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Abstract

�is report provides results of the thesis with the title Advanced iden-
ti�cation of quantum properties of the light. It explores nonclassicality
and the quantum non-Gaussianity, which represent key properties use-
ful for the quantum technologies. �e thesis derive criteria of both the
quantum aspects and gives a comprehensive analysis of realistic states
that exhibit them. It also involves results of experiments proving fea-
sibility of the presented theory.
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pieces of advice, enthusiasm and cordial a�itude to the science. I want
to thank Ivo Straka and Miroslav Ježek for their help and their advice.
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1 Introduction

Since photons are bosons, many of them can have identical properties,
and therefore they can be treated collectively by a single wave function.
�is collective behavior is so signi�cant for the light that the classical
optics investigates only the wave features and ignore the corpuscular
aspects completely. A fundamental property of the waves that classical
optics examines is the coherence [B1]. A row of experiments, including
the Young double slit experiment [B2] or the Arago white spot in the
center of a shadow threw by a circular object [1], explored the coher-
ence. �e physics developed in the twentieth century showed that the
wave description of light is incomplete. First signals appeared in the
thermodynamics where an idea to quantize the electromagnetic �eld
enabled clari�cation of the spectral properties of the thermal radiation
[B1]. It opened a path leading to an explanation of corpuscular aspects
of light that had been hidden so far by laws of nature.
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2 METHODS

�e corpuscular aspects say that the energy of a wave function of
light gains an integer multiple of a small unit of the energy correspond-
ing to an energy of a single photon. �e coherent aspects, known for
bright beams, are kept even when light is so weak that it comprises
only a single-photon having the indivisible unit of the energy. All in-
terference experiments from the classical optics can be repeated with
a single-photon and the interference fringes remain visible for many
repetitions [B2]. It strikes our intuitive concept of nature where ob-
jects are either indivisible particles or waves that can always split and
spread to the whole space. A photon picks the scenario of its behaving
according to an experiment and performed detection.

A theory explaining the classical theory of coherence by terms of
the quantum optics was established by R. Glauber and E. C. G. Sudar-
shan in 1963. �ey identi�ed a narrow class of quantum states of light
that behave like a classical wave when a detector measures the inten-
sity of these states [2, 3]. �eir theory is broadly used for distinction of
a�ractive states going beyond the classical solution of Maxwell’s equa-
tions. �e quantum non-Gaussianity has recently appeared as a more
demanding reference for quantum aspects, which light can possess [4].
�e quantum non-Gaussianity inspects whether light overcomes both
the classical theory of coherence and even the linear dynamics in the
quantum optics, which is used to generate squeezed states of light [5].
�e thesis related to this report provides a comprehensive analysis of
both the nonclassicality and the quantum non-Gaussianity in the con-
text of currently developing quantum technologies.

2 Methods

Fundamental states of light

�e quantum optics stems from replacing the measurable quantities in
Maxwell’s equations by operators. �ese equations applied on light
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2 METHODS

con�ned in a virtual box yields Hamiltonian [B2]

H =
∑
k

ωk

(
a†kak +

1

2

)
, (1)

where k is the wave vector distinguishing the modes, ωk is the fre-
quency of oscillations, ak is the annihilation operator and a†k is the
creation operator. �ese operators obey the commutation relation[

ak1 , a
†
k2

]
= δk1,k2 . (2)

Further, we can avoid the dependence of these quantities on k because
only a single-mode light is considered in the following. Let us introduce
the Fock states |n〉 that correspond to the eigenstates of the Hamilto-
nian, i. e.

H|n〉 = En|n〉, (3)

where En is the energy of the Fock state |n〉 with n being an inte-
ger. �e creation and annihilation operator in the Hamiltonian are not
hermitian operators, and therefore they do not represent any measure-
ment. Nevertheless, they are important for building the quantum the-
ory of light. �ey a�ect the Fock states according to [B3]

a|n〉 =
√
n|n− 1〉

a†|n〉 =
√
n+ 1|n+ 1〉. (4)

�e relations show the creation operator increases the energy by a sin-
gle unit and the annihilation operator reduces the energy by a single
unit.

�e Fock states are appropriate for description of corpuscular as-
pects of light. For description of the wave features, it is convenient to
introduce the coherent state |α〉 that is de�ned as [B3]

a|α〉 = α|α〉. (5)
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2 METHODS

�e expansion in the Fock state basis yields

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉〈n|. (6)

Since the coherent states behave similarly as coherent waves in clas-
sical theory of the electromagnetic �eld, they are used for explanation
of classical theory of coherence.

Representation of light

Detectors responding on the light in quantum optics measure quanti-
ties depending on ordering of the creation operator a† and annihilation
operator a. An interaction of the light with a detector dictates which
ordering describes a measurement properly. For convenient evaluation
of measured results, a representation of light inherent to a given order-
ing is useful. Common detectors register light by absorbing photons.
It leads to a normal ordering when all creation operators are on the le�
from the annihilation operators [6]. Besides that, the homodyne detec-
tion technique measures always symmetrical combination of the cre-
ation and annihilation operators. For a formal representation of light
in those ordering, we introduce two characteristic functions [B2]

χs(β, β
∗) = Tr

[
ρeβa

†−β∗a
]

χn(β, β∗) = Tr
[
ρeβa

†
e−β

∗a
]
, (7)

where ρ is a density matrix. �ey are de�ned in symmetric and normal
orderings. �eir inverse Fourier transformation gives rise to

W (α, α∗) =
1

4π2

∫
χs(β, β

∗)e−βα
∗+β∗αd2β

P (α, α∗) =
1

4π2

∫
χn(β, β∗)e−βα

∗+β∗αd2β. (8)
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�e function W (α, α∗) is called the Wigner function and it quanti�es
results of the homodyne detection. �e value in the origin corresponds
to the mean value of the parity operator, i.e.

W (0, 0) =
1

2π
〈(−1)a

†a〉, (9)

which indicates the Wigner function obtains negative values for some
states.

�e following functionP in (8) allows us to represent of any density
matrix by [3]

ρ =

∫
P (α)|α〉〈α|d2α. (10)

However, the formal de�nition in (8) does not guarantee the function
P is an ordinary function. Some states acquire the function P that is
negative or even more singular than the Dirac’s delta function. It clas-
si�es states of light according to behaving of the function P . �antum
states possessing the function P corresponding to a density probability
function are su�cient for explaining the classical theory of coherence.

Nonclassicality

�e classical theory of coherence investigates impacts of the stochastic
processes on the coherence of light. Used detectors respond to the in-
tensity of the light in a good approximation. A degree of coherence is
quanti�ed by correlation functions [B1]. Clarifying the classical coher-
ence by the quantum optics follows from substituting the amplitudes
of the coherent waves in the correlation functions by the annihilation
and creation operators that are set in the normal ordering. It gives rise
to a series of the correlation functions [2]

g(n)(τ1, ..., τn−1) =
1

〈a†(0)a(0)〉n

〈a†(τn−1)× ...× a†(0)a(τn−1)× ...× a(0)〉, (11)
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which behave as the correlation functions in the classical theory for
some class of quantum states. All the correlation functions equal one
for the coherent states (5), which indicates the coherent state approxi-
mates a classical coherent wave in this detection. �erefore, the func-
tion P in (10) corresponding to a density probability function describes
stochastic processes a�ecting the coherence. States with such a func-
tion P represent quantum analogues of classical waves, and therefore
these states are called classical. Contrary, the quantum states with the
function P not being the density probability function are beyond the
classical description and are denoted as nonclassical states.

�e second-order correlation function g(2)(τ) was historically used
the most for recognition of the nonclassical states [7, 8]. All the classi-
cal states exhibit super-Poissonian statistics meaning that g(2)(0) > 1
[9]. �erefore, violation of the inequality discloses the nonclassical-
ity. �is phenomenon is called sub-Poissonian statistics. Also, anti-
bunching that is associated with growing g(2)(τ) for τ > 0 reveals the
nonclassical states [9].

Detectors that enable observation of the nonclassicality are single-
photon avalanche diodes (SPADs). A SPAD is sensitive even to single-
photon states but it does not allow us to recognize a number of arriving
photons [10]. �erefore, the detection of the nonclassicality restricts
employing g(2)(τ) only for a limit of very weak states since the SPADs
measure the moments of the annihilation and creation operators only
approximately [11]. Measuring nonclassicality of any possible states
of light requires criteria imposing conditions only on responses of em-
ployed detectors.

Basic unitary operators and quantum non-Gaussianity

Unitary operators transforming a state to another states describes the
evolution of light in closed systems. Let us introduce simplest exam-
ples of such operators. Classical driving of an optical mode underlies
evolution that describes the operator [B4]

D(α) = eα
∗a−αa† . (12)
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�e operator is called a displacement operator. When it acts on the
vacuum, it produces the coherent state, i.e.

|α〉 = D(α)|0〉. (13)

It represents a de�nition of the coherent state equivalent to (5). An-
other unitary operator obtains a form [B4]

S(ξ) = eξ(a
†)

2−ξ∗a2 . (14)

It stems from a driving Hamiltonian H = i
[
g
(
a†
)2 − g∗a2b†

]
, where

b and b† are operators associated with a pumping light. When the
pumping is a strong undepleted classical beam, these operators can be
substituted by amplitudes β and β∗ and the Hamiltonian gets a linear
form yielding the unitary operator (14). �e operator can reduce the
quantum noise of the canonical coordinateX = a+a† or the canonical
momentum P = i(a + a†) below the quantum noise of the vacuum.
�us, the operator (14) is called squeezing. It is used to identify a new
class of states given by [5]

|α, ξ〉 = S(−ξ)D(α)|0〉. (15)

In analogy with the nonclassicality, the mixtures of the states |α, ξ〉
constitute a new quantum aspect called quantum non - Gaussianity. It
is identi�ed by inequality

ρ 6=
∫
P (α, ξ)|α, ξ〉〈α, ξ|d2αd2ξ, (16)

where the function P (α, ξ) is some density probability function of its
arguments. �e quantum non-Gaussianity is a more demanding con-
dition than nonclassicality because only some nonclassical states are
quantum non-Gaussian.

�e last introduced unitary operator describes interference of light
on a beam-spli�er or interference in linear optical couplers in �ber op-
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tics. �e operator obtains a form [B4]

UBS = eκa1a
†
2−κ∗a

†
1a2 , (17)

where the subscripts di�erentiate the interacting modes. It allows us
to determine interference of two coherent states by

UBS(T )|α〉|β〉 = |
√
Tα−

√
1− Tβ〉

⊗ |
√

1− Tα+
√
Tβ〉. (18)

It shows the amplitudes of the coherent states transform as coherent
waves in classical optics. Transformation of Fock states can be ex-
pressed by

UBS(T )|m〉|n〉 =
1√
n!m!

(
√
Ta1 −

√
1− Ta2)m

(
√

1− Ta1 +
√
Ta2)n|0〉|0〉. (19)

When one of the modes is occupied by the vacuum, the photons in the
second mode are split according to the binomial law as classical parti-
cles. Some detection networks use this phenomenon for an estimation
of a number of photons.

Measuring statistical properties of light

A sequence of BSs enables partial estimation of photon number distri-
bution when SPADs measures the outgoing spatial modes. Fig. 1 de-
picts possible schemes. �e distribution of clicks Pn of those detectors
is given by a convolution

Pn =

∞∑
k=n

Rn,kρk, (20)

where ρk = 〈k|ρ|k〉 is a probability of k arriving photons and Rn,k is
a response function of the detector on a Fock state |k〉, which is given
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2 METHODS

a) b)

Figure 1: Examples of networks spli�ing a state of light among sev-
eral emerging modes detected by SPAD. �e network can have a tree
structure (a) or split the light successively by a series of BSs (b).

by [11]

Rn,k = 1 +

n∑
l=0

(
n

l

)
(−1)l

(
1− l

N

)k
(21)

with N being a number of spatial modes measured by SPADs. Alter-
natively, the Wigner function enables us to calculate the click distribu-
tion in the network as well. It is expressed by an overlap of the Wigner
function of the split state Ws and the Wigner function of the detector
response Wn [12], i. e.

Pn =

∫
Wn(x1, p1, ..., xn, pn)

× Ws(x1, p1, ..., xn, pn)dx1dp1...dxndpn. (22)

�is way of calculation is convenient especially for states with Gaus-
sian Wigner function because the integral leads to an analytic expres-
sion. Other states exhibit click statistics, which are be�er expressed
by (21). Both approaches allow us to quantify the detector response
for coherent states, Fock states and all Gaussian states that are split on
the network. �ese calculations give formulas that are important for a
theory exposing quantum aspects of the light.
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3 NONCLASSICALITY

3 Nonclassicality

�is section is based on the publications by L. Lachman et al. [T1] and
by P. Obšil and et al. [T3].

�e concept of the nonclassicality is broadly exploited for evalua-
tion of quantum light. It di�erentiates the light with desirable aspects
from classical waves. A workhorse for a generation of the nonclassical
light have been parametric processes for the last three decades, which
enable radiation of the sub-Poissonian light by heralding [10, O1]. Cur-
rently, platforms exploiting ions, molecules or solid state sources are
being developed intensively. �eir advantage is a level structure emit-
ting exactly a single-photon [O2]. However, background noise o�en
deteriorates them and the collection of light is very low in many exper-
iments [13]. Moreover, they are o�en fabricated in clusters behaving
as several independent emi�ers [O3]. Diverse criteria capture the non-
classicality inherent to such sources. �ey expose the nonclassicality
by homodyne detection [14], by a photon-number resolving detector
[15, O4, O5] or by a multi-channel detector [16]. We will investigate a
systematic approach giving ab-initio criteria for any detection scheme.
�e criteria do not su�er by any involved approximation and as such
they are reliable for an arbitrary state.

A basic detection scheme utilizes simple spli�ing of light on a BS
and two SPADs for measuring the light as shown in Fig. 2. �e scheme
is used for the approximate detection of the second-order correlation
function g(2) as well [7]. It was �rstly exploited by Hanbury - Brown
and Twiss for measuring intensity correlation of light from a star [17].
Let us abbreviate their names by HBT when referring to the scheme in
the following. For our purpose, we introduce probabilities of no-click
of both SPADs P00 and no-click of ith SPAD P0,i. �e criterion follows
from considering the linear combination

Fa(ρ) = P0 + aP00, (23)

where a is a free parameter. �e functional (23) can be optimized over
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3 NONCLASSICALITY

SPAD

BS
 

SPAD

lens

source of light

1

2

Figure 2: An experimental scheme for detection of the nonclassicality.
A BS split the light from an ensemble of single-photon emi�ers and
SPADs measure the re�ected and transmi�ed modes.

all classical states resulting in function F (a), which discloses the non-
classicality when ∃a : P0 + aP00 > F (a). �is condition can be sim-
pli�ed to P0,1 > P T00 or P0,2 > P 1−T

00 (according to a used SPAD for
measuring P0) with T being the transmission of the BS. �eir combi-
nation yields

P0,1P0,2

P00
− 1 > 0. (24)

It imposes a condition that is reliable for an arbitrary state. It can be
also formulated equivalently for click probabilities, which works out

Ps,1Ps,2
Pc

< 1, (25)

where Ps,i = 1 − P0,i is a click probability of ith SPAD and Pc =
1 − P0,1 − P0,2 + P00 denotes a probability that clicks of both SPADs
coincide. Although both conditions are equivalent their le� sides rep-
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3 NONCLASSICALITY

resent di�erent parameters useful for evaluation of the nonclassicality
manifested in this layout.

A relevant model of a measured state shows behaving of those con-
ditions in experiments. �e model takes into account a density matrix

ρ = [η|1〉〈1|+ (1− η)|0〉〈0|]⊗N ⊗ ρn̄ (26)

describing light radiated from an ensemble of N single-photon emit-
ters that Poissonian noise ρn̄ with a mean number of photons n̄ de-
teriorates. �e parameter η stands for the e�ciency of emission and
detection. �e SPADs respond on the state by

P0 = (1− η/2)Ne−n̄/2

P00 = (1− η)Ne−n̄. (27)

Pu�ing the relations into the conditions (24) and (25) reveals the state
is nonclassical for arbitrary background noise if the emi�ers contribute
with η > 0. �e parameter d = P 2

0 /P00 − 1 does not depend on the
background noise and it grows with a number of emi�ers. Contrary,
the parameter α = Pc/P

2
s is insensitive to optical losses in a limit of

weak states with Nη � 1 and n̄� 1 but it converges to one for both
a high number of emi�ers N and high n̄. Movement of some states in
d-α plot is depicted in Fig. 3.

�e only limiting factor in measuring nonclassicality of the state
(26) are experimental error bars. �ey are quanti�ed by a variance of
the parameters in �nite measurement. �e variance of the parameter
d works out

var(d) =
Vc
P 2

00

(
sinφ

2
√
P00

+ cosφ

)2

+
Va
P 2

00

(
cosφ

2
√
P00
− sinφ

)2

+
d2

P00
V00, (28)

where φ = arctan 1/2, Vc is the variance of Pc and Va is the variance
of an auxiliary quantity P0 + P00. �e expected error bars achieved
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Figure 3: Figure demonstrates evaluation of a state (26) by the param-
eters α and d. Blue points correspond to states having η = 0.1 and no
deteriorating background noise. �e numbers represent numbers of
single-photon emi�ers of these states. �e vertical lines indicate how
the background noise in�uences the parameters and the vertical lines
show e�ects of losses.
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Η=10-3; n=0

Η=10-3; n=0.01

Η=5´10-4; n=0

Η=10-3; n=0.1

NF=108
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5

6

d� var HdL

Figure 4: Expected behaving of the ratio d/
√

var(d) for the state (26)
with growing number of contributing emi�ers N . �e colors distin-
guish the parameters in the model. A number of experimental runs is
108. When the ratio is above one, the measured state is likely in the
nonclassical region.

in measurement of the considered state are shown in Fig. 4. It demon-
strates that the larger number of emi�ers prolongs measurement time
that is necessary for achieving su�cient ratio between the parameter
d and its error bars.

�ose theoretical predictions were veri�ed by an experiment where
light came from an ensemble of ions in the Paul trap. �e ions inter-
acted with pumping beams and emi�ed a single-photon due to a tran-
sition between addressed energy levels. A lens collected the emission
from the ions and aimed the light at a BS with two SPADs as Fig. 2 de-
picts. �e recorded data was evaluated by the parameter d for pulsed
and continuous pumping regimes. �e nonclassicality was observed
on light emi�ed from hundreds of ions. It certi�ed the predicted de-
pendence of the parameter d on the number of emi�ers. We ��ed the
experimental outputs by our model for a deeper analysis of the results.
�e �t considers the collection e�ciency depends on a position of an
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Figure 5: Figure presents measured parameter d for a crystal having n
ions. Whereas the red points correspond to the parameter measured in
pulsed regime the yellow points were achieved in the continual regime.
�e green triangles show predicted parameter d in the pulsed regime.
Measurement of the sca�ered laser light certi�cated the threshold d =
0. �e blue and gray points present the achieved results.

ion. �e background noise was neglected in the �t. Fig. 5 presents the
experimental results together with the calculated �t.

In summary, we derived a criterion, which can disclose the non-
classicality of multi-photon light reliably. �e criterion is formulated
by a condition imposed on the parameters α or d. We suggested us-
ing these parameters for advanced evaluation of sources emi�ing non-
classical light due to their convenient behaving for light emi�ed from
an ensemble of single-photon emi�ers. �e nonclassicality of such a
sources was detected on light radiated from up to 275 emi�ers.

4 Advanced tests of nonclassicality

�e section outlines the publication by L. Lachman and R. Filip [T6].
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4 ADVANCED TESTS OF NONCLASSICALITY

linear optical  network

array of SPADs

input states

Figure 6: A general scheme where nonclassicality manifests itself. It is
realized by a linear optical network that guides several states of light
towards an array of SPADs.

�e nonclassicality always manifests itself relative to detection. It
stimulates for exploring nonclassicality in layouts di�erent to the HBT
layout. Mach-Zehnder interferometer represents a next possibility al-
lowing us to test �rst-order coherence and nonclassicality simultane-
ously. Another extension is detection of a famous Hong - Ou - Mandel
e�ect [18] when the interference of two indistinguishable photons on
a BS cancels cases when these photons emerge separately from the BS.
Generally, a scheme constitutes a linear optical network where n im-
pinging single-photon states are split, interfere among themselves and
emerge in m ≥ n modes [19]. Such linear optical networks have ap-
plication in the quantum protocols [20–23]. Furthermore, emerging
integrated optics allows their fabrication on a chip where the param-
eters of the network can be driven electrically [24, 25]. A formulation
of a library of criteria for such layouts provides new insights into non-
classical manifestation. A new aspect of the criteria is sensitivity to the
Poissonian background noise, which nonclassicality in the HBT layout
does not exhibit. A row of layouts giving gradually more demanding
criteria establishes a hierarchy if some conditions are arbitrarily lenient
and some are arbitrarily strict. Such hierarchy enables an operational
comparison of the single-photon states.

A general scheme enabling the detection is depicted in Fig. 6. It
transforms the annihilation operators a = (a1, ..., am) of the input

16



4 ADVANCED TESTS OF NONCLASSICALITY

modes by
ao = Uai, (29)

where U is m × m unitary matrix characterizing the linear-optical
network and ao stands for a vector of the annihilation operators for
the outgoing modes. Detection of nonclassicality can be realized when
single-photon states input n < m modes in the layout. A density ma-
trix of a realistic single-photon state approaches ρη⊗ρn̄. It is composed
of the a�enuated Fock state ρη = η|1〉〈1|+(1−η)|0〉〈0| deteriorated by
the background noise ρn̄ with the Poissonian statistics. It encourages to
derive a general library of nonclassical criteria from linear functionals
with forms

Pn + aPn+1, (30)

where Pn refers to a probability that a selected group of n SPADs reg-
isters n clicks and Pn+1 means that at least n+1 SPADs give a positive
response. �e criteria exclude all classical states∑

ω1,...,ωn

∫
Pω1,...,ωn(αω,1, ..., αω,n)|αω,1〉1,ω〈αω,1| ⊗

. ..⊗ |αω,n〉n,ω〈αω,n|d2αω,1...d
2αω,n, (31)

wherePω(αω,1, ..., αω,n) is a density probability function, the subscripts
1, ..., n distinguish spatial modes and ω indexes all the remaining de-
grees of freedom. �e optimizing of (30) over classical states gives rise
to a criterion derived exactly for a speci�c layout. Because the opti-
mizing is done over classical states with any degree of coherence, the
criteria can be applied to states showing coherent properties and even
to incoherent states, which do not interfere in the layout. �e criteria
always reveal nonclassicality of the ideal single-photon states without
noise. �e noise contributions a�ect the nonclassicality diversely ac-
cording to the detection scheme.

A simple spli�ing of light in HBT scheme does not allow us to de-
rive criteria that are sensitive to background noise in the state ρη⊗ρn̄.
A natural extension leads to layouts where more BSs split light as in
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Figure 7: Examples of interfering layouts where nonclassical manifes-
tation imposes nontrivial conditions on realistic single-photon states. It
can be achieved in the Mach-Zehnder interferometer (a) for states that
propagate incoherently or with partial coherence at most. Demanded
networks for two copy states can be a modi�ed version for the Hong-
Ou-Mandel test (b) or a layout with two BSs and three SPADs (c).

Fig. 1. In a conceivable formulation, a success corresponds to cases
when n SPADs register a signal and error means that n+1 SPADs click
simultaneously. However, it still does not establish the criteria giving
some non-trivial conditions on the state ρη ⊗ ρn̄. It appeared that the
demanded criteria can be formulated only for networks in which in-
terference between photons occurs. Fig. 7 presents examples of such
networks.

Mach-Zehnder interferometer (MZI) depicted in Fig. 7a) allows tests
of the �rst-order coherence. When light exhibits the maximal �rst-
order coherence, recognized by the maximal visibility, the MZI acts as
a BS and the analysis of the nonclassicality is the same as for the HBT
test. If light shows the partial �rst-order coherence, the MZI manifests
the nonclassicality di�erently to the HBT layout. �e nonclassicality in
this scheme excludes all possible mixtures of coherent states with any
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Figure 8: A hierarchy of conditions in the Mach-Zehnder interferom-
eter for the state ρη ⊗ ρn̄ for T1 = 1/2 and di�erent se�ings of T2.
Whereas the noise ρn̄ is assumed to be always incoherent, the state ρη
is coherent (a) or incoherent (b). In both cases, the nonclassicality is
manifested if the parameters η and n̄ are above thresholds depicted by
the solid lines.

�rst-order coherence. �e criteria are derived from a linear functional

P1 + aP2, (32)

where P1 is a probability of a click of SPAD1 in Fig. 7a) and P2 refers
to a probability of simultaneous click of both SPADs. Optimizing (32)
over the classical states is equivalent to ge�ing an optimum over single-
mode coherent states |α〉ω . �e MZI splits the coherent state |α〉ω as a
BS with the transmi�ance T and the re�ectance R, which are given by

T = T1T2 +R1R2 − 2 cos ∆φ
√
T1T2R1R2

R = T1R2 +R1T2 + 2 cos ∆φ
√
T1T2R1R2, (33)

where T1,2 are the transmi�ances of the beam-spli�ers BS1,2, R1,2 are
their re�ectances and ∆φ corresponds to a phase shi� given by prop-
agation between the two paths in the interferometer. A resulted cri-
terion is solvable only numerically but an experimentally signi�cant
corner with a very low probability P2 � 1 o�ers an approximate con-
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Figure 9: Nonclassical conditions recognizing nonclassicality in the
layout depicted in Fig. 7b). �e conditions are imposed on parame-
ters η and n̄ in the model state (ρη⊗ρn̄)⊗2 for the case when the states
ρη are indistinguishable a) and distinguishable b). �e lines correspond
to thresholds that have to be surpassed to achieve nonclassicality. �e
colors distinct di�erent transmi�ances T1 of BS1. �e transmi�ance of
BS2 is �xed to the value 0.5.

dition

P1 >

√
R

1−R
P2, (34)

where R = T1R2 + R1T2 + 2
√
T1T2R1R2. �e criterion (34) goes

beyond the HBT test when an inspected state does not propagate co-
herently. Fig. 8 demonstrates nonclassicality of the single-photon state
ρη⊗ ρn̄ in this layout. �e �gure shows the condition (34) is becoming
strict arbitrarily when the transmi�ances are approaching T2 = 1−T1

because in that case, the optimal coherent state exhibits no error events.
Interfering networks where two optical signals interfere mutually

are di�erent to both the HBT test and to the MZI. �e layout where the
Hong - Ou - Mandel dip is measured [18] can be extended for a test of
photon indivisibility as depicted in Fig. 7b). �e functional possesses a
form

P2 + aP3, (35)

where the success probabilityP2 means that clicks of SPAD1 and SPAD2

coincide and error probability P3 corresponds to simultaneous click of
all three SPADs. Because the interference of two single-photon states

20



4 ADVANCED TESTS OF NONCLASSICALITY

on a BS is independent of their relative phases [26], the refused classi-
cal states are assumed to be phase randomized, i. e. the nonclassicality
means

ρ 6=
∑
ω1,ω2

∫
Pω1,ω2(|α|ω1 , |β|ω2)ρω1,1(|α|ω1)

⊗ ρω2,2(|β|ω2)d|α|ω1d|β|ω2 , (36)

where Pω1,ω2(|α|ω1 , |β|ω2) is a density probability function and ρωi,i

occupies the ith spatial mode, oscillates with a frequency ωi and obeys
the Poissonian statistics, i. e.

ρωi,i(|α|) = e−|α|
2
∞∑
n=0

|α|2n/n!|n〉〈n|. (37)

Optimizing over the state (36) gives rise to a condition, which ideal
single-photon states ρη ⊗ ρη satisfy regardless of their indistinguisha-
bility. �e realistic states with noise pass the criterion only when the
error probability is surpassed su�ciently. Fig. 9 shows the condition
on the parameters η and n̄ required by nonclassicality. Although the
transmi�ances of the BS1 and BS2 alter the nonclassical condition, they
can not establish an arbitrarily tolerant condition, and therefore the
layout does not enable a formulation of the hierarchy. To do that, the
network can be arranged according to Fig. 7 c). �e criteria involve a
success probability corresponding to clicks of SPAD1 and SPAD2 and
an error probability quantifying clicks of all three detectors. Fig. 10
presents the conditions establishing the hierarchy. �eir demanding
increases with growing transmission of both BSs.

In summary, we explored nonclassical manifestation in linear opti-
cal networks. A hierarchy of nonclassical criteria sensitive to noise was
formulated for the Mach-Zehnder interferometer and a layout where
two single-photon states interfere. According to se�ing of the trans-
mission of BSs in those networks, the criteria get less or more demand-
ing. Such nonclassical manifestation goes beyond the HBT test and any
other spli�ing scheme where the nonclassicality is observable regard-
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Figure 10: A predicted nonclassical thresholds in the layout in Fig. 7c).
�e hierarchy for two copies of the state ρη ⊗ ρn̄ is resolved for trans-
mi�ances of BSs T1 = T2 = T . �e solid lines represent thresholds
above which the states manifest the nonclassicality. �e states ρη are
assumed indistinguishable (a) or distinguishable (b).

less of the background noise.

5 �antum non-Gaussianity

�e section provides results of the publications by L. Lachman et al.
[T2] and by I. Straka et al. [T4]

Nonlinearity is a very a�ractive aspect in the quantum optics. It
is represented by processes beyond the processes driven by Hamilto-
nian mostly quadratic in the annihilation and creation operators. �e
nonlinearity is inherent only to states with a non-Gaussian Wigner
function, which was broadly explored [27–29]. However, some mix-
tures of coherent states also possess the non-Gaussianity [30]. For this
substantial reason, this concept has to be upgraded. An unambiguous
recognition of the nonlinearity has to refuse all stochastic mixtures of
Gaussian states, i.e.

ρ 6=
∫
P (ξ, α)D(α)S(ξ)|0〉〈0|S†(ξ)D†(α)d2αd2ξ, (38)
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where P (ξ, α) is a density probability function. �e introduced quan-
tum property (38) is called quantum non-Gaussianity. Since the quan-
tum non-Gaussianity refuses all classical states and the squeezed states,
it represents a new benchmark for an evaluation of the quantum as-
pects.

�e negativity of the Wigner function is a possible evidence of the
quantum non-Gaussianity, which all the Fock states exhibit. How-
ever, the negativity is too challenging for photonic systems that the
losses a�ects because it disappears when the losses exceed ��y per-
centages. It stimulates for exploring criteria disclosing the quantum
non-Gaussianity of states with the positive Wigner function, especially
in the early stage of many experimental platforms. �e criteria ex-
ploit the homodyne measurement [31], combine the homodyne mea-
surement with the intensity detection [30, 32] or utilize the heterodyne
detection [33]. A di�erent criterion involves only outputs of a photon-
number-resolving detector [4]. It compares a response of the detec-
tor on a single-photon with a response on multiphoton contribution
and uncover the quantum non-Gaussianity of the a�enuated Fock state
η|1〉〈1| + (1 − η)|0〉〈0|. It was modi�ed for the HBT layout [O6] and
achieved experimentally [34, 35, O7]. It was also explored concerning
the security of the quantum key distribution [36] and single photon-
phonon-photon transfer [37]. �e following step aims to disclose the
quantum non-Gaussianity of all the a�enuated Fock states. Such a the-
ory goes before the current experiments in optics where only multi-
plexing of many spatial or temporal modes can simulate the statistical
behaving of the high Fock states so far.

�e quantum non-Gaussianity of multiphoton light can recognize
a multi-channel detector depicted in Fig. 11. �e detector responds to
a state propagating through the network by a sequence of clicks of the
SPADs. Let us consider n clicks of n SPADs as success events and n+1
clicks as error events due to an expected response to the Fock state |n〉.
�e linear functional

Fa(ρ) = Pn + aPn+1 (39)
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Figure 11: �antum non-Gaussian light is recognized in a multi-
channel detector that splits incoming light by an array of BSs. Out-
going light is measured by SPADs. If the detector contains N SPADs a
criterion incorporating a probability of a success event corresponding
to simultaneous clicks of N − 1 selected SPADs and a probability of
error event meaning that all N SPADs register a click can be tested.

yields the criteria a�er optimizing over all mixtures of Gaussian states.
�e optimizing is done over a pure state |α, ξ〉 de�ned in (15). A�er
exclusion the parameter a, the criteria impose conditions on the mea-
sured probabilities of the success and error. �e Fig. 12 shows the re-
sulted conditions in log − log plot. �e numerical thresholds can be
approximated in a limit of weak states by conditions

Pn+2
n > H4

n(x)

[
Pn+1

2(n+ 1)3

]n
. (40)

where x obtains the greatest value among those satisfying Hn+1(x) =
0. Inequalities (40) represents the most rough approximations, which
have to be used carefully, because they are below the exact thresholds
and therefore they can lead to a false positive. On the other hand, they
illustrate sensitivity of the quantum non-Gaussianity to imperfections
in realistic states.
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Figure 12: Hierarchy of criteria revealing quantum non-Gaussianity in
log − log plot. �e solid lines represent thresholds that have to be ex-
ceeded to achieve the quantum non-Gaussianity. �e colors distinguish
a particular de�nition of success and error probabilities. �e dashed
lines depict an analytic approximate thresholds that are appropriate
for states with a low error probability.

�e criteria can be applied to revealing the quantum non-Gaussianity
of multiphoton light with a density matrix approaching

ρη,M = [η|1〉〈1|+ (1− η)|0〉〈0|]⊗M , (41)

where η is a product of emission and detection e�ciency and theM de-
notes a number of emi�ers. Since the states ρη,M are restricted sharply
in a number of photons, their quantum non-Gaussianity is always ob-
servable by a criterion where a number of SPADs measuring the suc-
cess events equals to a number of emi�ing single-photon states. When
a number of SPADs giving success is lower than a number of single-
photon emi�ers, the criterion imposes a condition on the parameter
η as shown in Fig. 13. �us, the observation of the quantum non-
Gaussianity requires a complex detector that reveals the truncation of
photon statistics. Considering the background noise and losses leads
to a more realistic model where the quantum non-Gaussianity can be
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Figure 13: �e table states minimal e�ciencies η in an ideal state ρη,M
required for the detection of quantum non-Gaussianity when a crite-
rion with the success probability quantifying clicks of n SPADs is em-
ployed.

lost. �e state obtains a form ρη,M⊗ρn̄ with ρn̄ representing noise hav-
ing Poissonian distribution of photons with a mean number of photons
n̄. �e losses decrease the parameters η and n̄ by the factor T . In the
approximation of states with strongly suppressed noise, the quantum
non-Gaussianity imposes a condition

T >
Mn̄H

4/M
N (x)

2η2(M + 1)(M !)2/M
. (42)

It shows, the robustness of the quantum non-Gaussianity is inversely
proportional to the mean number of photons of the noise. �is method-
ology substantially improves the robustness of the detection to losses
in comparison with utilizing the negativity of the Wigner function for
the detection of quantum non-Gaussianity.
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Figure 14: �e table presents the robustness of the quantum non-
Gaussianity against optical losses when the hierarchy of criteria is ex-
ploited [T4]. �e horizontal axis quanti�es how many heralded states
were merged and the vertical one shows the employed criterion. �e
solid boxes correspond to cases when the quantum non-Gaussianity
was recognized. �e numbers in these boxes stand for maximal a�en-
uation in decibels that preserves the quantum non-Gaussianity. �e or-
ange stripes below the diagonal identify inconclusive cases when error
bars cross the thresholds. �e gray region stands for situations when
no data was acquired. �e white region above the diagonal represents
combinations when the criteria fail in the recognition.

�e quantum non-Gaussianity was recognized experimentally us-
ing spontaneous parametric down-conversion in a periodically poled
KTP crystal. �e multiphoton light was simulated by taking n suc-
cessive time windows, where the trigger detector registered a signal.
�erefore, the light was produced by multiplexing of temporal modes.
�e total number of SPADs in the realized detector was ten. It ren-
dered to test the criteria from functional (39) up to n = 9. �e criteria
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applied on the state revealed the quantum non-Gaussianity of a state
with the mean number of photons up to �ve despite detection losses.
Relevant information associated with the quantum non - Gaussianity
is its robustness against optical losses. �e table in Fig. 14 summarizes
which criteria revealed the quantum non-Gaussianity of merged her-
alded states together with predicted robustness against losses in deci-
bels.

In summary, the quantum non-Gaussianity of multiphoton light
was explored. �e hierarchy of conditions is derived for a multi-channel
detector, where the incoming light is split equally among many SPADs.
Observation of that property on ideal states without the noise is possi-
ble only by a su�ciently complex network of BSs. �e quantum non-
Gaussianity of more realistic states deteriorated by the background
noise can be lost. �e criteria impose stricter conditions than the non-
classicality does, and therefore the quantum non-Gaussianity can be
exploited for a tighter identi�cation of quantum features, which light
can possess. Simultaneously, the detection is more tolerant of losses
than the negativity of the Wigner function. �e theory was supported
by an experimental test where light with a mean number of photons
up to �ve exhibited the quantum non-Gaussianity.

6 Genuinen-photon quantum non-Gaussianity

�e section summarizes the publication by L. Lachman et al. [T5].
�e individual Fock states di�er themselves in topology of the neg-

ative regions in the Wigner function. Since the Gaussian operations
preserve the topology, it stimulates to introduce a hierarchy of quan-
tum a�ributes that classi�es states approaching the Fock states and that
is preserved from in�uence of the squeezing or displacement operators.
�ese requirements are ful�lled by a n-order property of a pure state

|ψ〉 6= S(ξ)D(α)|ψ̃n−1〉, (43)
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Figure 15: A scheme demonstrating the genuine n-photon quantum
non-Gaussianity. �e white area stands for the mixtures of Gaus-
sian states. All color regions correspond to states beyond those mix-
tures. Di�erent colors represent a hierarchy of new quantum prop-
erties, which classify the quantum non-Gaussian states with negative
(opaque region) and even positive Wigner function. Each property is
inherent to a respective Fock state and cannot be achieved by the lower
Fock states and their superposition.

where |ψ̃n−1〉 =
∑n−1

k=0 ck|k〉 corresponds to some superposition of
Fock states up to |n − 1〉. Light with a density matrix possesses this
quantum aspects when it is not any statistical mixture of the right
side in (43). Such property is called genuine n-photon quantum non-
Gaussianity and it has never been discussed in the literature before.
Fig. 15 illustrates a scheme for these properties.

Detection of the genuine n-photon quantum non-Gaussianity uti-
lizes the same layout that is exploited for the recognition of the quan-
tum non-Gaussianity of the multiphoton light. Also, the criteria in-
volve the same probabilities of the successPn and the errorPn+1. How-
ever, the imposed conditions are di�erent since the thresholds cover a
broader class of states. �e resolved thresholds can be approximated
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by

Pn+1 ≈ nn!(2 + n)2

55296(n+ 1)n−1
t3
[
384 + t(896 + 307n+ 99n2)

]
Pn ≈ nn!

12(n+ 1)n
t
[
6 + t(6 + 12n+ n2)

]
, (44)

where t parametrizes the thresholds. Fig. 16 depicts the exactly re-
solved thresholds for the second and third order and compare them
with an approximate solution (44). �e �gure also shows results of a
Monte-Carlo simulation that veri�es the thresholds. It was performed
by generating randomly squeezing, displacement and the core state
|ψ̃n−1〉 in 106 (2nd order) and 108 (3rd order) cycles. Importantly, the
thresholds cover even multimode states where the core state |ψ̃n−1〉
obeys a condition

〈m1| ⊗ ...⊗ 〈mM |ψ̃n−1〉 6= 0 (45)

and the excluded states involve all Gaussian modulation of the state
|ψ̃n−1〉. It justi�es to apply the thresholds to measurement where the
multiphoton light is prepared by merging single-photon states. Fig. 16
shows the experimental results that achieve the genuine two and three-
photon quantum non-Gaussianity. It also presents robustness of these
properties against the losses and the background noise contributions.
�e limiting factors for achieving the following genuine fourth-photon
quantum non-Gaussianity appeared the dark counts of the detector and
measurement time, which would take several months.

In summary, we introduced a hierarchy of quantum a�ributes that
classi�es the quantum non-Gaussian light according to its approach to
the Fock states in the multi-channel detector. Although the quantum
properties are motivated by behaving of the negative regions of the
Wigner function, the derived criteria tolerate even signi�cant losses.
�e experimental feasibility of the hierarchy was manifested by an ex-
periment where multiplexing heralded single-photon states simulated
a photon statistics of the Fock states. �is experimental test revealed
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Figure 16: �reshold of the genuine n-photon quantum non-
Gaussianity up to order three is compared with experimentally
achieved data and results of a Monte-Carlo simulation. �e states sur-
passing the criteria are in the orange regions. �e solid black lines in
the boundary of the orange regions are thresholds derived exactly, the
dashed black lines are the approximate solutions (44). �e gray points
correspond to results of a Monte-Carlo simulation. Brown points rep-
resent the measured states. �e sequences of the brown points in the
vertical direction demonstrate an impact of background noise on the
measured states. �e dashed blue lines predict a movement of the states
when they are a�ected by a�enuation. �e theoretical robustness is
shown above the blue dashed lines.

the genuine n-photon quantum non-Gaussianity up to the order three.
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7 CONCLUSION

7 Conclusion

�e nonclassicality and quantum non-Gaussianity were investigated
with focus on their manifestation by multiphoton states of the light.
Criteria revealing these two properties stemmed from the methodology
introduced in [4]. Firstly, we acquired a criterion revealing the nonclas-
sicality in the HBT layout and applied it to a relevant model considering
a cluster of single-photon emi�ers radiating light under background
noise with the Poissonian statistics. �e criterion always recognizes
the nonclassicality of the state regardless of a number of single-photon
emi�ers or an amount of the Poissonian background noise deteriorat-
ing the source. �e only limiting factor is the experimental time needed
for su�cient suppression of error bars. �us, the nonclassicality repre-
sents a test that is feasible for a broad group of experimental platforms.

Layouts, where the nonclassicality is examined, were extended from
the HBT layout to advanced networks. It enables recognition of dif-
ferent nonclassical aspects that the light can possess. �e explored
detection schemes involve the Mach-Zehnder interferometer and two
layouts where two states of light interfere. Obeying the criteria by re-
alistic states was investigated for a model considering an ideal single-
photon state that background noise deteriorates. �e criteria impose
non-trivial condition on parameters of the model state. A layout estab-
lishes a hierarchy of criteria if it formulates an arbitrary lenient or strict
condition on the background noise according to se�ings of parameters
in the layout. Such hierarchies were formulated and analysed.

Further, the quantum non-Gaussianity of the multiphoton light was
explored on a network spli�ing light among many spatial modes. We
derived a sequence of conditions recognizing this quantum property
and exploited them for revealing the quantum non-Gaussianity of the
light emi�ed from an ensemble of single-photon emi�ers in�uenced by
Poissonian background noise. In realistic situations, the quantum non-
Gaussianity gets lost due to losses and background noise. �e quan-
tum non-Gaussianity represents an appropriate test when observation
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of the nonclassicality is too easy but the negativity of the Wigner func-
tion cannot be achieved due to the losses. �e feasibility of the quan-
tum non-Gaussianity for realistic states was veri�ed by measuring the
property on a state produced by multiplexing heralded states radiated
from the spontaneous parametric down-conversion process.

�e quantum non-Gaussianity was utilized for discrimination of
quantum features that classify the Fock states. �ese features establish
an ordered hierarchy called genuinen-photon quantum non-Gaussianity,
where n denotes the lowest Fock state that possesses the quantum
property. Criteria recognizing the genuine n-photon quantum non-
Gaussianity were derived and achieved experimentally up to order three.
�e photon statistics of the Fock states was simulated by multiplex-
ing heralded states radiated from the spontaneous parametric down-
conversion process.

�e following research aims to explore these quantum aspects in
more platforms. Firstly, impacts of coherence on the nonclassicality are
going to be investigated more deeply. Simultaneously, we are going to
explore the quantum non-Gaussianity of motional states of ions and
analyse the quantum non-Gaussianity of light emi�ed from the cavity.

8 Shrnutı́ v Českém jazyce

Tato dizertačnı́ práce se zabývá nástroji umožňujı́cı́mi rozeznat
neklasičnost a kvantovou ne-Gaussovost světla. Tyto dvě kvan-
tové vlastnosti se projevujı́ u řady důležitých kvantových stavů
světla, které jsou klı́čové pro řadu aplikacı́ kvantové fotoniky a
hrajı́ tedy stimulujı́cı́ roli pro modernı́ kvantové technologie.

Dizertačnı́ práce začı́ná stručným úvodem do kvantové op-
tiky, kde jsou popsány pojmy a postupy důležité pro text práce.
Následujı́ kapitoly pojednávajı́cı́ o samotném vědeckém výzkumu.
Ten začı́ná odvozenı́m kritéria neklasičnosti pro experimentálnı́
schéma, kde světlo procházı́ děličem a následně je měřeno dvěma
lavinovými foto-diodami. Toto schéma umožňuje měřit g(2) funkci
pouze za aproximativnı́ch předpokladů, které fotonové světlo majı́cı́
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vı́ce fotonů nesplňuje. Odvozené kritérium neklasičnosti obsahuje
pravděpodobnosti kliků, které jsou přı́mo měřitelné, a tı́m umožňuje
rozpoznat věrohodně neklasičnost světla emitovaného z velkého
souboru jedno-fotonových emitorů i v přı́padě, že je světlo zne-
hodnoceno šumem.

Neklasičnost je kvantová vlastnost, kterou nelze oddělit od
detekce. Proto se může neklasičnost na jiných detekčnı́ch schéma-
tech projevovat jinak. Předmětem následujı́cı́ kapitoly je neklasič-
nost manifestovaná na Mach-Zehnderově interferomtru a dalšı́ch
dvou schématech, kde dvě kopie jedno-fotonových stavů inter-
ferujı́. Oproti předchozı́ situaci, tato nová kritéria dávajı́ podmı́nku
na množstvı́ šumu. Tato podmı́nka lze měnit nastavenı́m parametrů
v detekčnı́m schématu. Pokud se v závislosti na těchto parame-
trech stane libovolně náročnou či libovolně tolerantnı́, přı́slušná
kritéria tvořı́ hierarchii, která umožňuje operacionalisticky porov-
nat dva realistické jedno-fotonové stavy.

Dalšı́ kapitoly se zabývajı́ kvantovou ne-Gaussovostı́. Ta před-
stavuje dalšı́ stěžejnı́ kvantovou vlastnost, která vylučuje nejen
klasické stavy, ale i všechny směsi Gaussovských stavů, kam patři
i stlačené stavy světla. V práci byla odvozena kritéria rozpoznáva-
jı́cı́ kvantovou ne-Gaussovost světla s velkým střednı́m počtem
fotonů i pro stavy s pozitivnı́ Wignerovou funkcı́. Kritéria for-
mulujı́ podmı́nky na odezvu detektoru tvořeného několika lavi-
novými foto-diodami. Tato kritéria je možné uplatnit na stavy
blı́zké Fockovým stavům, které jsou ale znehodnoceny šumem
pozadı́ i optickými ztrátami. Tyto vlastnosti činı́ zavedená kritéria
vhodnými kandidáty pro evaluaci kvantové ne-Gaussovosti real-
istických stavů světla tvořeného vı́ce fotony, což bylo prověřeno
experimentálně. Koncept kvantové ne-Gaussovosti byl rozšı́řen
na n-fotonovou kvantovou ne-Gaussovost, která tvořı́ hierarchii
s řádemn. Tento řád určuje, kdy přı́pravu stavů blı́zkých Fockové-
mu stavu |n〉 nelze chápat jako působenı́ Gaussovských operacı́
na superpozici nižšı́ch Fockových stavů. Pro rozpoznánı́ těchto
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vlastnostı́ byla odvozena kritéria měřená na stejném schématu,
který detekuje kvantovou ne-Gaussovost.
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