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Abstract

This report provides results of the thesis with the title Advanced iden-
tification of quantum properties of the light. It explores nonclassicality
and the quantum non-Gaussianity, which represent key properties use-
ful for the quantum technologies. The thesis derive criteria of both the
quantum aspects and gives a comprehensive analysis of realistic states
that exhibit them. It also involves results of experiments proving fea-
sibility of the presented theory.
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1 Introduction

Since photons are bosons, many of them can have identical properties,
and therefore they can be treated collectively by a single wave function.
This collective behavior is so significant for the light that the classical
optics investigates only the wave features and ignore the corpuscular
aspects completely. A fundamental property of the waves that classical
optics examines is the coherence [B1]. A row of experiments, including
the Young double slit experiment [B2] or the Arago white spot in the
center of a shadow threw by a circular object [1], explored the coher-
ence. The physics developed in the twentieth century showed that the
wave description of light is incomplete. First signals appeared in the
thermodynamics where an idea to quantize the electromagnetic field
enabled clarification of the spectral properties of the thermal radiation
[B1]. It opened a path leading to an explanation of corpuscular aspects
of light that had been hidden so far by laws of nature.
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The corpuscular aspects say that the energy of a wave function of
light gains an integer multiple of a small unit of the energy correspond-
ing to an energy of a single photon. The coherent aspects, known for
bright beams, are kept even when light is so weak that it comprises
only a single-photon having the indivisible unit of the energy. All in-
terference experiments from the classical optics can be repeated with
a single-photon and the interference fringes remain visible for many
repetitions [B2]. It strikes our intuitive concept of nature where ob-
jects are either indivisible particles or waves that can always split and
spread to the whole space. A photon picks the scenario of its behaving
according to an experiment and performed detection.

A theory explaining the classical theory of coherence by terms of
the quantum optics was established by R. Glauber and E. C. G. Sudar-
shan in 1963. They identified a narrow class of quantum states of light
that behave like a classical wave when a detector measures the inten-
sity of these states [2, 3]. Their theory is broadly used for distinction of
attractive states going beyond the classical solution of Maxwell’s equa-
tions. The quantum non-Gaussianity has recently appeared as a more
demanding reference for quantum aspects, which light can possess [4].
The quantum non-Gaussianity inspects whether light overcomes both
the classical theory of coherence and even the linear dynamics in the
quantum optics, which is used to generate squeezed states of light [5].
The thesis related to this report provides a comprehensive analysis of
both the nonclassicality and the quantum non-Gaussianity in the con-
text of currently developing quantum technologies.

2 Methods

Fundamental states of light

The quantum optics stems from replacing the measurable quantities in
Maxwell’s equations by operators. These equations applied on light
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confined in a virtual box yields Hamiltonian [B2]

H= Zwk (aliak + ;) , (1)
k

where k is the wave vector distinguishing the modes, wy is the fre-
quency of oscillations, ay is the annihilation operator and aL is the
creation operator. These operators obey the commutation relation

[akl , aTkJ = Ok, ko (2)

Further, we can avoid the dependence of these quantities on k because
only a single-mode light is considered in the following. Let us introduce
the Fock states |n) that correspond to the eigenstates of the Hamilto-
nian, i. e.

Hin) = Eqln), ()

where E,, is the energy of the Fock state |n) with n being an inte-
ger. The creation and annihilation operator in the Hamiltonian are not
hermitian operators, and therefore they do not represent any measure-
ment. Nevertheless, they are important for building the quantum the-
ory of light. They affect the Fock states according to [B3]

any = V- 1)
alln) = Vn+1ln+1). (4)

The relations show the creation operator increases the energy by a sin-
gle unit and the annihilation operator reduces the energy by a single
unit.

The Fock states are appropriate for description of corpuscular as-
pects of light. For description of the wave features, it is convenient to
introduce the coherent state |«) that is defined as [B3]

ale) = ala). ()
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The expansion in the Fock state basis yields

o) =23 S ©

Since the coherent states behave similarly as coherent waves in clas-
sical theory of the electromagnetic field, they are used for explanation
of classical theory of coherence.

Representation of light

Detectors responding on the light in quantum optics measure quanti-
ties depending on ordering of the creation operator a' and annihilation
operator a. An interaction of the light with a detector dictates which
ordering describes a measurement properly. For convenient evaluation
of measured results, a representation of light inherent to a given order-
ing is useful. Common detectors register light by absorbing photons.
It leads to a normal ordering when all creation operators are on the left
from the annihilation operators [6]. Besides that, the homodyne detec-
tion technique measures always symmetrical combination of the cre-
ation and annihilation operators. For a formal representation of light
in those ordering, we introduce two characteristic functions [B2]

Xo(B.B) = Tr |pe? =0
Xn(B,87) = Tr[pel'e] )

where p is a density matrix. They are defined in symmetric and normal
orderings. Their inverse Fourier transformation gives rise to

Wea) = 15 [ (B8P0
Paa) = 13 (@0 e ds
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The function W (v, o*) is called the Wigner function and it quantifies
results of the homodyne detection. The value in the origin corresponds
to the mean value of the parity operator, i.e.

1 i
W(0,0) = —((-1)*“ 9
(0,0) = 5 (1", ©)
which indicates the Wigner function obtains negative values for some
states.
The following function P in (8) allows us to represent of any density
matrix by [3]

p= [ Pla)alalda. (10)

However, the formal definition in (8) does not guarantee the function
P is an ordinary function. Some states acquire the function P that is
negative or even more singular than the Dirac’s delta function. It clas-
sifies states of light according to behaving of the function P. Quantum
states possessing the function P corresponding to a density probability
function are sufficient for explaining the classical theory of coherence.

Nonclassicality

The classical theory of coherence investigates impacts of the stochastic
processes on the coherence of light. Used detectors respond to the in-
tensity of the light in a good approximation. A degree of coherence is
quantified by correlation functions [B1]. Clarifying the classical coher-
ence by the quantum optics follows from substituting the amplitudes
of the coherent waves in the correlation functions by the annihilation
and creation operators that are set in the normal ordering. It gives rise
to a series of the correlation functions [2]

) B 1
g( )(7’1’ ...,Tnfl) o W

(a"(Tp1) X ... x a'(0)a(r—1) X ... x a(0)), (11)
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which behave as the correlation functions in the classical theory for
some class of quantum states. All the correlation functions equal one
for the coherent states (5), which indicates the coherent state approxi-
mates a classical coherent wave in this detection. Therefore, the func-
tion P in (10) corresponding to a density probability function describes
stochastic processes affecting the coherence. States with such a func-
tion P represent quantum analogues of classical waves, and therefore
these states are called classical. Contrary, the quantum states with the
function P not being the density probability function are beyond the
classical description and are denoted as nonclassical states.

The second-order correlation function g(?) (7) was historically used
the most for recognition of the nonclassical states [7, 8]. All the classi-
cal states exhibit super-Poissonian statistics meaning that ¢(*(0) > 1
[9]. Therefore, violation of the inequality discloses the nonclassical-
ity. This phenomenon is called sub-Poissonian statistics. Also, anti-
bunching that is associated with growing ¢(?)(7) for 7 > 0 reveals the
nonclassical states [9].

Detectors that enable observation of the nonclassicality are single-
photon avalanche diodes (SPADs). A SPAD is sensitive even to single-
photon states but it does not allow us to recognize a number of arriving
photons [10]. Therefore, the detection of the nonclassicality restricts
employing ¢(?) () only for a limit of very weak states since the SPADs
measure the moments of the annihilation and creation operators only
approximately [11]. Measuring nonclassicality of any possible states
of light requires criteria imposing conditions only on responses of em-
ployed detectors.

Basic unitary operators and quantum non-Gaussianity

Unitary operators transforming a state to another states describes the
evolution of light in closed systems. Let us introduce simplest exam-
ples of such operators. Classical driving of an optical mode underlies
evolution that describes the operator [B4]

D(a) = e @—0a’ (12)
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The operator is called a displacement operator. When it acts on the
vacuum, it produces the coherent state, i.e.

) = D(a)[0). (13)

It represents a definition of the coherent state equivalent to (5). An-
other unitary operator obtains a form [B4]

S(¢) = eflal) -eva?, (14)

It stems from a driving Hamiltonian H = i [g (aT)2 — g*a2bq , where

b and b' are operators associated with a pumping light. When the
pumping is a strong undepleted classical beam, these operators can be
substituted by amplitudes $ and 5* and the Hamiltonian gets a linear
form yielding the unitary operator (14). The operator can reduce the
quantum noise of the canonical coordinate X = a+a' or the canonical
momentum P = i(a 4 a') below the quantum noise of the vacuum.
Thus, the operator (14) is called squeezing. It is used to identify a new
class of states given by [5]

|, §) = S(=£) D()]0). (15)

In analogy with the nonclassicality, the mixtures of the states |« &)
constitute a new quantum aspect called quantum non - Gaussianity. It
is identified by inequality

p# [ Pla.9la,o)a fldad, (16)

where the function P(«, ) is some density probability function of its
arguments. The quantum non-Gaussianity is a more demanding con-
dition than nonclassicality because only some nonclassical states are
quantum non-Gaussian.

The last introduced unitary operator describes interference of light
on a beam-splitter or interference in linear optical couplers in fiber op-



2 METHODS

tics. The operator obtains a form [B4]

t

192, (17)

UBS — efa1 ag —Kk*a

where the subscripts differentiate the interacting modes. It allows us
to determine interference of two coherent states by

Ups(T)|o)|B) = |[VTa—V1-Tp)
® |VI—Ta+VTB). (18)

It shows the amplitudes of the coherent states transform as coherent
waves in classical optics. Transformation of Fock states can be ex-
pressed by

1
(\/Tal —V 1-— Tag)m
nlm!

(V1 = Tay + VTaz)"|0)|0). (19)

Ups(T)|m)|n) =

When one of the modes is occupied by the vacuum, the photons in the
second mode are split according to the binomial law as classical parti-
cles. Some detection networks use this phenomenon for an estimation
of a number of photons.

Measuring statistical properties of light

A sequence of BSs enables partial estimation of photon number distri-
bution when SPADs measures the outgoing spatial modes. Fig. 1 de-
picts possible schemes. The distribution of clicks P, of those detectors
is given by a convolution

oo
Pn = Z Rn,kam (20)
k=n

where pi, = (k|p|k) is a probability of k arriving photons and R,, j, is
a response function of the detector on a Fock state |k), which is given
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a)

Figure 1: Examples of networks splitting a state of light among sev-
eral emerging modes detected by SPAD. The network can have a tree
structure (a) or split the light successively by a series of BSs (b).

by [11] .
- l
Rpp=1+ (”) (—1)! (1 - ) (21)
F ; l N

with NV being a number of spatial modes measured by SPADs. Alter-
natively, the Wigner function enables us to calculate the click distribu-
tion in the network as well. It is expressed by an overlap of the Wigner
function of the split state W and the Wigner function of the detector
response W, [12], 1. e.

Pn - /Wn(xlapl)”wxnapn)

X Ws(21,p1, vy T, P )dx1dpy ...dz, dpy,. (22)

This way of calculation is convenient especially for states with Gaus-
sian Wigner function because the integral leads to an analytic expres-
sion. Other states exhibit click statistics, which are better expressed
by (21). Both approaches allow us to quantify the detector response
for coherent states, Fock states and all Gaussian states that are split on
the network. These calculations give formulas that are important for a
theory exposing quantum aspects of the light.
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3 Nonclassicality

This section is based on the publications by L. Lachman et al. [T1] and
by P. Obsil and et al. [T3].

The concept of the nonclassicality is broadly exploited for evalua-
tion of quantum light. It differentiates the light with desirable aspects
from classical waves. A workhorse for a generation of the nonclassical
light have been parametric processes for the last three decades, which
enable radiation of the sub-Poissonian light by heralding [10, O1]. Cur-
rently, platforms exploiting ions, molecules or solid state sources are
being developed intensively. Their advantage is a level structure emit-
ting exactly a single-photon [O2]. However, background noise often
deteriorates them and the collection of light is very low in many exper-
iments [13]. Moreover, they are often fabricated in clusters behaving
as several independent emitters [O3]. Diverse criteria capture the non-
classicality inherent to such sources. They expose the nonclassicality
by homodyne detection [14], by a photon-number resolving detector
[15, O4, O5] or by a multi-channel detector [16]. We will investigate a
systematic approach giving ab-initio criteria for any detection scheme.
The criteria do not suffer by any involved approximation and as such
they are reliable for an arbitrary state.

A basic detection scheme utilizes simple splitting of light on a BS
and two SPADs for measuring the light as shown in Fig. 2. The scheme
is used for the approximate detection of the second-order correlation
function ¢(®) as well [7]. It was firstly exploited by Hanbury - Brown
and Twiss for measuring intensity correlation of light from a star [17].
Let us abbreviate their names by HBT when referring to the scheme in
the following. For our purpose, we introduce probabilities of no-click
of both SPADs Py and no-click of ith SPAD F, ;. The criterion follows
from considering the linear combination

F.(p) = Po+ aPy, (23)

where a is a free parameter. The functional (23) can be optimized over

10
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SPAD,

&

lens

source of light

Figure 2: An experimental scheme for detection of the nonclassicality.
A BS split the light from an ensemble of single-photon emitters and
SPADs measure the reflected and transmitted modes.

all classical states resulting in function F'(a), which discloses the non-
classicality when Ja : Py + aPyo > F(a). This condition can be sim-
plified to Py, > P(% or Pyo > Pola T (according to a used SPAD for
measuring Fy) with T" being the transmission of the BS. Their combi-
nation yields

Py1Py2
00

—1>0. (24)

It imposes a condition that is reliable for an arbitrary state. It can be
also formulated equivalently for click probabilities, which works out
P, s 1P, 5,2
——= <1 25
Lt <, (25)
where Ps; = 1 — Py, is a click probability of ith SPAD and P, =
1— Py — Py + Poo denotes a probability that clicks of both SPADs
coincide. Although both conditions are equivalent their left sides rep-

11
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resent different parameters useful for evaluation of the nonclassicality
manifested in this layout.

A relevant model of a measured state shows behaving of those con-
ditions in experiments. The model takes into account a density matrix

p =MD+ (1= n)]0)(0]*" ® ps (26)

describing light radiated from an ensemble of N single-photon emit-
ters that Poissonian noise p; with a mean number of photons 7 de-
teriorates. The parameter 7 stands for the efficiency of emission and
detection. The SPADs respond on the state by

Py = (1—n/2)Ne /2
Py = (1 — U)Neiﬁ. (27)
Putting the relations into the conditions (24) and (25) reveals the state
is nonclassical for arbitrary background noise if the emitters contribute
with 7 > 0. The parameter d = PZ2/Py — 1 does not depend on the
background noise and it grows with a number of emitters. Contrary,
the parameter o = P./P? is insensitive to optical losses in a limit of
weak states with N7 < 1 and 7 < 1 but it converges to one for both
a high number of emitters NV and high 7. Movement of some states in
d-a plot is depicted in Fig. 3.

The only limiting factor in measuring nonclassicality of the state
(26) are experimental error bars. They are quantified by a variance of
the parameters in finite measurement. The variance of the parameter
d works out

V. sin ¢ 2
d) = —
var(d) ) (2\/]3700 + cos qzb)
Vo [ coso . ) 2 g2
+ —= — sin + — Voo, 28
P(]20 (2 /7P()0 ¢ POO 00 ( )

where ¢ = arctan 1/2, V, is the variance of P, and V, is the variance
of an auxiliary quantity Py + Fpo. The expected error bars achieved

12
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0.9¢ =y 10
0.8f
0.7 4 0
0.6 A

0.5¢

0.01 0.02 0.03d

Figure 3: Figure demonstrates evaluation of a state (26) by the param-
eters a and d. Blue points correspond to states having n = 0.1 and no
deteriorating background noise. The numbers represent numbers of
single-photon emitters of these states. The vertical lines indicate how
the background noise influences the parameters and the vertical lines
show effects of losses.

13
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_ 108
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‘ ‘ | | — N
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Figure 4: Expected behaving of the ratio d//var(d) for the state (26)
with growing number of contributing emitters N. The colors distin-
guish the parameters in the model. A number of experimental runs is
10%. When the ratio is above one, the measured state is likely in the
nonclassical region.

in measurement of the considered state are shown in Fig. 4. It demon-
strates that the larger number of emitters prolongs measurement time
that is necessary for achieving sufficient ratio between the parameter
d and its error bars.

Those theoretical predictions were verified by an experiment where
light came from an ensemble of ions in the Paul trap. The ions inter-
acted with pumping beams and emitted a single-photon due to a tran-
sition between addressed energy levels. A lens collected the emission
from the ions and aimed the light at a BS with two SPADs as Fig. 2 de-
picts. The recorded data was evaluated by the parameter d for pulsed
and continuous pumping regimes. The nonclassicality was observed
on light emitted from hundreds of ions. It certified the predicted de-
pendence of the parameter d on the number of emitters. We fitted the
experimental outputs by our model for a deeper analysis of the results.
The fit considers the collection efficiency depends on a position of an

14
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N (pulsed)
0.77 10 26 74 143 196

d x1077 (pulsed)
o |l N w
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™
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Figure 5: Figure presents measured parameter d for a crystal having n
ions. Whereas the red points correspond to the parameter measured in
pulsed regime the yellow points were achieved in the continual regime.
The green triangles show predicted parameter d in the pulsed regime.
Measurement of the scattered laser light certificated the threshold d =
0. The blue and gray points present the achieved results.

ion. The background noise was neglected in the fit. Fig. 5 presents the
experimental results together with the calculated fit.

In summary, we derived a criterion, which can disclose the non-
classicality of multi-photon light reliably. The criterion is formulated
by a condition imposed on the parameters o or d. We suggested us-
ing these parameters for advanced evaluation of sources emitting non-
classical light due to their convenient behaving for light emitted from
an ensemble of single-photon emitters. The nonclassicality of such a
sources was detected on light radiated from up to 275 emitters.

4 Advanced tests of nonclassicality

The section outlines the publication by L. Lachman and R. Filip [T6].

15
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-) array of SPADs
w
.)'
4

input states ).

linear optical network

Figure 6: A general scheme where nonclassicality manifests itself. It is
realized by a linear optical network that guides several states of light
towards an array of SPADs.

The nonclassicality always manifests itself relative to detection. It
stimulates for exploring nonclassicality in layouts different to the HBT
layout. Mach-Zehnder interferometer represents a next possibility al-
lowing us to test first-order coherence and nonclassicality simultane-
ously. Another extension is detection of a famous Hong - Ou - Mandel
effect [18] when the interference of two indistinguishable photons on
a BS cancels cases when these photons emerge separately from the BS.
Generally, a scheme constitutes a linear optical network where n im-
pinging single-photon states are split, interfere among themselves and
emerge in m > n modes [19]. Such linear optical networks have ap-
plication in the quantum protocols [20-23]. Furthermore, emerging
integrated optics allows their fabrication on a chip where the param-
eters of the network can be driven electrically [24, 25]. A formulation
of a library of criteria for such layouts provides new insights into non-
classical manifestation. A new aspect of the criteria is sensitivity to the
Poissonian background noise, which nonclassicality in the HBT layout
does not exhibit. A row of layouts giving gradually more demanding
criteria establishes a hierarchy if some conditions are arbitrarily lenient
and some are arbitrarily strict. Such hierarchy enables an operational
comparison of the single-photon states.

A general scheme enabling the detection is depicted in Fig. 6. It
transforms the annihilation operators a = (a1, ..., a,,) of the input

16
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modes by
a, = Uaia (29)

where U is m X m unitary matrix characterizing the linear-optical
network and a, stands for a vector of the annihilation operators for
the outgoing modes. Detection of nonclassicality can be realized when
single-photon states input n < m modes in the layout. A density ma-
trix of a realistic single-photon state approaches p, ® p5. It is composed
of the attenuated Fock state p,, = 1[1)(1]|+(1—7)|0)(0| deteriorated by
the background noise pp with the Poissonian statistics. It encourages to
derive a general library of nonclassical criteria from linear functionals
with forms

P, + aPyq1, (30)

where P, refers to a probability that a selected group of n SPADs reg-
isters n clicks and P, 1 means that at least n+ 1 SPADs give a positive
response. The criteria exclude all classical states

Z /Pwl,...,wn (aw,la ceey aw,n)|aw,1>1,w<aw,1| &
W1 yeeeyWn,

.® |aw,n>n7w<aw,n|d2aw,1...anw,n, (31)

where P,,(qt 1, ..., Q n) is a density probability function, the subscripts
1,...,n distinguish spatial modes and w indexes all the remaining de-
grees of freedom. The optimizing of (30) over classical states gives rise
to a criterion derived exactly for a specific layout. Because the opti-
mizing is done over classical states with any degree of coherence, the
criteria can be applied to states showing coherent properties and even
to incoherent states, which do not interfere in the layout. The criteria
always reveal nonclassicality of the ideal single-photon states without
noise. The noise contributions affect the nonclassicality diversely ac-
cording to the detection scheme.
A simple splitting of light in HBT scheme does not allow us to de-

rive criteria that are sensitive to background noise in the state p, ® pp.
A natural extension leads to layouts where more BSs split light as in

17
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SPAD,

Figure 7: Examples of interfering layouts where nonclassical manifes-
tation imposes nontrivial conditions on realistic single-photon states. It
can be achieved in the Mach-Zehnder interferometer (a) for states that
propagate incoherently or with partial coherence at most. Demanded
networks for two copy states can be a modified version for the Hong-
Ou-Mandel test (b) or a layout with two BSs and three SPADs (c).

Fig. 1. In a conceivable formulation, a success corresponds to cases
when n SPADs register a signal and error means that n+ 1 SPADs click
simultaneously. However, it still does not establish the criteria giving
some non-trivial conditions on the state p, ® p5. It appeared that the
demanded criteria can be formulated only for networks in which in-
terference between photons occurs. Fig. 7 presents examples of such
networks.

Mach-Zehnder interferometer (MZI) depicted in Fig. 7a) allows tests
of the first-order coherence. When light exhibits the maximal first-
order coherence, recognized by the maximal visibility, the MZI acts as
a BS and the analysis of the nonclassicality is the same as for the HBT
test. If light shows the partial first-order coherence, the MZI manifests
the nonclassicality differently to the HBT layout. The nonclassicality in
this scheme excludes all possible mixtures of coherent states with any

18
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08 T,=0.4
0.6 T,=0.3
04 T,=0.2
02 T,=0.1
& n ul
0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

Figure 8: A hierarchy of conditions in the Mach-Zehnder interferom-
eter for the state p, ® pp for Ty = 1/2 and different settings of 7.
Whereas the noise pj is assumed to be always incoherent, the state p,,
is coherent (a) or incoherent (b). In both cases, the nonclassicality is
manifested if the parameters 77 and 7 are above thresholds depicted by
the solid lines.

first-order coherence. The criteria are derived from a linear functional
P+ abPs, (32>

where P is a probability of a click of SPAD; in Fig. 7a) and P; refers
to a probability of simultaneous click of both SPADs. Optimizing (32)
over the classical states is equivalent to getting an optimum over single-
mode coherent states |«),,. The MZI splits the coherent state |a),, as a
BS with the transmittance 7" and the reflectance R, which are given by

T = TiTy+ RiRy — 2cos A(Z) TiToR1Rs
R = TRy + RiT5 + 2cos A¢ T\ Ty R1 R, (33)

where T7 5 are the transmittances of the beam-splitters BS; 2, I 2 are
their reflectances and A¢ corresponds to a phase shift given by prop-
agation between the two paths in the interferometer. A resulted cri-
terion is solvable only numerically but an experimentally significant
corner with a very low probability P» < 1 offers an approximate con-

19
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7]
1’7 1]

0.8 038
T;=0.1

0.6| T1=02 T1=03,0, 0.6 T;=0.1

T;=0.2
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Figure 9: Nonclassical conditions recognizing nonclassicality in the
layout depicted in Fig. 7b). The conditions are imposed on parame-
ters 7 and 7 in the model state (p, ® pi)®? for the case when the states
py are indistinguishable a) and distinguishable b). The lines correspond
to thresholds that have to be surpassed to achieve nonclassicality. The
colors distinct different transmittances 17 of BS;. The transmittance of
BSs, is fixed to the value 0.5.

/| R
P, P 34
1> 1-R 2 ( )

where R = T1 Ry + R1T» + 2y/1115 R Ry. The criterion (34) goes
beyond the HBT test when an inspected state does not propagate co-
herently. Fig. 8 demonstrates nonclassicality of the single-photon state
pn @ py in this layout. The figure shows the condition (34) is becoming
strict arbitrarily when the transmittances are approaching 7 = 1 -1}
because in that case, the optimal coherent state exhibits no error events.

Interfering networks where two optical signals interfere mutually
are different to both the HBT test and to the MZI. The layout where the
Hong - Ou - Mandel dip is measured [18] can be extended for a test of
photon indivisibility as depicted in Fig. 7b). The functional possesses a
form

dition

P, 4+ aPs, (35)

where the success probability P, means that clicks of SPAD; and SPAD,
coincide and error probability P53 corresponds to simultaneous click of
all three SPADs. Because the interference of two single-photon states
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4 ADVANCED TESTS OF NONCLASSICALITY

on a BS is independent of their relative phases [26], the refused classi-
cal states are assumed to be phase randomized, i. e. the nonclassicality
means

p 7 3 [ Panllaln 8l (lalu)

wi,w2

® pw272(|/8’w2)d’a’md’mww (36)

where P, w, (|&t|w;,|B|w,) is a density probability function and p,, ;
occupies the ith spatial mode, oscillates with a frequency w; and obeys
the Poissonian statistics, i. e.

puri(lal) = e S o /nljn) (n]. (37)
n=0

Optimizing over the state (36) gives rise to a condition, which ideal
single-photon states p;, ® p;, satisfy regardless of their indistinguisha-
bility. The realistic states with noise pass the criterion only when the
error probability is surpassed sufficiently. Fig. 9 shows the condition
on the parameters 7 and 7 required by nonclassicality. Although the
transmittances of the BS; and BSs alter the nonclassical condition, they
can not establish an arbitrarily tolerant condition, and therefore the
layout does not enable a formulation of the hierarchy. To do that, the
network can be arranged according to Fig. 7 c). The criteria involve a
success probability corresponding to clicks of SPAD; and SPAD» and
an error probability quantifying clicks of all three detectors. Fig. 10
presents the conditions establishing the hierarchy. Their demanding
increases with growing transmission of both BSs.

In summary, we explored nonclassical manifestation in linear opti-
cal networks. A hierarchy of nonclassical criteria sensitive to noise was
formulated for the Mach-Zehnder interferometer and a layout where
two single-photon states interfere. According to setting of the trans-
mission of BSs in those networks, the criteria get less or more demand-
ing. Such nonclassical manifestation goes beyond the HBT test and any
other splitting scheme where the nonclassicality is observable regard-
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Figure 10: A predicted nonclassical thresholds in the layout in Fig. 7c).
The hierarchy for two copies of the state p, ® pj is resolved for trans-
mittances of BSs 77 = T5 = T'. The solid lines represent thresholds
above which the states manifest the nonclassicality. The states p;, are
assumed indistinguishable (a) or distinguishable (b).

less of the background noise.

5 Quantum non-Gaussianity

The section provides results of the publications by L. Lachman et al.
[T2] and by L Straka et al. [T4]

Nonlinearity is a very attractive aspect in the quantum optics. It
is represented by processes beyond the processes driven by Hamilto-
nian mostly quadratic in the annihilation and creation operators. The
nonlinearity is inherent only to states with a non-Gaussian Wigner
function, which was broadly explored [27-29]. However, some mix-
tures of coherent states also possess the non-Gaussianity [30]. For this
substantial reason, this concept has to be upgraded. An unambiguous
recognition of the nonlinearity has to refuse all stochastic mixtures of
Gaussian states, i.e.

p# / P(¢,0)D(@)S(©)[0) (0|51 (6)D ()dPad®,  (38)
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5 QUANTUM NON-GAUSSIANITY

where P(&, «) is a density probability function. The introduced quan-
tum property (38) is called quantum non-Gaussianity. Since the quan-
tum non-Gaussianity refuses all classical states and the squeezed states,
it represents a new benchmark for an evaluation of the quantum as-
pects.

The negativity of the Wigner function is a possible evidence of the
quantum non-Gaussianity, which all the Fock states exhibit. How-
ever, the negativity is too challenging for photonic systems that the
losses affects because it disappears when the losses exceed fifty per-
centages. It stimulates for exploring criteria disclosing the quantum
non-Gaussianity of states with the positive Wigner function, especially
in the early stage of many experimental platforms. The criteria ex-
ploit the homodyne measurement [31], combine the homodyne mea-
surement with the intensity detection [30, 32] or utilize the heterodyne
detection [33]. A different criterion involves only outputs of a photon-
number-resolving detector [4]. It compares a response of the detec-
tor on a single-photon with a response on multiphoton contribution
and uncover the quantum non-Gaussianity of the attenuated Fock state
n|1)(1| 4+ (1 — 1)|0)(0|. It was modified for the HBT layout [O6] and
achieved experimentally [34, 35, O7]. It was also explored concerning
the security of the quantum key distribution [36] and single photon-
phonon-photon transfer [37]. The following step aims to disclose the
quantum non-Gaussianity of all the attenuated Fock states. Such a the-
ory goes before the current experiments in optics where only multi-
plexing of many spatial or temporal modes can simulate the statistical
behaving of the high Fock states so far.

The quantum non-Gaussianity of multiphoton light can recognize
a multi-channel detector depicted in Fig. 11. The detector responds to
a state propagating through the network by a sequence of clicks of the
SPADs. Let us consider n clicks of n SPADs as success events and n + 1
clicks as error events due to an expected response to the Fock state |n).
The linear functional

Fa(p) =P, +aPpt1 39)
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5 QUANTUM NON-GAUSSIANITY

Figure 11: Quantum non-Gaussian light is recognized in a multi-
channel detector that splits incoming light by an array of BSs. Out-
going light is measured by SPADs. If the detector contains /N SPADs a
criterion incorporating a probability of a success event corresponding
to simultaneous clicks of N — 1 selected SPADs and a probability of
error event meaning that all /N SPADs register a click can be tested.

yields the criteria after optimizing over all mixtures of Gaussian states.
The optimizing is done over a pure state |, {) defined in (15). After
exclusion the parameter a, the criteria impose conditions on the mea-
sured probabilities of the success and error. The Fig. 12 shows the re-
sulted conditions in log — log plot. The numerical thresholds can be
approximated in a limit of weak states by conditions

n-+2 4 PnJrl "

where x obtains the greatest value among those satisfying H,,+1(z) =
0. Inequalities (40) represents the most rough approximations, which
have to be used carefully, because they are below the exact thresholds
and therefore they can lead to a false positive. On the other hand, they

illustrate sensitivity of the quantum non-Gaussianity to imperfections
in realistic states.
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Figure 12: Hierarchy of criteria revealing quantum non-Gaussianity in
log — log plot. The solid lines represent thresholds that have to be ex-
ceeded to achieve the quantum non-Gaussianity. The colors distinguish
a particular definition of success and error probabilities. The dashed
lines depict an analytic approximate thresholds that are appropriate
for states with a low error probability.

The criteria can be applied to revealing the quantum non-Gaussianity
of multiphoton light with a density matrix approaching

par = 11 (1] + (1 = )[0) (0[], (41)

where 7 is a product of emission and detection efficiency and the M de-
notes a number of emitters. Since the states p,, \s are restricted sharply
in a number of photons, their quantum non-Gaussianity is always ob-
servable by a criterion where a number of SPADs measuring the suc-
cess events equals to a number of emitting single-photon states. When
a number of SPADs giving success is lower than a number of single-
photon emitters, the criterion imposes a condition on the parameter
n as shown in Fig. 13. Thus, the observation of the quantum non-
Gaussianity requires a complex detector that reveals the truncation of
photon statistics. Considering the background noise and losses leads
to a more realistic model where the quantum non-Gaussianity can be
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number of emitters

1 2 3 4 5 6 7 8 9 10

0.00 | 0.30 | 0.42 | 0.58 | 0.52 | 0.56 | 0.58 | 0.60 | 0.61| 0.61| 1

0.00 | 0.27 | 0.40 | 0.46 | 0.51 | 0.54 | 0.57 | 0.58 | 0.60 | 2

0.00 | 0.26 | 0.38 | 0.45| 0.50 | 0.53 | 0.56 | 0.58 | 3

0.00 | 0.24| 0.36 | 0.44 | 049 | 0.52| 0.55| 4

0.00 | 0.22| 0.35| 0.43| 0.48 | 0.51| 5

0.00 | 0.20| 0.33| 0.41| 047 | 6

threshold 0.00 | 0.19| 0.31| 040 | 7
onn

(syuana sadons ay) Bunosjap
$J0}08)9p JO Jaquinu) UOLBJD JO JOpIO

0.00 | 0.15| 0.30| 8

0.00 | 0.13| 9

0.00 | 10

Figure 13: The table states minimal efficiencies 7 in an ideal state p;) a/
required for the detection of quantum non-Gaussianity when a crite-
rion with the success probability quantifying clicks of n SPADs is em-
ployed.

lost. The state obtains a form p,, rs ® p5 With pj representing noise hav-
ing Poissonian distribution of photons with a mean number of photons
n. The losses decrease the parameters 77 and n by the factor 7. In the
approximation of states with strongly suppressed noise, the quantum
non-Gaussianity imposes a condition
- MaHYM (2)
e

(42)

It shows, the robustness of the quantum non-Gaussianity is inversely
proportional to the mean number of photons of the noise. This method-
ology substantially improves the robustness of the detection to losses
in comparison with utilizing the negativity of the Wigner function for
the detection of quantum non-Gaussianity.
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Number of merged single photons
1 2 3 4 5 6 7 8 9
T T T T T T T T

o
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Figure 14: The table presents the robustness of the quantum non-
Gaussianity against optical losses when the hierarchy of criteria is ex-
ploited [T4]. The horizontal axis quantifies how many heralded states
were merged and the vertical one shows the employed criterion. The
solid boxes correspond to cases when the quantum non-Gaussianity
was recognized. The numbers in these boxes stand for maximal atten-
uation in decibels that preserves the quantum non-Gaussianity. The or-
ange stripes below the diagonal identify inconclusive cases when error
bars cross the thresholds. The gray region stands for situations when
no data was acquired. The white region above the diagonal represents
combinations when the criteria fail in the recognition.

The quantum non-Gaussianity was recognized experimentally us-
ing spontaneous parametric down-conversion in a periodically poled
KTP crystal. The multiphoton light was simulated by taking n suc-
cessive time windows, where the trigger detector registered a signal.
Therefore, the light was produced by multiplexing of temporal modes.
The total number of SPADs in the realized detector was ten. It ren-
dered to test the criteria from functional (39) up to n = 9. The criteria
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applied on the state revealed the quantum non-Gaussianity of a state
with the mean number of photons up to five despite detection losses.
Relevant information associated with the quantum non - Gaussianity
is its robustness against optical losses. The table in Fig. 14 summarizes
which criteria revealed the quantum non-Gaussianity of merged her-
alded states together with predicted robustness against losses in deci-
bels.

In summary, the quantum non-Gaussianity of multiphoton light
was explored. The hierarchy of conditions is derived for a multi-channel
detector, where the incoming light is split equally among many SPADs.
Observation of that property on ideal states without the noise is possi-
ble only by a sufficiently complex network of BSs. The quantum non-
Gaussianity of more realistic states deteriorated by the background
noise can be lost. The criteria impose stricter conditions than the non-
classicality does, and therefore the quantum non-Gaussianity can be
exploited for a tighter identification of quantum features, which light
can possess. Simultaneously, the detection is more tolerant of losses
than the negativity of the Wigner function. The theory was supported
by an experimental test where light with a mean number of photons
up to five exhibited the quantum non-Gaussianity.

6 Genuine n-photon quantum non-Gaussianity

The section summarizes the publication by L. Lachman et al. [T5].
The individual Fock states differ themselves in topology of the neg-
ative regions in the Wigner function. Since the Gaussian operations
preserve the topology, it stimulates to introduce a hierarchy of quan-
tum attributes that classifies states approaching the Fock states and that
is preserved from influence of the squeezing or displacement operators.
These requirements are fulfilled by a n-order property of a pure state

) # S(€)D () [thn—1), (43)
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= |0)

Figure 15: A scheme demonstrating the genuine n-photon quantum
non-Gaussianity. The white area stands for the mixtures of Gaus-
sian states. All color regions correspond to states beyond those mix-
tures. Different colors represent a hierarchy of new quantum prop-
erties, which classify the quantum non-Gaussian states with negative
(opaque region) and even positive Wigner function. Each property is
inherent to a respective Fock state and cannot be achieved by the lower
Fock states and their superposition.

where [¢,_1) = Z;é cx|k) corresponds to some superposition of
Fock states up to |n — 1). Light with a density matrix possesses this
quantum aspects when it is not any statistical mixture of the right
side in (43). Such property is called genuine n-photon quantum non-
Gaussianity and it has never been discussed in the literature before.
Fig. 15 illustrates a scheme for these properties.

Detection of the genuine n-photon quantum non-Gaussianity uti-
lizes the same layout that is exploited for the recognition of the quan-
tum non-Gaussianity of the multiphoton light. Also, the criteria in-
volve the same probabilities of the success P, and the error P, 1. How-
ever, the imposed conditions are different since the thresholds cover a
broader class of states. The resolved thresholds can be approximated
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by
nnl(2+n)? 4 9
P ~ £3 [384 + (896 + 307n + 99
1 55296(n + 1)n-1 [384+ (396 + 307n + 99n°)]
Py~ 6064 120 4+ n?)] (44)
" 12(n + 1)» ’

where t parametrizes the thresholds. Fig. 16 depicts the exactly re-
solved thresholds for the second and third order and compare them
with an approximate solution (44). The figure also shows results of a
Monte-Carlo simulation that verifies the thresholds. It was performed
by generating randomly squeezing, displacement and the core state
|9—1) in 10% (2nd order) and 108 (3rd order) cycles. Importantly, the
thresholds cover even multimode states where the core state |¢,,—1)
obeys a condition

(ma| @ ... @ (marlthn1) # 0 (45)

and the excluded states involve all Gaussian modulation of the state
|thn—1). It justifies to apply the thresholds to measurement where the
multiphoton light is prepared by merging single-photon states. Fig. 16
shows the experimental results that achieve the genuine two and three-
photon quantum non-Gaussianity. It also presents robustness of these
properties against the losses and the background noise contributions.
The limiting factors for achieving the following genuine fourth-photon
quantum non-Gaussianity appeared the dark counts of the detector and
measurement time, which would take several months.

In summary, we introduced a hierarchy of quantum attributes that
classifies the quantum non-Gaussian light according to its approach to
the Fock states in the multi-channel detector. Although the quantum
properties are motivated by behaving of the negative regions of the
Wigner function, the derived criteria tolerate even significant losses.
The experimental feasibility of the hierarchy was manifested by an ex-
periment where multiplexing heralded single-photon states simulated
a photon statistics of the Fock states. This experimental test revealed
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Figure 16: Threshold of the genuine n-photon quantum non-
Gaussianity up to order three is compared with experimentally
achieved data and results of a Monte-Carlo simulation. The states sur-
passing the criteria are in the orange regions. The solid black lines in
the boundary of the orange regions are thresholds derived exactly, the
dashed black lines are the approximate solutions (44). The gray points
correspond to results of a Monte-Carlo simulation. Brown points rep-
resent the measured states. The sequences of the brown points in the
vertical direction demonstrate an impact of background noise on the
measured states. The dashed blue lines predict a movement of the states
when they are affected by attenuation. The theoretical robustness is
shown above the blue dashed lines.

the genuine n-photon quantum non-Gaussianity up to the order three.
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7 CONCLUSION

7 Conclusion

The nonclassicality and quantum non-Gaussianity were investigated
with focus on their manifestation by multiphoton states of the light.
Criteria revealing these two properties stemmed from the methodology
introduced in [4]. Firstly, we acquired a criterion revealing the nonclas-
sicality in the HBT layout and applied it to a relevant model considering
a cluster of single-photon emitters radiating light under background
noise with the Poissonian statistics. The criterion always recognizes
the nonclassicality of the state regardless of a number of single-photon
emitters or an amount of the Poissonian background noise deteriorat-
ing the source. The only limiting factor is the experimental time needed
for sufficient suppression of error bars. Thus, the nonclassicality repre-
sents a test that is feasible for a broad group of experimental platforms.
Layouts, where the nonclassicality is examined, were extended from
the HBT layout to advanced networks. It enables recognition of dif-
ferent nonclassical aspects that the light can possess. The explored
detection schemes involve the Mach-Zehnder interferometer and two
layouts where two states of light interfere. Obeying the criteria by re-
alistic states was investigated for a model considering an ideal single-
photon state that background noise deteriorates. The criteria impose
non-trivial condition on parameters of the model state. A layout estab-
lishes a hierarchy of criteria if it formulates an arbitrary lenient or strict
condition on the background noise according to settings of parameters
in the layout. Such hierarchies were formulated and analysed.
Further, the quantum non-Gaussianity of the multiphoton light was
explored on a network splitting light among many spatial modes. We
derived a sequence of conditions recognizing this quantum property
and exploited them for revealing the quantum non-Gaussianity of the
light emitted from an ensemble of single-photon emitters influenced by
Poissonian background noise. In realistic situations, the quantum non-
Gaussianity gets lost due to losses and background noise. The quan-
tum non-Gaussianity represents an appropriate test when observation
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of the nonclassicality is too easy but the negativity of the Wigner func-
tion cannot be achieved due to the losses. The feasibility of the quan-
tum non-Gaussianity for realistic states was verified by measuring the
property on a state produced by multiplexing heralded states radiated
from the spontaneous parametric down-conversion process.

The quantum non-Gaussianity was utilized for discrimination of
quantum features that classify the Fock states. These features establish
an ordered hierarchy called genuine n-photon quantum non-Gaussianity,
where n denotes the lowest Fock state that possesses the quantum
property. Criteria recognizing the genuine n-photon quantum non-
Gaussianity were derived and achieved experimentally up to order three.
The photon statistics of the Fock states was simulated by multiplex-
ing heralded states radiated from the spontaneous parametric down-
conversion process.

The following research aims to explore these quantum aspects in
more platforms. Firstly, impacts of coherence on the nonclassicality are
going to be investigated more deeply. Simultaneously, we are going to
explore the quantum non-Gaussianity of motional states of ions and
analyse the quantum non-Gaussianity of light emitted from the cavity.

8 Shrnuti v Ceském jazyce

Tato dizertacni prace se zabyva nastroji umoznujicimi rozeznat
neklasi¢nost a kvantovou ne-Gaussovost svétla. Tyto dvé kvan-
tové vlastnosti se projevuji u fady dulezitych kvantovych stavu
svetla, které jsou klicové pro radu aplikaci kvantove fotoniky a
hraji tedy stimulujici roli pro moderni kvantové technologie.
Dizerta¢ni prace zacina struénym tvodem do kvantové op-
tiky, kde jsou popsany pojmy a postupy dulezité pro text prace.
Nasleduji kapitoly pojednavajici o samotném védeckém vyzkumu.
Ten zacCina odvozenim kritéria neklasicnosti pro experimentalni
schéma, kde svétlo prochazi délicem a nasledné je méreno dvéma
lavinovymi foto-diodami. Toto schéma umoznuje méfit ¢‘® funkci
pouze za aproximativnich pfedpokladu, které fotonové svétlo majici
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vice fotonu nespliuje. Odvozené kritérium neklasi¢nosti obsahuje
pravdépodobnosti kliku, které jsou pfimo méritelné, a tim umoziuje
rozpoznat vérohodné neklasi¢nost svétla emitovaného z velkého
souboru jedno-fotonovych emitoru i v ptipadé, Ze je svétlo zne-
hodnoceno Sumem.

Neklasicnost je kvantova vlastnost, kterou nelze oddélit od
detekce. Proto se muze neklasi¢nost na jinych detekénich schéma-
tech projevovat jinak. Predmétem nasledujici kapitoly je neklasic-
nost manifestovana na Mach-Zehnderové interferomtru a dalsich
dvou schématech, kde dvé kopie jedno-fotonovych stavu inter-
feruji. Oproti predchozi situaci, tato nova kritéria davaji podminku
na mnozstvi Sumu. Tato podminka Ize ménit nastavenim parametru
v detekénim schématu. Pokud se v zavislosti na téchto parame-
trech stane libovolné naro¢nou ¢i libovolné tolerantni, prislusna
kritéria tvori hierarchii, ktera umoznuje operacionalisticky porov-
nat dva realisticke jedno-fotonové stavy.

Dalsi kapitoly se zabyvaji kvantovou ne-Gaussovosti. Ta pred-
stavuje dalsi stézejni kvantovou vlastnost, ktera vylucuje nejen
klasické stavy, ale i vSechny smési Gaussovskych stavu, kam patti
istlacené stavy svétla. V praci byla odvozena kritéria rozpoznava-
jici kvantovou ne-Gaussovost svétla s velkym stfednim poctem
fotonu i pro stavy s pozitivni Wignerovou funkci. Kritéria for-
muluji podminky na odezvu detektoru tvoreného nékolika lavi-
novymi foto-diodami. Tato kritéria je mozné uplatnit na stavy
blizké Fockovym stavum, které jsou ale znehodnoceny Sumem
pozadiioptickymi ztratami. Tyto vlastnosti ¢ini zavedena kritéria
vhodnymi kandidaty pro evaluaci kvantové ne-Gaussovosti real-
istickych stavu svétla tvoreného vice fotony, coz bylo provéfeno
experimentalné. Koncept kvantové ne-Gaussovosti byl rozsiren
na n-fotonovou kvantovou ne-Gaussovost, ktera tvori hierarchii
s tadem n. Tento fad urcuje, kdy pfipravu stavu blizkych Fockove-
mu stavu |n) nelze chapat jako pusobeni Gaussovskych operaci
na superpozici nizsich Fockovych stavu. Pro rozpoznani téchto
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vlastnosti byla odvozena kritéria mérena na stejném schématu,
ktery detekuje kvantovou ne-Gaussovost.
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