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Abstrakt 
Práce popisuje anatomii a vlastnosti cévního řečiště s charakteristickými znaky, na 

kterých je založena jeho segmentace. Nejprve jsou uvedeny metody segmentace 3D 
CT a MRI skenů. Více detailně jsou popsány základy segmentace založené na druhých 
derivacích a Hessově matici. K určení podobnosti cévám v původním obraze jsou spočítány 
vlastní čísla Hessovy matice každého voxelu. K vytvoření výsledného segmentovaného 
obrazu je navrženo více metod pro zpracování těchto vlastních čísel. Metoda je prakticky 
implementována v M A T L A B u . Vysegmentované arteriální řečiště je visualizováno po­
mocí knihovny V T K kódované v Pythonu. Dále je navrženo GUI, které umožňuje měření 
v zpracovaném objemu. Délky artérií jsou aproximovány lineárními úseky kopírujícími 
jejich cesty a výsledky tohoto měření jsou v práci prezentovány. Limitace této metody a 
návrh na poloautomatické měření jsou rozebrány na konci této práce. 

Summary 
The text briefly describes the anatomy and properties of the blood-vessel system to 

introduce the characteristics that enable segmentation. Firstly, some of the methods for 
segmentation of tubular structures from 3D CT or MRI scan are described. Moreover, the 
approaches using the second derivatives and Hessian matrix are elaborated. To determine 
the 'vesselness' in the original image, the eigenvalues of Hessian matrix of each voxel of 
the MRI data volume are computed. Several methods to produce the segmented output 
image based on these eigenvalues are suggested. The segmentation is implemented in 
M A T L A B . The segmented arterial system is visualized with V T K encoded in Python. 
Additionally, a GUI is designed to allow measurements within the segmented volume. 
The lengths of the arteries are measured as a linear approximation of their paths and 
the results are presented in this work. The limitations of this method are described and 
further suggestions are made for the semiautomatic measurements. 
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1. Introduction 
The circulatory system of a human body is one of the most important systems that 

ensures body's function. Nowadays, with the possibilities of different imaging methods, 
many information about this system can be acquired. Segmentation of blood-vessel tree 
provides a lot of valuable details such as narrowing of blood-vessels, obstructions etc. The 
benefit of the whole-body MRI acquisition comes from the fact that MRI is a harmless 
modality. In comparison to CT, MRI does not use radiation for the data acquisition. It 
is therefore desirable to obtain sufficient information using MRI and that can be achieved 
with the help of image processing. 

The aim of this thesis is to segment the blood-vessel tree with the possibility of mea­
suring the distances within the segmented image. In this text the basis of the problematics 
of the segmentation in 3D data in desribed. Several methods are briefly introduced. The 
main idea of the blood-vessel tree segmentation is based on its properties that include its 
nearly circular shape and its continuous propagation throughout the human body. The 
approach that this thesis introduces in detail is based on the second derivatives of the im­
age intensity. These second derivatives carry the information of structures in the volume. 
When organized into a Hessian matrix the eigenvalues can be computed. Those eigen­
values are processed further with different methods that allow the evaluation of voxel's 
'vesselness'. This work also presents the outcome of the segmentation as a program that 
enables the measurements within the arterial system. Those measurements are manually 
selected linear approximation of the arteries' pathways. The limitations of this method are 
thorougly discussed and presented visually. Also further suggestions for semiautomatic 
measurements of arteries are described. 

The implemetation is done in M A T L A B and results are visualized with V T K encoded 
in Python. The GUI is designed with Qt Designer software. 
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2. Blood-Vessel Tree as MRI Data 
This chapter introduces the properties of the blood-vessel tree. It also describes the 

characteristics of the MRI data and the acquisition process itself. Also to be able to 
enhance the desired blood-vessel tree, certain criteria must be met for the acquisition 
process. 

2.1. Anatomy of the blood vessel tree 
To be able to fully understand the segmentation of the blood vessel tree, the anatomy of 
the blood-vessels in a human body is briefly described. The human circulatory system 
consists of two parts. One is the pulmonary loop where blood is oxygenated. The sec­
ond part distributes the oxygenated blood to the rest of the body. The system consists 
of arteries that bring the oxygenated blood to the tissues and the veins that take the 
deoxygenated blood back to the heart from where they enter the pulmonary loop. The 
exchange of the oxygen between the tissue and the blood happens in the capilaries. The 
capilaries have a smaller diameter in comparison to the arteries and veins and also have a 
thin wall to allow the exchange of oxygen. The diameter of larger arteries is greater than 
10 mm and they are generally elastic. Their diameter changes with pressure and causes 
their cross-section to increase in size with the ejection phase of the heart cycle when blood 
is pumped into the system. [ ] 

Figure 2.1: Arterial system of the human body 
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2.2. MRI DATA AND ACQUISITION 

The implemented segmentation as described in Chapter 4 is based on the z-sliced 
planes. Vessels present nearly circular structures that show specific properties for the 
implemented detection. The desired blood-vessel tree that is to be segmented is shown in 
Figure 2.1. The blood-vessel tree with labeled arteries can be seen in 10.1. 

2.2. MRI Data and Acquisition 
In this section, the MRI data, the process of their acquisition and the used MRI scanner 
are introduced. For the most efficient segmentation it is necessary to assign the proper 
algorithm for the data that is being processed. Therefore it is desired to have a thorough 
information about the volume data set and to be able to understand the acquisition process 
itself. Also handling a big set of data requires detailed information, so the data volume 
and relations between separate parts of sequences are preserved. With this additonal 
information the image is reconstructable. The MRI scanner that is used for acquisition 
is the Discovery MR750 3.0T GE. Some of its parameters are displayed in the Table 2.2. [ ] 

Table 2.1: G E Discovery MRI750 3.0T parameters 

Bore Size 60 cm 
Maximum Field of View 48 x 48 x 48cm 
Homogenity 0.003 ppm @10 cm, 0.05 ppm@20 cm 

0.1O30 cm, 0.25@40 cm 
Peak Gradient Amplitude 50 mT/m 
Slew Rate 200 mT/m/s 
Independant Receiver Channel 32 

2.2.1. Data Origin and Acquisition 
Data comes from a whole-body MRI acquisition. The acquisition is not held as one 
scan, however it is several scanning sequences. Those sequences are overlapping each 
other with small number of slices so that the changes that happen within the time gap 
between separate acquisition sequences are monitored. This helps to keep the whole-body 
image without any severe differences between single sequences. The information about 
the position and slice location is present in the DICOM file into which the image is saved. 
Therefore the reconstruction of the whole-body image is possible. 

The acquisition process is based on the detection of blood vessels with a certain flow. 
The limitation parameters are the direction and the velocity of the flow. With this 
principle the acquired dataset is limited to the desired arterial structures. As seen in 
Figure 5, the desired arterial system consists of blood-vessels of greater diameter where 
detected flows reach higher velocity. To be able to detect the arterial system only, in 
the acquisition process, the direction is set to be anterior for blood-vessels above the 
heart and to be posterior for blood-vessels located below the heart for the thoracic cavity. 
This setting unfortunately causes problems with aortic arch where blood descends in the 
regions above the heart. For limbs the direction is always set to be distal. The acquisition 
is also timed with an E C G device that monitors the ejection phase of the heart. That is 
necessary because the acquisition process is dependent on the blood flow for the purpose of 
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2.2. MRI DATA AND ACQUISITION 

highlighting the arterial system. Synchronized with the ejection phase, the image is taken 
when the pressure is the highest in the circulatory system. Therefore the arteries in the 
resulting image show the cross-section even when taken in different time moments. The 
acquired image is only dependent on their anatomy and does not vary in time. Without 
the proper timing, a slice that would be acquired in a different part of the heart cycle 
might show a vessel that appears to have a smaller diameter. That could lead to an 
incorrect detection of the narrowing of a blood vessel. By acquiring the image with the 
synchronization a certain uniformity of the blood-vessel tree is provided. 
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3. Segmentation of Blood-Vessel 
Tree in 3D data 

In this chapter, different approaches to segmentation of blood vesel tree in 3D data is 
discussed. These methods are based on different data properties and therefore implement 
diverse algorithms. Many algorithms dealing with 3D volume use the second derivatives 
and therefore detect certain structures. However, other approaches are used where the 
data does not necessarily show a structural type. Those approaches, such as fuzzy con­
nectedness, wave propagation or randomized Hough transform, are discussed briefly. The 
methods using second derivatives are elaborated further in Chapter 4. 

3.0.2. Fuzzy Connectedness 

This main idea of this method is the connection between the voxels of a volume. Firstly, a 
relation is assigned to two voxels to quantify the closeness of them. A function is defined 
that describes the adjacency of each voxel to the rest of the image. This function enhances 
the evaluation of the voxels that belong to the same region and therefore ensures a certain 
homogeneity. Secondly, the description of the resemblance of the intensity is expressed by 
another function. This function is already dependent on the position one and describes 
affinity to the region based on the intensity. The size of each region is computed After 
determining relation between each voxel and remaining voxels of the image, several paths 
between two points of the volume can be made. The paths are assigned a certain strength 
based on the connectedness of those two points. By dynamic programming the final 
segmented image is drawn. [5] 

3.0.3. Wave Propagation 

This method is based on the idea of a wavefront that propagates through the blood-vessel 
structure. Initially, a seed voxel is set as the beginning of the algorithm. The wave spreads 
in all directions and propagates so that the slice of the vessel is marked. This structure is 
a plane wave. Another property of this seed voxel is the normal vector that establishes the 
direction of the vessel. This vector is set by the connection between the centres of single 
plane waves. The axis that is represented by this vector helps with the constructuion 
of the blood-vessel tree. At each point of this vector, the plane wave is generated for 
the completion of the image. Additionally, bifurcations and different untypical properties 
are well segmented. Having the propagation direction, a seed voxel of a plane wave can 
connect to several centroids of different plane waves and therefore show the right pattern 
of the vessel structure. This method is used for example for surgical simulations. The 
segmented data represents the vessel diameter, the curvature and estimates the bifurcation 
well. [6] 

3.0.4. Randomized Hough Transform 

This approaches is used in curve detection. It supposes the presence of all possible curves 
in the image and then assigns a score based on their actual presence. This method is 
computionaly demanding because of big data volume that needs to be stored. Several 
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3.1. SECOND DERIVATIVE METHODS 

algorithms exist that help with the elimination of this drawback. Another extension of 
this algorithm is when selecting random points of the data to calculate possible structures. 
Such an approach with the decision algorithm is described in [3]. 

3.1. Second Derivative Methods 
The first order derivatives of an image store the information about the magnitude and 
the gradient of the image. The second order derivatives additionally store the information 
about the shape. The detection of structures is based on the assumption that a blood 
vessel's profile in the cross-section is of a Gaussian shape. Furthermore, the intensity 
does not change much with the propagation of the vessel throughout the volume. The 
second order derivatives allow us to detect blood vessels, because we are provided with 
the information on the object curvature. A blood vessel is assumed to have a zero cur­
vature along its center line and a large curvature in the section direction perpendicular 
to the z-axis. [4] The second derivatives are often organized into a Hessian matrix H. The 
Hessian matrix carries the information of the image regarding its magnitude, shape and 
orientation. [ ] The information that is carried is shown in figure 3.1. Unfortunately, the 
use of the derivatives enhances the noise in the image. The second order derivatives ap­
proximately twice as much as the first order derivatives. To supress the noise a filter is 
used as mentioned in Chapter 4. 

Volume f(x,y,z) SHAPE MAGNITUDE 

Hessian 
Matrix 

Eigenvalues 
Hessian 
Matrix Eigenvectors 

ORIENTATION 

Figure 3.1: A schematic describi' 
Hessian matrix 

nformation carried by the second derivatives and 
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4. The Hessian Matrix Eigenvalues 
Method 

This chapter intorduces the method used for the segmentation of tubular structures. 
This algorithm is based on the eigenvalues of the Hessian matrix. Following sections 
describe how the matrix is obtained from a discrete data set, the eigenvalues meaning 
and the evaluation of acquired results. 

4.1. Hessian Matrix 
Hessian matrix is the matrix of second derivatives and its form in a three-dimensional 
space is 

H — fy,x fy,y fy,z (4-1) 
fx,x fx,y fx,z 
fy,x fy,y fy,z 
fz,x fz,y fz,z 

where / j j is a partial derivative of a function f(x,y,z) with respect to i and j where 
i,j G {x, y, zj-.This matrix is obtained by drawing the partial derivatives of the function. 
However with the discrete set of data such acquisition is not possible. For the construction 
of a Hessian matrix of a discrete data set, numerical differentiation is applied. [ ] For a 
partial derivative of a function f(x,y,z) the central difference formulas can be used. For 
the first partial derivative following formulas apply 

fx{Xi,yj,Zk) ~ 2hx ifi+l,j,k ~ fi-l,j,k) 

fy{Xi,yj,Zk) ~ 2h^(fi,j+l,k — fi,j-l,k) (4.2) 

fzy^iiVji Zk) ~ 2h~ ^fhj^+l fi,j,k—l) 

where /„ is a partial derivative with repect to n, hn is the spacing in direction of n for 
n G {x,y,z} and fidik is f(xi,yj,zk). 
The second partial derivatives are 

fx,x{Xi, yj, Zk) ~ J^l{fi+l,j,k ^fi,j,k 4~ fi—l,j,k) 

fy,y\xiiVji zk) ~ J^(fi,j+l,k ~ 2fi,j,k + fi,j-l,k) (4.3) 
fz,z{xi,yj,Zk) ~ 2̂"(/ij,fc+i 2fi,j,k + fi,j,k—i) 

And the mixed partial derivatives 

fx,y{Xi,yj, Zk) ~ ,j+l,k ~ fi-l,j+l,k ~ fi+l,j-l,k + fi-l,j-l,k) 

fy,z(Xi,Vj, Zk) ~ 4h^(/ij'+l,A;+l ~ fi,j+l,k-l ~ /ij-l,fc+l + fi,j-l,k-l) (4.4) 
fz,x(Xi,Vj, Zk) ~ ihzhx J,fc+1 ~~ fi-l,j,k+l — fi+l,j,k+l + fi-l,j,k-l) 

And because the calculated differences are the same the assumption of 
fx,y = fy,xify,z = fz,yifz,x = fx,zi c a n be made. Therefore is the Hessian matrix a 
symmetrical one and can be rewritten as 

^x,x fx,y fxy 

H = \ fx,y fy,y fy,z | (4.5) 
fx,z fy,z fz,z 
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4.2. EIGENVALUES OF THE HESSIAN MATRIX 

This matrix is calculated for each voxel of a data set where f(x,y,z) represents the 
intensity of each voxel. 

4.2. Eigenvalues of the Hessian matrix 
Let A be a linear transformation represented by the matrix A. The eigenvalue A of an 
eigenvector v 6 Rn is a scalar such that 

Av = A v (4.6) 

The eigenvalues of a matrix can be calculated by substracting A / from the matrix of the 
linear transformation, / being the identity matrix, and computing the determinant of this 
expression. Let H be the Hessian matrix of a voxel, then following applies 

(H-XI)v = 0 (4.7) 

A linear system of equations that is represented by the expression 4.7 has a non-trivial 
solution if 

det(H - A /) = 0 (4.8) 

This equation is the characteristic polynomial of H. 
By obtaining the eigenvalues of the Hessian matrix a new data volume is computed. 

Each voxel of this new volume consists of three parameters being the three eigenvalues 
of the calculated Hessian matrix. These eigenvalues Ai , A 2 , A3 may however be permuted 
and the method must therefore implement the order of those parameters. 

As mentioned in Chapter 2 the structures that are segmented are of a tubular shape. 
For the detection of objects with such properties, the rules of eigenvalue analysis can 
be applied. The following table shows image structure orientation based on the Hessian 
matrix eigenvalues. [ ] 

Table 4.1: Structure orientation dependancy on the eigenvalues 

Ai A 2 A3 structure orientation 
L L L noise 
L L H sheet-like structure 
L H H tubular structure 
H H H blob-like structure 

where L stands for low and H for high value of the eigenvalue when sorted 
Ai < A2 < A3 and then taken as absolute values. By applying these rules onto a volume 
data set the signum of the eigenvalues of each voxel determines also the character of 
the data. Considering the high values of the parameter A to be negative, the detected 
structure is of a higher intensity in comparison to the background and vice versa. 

The desired structure orientation for the purpose of blood vessel segmentation is the 
set of eigenvalues with Ai ~ 0, A2 and A3 of a high negative value. Voxels that show 
this property are then detected as a tubular structure and segmented for the new volume 
dataset. 
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4.3. PROCESSED 3D IMAGE 

4.3. Processed 3D Image 
The information that is drawn out of the sorted eigenvalues can be processed in several 
ways. In this section suggestions how to process the volume further are made. These 
different approaches are based on the desired result of the segmentation and can be also 
combined depending on the implementation. 

4.3.1. Eigenvalue Threshold Image 
To get a segmented blood-vessel tree is the desired result of the algorithm. A binary image 
representing the arterial structures can be calculated based on the eigenvalues sorting. If 
the set of eigenvalues for each voxel resembles the pattern for tubular structures in 4.2, 
voxel is distinguished from the background. The risk that comes with this method is 
a possible error of wrong-thresholding. This can occur if the original data set does not 
have a good resolution and therefore the error arises with the computation of the Hessian 
matrix. 

4.3.2. Parametric Image 

A binary image provides information about the blood vessel tree. However with medical 
data it can be desirable to obtain also information about the neighbourhood tissue and 
display the data that 'almost' made it to the binary image. Therefore forming a volume 
data set based on a parameter drawn out of the eigenvalues can be useful. The new 
volume data set is based on the resemblance to the properties of a tubular structure. 
The blood vessel tree is highlighted based on the fact that it corresponds to the tubular 
shape the most. Not that distinctively can be also other structures shown in the new 
image too. Such voxels acquire a value that is not extreme to be marked as a vessel 
but not insignificant to be marked as a background. Therefore a 3D image is shown 
where any tubular structures are marked with new intensities. Also a transparancy of 
unwanted objects can be implemented. The less transparent an objects appears the 
lower the intensity in the original image is. Therefore voxels with higher confidence in 
their 'vesselness' are shown as present structures. On the other hand, objects with low 
resemblence to the vessel shape are displayed less distinctively. 
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5. Implementation with M A T L A B 
The method of Hessian matrix eigenvalues implemented in M A T L A B is described 

in this chapter. The goal of this realization is to segment the blood-vessel tree and to 
display the segmented image. Moreover, some examples of the realization of this method 
are displayed and further suggestions are made. The following figure 5 shows the block 
diagram of the image processing algorithm. 

Sorting of Input Data 
(z-slice sequences) 

Gaussian Mask 

Partial Derivatives of 
Second Order 

t 
Hessian Matrix 

Eigenvalues of 
Hessian Matrix 

Evaluation 
of "Vesselness" 

- Computed for each Voxel 

Segmented 
Output Volume 

Figure 5.1: Block diagram of the implemented method 

5.1. Input of the Data 
The data set provided comes from a G E MRI scan as mentioned previously. This data 
is in DICOM image form. Each slice of the volume is provided with detailed information 
on the acquisition sequence, the spacing and the position of the slice in the whole image. 
From each sequence only the z-slices are taken into further computations based on the 
properties the vessels show in this direction. 
The whole-body acquistion consists of roughly six uniform volumes as a result of the 
maximum field of view of the G E MRI. A typical voxel size is 1.875 x 1.875 x 4.5 mm. The 
neighbouring volume sets are partially overlapping. In this region, they do not generally 
share the same z-slice coordinate. For optimal time efficiency, each volume is processed 
separately. Combining the volumes would lead to the need of adapting convolution masks 
(varying spacing) or to a denser grid created by interpolation to ensure a uniform voxel 
size. In case of multiple images with the same z-slice coordinate, an average is computed. 
Averaging may also help to eliminate artefacts. 

19 



5.1. INPUT OF THE DATA 

DICOM 
Information 

SMceLocafior* - ImagePosifionPafiem 

Z-Sequence 

Minimum Global 
z-coordinate 

Pixe!Spacir>g 
SpaangSetweenSlices 

Uniform Voxel Size 

SliceLocafiof} - SliceLocafiof}Mjh = 0 fmod SpacingBerweenSlices) 

Uniform Grid 

Figure 5.2: Schematic of the sorting of the input data 

The sorting schematic is shown in the figure 5.1. In this description, the terms that rep­
resent fields of structure of DICOM information are written in italic. They are the names 
that enable the access to those fields if existent. For the acquisition of z-sequences only, 
the comparison of SliceLocation and z-coordinate of ImagePositionPatient is made. In 
case of matching values (global z-coordinates), the image belongs to a sequence containing 
slices in desired direction and therefore is stored with the information as follows: name, 
voxel size, global z-coordinate. The information about the voxel size can be extracted out 
of the fields PixelSpacing and SpacingBetweenSlices. The sorting starts at the slice 
with the minimum global z-coordinate. Furthermore, the slices are separated according 
to the spacing. Volumes with the same voxel size do not generally represent a uniform 
grid if combined together. To ensure consistent structure, the global z-coordinates are 
compared to the z-coordinate of the starting point (in 5.1 described as SliceLocationMIN)-
If a slice is a part of the uniform structure represented by the starting point in the global 
space its z-coordinate lies on the grid with the origin at the starting point. For graphical 
explanation, see 5.1. When a sigle uniform volume is extracted the recursive function is 
applied onto the remaining slices. 

The uniform volumes that are smaller than 4 slices are discarted. They bring no sig­
nificant information to the segmentation because the further processing that implements 
convolution with a 3 x 3 masks can be accurate only for the inner volume. Likewise the 
structures that are uniform however are partially missing some slices. In further process-
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5.2. PRE-PROCESSING OF THE DATA VOLUME 

ing, those slices would be incorrectly visualized and they would additionally influence the 
segmentation process. 

d 

d 

Figure 5.3: The comparison of two volumes with the same voxel spacing that cannot be 
combined into one uniform volume 

5.2. Pre-processing of the Data Volume 
The preprocessing of the data volume is done with a Gaussian mask that causes the 
smoothening of the image. This preprocessing is necessary due to the second deriva­
tive computation that brings considerable noise into the image. The Gaussian mask is 
modelled according to the Gaussian distribution that has the 2-D form 

1 *2+»2 

G{x,y) = —2e ^ (5.1) 

where a is the standard deviation of the distribution, the mean of the distribution is (0,0). 
Figure 5.2 shows the one dimensional Gaussian distribution for different a values. 

The use of an isotropic mask is possible assuming that the vessel cross-section is 
nearly circular and of a Gaussian shape. Additionally, the intensity should not change 
with the propagation of the vessel throughout the volume. The size of the mask takes 
in consideraton the resolution of the image and its size. Moreover, the value of a is also 
derived from the radius of the arteries so the smoothening does not repress the intensity 
of the structure to be segmented. The radius size of main arteries is in the range 1 -
2 pixels. It is desirable to set the mask size to at least three times the deviation a to 
approximate this distribution smoothly enough in a discrete space. Using a mask of the 
size 6 x 6 however supresses the smaller arteries and often decreases their intensity to the 
level that there are no longer visible in the segmented volume. For the purpose of this 
segmentation, the original volume is convolved with a Gaussian mask of the size 3 x 3 . 
The figure 5.2 shows the 3 x 3 Gaussian mask. The weights of a Gaussian mask add up 
to one so the overall intensity stays unchanged. 

Figure 5.2 shows the difference of the smoothening according to the size of the mask. 
Notable is the intensity of the vessels after the application of the mask. The table 5.2 
demonstrates the contrast acquired with masks used also in 5.2. The intensity values do 
not differ greatly, nonetheless the figures support the theory of the small arteries sup­
pression. Moreover, the smoothening of the mask of size 6 x 6 causes smaller contrast 
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5.3. HESSIAN MATRIX AND EIGENVAL UES 

Figure 5.4: One dimensional Gaussian distribution for a G {1, 2} 

0.0751 0.1238 0.075 I 

0.1238 0.2042 0.1238 

0.0751 0.1238 0.0751 

Figure 5.5: Gaussian mask of size 3 x 3 

between the vessel cross-section and the surrounding. That causes additional influence 
on the perception of the intensity. 

Table 5.1: The influence of smoothening on small arteries; values represent normalized 
intensities 

Mask Size Point 1 Point 2 Point 3 Point 4 
No mask 0.584 0.416 0.244 0.506 
3 x 3 0.290 0.267 0.153 0.345 
6 x 6 0.235 0.231 0.129 0.302 

5.3. Hessian matrix and Eigenvalues 
The Hessian matrix is computed according to chapter 4. To compute partial derivatives 
of each voxel, mask operators are created. From symmetry of the Hessian matrix, only six 
operators are needed and realized through convolution. For non-mixed second derivatives, 
a mask seen in figure 5.3 on the left is applied. For mixed derivatives, a similar mask is 
created according to 4.4 (5.3 right). Each mask is additionally adjusted to the voxel size 
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5.3. HESSIAN MATRIX AND EIGENVAL UES 

Figure 5.6: The original image before smoothening with highlighted arteries picked for 
table 5.2 

Figure 5.7: The application of the Gaussian mask; mask size 3 x 3 , mask size 6 x 6 

to consider different distances in each direction. For exact adjustment see equations 4.3. 
For each voxel, a Hessian matrix is created out of the computed partial derivatives of the 
second order. From the Hessian matrices the eigenvalues are computed and sorted in the 
descending order for each voxel. For a sorted vector of eigenvalues u = (Ai ,A2 ,As) of a 
voxel new volumes are created. The discussion of eigenvalues requirements is made in the 
following section 5.3.1. 
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5.3. HESSIAN MATRIX AND EIGENVAL UES 

0 1 0 

• -2 0 

0 1 0 

1 0 -1 

0 0 0 

-1 0 1 

Figure 5.8: Mask operators; non-mixed partial derivatives (left), mixed partial derivatives 
(right) 

5.3.1. Processing of the Eigenvalues 

There are several ways how to create the new 3D image with segmented blood vessel tree. 
The suggested binary image mentioned in chapter 4.3.1 is made based on an assigned 
threshold for each of eigenvalues Ai , A 2 ,A3 . For binary output image a combination of 
values for Ai ,A2 and A3 is set to wheteher mark a voxel as a vessel or as a background. 
Due to different characteristics of each acquisition sequence, implementing this method 
with only one threshold does not bring any satisfactory results. Making the threshold a 
function dependent on properties of each acqusition sequence can be considered for further 
improvement and will be discussed as an option for a user to select. 
The segmentation output may be also represented by each of the eigenvalues. The output 
volumes are based on the three values of the sorted vector u = (Ai, A 2 , A 3 ) . Each eigenvalue 
represents some properties of the segmented volume. The prosessed volumes represented 
by eigenvalues are normalized. 

Ai As seen on following figure 5.3.1, the highest intensity of voxels is in the surrounding 
area of tubular structures. More specifically, the arteries. 

Figure 5.9: The parametric image based on the eigenvalue Ai 

A2 Parametric image based on the second eigenvalue results in a 2-D image where 
tubular structures are enhanced. Additionally to the desired segmentation, some 
structures like edges of the limbs or chest. It is displayed in the combination with 
the last eigenvalu in the figure 5.10. 

A3 Segmented volume reresented by the eigenvalue A3 enhances the desired tubular 
structures. However, the surrounding appears to be a noisy non-uniform image. 
The result in 2-D can be seen in figure 5.10 in the combination with A 2 . 
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5.3. HESSIAN MATRIX AND EIGENVAL UES 

The combination of the eigenvalues that draws the expected output volume is made as a 
parametric image and is described below. 
In code loadFile.m is in the sorted vector sortVal = ( A i , A 2 , A 3 ) the last eigenvalue 
A 3 sa 0. The reason is the relationship between the tubular structure (bright) and the 
background (low intensity). This leads to the values of A1 and A 2 to be negative. In this 
text, the theoretical assumption applies 4.2 for general values of the eigenvalues. 

The following figure shows a 2-D image of thorax. The output volume that assignes 
the intensity of the voxels according to the function is shown in the figure 5.10. 

Figure 5.10: Original slice of the MRI acquired volume (left) and the processed output 
Xp paramteric image (center), image with function including the omitted eigenvalue Ai 
(right) 

For the parameter image method described in 4.3.2, an output image, A p (Ai , A 2 , A 3 ) , 
is assigned a new value. The parameter represents the vesselness of the original voxel and 
is the output of an assigned function. For the Xp function the following is applied 

A P = \[X~1 + A | (5.2) 

where Xp is the A -parameter value and A 2 and A3 are negative values of the eigenvalues. 
The Xp is a function of only two variables A 2 and A3. The absence of A1 is based on its 
insignificance in the region of the inside of a tubular structure where Ai ~ 0. Moreover, 
its addition to the function Xp in 5.2 would cause a seemingly blurred image in the area 
around the arteries. However, the information the Ai-segmented volume provides can be 
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5.4. DATA TRANSFER TO VTK 

benefitial in some problematic areas. This is discussed more thoroughly in section 8. The 
combination of the values A2 and A3 brings the enhancement of the inner region of the 
original tubular structure and supresses the unsought detection of the body's edges that 
is only present in the A2 based volume. The information of the body shape is nevertheless 
still visible and allows a better orientation throughout the volume. 

5.4. Data Transfer to V T K 
The visualization of the processed data is done using a V T K library. As described in 
section 5.1 the whole-body sequence consists of more uniform volumes that are processed 
separately. Also the storage of the data in VTK files is done separately for each of the 
volumes. The normalized data is recalculated into the unsingedchar format that is in the 
range (0,255). The information that is stored additionally to the voxel intensity is the 
voxel size and the global z-coordinate for correct position of the volume within the global 
3-D space. 
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6. Visualization with V T K 
The Visualization Toolkit is an open-source software for visualization. It consists of 

a C++ class library, however interprets also Python that is used for the visualization in 
this work. Moreover, the V T K supports GUI toolkits, such as Qt that is used for the 
interface design. The visualization process is elaborated in this chapter. Additionally, 
the Qt design is introduced and the user's interaction is described. Figure 6 shows a 
whole-body segmentation of the arterial system with and withou the body outline. 

Figure 6.1: The arterial system of the whole body shown with and without the body 
outline 

6.1. Data Input 
The processed data is stored in the form of a VTK file. VTK supports several formats. 
The segmented volumes are stored as a structuredpoints formation. This form enables to 
visualize structured grid of user defined uniform size. Additionally, the origin is defined 
to set the position in the global volume. These information are extracted from DICOM 
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6.2. VISUALIZATION 

information during the processing in M A T L A B and saved into the VTK header of each 
file. 

6.2. Visualization 
The visualization is done with the V T K software and is encoded in Python. The data 
is loaded from the VTK file as structured points dataset. The data undergoes a process 
of visualization such as mapping and rendering. For more elaborated information see the 
attached CD with the file program.py. 

Properties of the visualized volume 

• Color Transfer Function 
The color transfer function enables the highlighting of regions of varying intensities 
with different colors. The goal is to enhance the segmented vessel tree against 
the chosen background. Color choice can influence the information significantly. 
Moreover, a balance between the desired segmented structure and the body outline 
should be found. The blood-vessel tree without the information about the position 
within the body can provide less information. Figure below 6.2 presents the results 
for two different color choices and what influence they have on the visualization. 
The arteries are usually represented by a small interval of intensity values. The 

Figure 6.2: Visualization with different transfer color functions; heat (left), black and 
white (right) 

same applies for the body outline. To distinguish the difference between these two 
it is favourable to use a dynamic color scale. 

• Opacity 
The opacity enables the suppression of unwanted segmented objects of low intensity. 
A very typical object that is set to be transparent is the outline of the human body. 
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6.3. GRAPHICAL USER INTERFACE 

1 
T 

Figure 6.3: The volume visualized with low transparency (left) and with high transparency 
(right) 

The request for a good piecewise function representing the volume's opacity is to 
set the outline to be transparent with slight visibility and to set the arteries to 
be opaque. The assumption that gives the means for this separation is different 
intensities of those two structures. 

Figure 6.2 shows volumes with different opacities. The volume with higher opac­
ity helps visualize small arteries within the legs. The volume with lower opacity 
enhances the main arteries. 

6.3. Graphical User Interface 
The GUI for the user's interaction is designed through QtDesigner. Qt is a cross-platform 
application framework used for the development of application software. The design of 
GUI is exported as an m-file and can also be generated or converted into the Python 
encoding. The framework is saved as a separate file (.py) and is exported into the main 
program (bc.py) for the desired layout. 

6.3.1. Interaction 
The interaction with the volume, such as zooming, rotating and shifting is implicitely 
set as a function of the Render Window Interactor. Additionally, the V T K library 
enables to pick points within visualized volume. Depending on the type of the Picker the 
information about the volume region can be stored. The user obtaines two information 
from the interaction with the data 

• Point Coordinates 
Point coordinates are the global coordinates of the picked point. The storage of 
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6.3. GRAPHICAL USER INTERFACE 

the DICOM information and its correct interpretation is necessary for a precise 
visualization. The global coordinates of a point are saved in a table that can be 
accesed and processed further as described in the following section 6.3.2. The picked 
point is the first voxel (point of a structured points structure) that intersects the 
picker's path. 

• Volume Set 
The visualized blood-vessel tree is composed of several uniform volume sets. The 
picker enables to establish the volume set in which the point is being picked. More­
over, the extraction of the z-slice is possible as an extraction of volume of interest. 
This allows the user to see exact location of the artery in the inner body. 

6.3.2. Measurements of Arteries 
The lengths of arteries are calculated as euklidiean distances of two points in a volume. 
Therefore the distance between point A and B with the coordinates A = (ai, 0 2 , 03) and 
B = (61,62,63) is computed according to the formula 

The length of an artery is a linear approximation of its propagation throughout the vol­
ume. The points for this calculation are drawn out of a table where the global coordinates 
of the breaking points of this approximation are stored. The points are picked manually 
by the user. 

(6.1) 
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7. Results: Artery Analysis 
To demonstrate the outcome of the GUI, an artery analysis is provided. The mea­

surements of lengths are computed as linear approximation of the artery. The table 7 
presents the lengths of the main chosen arteries to be measured for demonstartion in this 
work. The exact theoretical location of those arteries can be seen in figure in 10.1. The 
lenghts are calculated for 3 patients and compared to the results provided from a doctor. 
Those results were manually computed and the paths were derived as an approximation 
of the portion of the edge points of each, artery. . . 

lable 7.1: Presented results of the measurements of the arteries in mm 

Artery Patient 1 Patient 2 Patient 3 Expected 
arteria femoralis dextra 402.6 400.3 395.2 416 
aorta abdominalis 97.8 123.1 100 112 
arteria carotis communis dextra 103.4 75.6 81 99 
aorta thoracia 205.7 200.1 185 216 

The picked paths are demonstrated in the following figures. Results are mostly visual 
based on the variety of the patients. The subjects are of different ages and heights. A com­
parison with theoretical data is practically impossible due to the lack of the information 
for such diverse group of people. 

Figure 7.1: Images show possible picking in different windows 
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8. Limitations of Implemented 
Segmentation and Visualization 

The intensity of the voxels in the output volume is assigned based on the function 
described in 5.3.1. The acquired data present some weaknesses. Those defects come from 
the acquisition process as well as from the limitations of the G E MRI. The problematic 
regions are discussed below and some modifications are suggested to allow a better and 
more precise results. 

8.1. Data Input 
The possibilty to make this method automatic is limited by the data that is provided. 
The file that represents the patient consists of around 1500 DICOM images. The sorting 
process organizes the file and draws out the uniform z-slice sequences. The whole-body 
acquistion is also composed of a prescan sequence and other non-angiographic data. The 
impossibility of the extraction of the right uniform volumes that were acquired as an 
agiographic sequence is not possible due to the lack of information on the acquisition 
mode in the DICOM information. The user should therefore have some information on 
the desired segmented volume and should have a basic knowledge of the arterial system 
in the human body. 

Furthermore, there are several weaknesses some of the patients' folders show. 

• Loss of Data 
In the case where a partial volume is lost, an approximation for the measurement 
can be done by the user. This approximation is linear according to the calculation 
of the distances. This estimation resembles an interpolation of the missing segment 
inbetween two volumes, therefore can be sufficient. In cases where a greater part 
of the volume is absent, the propagation of the artery is probably non-linear and 
cannot be estimated by the user. 

• Shift in Volume 
A shift in volume can be caused by the movement of the patient. This problematic 
requires a separate processing where global coordinates of the shifted segment are 
redefined. This demands a manual revision of the VTK file. The corrected global 
coordinate could be matched by the user or a matching algorithm could align those 
separate volumes. 

8.2. Acquisition Process 
One of the weaknesses of some of the acquired data is a very high intensity of the outline. 
This leads to a processed image with highlighted edges that are of a similar intensity 
as the desired segmented volume. The opacity of these regions cannot be set separately 
resulting in an obstacle for the visualization of the inner part of the body. The possible 
solution is the option for the user to display separate slices. That helps to distinguish the 
arteries from the faulty segmented outer structure. The disadvantage of this problematic 
volume is the inability of its improvement due to errors made during acquisition. 
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8.3. FIELD OF VIEW PROBLEMATICS 

Figure 8.2 shows the faulty clXCcl clS well as a correctly acquired volume. To avoid the 
incorporation of this volume into the dataset, the user must exclude the VTK file from 
the global visualization. 

Figure 8.1: The faulty segmented area of legs (left); combined with angiographic volume 
(center); angiographic volume (right) 

8.3. Field of View Problematics 
The whole-body acquisition sequence can be problematic for people with bigger body 
statures. In this case, the field of view of the G E MRI Discovery is 48 x 48 x 48 cm. 
This can lead to problems in the upper body area. Two of the occuring limitations are 
desribed in following sections. 

8.3.1. Arms 
The arms can be a problematic region. The arteries are poorly visible due to the MRI 
field of view. Patients whose data is provided are of a different age and height. The body 
stature differs and can reach the MRI limitations considering the x — y plane. The arms of 
such patients can be strapped to the body to ensure the inclusion in the acquired volume. 
This policy must be performed during the acquisition process, otherwise the data cannot 
be obtained. The arms region is shown in figure 8.3.1. 

8.3.2. Aliasing 

The aliasing in MRI data occurs when the FOV is smaller than the data. An artefact 
appears outside the body outline and can cause nontransparent voxels to block the desired 
volume structure. This region is present very often around the chest area due to its size. 
The solution can be the extraction of a volume of interest or the 2D visualisation of a 
slice. Figure 8.3.2 shows a region with lower visibility as a result of aliasing. 
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8.4. AORTIC REGION 

Figure 8.2: The comparison of desired segmentation to the segmented volume; difference 
highlighted in blue 

Figure 8.3: The result of aliasing highlighted in a rectangle 

8.4. Aortic Region 
The aortic region is problematic due to its anatomy. The angiographic acquisition deals 
with the separation of vessels (arteries, veins) based on the direction of the flow as de­
scribed in chapter 5. The arteries' intensity is enhanced due to the blood flow direction 
defined for the z-axis. The aortic arch propagates differently (as seen in figure 8.4) and 
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8.4. AORTIC REGION 

therefore cannot be enhanced and segmented clearly. The suggested solution is to visual­
ize the parametric volume based on the Ai eigenvalue. The highlighted edges of the artery 
are clearer and show the propagation in the body more precisely. The comparison of the 
volumes can be seen in figure 8.4. 

HEART 

* v y • • 
Figure 8.4: The blood flow direction in aorta in comparison to the set direction expected 
during angiographic acquisition 

Figure 8.5: Aortic region visualized as a Ai parametric image in comparison to the A 
image 
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9. Summary and Outlook 
The method of segmentation achieved the desired image. Best results are acquired for 

the main arteries. There are also very precise requirements on the data. The acquisition 
process is essential for the successfull outcome of the processing. There are possible mod­
ifications of the Hessian matrix eigenvalue method. Those could most likely elaborate the 
function of the output intensity to acquire results of higher quality. Another improve­
ment of the outcome could be the advancement of the visualization. The user could in 
the future choose from a wider set of functions or define his/her own. The focus of this 
chapter is the outlook on the measurements of arteries. 

The linear approximation of the lengths of the arteries is done manually. An approach 
of automatic tracing of a structure could be implemented for further study. Tracing 
is difficult in parts of artery's bifurcations. It is therefore beneficial to implement a 
semiautomatic measurement method where the user specifies the region of interest (eg. 
the beginning and the end of a vessel). User's interaction could correct wrong paths or 
already specify several points of the artery for a more precise connection between artery's 
edges. 

Tracing of the artery is based on its intensity in comparison to the background's inten­
sity. The artery is traced in the direction of the next user's selected point. Neighbouring 
voxels are taken into consideration to search for a resembling intensity value. The volume 
of interest that is studied for the path is based on the assumption that big arteries are 
represented in the cross-section by circa 3 x 3 selection with the most common spacing 
1.875mm. Furthermore, V T K translates the information of voxel spacing onto the global 
coordinates. Therefore a different resolution of volumes is not a limiting factor. V T K 
enables the computation of the volume of interest from global coordinates and presents 
the possibilitz of acquiring the artery's cross-section in mm. 

This method would enable the user to pick only necessary amount of points for the 
correct approximation. Those points do not have to be the edge points of a linear region, 
but rather significant points of the propagation. The benefit of the semiautomatic length 
measuring is the reduction of user's picking. The lengths should not differ greatly without 
the semiautomatic option in comparison to the manual picking if user picks the linear 
segments accurately. Additionally, with the semiautomatic function, the correction and 
review of the traced region by the user is recommended. 
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10. Conclusion 
The goal of this thesis was the segmentation of the arterial system. Several methods 

were briefly described with the focus on the second derivatives. Moreover, the basic 
anatomy of the circulatory system was described to explain the basis for the segmentation, 
such as the tubular shape of arteries or the blood flow direction. 

The method of segmentation was based on the Hessian matrix eigenvalues and their 
properties. The segmentation's limitations were discussed and some further suggestions 
were made. The possibility of improvement can also include a more complex second 
derivative processing that involves the eigenvector computation. The implementation 
involved three main focusses. Firstly, the appropriate loading of the input data and the 
sorting of separate acquisition sets. The assumption of the correct angiography acquisition 
is expected. Furthermore, the implementation of the Hessian matrix eigenvalue method. 
Prior to the convolution for the computation of the second derivatives, preprocessing in 
the form of smoothening was adjusted for better outcome. The segmentation method 
was implemented and brought sufficient results. Those could be demonstrated in the 
2D slices. Last focus of the implementation was the visualization in 3D. The software 
V T K enabled the display of the segmented volume. Voxels were stored as structured 
points datasets representing volume with possible interaction. 3D visualization showed 
some imperfections of the method, such as artefacts or lost data. Mostly problems as 
consequence of the acquisition process or of the MRI limitations. 

The last part of this thesis deals with the interaction with the volume set. The 
segmented arterial system is measured. The lengths are obtained as a linear approximation 
of the straight paths of the vessels. This application was demonstrated on few patients. 
The suggestions for further advancement were made for more time eficient and more 
precise picking. 
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11. Appendix 
11.1. Arterial System 
The labeled arterial system is displayed as an aditional information for the expected out­
come. Moreover, the labeled arteries are to be measured as a part of a future study. 
In this thesis only some of the main vessels' lenghts are presented to demonstrate pos­
sibility of the volume picking. To process a whole-body scan the suggested method for 
semiautomatic measurement should be implemented due to time efficiency and better 
approximation. 

Figure 11.1: The desired arterial system to be segmented as a result of this work with 
labeled arteries 
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11.2. MATLAB CODE 
Table 11.1: Table with the arteries where numbers represent labels in figure 10.1 

Nr. Latin name 
1 aorta ascendens 
2 arcus aortae 
3a aorta thoracia 
3b aorta abdominalis 
3 aorta descendens 
4 arteria renalis dextra 
5 arteria renalis sinistra 
6 arteria iliaca communis dextra 
7 arteria iliaca communis sinistra 
8 arteria iliaca interna dextra 
9 arteria iliaca interna sinistra 
10 arteria iliaca externa dextra 
11 arteria iliaca externa sinistra 
12 arteria femoralis dextra 
13 arteria femoralis sinistra 
14 arteria profunda femoris 
15 arteria profunda femoris 
16 arteria poplitea 
17 arteria poplitea 
18 arteria tibialis anterior 
19 arteria tibialis anterior 
20 arteria tibialis posterior 
21 arteria tibialis posterior 
22 arteria fibularis (a. Peronealis) 
23 arteria fibularis (a. Peronealis) 
24 truncus brachiocephalicus 
25 arteria carotis communis dextra 
26 arteria carotis communis sinistra 
27 arteria vertebralis dextra 
28 arteria vertebralis sinistra 
29 arteria subclavia dextra 
30 arteria subclavia sinistra 
31 arteria axillaris dextra 
32 arteria axillaris sinistra 
33 arteria brachialis dextra 
34 arteria brachialis sinistra height 

11.2. MATLAB code 
The implemented algorithm in M A T L A B consists of several programs that are briefly 
described in this section for the user's guidance. This explanation presents the expected 
inputs and outputs and needed user's interaction. For the elaboration of the method 
implementation see 5 or the M A T L A B code attached on a CD. On the CD are also files 
provided to test the program. The DICOM file can be requested and is not included 
because of the confidentiality. File processedData.mat containes data that can be stored 
into a V T K file. Data with the .vtk are present to demonstrate visualization. 
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11.3. GUI 

loadFile.m • input: filename 
The input for the function loadFile.m is expected to be a folder name that 
contains DICOM images. Those DICOM images should have the ending .dcm 
and should also contain needed DICOM information. The expected names are 
8-digit numbers starting with 00000000.dcm. 

• output: fileSet 
The output of loadFile.m function is the processed volume set. For each 
volume set, two results are implicitly set: the parametric image defined with 
the function described in this thesis in 4 and a volume based on the omitted 
eigenvalue, see(5). Each of these cells represents a direct input for the function 
toVtk.m that stores those volumes as a VTK-file. The output cell array also 
contains the spacing information that is needed for the VTK-file. 

volumes.m This function is a recursive function that sorts the folder containing the 
DICOM images. This function is used in the loadFile.m function and its output is 
the unprocesses cell-array of sorted volume. For more detailed description see the 
M A T L A B code. 

• input: (slices,num,sorted) 
The input of this function is the inicialization with an empty cell (sorted) 
and the position in the output cell where the sorted set is saved (num). At 
inicialization set to 1. Slices is a cell structure containing path to a DICOM 
slice, its voxel spacing and its global coordinate, e.g.: 'path/'to/'image.dcm'', 
1.51.54.5, 230.60. 

• output: sorted 
The output is a cell array with sorted uniform volume sets. 

toVtk.m This function creates a VTK-file that is saved onto the user specified place. 

• input: (image, spacing, origin, filename) 
The input of this is the uniform processed volume in the form of a 3D matrix 
as image. The spacing is also additional information needed provided by the 
user as well as the origin of the volume. The filename is destination of where 
the file is stored, e.g: 'path/to/filename.vtk' . 

11.3. GUI 
The program requires following free softwares: V T K , Python. The program is ran from a 
command line as pythonprogram.py. Following figure elaborates on the use of the GUI. 
It is a simple demonstration of the volume picking. The recommended use is to pick slices 
within the global volume and to select a specific point in the z-slice provided. 

The picking is done with the right click mouse button and interaction is possible with 
the left mouse button. Picked points are highlighted for the information for the user. 
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