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Abstract 
This thesis deals with quantifying uncertainty in the predictions of deep learning models. 
While they achieve state of the art results in many areas of computer vision, their outputs 
are usually deterministic and provide by themselves little information about how certain the 
model is about its prediction. This is important especially in the domain of medical image 
analysis where mistakes are costly and the ability to filter uncertain predictions would allow 
a supervising physician to review the relevant cases. 

This work applies several different uncertainty measures developed in recent research to 
deep learning models trained on a cephalometric landmark localization task. They are then 
evaluated and compared in a set of experiments which aim to determine whether each of 
the uncertainty measures provides us with useful information about the model's confidence 
in its predictions. 

Abstrakt 
Táto práca sa zaoberá určením neistoty v predikciách modelov hlbokého učenia. Aj ked 
sa týmto modelom darí dosahovať vynikajúce výsledky v mnohých oblastiach počítačového 
videnia, ich výstupy sú väčšinou deterministické a neposkytujú mnoho informácií o tom, 
ako si je model istý svojou predpoveďou. To je obzvlášť dôležité pri analýze lekárskych 
obrazových dát, kde môžu mať omyly vysokú cenu a schopnosť detekovat neisté predikcie 
by umožnila dohliadajúcemu lekárovi spracovať relevantné prípady manuálne. 

V tejto práci aplikujem niekoľko rôznych metrík vyvinutých v nedávnom výskume pre 
určenie neistoty na modely hlbokého učenia natrénované pre lokalizáciu cefalometrických 
landmarkov. Následne ich vyhodnotím a porovnávam v sade experimentov, ktorých úlohou 
je určiť, nakoľko jednotlivé metriky poskytujú užitočnú informáciu o tom, ako si je model 
istý svojou predpoveďou. 
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Rozšířený abstrakt 

Ú v o d 

Táto práca sa zaoberá určením neistoty v predikciách modelov hlbokého učenia. Aj ked 
sa týmto modelom darí dosahovať vynikajúce výsledky v mnohých oblastiach počítačového 
videnia, ich výstupy sú väčšinou deterministické a neposkytujú mnoho informácií o tom, 
ako si je model istý svojou predpoveďou. To je obzvlášť dôležité pri analýze medicínskych 
obrazových dát, kde môžu mať omyly vysokú cenu a schopnosť detekovat neisté predikcie 
by umožnila dohliadajúcemu lekárovi spracovať relevantné prípady manuálne. 

V tejto práci aplikujem niekoľko rôznych metrík vyvinutých v nedávnom výskume pre 
určenie neistoty, na modely hlbokého učenia natrénované pre lokalizáciu cefalometrických 
landmarkov. Následne ich vyhodnotím a porovnávam v sade experimentov, ktorých úlohou 
je určiť, nakoľko jednotlivé metriky poskytujú užitočnú informáciu o tom, ako si je model 
istý svojou predpoveďou. 

Popis r i e š e n i a 

Pre porovnanie analyzovaných metód som si vybral dataset cefalogramov [45], ktorý ob­
sahuje naanotované pozície devätnástich anatomických landmarkov. Navrhnuté modely pre 
vstupný obrázok predikujú devätnásť heat máp, každá odpovedá jednému landmarku. Heat 
mapa je následne konvoluovaná s gaussovským filtrom a ako finálna pozícia landmarku je 
vybraná lokácia maxima vo výslednej aktivačnej mape. 

V práci porovnávam tri metriky pre odhad neistoty modelov hlbokého učenia. Dve 
pochádzajú z nedávneho výskumu v tejto oblasti a sú aplikovateľné na rôzne typy úloh 
(klasifikácia, detekcia objektov a ďalšie). Tretiu metriku som navrhol sám, pričom je ap­
likovateľná primárne pre regresiu landmarkov. 

Pre riešenie úlohy som navrhol architektúru konvolučnej neurónovej siete (CNN) vy­
chádzajúcu zo siete U-Net [36], ktorá je populárna pri spracovaní medicínskych dát. Na jej 
základe som natrénoval tri modely zvané Baseline, Ensemble a MC-Dropout (každý využí­
vajúci jednu z metrík), ktoré poskytujú predikciu pozície landmarkov spolu s odhadom jej 
neistoty. 

Baseline je C N N model bez dropout vrstiev, ktorý využíva pre odhad neistoty maximum 
aktivácie heat mapy predikovanej pre každý z landmarkov. Pr i návrhu tejto metriky som 
očakával, že pre landmarky, u ktorých si model predikciou nie je istý, bude tá to hodnota 
relatívne nižšia v porovnaní so správne predikovanými landmarkami. 

Ensemble je ensemble model zložený z 15 Baseline modelov a vychádza z myšlienok 
prezentovaných v práci Lakshminarayanan et al. [5]. Pre odhad neistoty využíva rozptyl 
predikcií jednotlivých členov ensemblů. 

Model MC-Dropout aplikuje prístup, ktorého primárnym autorom je Gal [9], a ktorý 
reformuluje konvolučné siete využívajúce dropout vrstvy ako Bayesovské modely. Pre odhad 
neistoty využíva rovnako rozptyl predikcií, ktorý sa ale v tomto prípade počíta z 15 vzorkov 
vygenerovaných z modelu Monte Carlo vzorkovaním. 

Výkon všetkých troch implementovnaých modelov na lokalizačnej úlohe je porovnateľný 
s najlepším riešením [45] v súťaží z ktorej pochádza použitý dataset. Natrénované modely 
zaostávajú v úspechu detekcie s chybovou toleranciou 2 a 2.5 mm, čo je spôsobené tým, 
že boli trénovací dataset obsahoval obrázky podvzorkované na veľkosť 128x128. To je z 



hľadiska cieľov práce akceptovateľné, keďže v nej ide primárne o porovnanie metrík neistoty 
a nie o dosiahnutie čo najlepšieho výsledku z hľadiska lokalizácie. 

Efektivitu jednotlivých metrík neistoty som porovnal pomocou sady experimentov, 
ktorých cieľom bolo nájsť existenciu vzťahu medzi správnosťou predikcie a výškou danej 
metriky. Pre každý predikovaný landmark produkujú natrénované modely jednak jeho pozí­
ciu a zároveň hodnotu neistoty. Pre testovacie obrázky je predikovaná pozícia landmarku 
porovnaná s jeho anotovanou pozíciou, pričom výsledkom je radiálna detekčná chyba. 

Prvým experimentom bola korelačná analýza medzi veľkosťou radiálnej detekčnej chyby 
pre daný landmark a odpovedajúcou hodnotou metriky neistoty. Maximum aktivácie heat 
mapy zaznamenalo slabý výsledok s Pearsonovým korelačným koeficientom p = —0.13 (zá­
porné p pre tú to metriku indikuje užitočnosť, keďže predpokladáme, že neistota modelu 
klesá so stúpajúcou hodnotou aktivácie). Rozptyl predikcie modelu Ensemble dosiahol 
p = 0.31 a a rozptyl predikcie modelu MC-Dropout p = 0.22, čo naznačuje pre tento 
experiment vyššiu efektivitu týchto metrík neurčitosti. 

Vizuálna analýza predpovedí modelu naznačila, že testovacie dáta sú príliš podobné 
trénovacím a modely na nich dosahujú tak vysokú úspešnosť, že metriky neistoty nemajú 
veľkú výpovednú hodnotu. V reálnom nasadení je však možné očakávať, že modely budú 
pracovať aj s dátami, ktoré sú značne odlišné od tých, ktoré videli počas tréningu. Model 
by mal byť schopný upozorniť na dáta, ktoré sú preň natoľko neznáme, že si svojou pred­
poveďou nie je istý. Vzhľadom na to, že som nemal k dispozícii naanotovaný dataset s 
odlišnou distribúciou, všetky tri modely som podtrénoval (tréning bol ukončený pred dosi­
ahnutím konvergencie) a experiment zopakoval. 

Rozptyl predikcie modelu MC-Dropout dosiahol v tomto prípade v korelačnej analýze 
s radiálnou detekčnou chybou p = 0.86 a rozptyl predikcie modelu Ensemble p = 0.85, čo 
je podstatné zlepšenie oproti plne natrénovaným modelom. Maximum aktivácie heat mapy 
sa podobne zlepšilo a dosiahlo p = —0.35. Je teda možné usúdiť, že užitočnosť všetkých 
troch metrík rastie spolu so vzdialenosťou evaluovaných dát od tréningovej distribúcie dát. 

V ďalšom experimente som aplikoval na celý testovací dataset elastickú deformáciu. 
Vytvoril som tak jeho 40 kópií, pričom na každú z nich bola aplikovaná deformácia s rôz­
nou magnitúdou. Cieľom bolo overiť, či existuje korelácia medzi hodnotou jednotlivých 
metrík neistoty pri predikcii a rastúcou mierou deformácie dát. Hypotézou bolo, že neis­
tota modelov bude rásť spolu so silou deformácie aplikovanej na dataset, čo opäť overí 
ich schopnosť detekovat dáta vzdialené od tréningovej distribúcie. V experimente bola 
vykonaná korelačná analýza medzi silou deformácie aplikovanej na dataset a priemernou 
hodnotou metriky neistoty naprieč predikovanými landmarkami. Pre všetky metriky bola 
spomenutá schopnosť jednoznačne potvrdená. Najlepší výsledok dosiahlo maximum aktivá­
cie heat mapy Baseline modelu s p = —0.95, ďalej MC-Dropout s p = 0.85 a Ensemble s 
p = 0.81. 

Pr i tvorbe cefalogramu je v ideálnom prípade pacientova hlava perfektne zarovnaná so 
sagitálnou rovinou a nedocháza k žiadnej rotácii v laterálnom smere. To však nemusí v 
reálnom nasadení modelu vždy platiť (pacient môže hlavou pri snímaní pohnúť), čo môže 
cefalogram znehodnotiť pre potreby predikcie landmarkov. Cieľom posledného experimentu 
bolo overiť schopnosť metrík neistoty detekovat cefalogramy, v ktorých je hlava pacienta lat-
erálne natočená. Keďže dataset laterálne natočených cefalogramov nie je voľne k dispozícii, 
vytvoril som ho použitím C T snímku lebky. C T objem bol najprv laterálne zrotovaný v 
rozmedzí od -45 do 45 stupňov v axiálnej rovine. Výsledný objem bol následne premiet­
nutý na sagitálnu rovinu sčítaním hodnôt intenzít prekrývajúcich sa voxelov. Následne som 
analyzoval koreláciu medzi veľkosťou rotácie a hodnotou metrík neistoty. Všetky tri mod-
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ely a ich metriky neistoty sú schopné laterálnu rotáciu detekovat. Odpovedajúce korelačné 
koeficienty sú p = —0.91 pre Baseline, p = 0.95 pre Ensemble a p = 0.88 pre MC-Dropout. 

Zhodnotenie v ý s l e d k o v 

Všetky t r i analyzované metriky neistoty sa ukázali byť užitočné pri detekcii dát pochádza­
júcich z distribúcie vzdialenej od tej tréningovej. Metriky založené na rozptyle predikcií 
mali konzistentne lepšie výsledky naprieš vykonanými experimentami ako maximum ak-
tivácie heat mapy. Oba rozptyly predikcií vykazovali v experimentoch podobné chovanie, 
pričom metrika modelu Ensemble mala mierne lepšie výsledky. To je možné vysvetliť 
väčším množstvom parametrov, ktoré sú dostupné ensemblů 15 modelov oproti jednému 
C N N modelu založenom na metóde M C dropout. Experiment s podtrénovanými modelmi 
zároveň ukázal, že užitočnosť všetkých troch metrík stúpa, ak sú evaluované dáta pre model 
neznáme. To je dôležitý výsledok, pretože v reálnom nasadení v medicínskych systémoch, 
ktoré pracujú s dátami z rôznych prístrojov, je takáto situácia najpravdepodobnejšia a 
model by mal byť schopný robustnej reakcie na širokú škálu vstupov. 

Prezentovaný výskum by mohol pokračovať rôznymi smermi. Dataset anotovaných ce-
falogramov pochádzajúci z iného prístroja by bol užitočný pre potvrdenie vykonaných ex­
perimentov. Modely by tiež mohli byť natrénované pre lokalizáciu úplne odlišnej sady land-
markov. Ďalej by mohli byť metriky založené na rozptyle predikcií evaluované na odlišnej 
úlohe akou je napríklad klasifikácia alebo segmentácia. 
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Chapter 1 

Introduction 

The relatively recent major work of Krizhevsky et al. [18] in 2012 which achieved state-of-
the-art results on the ImageNet [38] classification task, has started a wave of successful deep 
learning applications in various scientific areas [37] that now also extends to the medical 
field [25]. 

The shortcoming of deep learning models is that they are usually treated as deter­
ministic functions and provide only point estimates of predictions and model parameters 
without any associated measure of uncertainty. This may lead to situations in which we 
cannot tell whether a model is making reasonable predictions or just randomly guessing [7]. 
This is a crucial disadvantage for medical diagnosis which places heavy emphasis on risk-
management. The information about the reliability of model predictions is a central re­
quirement for their incorporation into the health-care diagnostic systems [47]. Deep learning 
models should thus provide each prediction with an estimate of its uncertainty. This would 
allow the diagnostic system to distinguish between easy cases which can be handled auto­
matically and difficult ones which may instead be referred to a supervising physician for 
review [25]. 

On the other hand, models based on probability and uncertainty have been extensively 
studied in the Bayesian machine learning community. They provide a probabilistic view 
that offers confidence bounds when performing decision making [7] but usually come with 
a prohibitive computational cost. To take advantage of the qualities of deep learning models 
and still have the option of assessing the uncertainty of their predictions, it has been 
suggested [9] to recast them as Bayesian models using the popular dropout [13] technique 
often used for regularization. However, if turned on at test time, it can also be viewed as 
a way to approximate Bayesian inference by averaging multiple model predictions. 

Additionally, while deep model ensembles have long been known to increase perfor­
mance in terms of predictive accuracy [5] this work also explores a recent non-Bayesian 
line of research [20] which approaches them as an alternative way for obtaining uncertainty 
estimates. 

Chapter 2 of this thesis provides an overview of deep learning applications in medicine. 
Chapter 3 first introduces the concept of uncertainty in machine learning more formally 
and then describes the recent research which aims to augment deep learning models with 
the ability to estimate it. Chapter 4 designs the solution to a landmark localization task 
on a dataset of cephalometric images using the Bayesian and non-Bayesian approaches to 
uncertainty modelling as well as a third uncertainty measure proposed by the author. The 
implementation details are described in Chapter 5. Chapter 6 evaluates the performance of 
the trained models and their corresponding uncertainty measures in a set of experiments. 
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Chapter 2 

Deep Learning in Medical Imaging 

Convolutional neural networks (CNNs) have been used for image analysis for decades. In 
spite of their initial success they waned in popularity until the ImageNet competition in 2012 
in which a C N N model trained by Krizhevsky et al. [18] achieved state-of-the-art results 
by a large margin. This was made possible by the efficient use of graphics processing units, 
data augmentation and novel components of C N N architectures such as rectified linear units 
or dropout regularization [44]. 

CNNs have been applied to medical image analysis as far back as 1993 when Lo et al. [40] 
used them for lung nodule detection. Similarly to the general computer vision field, they 
did not catch on mainly due to long training times and difficult training [12]. This began 
changing in 2015 when the number of papers documenting deep learning in medical image 
analysis began to increase rapidly. Since then, deep learning has become the dominant 
theme at conferences in this field [27]. 

2.1 Challenges for Applicat ion 

Practitioners applying deep learning to medical image analysis frequently face challenges 
that commonly appear in the medical field. Fortunately, these can often be addressed by 
implementing existing approaches from the general field of computer vision (such as using 
data augmentation when there are not enough training examples). 

2.1.1 Dataset Size 

Deep learning is most effective when applied to a large dataset of images since this allows 
one to take full advantage of all the parameters of a deep model without overfitting the 
training data. Models competing in the ImageNet [38] challenge are trained on millions of 
annotated images. On the other hand, it is not uncommon to have less than a thousand 
images in a medical dataset. Various strategies have been proposed to prevent overfitting 
including (i) taking 2D or 3D image patches as input instead of full-sized images in order 
to reduce input size and the number of required model parameters, (ii) applying data 
augmentation to expand the dataset, (iii) using models pre-trained on a large amount of 
natural images as feature extractors with an added classifier layer on top or (iv) fine-tuning 
an entire model pre-trained on natural images [39]. 

4 



250 

2012 2013 2014 2015 2016 2017 

• All • CNN RBM RNN • AE • Other • Multiple 

Figure 2.1: Deep learning papers published in the medical imaging field by year. Differ­
ent color bars correspond to various type of deep learning models used in the papers. The number 
of papers for 2017 was extrapolated from the papers published in January [27]. 

2.1.2 Label Availability and Quality 

Even in the cases where there are enough images to train a deep model, it may be difficult 
to acquire the ground truth annotations. Creating them requires expert knowledge and is 
often a time-consuming process [27]. A possible alternative is to take advantage of crowd-
sourcing to create non-expert labels [34]. 

Unfortunately, even expert annotations do not guarantee that the data will be imme­
diately usable for training. Medical image annotations frequently suffer from label noise 
due to disagreement among the annotators. As an example, a popular lung nodule dataset 
LIDC-IDRI [10] was annotated by four radiologists. Upon reviewing the annotations, it 
was discovered that the number of patterns they did not unanimously classify as nodules 
was three times as large as the number of nodules they agreed on [27]. 

2.1.3 W i t h i n Class Heterogeneity 

Classification or segmentation in medical imaging is often treated as a binary task (healthy 
or unhealthy, object or background). This is an oversimplification since each of these classes 
is usually heterogeneous. A healthy tissue may contain samples that are completely normal 
but also several categories of benign findings that may look quite different. This may lead 
to systems that are able to detect the normal subclasses very well but fail for the rarer 
ones. Converting the task to a multiclass classification problem is problematic due to the 
time constraints of the expert annotators [27]. 

2.1.4 Class Imbalance 

Medical image datasets often contain an imbalanced ratio of images from the different 
classes. It is particularly common that there is a relative shortage of images from the ab-
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Figure 2.2: t-SNE visualization of skin cancer classes. The picture contains the final CNN 
layer representations of four different skin diseases. The colored point clusters show how the model 
groups the diseases [6]. 

normal class. For example, breast cancer screening has led to the acquisition of large number 
of mammograms but most of these are normal. Even if suspicious lesions are present, they 
are mostly benign. This problem is typically addressed using data augmentation to extend 
the dataset with extra samples from the under-represented class [27]. 

2.2 Applications Tasks 

There is a broad range of different tasks that automatic analysis can help solve in the 
medical field. The most important of these along with some applications are described 
below. 

2.2.1 Classification 

In the medical setting, an image classification task is usually binary which means predicting 
whether the input image corresponds to a normal (no disease) or abnormal class, but it is 
also possible to distinguish between multiple classes. The dataset sizes are usually small 
for this task, which has necessitated the use of transfer learning from networks pre-trained 
on natural images [27]. 

Pre-training on natural images may still be beneficial even if there is an abundance of 
training data available. Esteva et al. [6] achieved performance comparable to dermatologists 
on a skin cancer classification task by using a Google Inception v3 C N N pre-trained on 
1.28 million images from the ImageNet dataset and fine-tuned on 129,450 images of skin 
lesions (see Figure 2.2). 

(i 



Figure 2.3: CheXNet lung disease detection results. The CheXNet model receives a chest X-
Ray on input and outputs the probability of a pathology. In the example above, it correctly detects 
pneumonia and localizes areas (in red color) which it considers most indicative of the disease [35]. 

Figure 2.4: U-Net segmentation results. Both sets of pictures contain an input image and 
a corresponding U-Net output segmentation visualized using a colored mask. The ground truth is 
marked by a yellow boundary line [36]. 

2.2.2 Object Detection 

Object detection is concerned with localizing a usually unknown number of objects in 
an image. In the medical setting, these are often pathologies or lesions and finding them is 
a very important part of the diagnosis process. When done manually by physicians, it is 
usually a labor-intensive task which has led to an extensive amount of research in this area 
even before the advent of deep learning. The work has focused on both improving detection 
accuracy and reducing the time spent by human experts on each case [12]. 

Architectures used for object detection are frequently similar to or based on architectures 
used for classification. A recent example is the CheXNet [35] network trained by Rajpurkar 
et al. which achieved state-of-the art performance comparable to radiologists when detect­
ing abnormalities on chest X-Rays. The 121-layer C N N was trained from scratch on 112,120 
chest X-Ray images annotated with up to 14 diseases (see Figure 2.3). 

2.2.3 Segmentation 

Segmentation is the most common task addressed by deep learning in medical imaging 
papers. It is usually defined as distinguishing between a set of foreground classes (one 
or several different organs or substructures) and a background class. This allows for the 
further analysis of volume and shape of the objects of interest in the data [27]. 
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C OPTIMIZATION 

Input ^Predict ion Target Landmarks 

Figure 2.5: Landmark localization by heatmap regression. The CNN is trained to predict 
a single heatmap for each landmark. The heatmap contains a Gaussian activation at the predicted 
landmark location [32]. 

The first deep learning approaches to segmentation utilized neural networks which re­
ceived patches obtained by sliding a window over the pixels in the input image. A n example 
of this approach is work done by Ciresan et al. [3] which performed pixel-wise segmentation 
of electron microscopy imagery. One disadvantage of patch-based training approach is that 
patches overlap and this leads to redundant computation [27]. 

Current segmentation approaches use some variant of a fully-convolutional network [28] 
(FCN) which contains only convolutional layers without any fully-connected ones. The main 
advantage of FCNs is that they take the entire image as input and thus see the full context. 
The most popular of these in medical imaging is the U-Net [36] architecture proposed by 
Ronneberger et al. for microscopy image segmentation (see Figure 2.4). 

2.2.4 Landmark Localization 

Anatomical landmark localization is crucial in medical image analysis both as a frequent 
pre-processing step for segmentation task and as a part of the clinical process of diagnosis, 
planning and therapy [27]. The model can either be taught to regress the (x,y) landmark 
positions directly, but it is also possible to teach it to predict a landmark heatmap as 
proposed by Pfister et al. [33]. In the latter case, the network is trained on ground truth 
landmark heatmaps (usually a single plane per landmark) where the landmark position is 
marked by a Gaussian. 

Landmark localization is able to successfully utilize fully-convolutional network archi­
tectures often used for segmentation. This usually amounts to changing the number of 
prediction channels in the final layer to the number of detected landmark heatmaps and 
modifying the loss function. Payer et al. [32] tested several F C N architectures on two 
datasets of hand scans achieving state-of-the-art results using their newly proposed archi­
tecture. 
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Chapter 3 

Uncertainty in Deep Learning 

Standard deep learning regression and classification tools do not necessarily capture model 
uncertainty. In a classification task (in which a model learns to predict the probability of 
an example belonging to each of multiple classes), the outputs of the softmax function1 are 
often interpreted as model confidence which may not be the case by default. A model may 
produce a high softmax output (suggesting high confidence) and still be be uncertain about 
the prediction [9]. A n example of this behavior can be seen in Figure 3.1. 

The usefulness of the raw model predictions for assessing uncertainty varies between 
different tasks. It also depends on the loss function and whether the model outputs were 
designed with such a goal in mind. For example, a landmark localization task can be stated 
in such a way, that a model learns to predict a continuous heatmap for each landmark being 
detected. The landmark position is then computed from the heatmap by convolving it with 
a Gaussian kernel of the same size that was used to produce the ground truth heatmaps 
(which contained a Gaussian at the landmark's location) and finding the position of the 
maximum activation. It is possible that the value of the maximum activation could in this 
case be a useful indicator of how certain the model is about its prediction 2. 

Even in the latter case however, we might still benefit from using methods that have been 
designed specifically for assessing uncertainty instead of relying solely on model predictions. 

lrThe softmax function is a generalization of the logistic function that is used to "squash" a ^-dimensional 
real-valued vector z to a ^-dimensional vector of real values <r(z) where each entry is in the range (0,1) 
and all entries add up to 1 [1]. 

2The validity of this hypothesis will be examined as part of the experiments performed in this thesis. 

(a) Arbitrary function/(x) as a function of data (b) <r(/(x)) as a function of data x (softmax 
x (softmax input) output) 

Figure 3.1: Softmax input and output sketch for a binary classification problem. Training 
data is contained between the dashed gray lines and function point estimate is given by the solid 
line. The shaded area indicates function uncertainty. Disregarding uncertainty, the point x* located 
far from the training data is classified as class 1 with a confident softmax prediction close to 1.0. [9] 
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This chapter begins with a discussion of different types of uncertainty used in machine 
learning. Section 3.2 then describes a recently proposed Bayesian approach to extracting 
uncertainty estimates from deep learning models utilizing dropout [43]. Section 3.3 is 
concerned with the same task but uses recently suggested non-Bayesian approach of model 
ensembles to produce the desired uncertainty estimates. Both approaches are first described 
theoretically and this is followed by an overview of the practical results achieved by their 
respective authors. Section 3.4 describes the uncertainty measures that can be used in 
practice with deep learning models. Finally, Section 3.5 is concerned with different ways of 
evaluating the quality of uncertainty measures themselves. 

3.1 Types of Uncertainty 

Two different kinds of uncertainties are commonly considered in modelling. 
Aleatoric uncertainty refers to the uncertainty which corresponds to the noise inherent in 

the process being observed [16]. For example, when observing a sample under a microscope, 
even if the sample does not change, the configuration of the microscope's camera and the 
interaction of photons with the sample lead to our inability to capture the same image twice. 
The uncertainty of this random process is irreducible beyond a certain point. Instead of a 
single value, we might predict a distribution which captures this intrinsic randomness [46]. 

We can further distinguish between homoscedastic aleatoric uncertainty which stays 
constant for different model inputs and heteroscedastic aleatoric uncertainty. For the latter, 
some inputs to the model may produce noisier outputs than others [16]. When explicitly 
modeling alaetoric uncertainty in a model, using heteroscedastic uncertainty provides us 
with more flexibility. We can for example consider an image regression task, in which we 
are predicting pixel intensity values using a probability distribution (and not just a point 
estimate as is common in deep learning). A homoscedastic approach would assign the 
same variance to each probability distribution of pixels in the image while a heteroscedastic 
approach would provide the model with an option to learn a different tailored variance for 
each pixel resulting in a greater expressive power of the model [46]. 

Epistemic uncertainty on the other hand, refers to uncertainty in model parameters or 
model structure. It captures our ignorance about which model (with which parameters) 
generated our data. This uncertainty is therefore reducible if more data were available to us, 
which would allow us to specify the model parameters more precisely. Consequently, epis­
temic uncertainty becomes more important as the amount of collected data decreases [16]. 

3.2 Bayesian Modell ing 

Bayesian modelling is concerned with epistemic uncertainty in model parameters. It es­
sentially aims to average the predictions of all possible settings of the model parameters, 
weighing each setting by its posterior probability given the training data [43]. This is 
of course much more computationally expensive than a simple parameter point estimate 
commonly used in deep learning. 

This section contains the recent theoretical research conducted primarily by Gal [9] [7] [8], 
which allows us to reformulate both fully-connected neural networks and convolutional neu­
ral networks with dropout [43] layers as Bayesian models which can model uncertainty. The 
end result of this theoretical work is that we can obtain practical measures of uncertainty 
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from already existing deep learning architectures, with either no or only slight modifications 
(namely the addition of dropout layers) [9]. 

Section 3.2.1 describes the mathematical rationale for using dropout in a neural network 
as a method of Bayesian inference. Section 3.2.2 extends it to convolutional neural networks 
as well. Section 3.2.3 follows with an overview of experiments performed by Gal and 
Ghahramani [9] in order to demonstrate the usefulness of their method on real datasets. 

A detailed review of Bayesian inference, variational inference and Bayesian Neural Net­
works (BNNs) is contained in appendix A . l and a review of the dropout technique in 
appendix A.2. 

3.2.1 Dropout as Variational Inference in B N N s 

The Bayesian model parameters w of a Bayesian Neural Network (BNN) correspond to 
the weights in all L network layers. We can therefore define the model parameters as 
w = (Wj ) f = 1 [8] and the random output of the B N N as y = fw(x). 

In order to relate the approximate inference in a B N N to dropout training, we define 
the approximate variational distribution qe(Wi) of the model weights for every layer i of 
the network. The weights W ; are drawn from the approximating distribution as follows: 

W i = M i -d iag( [z i > 3 - ]g 1 ) (3.1) 

ZÍJ ~ Bernoulli(pi) for i = 1 , L , j = 1 , K i - \ (3.2) 

with the dimensions of each layer being Ki x -říj_i and the parameters of the variational 
distribution q$(w) defined as 9 = {Mj ,p j | i G 1 , L } . Zj j are Bernoulli distributed random 
variables with probabilities pi and M j are weights of the network being optimized. The 
diag (•) operator maps a vector to a diagonal matrix whose elements on the diagonal are the 
elements of the matrix. We can look at sampling from the distribution gg(W;) as applying 
dropout on the layer i in a network of L layers with weights ( M j ) ^ = 1 . Zj j = 0 corresponds 
to dropping the unit j in layer i — 1 as an input to layer i. Conversely, Zj j = 1 corresponds 
to keeping the unit active as an input to the next layer [8]. The dropout probabilities pi can 
either be fixed to a certain value (as is commonly done when using dropout) or learned [42]. 

We have thus approximated the posterior distribution p(w|X, Y ) of the B N N weights 
w given some dataset {X, Y } with a variational distribution q$(w) based on dropout. We 
can now use it to approximate the expectation of the B N N random output y = f w (x) under 
the posterior distribution of the B N N weights. The dropout distribution is still difficult to 
marginalize but we can easily sample from it using a Monte Carlo (MC) approach [42] 

E p (w|x,Y)[fw(x)] = j p(w|X,Y)fw(x)o!w (3.3) 

« J ^(w)fw(x)dw (3.4) 

1 T 

« - J ^ f W i ( x ) , w i..T~?e(w) (3.5) 
i=l 

This approach to computing the prediction of a network containing dropout layers is 
called MC dropout. In practice, this amounts to computing the mean of T stochastic 
forward passes through the network [9]. Note that this is approach differs from the one 
traditionally used for dropout deep learning models called weight averaging [43] and does 
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not lead to the same networks predictions. The predictive uncertainty over a prediction 
is obtained by computing the sample variance of the T stochastic forward passes. This 
approach works with existing dropout models without modification and the forward passes 
needed to compute M C dropout can be done concurrently leading to a constant running 
time comparable with weight averaging [9]. 

Based on the preceding theoretical groundwork, implementing a Bayesian neural net­
work with Bernoulli approximate variational inference amounts to adding dropout layers 
after each weight layer in a neural network. The dropout layers are applied during training, 
and test time predictions are computed using equation 3.5. 

3.2.2 Bayesian Convolutional Neural Networks 

BNNs model all of their layers with a probability distribution. A l l of these have to be inte­
grated over when computing the posterior distribution. On the other hand, when dropout 
is used in a C N N , it is often applied only after the fully-connected layers. This strategy is 
equivalent to integrating only the fully-connected layers and taking point estimates of the 
parameter values of the convolutional filters. To produce a Bayesian C N N , dropout should 
be applied after both every fully-connected and convolutional layer [8]. 

To integrate over its filters, it is possible to reformulate the convolution as a linear 
operation (a matrix product). We also place a prior distribution over the filters in a manner 
similar to the one used for BNNs. The distribution then randomly zeroes the filters for 
different patches of the tensor used as convolution input. A Bayesian C N N can thus be 
implemented by applying a dropout layer after each convolutional layer 3 [8]. 

It is noteworthy that dropout applied after convolutional layers may perform poorly 
at test time when combined with the weight averaging approach of evaluating predictions. 
According to the experiments performed by Gal et al. [8], applying M C dropout at test 
time instead performs significantly better. 

3.2.3 Related Results 

Gal and Ghahramani [9] followed their theoretical work with experiments on real datasets 
for both regression and classification tasks. 

The performance of dropout networks for regression tasks is assessed on a dataset of 
atmospheric CO2 concentrations containing about 200 data points. The authors train 
model networks with 4 or 5 hidden layers and 1024 hidden units, either R e L U or TanH 
non-linearities and dropout probabilities of 0.1 or 0.2. A Gaussian process with a squared 
exponential covariance function is evaluated as well. The results are depicted in Figure 3.2. 
None of the models were able to capture the periodicity of the data and do not predict 
a correct value for an input far from the training distribution. However, standard dropout 
with weight averaging still provides a confident (but insensible) prediction whereas the other 
models provide an insensible prediction along with an estimate of its uncertainty. 

It is notable that the uncertainty of the M C dropout model with ReLUs keeps increasing 
further away with data while the uncertainty of the model with TanH non-linearities is 
bounded. The authors deduce that this behavior is related to the fact that R e L U non-
linearity does not saturate while TanH does. 

A n additional experiment is performed to evaluate the ability of M C dropout to express 
model uncertainty in a classification task. The authors train a LeNet [22] convolutional 

3Refer to the mentioned paper for a more in depth derivation of this result. 
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(a) Standard dropout with weight averaging (b) Gaussian process 

- 1 0 1 2 3 

(c) MC dropout with ReLU non-linearities (d) MC dropout with TanH non-linearities 

Figure 3.2: Predictive mean and uncertainties on the CO2 regression dataset for dif­
ferent models. The function observed based on training data is in red and left of the dashed blue 
line. The predictive mean of the models plus/minus two standard deviations (eight for 3.2d) is in 
blue. Each shade of blue corresponds to half a standard deviation. Point x* marked with a red 
dashed line appears far from the training data. Dropout model with weight averaging confidently 
predicts an insensible value and provides no uncertainty information. The other models also predict 
insensible values but with the added information that they are uncertain about their prediction. 
Uncertainty was estimated using 1000 forward passes for MC dropout [9]. 

(a) Softmax input scatter (b) Softmax output scatter 

Figure 3.3: A scatter plot of 100 forward passes of the softmax layer input and output 
for dropout LeNet. The x-axis shows the rotated image of the digit 1 that was received by the 
network on input. The y-axis shows: (a) the computed class scores used as softmax input and (b) 
the corresponding softmax output. The model predicts the digits [1 1 1 1 1 5 5 7 7 7 7 7]. Only the 
predictions for the three digits with the highest class scores are shown [9]. 
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network on the full MNIST [23] dataset and apply dropout before the last fully-connected 
layer with probability 0.5. The model is then evaluated on a continuously rotated image of 
the digit 1 as shown in Figure 3.3. It predicts the digits [1 1 1 1 1 5 5 7 7 7 7 7] for the 12 
images. 

The model always predicts the digit which has the largest class score (softmax input). 
When looking at the plot of the softmax input values in Figure 3.3b, if the uncertainty 
envelope of a class is far away from those of the other classes, then we can observe that it 
is classified with high certainty as measured by the variance of the predictions of all the 
forward passes in 4.1a. This happens for the three left-most and three right-most images. 
If on the other hand, the uncertainty envelope of the class scores intersects the envelopes 
of the other classes, then the uncertainty in the model predictions (softmax outputs) is 
much greater as determined by the same metric. Note that even in this case, the softmax 
output for a particular forward pass can be arbitrarily close to 1 and is a poor indicator of 
uncertainty. This is the case for one of the middle digits which is classified as a 5. 

3.3 Ensemble Modell ing 

A n ensemble of models is a set of models whose individual predictions are combined in 
some way (usually by a weighted or unweighted average) to produce the final ensemble 
prediction. It is a well established result that an ensemble of models improves predictive 
performance in comparison with the individual ensemble members, and a large amount of 
research has explored various methods of combining the individual models [5]. 

In general, there are two classes of ensemble models: randomization-based ensembles 
in which the individual members may be trained in parallel without any interaction, and 
boosting-based ensembles in which the individual members are trained sequentially. To de-
correlate the predictions of the ensemble members it is also possible to use a bagging strat­
egy in which each model is trained using a different random subset of the training set [20]. 
However, it has been observed [24] that for ensembles of deep models optimized for predic­
tive accuracy, random initialization of member models and training on the entire dataset 
independently is superior to the bagging strategy. 

3.3.1 Deep Ensemble Modell ing 

Using ensembles has recently been proposed by Lakshminarayanan et al. [20] as a viable 
alternative to Bayesian modelling (in practice implemented using M C dropout) for obtain­
ing epistemic (model parameter) uncertainty estimates from deep learning models. Aside 
from its Bayesian interpretation which was explored in Section 3.2.1, dropout may also be 
interpreted as an ensemble model combination [43] where the final network predictions are 
the average of the predictions of an ensemble of NNs sharing the same parameters. 

Lakshminarayanan et al. suggest that this view may be more plausible (and also valid 
for estimating predictive uncertainty) especially if the dropout probabilities are chosen 
arbitrarily, and are not learned along with the model weights, since any reasonable ap­
proximation to the Bayesian posterior distribution must be based on the observed training 
data [20]. 

The authors suggest training an ensemble of deep networks using a proper scoring rule 
(see section A.3 for a definition) as the training criterion. They also suggest using adver­
sarial training [11] to improve the results. But since they consider it optional to the main 
method, and it is mostly orthogonal to uncertainty modelling, I will not discuss it here. 
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The expected advantage of using a proper scoring rule as a loss function is that it should 
lead to predictions that are well-calibrated and honest (i.e., not overly confident). The 
predictions themselves should then be a good indicator of model uncertainty. Many loss 
functions commonly used for training NNs are already proper scoring rules. Popular exam­
ples include the score function S(pe, (y,x)) = logpe(y|x) used for likelihood maximization 
or the cross entropy loss function used for multiclass classification [20]. 

The usual approach utilizing NNs for regression problems consists of predicting a single 
value say /x(x) and optimizing the model parameters to minimize the mean squared error 
(MSE) on the training set defined as Yln=i(Vn ~ r*(x n)) 2 . The disadvantage of M S E is that 
it does not capture predictive uncertainty. Similar to [30], the authors instead use a network 
which outputs two values in the final layer (unique ones for each input): the mean /x(x) and 
the variance cr2(x) > 0 . The observed value is then treated as a sample5 from a Gaussian 6 

distribution with these parameters and used to minimize the negative log-likelihood (NLL) 
cost: 

- l o g p , W x n ) = + 2 a , ( x ) + — g — (3.6) 

Each network in the ensemble (suggested ensemble size is M = 5) is randomly 
initialized and trained using the entire randomly shuffled training set. The ensem­
ble is treated as a uniformly-weighted mixture model with predictions combined as 
p(y|x) = M - 1 E ™ =iPominie, dm)- For classification this corresponds to a simple average 
of individual predicted probabilities and for regression, the prediction is a mixture of Gaus-
sians, which the authors further approximate by a single Gaussian with mean and variance 
equal to those of the mixture. For a mixture of M Gaussians M - 1 ^ A/"(/igm(x), cr | m (x)) 
the mean and variance are given by: 

H*(x) = M'1 Wm(x) (3.7) 
m 

a2 = M-1 ^ ( ^ 2

m ( x ) + MÍm(x)) - M*(x) (3.8) 
m 

3.3.2 Related Results 

Lakshminarayanan et al. [20] evaluated the ensemble strategy for uncertainty modelling 
first on a regression task using a one-dimensional toy dataset. It consists of 20 samples 
drawn as y = x 3 + e where e ~ A/"(0, 3 2) and a single layer architecture of 100 hidden units. 
A commonly used heuristic for obtaining approximate measure of uncertainty is to train 
an ensemble of NNs (minimizing MSE) , obtain several point predictions and compute their 
empirical variance. The authors compare the performance of this approach with learning 
variance by minimizing N L L for a single such network and for an ensemble. The results are 
in Figure 3.1 and suggest that networks trained with N L L provide us with better predictive 
uncertainty and that using an ensemble improves performance, which is especially apparent 
as the predictions move further away from the observed training data. 

4The positivity constraint on variance is enforced by passing the corresponding NN output through the 
softplus function log(l + exp(-)). 

5Aside from using an ensemble of models to capture the epistemic uncertainty in model parameters, the 
described method now also captures the aleatoric uncertainty corresponding to the noise in the data. 

6 A more complex distribution can be used if the Gaussian is too restrictive. 
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Figure 3.4: Results on the y = x3 + e toy dataset. The blue line is the ground truth, the red 
points are the observed training data and the gray lines are the predicted mean along with three 
standard deviations. The left plot shows the empirical variance of 5 NNs trained using MSE, the 
center plot the output of a a single NN trained using NLL and the right plot the performance of 5 
NNs trained using NLL [20]. 

A second experiment on a classification task evaluates the model uncertainty on out-
of-distribution examples from classes unseen during training. For a model to be reliable, it 
should not produce overconfident predictions when the test data is very different from the 
training data. It should be uncertain about its predictions instead. To evaluate whether 
models trained using N L L and composed into an ensemble have this property, Lakshmi-
narayanan et al. train fully-connected networks with 3 hidden layers and 200 units per layer, 
using R e L U and batch-normalization. These are compared with an M C dropout model us­
ing the same architecture augmented with p = 0.1 dropout layers after each non-linearity. 
The models are trained on the standard MNIST train split. They are then evaluated on 
MNIST test split but also on the test split of the NotMNIST ' dataset which contains letters 
instead of digits as in MNIST. A similar experiment is conducted by training on the S V H N 
dataset containing images of digits, and testing on the CIFAR-10 dataset containing images 
of ten different objects (cars, horses, etc.). 

The quality of uncertainty estimates is evaluated using the entropy of the predictive 
distribution (see Figure 3.5). For known classes observed during training, the proposed 
method and M C dropout both have low entropy and are confident about the predictions as 
expected. For the unknown classes, the entropy of the deep ensembles is higher compared 
with M C dropout suggesting that the proposed method is superior for handling unseen test 
examples. In particular, M C dropout produces overly confident predictions for some of the 
unknown classes as indicated by the entropy mode centered around zero. 

Building on the MNIST experiment, the authors evaluate whether the trained models 
are well-calibrated (see Section A.3), which means that their predictions can be trusted 
if they have high confidence and they are truly uncertain when the predictions have low 
confidence (confidence here refers to the value of the largest predicted probability by the 
model i.e., the probability of the class that the model predicts). 

The models are again evaluated on both the known classes from MNIST and unknown 
classes from NotMNIST. A well-calibrated network should have low confidence for pre­
dictions on out-of-distribution NotMNIST examples. Test examples for which the model 
predictions are below the confidence threshold 0 < r < 1 are filtered out, and the accuracy 
on the remaining test examples (for which the confidence is above the threshold r) is plotted 
in Figure 3.6. We would expect a model to have higher accuracy for larger values of r so 
the curve should be monotonically increasing. 

7See http://yaroslavvb.blogspot.co.uk/2011/09/notmnist-dataset.html 
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(a) MNIST-NotMNIST (b) SVHN-CIFAR 

Figure 3.5: Model predictive entropy. Histogram of predictive entropy for test examples from 
known classes (in blue) and unknown classes (in red) for different values of M (ensemble size for 
the networks trained using NLL and number of samples for the M C dropout model). Both models 
produce confident prediction for the known classes. The ensemble of NLL networks is uncertain 
when predicting for unknown classes while MC dropout is erroneously overconfident for some of 
them [20]. 
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Conf idence Threshold r 

Figure 3.6: Accuracy vs Confidence curves. Models are trained on MNIST and evaluated 
both on the MNIST test set and on the unseen NotMNIST test set. Red, gray and blue lines 
correspond to an ensemble of networks trained using the proposed method (with additional data 
augmentation and adversarial training for gray and blue respectively) and green to MC dropout 
model. In comparison with the other models, MC dropout produces overconfident predictions as 
evidenced by low accuracy even for high values of r [20]. 

3.4 Uncertainty Measures 

In this section, I describe measures that can be used to evaluate deep learning model 
uncertainty. 

3.4.1 Raw Mode l Predictions 

Using the raw model predictions is the most straightforward way of extracting information 
about the model's uncertainty. For some tasks such as classification or segmentation the 
model outputs can be interpreted as probabilities, so it seems natural to relate them to 
model's uncertainty about its prediction. But as we have seen in Figure 3.1, a model may 
provide a very confident prediction with probably close to 1.0 even for an example which 
is far from the data distribution it has seen during training. Consequently, the numerical 
values of the predictions themselves can be misleading. 

We also need to take into account that for most regression problems (e.g. predicting pixel 
intensity values) the model predictions cannot be interpreted as providing any uncertainty 
information at all, and other measures must be used instead. 

3.4.2 Mode l Prediction Variance 

This uncertainty measure requires that we either have a model which can make stochastic 
prediction samples (such as an M C dropout based model described in Section 3.2.1) or an 
ensemble of deterministic models with different parameters. In both cases, we essentially 
compute the predictions of multiple models (we can consider a single M C dropout sample 
to be a prediction from a single network from the space of all possible networks created 
by randomly dropping some of the units) for a single point of data. Since each model 
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has different parameters (either due to different units being dropped or due to random 
initialization at the start of the training) we can assume that they will not make the same 
kind of mistakes. Consequently, if prediction variance is high, we may assume that each 
model is uncertain and just guessing, with each guess being dependent on its particular 
parameters. If on the other hand the variance is low and the models agree, we may conclude 
that they have a reason to be certain about their predictions. 

3.5 Evaluating the Quality of Uncertainty Measures 

There are several ways of assessing whether an uncertainty measure provides us with useful 
information. In this section, I describe three options for performing such an analysis. The 
test set filtering and out-of-distribution data detection methods were both used by the Deep 
Ensemble [20] authors when comparing the uncertainty estimates of their ensemble with an 
M C dropout model. I propose to also use the uncertainty-performance correlation which 
lends itself well to the landmark localization problem which I explore in the practical part 
of this thesis. 

3.5.1 Correlation between Uncertainty and Performance Measures 

This is a straightforward way of evaluating an uncertainty measure used for a regression 
task. We simply compute the correlation coefficient between the uncertainty and perfor­
mance measures. Ideally, the correlation coefficient would have a high value (either positive 
or negative depending on the uncertainty measure) indicating that the model performance 
is tightly coupled with the uncertainty measure. 

3.5.2 Test Set Filtering 

This strategy evaluates the quality of an uncertainty measure by using the accuracy (or 
a different metric) of the model on the test set as the criterion. For each example in the 
test set, we compute the model prediction as well as the value of the analyzed uncertainty 
measure. We can then plot the achieved accuracy on the test set when taking into account 
only the examples for which the model uncertainty measure was below some threshold r 
(the filtering is done for different values of r ) . If the accuracy on the filtered test set 
increases as we decrease the uncertainty threshold, then the analyzed measure provides 
useful information about the uncertainty of the model predictions. 

Section 3.3.2 describes an experiment evaluating whether a trained Deep Ensemble 
model is well-calibrated (see Figure 3.6). Note that the example on the figure differs from 
the explanation above in that the evaluated uncertainty measure is model confidence (which 
actually corresponds to model certainty) so the accuracy and the measure should increase 
together. Calibration has a definition related to probability (see Section A.3) but the 
same experimental procedure in which we filter the test set based on uncertainty measure 
thresholds generalizes well even to a regression problem. 

Both this method and correlation answer a similar question but the advantage of test 
set filtering is that we can also determine what percentage of the data would be retained 
at specific uncertainty thresholds. This may be useful in practical applications. As an 
example, consider a system which automatically classifies medical images when the model 
uncertainty on the incoming data is below a threshold value, and asks for supervision only 
when it encounters a data point for which the model's uncertainty is above the threshold. 
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In such a case, the uncertainty threshold would have to be determined in advance (preferably 
on held-out test data) while taking into account two criteria. 

Firstly, we want the system to perform well enough (which usually amounts to requiring 
some minimum performance on the accuracy measure) in the cases where it does not ask 
for supervision. This requires only images with relatively low uncertainty to be classified 
automatically. On the other hand, setting the uncertainty threshold excessively low would 
result in too many requests for supervision, which would negate the entire purpose of the 
system. Since test set filtering provides performance measure values and percentage of 
retained data at specific uncertainty thresholds, it allows us to balance both criteria much 
better than correlation. 

3.5.3 Out-of-distribution Data Detection 

Another desirable attribute of an uncertainty measure is its ability to detect situations 
when the model encounters data that are far from the distribution of the training data. 
Intuitively, we should be less trustful of a model's prediction when the evaluated data point 
differs from the data that the model has seen during training. The value of the uncertainty 
measure for the data point should thus be proportional to its distance from the training 
data distribution. 

Section 3.3.2 describes the comparison between a Deep Ensemble and M C dropout 
model's ability to detect out-of-distribution data. Both were trained on the MNIST dataset 
and their uncertainty estimates were evaluated for the MNIST test set as well as on the 
NotMNIST test set which contains letters instead of digits. See Figure 3.5 for details. 
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Chapter 4 

Experimental Task Design 

I used a landmark localization problem to test and compare the two approaches to modelling 
uncertainty in deep learning described in Chapter 3. Both the Bayesian modelling approach 
utilizing dropout with M C sampling, and the deep ensemble approach are implemented 
using the same model architecture (with and without dropout layers respectively) which is 
also described in this chapter along with a brief characterization of the dataset used for the 
experiments. 

4.1 Cephalometric Landmark Localization 

Cephalometric analysis provides clinicians with the interpretation of the bony, dental and 
soft tissue structures in patients' dental X-ray images. The images resulting from the anal­
ysis contain relationships between key points (landmarks) in the radiogram. They are then 
used for treatment planning, clinical diagnosis, classification of anatomical abnormalities 
and for surgery. This procedure is time-consuming and subjective if performed by experts. 
Automatic landmark localization helps to alleviate both of these problems [45]. A n addi­
tional uncertainty estimate associated with the predicted landmark position could be very 
helpful for a physician using the landmarks for further clinical work. 

4.2 Dataset 

The dataset used for the landmark localization experiments was released as a part of the 
2015 Grand Challenge in Dental X-ray Image Analysis [45]. It consists of 400 lateral 
cephalograms from 400 subjects. A l l cephalograms were acquired in the same format and 
from an identical scanning machine. The resolution of the images is 1935 x 2400 pixels 
with a pixel spacing of 0.1 mm. Two clinical orthodontists (a senior with fifteen years of 
experience and a junior one with six years of experience) provided ground truth manual 
annotations of 19 cephalometric landmark positions [26]. For simplicity and consistency, 
only the ground truth from the senior physician was used for accuracy evaluation. 

The authors of the challenge split the dataset into three non-overlapping sets of images: 
train set contains 150 images (the only part of the data that models could see before 
evaluation), testl containing 150 images and test2 containing 100 images. 

A single example from the dataset consists of a cephalogram and positions of the 19 an­
notated landmarks. I chose to implement the approach to landmark localization suggested 
by Pfister et al. [33] in which the landmark positions are not regressed directly as a pair 
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(a) Input image with visualized landmarks (b) Heatmaps for first four landmarks 

Figure 4.1: Cephalogram with ground truth labels. Each image in the dataset contains 19 
annotated landmarks and a ground truth heatmap with the same dimensions as the image is made 
for each of them, by creating a Gaussian at the landmark's position. 

of real coordinates but the model learns to regress a separate heatmap for each landmark 
instead. For each training example, the C N N receives a single-channel gray-scale image 
rescaled to d x d dimensions. The corresponding ground truth is a 19 x (i x d volume of 
heatmaps. Each heatmap corresponds to a single landmark and contains a Gaussian with 
a fixed variance and amplitude centered on the landmark position as annotated by the 
physician. The output of the C N N i sa l9x<ix<i volume of predicted heatmaps. As a post­
processing step, each heatmap is convolved with a Gaussian filter of the same variance as 
was used when creating the ground truth heatmap, and the maximum activation is chosen 
as the final predicted landmark position. 

4.3 Model Architecture 

The model design closely follows the U-Net [36] architecture with some modifications (see 
Figure 4.2). It consists of a down-sampling path followed by a symmetric up-sampling 
path. Down-sampling the input to a low resolution allows the network to learn global 
context which contains the information about the relative positions of the landmarks. 

The channel dimension of the input image is first expanded using a double convolution 
which allows the network to model richer features. A max pooling layer then halves the 
resolution of the feature map in the width and height dimensions. Each down-sampling 
level then follows a similar pattern: the input feature map is passed through a double 
convolution, first of which increases the number of its channels by a factor of two, and is 
then passed through a max pooling layer. 

The up-sampling path consists of applying a transposed convolution to a lower level 
feature map which halves its channel dimension. The stored feature map from the corre­
sponding down-sampling level is concatenated to this result and passed through a double 
convolution. This pattern repeats for each level in the up-sampling path. The final convo-
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Figure 4.2: Proposed model architecture. Sizes of the feature maps (blue boxes) correspond 
to an input image with dimensions 128 x 128. Number of channels is at the top of the box and 
width/height dimensions at the bottom left of the box. Yellow boxes are the feature maps copied 
from the down-sampling part. Red boxes represents an optional dropout layer applied after the 
corresponding convolutional layer. Arrows represent different operations. 

lutional layer at the top-most level uses l x l filters to produce the landmark heatmaps as 
the model predictions. 

A batch-normalization layer [14] is applied after every convolutional layer's R e L U acti­
vation to speed up training. If the model uses dropout layers, then they are included just 
before max pooling in the down-sampling path and right after transposed convolution and 
concatenation operation in the up-sampling path. 

4.4 Uncertainty Measures 

Three different uncertainty measures described in Section 3.4 are evaluated and compared 
in this work. This section briefly describes how they can be applied to a model trained for 
landmark localization and proposes several experiments for the purpose of their comparison. 

4.4.1 Proposed Uncertainty Measures 

Firstly, it is determined whether the maximum activation in the predicted landmark heatmap 
convolved with a Gaussian kernel provides information about model uncertainty. I hypoth­
esize that if a model is uncertain in its prediction of a landmark position, the activation will 
be lower than in the case when the model is certain. Secondly, a model with dropout layers 
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is trained and I assess whether the variance of its predictions obtained by M C sampling 
provides usable uncertainty estimates. Finally, an ensemble of multiple models without 
dropout is trained and the variance of their predictions is evaluated in a similar way. 

4.4.2 Proposed Experiments 

The following experiments are performed and evaluated in this work: 

1. Correlation between Uncertainty and Performance Measures 
This experiment determines whether a relationship exists between the radial error for 
the predicted landmark and the corresponding uncertainty measure value 

2. Test Set Filtering 
This experiment determines whether the performance metrics improve as we remove 
data for which the model uncertainty is high. 

3. Elastically Distorted Out-of-distribution Data 
Elastic distortions were applied to the test set to determine whether the uncertainty 
measures increase together with increasing distortion strength. 

4. Laterally Rotated Out-of-distribution Data 
A dataset of laterally rotated cephalograms was created and the experiment eval-
ues whether the uncertainty measures increase together with the increasing lateral 
rotation of the patient's head. 

Additionally, experiments 1 and 2 were also performed using under-trained models whose 
training was stopped before convergence. This was useful since the fully-trained models 
turned out to be too accurate on the test data (which was similar to the training data) and 
allowed us to compare the performance of the uncertainty measures both for familiar and 
unfamiliar data (the unfamiliarity with data was simulated by reducing model performance 
since a different test dataset was not available). 

24 



Chapter 5 

Implementation 

This chapter contains the implementation details related to data pre-processing and the 
training procedure. 

5.1 Training Procedure 

The input to the C N N is a single channel gray-scale image. While the proposed architecture 
is a fully-convolutional network which means that it can take arbitrary size images as 
inputs, all models were trained exclusively on 128x128 size images which allowed for faster 
training times and easier experimentation. This led to some loss of performance in terms 
of accuracy compared with models trained on larger images but since the goal of this thesis 
is the exploration of uncertainty measures the compromise seemed acceptable. 

Models along with the training process were implemented using the PyTorch [31] frame­
work and training ran on a Tesla P100 G P U with 16GB of memory. 

5.1.1 Training Data 

The data split follows the one used in the original 2015 challenge [45] (see also Section 4.2) 
with the training set containing 150 images, so that the performance of the models could 
be compared with the ones participating in the challenge. It was further subdivided into a 
training and validation split using a ratio of 85:15. 

5.1.2 Data Augmentation 

Data augmentation was used to increase the size and variability of the relatively small 
training set (no data augmentation was applied to images used for testing). For an input 
image of dimensions d x d these consisted of: 

• Scale: Sampled from the range [0.95, 1.05] 

• Horizontal flip: Applied with probability equal to 0.5. 

• Rotation: Sampled from the range [-5, 5] degrees. 

• Translation: Both vertical and horizontal, sampled from the range [—0.03<i, 0.03d]. 

A l l augmentations were applied both to images and ground truth heatmaps. The aug­
mentation range was had to be restricted because some of the training images contain 
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Figure 5.1: Data augmentations. A random horizontal flip and an affine transformation con­
sisting of a random rotation, translation and scale was applied to each training image and its 
corresponding labels. Three different samples for the same training example are displayed above. 

landmarks which are very close to the edge of the image. Too strong a transformation 
(translation for example) can make them disappear from both the image and the heatmap 
which would be undesirable. 

5.1.3 Loss Function 

The M S E loss was used to train the models for heatmap regression: 

1 m 
M S E = - J > - y ) 2 (5.1) 

t=i 
where y are the ground truth heatmaps, y are the model predictions and m is batch size. 

Since the ground truth heatmaps contain non-zero values only in a small region around the 
landmark position where the Gaussian is active, the neural networks focused on predicting 
a zero-filled heatmap and ignored the Gaussian if its amplitude was set to 1. This led 
to very slow convergence of the training process. This is presumably because predicting 
the non-zero Gaussian at the landmark position does not contribute significantly towards 
lowering the M S E loss. To alleviate this, the Gaussian's amplitude was increased which 
consequently increased the loss function's gradient in the area around the landmark position 
and thus improved convergence. For training images of size 128 x 128, the best-performing 
Gaussian had an amplitude of 1000 and standard deviation of 5. Note that the settings of 
these parameteres should be cross-validated for when changing the training image size. 

Some initial experiments using the negative log-likelihood loss function as suggested 
for deep ensembles in Section 3.3.1 were also performed. However, the models failed to 
converge to a meaningful heatmap prediction using this loss function so the M S E which 
provided consistent performance was used instead for all of the trained models. 

5.1.4 Training Parameters 

The Adam [17] optimizer with a batch size of 32 was used for training. The initial learning 
rate was set to 10~ 3 and weight decay of 10~ 4 was used to reduce overfitting. The model was 
evaluated on the validation set after each epoch and if performance in terms of validation 
loss did not improve for 10 consecutive epochs, the learning rate was decreased by a factor 
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of 10. The training was stopped if the validation loss plateaued for 30 consecutive epochs. 
Only the model weights with best performance on the validation set were kept. 
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Chapter 6 

Experiments and Results 

This chapter contains the description of the trained models, evaluation of their perfor­
mance on the landmark localization task along with a comparison with the state-of-the-art 
published model on the same dataset. The main part of this chapter documents differ­
ent experiments analyzing the behavior of the proposed uncertainty measures in various 
scenarios. 

6.1 Trained Models 

Three models using the common architecture and training procedure described in Sec­
tions 4.3 and 5.1 respectively are evaluated in this chapter. 

The Baseline model does not include any dropout layers and uses the maximum 
heatmap activation as its uncertainty measure. Additionally, 15 instances of the Base­
line model were trained independently from scratch to form the Ensemble model which 
uses its members' prediction variance for uncertainty estimation. 

The third model contains dropout layers at the end of each down-sampling level and 
at the beginning of each up-sampling level as shown in Figure 4.2. Although this con­
tradicts the suggestion of Gal et al. [8] who originally proposed the inclusion of dropout 
after each convolution, that requirement is not necessary in practice and the placement of 
dropout layers ends up being a part of hyper-parameter search (see for example the work 
by Kendall et al. [15]). The probability of a unit being dropped is set to p = 0.4 uniformly 
for all of the dropout layers and was chosen based on performance results during cross-
validation. MC-Dropout refers to a version of this model evaluated using 15 samples and 
the M C dropout scheme described in Section 3.2.1. It uses M C sample prediction variance 
to estimate uncertainty. 

6.2 Landmark Localization Evaluation 

Before assessing the quality of the uncertainty measures, the model performance was eval­
uated on the landmark localization task using the same metrics as were used in the 2015 
Grand Challenge in Dental X-ray Image Analysis [45]. The trained models can thus be 
compared with the ones which participated in the competition. 

28 



100 

90 

CD 
4-» 

(0 
^ 80 c o 
4-» 
u 
cu 

4-» 
cu 
Q 
ui 
ui 
cu 
u 
u 
1/5 

70 

60 

50 

91.5 9 a 891-9 91.4 

85 2 8 4 8 

80.2 

73.7 

69.0 

63.0 63.7 

2 mm 2.5 mm 

Lindner a n d Cootes Basel ine 

3 mm 

E n s e m b l e 

4 mm 
MC-Dropout 

Figure 6.1: Success detection rates (SDRs). Comparison between the proposed models and 
the best-performing method from the 2015 competition by Lindner and Cootes [45]. Al l four have 
been evaluated on the testl split of the dataset. 

6.2.1 Performance Measures 

The radial error R is simply the Euclidean distance defined as R = \jAx2 — Ay2 where Ax 
and Ay are the distances between the predicted and actual landmark position in the x and 
y direction respectively. The mean radial error (MRE) and the associated standard 
deviation (STD) are defined as 

M R E 
N 

STD 
M R E ) " 

N 

(6.1) 

(6.2) 

where N is the total number of predicted landmarks. 
Landmark's position is denoted as a single pixel in the ground truth annotations. For 

a landmark to be considered successfully detected, the distance between the predicted and 
annotated positions must be below z mm. The success detection rate (SDR) pz with 
precision less than z mm is defined as 

Pz 
#{j : \\Ld(j) - La(j)\\ < z} 

x 100% (6.3) 

where L^, La are the locations of the detected and annotated landmarks respectively, 
z corresponds to the four precision measurements used in the 2015 challenge evaluation 

29 



4.000 

3.000 

2.051 
1.921 
1.794 
1.670 

0.500 

MRE (mm) and STD (mm) 
1.559 mm 

1.48 mm 
1.499 mm 

1.487 mm 

Lindner and Cootes Baseline Ensemble MC-Dropout 

Figure 6.2: Mean radial errors (MREs) and standard deviations (STDs). Comparison 
between the proposed models and the best-performing method from the 2015 competition by Lindner 
and Cootes [45]. Al l four have been evaluated on the testl split of the dataset. 

(2 mm, 2.5 mm, 3 mm and 4 mm). The numerator contains the number of successfully 
detected landmarks and the denominator the total number of landmarks. 

6.2.2 Mode l Performance 

The three models were evaluated on the testl split of the cephalometry dataset. Their 
performance is compared with the best-performing model (proposed by Lindner and Cootes) 
participating in the 2015 Grand Challenge in Dental X-ray Image Analysis [45]. Figures 6.1 
and 6.2 compare the success detection rates and the M R E with the associated STD of the 
three models respectively. 

The MC-Dropout model matches the performance of Lindner and Cootes in SDR closely 
in the 3 and 4 mm precision ranges but lags behind in the 2.5 and 2 mm ranges. The En­
semble model outperforms MC-Dropout in all of the SDR precision ranges and reaches 
significantly better detection rate in the 2.5 and 2 mm ranges (but still lags behind Lind­
ner and Cootes). Using the M R E metric, Lindner and Cootes' model again outperforms 
the proposed models while Ensemble performs better than MC-Dropout. The Ensemble 
consistently outperforms a single Baseline model. 

The performance drop of the proposed models in the 2.5 and 2 mm SDR ranges is 
expected, since they were trained using images sub-sampled to 128 x 128 from the original 
1935 x 2400 dimensions due to computational limitations. A single pixel in the original 
image corresponds to 0.1 mm, while a single pixel in the sub-sampled image (and thus also 
in the heatmap predicted by the model which has the same dimensions) to roughly 1.7 mm. 

The predicted landmark position must refer to a single pixel in the original dimensions 
so the model prediction which is restricted to the [0,128) range, must be re-scaled to them. 
However, the input images do not provide the model with enough information to predict 
the landmark position with such accuracy. This leads to a low SDR in the discussed 
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Figure 6.3: Model performance when varying ensemble size and dropout sample count. 
Ensemble size and sample count vary for the Ensemble and MC-Dropout models respectively. MC-
Dropout is additionally evaluated using the commonly used weight averaging method (see Sec­
tion 3.2.1). Increasing the MC sample count and ensemble size up to 15-20 samples/models increases 
performance on all metrics. Moreover, MC-Dropout with M C sampling starts outperforming a sin­
gle Baseline model (i.e., Ensemble of size 1) and MC-Dropout with weight averaging when using at 
least 5 samples. 

precision ranges. It also accounts for the relative drop in performance of the proposed 
models compared with Lindner and Cootes since the low SDR in the 2.5 and 2 mm ranges 
leads to a greater total M R E . 

The better overall performance of Ensemble compared with MC-Dropout is attributable 
to the fact that an ensemble of 15 networks trained independently provides a greater vari­
ability of model parameters than 15 samples from a single dropout C N N . Ensemble can 
therefore generalize better to unobserved test data. 

Figure 6.3 compares the performance of the Ensemble and MC-Dropout models on the 
test data for varying ensemble size and number of M C samples respectively. MC-Dropout's 
performance using the traditional weight averaging evaluation strategy (which uses a single 
prediction with disabled dropout at test time) is computed as well. Increasing the number of 
M C samples for MC-Dropout and ensemble size for Ensemble improves performance on all 
metrics, but a point of diminishing returns is reached after about 15-20 samples/ensemble 
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members. Notably, MC-Dropout with M C sampling begins to outperform or match both a 
single Baseline model (i.e., Ensemble of size 1) and MC-Dropout with weight averaging in 
all metrics when using roughly 5 samples or more. 

6.3 Uncertainty Measure Evaluation 

The three uncertainty measures for the landmark localization task are evaluated using the 
methods described in Section 3.5. The raw model predictions from the Baseline network, 
Ensemble members' prediction variance and the MC-Dropout sample prediction variance 
are used. These uncertainty measures were proposed in Section 3.4. That description is 
further elaborated on here since their implementation is specific to the landmark localization 
task. 

6.3.1 Uncertainty Measures 

The Baseline model uses the raw predictions for uncertainty estimation. A l l models were 
trained to regress heatmaps containing a Gaussian activation at the position of the detected 
landmark (see Figure 4.1 and Section 5.1.3 describing the loss function). The heatmaps are 
convolved with a Gaussian kernel to compute the predicted landmark position. I hypothe­
sized that the maximum heatmap activation after the convolution may indicate the model's 
uncertainty in its prediction, with higher values indicating higher certainty. For the purpose 
of analysis in the following experiments, this dimensionless quantity was normalized to a 
unit range. The upper bound of one for normalization was chosen based on the maximum 
value of this uncertainty measure observed for all of the landmarks in the test set. 

The two other uncertainty measures used are both prediction variances. For the land­
mark localization task, I propose to compute prediction variance of a vector y containing 
prediction samples as the mean Euclidean distance between the prediction samples yi and 
the prediction mean y: 

i=l 
Note that the prediction mean y is also used as the landmark location predicted by the 

Ensemble and MC-Dropout models. The uncertainty measures along with model predic­
tions for some of the test set images are visualized in Figure B.5. 

6.3.2 Correlation between Uncertainty and Performance Measures 

For each case of landmark prediction the trained models produce a landmark position 
and also an uncertainty measure value. For the evaluated test set images, the predicted 
landmark position is compared with the ground truth to produce a radial error in detection. 

By correlating the individual uncertainty measure values with the respective radial 
errors for each landmark, we can determine whether a relationship exists between the 
uncertainty measure and the error. A strong correlation would indicate that the uncertainty 
measure is useful (i.e., that the model knows what it does not know). The results of this 
correlation analysis for the proposed models are shown in Figure 6.4. 

(6.4) 
i=l 

(6.5) 
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Figure 6.4: Correlation between radial error in landmark detection and observed un­
certainty measure value for the landmark, p denotes the Pearson correlation coefficient. Each 
of the three models was evaluated on the testl data split containing 2850 landmarks. For each 
detected landmark we observe a pair of values comprising radial error (when compared with the 
ground truth annotation) and model uncertainty (each model uses a different uncertainty measure). 
See Figure 6.8 for a comparison with under-trained models' performance. 
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Figure 6.5: Test set filtering using different uncertainty thresholds. The models' perfor­
mance is evaluated at different thresholds of their uncertainty measure using only a subset of the 
test data for which the model's uncertainty falls below the specified threshold (or above it in the case 
of heatmap activations). Graphs also contain the percentage of test data retained for evaluation for 
specific uncertainty thresholds. Both prediction variances provide a reasonable assessment of model 
uncertainty while filtering using the maximum heatmap activations does not. See Figure 6.9 for a 
comparison with under-trained models' performance. 
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The maximum heatmap activation performed poorly with a Pearson correlation coeffi­
cient p = —0.13 (a negative p indicates usefulness for this measure since we assume that 
the model uncertainty decreases as the activation value increases). However, since p is close 
to zero, the correlation is not very significant. The Ensemble's prediction variance attained 
p = 0.31 and the MC-Dropout's prediction variance a p = 0.22 which suggest a greater 
degree of usefulness for these measures. 

6.3.3 Test Set Filtering 

The three uncertainty measures are next evaluated using the test set filtering strategy (see 
Section 3.5.2 for a detailed description). When applying this strategy, we evaluate the 
model on some performance metric but only use that subset of the test data, for which 
the model's uncertainty is below a certain threshold. If the uncertainty measure is useful, 
decreasing the threshold should lead to a better model performance on the retained data. 
The results of the analysis along with the percentage of retained data for specific uncertainty 
thresholds are depicted in Figure 6.5. The M R E and SDR in the 3 mm precision range are 
used as the evaluated performance metrics (the results were very similar for different SDR 
precision ranges). 

The best performing uncertainty measure using this evaluation strategy is Ensemble's 
prediction variance with an M R E of 1.16 mm and SDR of 98% at the 10% data reten­
tion point, and M R E of 1.66 mm and SDR of 88% at the 90% data retention point. 
MC-Dropout's prediction variance attained an M R E of 1.48 mm and SDR of 91% at the 
10% data retention point and M R E of 1.84 mm and SDR of 85% at the 90% data retention 
point. The plotted behavior of both uncertainty measures appears to be very similar. Bet­
ter performance of the Ensemble model can be explained by a larger variety of predictions 
since it contains different models trained from scratch, and MC-Dropout model is limited 
by the capacity of a single neural network. 

Maximum heatmap activations of the Baseline model did not provide a lot of useful 
information using this evaluation strategy. As the value of the threshold increased (so that 
the maximum heatmap activation for a given landmark had to be above it for it to be 
kept within the evaluated test set) the performance measures increased very slightly until a 
certain point after which they started abruptly decreasing. However this decrease occurred 
at less then 10% data retention point so it may not be of significant importance. 

6.3.4 Elastically Distorted Out-of-distribution Data 

Elastic distortion [41] was applied to the entire test set to evaluate the ability of the uncer­
tainty measures to detect out-of-distribution data examples. Forty versions of the test set 
were created in total, and each copy had an elastic distortion of progressively stronger mag­
nitude applied to it. Figure B . l shows a test image transformed with an elastic distortion 
of varying magnitude. 

Each model's predictions and uncertainty estimates for every version of the distorted 
test set was then computed. Figure 6.6 shows the correlation between the mean uncertainty 
measure value for all landmark position predictions for a given version of the test set, and 
the elastic distortion magnitude applied to that version of the test set. The analysis shows 
that a strong correlation exists between the mean value of each uncertainty measure and 
the strength of the elastic distortion. 
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Figure 6.6: Correlation between elastic distortion magnitude and mean uncertainty 
measure on the distorted test set. Each of the models along with its uncertainty measure was 
evaluated on forty versions of the test set modified by elastic distortions of increasing magnitude. 
The mean uncertainty measure value on the entire test set was then correlated with the magnitude 
of the elastic distortion applied to the test set. Each uncertainty measure is able to detect out-of-
distribution test examples. 
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The maximum heatmap activations of the Baseline model (which performed poorly 
in the test set filtering experiments) show the strongest Pearson correlation coefficient 
p = —0.95. The MC-Dropout and Ensemble show p of 0.85 and 0.81 respectively. This 
suggests that each of the measures could reliably be used to detect out-of-distribution data 
examples. Figure B.2 contains a visualization of model predictions and uncertainty measure 
values for a test image elastically distorted with different magnitudes. 

6.3.5 Laterally Rotated Out-of-distribution Data 

When creating a cephalogram, we would ideally want the patient's head to be aligned 
perfectly with the sagittal plane so that there is no rotation in either of the lateral directions. 
This is not always the case however and the lateral rotation of the skull distorts the resulting 
image and may even lead to some of the landmarks overlapping. A model should be able to 
detect these data examples and possibly alert the physician that they cannot be analyzed 
automatically. 

Since a dataset of laterally rotated cephalograms is not publicly available, volumetric 
C T scan of a skull was used to create one. The skull volume was first laterally rotated by 
9 degrees in the axial plane. The resulting volume was then projected onto the sagittal 
plane by summing the intensity values of overlapping voxels. Pixel values in the resulting 
2D image were then normalized by dividing by the maximum pixel intensity within the 
image. The resulting dataset contains 91 images with 9 ranging from —45° to 45° including 
a rotation of 0°. 

The models' prediction and uncertainty measure values were then evaluated for each 
image in the dataset. Figure 6.7 shows the correlation analysis between the mean uncer­
tainty value for a given image (computed as the mean of uncertainty estimates for all of the 
landmarks predicted for the image) and the magnitude of rotation corresponding to that 
image. The results are similar to those depicted in Figure 6.6 for the experiment with the 
elastically distorted test set. A l l of the uncertainty measures show a very strong correlation 
between the two sets of values and could be used to detect the misaligned patient data. 
Figure B.4 contains a visualization of model predictions and uncertainty measure values for 
the skull projection rotated by different magnitudes 9. 
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Figure 6.7: Correlation between the mean uncertainty measure for an image and the 
corresponding skull rotation. Each of the models along with its uncertainty measure was eval­
uated on 91 images of a skull CT scan projection onto the sagittal plane. The scan was laterally 
rotated before projection with various magnitudes. The mean uncertainty measure value for an 
image was then correlated with the rotation magnitude. 
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M R E STD SDR 2 mm SDR 2.5 mm SDR 3 mm SDR 4 mm 

Baseline 2.05 mm 1.56 mm 63.0 % 74.4 % 81.9 % 90.8 % 
Ensemble 1.79 mm 1.50 mm 69.0 % 78.5 % 84.8 % 91.9 % 
MC-Dropout 1.92 mm 1.49 mm 63.7 % 74.7 % 83.2 % 91.4 % 
Baseline-UT 6.43 mm 12.99 mm 19.1 % 27.0 % 36.0 % 53.5 % 
Ensemble-UT 4.99 mm 4.83 mm 22.1 % 31.4 % 40.6 % 57.0 % 
MC-Dropout-UT 8.30 mm 12.76 mm 15.6 % 21.5 % 29.3 % 42.2 % 

Table 6.1: Performance comparison of fully-trained and under-trained models. Models 
were evaluated on the testl split of the dataset. The under-trained (UT) models were trained using 
the same procedure as the fully-trained models but the training was stopped before convergence. 

6.3.6 Under-trained Models 

The analysis of the quality of the proposed uncertainty measures in Section 6.3.2 and 
visualized in Figure 6.4 suggested a meaningful correlation between the test set radial 
error in landmark localization prediction and the corresponding uncertainty measure value 
for all of them. However, it was not particularly strong for any of the measures, with 
the maximum attained Pearson correlation coefficient p = 0.31 for Ensemble's prediction 
variance and p = —0.13 close to zero for Baseline's heatmap activations. 

The relatively poor performance of the uncertainty measures in the error-uncertainty 
correlation experiment on one hand, and their solid performance in the out-of-distribution 
data detection experiments indicate that the unmodified test data used for evaluation 
in Section 6.2.2 may have been overly similar to the training distribution, and that the 
fully-trained models performed too well. I therefore investigated the possibility that the 
uncertainty measures become more useful (and the correlation between performance and 
uncertainty estimate more apparent) when the model performance is not too high on the 
data. 

Since an annotated test dataset with a different distribution was not available, the 
drop in model performance it would have caused was simulated by creating under-trained 
versions of all three models, and evaluating them on the same test set as the fully-trained 
models. 

The under-trained models termed Baseline-UT, Ensemble-UT and MC-Dropout-UT 
were trained using the same procedure as the fully-trained models but the training was 
stopped once the M R E metric on the validation data dropped below 8.0 mm. Table 6.1 
compares the performance of all models on the testl split of the dataset and Figure B.6 
visualizes the model predictions and uncertainty measure values for some of the test set 
images and landmarks. 

The under-trained models were then used to perform the same correlation and test 
set filtering experiments as were described for the fully-trained models in Sections 6.3.2 
and 6.3.3 respectively. Figure 6.8 depicts the error-uncertainty correlation analysis and 
Figure 6.9 the results of the test set filtering experiment. 

Both M C dropout and ensemble prediction variances showed a very strong correlation 
with a Pearson correlation coefficient p = 0.86 and 0.85 respectively (a significant improve­
ment over the fully-trained models' p = 0.22 and 0.31). The maximum heatmap activation 
uncertainty measure performed better when utilized by the under-trained model as well, 
achieving a p = —0.35 which is an improvement over the fully-trained model's p = —0.13. 

Both prediction variances performed very well in the test set filtering which was the case 
even when using the fully-trained models. Additionally, the maximum heatmap activation 

39 



also showed more useful results when compared with its performance when utilized by 
the fully-trained Baseline model. For Baseline-UT, removal of test set data based on this 
measure led to both M R E and SDR metrics improvement in the roughly 100% to 20% data 
retention range followed by a more erratic behavior when less than 10% of the data was 
retained. 

6.3.7 Summary of Experiments 

The experiment in Section 6.3.2 analyzed the correlation between the uncertainty estimates 
and the error in the predicted landmark on the test set. The test set filtering experiment 
in Section 6.3.3 analyzed whether removing examples with uncertain predictions from the 
data increased performance. Both uncertainty measures based on prediction variance used 
by the Ensemble and MC-Dropout models performed relatively well in these experiments, 
while Baseline's heatmap activation measure performed poorly in both. 

Both experiments were repeated in Section 6.3.6 with under-trained models evaluated on 
the same test set. A l l of the three uncertainty measures showed a much stronger uncertainty-
error correlation and also performed better on the test set filtering experiment. Since the 
data in the test set is very similar to the training data, the strong improvements for all 
measures when used by under-trained models suggests that they perform better as the 
models' familiarity with the data decreases. This might be useful in real-world applications 
where the system often has to deal with data that is different from the training examples. 

The additional two experiments analyzed the uncertainty measures' ability to detect 
out-of-distribution data. Experiment in Section 6.3.4 used copies of the test dataset altered 
with different elastic distortion magnitudes. The one described in Section 6.3.5 used a 
dataset of cephalograms created from a C T scan of a skull, which was laterally rotated by 
different angles. Both experiments confirmed the ability of all three uncertainty measures 
to detect examples which differ from the training distribution. This is useful when deciding 
whether to classify the data points automatically or pass them on to a physician for manual 
processing. 

6.3.8 Further Research 

The research conducted here could continue in several directions. A test set with cephalo­
grams captured by a different device would be useful to confirm the conclusions of the 
performed experiments. The models could also be trained for landmark localization on 
distinct data entirely (not necessarily from the medical domain) to analyze whether the 
uncertainty measures show similar behavior across datasets. 

The uncertainty measures could additionally be evaluated on another task such as clas­
sification or segmentation. This would allow us to determine whether their performance 
characteristics transfer across to different problems or not. This would of course only be 
applicable to the task-agnostic prediction variance measures and not to heatmap activations 
which are specific to landmark localization using heatmap regression. On the other hand, 
different tasks may allow the use of new uncertainty measures which were not analyzed in 
this work. 
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Figure 6.8: Correlation between radial error in landmark detection and observed un­
certainty measure value for the landmark for under-trained models. Refer to Figure 6.4 
for a more detailed description of the experiment evaluation procedure and for comparison with the 
fully-trained models. The correlation between the radial error and the respective model uncertainty 
measures is much stronger for all under-trained models (especially for both prediction variances). 
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Figure 6.9: Test set filtering using different uncertainty thresholds for under-trained 
models. Refer to Figure 6.5 for a more detailed description of the experiment evaluation procedure 
and for comparison with the fully-trained models. For the under-trained versions of the models, all 
three uncertainty measures provide a reasonable assessment of model uncertainty. 
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Chapter 7 

Conclusion 

This thesis dealt with the problem of estimating uncertainty of deep learning model pre­
dictions in medical image analysis. A landmark localization task on a dataset of X-ray 
cephalograms was chosen to explore two prediction variance based approaches from recent 
research in this field, as well as a third approach to uncertainty estimation based on model 
heatmap predictions proposed by the author. A C N N architecture was designed for this 
purpose and used for training three models, each of which provides a prediction along with 
an uncertainty value. 

Baseline is a single C N N without dropout layers which uses the maximum activation of 
the heatmap prediction regressed for each landmark as its uncertainty measure. Ensemble 
is an ensemble of 15 Baseline models following the ideas in the work of Lakshminarayanan 
et al. [20]. MC-Dropout uses the approach proposed primarily by Gal [9] [7] [8] which recasts 
CNNs with dropout layers as Bayesian models. Both use the prediction variance of ensemble 
members or M C dropout samples respectively to estimate model uncertainty. A l l models 
performed comparably with the state-of-the art approach on the landmark localization task. 

Based on the experimental results, the Ensemble and MC-Dropout prediction variances 
outperformed the Baseline's heatmap activation measure when evaluated on the test set. 
The maximum heatmap activation value failed to consistently correlate with the landmark 
error and also failed to reliably filter the test dataset using its uncertainty estimates. The re­
liable performance of prediction variance across all experiments suggests that it is superior 
to the raw model predictions. Both prediction variances showed similar characteristics 
across experiments and the slightly superior performance of the Ensemble's variance is at­
tributable to a greater number of model parameters. The heatmap activations should thus 
only be used to estimate uncertainty if computational resources are limited and it is not 
possible to use ensemble or M C sample prediction variance. 

It is noteworthy that the performance of all measures improved when using the under-
trained models. A l l three measures also performed very well in the out-of-distribution data 
detection experiments with elastically distorted images and laterally rotated skull cephalo­
grams. This suggests that their uncertainty estimates are more reliable when evaluated on 
data that the models are not overly familiar with. This is an important result for real-world 
applications in which a model has to robustly deal with a wide range of data. 

The research conducted here could be extended by evaluating the uncertainty mea­
sures' performance on a different dataset or on a different task entirely as described in 
Section 6.3.8. 
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Appendix A 

Review of Useful Concepts 

A . l Bayesian Modell ing 

This section contains the review of the theoretical aspects of Bayesian modelling which may 
be useful for understanding how the dropout technique can be used as an approximation 
to Bayesian inference in deep learning models as described in section 3.2.1 and on-wards. 

A . 1.1 Bayesian Inference 

Considering training inputs X = { X I , . . . , X J V } and their corresponding outputs (labels) 
Y = { y i , ...,yjv}, in Bayesian (parametric) modelling we want to find the parameters w 
of a function y = fw(x) that are likely to have generated the outputs Y from the inputs 
X. The Bayesian approach suggests putting a prior distribution p(w) over the space of 
possible model parameters. It represents our prior belief about which parameters are likely 
to have generated the data before we actually observe any data values. To assess how likely 
some particular value of parameters w was to generate the outputs we define a likelihood 
distribution p(y|x,w) which is used to generate the outputs from the inputs given a value 

The final goal is then the calculation of the posterior distribution over the space of 
parameters w. This distribution captures our updated belief about which parameters are 
most likely to have generated the data after we have observed the data values. Using the 
Bayes' theorem we get: 

Having defined this distribution, we can now predict the output y* for a new input x* 
by integrating 

which is a process we call (Bayesian) inference [7]1. To compute the posterior distribu­
tion p(w|X, Y) we must be able to evaluate the denominator, also called model evidence: 

1Note that in deep learning the term inference usually refers to predicting an output of a model at test 
time. In Bayesian modelling it refers to integration over the model parameters which can also be done 
during training (by approximate inference which is a process of approximating this integral) [7]. 

of w [7]. 
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( Y | X ) = J p (Y |X,w)p(w) r iw (A.3) 

By using the sum rule, we have marginalized the likelihood over w. Marginalization is a 
core concept in Bayesian modelling. Ideally, we would like to marginalize over all uncertain 
quantities. We especially want to average over all possible model parameters w weighted 
by their prior plausibility p(w). This can be done analytically for some simple models such 
as Bayesian linear regression but analytic solutions to marginalization do not exist for more 
interesting models. In such cases we have to turn to approximations [7]. 

A . 1.2 Variational Inference 

Variational inference is a method which aims to approximate an otherwise difficult-to-
compute probability density through optimization. In the case of Bayesian modelling we 
approximate p (w |X , Y ) . The method first chooses a family of functions H and then at­
tempts to find a member of this family qo(w) parametrized by 9, that is as close to the 
probability density being approximated as possible. When choosing H we want to choose 
a family which is flexible enough to capture the approximated distribution closely but also 
take into account that computational cost increases with greater complexity of H [2]. Close­
ness between the distributions is measured using the Kullback-Leibler (KL) divergence [19]: 

KL(©(w) || p (w |X , Y ) ) = / q0(w) log ^ riw (A.4) 
J p ( w | X , Y ) 

K L divergence measures how one probability distribution differs from a second, reference 
probability distribution. Minimizing it w.r.t parameters 9 of the variational distribution 
qe(w) allows us to approximately restate the predictive distribution as 

p (y* |x* ,X, Y ) « Jp(yV,w)(£(w|X,Y)dw := %*(y*|x*) (A.5) 

where qt is the minimum of the optimization objective [7]. 
Minimization of K L divergence is equivalent to maximizing the evidence lower bound w.r.t 

9 which is a more commonly used objective: 

J C V J (e) = © ( w ) l o g p ( Y | X , w ) d w - K L ( © ( w ) | | p ( w | X , Y ) ) (A.6) 

By maximizing the first term of the equation above we encourage the distribution qe(w) 
to explain the data well, while the K L divergence term forces it to remain as close as possible 
to the posterior distribution p ( w | X , Y ) which we are trying to approximate [7]. 

Instead of optimizing over point estimates as in deep learning the optimization in vari­
ational inference is performed over distributions. We can thus preserve the advantages of 
Bayesian modelling and end up with probabilistic models which also capture uncertainty. 
We now have the power to approximate posterior distributions of different classes of mod­
els that we would be unable to solve analytically for. Certain disadvantages still remain 
however. In particular, the method has difficulty scaling to large amounts of data and is 
unable to adapt to some complex models [7]. 

A.1.3 Bayesian Neural Networks (BNNs) 

Bayesian Neural Networks [29] are probabilistic models that replace the deterministic net­
work's point estimates of weight parameters with distributions over these parameters. We 
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do not optimize the network weights directly but instead average over all possible weights 
by marginalization. To define them in the language of Bayesian modelling, let us denote 
the random output of the B N N as y = f w (x). In the case of BNNs the model parameters 
correspond to the network weights in all L layers so we have w = (Wi)f=1 [8]. 

We can then define the model likelihood as p(y|fw(x). When used for regression tasks, 
the likelihood can be defined as a Gaussian with mean determined by the model output 
as p(y|fw(x) = A^(fw, a2) where a is an observational noise scalar. For classification the 
model outputs are often squashed through the softmax function and the resulting probabilty 
vector is then sampled from: p(y|fw(x) = Softmax(fw) [16]. 

Given the dataset X , Y , Bayesian inference computes the posterior distribution p(w|X, Y) 
which specifies the plausible model weights having observed the data. Since like most more 
complex models, BNNs are too complex to perform inference in directly, they need to be 
approximated by variational inference [16]. 

A.2 Dropout 

This section contains the review of the dropout [43] technique which is used by Gal and 
Ghahramani [9] as a way of computing approximate Bayesian inference in Bayesian Neural 
Networks. Their work is described in part 3.2.1 of the main text. 

Dropout is a technique originally introduced for addressing the problem of overfitting2 in 
deep neural networks. Its central idea is to randomly drop units along with their connections 
in a particular layer during training with probability p. 

(a) Standard Neural Net (b) Neural Net after dropout 

Figure A . l : Dropout network model, (a) A standard neural net (b) A particular realization of 
dropout applied to the three layers of the same neural net [43]. 

Since each time after its application, different units are dropped, it essentially samples 
from an exponential number of "thinned" networks during training. This should lead to the 
network learning only the important aspects of the task and data and not fitting the pa-

2 A model overfits if it adjusts its parameters too closely to the training data and consequently fails to 
generalize its predictions to unseen data. 
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Figure A.2: Model calibration, x-axis corresponds to the expected fraction of an event hap­
pening and the y-axis to the actual fraction. The model on the left is much better calibrated than 
the model on the right. Blue line corresponds to an output of an ideally calibrated model. [20]. 

rameters to accomodate the complicated relationships in the training data that result from 
sampling noise and will not be present in the test data. Note that during training, neu­
rons and connections are dropped randomly and applying dropout will result in a different 
realization (almost) every time. 

Since it is unfeasible to take an exponential number of samples during test time, the 
authors of the dropout paper suggest an approximate method called weight averaging. 
Dropout is no longer applied at test time and all network neurons are present during 
inference. If the neuron was dropped with probability p during training, then all the 
weights leading from this neuron are scaled by p during test time. This strategy ensures 
that for any hidden neuron the expected output (corresponding to the distribution used to 
drop neurons during training) is equal to the actual output [43]. 

A.3 Calibration 

Calibration is a quantity measuring the discrepancy between subjective forecasts and em­
pirical long-run frequencies of an event [21]. For example, consider a forecaster that sequen­
tially assigns probabilities to events. The forecaster is well-calibrated if in the long-term, 
the proportion of events to which he assigns a probability of 30 percent that actually occur 
are really 30 percent [4]. 

Calibration can be assessed using scoring rules. Scoring rules allow us to measure the 
quality of predictive uncertainty. They assign a numerical score to a predictive distribution 
based on the prediction and the actual event that materialized and reward probability 
distributions with better calibrated predictions [10]. 

Let x be a vector of input features, y the corresponding label and pg(y\x) a predictive 
distribution with parameters 9 over the labels. We consider scoring rules for which a 
higher numerical score is better. A scoring rule S(pg, (y,x)) is a function evaluating the 
quality of the predictive distribution pg{y\x) relative to an event y|x ~ g(y|x) with c?(y|x) 
denoting the true underlying distribution over the (y, x) tuples. The expected score is then 
S(pe,l) = J liVi^Sipe, (y,*-))dydx. We also define a proper scoring rule as one for which 
S(pe,q) < S(q,q) with equality occurring only if pQ(y\x) = q(y\x), for all tuples (y,x) [20]. 
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Proper scoring rules can be used as training criteria for machine learning models and 
the advantages of this approach are described in part 3.3.1. 
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Appendix B 

Additional Figures 

Figure B . l : Elastic distortions applied to a test image. Elastic distortions [41] of increasing 
magnitude were applied to the entire test set to produce out-of-distribution images. Figure depicts 
a single test image distorted with different magnitudes A (the values can be related to figure 6.6). 
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MC-Dropout 

Figure B.2: Fully-trained models' predictions and uncertainty measures on the dis­
torted test sets. Models were evaluated on the same image transformed with elastic distortion 
magnitudes equal to 0, 70, 140 and 200 increasing from left to right. Predictions and model un­
certainty are visualized for landmarks 1, 2, 10 and 11 in each image. Star marks the predicted 
landmark position and the left-most (undistorted) images also contain the ground truth position 
marked by a cross. Prediction samples are visualized as dots and prediction variance by a circle 
for the MC-Dropout and Ensemble models. The maximum heatmap activation (normalized to unit 
range) is shown for the Baseline model. 
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Figure B.3: Lateral projections of a rotated CT scan of a skull. The skull volume was first 
rotated in the axial plane by 9 degrees and then projected onto a single slice in the sagittal plane. 
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Basel ine 

Figure B.4: Fully-trained models' predictions and uncertainty measures on the rotated 
skull dataset. Predictions and model uncertainty are visualized for landmarks 1, 2, 10 and 11 in 
each image. Star marks the predicted landmark position while the ground truth is not available. 
Prediction samples are visualized as dots and prediction variance by a circle for the MC-Dropout 
and Ensemble models. The maximum heatmap activation (normalized to unit range) is shown for 
the Baseline model. 
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Figure B.5: Fully-trained models' predictions and uncertainty measures on the test set. 
Predictions and model uncertainty are visualized for landmarks 1, 2, 10 and 11 in each image. Star 
marks the predicted landmark position and cross the ground truth position. Prediction samples are 
visualized as dots and prediction variance by a circle for the Ensemble and MC-Dropout models. 
Both are hardly visible due to low prediction variance. See figure B.6 for a comparison with under-
trained models' predictions. The maximum of the heatmap activation (normalized to unit range) is 
shown for the Baseline model. 
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Figure B.6: Under-trained models' predictions and uncertainty measures on the test 
set. Predictions and model uncertainty are visualized for landmarks 1, 2, 10 and 11 in each image. 
Star marks the predicted landmark position and cross the ground truth position. Prediction samples 
are visualized as dots and prediction variance by a circle for the Ensemble and MC-Dropout models. 
The maximum of the heatmap activation (normalized to unit range) is shown for the Baseline model. 
See figure B.5 for comparison with the fully-trained models' performance. 
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Appendix C 

C D Content 

The C D contains the following directories and files : 

README.md Contains code description. 

models Source files with C N N architecture. 

ut i l i t i e s Source files with utility functions. 

prepare_dataset. ipynb Contains steps to download the dataset. 

train.py Training script. 

generate_predictions.py Script for generating model predictions. 

evaluate.py Script for evaluating model performance. 

train_ensemble.sh Pre-made script for training the Ensemble model. 

train_mc_dropout. sh Pre-made script for training the MC-Dropout model. 

eval_baseline.sh Pre-made script for evaluating the Baseline model. 

eval_ensemble.sh Pre-made script for evaluating the Ensemble model. 

eval_mc_dropout.sh Pre-made script for evaluating the MC-Dropout model. 

thesis Thesis text. 

thesis_source Thesis source code made in DT£]X. 

1This content is also available at https://bitbucket.org/ddrevicky/deep-learning-uncertainty 
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Appendix D 

Manual 

Downloading the Dataset 

Follow the prepare_dataset. ipynb notebook to download and preprocess the data. 

Model Training and Evaluation 
Use the following scripts to evaluate the performance of the models on the landmark local­
ization task. 

Ensemble and Baseline 

To train 15 independent Baseline models to form an Ensemble as described in the thesis 
run train_ensemble. sh. To generate predictions for all ensemble members and then eval­
uate the full Ensemble run eval_ensemble. sh. Once this is done and the predictions are 
generated you can also evaluate a single Baseline member by running eval_baseline. sh. 

M C - D r o p o u t 

Run train_mc_dropout. sh to train an MC-Dropout model as described in the thesis. To 
first generate predictions on the test set using 15 samples and then evaluate the performance 
of the model run eval_mc_dropout .sh. 
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Deep Learning Model Uncertainty 
in Medical Image Analysis 

Dušan Drevický Advisor: Oldřich Kodym T 
VYSQKE UČENI FAKULTA 
TECHNICKÉ INFORMAČNÍCH 
V BRNĚ TECHNOLOGIÍ 

ABSTRACT 
While Deep Learning models achieve state of the art results in image analysis, they do not provide 
reliable information about the certainty of their predictions by default. This shortcoming is especial ly 
important in medicine where mistakes are costly and we would prefer to know whether the model 
predictions can be trusted or not for a given patient. 

This work implements three uncertainty measures on cephalometr ic landmark localization task 
formulated as heatmap regression. In addit ion to outputt ing the landmark positions, the models also 
est imate the uncertainty of their predictions. This allows us to detect data for which the models 

^ w o u l d perform poorly and handle them appropriately. 

METHODS 
• Maximum activation value in 
the heatmap predicted for each 
landmark by a CNN without dropout. 

• The Monte Carlo sample 
prediction variance of a CNN 
with mult iple dropout layers. 
Dropout is also appl ied at test t ime. 

RESULTS 

• The ensemble prediction 
variance of several CNNs without 
dropout. The best performing 
method. 

Ensemble prediction variance on an increasingly distorted cephalogram. Cross marks ground truth 
landmark positions, star the mean predicted position and dots correspond to prediction samples. 
Uncertainty increases together with distortion strength. 

Ensemble prediction variance on an increasingly laterally rotated cephalogram. Ground truth is not 
avai lable. Uncertainty increases together with rotation magnitude. 


