(φ/2)x + cos(φ/2)p. Finally, the
”BS-type” operator transforms arguments of the Wigner functions W1(x1, p1) and
W2(x2, p2) as

W1(x1, p1)W2(x2, p2) → W1(
√
Tx1 +

√
1− Tx2,

√
Tp1 +

√
1− Tp2)

×W2(−
√

1− Tx1 +
√
Tx2,−

√
1− Tp1 +

√
Tp2), (2.79)

where T is the transmission.
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�is formalism can involve a measurement. Results of applying POVM on a state
with the Wigner function W (x, p) are yielded from an overlap [42]∫

WQ(x, p)W (x, p)dxdp, (2.80)

where WQ(x, p) stands for the Wigner function of the POVM [42]. As an example,
let us introduce POVM corresponding to a click response of a SPAD

Wc(x, p) = 1− 2e−
x2+p2

2 . (2.81)

�is POVM will be used later for deriving the click statistics in (2.67). �us, the
Wigner function can describe both an evolution of an arbitrary state and its detection.

�e transformations (2.77)-(2.79) applied on the Wigner function of the vacuum
(2.76) allow us to establish the Wigner function of the state |β〉 in (2.54) that is split
among M modes through a network of BSs. It obtains a Gaussian form

W (x) =
1

πM detσ−1 exp

[
−1

2
(x− r)σ(x− r)T )

]
, (2.82)

where x = (x1, p1, ..., xM , pM) is a vector with xi being the coordinate of the ith
mode and pi being its momentum in the Wigner representation, r represents a vector
of �rst moments of the coordinates and the momenta and σ is a covariance matrix.
Explicitly, the elements of the vector r are given by r2i+1 = 〈Xi〉 and r2i = 〈Pi〉
where i distinguishes the modes. �e covariance matrix σ has elements

σ2i+1,2j+1 =
1

2
(〈XiXj〉+ 〈XjXi〉)− 〈Xi〉〈Xj〉

σ2i+1,2j =
1

2
(〈XiPj〉+ 〈PjXi〉)− 〈Xi〉〈Pj〉

σ2i,2j+1 =
1

2
(〈PiXj〉+ 〈XjPi〉)− 〈Pi〉〈Xj〉

σ2i,2j =
1

2
(〈PiPj〉+ 〈PjPi〉)− 〈Pi〉〈Pj〉. (2.83)

�ey represent symmetrically ordered moments fully specifying quantum noise in
the Gaussian states. Transformations (2.77)-(2.79) change r and σ but preserve the
Gaussian form.

Let us exploit the formalism for calculation of click statistics demonstrated by the
state |β〉. Let Wβ,N(x) denotes the state |β〉 split equally among N modes. Applying
the POVM in (2.66) establishes the click statistics

PD =

∫
Πi∈DWc,i(xi, pi)Wβ,N(x1, ..., xN , p1, ..., pN)dx1...dxNdp1...dpN , (2.84)

whereWc,i is expressed explicitly in (2.81). According to (2.68), it can be achieved from
a Wigner function of the state transmi�ed through a BS. Formally, the probability
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(2.68) is given by

P0(τ) =
1

π2

∫
e−

x21+p
2
1

2 e−
(−
√
1−τx1+

√
τx2)

2+(−
√
1−τp1+

√
τp2)

2

2

× Wβ(
√
τx1 +

√
1− τx2,

√
τp1 +

√
1− τp2)dx1dx2dp1dp2, (2.85)

where Wβ is the Wigner function of the state |β〉. Calculating the Gaussian integral
yields

P0(τ) = 2
e
− |β|

2τ
2

[
cos2 φ
γ(1/V,τ)

+ sin2 φ
γ(V,τ)

]
√
γ(V, τ)γ(1/V, τ)

(2.86)

with β = |β|eiφ and γ(V, τ) = 2V + τ (1− V ), where V is the minimal variance of
the canonical coordinate, i. e. V = e−2|ξ|. �e click statistics is expressed by inserting
(2.86) into (2.69).

�e �nal formula (2.86) was achieved because all the considered transformations
preserved the Gaussian shape of the Wigner function, for which the integral (2.85)
has an analytical solution. Expressing the probability P0(τ) of more complex states
such as the generalized squeezed states |α, ξ, n〉 in (2.59) requires the integration of
a Gaussian function modulated by some polynomial. �e integration also results in
an analytical formula in this case. However, the �nal expressions involving all the
parameters of such states can get very extensive forms, which are hard to manipulate
for further calculations. For that reason, it is more convenient to get the click statistics
from a convolution of the photon distribution with a response of a detector on n
incoming photons.
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Chapter 3

Nonclassicality

It is an unexpected feature of nature that a description of quantum systems is not
unique but is relative to detection. In optics, a conventional detector measures the
intensity by absorption of photons. Such a detector responds to moments of the nor-
mally ordered annihilation and creation operators [4]. Because the coherent states
are eigenstates of the annihilation operator, the creation and annihilation operators
can be substituted by a complex amplitude and its conjugate amplitude when a de-
tector responds on coherent states and the theory becomes classical deterministic
theory because operators are not needed [4]. When the stochastic processes are in-
volved, the corresponding theory becomes the classical theory of coherence that is,
therefore, explained entirely by mixtures of coherent states. �is theory explores
both �rst-order (amplitude) and second-order (intensity) coherent features of classi-
cal stochastic electromagnetic waves. �e intensity �uctuation of classical waves was
investigated �rstly by Hanbury Brown and Twiss in their famous experiment [25]. It
split the incoming light by a beam-spli�er (BS) towards two detectors measuring the
�rst and the second moment of the integrated intensity W . �ey demonstrated that
light radiated by a star obeyed 〈W 2〉 > 〈W 〉2, which proved the light was thermal. A
similar layout where single-photon avalanche diodes (SPADs) replace the detectors
measuring the integrated intensity allows detection of very weak light. SPAD con-
verts an optical signal to an electronic signal so sensitively that even a single photon
can be registered. However, it does not measure the integrated intensity because ev-
ery photon can initiate an ampli�ed electronic current that does not quantify a num-
ber of arriving photons. �erefore, the output of the SPAD is binary and indicates the
presence of the photons or the vacuum. �e pioneering experiments in the 1970s and
1980s exploited the Hanbury Brown and Twiss (HBT) setup to explore light sca�ered
on atoms by this detection technique. Note, those experiments did not utilize SPAD
but a phototube, a similar device used for the detection of weak light. When the light
was resonant with some addressed transition in the atoms, the light exhibited anti-
bunching [5] and sub-Poissonian statistics [36, 37]. Explanation of these phenomena
by coherent states and their mixtures is insu�cient, which proved �rstly in an ex-
periment that the quantum optics is a more general theory than the classical theory
of light. Section 2.5 in the previous chapter summarizes these experiments together
with a theory that was exploited for the recognition of the nonclassicality.

�e quantum technologies have developed since these early experiments. A workhorse
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for a generation of nonclassical light has been parametric processes in a nonlinear
crystal for the last three decades [32]. �e sub-Poissonian light is generated by herald-
ing in the process [43]. Also, four-wave mixing in a �ber [44] or in atomic vapor [O1]
produces the sub-Poissonian light a�er heralding. Currently, platforms exploiting
ions, molecules or solid state sources are being developed intensively [45]. �eir ad-
vantage is a level structure emi�ing in principle exactly a single-photon. However,
background noise o�en deteriorates them and the collection of light is very low in
many experiments [45]. Moreover, they are o�en fabricated in clusters behaving as
several independent emi�ers [O2].

Nonclassicality inherent to such sources of light is an important property that
distinguishes the emi�ed light from classical waves. In the historical development of
the theory, the correlation function g(2)(0) was used for exposing the nonclassical-
ity. However, the HBT setup equipped with SPADs does not allow measurement of
g(2)(0) without conjectures that only sources emi�ing very weak light ful�ll. Such
measurement is time consuming if small error bars are expected. However, when the
light is beyond the approximation, click statistics in the HBT layout cannot determine
the moments of the annihilation and creation operators. Let us illustrate that by in-
troducing the probability of just a single SPAD click P1 and both SPADs click P2. It
can be tempting to approximate the moments as accurately as possible by

〈a†a〉 ≈ 〈1|ρ|1〉+ 2〈2|ρ|2〉 ≈ P1 + 4P2

〈
(
a†
)2
a2〉 ≈ 2〈2|ρ|2〉 ≈ 4P2. (3.1)

However, evaluation of the function g(2) for coherent states |α〉 using such approxi-
mation yields [35]

g(2)(0) ≈ 1− |α|2 (3.2)

manifesting fake nonclassicality. �e nonclassical criteria that are reliable can ma-
nipulate only with the click statistics of the SPADs. �e spli�ing networks depicted
in Fig. 2.2 can be employed to formulate [46]

FB = N
〈c2〉 − 〈c〉2

〈c〉(N − 〈c〉)
, (3.3)

where N is a number of SPADs in the spli�ing network and c denotes a number of
simultaneous clicks. �e nonclassicality is recognized reliably when FB < 1. More-
over, the parameter FB converges to the Fano factor (2.37) for largeN . �is approach
is already based on directly measurable click statistics. However, it corrects only al-
ready existing characteristics of light and interpreation of (3.3) is not clear for small
N . Alternatively, one can consider only probabilities of two distinct events, speci�-
cally, click of n SPADs and click of n+1 SPADs, and derive a criterion involving only
the probability quantifying these two events [O3]. Following Section 3.1 explores this
approach. When a detector distinguishes a number of arriving photons up to n + 1
[34], the nonclassicality is detected when [47]

(n+ 1)pn−1pn+1

np2
n

< 1 (3.4)
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Figure 3.1: A layout that enables detection of the nonclassicality of light radiated from an
ensemble of single-photon emi�ers. �e light is collected by a lens and then directed toward
single-photon avalanche diodes SPAD1 and SPAD2 through a BS.

with pm = 〈m|ρ|m〉. �e criteria (3.4) are useful for recognition of the nonclassicality
occurring during Jaynes-Cummings interaction of a two-level system in the ground
state with classical light [O4]. However, there is not any systematic approach to de-
rive such criteria yet. Finally, the nonclassicality can be also observed from the homo-
dyne measurement giving the density probability function for the rotated canonical
coordinate P (x, φ). One can determine a functionG(k, φ) through the Fourier trans-
formation

P (x, φ) =
1

2π

∫
e−ikxG(k, φ)dk. (3.5)

�e nonclassicality occurs if the function exceeds its value for the vacuum state, i.e.
[48]

|G(k, φ)| > e−k
2/2. (3.6)

However, the homodyne measurement requires local oscillator interfering with the
signal, which is challenging to implement for a row of experiments. All the introduced
criteria (3.3), (3.4) and (3.6) provide only su�cient conditions of the nonclassicality
for diverse detection methods. A necessary condition of nonclassicality would re-
quire satisfying of an in�nite number of conditions [49]. Because real experiments
cannot verify all the conditions, it rises a question which criteria are appropriate for
a speci�c experimental realization. In the following, the approach used in [O3] is ap-
plied to a basic scheme corresponding to the HBT layout and it is explored when the
nonclassicality is detected.
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3.1 Reliable ab-initio nonclassical criteria

�e simplest detection allowing recognition of the nonclassicality is the HBT layout
equipped with two SPADs as depicted in Fig. 3.1. When a BS with the transmission
T is considered, the layout discerns three independent events: a click of SPAD1, a
click of SPAD2 and, �nally, a simultaneous click of both detectors SPAD1 and SPAD2.
Although a nonclassical condition on probabilities quantifying those events can be
obtained from the Cauchy-Schwarz inequality [37], the condition can be also derived
exploiting the methodology in [12]. Since the approach will be used later in this thesis
for networks where the Cauchy - Schwarz inequality does not give rise to the criteria,
we will derive this criterion using the approach in [12] for illustration how it works.
For that sake, it is convenient to employ no-click events instead of click events. Let
P0,1, P0,2 and P00 denote probabilities quantifying successively the no-click event in
SPAD1, the no-click event in SPAD2 and, �nally, the no-click event observed when
neither SPAD1 or SPAD2 click. Note, P0,1 and P0,2 are not generally equal since the
used BS with the transmission T can be unbalanced or the employed detectors can
have di�erent quantum e�ciency. �e criterion is gained from a linear combination
of the probabilities

Fa,i(ρ) = P0,i + aP00, (3.7)

where a is a free parameter and i = 1, 2 distinguishes two functions Fa,i according to
a choice between probabilities P0,1 or P0,2. A criterion implies from optimizing (3.7)
over all mixtures of the coherent states. Importantly, both functions Fa,i(ρ) are linear
in a state ρ, which means

Fa,i(
∑
j

pj|αj〉〈αj|) =
∑
j

pjFa,i(|αj〉〈αj|). (3.8)

When the functions Fa,i are optimized over mixtures of coherent states, the optimal
amplitudes in the right side of (3.8) are the same for each j. Because

∑
j pj = 1, the

optimum is determined from optimizing over a coherent state, i. e.

Fi(a) = max
αj ,pj

Fa,i(
∑
j

pj|αj〉〈αj|) = Fa,i(α0,i) (3.9)

with α0,i representing the optimal amplitude. It leads to

F1(a) = −
(
−T
a

) 1
1−T 1− T

T
a

F2(a) = −
(
−1− T

a

) 1
T T

1− T
a. (3.10)

Both functions F1(a) and F2(a) are results of optimizing over all mixtures of co-
herent states in a single mode. An optimum over classical states occupying several
modes is always identical to F1,2(a). �e reason is that the optima are achieved
by pure coherent states, which exhibit Poissonian distribution of photons indepen-
dently of a number of modes that they occupy. A su�cient condition of nonclas-
sicality reads ∃a : P0,i + aP00 > Fi(a), which can be formulated equivalently by
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P0,i > mina [Fi(a)− aP00]. �e optimal parameters ful�ll

a0,1 = − T

P 1−T
00

a0,2 = −1− T
P T

00

(3.11)

Inserting it to (3.10) ensues in requirements P T
0,1 > P00 or P 1−T

0,2 > P00. �eir combi-
nation yields the �nal condition

P0,1P0,2

P00

− 1 > 0, (3.12)

which does not depend on the transmission T . Criterion (3.12) can be reformulated
in terms of click probabilities

Ps,1 = 1− P0,1

Ps,2 = 1− P0,2

Pc = 1− P0,1 − P0,2 + P00 (3.13)

referring to the probability of click of SPAD1, to the probability of click SPAD2 and
to a simultaneous click of both SPAD1 and SPAD2. Inverting the relations (3.13) and
inserting it to inequality (3.12), leads to

Pc
Ps,1Ps,2

< 1, (3.14)

which also ensues from the Cauchy - Schwarz inequality [37]. Moreover, the le� side
of (3.14) converges to g(2)(0) for weak states, and therefore it is independent of losses
in the approximation of the weak states. Although both conditions (3.12) and (3.14)
are equivalent, their le� sides represent two di�erent parameters, which can become
useful for an analysis of the nonclassical light.

Solid state sources can be fabricated as clusters of single-photon emi�ers, which
radiate multiphoton light. A density matrix of the emi�ed light approaches

ρ = [(1− η)|0〉〈0|+ η|1〉〈1|]⊗N ⊗ ρn̄, (3.15)

where η is an e�ciency of photon emission from a single emi�er, N is a number
of emi�ers presented in the radiating cluster and ρn̄ is background noise that has
Poissonian statistics with a mean number of photons n̄, i. e.

ρn̄ = e−n̄
∞∑
n=0

n̄n

n!
|n〉〈n|. (3.16)

In a di�erent possible model, the background noise occupies more modes depending
on the number of contributing emi�ers. Since the multimode noise preserves the
Poissonian distribution of the photons, it can be described e�ectively by the density
matrix with the form (3.16) where the mean number of photons of the noise grows
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Figure 3.2: Comparison of parameters α = Pc/(Ps,1Ps,2) and d = P0,1P0,2/P00−1 revealing
nonclassicality. �e blue points represent values of these parameters for model state (3.15)
with η = 0.1 and the a�ached numbers correspond to the number of contributing single-
photon emi�ers. Number of emi�ers goes from two to ten and grows from le� to right. �e
slightly declining horizontal lines shows shi�ing of the states during a�enuation and the
vertical lines exhibit impacts of the Poissonian background noise. In both cases, a direction
of the shi�ing of states in the plot is shown by the arrows.

with the number of the contributing emi�ers. In a case of a balanced layout, the
detector response on the state follows

P0 = (1− η/2)Ne−n̄/2

P00 = (1− η)Ne−n̄, (3.17)

where P0 = P0,1 = P0,2. Inserting these quantities into the condition (3.12) rec-
ognizes the nonclassicality of the state ρ for any number of emi�ers N if η > 0.
Moreover, the nonclassicality remains observable if the state is deteriorated by Pois-
sonian background noise with arbitrarily large mean number of photons n̄. Also, the
nonclassicality tolerates losses since losses only decrease parameters η and n̄ but pre-
serve the form of density matrix (3.15). Although both the losses and the background
Poissonian noise do not a�ect the nonclassical nature of the state (3.15) they have
impacts on parameters

d = P 2
0 /P00 − 1

α = Pc/P
2
s (3.18)

revealing the nonclassicality in conditions (3.12) and (3.14). Fig. 3.2 depicts how these
parameters are changing during losses and increasing background noise. It shows
that the parameter d is independent of the background noise with the Poissonian
statistics and, simultaneously, the parameter is growing with the number of single-
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Figure 3.3: A simulation of reliability of nonclassicality. �e horizontal axis quanti�es an
amount of single-photon emi�ers whereas the vertical one corresponds to parameter d =
P 2

0 /P00− 1 in units of estimated error bars. �e simulations consider 108 experimental runs.
�e colors distinguish the parameters of the model states. �e red and green points are results
for simulation without the background noise. Contrary, the blue dots correspond to cases
with background noise having n̄ = 0.01 and the yellow dots represent a state deteriorated by
background noise with n̄ = 0.1. �e e�ciencies of radiation were chosen η = 10−3 (red, blue
and yellow) and η = 5× 10−4 (green). For states above the black horizontal line, a parameter
d exceeds experimental error bars, and therefore the nonclassicality is observed reliably.

photon emi�ers in an ensemble. Contrary, the parameter α is a�ected only slightly
but it converges to one for a large number of single-photon emi�ers and for large
Poissonian background noise. Using both parameters, we gain a complete insight
into the nonclassical aspects of the multiphoton light capable to distinguish growth
of a number of emi�ers from increasing contributions of the Poissonian noise.

A remaining aspect that can prevent the nonclassicality from its detection is the
time needed for su�cient suppression of error bars. Although it can appear as a
rather technical ma�er, very weak nonclassicality cannot be observed due to very
long measurement. �e click distribution determines error bars stemming from a
�nite measurement. �e error bars are quanti�ed by the variance of the measured
parameters. To obtain them, let us approximate the no-click distribution in P0-P00

space achieved in M measurements by the Gaussian distribution

P (M0,M00) =
1√

2πVc
e−

(2M0−M00−2MP0+MP00)
2

2Vc
1√

2πVa
e−

(M0+2M00−MP0−2MP00)
2

2Va ,

(3.19)
where M0 (M00) is a number of no-click events in one (both) SPADs. �e arguments
in the exponentials are set in such a way that the former Gaussian function from
the le� represents the normal distribution of simultaneous clicks of both SPADs and
the later one corresponds to the normal distribution of an auxiliary quantity M0 +
2M00. �e parameters Vc and Va denote the variance of those events. Employing the
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distribution (3.19) leads to evaluation of the variance of the parameters revealing the
nonclassicality

var(d) =
Vc
P 2

00

(
sinφ

2
√
P00

+ cosφ

)2

+
Va
P 2

00

(
cosφ

2
√
P00

− sinφ

)2

+ d2P00V00

var(α) =
1

P 4
s

[
Vc

(
sinφ

2
√
P00

+ cosφ

)2

+ Va

(
cosφ

2
√
P00

− sinφ

)2
]

+
d2P 2

00Vs
P 6
s

(3.20)

where φ = arctan 1/2. If the source is weak, i. e. 1 − P00 � 1, the variance of d
scales with var(d) ∝ Vc. Reliability of the nonclassicality in an experimental test can
be expressed as a ratio between the parameters in (3.18) and the squared root of its
variance. According to (3.20), one gets

var(d)

d
≈ var(α)

1− α
(3.21)

for states close to the boundary with d � 1. Fig. (3.3) depicts the ratio (3.21) quan-
tifying the reliability of the parameter d for di�erent sizes of the ensemble of single-
photon emi�ers in a realistic experiment. �e ratio is growing with the e�ciency of
emission η. If the background noise does not deteriorate a source, the ratio is dropping
with a number of emi�ers. It means recognition of nonclassical light from larger en-
sembles requires longer experimental time. When the background noise contributes
to the measured statistics, which occurs o�en in solid-state sources [O2], there is an
optimal size of the ensemble leading to the greatest ratio for �xed all remaining pa-
rameters. In that case, the ratio increases for small ensembles because photons com-
ing from the background noise contribute less signi�cantly to the overall statistics
of clicks of detectors. Fig. 3.3 predicts that the nonclassicality of light from a large
ensemble of single-photon emi�ers is observable even for multiphoton light under
realistic conditions including background noise or low overall e�ciency of emission.
Because limiting factors seem to be only experimental error bars achieved due to �-
nite measurement, a boundary where multiphoton nonclassicality remains detectable
depends on a technical side determining how fast experimental data can be collected.

3.2 Experimental veri�cation of nonclassical light from many
emitters

Modern sources of single-photon states exploit discrete energy levels in the mat-
ter. Addressing two levels of energy by an appropriate exciting light beam leads
to transferring the ma�er to an excited state that spontaneously radiates a single-
photon. Many physical platforms involving ions, molecules, quantum dots or NV
centers manifest such behaving [45]. Among them, the quantum dots represent a
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Figure 3.4: Results of experimental nonclassicality veri�cation and a simulation ��ing the
experiment. �e bo�om horizontal axis quanti�es an estimated number of ions. �e top hor-
izontal axis shows a radiated mean number of photons in pulsed regime. Dots depict the
measured nonclassical parameter d for pulsed pumping (red dots) and continuous pumping
(yellow dots). Also, sca�ered laser light was used to verify the threshold by adjusting the
intensity to reach the same rate of clicks as the respective nonclassical light in the pumped
regime (blue squares) and in the continuous regime (gray squares). �e green triangles cor-
respond to results of theoretical simulation of the parameters d.

promising platform due to their easy manipulation and a technological possibility to
implement them to nanostructures [50]. However, the �rst steps in the current tech-
nology frequently produces quantum dots in clusters containing more quantum dots.
�e nonclassicality was recognized on light radiated from such a cluster [O2]. �e
light was split to four spatial modes and was detected by an intensi�ed CCD camera.
�e output of the camera was processed by imposing a threshold on the signal above
which the camera output was considered as a click. �e value of the threshold was
optimized to achieve the best click statistics. �e nonclassicality was measured by es-
timation of the correlation functions up to the order three employing such detection.
Simultaneously, both parameters α, d, which expose the nonclassicality accurately,
were used for the evaluation of the nonclassicality. Comparing these parameters for
clusters comprising a di�erent number of the quantum dots veri�ed the predicted be-
having of both parameters. �e evaluation of the parameters d and αwas also carried
out for light radiated from a cluster of NV centers [51]. Contrary to [O2], in�uence
of the background noise on the nonclassicality was explored there. It demonstrated
insensitivity of d on a level of the background noise.

In comparison with the clusters of the quantum dots or NV centers, ions cap-
tured in a Paul trap constitute a platform where a number of kept ions is controlled
accurately. Such a source of nonclassical light exhibits negligible background noise
contributing to the light emi�ed from the ions. However, the detection e�ciency is
typically very low. A realized experiment exploited calcium ions, which were Doppler
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cooled by two laser beams [T3]. A lambda scheme of transitions interacting with the
pumping beams allowed the controllable emission of a single-photon from each ion.
�e measurement was performed in a regime when the pumping beams were pulses
and, further, in a regime when the laser shined continually. A�er loading the ions
and cooling them, the ions formed a crystal with a shell structure [52]. �e ions could
move inside each shell, and thus their behaving was similar to two-dimensional liq-
uid. �e detection was carried out for crystals with 12, 55, 125, 204, 275 ions. �e
number of ions was estimated from a picture from CCD camera. A lens collected
2% of light radiated from a focus point and directed the light towards a BS and two
SPADs, which measured click statistics. �e criterion (3.12), which is independent of
the transmission of BS and quantum e�ciencies of the SPADs, recognizes the nonclas-
sicality of the measured states. �e predicted dependence of the parameter d in (3.18)
on a number of single-photon emi�ers was observed. A theoretical simulation of the
parameter d supports the experimental results. �e simulation took into account a
shape of the formed crystal and the overall e�ciency of radiation and detection in
the experiment. �e collection e�ciency of the lens η can be e�ectively described by
a Gaussian function determining dependence on a position of ions

η = η0e
− r2

2σ2r
− a2

2σ2a , (3.22)

where r is a radial distance of an ion from the optical axis and a is a distance from the
focus along the axis. �e parameters η0, σr and σa were estimated experimentally.
In the cases of the larger crystals, ions in the outer shells of the crystal contributed
only marginally due to narrow detection volume in the direction radial to the optical
axis. However, their contribution could not be neglected as was analysed in a simu-
lation. �e simulation inspected how the crystal in�uences the probing parameter d.
An amount of ions in individual shells is calculated in Ref. [52]. Distribution of ions
in shells was modeled by a randomly rotated tetrahedron, cube, regular icosahedron,
regular dodecahedron and truncated icosahedron. �e randomizing of the orienta-
tion of the employed polyhedra mimicked the liquidity. �e simulation together with
measured data is depicted in Fig. 3.4. �e �gure shows results in both regimes of
continual and pulsed pumping. �e measurement was performed �ve times and the
error bars were calculated as a standard deviation in these �ve measurements. �ese
error bars agree with the ones theoretically predicted employing formula (3.20). �e
theoretically simulated parameters d lie around the measured points within intervals
corresponding to error bars. �e measurement con�rmed the expected increasing
tendency of the parameter d for crystals with up to 55 ions. For larger crystals, the
parameter is growing slower and is ge�ing saturated due to low collection e�ciency
of light emi�ed from ions too remote from the focus of the lens.

3.3 Summary and outlook

�e nonclassicality distinguishes a�ractive quantum properties from the ones related
to classical waves. It is simultaneously a necessary condition for many applications
of light in the quantum metrology [53], the quantum communication [54] and later,
probably also in the quantum computation [55]. Its inspection is useful for the diag-
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nosis of optical processes in ma�er. Our analysis reveals that this feature is inherent
even to multiphoton light radiated from a large number of emi�ers and can be de-
tected in a simple HBT layout with two SPADs. It was recognized by a criterion de-
rived ab-initio without any assumptions about the state but with detailed knowledge
about the detection. �e criterion can be expressed in a form (3.14), which converges
under some assumptions to the broadly used g(2)(0). �e criterion obtaining a form
(3.12) or (3.14) remains reliable even for states beyond a limit where the function
g(2)(0) cannot be measured in the HBT setup equipped only with two SPADs. �e
parameters α and d in (3.18), which reveal the nonclassicality, are convenient for the
characterization of a source because α is independent of the losses and d is indepen-
dent of the background noise.

An experiment where trapped ions radiated the nonclassical light supported this
new approach and the theoretical prediction. �e evaluated data was compared with
a simulation taking into account the shape of the formed crystal together with the
performed detection. �e nonclassicality stayed observable even for light emi�ed
from a cluster having up to 275 single-photon emi�ers and the measured parameter
d gained theoretically expected values.

Further research in this direction aims at criteria considering three distinct de-
tection events. A possible sequence of such criteria was derived by D. Klyshko [47]
for photon-number resolving detectors. Such criteria can be obtained for spli�ing
networks with SPADs.
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Advanced tests of nonclassicality

Since the manifestation of the nonclassicality is always a�ached inseparably to de-
tection, it raises a question about nonclassical aspects beyond the ones observed in
the HBT setup from the previous chapter. �is setup corresponds to the simplest
layout that manifests the nonclassicality. It was motivated to prove visibly that a
single-photon state does not split as a coherent state does. A possible extension leads
to the Mach-Zehnder interferometer, which detects the �rst-order coherence and, si-
multaneously, enables nonclassicality to be tested. Such cooperation between the
�rst-order coherence and the nonclassicality cannot be observed in the HBT layout
alone. Another extension with two single-photon sources leads to the famous Hong-
Ou-Mandel e�ect [56] when the interference of two indistinguishable photons on a
BS cancels cases when these photons emerge separately from the BS. �is behaving
is another violation of the classical optics [57]. Probably many other schemes can
be used to detect the nonclassicality, maybe, without two-photon interference. Also,
many other layouts can extend the Hong - Ou - Mandel setup for formulation of new
nonclassical aspects of two single-photon states. Generally, a scheme can constitute a
linear optical network where n impinging single-photon states interfere and emerge
inm ≥ nmodes [58]. Such linear optical networks enable quantum repeaters [59] for
quantum communication, advanced quantum metrology [60], simulation of complex
dynamics phenomena [61] and could be as well a platform for quantum computing
ultimately [10]. Emerging integrated optics allows the fabrication of a complex in-
terference network on a chip where the parameters of the network can be driven
electrically [62, 63]. A formulation of a library of criteria for such layouts provides
new insights into nonclassical manifestation.

A new aspect of the nonclassicality exhibited in such networks is sensitivity to
Poissonian background noise deteriorating realistic single-photon states. �e criteria
(3.12) and (3.14) for the HBT test tolerate arbitrary Poissonian noise. Contrary, the
nonclassicality on interfering networks can disappear due to impacts of the noise.
�is sensitivity to the noise can be exploited for benchmarking modern single-photon
sources that exhibit very low parameter α in equation (3.18) [50, O5, 64]. It can be
tempting to consider the noise negligible in these sources. However, the nonclassi-
cality manifested in the interference layouts can be sensitive to such low noise. �us,
these layouts can compare two di�erent single-photon states, which are already both
very good in the HBT test, and therefore they are hard to distinguish operationally.

33



CHAPTER 4. ADVANCED TESTS OF NONCLASSICALITY

One state is operationally be�er than the other if the former state passes a nonclassi-
cal test whether the later one fails in the test. A row of layouts giving gradually more
demanding criteria establishes a hierarchy if some conditions on the noise are arbi-
trarily lenient and some are arbitrarily strict. Such a hierarchy of detection methods
goes beyond the HBT test because the HBT test imposes a too easy condition.

4.1 Variable detection of nonclassicality

A layout detecting the nonclassicality can be an arbitrary interfering network as de-
picted in Fig. 4.1. In general, the network is represented by a scheme where m modes
of light interfere among themselves and are measured further by m SPADs. An evo-
lution of states of light occupying these modes is determined in Heisenberg picture
by the evolution of annihilation operators a = (a1, ..., am) describing all the modes.
�e considered network converts the initial operators ai to output operators ao by a
transformation

ao = Uai, (4.1)

whereU ism×m unitary matrix characterizing the linear-optical network. Detection
of nonclassicality can be realized when n < mmodes in a speci�c layout are occupied
by single-photon states. A density matrix of a realistic single-photon state approaches
ρη ⊗ ρn̄. It is composed of the a�enuated Fock state ρη = η|1〉〈1| + (1 − η)|0〉〈0|
deteriorated by independent background noise ρn̄ with the Poissonian statistics and
a mean number of photons n̄. n copies of the ideal state ρη can be responded positively
by simultaneous click of n SPADs for a broad class of interfering layouts. �ese events
are assumed to be a success. With the conjecture n < m, simultaneous clicks of more
than n SPADs occur only due to the background noise ρn̄, and therefore such events
are considered as errors. It encourages to derive a general library of nonclassical
criteria from linear functionals with forms

Pn + aPn+1, (4.2)

where Pn refers to a probability that a selected group of n SPADs registers n clicks
and Pn+1 means that at least n + 1 SPADs give a positive response. Derivation of
nonclassical criteria is analogous to the procedure described in Section 3.1 where an
exact condition for the HBT test was achieved. �e approach excludes all classical
states referring to a statistical mixture of coherent states occupying several modes∑
ω1,...,ωn

∫
Pω1,...,ωn(αω,1, ..., αω,n)|αω,1〉1,ω〈αω,1|⊗ ...⊗|αω,n〉n,ω〈αω,n|d2αω,1...d

2αω,n,

(4.3)
where Pω(αω,1, ..., αω,n) is the density probability function, the subscripts 1, ..., n dis-
tinguish spatial modes and ω indexes all the remaining degrees of freedom. �e op-
timizing of (4.2) over classical states gives rise to a criterion derived exactly for a
speci�c layout. Because the optimizing is done over classical states with any degree
of coherence, the criteria can be applied to states showing coherent properties and
even to incoherent states that do not interfere in the layout.

�e nonclassical analysis requires knowledge of the unitary matrix in (4.1) since
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linear optical  network

array of SPADs

input states

Figure 4.1: A general scheme where nonclassicality can be manifested. It is realized by a linear
optical network that guides several states of light towards an array of SPADs.

the threshold functions recognizing the nonclassicality depend on it. Except for sev-
eral speci�c cases, any criterion derived from functionals of the form (4.2) discloses
the nonclassicality when an appropriate number of ideal states ρη propagate through
a layout because these states do not produce error events. When the states are realistic
the criteria impose conditions on the background noise ρn̄. Changes of parameters
in an employed layout impact strictness of a particular criterion. �is changeable
sensitivity enables operational comparison of realistic single-photon states. �e fol-
lowing sections explore the nonclassical manifestation in spli�ing networks, in the
Mach-Zehnder interferometer, which is the simplest layout giving variable nonclassi-
cal thresholds, and in two particular se�ings for two copy test that exhibit the variable
threshold as well.

4.2 Splitting networks

A simple spli�ing of light in HBT test does not allow derivation of criteria that are
sensitive to background noise in the state ρη ⊗ ρn̄. An example is the criterion (3.14)
discussed in Section 3.1. A modi�ed version of the criterion allows for a response
of only one SPAD when success probability P1 is measured. �e second SPAD is
exploited only for detection of error probability P2. �e criterion di�ers from (3.14)
only when a BS in the HBT layout is unbalanced. In the limit of weak states, the
criterion gets an approximate form [O3]

P1 >

√
T

1− T
√
P2, (4.4)

where T is the transmi�ance of the BS. Although changing T varies the condition
on P1 in (4.4) the criterion remains tolerant on arbitrary background noise ρn̄. It
is apparent from inserting the probabilities of the model state P1 ≈ (η + n̄)T and
P2 ≈ (2ηn̄+ n̄2)T (1− T ) in (4.4) leading to a condition η > 0.

An extension to layouts where more BSs split light as in Fig. 2.2 still does not
enable a formulation of a criterion that restricts the considered state anyhow. In a
conceivable formulation, a success corresponds to cases when n SPADs register a
signal and error means that n+ 1 SPADs click simultaneously. When the spli�ing is
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SPAD1
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Figure 4.2: Examples of interfering layouts where nonclassical manifestation imposes non-
trivial conditions on realistic single-photon states. �ese conditions go beyond the nonclas-
sical condition in the HBT layout because they are more demanding on the quality of tested
states. a) Nonclassical criteria derived for Mach-Zehnder interferometer give such conditions.
b) A modi�ed Hong-Ou-Mandel layout leads to criteria testing states ρA and ρB collectively.
States with any degree of the mutual indistinguishability can ful�ll the criteria. c) An example
of a layout where nonclassical criteria can impose an arbitrarily strict or arbitrarily lenient
condition on a state ρA ⊗ ρB .

balanced the criteria obtain forms [O3]

P n+1
n > P n

n+1. (4.5)

�e single-photon state ρη ⊗ ρn̄ is recognized as nonclassical even through criteria
(4.5) with n > 1 due to background noise, which increases both probabilities Pn and
Pn+1 in such a way that every condition in (4.5) is ful�lled. �e form of the criteria
(4.5) encourages to apply them on a multiphoton state ρ⊗mη ⊗ ρn̄ that is produced by
mixing m states ρη on an array of BSs. �e criteria (4.5) are also obeyed by this state
regardless of the number m and amount of background noise.

Although there are many other possibilities of how to formulate the success and
error events in these spli�ing layouts, the corresponding criteria always tolerate ar-
bitrary background noise. It will be shown, the nonclassicality criteria sensitive to
the noise require networks where the inspected states of light can interfere. Fig. 4.2
shows possible networks where such criteria can be developed.
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Figure 4.3: A hierarchy of criteria in the Mach-Zehnder interferometer is presented for the
state ρη ⊗ ρn̄ for T1 = 1/2 and di�erent se�ings of T2. We assume the state ρη ⊗ ρn̄ exhibits
�rst order coherence, and therefore shows the ideal visibility. �e criteria are presented as
conditions imposed on the parameters η and n̄ when the state experiences the relative phase
φ = π/8 (a) and φ = π/4 (b). �e solid lines represent thresholds that are exceeded by states
exhibiting the nonclassicality in layouts distinguished by the colors. Whereas the transmit-
tance of BS1 is always �xed in a value T1 = 1/2, the transmi�ance of BS2 modi�es the
nonclassical condition, which establishes the hierarchy.

4.3 Mach-Zehnder interferometer

Mach-Zehnder interferometer (MZI) depicted in Fig. 4.2a) allows tests of the �rst-
order coherence. When light exhibits the maximal �rst-order coherence, recognized
by the maximal visibility, the MZI acts as a BS and the analysis of the nonclassicality
is the same as for the HBT test. If light shows the partial �rst-order coherence, the
MZI manifests the nonclassicality di�erently to the HBT layout. In that case, the
nonclassicality excludes all possible mixtures of coherent states oscillating on several
frequencies, i. e.

ρ 6=
∑
ω

∫
Pω(αω)|αω〉ω〈αω|d2αω, (4.6)

where |α〉ω is a coherent state occupying a mode oscillating with the frequency ω.
�e de�nition guarantees that criteria revealing the nonclassicality can be exploited
on states with any degree of the �rst-order coherence. �e criteria are derived from
a linear functional

P1 + aP2, (4.7)

where P1 is a probability of a click of SPAD1 in Fig. 4.2a) and P2 refers to a probability
of simultaneous click of both SPADs. Optimizing (4.7) over the classical states is
equivalent to an optimum over single mode coherent states |α〉ω.

�e MZI guides the state |α〉ω towards the two SPADs through two di�erent paths
with lengths l1 and l2. A di�erence between their lengths ∆l = l1− l2 controls when
these states interfere constructively and when destructively. Explicitly, it depends on
a di�erence of the phases φ1,2 = 2πl1,2ω/c achieved during propagation by the two
paths. �e MZI splits the coherent state |α〉ω as a BS with the transmi�ance T and

37



CHAPTER 4. ADVANCED TESTS OF NONCLASSICALITY

aL
T2=0.1

T2=0.2

T2=0.3

T2=0.4

0.05 0.1 0.15 0.2
n

0.2

0.4

0.6

0.8

1
Η

bL
T2=0.1

T2=0.2

T2=0.3

T2=0.4

0.05 0.1 0.15 0.2
n

0.2

0.4

0.6

0.8

1
Η

cL
0.05 0.1 0.15 0.2 0.25 0.3 0.35

T2

20

40

60

80

Η�n

Figure 4.4: A hierarchy of conditions in the Mach-Zehnder interferometer imposed on the
state ρη⊗ρn̄ for T1 = 1/2 and di�erent se�ings of T2. Whereas the noise ρn̄ is assumed to be
always incoherent, the state ρη is coherent (a) or incoherent (b). In both cases, the nonclassi-
cality is manifested if the parameters η and n̄ are above thresholds depicted by the solid lines.
�e linear approximation suitable for high quality single-photon sources is shown by dashed
lines. Figure c) presents a ratio η/n̄ giving the approximate threshold for the incoherent (red)
and coherent (blue) states ρη .

the re�ectance R, which are given by

T = T1T2 +R1R2 − 2 cos ∆φ
√
T1T2R1R2

R = T1R2 +R1T2 + 2 cos ∆φ
√
T1T2R1R2, (4.8)

whereT1,2 are the transmi�ances of the beam-spli�ers BS1,2,R1,2 are their re�ectances
and ∆φ = φ1 − φ2. Optimizing (4.7) is performed over the amplitude α and the fre-
quency ω. Since ∆φ is manipulated by ω, the optimal ω leads to ∆φ = 0. �us, the
criterion covers classical states exhibiting any phase di�erence, and therefore no cal-
ibration of the relative phase in the interferometer is needed. �e optimal α depends
on a choice of the parameter a in (4.7). A resulted criterion is solvable only numer-
ically but an experimentally signi�cant corner with a very low probability P2 � 1
o�ers an approximate condition

P1 >

√
R

1−R
P2, (4.9)

where R = T1R2 + R1T2 + 2
√
T1T2R1R2. Although the explicit form coincides

formally with (4.4), the condition is not identical.
�e criteria become more trustworthy when they also reject classical states in-

coming the MZI in several modes. To verify that, we restrict the analysis only for
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states in two modes for simplicity. Such coherent states obtain a form |α〉ω1 |β〉ω2

with ω1,2 denoting an index di�erentiating the modes. �us, the success and error
probabilities of that state depends on the amplitudes α and β and phase di�erences
∆φ1,2 experienced by the coherent states. We checked out that the derived criteria
cover such states for diverse values of T1 and T2 . Since the thresholds set a convex
region of the considered probabilities, any statistical mixture of states |α〉ω1|β〉ω2 is
placed below these thresholds as well.

Usefulness of the criterion can be judged only relative to an inspected states ρη ⊗
ρn̄. Remind, the criterion (3.18) will always detect such the state as nonclassical.
When the considered state propagates coherently, the MZI acts e�ectively as a BS
characterized by the transmi�ance and the re�ectance expressed by relations (4.8). If
the MZI is set in such a way that the state experiences ∆φ = 0, the criterion behaves
identically to the criterion (4.4). Any deviation from that case allows us to formulate
a hierarchy of nonclassical conditions imposed on the state ρη ⊗ ρn̄. Fig. 4.3 demon-
strates that manipulating the transmission of BSs in the MZI establishes the hierarchy
if the state ρη ⊗ ρn̄ does not interfere constructively on the detector measuring the
success events. �e nonclassicality is manifested only when the parameters η and n̄
surpass a threshold determined from the criteria. �is feature makes a substantial dif-
ference between the MZI and the HBT layout, where states with arbitrary Poissonian
background noise exhibit the nonclassicality. �e partial coherence of the �rst-order
can be modeled by coherent propagation of the state ρη but incoherent propagation
of the noise ρn̄. �en, the nonclassicality also imposes conditions on the parameters
η and n̄. �e required conditions are presented in Fig. 4.4 for di�erent realizations of
the MZI. �e �gure also shows conditions derived for a limit of incoherent propaga-
tion of both states ρη and ρn̄. It shows a hierarchy o�ering an arbitrary condition of
nonclassicality can be established in this case as well.

Application of such variable criteria to the existing sources can bring new infor-
mation about the impacts of small noise considered as negligible. Testing the crite-
ria experimentally demands only knowledge of the transmissions of BSs in the MZI.
Since the criteria do not depend on the relative phase achieved in propagation of a
state through the MZI, the nonclassicality detection does not require calibration of
the interferometer to exhibit a particular value of the relative phase. �e criteria can
be used even when the relative phase is changed randomly.

4.4 Two copy variable criterion

Interfering networks where two optical signals interfere mutually are di�erent to
both the HBT test and to the MZI. �e interaction between two ideal indistinguish-
able photons on a simple BS leads to the famous Hong-Ou-Mandel dip, which is a
consequence of photon indistinguishability [56]. �e layout can be extended to test
the nonclassicality of two single-photon states by adding one more SPAD and a BS
such as depicted in Fig. 4.2b). Such a layout exploits the beam-spli�er BS1 for the in-
terference between the input states ρA and ρB and the beam-spli�er BS2 for spli�ing
one of the emerging modes. �is layout enables the criteria of the form (4.2) to be
formulated. In this case the success corresponds to a coincidence click of SPAD1 and
SPAD2 and error means simultaneous click of all three SPADs. Because the interfer-
ence of two single-photon states on a BS is independent of their relative phases [57],
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Figure 4.5: Nonclassical conditions recognizing nonclassicality in the layout depicted in
Fig. 4.2 b). �e conditions are imposed on parameters η and n̄ in the model state (ρη ⊗ ρn̄)⊗2

for the case when the states ρη are indistinguishable a) and distinguishable b). �e lines cor-
respond to thresholds that have to be surpassed to achieve nonclassicality. �e colors distinct
di�erent transmi�ances T1 of BS1. �e transmi�ance of BS2 is �xed to the value 0.5.

the refused classical states are assumed to be phase randomized, i. e. the nonclassi-
cality means

ρ 6=
∑
ω1,ω2

∫
Pω1,ω2(|α|ω1 , |β|ω2)ρω1,1(|α|ω1)⊗ ρω2,2(|β|ω2)d|α|ω1d|β|ω2 , (4.10)

where Pω1,ω2(|α|ω1 , |β|ω2) is a density probability function and ρωi,i occupies the ith
spatial mode, oscillates with a frequency ωi and obeys the Poissonian statistics, i. e.

ρωi,i(|α|) = e−|α|
2
∞∑
n=0

|α|2n/n!|n〉〈n|. (4.11)

Optimizing the linear functional
P2 + aP3 (4.12)

over the classical states leads to criteria that are always satis�ed by an ideal state
ρ⊗2
η . Deteriorating background noise ρn̄ can cause the nonclassicality disappears.

�e sensitivity of the criteria to noise is in�uenced by the indistinguishability of the
incoming states ρη. Nonclassicality of indistinguishable states is more tolerant to
noise contributions. �e conditions of the nonclassicality expressed in terms of the
parameters η and n̄ are depicted in Fig. 4.5 for distinguishable and indistinguishable
states ρη and for various transmissions of BSs in the layout. It has appeared that
the layout does not establish arbitrarily tolerant conditions on the noise ρn̄. �e most
lenient condition is achieved when the transmi�ances T1,2 of the BS1,2 are T1,2 = 1/2.
Deviation from that always increases demands of the nonclassicality criteria.

To establish criteria with an arbitrary condition, it is necessary to modify the
layout according to Fig. 4.2 c). �e success means here that both states are registered
by clicks of SPAD1 and SPAD2. On the other hand, a simultaneous click of all three
detectors corresponds to an error events. When an inspected state exhibits very low
error probability a criterion derived for this layout can be approximated by a condition

P2 > f(T1, T2)P
2/3
3 , (4.13)
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where f(T1, T2) is some function of the transmi�ance of BS1 and BS2. Adjusting the
transmi�ances T1 and T2 can impose an arbitrary demand on the parameters η and
n̄ as depicted in Fig. 4.6. Since incoming states interfere mutually on BS1 a response
of SPAD2 and SPAD3 is a�ected by the indistinguishability of the states. �us, condi-
tions of nonclassicality in terms of η and n̄ are in�uenced by the indistinguishability.
However, an arbitrary condition can be achieved in both limits of distinguishable and
indistinguishable states.

�e established hierarchies enable comparison of single-photon states. Because it
is an operationalistic method, comparing two states in two dissimilar layout can work
out di�erently. Let us provide an example of a state ρη⊗ρn̄ and analyse how the Mach-
Zehnder interferometer and the layout in Fig. 4.2b) compares two such states. We
consider the state exhibits �rst order coherence, and therefore we choose the relative
phase φ = π/8. Simultaneously, we assume that two indistinguishable copies of the
state are available in the la�er nonclassical test. Let us allow for two states denoted
as ρ1 and ρ2. Let us choose parameters η = 0.3 and n̄ = 0.05 determining the state
ρ1 and, further, parameters η = 0.9 and n̄ = 0.2 identifying the state ρ2. �e state ρ1

is nonclassical when T2 < 0.392 in the MZ interferometer or T > 0.395 in the layout
with two copies. Contrary, the state ρ2 exhibits nonclassicality for T2 < 0.412 in the
MZ interferometer and T > 0.421 in the later layout. According to that, the state ρ1

is be�er than ρ2 in the layout with two copies but the opposite conclusion is made in
the measurement with the MZ interferometer. It shows a comparison of two states is
always related to detection.

4.5 Summary and outlook

�e HBT layout provides a test of the nonclassicality, which is too easy for many
current platforms producing single-photon states because it tolerates arbitrary back-
ground noise with the Poissonian statistics. �erefore, it does not allow operational
comparison of realistic single-photon states with the density matrix ρη ⊗ ρn̄ because
such a state always passes the test. An operational comparison is possible on a layout
where the manifestation of nonclassicality imposes a variable condition formulated
in terms of parameters η and n̄ characterizing the realistic single-photon state. If the
conditions can be set arbitrarily strict or lenient the layout establishes a hierarchy of
nonclassical criteria that classify realistic single-photon states according to their abil-
ity to pass di�erent nonclassical tests. Our analysis revealed that the hierarchy can
be formulated for Mach-Zehnder interferometer if the states ρη ⊗ ρn̄ do not interfere
constructively or if they exhibit partial coherence of the �rst order. �e layout shown
in Fig. 4.2c) also allows construction of the hierarchy when two copies of the state
ρη⊗ρn̄ enter the layout as depicted in the �gure. �e methodology of developing such
criteria can be utilized for nonclassical analysis of di�erent complex layouts where
many copies of single-photon states propagate. Experimental realization of such non-
classical tests can be realized in the currently developing integrated photonics where
complex interfering networks are fabricated in a small chip.
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Figure 4.6: A predicted nonclassical thresholds in the layout in Fig. 4.2 c). �e hierarchy for
two copies of the state ρη ⊗ ρn̄ is resolved for transmi�ances of BSs T1 = T2 = T . �e solid
lines represent the exact solution, the dashed ones are the linear approximations appropriate
for the high quality single-photon states. �e states ρη are assumed indistinguishable (a) or
distinguishable (b). �e di�erence of the linear approximations is plo�ed in (c), where the red
line stands for the threshold ratio η/n̄ for the distinguishable case and the blue one for the
indistinguishable case.
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Chapter 5

�antum non-Gaussianity

In quantum optics, processes that are beyond the processes with the Hamiltonian
mostly quadratic in the annihilation and creation operators produce the nonlinearity.
It makes the Heisenberg equations nonlinear. A paramount example is emission of
light from two-level system [B6]. �e nonclassicality, which has been explored so
far, is not an appropriate property for recognition of the nonlinearity since squeezed
states, which are nonclassical, result from an interaction that is linear. Apparently,
a nonlinear Hamiltonian can produce a state with a non-Gaussian Wigner function
[65]. Such non-Gaussian character has been investigated broadly and even quan-
ti�ed in Ref. [66–68]. However, some mixtures of coherent states also possess the
non-Gaussian Wigner function [69]. For this substantial reason, this non-Gaussianity
concept has to be upgraded. An unambiguous recognition of the nonlinearity has to
refuse all stochastic mixtures of Gaussian states, i.e.

ρ 6=
∫
P (ξ, α)D(α)S(ξ)|0〉〈0|S†(ξ)D†(α)d2αd2ξ, (5.1)

where P (ξ, α) is a density probability function. �e introduced quantum property
(5.1) is called quantum non-Gaussianity. �e rejected states are coherently displaced
squeezed states (2.54), which can be obtained by linear dynamics in the Heisenberg
picture. �e squeezed states are the simplest examples of states that violate rules of
the classical coherence theory. �at is a reason why the squeezed states of light were
used historically in proof-of-principle experiments [56, 70–72]. �erefore, the quan-
tum non-Gaussianity also puts a new benchmark for surpassing these experiments.

According to the de�nition (5.1), negativity of the Wigner function reveals the
quantum non-Gaussianity. In cases of pure states, the negativity is even a su�cient
and necessary condition [65]. �us, all the Fock states except the vacuum exhibit the
negativity. �e negativity of the Wigner function has appeared as a crucial feature for
the quantum computing [73]. However, the photonic systems are o�en deteriorated
by losses and the losses above ��y percentages always make the negativity disap-
pear. �us, the negativity of the Wigner function is too challenging for many optical
experiments, especially in their early stage, and therefore recognition of the quantum
non-Gaussianity of states with the positive Wigner function is an intermediate step
for evaluation of the quantum states of light.

A criterion enabling such recognition imposes a constraint on the Wigner function
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with respect to the mean number of photon 〈n〉 [69, 74]. Such a criterion was inspired
by the criterion in Ref. [12], which will be discussed later. It is useful because the
losses cause the mean number of photons decreases. Absolute losses reduce all states
to the vacuum with a mean number of photons zero and the Wigner function in the
origin getsW (0, 0) = 1

2π
. If the losses do not absorb all photons, the a�enuated states

have 〈n〉 > 0. It was shown that all the mixtures of the Gaussian states obey [69, 74]

W (0, 0) ≥ 1

2π
e−2〈n〉(1+〈n〉). (5.2)

�e a�enuated Fock state η|1〉〈1|+ (1− η)|0〉〈0| violates the condition when η > 0,
and therefore the condition reveals its quantum non-Gaussianity for that state. Such
method could detect QNG states directly when photon-number resolving detectors
will be available. Otherwise, the homodyne tomography has to be used to obtain
W (0, 0). Without such direct detection, this method su�ers from the same limitations
as measurement of the g(2) discussed before. Another approach de�nes a combination
of four values of the Wigner function [75]

B = 2π
1∑
i=0

1∑
j=0

(−1)ijW (xi, pj). (5.3)

�e parameterB can reveal both the nonclassicality and the quantum non-Gaussianity.
In a case of the classical states, the Wigner function can be treated formally as a
function providing a correlation between two random variables a and b with values
between zero and one, i. e.

2πW (x, p) = 〈a(x)b(p)〉, (5.4)

and therefore the parameter B is restricted to

B = 〈a(x0)b(p0)〉+ 〈a(x0)b(p1)〉+ 〈a(x1)b(p0)〉 − 〈a(x1)b(p1)〉 ≤ 2, (5.5)

which resembles the CHSH inequality [76]. Only the nonclassical states violates the
condition (5.5). Although the Gaussian states can also break the condition the quan-
tum non-Gaussianity is reached when [75]

B >
8

39/8
. (5.6)

�is condition is useful when it is applied to the state η|2〉〈2|+ (1− η)|0〉〈0| because
it exposes the quantum non-Gaussianity when the condition (5.2) fails. �e quantum
non-Gaussianity can be also detected from an expectation value of an operator

O(ρ) = 〈e−cX2〉+ 〈e−cP 2〉, (5.7)

which can be acquired from the heterodyne measurement. �e mixtures of the Gaus-
sian states establish a boundary on the O(ρ) that can be surpassed by quantum non-
Gaussian states. Although the criterion does not reveal the quantum non-Gaussianity
of the Fock state one, it has appeared as useful for states yielded from some superpo-
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sition of coherent states and squeezed states [77].
A direct detection of the quantum non-Gaussianity utilizes measurement by a

photon-number-resolving detector [12]. �e criterion compares a response of the
detector on a single-photon with a response on multiphoton contribution. �e prob-
abilities P1 = 〈1|ρ|1〉 and P2+ = 1 − 〈0|ρ|0〉 − 〈1|ρ|1〉 are inserted into a linear
form

Fa(ρ) = P1 + aP2+ (5.8)

and a threshold function F (a) covering all mixtures of the Gaussian states is derived.
A criterion states

∃a : Fa(ρ) > F (a). (5.9)

�is approach uncover the quantum non-Gaussianity of the a�enuated Fock state
η|1〉〈1| + (1 − η)|0〉〈0| for η > 0 using photon-number-resolving detector instead
of the homodyne detection, which all the previous criteria [69, 75, 77] exploit for the
recognition. �e criterion was modi�ed for HBT layout [O6] and the derived thresh-
old was surpassed experimentally using heralding in SPDC [78], photon subtraction
in a squeezed vacuum state [79] or emission from quantum dots [80]. Also, robustness
of the quantum non-Gaussianity against losses was explored [O7]. �ese experiments
con�rmed that the directly measurable quantum non-Gaussianity is an appropriate
and stimulating feature for many realistic single-photon sources since it is more de-
manding than the nonclassicality but it is not as strict as the negativity of the Wigner
function. Moreover, the quantum non-Gaussianity of the single-photon states has
appeared as an indicating aspect for the security of the single-photon quantum key
distribution [81] and a necessary feature preserved in single photon-phonon-photon
transfer [82].

�e following step is disclosing the quantum non-Gaussianity of all the Fock
states. For the Fock state |2〉, the criterion in [12] fails when the state is a�enuated
already above 70% and recognition for higher Fock states is even more sensitive to
the losses. Since any Fock state is quantum non-Gaussian, the detection requires a
new criteria.

Experimental generation of states close to the Fock states is currently a challenge
for modern quantum technologies in optics. �e recent experiments [50, 83, 84] suc-
ceeded in generation of single-photon states even with high degree of indistinguishi-
bility. Although the negativity of the Wigner function was achieved for up to the Fock
state |3〉 [85, 86], experiments with a higher mean number of photons in a single-mode
exhibit only nonclassicality [87–89]. So far, the properties of a source approaching
these states can be only simulated by multiplexing single-photon states. Although
such states occupy many spatial or temporal modes, they share the photon distribu-
tion with the Fock states, and therefore they are a�ractive for �rst tests of quantum
non-Gaussianity on multiphoton light.

5.1 Hierarchy of criteria of quantum non-Gaussianity

�e procedure of deriving the criterion of the quantum non-Gaussianity in [12, O6]
can be applied to extended detection schemas. A possible platform comprises a multi-
channel detector that is constituted by a network of BSs guiding light towards N
SPADs as depicted in Fig. 5.1. �e detector responds to a state propagating through
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BS1
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BS3

BSN-1

SPAD1
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SPADN-1
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Figure 5.1: �antum non-Gaussian light is recognized in a multi-channel detector that splits
incoming light towards several spatial modes by an array of BSs. Each mode is measured by
a SPAD. If the detector contains N SPADs a criterion incorporating a probability of a success
event (a simultaneous click of N − 1 selected SPADs) and a probability of error event (all N
SPADs register a click) can be tested.

the network by a sequence of clicks of the SPADs. If this layout exploits n+1 SPADs,
a comparison of simultaneous clicks of n arbitrarily chosen SPADs and simultaneous
clicks of all n+1 SPADs enables the recognition of the quantum non-Gaussianity. �e
corresponding probabilities quantifying those events are called the success probabil-
ity Pn (n clicks) and the error probability Pn+1 (n + 1 clicks). �e denotation comes
from an expected response of the detector on the Fock state |n〉.

A state ρ exhibits a click statistics determined from a probability of the vacuum
contributing an a�enuated state ρ, which is given by

P0(τ) = Tr
[
(|0〉〈0| ⊗ 1) · U(τ)(ρ⊗ |0〉〈0|) · U †(τ)

]
(5.10)

where U(τ) is a unitary operation corresponding to a BS with transmission τ . �e
pure Gaussian states exhibit

P0(τ) = 2
e
−β

2τ
2

[
cos2 φ
µ(1/V )

+ sin2 φ
µ(V )

]
√
µ(V )µ(1/V )

, (5.11)

where [14]

βeiφ =
1 + V

2
√
V
α +

1− V
2
√
V
α∗,

µ(V ) = 2V + τ(1− V ) (5.12)

with β real and positive. �e parameter V is a minimal variance of the canonical
coordinate in time, i. e. V = e−2|ξ|. �e click statistics is expressed explicitly by a
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n= 1, 2, 3, 5,10

-4 -3 -2 -1 0
log10 Pn+1

-4

-3

-2

-1

0

log10 Pn

Figure 5.2: Hierarchy of criteria revealing quantum non-Gaussianity. �e solid lines represent
thresholds that have to be exceeded to achieve the quantum non-Gaussianity. �e colors
distinguish a particular de�nition of success and error probabilities. �e dashed lines depict
the approximate thresholds (5.23) that are appropriate for states with a low error probability.

formula

Pn = 1 +
n∑
k=0

(
n

k

)
(−1)kP0(k/N), (5.13)

whereN is a total number of SPADs in the layout. �e parametrization of the detector
response on Gaussian states allows for derivation of criteria refusing mixtures of these
states. �ey are yielded from optimizing a linear functional

Fa,n(ρ) = Pn + aPn+1. (5.14)

Because the optimum over a statistical mixture of Gaussian states is necessarily iden-
tical with a maximum over pure states, the optimum is searched over the minimal
quadrature in time V , the amplitude |α| and the angle φ parametrizing the formulas
(5.11) and (5.13). It appeared that the optimal states are squeezed perpendicularly to
the direction of the displacement amplitude, i. e. φ = 0. �e optimal parameters |α|
and V obey

∂|α|Pn∂V Pn+1 − ∂|α|Pn+1∂V Pn = 0. (5.15)

�is relation eliminates one of these two parameters. �e last parameter can be cho-
sen for binding the pair of probabilities Pn and Pn+1 in order to parameterize the
quantum non-Gaussian thresholds in the probabilities Pn and Pn+1. �e derived
thresholds have only numerical solutions, which can be simpli�ed in a limit of states
with a low probability of error. �e numerical solutions of the thresholds are pre-
sented in Fig. 5.2.

Let us focus on the limit closer. One can assume the probabilities of the success
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and the error are given approximately by

Pn ≈ rnt
n

Pn+1 ≈ rn+1t
n+1 + rn+2t

n+2, (5.16)

where t is very small and ri are some coe�cients. �e function (5.14) obtains

Fa(rn, rn+1, rn+2, t) = rnt
n − a(rn+1t

n+1 + rn+2t
n+2) (5.17)

and a local extreme of the function satis�es ∂tFa = 0, which leads to

t =
−a(1 + n)rn+1 +

√
a
[
a(1 + n)2r2

n+1 + 4n(2 + n)rnrn+2

]
2a(2 + n)rn+2

. (5.18)

�e discussed limit is relevant to a being very large. �e convergence of (5.18) de-
pends on behaving of the expression a(1 + n)2r2

n+1 + 4n(2 + n)rnrn+2. If ar2
n+1 �

rnrn+2 the approximate parameter t results in a function

F̃ (a) ≈ rn+1
n nn

(1 + n)n+1rnn+1

1

an
. (5.19)

However, the Gaussian states allow rn+1 ∝ t2, which entails Pn+1 ≈ rn+2t
n+2 and,

consequently, ar2
n+1 � rnrn+2. In this case, the approximate threshold function

yields

F (a) ≈ 2rn
2 + n

[
rn

(n+ 2)rn+2

]n/2
1

an/2
. (5.20)

Comparing F̃ (a) and F (a) in the limit of large a, determines the function (5.19) as
the threshold function covering all the mixtures of the Gaussian states in this limit.
Moreover, it gives rise to a constraint on the approximately optimal Gaussian states
since they have the expansion (5.16) with rn+1t � rn+2. According to (2.58), se�ing
|α|2 = xt and V = 1− t leads to the constraint Hn+1(x) = 0. Finally, excluding the
parameter a from the condition ∃a : Pn + aPn+1 > F (a) leads to

P n+2
n > H4

n(x)

[
Pn+1

2(n+ 1)3

]n
. (5.21)

where x obtains the greatest value among those satisfyingHn+1(x) = 0. �e accuracy
of the approximation can increase when one assumes

Pn ≈ rnt
n + rn+1t

n+1

Pn+1 ≈ rn+2t
n+2 + rn+3t

n+3. (5.22)

Without mentioning details of the calculation, let us state that the approximate thresh-
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olds are given by

Pn+1 ≈
tn+2

3× 27+2n(1 + n)n
H2
n(x)

×
[
xt+ 24(1 + n)2t+ 3(1 + n)(16− xt+ 8t)

]
Pn ≈

tn

21+2n(1 + n)n
H2
n(x)(2 + nt) (5.23)

with Hn+1(x) = 0 as well. Inequalities (5.21) represent the most rough approxima-
tions, which have to be used carefully, because their right sides are below the exact
thresholds and therefore they can lead to a false positive. On the other hand, they il-
lustrate sensitivity of the quantum non-Gaussianity to imperfections in realistic states
as will be described in the following. Approximate relations in (5.23) are more accu-
rate, and therefore they can be used to a broader set of states. �eir convergence to
the true thresholds is depicted in Fig. 5.2.

�e thresholds of the quantum non-Gaussianity preserve its form when they cover
two independent modes a and b of Gaussian states with a form

Sa(ξ1)Sb(ξ2)Da(α1)Db(α2)|0〉a|0〉b (5.24)

and their statistical mixtures. A Monte-Carlo simulation veri�ed this conjecture.
Since the functions Fa,n are linear in a state, the optimal state is necessarily a pure
state even in a case of two modes. �erefore, the simulation was carried out over six
parameters identifying the state (5.24). Also, the simulation con�rm that the thresh-
olds cover the Gaussian states occupying three modes. Fig. 5.4 summarizes the results
of the simulations for criteria using up to ten SPADs to measure the probability of the
error.

�e derived criteria can be applied for revealing the quantum non-Gaussianity of
multiphoton light with a density matrix approaching

ρη,M = [η|1〉〈1|+ (1− η)|0〉〈0|]⊗M , (5.25)

where η is a product of emission and detection e�ciency and M denotes a number
of emi�ers. �e state ρη,M shares the same distribution of photons with a�enuated
Fock states, and therefore the analysis of the quantum non-Gaussianity of the Fock
states and the state ρη,M is identical for the used detection. Since the states ρη,M are
restricted sharply in a number of photons, their quantum non-Gaussianity is always
observable by a criterion where a number of SPADs measuring the success events
equals to a number of emi�ing single-photon states. When a number of SPADs giving
success is lower than a number of single-photon emi�ers, the criterion imposes a
condition on the parameter η as shown in Fig. 5.3. �erefore, the observation of the
quantum non-Gaussianity requires a complex detector that reveals the truncation of
photon statistics.

Considering the background noise leads to a more realistic model where a state
obtains a form ρη,M⊗ρn̄ with ρn̄ representing noise having Poissonian distribution of
photons with a mean number of photons n̄. When the background noise deteriorates
the state (5.25), the quantum non-Gaussianity can be lost even if the detector contains
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Figure 5.3: Results of a Monte-Carlo simulation. It proves the thresholds of the quantum
non-Gaussianity cover even two modes Gaussian states with a form (5.24) and three modes
Gaussian states. �e ��y a�empts closest to the thresholds are represented by blue (single-
mode), red (two modes) and yellow (three modes) points. �e total number of cycles in the
simulation was 105 (a single-mode), 106 (two modes) and 107 (three modes). �e gray points
are yielded from ��y randomly generated single-mode Gaussian states. �e black lines depict
the thresholds.
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Figure 5.4: �e table states minimal e�ciencies η in an ideal state ρη,M required for the de-
tection of quantum non-Gaussianity by the criterion with the success probability quantifying
clicks of n SPADs.

many SPADs. An amount of the noise decides whether the quantum non-Gaussianity
is detectable in this model at all. �e Fig. 5.5 depicts tolerance of the quantum non-
Gaussianity on the noise. �e condition is ge�ing stricter whenM grows. In a regime
of states with strongly suppressed noise with n̄ � 1, the quantum non-Gaussianity
can be observed when

η >
H

2/M
M (x)
M
√
M !

√
Mn̄

2(M + 1)
, (5.26)

where HM(x) is the same as in relation (5.23). �e approximate condition (5.21) is
used for the inequality in (5.26).

�e background noise also a�ects that the quantum non-Gaussianity becomes
sensitive to optical losses. Although the ideal states without any noise tolerate ar-
bitrary losses, the presence of even a small amount of noise results in a sensitiv-
ity of quantum non-Gaussianity to a�enuation. In the approximation of states with
strongly suppressed noise, the quantum non-Gaussianity tolerates losses with

T >
Mn̄H

4/M
N (x)

2η2(M + 1)(M !)2/M
. (5.27)

It shows, the robustness of the quantum non-Gaussianity is inversely proportional to
the mean number of photons of the noise. �is methodology substantially improves
the robustness of the quantum non-Gaussianity to losses in comparison with utilizing
the negativity of the Wigner function.
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Figure 5.5: �e model state ρη,M ⊗ ρn̄ with parameters above the solid lines are recognized
as quantum non-Gaussian according to the criterion where a number of SPADs measuring
success events agrees with the number of emi�ers M . �e colors di�erentiate the number of
emi�ers. �e dashed lines show convergence of conditions in (5.26) to the true thresholds.

5.2 Experimental test of the multiphoton quantum non-Gaussianity

�e quantum non-Gaussianity was recognized experimentally using spontaneous para-
metric down-conversion in a periodically poled KTP crystal. �e multiphoton light
was simulated by taking n successive time windows, where the trigger detector reg-
istered a signal. �erefore, the light with suitable photon statistics was produced by
multiplexing of temporal modes. �e quantum non-Gaussianity was measured only
when the source operated in a regime with low gain, which suppressed heralding of
more than one photon in a single temporal mode. �e challenge was to �nd a trade-
o� between su�ciently good statistics of the heralded light and time necessary to
acquire experimental data.

�e detection was performed by a network of polarizing BSs and SPADs. Because
the SPADs had di�erent quantum e�ciencies, the network was equipped with half-
wave plates that were adjusted such that the light was split among each SPAD equally.
Such a detector is characterized only by an overall quantum e�ciency. Importantly,
the e�ciency brings only additional optical losses, which cannot produce false quan-
tum non-Gaussianity. �e total number of SPADs in the realized detector was ten.
It rendered to test the criteria from functional (5.14) up to n = 9. �e criteria ap-
plied on the state yielded from the temporal mixing of the heralded states revealed
the quantum non-Gaussianity of a state with a mean number of photons up to �ve
despite detection losses.

Relevant information associated with the quantum non-Gaussianity is its robust-
ness against optical losses. �e table in Fig. 5.6 summarizes which criteria revealed
the quantum non-Gaussianity of merged heralded states together with predicted ro-
bustness against losses in decibels. It demonstrates that the property is resistant the
most when the number of SPADs measuring success events agrees with a number
of merged states. If it is higher, the noise contributes to the measured events dom-
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Figure 5.6: �e table presents the robustness of the quantum non-Gaussianity against optical
losses when the hierarchy of criteria is exploited [T4]. �e horizontal axis quanti�es how
many heralded states were merged and the vertical one shows the employed criterion. �e
solid boxes correspond to cases when the quantum non-Gaussianity was recognized. �e
numbers in these boxes stand for maximal a�enuation in decibels that preserves the quan-
tum non-Gaussianity. �e orange stripes below the diagonal identify inconclusive cases when
error bars cross the thresholds. �e gray region stands for situations when no data was ac-
quired. �e white region above the diagonal represents combinations when the criteria fail
in the recognition.

inantly. �ese cases are inconclusive mostly because the experimental uncertainty
did not allow determination if the measured states surpassed the thresholds. If the
number of SPADs is lower than the number of merged states, the tests are not passed
mainly due to optical losses.

5.3 Summary and outlook

A detection method for the quantum non-Gaussianity [12] is extended to reveal the
property on multiphoton light. �e hierarchy of conditions is derived for a multi-
channel detector, where the incoming light is split equally among many SPADs. Ob-
servation of that property on ideal states without the noise is a�ained only by a suf-
�ciently complex network of BSs. �e quantum non-Gaussianity of more realistic
states deteriorated by the background noise can be lost. �e criteria impose stricter
conditions than the nonclassicality does, and therefore the quantum non-Gaussianity
can be exploited for a tighter identi�cation of quantum features, which light can pos-
sess. Simultaneously, the detection is more tolerant of losses than the negativity of
the Wigner function. �e theory was supported by an experimental test where light
with a mean number of photons up to �ve achieved the quantum non-Gaussianity. It
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con�rms the quantum non-Gaussianity represents a stimulating and feasible feature
for sources of the quantum light radiated from the transfer of the energy in the ma�er
involving molecules [90] or solid-state sources [50, 91]. �is quantum property can
be also applied to a diagnosis of the Fock states prepared in superconducting circuits
[92] or in the motional degree of freedom of ions captured in the Paul trap [93].

Further research aims at an exploration of the quantum non-Gaussianity mani-
fested in two modes of light and investigation of coincidences produced by quantum
non-Gaussian states.
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Chapter 6

Genuine n-photon quantum
non-Gaussianity

Since the Fock states represent building stones of the quantum optics, their gener-
ation and recognition are a�ractive. Each Fock state exhibits di�erent topology of
the negative regions in the Wigner function. While the negativity of the Fock state
|1〉 forms a simple circle, the Fock state |2〉 manifests a ring. �e higher Fock states
show several concentric annuli [94]. �e squeezing and displacement operations can
deform or shi� these negativities but they cannot change the topology. However,
mixing squeezed and displaced states might make di�erent topologies. It gives rise
to a question if a higher topology cannot be produced by mixing states with a lower
topology of the negative regions [B2]. Although the answer is a subject to further in-
vestigation, it stimulates a formulation of a hierarchy of quantum a�ributes that are
possessed by individual Fock states. �e quantum a�ributes can be labeled by an or-
der nmeaning that the a�ribute is not achieved from de�nition by any superposition
of the Fock states lower than |n〉. Simultaneously, the impacts of the squeezing or
displacement operators do not increase the ordered quantum a�ribute of any state.
Besides the classi�cation of states showing negativity of the Wigner function, the
hierarchy can be extended to sort even states a�ected by a�enuation that still mani-
fest the quantum non-Gaussianity. A sequence of quantum features that meets these
requirements is called genuine n-photon quantum non-Gaussianity and it has never
been discussed in the literature before.

One can believe naively that the criteria of the quantum non-Gaussianity from
the previous Chapter constitute the hierarchy. Indeed, these criteria impose condi-
tions that sort somehow the ideal states ρη,M without the noise. However, the crite-
ria always recognize that a state is only not a mixture of Gaussians states, without
any further re�nement. Criteria recognizing the genuine n-photon quantum non-
Gaussianity are derived from optimizing over a broader set of states. �erefore, they
impose stricter conditions on the truncation of photon statistics of the multiphoton
light. It can become an important tool for an analysis of the future sources of quantum
multiphoton light.
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|4⟩

|3⟩

|2⟩

|1⟩

|0⟩

Figure 6.1: A scheme demonstrating the genuine n-photon quantum non-Gaussianity. �e
white area stands for the mixtures of Gaussian states. All color regions correspond to states
beyond those mixtures. Di�erent colors represent a hierarchy of new quantum properties,
which classify the quantum non-Gaussian states with negative (opaque region) and even
positive Wigner function. Each property is inherent to a respective Fock state and cannot
be achieved by the lower Fock states and their superposition. �e genuine quantum non-
Gaussianity of ideal Fock states exhibit absolute robustness against losses, but realistic states
can lose the a�ribute when they are a�enuated. �e dashed lines depict an impact of a�enu-
ation on the ideal Fock states (green points) and realistic states (blue points).

6.1 Recognition of the genuine n-photon quantum non-Gaussianity

�e genuine n-photon quantum non-Gaussianity of a pure state |ψ〉 is identi�ed with
inequality

|ψ〉 6= S(ξ)D(α)|ψ̃n−1〉, (6.1)

where the core state |ψ̃n−1〉 is any superposition of the Fock states |0〉,…, |n− 1〉. �e
Gaussian transformation S(ξ)D(α) changes a shape of the Wigner function, breaks a
sharp truncation in distribution of photons of the state |ψ̃n−1〉 but cannot produce the
core state |ψ̃n〉 associated with the following order. �e de�nition can be extended to
mixtures of states. A state with a density matrix ρ possesses the genuine n-photon
quantum non-Gaussianity if ρ is not identical with any statistical mixture of the right
side of inequality (6.1). �e lowest order a�ribute is identical with the quantum non-
Gaussianity, since it refuses all squeezed coherent states. �e second order a�ribute
means that a state is beyond any mixtures of state S(ξ)D(α)(c1|1〉+ c0|0〉 with com-
plex c0 and c1 satisfying |c0|2 + |c1|2 = 1. A scheme illustrating this new hierarchy is
depicted in Fig. 6.1.

Detection of the genuine n-photon quantum non-Gaussianity utilizes the same
layout that is exploited for the recognition of the quantum non-Gaussianity of the
multiphoton light. Also, the criteria consider success and error probabilities that are
uniform with the probabilities used in that hierarchy of conditions, i. e. Pn refers to
the probability of simultaneous clicks of n SPADs and Pn+1 denotes the probability
of clicks of n + 1 SPADs. However, the thresholds di�er since they are yielded from
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optimizing of the linear functional

Fa,n(ρ) = Pn + aPn+1 (6.2)

over mixtures of the states S(ξ)D(α)|ψ̃n−1〉. Solving the optimizing is more di�cult
technically because it has to be done over the core states |ψ̃n−1〉 and squeezing and
displacement operations. �e core state |ψ̃n−1〉 =

∑n−1
k=0 ck|k〉 is described formally

by n complex coe�cients, which hold normalization. Since a global phase does not
di�erentiate the quantum states, the state |ψ̃n−1〉 =

∑n−1
k=0 ck|k〉 is determined by

2(n− 2) parameters. Together with four more parameters characterizing the squeez-
ing and the displacement operations, the right side in inequality (6.1) is determined
by 2(n + 1) parameters over which the optimizing of function (6.2) was carried out.
It was assumed that the optimal squeezing ξ and displacement α are real and also the
optimal core state has a form |ψ̃n−1〉 = c|n− 1〉+

√
1− c2|n− 2〉 with c real. �ese

premises were veri�ed by a Monte-Carlo simulation. �e used algorithm eliminates
successively all the parameters characterizing the optimal state besides the minimal
variance of the quadrature in time V , which was le� as a parameter determining a
curve [Pn(V ), Pn+1(V )] corresponding to the threshold in the employed probabilities
of success and error. �e algorithm exploits a relation that is holded by the optimal
squeezing and displacement parameters

∂V Pn∂αPn+1 − ∂V Pn+1∂αPn = 0. (6.3)

Similar identities can be got for the coe�cient c

∂cPn∂αPn+1 − ∂cPn+1∂αPn = 0. (6.4)

�e algorithm converges to the optimal state as follows, it initially sets |ψ̃n−1〉 =
|n − 1〉 and generates the optimal α for a �xed V through relation (6.3). For those
α and V it applies the identity (6.4) to acquire a corrected state |ψ̃n−1〉. With that
state, it solves equation (6.3) again. �is can be repeated several times. It reduces all
the parameters to the remaining V , which parametrizes the threshold in the detected
probabilities. When the optimal squeezing is very small, i. e. 1− V � 1, the optimal
parameters gain c ≈ 1 and α2 ≈ 2(1 − V ) + (3 + 2n + n2)(1 − V )2/3 and the
approximate thresholds read as

Pn+1 ≈
nn!(2 + n)2

55296(n+ 1)n−1
t3
[
384 + t(896 + 307n+ 99n2)

]
Pn ≈

nn!

12(n+ 1)n
t
[
6 + t(6 + 12n+ n2)

]
, (6.5)

where t parametrizes the thresholds. Fig. 6.2 depicts the exactly resolved thresholds
for the second and third order and compare them with an approximate solution (6.5).
�e �gure also shows results of the Monte-Carlo simulation that veri�es the thresh-
olds. It was performed by generating randomly squeezing, displacement and the core
state |ψ̃n−1〉 in 106 (2nd order) and 108 (3rd order) cycles. �e intervals where the pa-
rameters were randomly generated were set such that the respective simulated prob-
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Figure 6.2: �reshold of the genuine n-photon quantum non-Gaussianity up to order three
is compared with experimentally achieved data and results of a Monte-Carlo simulation. �e
states surpassing the criteria are in the orange regions. �e solid black lines in the boundary of
the orange regions are thresholds derived exactly, the dashed black lines are the approximate
solutions (6.5). �e gray points correspond to ��y points that were generated in the Monte-
Carlo simulation closest to the threshold. Brown points represent the measured states. �e
sequences of the brown points in the vertical direction demonstrate an impact of background
noise on the measured states. �e noise exhibits Poissonian statistics with the mean number
of photons n̄ = 0, 4 × 10−5, 2 × 10−4, 10−3 in the detection window. �e dashed blue lines
predict a movement of the states without deterioration by the background noise when they
are a�ected by a�enuation. �e theoretical robustness is shown above the blue dashed lines.

abilities �ll the region where the experimental data was acquired. Fig. 6.2 presents
thresholds for genuine four and �ve-photon quantum non-Gaussianity together with
approximate thresholds (6.5) as well. Again, both the thresholds were veri�ed by a
Monte-Carlo simulation with 108 cycles. �e Figs. 6.2 and 6.3 show the accuracy of
the approximation is dropping for higher n.

�e genuine n-photon quantum non-Gaussianity simulated by multi-mode states
of light requires a theoretical con�rmation that the thresholds remain the same when
they are derived from optimizing over multi-mode states. A multi-mode core state
|ψ̃n−1〉 obeys a condition

〈m1| ⊗ ...⊗ 〈mM |ψ̃n−1〉 6= 0 (6.6)

only if
∑M

i=1mi < n, where 〈mi| is the Fock state occupying the ith mode andM de-
notes a number of considered modes. Whether a core state in a single-mode case has
a form |ψ̃n−1〉 =

∑n−1
k=0 ck|k〉, the core states occupying two modes are expressed as

|ψ̃n−1〉 =
∑n−1

k=0

∑n−k−1
l=0 Ck,l|k〉|l〉. �e higher photon contribution can be produced
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Figure 6.3: �resholds for genuine four and �ve-photon quantum non-Gaussianity. States
possessing those quantum a�ributes are in the orange regions. �e blue points represent ��y
results of a Monte-Carlo simulation that were generated closest to the thresholds.

as a consequence of the squeezing or displacement acting on the core state. Let Si(ξi)
andDi(αi) denote squeezing and displacement operators acting on the ith mode with
ξi and αi being the parameters determning the operators. A pure state |ψ〉 exhibits
the genuine n-photon quantum non-Gaussianity when

|ψ〉 6= SM(ξ)DM(α)|ψ̃n−1〉, (6.7)

where ξ, α are vectors ξ = (ξ1, ..., ξM), α = (α1, ..., αM) and SM(ξ), DM(α) read

SM(ξ) = ΠM
i=1 ⊗ Si(ξi)

DM(α) = ΠM
i=1 ⊗Di(αi). (6.8)

�e genuine n-photon quantum non-Gaussianity of a general state refuses also all
statistical mixtures of the right side of inequality (6.7). Again, a Monte-Carlo simula-
tion certi�cated that these states do not exceed the thresholds. Fig. 6.4 demonstrates
the thresholds of the genuine two and three-photon quantum non-Gaussianity cover
all the states that were generated in the simulation.

An applicability of the criteria can be analysed on the considered model of multi-
photon light ρη,M ⊗ ρn̄, where ρη,M is expressed in (5.25) and ρn̄ has the Poissonian
photon distribution with the mean number of photons n̄. Assuming, the state is de-
teriorated by very low noise with n̄� η2M , where M is a number of emi�ers in the
ensemble, the genuine M -photon quantum non-Gausssianity requires

ηM >
12M√

M3 + 5M2 + 8M + 4

√
n̄. (6.9)

Since the inequality compares M power of η with square root of n̄, achieving the
genuine M -photon quantum non-Gaussianity is ge�ing very sensitive to noise with
growing number of emi�ers M .

�e experimental feasibility of achieving the genuine n-photon quantum non-
Gaussianity was investigated. �e source of quantum light exploited the spontaneous
parametric down-conversion process in a crystal. �e procedure for the generation
of the multiphoton light was identical with the experiment where the quantum non-
Gaussianity of multiphoton light was detected. �e genuine n-photon quantum non-
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Figure 6.4: Results of a Monte-Carlo simulation con�rming that two-mode states in the right
side of inequality (5.24) do not surpass the thresholds of genuine two and three-photon quan-
tum non-Gaussianity. �e blue points correspond to ��y points closest to the threshold of
genuine two-photon quantum non-Gaussianity and the green points represent the best ��y
a�empts to the threshold of genuine three-photon quantum non-Gaussianity. A number of
generated states was 108 in both cases.

Gaussianity was observed on light where up to three heralded states were merged
together. Fig. 6.2 demonstrates the experimental results. �e data was deteriorated
by background noise arti�cially to explore the impact of the noise. �e robustness
against losses was also estimated theoretically to analyse the feasibility of the gen-
uine n-photon quantum non-Gaussianity. Whereas the genuine one-photon quantum
non-Gaussianity survives a�enuation 36 dB, the genuine three-photon quantum non-
Gaussianity is lost already for 0.6 dB.

Because the strictness of the criteria on the unwanted heralding of two and more
photons increases with the order in the hierarchy, ful�lling these criteria requires to
decrease the gain of the parametric process and a time window for the coincidence
events so that the quality of the heralded single-photon state is high. �e low gain
means that the heralding events occur rarely, which prolongs the experimental time.
When the gain is extremely low, deterioration of the click statistics by the dark counts
of the detector becomes relevant. �e limiting factors for detection of the following
genuine four-photon quantum non-Gaussianity appeared both the dark counts of the
detector and the measurement time, which would take several months.

6.2 Summary and outlook

A new hierarchy of quantum a�ributes called genuine n-photon quantum non - Gaus-
sianity was introduced and exploited for classi�cation of multiphoton light that is
quantum non-Gaussian. �e hierarchy is based on an impossibility to produce a
higher genuine n-photon quantum non-Gaussian feature only by applying Gaussian
operations on states possessing lower quantum property. �e hierarchy is directly
applied to a distinction of individual Fock states. �e genuine n-photon quantum
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non-Gaussianity can be recognized by criteria giving only su�cient conditions. Im-
portantly, the criteria can be applied successfully even to states with positive Wigner
function. �e genuine n-photon quantum non-Gaussian features of the ideal Fock
states exhibit absolute robustness against a�enuation. However, realistic states lost
these quantum properties when they are a�ected by losses. �e experimental feasibil-
ity of the hierarchy was manifested by an experiment where multiplexing heralded
single-photon states simulated a photon statistics of the Fock states. �is experi-
mental test revealed the genuine n-photon quantum non-Gaussianity up to the order
three. Promising platforms where the quantum n-photon quantum non-Gaussianity
can be manifested involve the quantum dots in nanophotonics structures [50, 91],
molecules in an antenna [90], superconducting circuits [92] or motional excitation of
ions in the Paul trap [93].
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Conclusion

In this thesis, nonclassicality and quantum non-Gaussianity were investigated with
focus on their manifestation by multiphoton states of the light. Loss-tolerant criteria
revealing these two properties were derived for a direct detection technique, using the
methodology introduced in [12]. Firstly, a criterion revealing the nonclassicality in
the HBT layout was acquired. �e criterion was applied to a relevant model allowing
for a cluster of single-photon emi�ers radiating light under background noise with
the Poissonian statistics. �e criterion always recognizes the nonclassicality of the
state regardless of a number of single-photon emi�ers or an amount of the Poissonian
background noise deteriorating the source. �e only limiting factor is the experimen-
tal time needed for su�cient suppression of error bars, which grows with decreasing
the collection and detection e�ciency. �us, the nonclassicality represents a test that
is feasible for a broad group of experimental platforms.

Formally, the nonclassical criterion represents a condition imposed on measur-
able quantities. Two such quantities faithfully obatinable from HBT measurement
setup were analysed in order to characterize two di�erent aspects of a source radi-
ating the nonclassical light. Speci�cally, we used the α parameter derived ab initio,
which converges to the second-order correlation function for a weak source of light.
In this approximation, the α parameter is independent of the optical losses. Con-
trary, a growing number of single-photon emi�ers radiating the nonclassical light
and increasing contributions of the Poissonian background noise increase the α pa-
rameter, and therefore both changes in�uence the α parameter similarly. �erefore,
we introduced another parameter d, which is independent of the Poissonian back-
ground noise. Although it drops with the optical losses, it grows with a number of
single-photon emi�ers but it decreases with the background Poissonian noise. Due to
the di�erent behaving of those two parameters, their combination can be exploited
for advanced evaluation of the nonclassical light. �e nonclassicality of light radi-
ated from a source consisting of 275 ions, which were captured in the Paul trap, was
demonstrated experimentally.

Layouts, where the nonclassicality is examined, were extended from the HBT lay-
out to advanced networks. It enables a recognition of di�erent nonclassical aspects
that the light can possess. Firstly, we proposed a test of the nonclassicality that man-
ifests the Mach-Zehnder interferometer. It explores the in�uence of the �rst-order
coherence on the nonclassical aspects. It was analysed for a model of a single-photon
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state radiating under the background noise with the Poissonian distribution of pho-
tons. �e model manifests the nonclassicality regardless of the noise only when the
state exhibits ideal �rst-order coherence. In all other cases, the criterion imposes a
condition on the state. Some states do not pass the criterion due to contributions of
the background noise or low e�ciency of radiation of the single-photon state. �e
condition can be modi�ed by the transmissions of the BSs employed in the interfer-
ometer and set arbitrarily strict or lenient demands on the state. A similar analysis
was carried out for linear optical layouts where two replicas of the considered states
propagate. In these schemes, the nonclassical manifestation also depends on the in-
distinguishability of the propagating states. We proposed such a layout where the
nonclassical condition becomes strict or lenient arbitrarily according to a se�ing of
the layout. �is behaving is inherent to both distinguishable and indistinguishable
replicas of a considered state. �e nonclassical manifestation in both interfering lay-
outs forms a hierarchy of conditions that enables operational comparison of imperfect
single-photon states according to their ability to pass these tests.

Further, the quantum non-Gaussianity of the multiphoton light was explored on
a network spli�ing light among many spatial modes. A sequence of conditions rec-
ognizing this quantum property was derived. �ey were exploited for revealing the
quantum non-Gaussianity of the light emi�ed from an ensemble of single-photon
emi�ers and a�ected by the Poissonian background noise. It was proved that any
number of ideal single-photon emi�ers that the noise does not deteriorate exhibit
the quantum non-Gaussianity if they are split among more single-photon detectors
than is the number of the emi�ers. When a number of the detectors is lower, the
criteria impose a condition on the e�ciency of the emission from individual emi�ers.
An imperfect source deteriorated with the background noise exhibits the quantum
non-Gaussianity only when the noise is suppressed below a threshold determined
from the criteria. Another imperfection a�ecting the realistic sources are losses. �e
quantum non-Gaussianity appeared as a property that is reasonably sensitive to the
losses without a fundamental limit, which the negativity of Wigner function has. �e
robustness of the quantum non-Gaussianity against the losses is ge�ing lower when
the contributions of the background noise are growing. All these conclusions indi-
cate, the quantum non-Gaussianity is a more stimulating quantum property for state
preparation and detection than the nonclassicality measured in the HBT layout. It
represents an appropriate test when observation of the nonclassicality is too easy but
the negativity of the Wigner function cannot be achieved due to the losses. �e feasi-
bility of the quantum non-Gaussianity for realistic states was veri�ed by measuring
the property on a state produced by multiplexing up to nine heralded single-photon
states.

�e quantum non-Gaussianity was utilized for discrimination of quantum fea-
tures that only some Fock states exhibit. �ese features establish an ordered hierar-
chy called genuine n-photon quantum non-Gaussianity, where n denotes the lowest
Fock state that possesses the quantum property. Criteria recognizing the genuine n-
photon quantum non-Gaussianity were derived and achieved experimentally up to or-
der three corresponding to three photons. �e photon statistics of the Fock states was
simulated by multiplexing heralded states radiated from the spontaneous parametric
down-conversion process. �e limit was therefore not probability of success but truly
statistical features of generated states. We predicted theoretically and demonstrated
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experimentally that this challenging quantum features of multiphoton light tolerate
only small but non-zero noise contribution and realistic optical losses.

In summary, the thesis provides a derivation of the criteria of the nonclassicality
and the quantum non-Gaussianity. �ese criteria are analysed with respect to cur-
rently developing sources of quantum light. �ese two properties appeared as useful
for a diagnosis and comparison of the quantum states of the light and, simultaneously,
they stimulate the current progress in the quantum technologies. Experiments sup-
ported many of the theoretical proposals and proved the feasibility of these analyses.

Research of these quantum aspects continues in collaboration with Radim Filip,
Luca Innocenti and Jitendra Verma. Currently, we are investigating interference ef-
fects occurring on a detector and their impacts on the nonclassical aspects. Such
e�ects were explored concerning a�ecting the correlation functions [95] without a
deeper discussion about the nonclassical behaving. Simultaneously, criteria of non-
classicality involving triplets of measured probabilities are surveyed. �ey extend
criteria derived in Ref. [47]. Further, the quantum non-Gaussianity of states occupy-
ing two distinguishable modes is being explored. �e aim is to recognize quantum
non-Gaussian correlation between these two modes, which are responsible for pho-
ton coincidences. Finally, the genuine n-photon quantum non-Gaussianity has been
experimentally recognized in the motional states of trapped ions. We are currently
investigating di�erent criteria that are appropriate for this platform.

Future targets follow the path of exploring both the nonclassicality and the quan-
tum non-Gaussianity. Firstly, extended nonclassical criteria that include more error
events are going to be investigated. Since these criteria incorporate more parameters,
they will be able to recognize the nonclassicality for a broader set of states. Another
ongoing research of the quantum non-Gaussianity aims at recognition of this quan-
tum feature on light emi�ed from the cavity where the cavity mediates an interaction
between a quantum dot or an atom. Depending on the parameters of the interaction,
one can analyse bad cavity regime exploited commonly for e�cient generation of the
single-photon states [96], strong coupling regime leading to non-trivial distribution
of photons inside and outside the cavity or other regimes beyond these two scenarios.
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Shrnutı́ v Českém jazyce

Tato dizertačnı́ práce se zabývá nástroji umožňujı́cı́mi rozeznat neklasičnost a kvan-
tovou ne-Gaussovost světla. Tyto dvě kvantové vlastnosti se projevujı́ u řady důležitých
kvantových stavů světla, které jsou klı́čové pro řadu aplikacı́ kvantové fotoniky a
hrajı́ tedy stimulujı́cı́ roli pro modernı́ kvantové technologie. V práci jsou prezen-
tována kritéria, která odhalujı́ jak neklasičnost, tak kvantovou ne-Gaussovost světla
obsahujı́cı́ho mnoho fotonů, a to ve veličinách, které jsou přı́mo měřitelné.

Dizertačnı́ práce začı́ná stručným úvodem do kvantové optiky, kde jsou popsány
pojmy a postupy klı́čové pro text práce. Následujı́ kapitoly pojednávajı́cı́ o samotném
vědeckém výzkumu. Tato část práce začı́ná odvozenı́m kritéria neklasičnosti pro de-
tekčnı́ setup, kde dělič směřuje světlo ke dvěma lavinovým foto-diodám. Toto schéma
umožňuje měřit g(2) funkci pouze za aproximativnı́ch předpokladů, které fotonové
světlo majı́cı́ vı́ce fotonů nesplňuje. Pro věrohodné odvozenı́ kritéria neklasičnosti
je potřeba uvažovat pouze pravděpodobnosti měřených událostı́, do kterých patřı́
klik jedné lavinové foto-diody a klik dvou lavinových foto-diod. Pro alternativnı́
popis měřenı́ jsme uvažovali pravděpodobnosti událostı́, kdy detektory neklikly. Tyto
dvě charakteristiky umožnily formulovat dva parametry, které udávaly podmı́nku
neklasičnosti. Výhoda zavedenı́ dvou parametrů byla, že každý z těchto parametrů
jiným způsobem charakterizuje změny, které mohou nastat ve zdroji neklasického
světla. V přı́padě pevnolátkových zdrojů je světlo vyzařováno ze souboru emitorů,
kde každý emitor může vyzářit pouze jeden foton. Zavedené kritérium umožňuje
rozpoznat neklasičnost tohoto zdroje pro libovolný počet emitorů i v přı́padě, kdy
je světlo znehodnoceno Poissonovským šumem či optickými ztrátami. Jediný as-
pekt, který může zabránit věrohodné detekci neklasičnosti, zůstává nejistota měřenı́
způsobená měřenı́m na konečném ensemblu dat. Tyto teoretické předpovědi byly
experimentálně ověřeny. Zdroj světla byl tvořen ionty chycenými v Paulově pasti,
kde stovky iontů zformovaly krystal. Po excitaci laserem ionty vyzářili prokazatelně
neklasické světlo.

Neklasičnost je kvantová vlastnost, kterou nelze oddělit od detekce. Proto se může
neklasičnost na jiných detekčnı́ch schématech projevovat jinak, což je předmětem
následujı́cı́ kapitoly. Schéma může být obecný lineárnı́ optický obvod, kde vstupnı́
stavy vzájemně interferujı́ na děličı́ch a jsou následně detekovány pomocı́ lavinových
foto-diod. Pro ukázku toho, jak se neklasičnost realistických jedno-fotonových stavů
projevuje v závislosti na detekci, byl analyzován Mach-Zehnderův interferometer a
dalšı́ dvě schémata, kde dvě kopie jedno-fotonových stavů interferujı́. Oproti předchozı́
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situaci, tato nová kritéria dávajı́ podmı́nku na množstvı́ šumu. Tato podmı́nka lze
měnit nastavenı́m parametrů v detekčnı́m schématu. Pokud se v závislosti na těchto
parametrech stane libovolně náročnou či libovolně tolerantnı́, přı́slušná kritéria tvořı́
hierarchii, která umožňuje operacionalisticky porovnat dva realistické jedno-fotonové
stavy.

Dalšı́ kapitoly se zabývajı́ samotnou kvantovou ne-Gaussovostı́. Kvantová ne-
Gaussovost představuje stěžejnı́ kvantovou vlastnost, která vylučuje nejen klasické
stavy, ale i všechny směsi Gaussovských stavů, kam patři i stlačené stavy světla. V
práci byla odvozena kritéria rozpoznávajı́cı́ kvantovou ne-Gaussovost světla s velkým
střednı́m počtem fotonů i pro stavy s pozitivnı́ Wignerovou funkcı́. Kritéria for-
mulujı́ podmı́nky na odezvu detektoru tvořeného několika lavinovými foto-diodami.
Pro stavy blı́zké Fockovému stavu |n〉 lze události, kdy klikne n lavinových foto-
diod chápat jako úspěch, a naopak události, kdy klikne n + 1 lavinových foto-diod,
interpretovat jako chybu. Kritéria udávajı́ podmı́nku, jak moc je potřeba potlačit
pravděpodobnost chyby, aby stav světla byl kvantově ne-Gaussovský. Tato kritéria
je možné uplatnit na stavy blı́zké Fockovým stavům, které jsou ale znehodnoceny
šumem pozadı́ i optickými ztrátami. Tyto vlastnosti činı́ zavedená kritéria vhodnými
kandidáty pro evaluaci kvantové ne-Gaussovosti realistických stavů světla tvořeného
vı́ce fotony, což bylo prověřeno experimentálně.

Koncept kvantové ne-Gaussovosti byl rozšı́řen na n-fotonovou kvantovou ne-
Gaussovost. Tı́m se zavedla hierarchie kvantových vlastnostı́ s řádem n, které určujı́,
kdy přı́pravu stavů blı́zkých Fockovému stavu |n〉 nelze chápat jako působenı́ Gaussov-
ských operacı́ na superpozici nižšı́ch kvantových stavů. Tato hierarchie umožňuje
klasi�kovat kvantově ne-Gaussovské stavy včetně ideálnı́ch Fockových stavů. Pro
rozpoznánı́ těchto vlastnostı́ byla odvozena kritéria vhodná pro měřenı́ na detektoru
s vı́ce kanály stejně jako v přı́padě kvantové ne-Gaussovosti. Tato nová kritéria sice
využı́vajı́ totožnou de�nici pravděpodobnosti úspěchu i chyby, ale podmı́nky určujı́cı́
tyto vlastnosti jsou rozdı́lné. Jejich aplikovatelnost na realistické stavy s šumem a
optickými ztrátami byla opět zkoumána jak teoreticky, tak experimentálně. Ačkoli
tato kritéria dávajı́ podmı́nky, které jsou náročnějšı́ než podmı́nky diktované kvan-
tovou ne-Gaussovostı́, jejich detekce je stále možná i za vysokých optických ztrát.
Experimentálně se dosáhlo 3-fotonové kvantové ne-Gaussovosti.
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O5D. B. Higginbo�om, L. Slodička, G. Araneda, L. Lachman, R. Filip, M. Hennrich, and R.
Bla�, “Pure single photons from a trapped atom source”, New Journal of Physics 18, 093038
(2016).

O6L. Lachman and R. Filip, “Robustness of quantum nonclassicality and non-Gaussianity of
single-photon states in a�enuating channels”, Physical Review A 88, 063841 (2013).
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Kamp, S. Hö�ing, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction
e�ciency and near-unity indistinguishability from a resonantly driven quantum dot in a
micropillar”, Physical Review Le�ers 116, 020401 (2016).
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90X.-L. Chu, S. Götzinger, and V. Sandoghdar, “A single molecule as a high-�delity photon
gun for producing intensity-squeezed light”, Nature Photonics 11, 58–62 (2016).

91T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. �yrrestrup, T. Sünner, M. Kamp, A. Forchel,
and P. Lodahl, “Experimental realization of highly e�cient broadband coupling of single
quantum dots to a photonic crystal waveguide”, Physical Review Le�ers 101, 113903 (2008).

92M. Ho�einz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell,
H. Wang, J. M. Martinis, and A. N. Cleland, “Generation of fock states in a superconducting
quantum circuit”, Nature 454, 310–314 (2008).

93D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, “Generation of
nonclassical motional states of a trapped atom”, Physical Review Le�ers 76, 1796–1799
(1996).

94P. Zapletal and R. Filip, “Multi-copy quanti�ers for single-photon states”, Scienti�c Reports
7, 1484 (2017).

95D. Bha�i, J. von Zanthier, and G. S. Agarwal, “Superbunching and nonclassicality as new
hallmarks of superradiance”, Scienti�c Reports 5, 17335 (2015).

96A. Kuhn, “Cavity induced interfacing of atoms and light”, in Engineering the atom-photon

interaction (Springer International Publishing, 2015), pp. 3–38.

74

https://doi.org/10.1103/physrevlett.116.143601
https://doi.org/10.1364/ol.41.002149
https://doi.org/10.1364/ol.41.002149
https://doi.org/10.1038/nphoton.2016.236
https://doi.org/10.1103/physrevlett.101.113903
https://doi.org/10.1038/nature07136
https://doi.org/10.1103/physrevlett.76.1796
https://doi.org/10.1103/physrevlett.76.1796
https://doi.org/10.1038/s41598-017-01333-y
https://doi.org/10.1038/s41598-017-01333-y
https://doi.org/10.1038/srep17335
https://doi.org/10.1007/978-3-319-19231-4_1
https://doi.org/10.1007/978-3-319-19231-4_1

	Introduction
	Methods
	Quantization of light
	Representation of the light
	Classical theory of coherence and coherent states
	Nonclassical features
	Nonclassical phenomena in the early experiments
	Displacement, squeezing and "BS-type" operators
	Multi-channel detector
	The Wigner function of the Gaussian states

	Nonclassicality
	Reliable ab-initio nonclassical criteria
	Experimental verification of nonclassical light from many emitters
	Summary and outlook

	Advanced tests of nonclassicality
	Variable detection of nonclassicality
	Splitting networks
	Mach-Zehnder interferometer
	Two copy variable criterion
	Summary and outlook

	Quantum non-Gaussianity
	Hierarchy of criteria of quantum non-Gaussianity
	Experimental test of the multiphoton quantum non-Gaussianity
	Summary and outlook

	Genuine n-photon quantum non-Gaussianity
	Recognition of the genuine n-photon quantum non-Gaussianity
	Summary and outlook

	Conclusion
	Shrnutí v Ceském jazyce

