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Introduction

Quantum theory o�ers the most advanced and precise way to describe natural
phenomena that is currently available [2]. By introducing concepts such as su-
perposition, entanglement, wave-particle dualism and tunneling, it presents the
most detailed explanation of the behavior of elementary particles and waves. As
a result, quantum physics allows us to explore a wide range of possible technolog-
ical and research innovations, such as highly sensitive measurements in quantum
metrology [3], and quantum information science [4].

Quantum information science is a modern scienti�c area that surpasses limi-
tations of classical information theory. Its core concepts rely on quantum theory,
and as such evolved hand in hand with new discoveries in quantum mechanics.
Currently there are two major branches of quantum information science, quantum
communications and quantum computing.

For instance, quantum cryptography exploits the principles of the quantum
theory to create a secured communication channel, allowing to transfer infor-
mation safely using quantum states [5]. In quantum mechanics, the process of
measurement on a system causes the system to change its state, therefore by
using certain communication protocols, the two communicating users can always
detect any third party trying to eavesdrop on their communication. The security
of the communication relies solely on quantum information theory and it cannot
be broken even if the attacker has unlimited computer power available.

Quantum computing utilizes the qubit as a unit of quantum information,
which theoretically contains in�nite amount of classical information due to the
principle of superposition, and quantum computer as such can theoretically solve
problems which would be unsolvable by classical binary information systems [4].
Any observable change of information (e.g. changing bit from one to zero) is
called information processing. Quantum information processing is a branch of
quantum information science, which utilizes di�erent physical platforms to ma-
nipulate qubits using quantum gates. Such platforms include quantum dots [6],
trapped ions [7], superconducting circuits [8] and photons [9].

In recent years, classical information processing has witnessed a boom of ma-
chine learning techniques, that range from simple regressions to complex methods
of optimization and pattern recognition [10]. At its heart, machine learning meth-
ods are based on matrix operations on high-dimensional vectors, hence interesting
similarity with quantum mechanics [11]. As a result, a young �eld of quantum
machine learning emerged and o�ered a promising way to process atypical pat-
terns in data [12]. The overlap between quantum machine learning and quantum
computing could create interesting alternative to classical information processing,
both in the computational time needed for the task at hand and in the capability
to process the data.

In this thesis, we present an experimental realization of machine-learned quan-
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tum gate controlled by classical optimization algorithm. To demonstrate the gates
capabilities to learn, we show that the gate can learn phase-covariant cloning to
nearly optimal level, having the feedback in form of the �delities of individual
clones. The thesis is divided into three chapters, �rst of which explains basic
principles of quantum mechanics and quantum information processing, together
with a brief introduction to machine learning methods and platform of linear
optics. Second chapter describes construction and alignment of highly stable
Mach-Zehnder type interferometer, which represents a fundamental part of the
presented quantum gate. In the third chapter, we present results of two experi-
ments that show how to algorithmize and train a phase-covariant quantum cloner
using reinforcement learning methods.
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Chapter 1

Principles and methods

1.1 Quantum model of electromagnetic �eld and

Fock states

First of all, let us brie�y describe the electromagnetic �eld using the quantum
theory. This process is usually referred to as quantization of electromagnetic �eld
(also called the second quantization). We will only mention key aspects of the
second quantization, as detailed description can be found in various literature,
e.g. [13,14] and goes beyond the scope of this thesis.

In classical physics, we describe electromagnetic �eld using Maxwell's equa-
tions in vacuum [15]

∇ · ~B = 0, (1.1)

∇ · ~D = 0, (1.2)

∇× ~E = −∂B
∂t

, (1.3)

∇× ~H =
∂D

∂t
+~j, (1.4)

where vectors ~E and ~H denote electric and magnetic intensities, vector ~D denotes
electric displacement �eld and ~B stands for magnetic induction with respective
constitutive relations

~D = ε ~E, (1.5)

~B = µ ~H, (1.6)

where ε stands for permittivity and µ for permeability. In vacuum, these quan-
tities equal constant values ε = ε0 and µ = µ0, respectively.

Using these equations, we can de�ne the energy density of the electromagnetic
�eld in free space U as [15]

U =
1

2

(
ε0| ~E|2 + µ0| ~H|2

)
(1.7)

In theoretical mechanics, the total energy of a system is usually given by
Hamiltonian H [16]. For a speci�c quadratic potential and using generalized
coordinates, H takes the form of a sum of independent linear oscillators in the
form of [14]

H =
∑
j

1

2

(
~|p|

2

j + ω2
j
~|q|

2

j

)
, (1.8)
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where ~pj and ~qj stand for generalized momentum and generalized position of jth
oscillator, respectively and ωj denotes angular frequency. We can see that the
equation 1.8 formally resembles equation 1.7.

In the case of electromagnetic �eld, we can associate the corresponding jth
oscillator with the jth mode (con�guration) of electromagnetic �eld and the gen-
eralized coordinates with electric and magnetic intensities.

In quantum mechanics, the generalized coordinates and Hamiltonian are re-
placed by their operator forms and equation (1.8) can be rewritten as

Ĥ =
∑
j

1

2

(
|p̂|2j + ω2

j |q̂|2j
)

, (1.9)

where p̂j and q̂j stand for the operators of momentum and position and Ĥ denotes
the Hamiltonian operator (operator of total energy). These operators obey the
commutation relations [2]

[q̂i,p̂j] = i~δij, (1.10)

[q̂i,q̂j] = [p̂i,p̂j] = 0, (1.11)

where ~ is the reduced Planck constant, and equals ~ = h
2π

(h is the original
Planck constant).

Now given the formal correspondence of the classical electromagnetic �eld and
classical linear oscillators, we can use the formalism of quantum linear oscillators
to express quantized electromagnetic �eld. It is convenient to de�ne the so-called
creation operator â†j and annihilation operator âj (in quantum mechanics also
referred to as ladder operators) for the jth mode as [13]

âj =
1√

2mj~ωj
(mjωj q̂j − ip̂j) , (1.12)

â†j =
1√

2mj~ωj
(mjωj q̂j + ip̂j) , (1.13)

where mj is a constant with a dimension of mass. The commutation relations for
these operators are similar to those between p̂j and q̂j[

âi,â
†
j

]
= δij, (1.14)

[âi,âj] =
[
â†i ,â

†
j

]
= 0 (1.15)

and can be used to express the Hamiltonian in a more elegant way

Ĥj = ~ωj
(
â†j âj +

1

2

)
= ~ωj

(
N̂j +

1

2

)
, (1.16)

where â†j âj = N̂j stands for the number operator in the jth mode.
Following Dirac's notation, let us now consider a system in energy eigenstate

|nj〉. It follows that
â†j âj |nj〉 = N̂j |nj〉 = nj |nj〉 , (1.17)

which shows that the energy eigenstate |nj〉 is also the eigenstate of the number
operator N̂j. The eigenvalues nj actually correspond to the nj quanta each having
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energy ~ωj, which we call photons. The eigenstate |nj〉 is called the Fock state
and it represents the number of photons in a corresponding mode of the �eld.

Applying annihilation and creation operators on the Fock state gives us the
following relations

â |n〉 =
√
n |n− 1〉 , (1.18)

â† |n〉 =
√
n+ 1 |n+ 1〉 . (1.19)

This means that applying annihilation operator on a state decreases the number
of photons in the state by one. In contrast, applying creation operator on a state
increases the number of photons by one.

If we consider vacuum state |0〉 (state with zero photons), applying annihila-
tion and creation operators yields

â |0〉 = 0, (1.20)

â† |0〉 = |1〉 . (1.21)

1.2 Qubit

It is a textbook knowledge that the elementary unit of classical information is a
bit [17]. A bit can only take two discrete logical values, either 0 or 1, and any
classical information is in fact expressed as a sequence of bits encoded into an
object, such as a computer memory.

In quantum information processing, the quantum bit (qubit) takes place as
the basic unit of information [4]. Unlike the classical bit which can only be in the
state 0 or 1, the qubit capitalizes on the principle of superposition known from
quantum theory. The principle of superposition states that if the object can be
in several discerete valid states, it can also be in any linear combination of the
states (so-called superpositions). This actually means that if we consider states
|0〉 and |1〉 (notation |〉 corresponds to Dirac notation) our two logical states,
i.e. so-called computational basis states, qubit can also be found in any linear
combination of the basis states, e.g. 1√

2
(|0〉+ |1〉).

Formally, we can de�ne qubit as normalized vector in two dimensional Hilbert
space with ortonormal basis |0〉 , |1〉. Qubit is a unit vector in this space that takes
the form of

|ψ〉 = α |0〉+ β |1〉 , (1.22)

where α, β ∈ C are probability amplitudes that satisfy normalisation condition
|α|2 + |β|2 = 1. We can interpret the modulus squared of the probability ampli-
tudes as probabilities in a sense that when measuring qubit in the state |ψ〉, we
have probability |α|2 of �nding the qubit in the state |0〉 and probability |β|2 of
�nding the qubit in the state |1〉. The superposition also means that there is no
way to predict the outcome of this measurement, all we know about the qubit
are the probabilities |α|2 and |β|2.

Qubit can be physically realized by any two level quantum system (any quan-
tum object that can be found in two discrete states). On the optical platform,
qubit can be e�ciently encoded using photons [18], either by encoding the qubit in
photon polarization (polarization encoding) [19], or by its trajectory in some op-
tical system (spatial encoding) [20], which is composed of multiple optical paths
(e.g. optical �ber), in which the photon has non-zero probability to enter. If
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there are two possible paths, we can also describe it as vector in two-dimensional
Hilbert space. By increasing the number of paths, we can e�ectively increase the
dimension of the Hilbert space (and also the number of basis vectors, thus hav-
ing a general qudit [21]). There are other possible methods of encoding, namely
time-bin [22] and orbital angular momenta [23], however the experimental setup
presented in this thesis uses polarization encoding to prepare and detect qubits
and spatial modes to selectively address transformations.

1.3 Photon polarization and polarization encod-

ing

In homogeneous isotropic medium, electromagnetic radiation is a transverse wave
made of two perpendicular vectors, electric �eld ~E and magnetic �eld ~H [24].
Vectors ~E and ~H are perpendicular both to each other and to the direction of the
energy propagation which in homogeneous isotropic medium also corresponds to
the direction of the wave propagation. Both the vectors change their magnitude
and direction as the wave propagates, but always form a plane perpendicular to
the direction of the propagation (a transverse wave). The polarization is then
de�ned as the trajectory of one of the �eld vectors (in our case the vector ~E) at
discrete points in space in a plane perpendicular to the wave propagation.

If this trajectory is completely chaotic and doesn't follow any pattern, the light
wave is unpolarized. If however the trajectory does follow a pattern in a periodic
way, we call the light wave polarized. Generally, the trajectory corresponds to an
ellipse, but in special cases, it becomes a circle (circular polarization) or a line
(linear polarization). We can also denote p ∈ [0,1] as degree of polarization, in
which case p = 1 for polarized light and p = 0 for unpolarized light. Any other
polarization state, corresponding to a number between zero and one, represents
partially polarized light.

Mathematically, we can describe polarization of fully polarized light using
Jones vector [25], which for light propagating in the direction of axis z can be
written as

~E =

(
Ex
Ey

)
=

(
Ax exp (iδx)
Ay exp (iδy)

)
, (1.23)

where Ax denotes real amplitude and δx phase of the x component of the �eld
vector Ex (and equivalently for Ey). It is common to note phase di�erence of the
x and y components as only the relative phase has a physical meaning, thus we
can rewrite the equation as

~E =

(
Ax

Ay exp (i∆)

)
, (1.24)

where ∆ = (δy − δx) and we normalize the amplitudes with condition ~|E|
2

= 1 to
ensure that E is a unit vector. The combination of Ax, Ay, ∆ gives us the resulting
Jones vector, for example for ∆ = 0, we get linearly polarized light, horizontally
|H〉 for Ax = 1, Ay = 0, vertically |V 〉 for Ax = 0, Ay = 1 and diagonally |D〉

for Ax = Ay = 1√
2
. The corresponding Jones vectors are

(
1
0

)
,

(
0
1

)
, 1√

2

(
1
1

)
,

respectively. For ∆ 6= 0, Ax 6= 0 and Ay 6= 0, we get non-linear polarizations,
such as general elliptic or circular for ∆ = ±π

2
and Ax = Ay.
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Jones vector perfectly describes a polarization state of a single mode in so-
called pure state. However, any mixture of waves with di�erent polarizations (so
called mixed state which actually corresponds to the partially polarized light)
can not be described using this formalism and the correlations between the com-
ponents of electric �eld can only by described stochastically, using statistics. In
such cases, it is necessary to use more complex methods of description, such as
coherency matrix or Stokes parameters [26]

S0 = I (1.25)
S1 = Ip cos(α) cos(β) (1.26)
S2 = Ip sin(α) cos(β) (1.27)
S3 = Ip sin(β), (1.28)

where I stands for total intensity of the beam (usually normalized to unit mag-
nitude), p is the degree of polarization, α phase and β elevation.

Probably the most illustrative way to visualize polarization state is by using
the Poincaré sphere, which is actually a plot of three normalized Stokes param-
eters (neglecting the �rst one) in three-dimensional Cartesian coordinates [26].
This results in a sphere we can see in Figure 1.1. All pure polarization states lie
on the surface of the sphere, while partially polarized states lie inside the sphere,
with the center of the sphere representing completely unpolarized light. Further-
more, any two opposite points on the Poincaré sphere correspond to orthogonal
polarization states (orthagonal Jones vectors).

Poincaré sphere is actually analogous to the Bloch sphere, which is the visu-
alization of possible states of a qubit and it is therefore straightforward to map
the qubit states onto the polarization states [4]. As we can see in Figure 1.1, if
we choose orthogonal polarization states as a basis and use Dirac's notation of
quantum state in such a way that state |H〉 represents horizontal polarization
and state |V 〉 represents vertical polarization, we can associate these states with
basis vectors |0〉 and |1〉 of a qubit. Single photon can be prepared in any linear
combination of the horizontal and vertical polarization, therefore single photon
can be used to encode one qubit of information.

1.4 Photon pairs generation

We have introduced the concept of photons and polarization encoding, so now let
us discuss the way of generating photons we can actually encode the information
into. In our experimental setup, we used a process of spontaneous parametric
down-conversion (SPDC) [27], which is a second order non-linear optical process.
SPDC is a parametric process that occurs in non-linear optical materials, such
as LiIO3 (lithium iodate) or BBO (beta barium borate) which is actually used
in the reported experiment [1]. The non-linear crystal serves as a catalyst for
the parametric process in which the photons from a high intensity incident pump
beam (usually laser beam) have a certain (although very small) probability of
annihilating, creating two new time-correlated photons (usually called signal and
idler). During the process, the quantum state of the material stays unchanged.
This process has to ful�ll the laws of energy and momentum conservation, which
can be written as

~ωp = ~ωs + ~ωi, ~~kp = ~~ks + ~~ki, (1.29)
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Figure 1.1: Visualisation of polarization encoding using Poincaré sphere. While general
qubit in state ψ is described by phase α and elevation β, the qubit state |0〉 corresponds to
the polarization state |H〉 and qubit state |1〉 represents the polarization state |V 〉. Other
notable polarization states are represented � left-handed circular polarization |L〉, right-
handed circular polarization |R〉, diagonal polarization |D〉 and anti-diagonal polarization
|A〉. The center of the sphere represents unpolarized light, p = 0.

where ~ki stands for wave vector and indexes p, s, i note pump, signal and idler
beam, respectively.

Matching these conditions is sometimes referred to as phase matching and
precise description of the process depends on the used non-linear material. De-
tailed description about non-linear crystals and non-linear processes in general
can be found in various literature, such as [27,28].

1.5 Linear optical platform

In this section, we will discuss how linear optical elements can be used to ma-
nipulate the photons and thus process the stored information. Namely we will
describe two linear optical elements, which are used in our experimental setup,
wave plates and polarization dependent beam splitter. The interaction itself can
be always viewed as a linear transformation of complex amplitudes E of several
spatial or polarization modes, hence we can describe it using linear algebra.

1.5.1 Beam splitter

The beam splitter is the major optical element used in any optical quantum gate,
as it allows us to coherently superimpose (mix) spatial input modes. It can be
physically realized as a �ber coupler, bulk cube or semitransparent plate and it
is an essential part of every interferometer [14].

Let us now consider a classical mathematical description of a beam splitter
that transforms two input modes into two output modes [14]. If we denote Ein,1

and Ein,2 the complex amplitude of incident light beams, Eout,1 and Eout,2 the
amplitudes of the output (mixture of partially re�ected and transmitted) light
beams and r and t as the amplitude re�ectance and amplitude transmittance

17



complex coe�cients, the transformation matrix of the beam splitter takes form
of (

Eout,1

Eout,2

)
=

(
t r
−r t

)(
Ein,1

Ein,2

)
. (1.30)

If we consider an ideal case in which beam splitter has zero absorbency, we
also get a condition

|t|2 + |r|2 = 1, (1.31)

which means that any input light on the beam splitter has to be partially trans-
mitted or re�ected (not absorbed) and for a special case of a single photon on the
beam splitter, it is either transmitted or re�ected. In a similar fashion, we can
describe the ideal beam splitter using quantum mechanics, in which the complex
amplitudes are replaced by annihilation and creation operators. The equation
(1.30) then takes form of a unitary transformation(

âout,1
âout,2

)
=

(
t r
−r t

)(
âin,1
âin,2

)
, (1.32)

where âin,1, âin,2 are operators of the input spatial modes and âout,1, âout,2 are
operators of the output spatial modes. We can also parametrize the beam splitter
with single parameter η using relations [9]

t = cos η, r = sin η (1.33)

and the equation (1.32) can be rewritten as(
âout,1
âout,2

)
=

(
cos(η) sin(η)
− sin(η) cos(η)

)(
âin,1
âin,2

)
. (1.34)

In our case, we also have to consider polarization states of photons as an
additional mode that has to be taken in mind. For the purpose of splitting inci-
dent photon beams based on the photons polarization, we need optical elements
sensitive to the polarization, such as a polarizing cube. This can be viewed
as a special case of polarization dependent beam splitter [29]. If we yet again
choose horizontal and vertical polarization states as our polarization basis, we
can mathematically describe such a beam spliter by generalising equation (1.34)
by increasing the number of both input and output modes to four, consisting of
two horizontally polarized and two vertically polarized spatial modes

âHout,1
âVout,1
âHout,2
âVout,2

 =


cos(ηH) 0 sin(ηH) 0

0 cos(ηV) 0 sin(ηV)
− sin(ηH) 0 cos(ηH) 0

0 − sin(ηV) 0 cos(ηV)



âHin,1

âVin,1

âHin,2

âVin,2

 , (1.35)

where indexes H and V stand for horizontal and vertical polarization and ηH, ηV
for generally unequal splitting rations for individual polarizations. Note that in
this particular basis, the orthogonal polarization modes do not mix.

1.5.2 Wave plate

Wave plates are birefringent optical elements that allow us to control polarization
state of a light beam by causing relative phase shift Γ between the H and V modes
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of the wave. This is done by propagating along the wave plate fast and slow optical
axis [30]. Formally, we can describe adding a phase shift as a transformation(

âH,out
âV,out

)
=

(
cos(ν) − sin(ν)
sin(ν) cos(ν)

)(
exp
(
iΓ

2

)
0

0 exp
(
−iΓ

2

))(
cos(ν) sin(ν)
− sin(ν) cos(ν)

)(
âH,in
âV,in

) (1.36)

where Γ represents the imposed phase shift and ν stands for the angle between
wave plate fast axis and horizontally polarized component of the wave.

Wave plates are usually made of anisotropic material and common types are
the half-wave plate, which causes a relative phase shift of Γ = π between po-
larizations along wave plates fast and slow axis. This wave plate is often used
to rotate linearly polarized light (horizontally to vertically and vice versa). The
other notable type is a quarter-wave plate, which causes relative phase shift of
Γ = π

2
and can be used to convert linearly polarized light into circularly polarized

light (and vice versa) [31]. Combining two quarter-wave plates and one half-wave
plate allows us to change any pure polarization state to any other polarization
state.

The transformation caused by a half-wave plate can be described as [25](
âH,out
âV,out

)
=

(
cos(2ν) sin(2ν)
sin(2ν) − cos(2ν)

)(
âH,in
âV,in

)
(1.37)

and the matrix transformation of quarter-wave plate then takes form of [9](
âH,out
âV,out

)
=

1√
2

(
1− i cos(2ν) −i sin(2ν)
−i sin(2ν) 1 + i cos(2ν)

)(
âH,in
âV,in

)
. (1.38)

1.6 Quantum cloning

In general, cloning can be described as an operation of selecting N identical
input objects and creating M identical output objects. The most trivial process
of cloning takes only one input object and creates two copies of it on the output
(denoted as 1 → 2 cloning). In quantum cloning, we do not clone the object
itself, but rather the quantum state |ψ〉 of the cloned object. That means that
given qubit encoded in a particular quantum state, cloning the state yields us the
same two copies of the qubit. This is an analogous process to the copying of a
classical bit, however, it turns out that in quantum mechanics, perfect cloning is
not possible [4].

1.6.1 No cloning theorem

In 1982, a letter entitled "A single quantum cannot be cloned" by Wooters and
Zurek was published in Nature [32]. The paper contained a simple proof later
known as the no cloning theorem which arrived at a simple conclusion: an arbi-
trary unknown quantum state cannot be perfectly cloned, which means that it is
impossible to create its identical copy. How about an imperfect cloning though?
If we consider the approximate copies of the cloned quantum state as valid clones
as well, we can actually extend the cloning process to any quantum state. This
was shown in 1996 by Buºek and Hillary [33].
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The similarity of the cloned states, or rather the resemblance between the
original and the copy can be described using �delity F ∈ [0; 1]. Mathematically,
�delity between two states is de�ned as [4]

F (ρ̂, σ̂) =

[
Tr

√√
ρ̂ σ̂
√
ρ̂

]2

, (1.39)

where σ̂, ρ̂ are density matrices of the two generally mixed states. In a special
case in which σ̂ = |ψσ〉 〈ψσ| represents pure quantum state, the equation simpli�es
to the form

F (|ψσ〉 , ρ̂) = 〈ψσ| ρ̂ |ψσ〉 , (1.40)

that can be interpreted as an overlap between |ψσ〉 and ρ̂. For both σ̂ and
ρ̂ = |ψρ〉 〈ψρ| being pure states, the equation yields

F (σ̂, ρ̂) = | 〈ψσ|ψρ〉 |2. (1.41)

In case of cloning, we label |ψin〉 the pure input quantum state and %̂i rep-
resents the reduced density matrix of the ith output state [34]. We can de�ne
�delity of each of the M output clones as Fi = 〈ψin| %̂i |ψin〉. Reduced density
matrix %̂i can be obtained from the density matrix %̂ of the entire output state
by applying partial trace over the other clones, %̂i = Tri 6=j %̂, i ∈ [1, M ], where
M stands for the total number of output clones.

If the cloned output state is exactly the same as the original, the �delity of
ith clone equals Fi = 〈ψin| %̂i |ψin〉 = 1. If, however, the resulting output state is
equal to a completely random stochastic mixture of states, we get average �delity
F̄ = 1

D
for a general qudit and F̄ = 1

2
in a case of a qubit.

1.6.2 Cloners

There are several properties we can use to characterize the devices used for
cloning, namely: optimality, symmetry, success probability, ratio N →M (input
to output clones), universality and principle of operation.

An optimal cloner is able to clone with maximum obtainable �delity, for a
given set of parameters: input-output cloning ratio, symmetry and a prior knowl-
edge about the cloned states. The maximum possible �delity di�ers for every
particular class of cloned quantum states [34]. We can visualize this using Bloch
sphere (see Fig. 1.1). For example, given the qubits that lie on the equator,
the maximum clones' �delity would di�er from cloning �delity of the states with
di�erent distribution on the sphere. If the resulting �delity is below theoretical
maximum, then the cloner is not optimal.

Symmetrical cloner achieves the cloning task in a way that all the �delities of
individual output clones are equal. Asymmetrical cloner can create the output
clones each with di�erent �delity. We can also get a situation in which for example
we create three clones, two with the same �delity and one with di�erent one, in
which case we can denote the cloning process as 1→ 2 + 1.

The deterministic cloner performs the cloning transformation successfully in
every realization of the cloning. For probabilistic devices, there is always a
nonzero probability that the transformation fails and the quantum information
is lost [34].

20



Universal cloner can clone any quantum state from the Bloch sphere with
the same �delity. Nonuniversal cloner specializes in cloning only certain class of
quantum states, a subset of the Bloch sphere, for example only the states that lie
on a plane parallel to the equator, but can achieve higher �delity as the optimality
varies for di�erent classes of states.

Last property that de�nes a quantum cloner is its principle of operation. We
can distinguish three basic types. Note that in these examples, the number of
input states N = 1, even though for every output state we need and ancillary
photon, which serves as a blank medium for the clone. From this point on, we
will also limit the relations for a general qudit to qubit only.

The Semi-classic clonermeasures the input quantum state against a random
projection basis and stores the result of that measurement. If the result is for
example |H〉, it then creates M copies with the same quantum state |H〉. If we
choose the measurement basis randomly for every input state, we get maximum
obtainable �delity of F = 2

3
which is referred to as semi-classical limit for quantum

devices. However, the �delity of the output clones is independent of its quantity.
Trivial cloner simply adds another random quantum state to the input quan-

tum state and stochastically swaps them, so it is unclear which output is the
original and which is the copy. The result is asymmetrical as for M = 2 output
clones, one has �delity F = 1 and the other F = 0.5, with the average �delity
F = 0.75. The output �delity also depends on the number of the output photons
and it decreases to the limit of F = 1

2
as the number of output photons increases.

Quantum cloner uses some kind of quantum operation to improve the re-
sulting �delities of the cloned states. For a universal quantum cloner that can
clone any quantum state, the maximum produced �delity equals F = 5

6
≈ 0.833

for M = 2 and it decreases as M increases [33].
There are several realizations of quantum cloners each performing di�erent

quantum cloning process with di�erent maximal theoretical �delity. Comparing
single types of cloners in detail is beyond the scope of this thesis and can be
found in several papers, e.g. [34, 35]. In this thesis, we present a symmetrical
phase covariant 1 → 2 cloner [36], which is the type used for an attack on the
cryptographic protocols BB84 [5] and RO4 [37,38].

We have noted that apart from semi-classic cloning, the resulting �delities
decrease as M increases. This is also dependent on the number of input photons
N and the dimension of the the qudit (as mentioned in the section 1.2). For
N = 1 and dimension 2 (qubit), we can plot the �delity as a function of M as in
Fig. 1.2 [39].

1.6.3 Phase covariant quantum cloning

Phase-covariant quantum cloning is de�ned as a transformation that is optimal
for a restricted set of pure input states in the form of [36]

|ψ〉 =
1√
2

(|0〉+ exp(iα) |1〉) , (1.42)

where α corresponds to the angle marked in Fig. 1.1 These states are referred to
as equatorial states, as they are located at the equator of the Bloch sphere and
are frequently used in the �eld of quantum cryptography [36].

The phase covariant quantum cloner can also clone states on planes parallel
to the equator, which satisfy the condition that the �delity of output clones is
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F

M

Figure 1.2: Fidelity of the output clones as a function of its numberM for above mentioned
cloning devices. The number of input states is N = 1 and the dimension of the qudit is 2.

invariant of the phase α ∈ [0, 2π] and only depends on the elevation β ∈ [0, π]
(see Fig. 1.1), that corresponds to the angle between the Bloch vector and the z
axis of the Bloch sphere. The class of phase covariantly cloneable states are thus
in general made of parallels on Bloch sphere and they can be mathematically
described as

|ψ〉 = cos

(
θ

2

)
|0〉+ exp(iφ) sin

(
θ

2

)
|1〉 . (1.43)

The optimal transformation of the phase covariant states from the upper hemi-
sphere reads [40]

|H〉 |H〉 → |H〉 |H〉 , |V 〉 |H〉 → 1√
2

(|V 〉 |H〉+ |H〉 |V 〉) , (1.44)

where the �rst state is the original cloned state and the second state is an an-
cillary state. For the lower hemisphere, the ancillary photon has to be vertically
polarized and the transformation interchange state |H〉 for |V 〉 and vice versa.

The theoretical maximum obtainable �delity of the phase covariant quan-
tum cloners di�ers with the respect to the angle β, with minimum �delity F =
1
2

(
1 + 1√

2

)
≈ 0.8535 at the equator (β = π

2
) and maximal at the poles of the

Bloch sphere (β = 0 or β = π).

1.7 Machine learning algorithms

For a last decade, machine learning has been experiencing increased popularity
among both academic research and technology development. From simple logistic
regressions to support vector machines, complex neural networks and deep learn-
ing, the power to �nd hidden patterns in data, identify and classify clusters or
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learn from a feedback to improve performance over speci�c task has been exten-
sively used in various �elds, being it web security, medical science [41], automotive
or targeted advertisement [42].

The classical engineering algorithmic problem solving approach usually con-
sists of acquiring a necessary knowledge of the problem, building a mathematical
model and implementing an algorithm based on this model [43]. In contrast, ma-
chine learning methods partially replaced the knowledge with su�ciently large
number of known examples, known as training set, which is fed to a learning
algorithm, essentially creating a Black box problem solving machine [44].

The learning algorithm itself is just a process of mapping the training set
(data) to �t the machine parameters via minimizing a certain function (so called
cost function C). The cost function can be just as simple as least squares method,
which basically represents summing the squares of di�erence between the output
of the machine and the actual expected output. Averaging the results over the
whole training set yields us a single number describing how good or bad the
parameters are. Optimization algorithms that minimize the cost function over all
the machine parameters lie at the very heart of the machine learning. There are
number of minimizing algorithms that are frequently used and they are usually
sorted to gradient (e.g. gradient descent [45]) and nongradient (e.g. Nelder-Mead
simplex algorithm [46]) methods.

Even though the recent boom in machine learning methods made summa-
rizing this �eld rather di�cult, machine learning methods are usually divided
into three recognized categories: supervised learning, unsupervised learning and
reinforcement learning [10].

The supervised learning is probably the most famous of the three, as it pow-
ers the best known examples of machine learning, being it image and speech
recognition, spam classi�cation, prediction or medical diagnoses. The basic idea
of supervised learning is to create a large data set with the knowledge of some
labels that describe the data, and then use this a priory knowledge in predict-
ing the label of new incoming data. In human mind, the process itself is quite
simple, for example considering the spam �lter, all we have to do is go through
of couple of hundreds of emails and then you will probably recognize whether a
newly acquired email is a spam or not [42]. In a computer world, however, you
do have to parametrize this task somehow, in order for the computer to store the
relevant information. The task of identifying and mapping the set of parameters
is usually nontrivial and requires a great deal of experimenting, which is why
there are so many di�erent techniques (e.g. neural networks with di�erent sets
of neurons and layers, each reaching a di�erent performance for a speci�c task).

Unsupervised learning is somewhat of an opposite to the supervised learning.
It is most commonly used to separate the data set into groups or clusters, which
have something in common, to organize them in some way. This idea alone is
intriguing in many �elds as majority of the world data is actually unlabeled [10].
These data driven algorithms are best known in recommender systems at the
web shops or pages like YouTube or Net�ix, or in grouping the users on social
networks with respect to their interests.

Conceptually very di�erent, the basic idea of reinforced learning is to imitate
the learning process of an ordinary human, which can be (from the very sim-
ple perspective) described as performing a task, failing horribly at it, doing it
again, this time di�erently and possibly noticing a slight improvement in the task
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performance [10]. By executing the task for quite some time, there will notable
di�erence in which factors (parameters) improve the task performance and which
do not, and anyone will do one's best to remember them, essentially learning from
the past mistakes.

In a world of reinforcement learning, the computer is usually referred to as
agent, which a�ects its environment with its possible actions, as it can be seen in
Fig. 1.3. The environment responds back to the agent (often throughout an ob-
serving interpretor) with its updated state and a feedback, which can be thought
of as a reward for the agents behavior. After a certain learning period, the agent is
tested against a case that was not included in the training and if its performance
improves, the learning is considered successful. The reinforced learning has been
mostly used in training computer to play video games or simulations [47], as well
as in this thesis.

State

Reward

Agent

Action

Enviroment

State

Interpreter

Figure 1.3: Reinforcement learning frame. The agent a�ects an enviroment with an action,
the state of the enviroment is observed by the interpreter which evaluates the reward and
passes it along with the enviroments state back to the agent. Adopted and adjusted from
http://clipart-library.com/.

1.7.1 Quantum machine learning

More recently, the �eld of quantum machine learning (QML) rose as a possi-
bly perspective overlap between quantum physics and machine learning algo-
rithms [11]. It is well known that quantum computing reduces the computational
di�culty of certain classes of problems (so called quantum speedup), for the same
reason it is expected that the QML can help recognize atypical patterns of data
that quantum mechanics often produce. Both machine learning methods and
quantum mechanics also share the same mathematical toolkit as solving prob-
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lems in both �elds typically involves using matrix operations on high dimensional
vectors.

The quantum speedup can be as high as exponential for certain problems, such
as Shor's factoring algorithm or basic linear algebra subroutines, and is always
conditioned by �nding e�cient quantum algorithm for solving problems [11] (if
it exists) and limited by the experimental error of available technological devices.
Another example of quantum algorithm outperforming best known classical algo-
rithms can be search of an unsorted dataset with N entries. While the classical
algorithms take time proportional to N , the quantum algorithm can search the
dataset in time proportional to

√
N and as such achieves a square root speedup.

We can distinguish four types of QML with respect to the input data and the
processing algorithms, CC (classical data and classical data processing) which
represents classical machine learning, QC (quantum input data and classical data
processing), CQ (classical data and quantum data processing) and QQ (quantum
input data and quantum data processing).

Variety of QML experiments were proposed, for example, in the paper [48],
authors use small-scale photonic quantum computer to assign a cluster to high-
dimensional vectors represented by quantum states, and then use the results as
training set for implementing both supervised and unsupervised machine learning
methods to classify future vectors.

In report [49], authors use formal similarity of quantum computing and ma-
chine learning kernel methods and interpret encoding of input data into quantum
states as a feature map, which allows them to associate quantum Hilbert space
with a high-dimension feature space. The quantum device can then use inner
products of quantum state to compute kernel, which can be used by a variety of
classical kernel methods, i.e. support vector machines.

Several papers regarding quantum reinforcement learning were also published.
For example, in [50, 51], authors use machine learning methods, namely particle
swarm optimization and di�erential-evolution, to eliminate guesswork in quantum
measurement schemes employing adaptive feedback and apply it to the problem
of interferometric phase estimation.

In a �eld of deep learning, papers regarding Boltzmann machines, one of
the simplest types of neural networks, were proposed. In another report [52],
the authors show that an arti�cial neural network can be trained to classify
separability of quantum states with only partial information about the states
available and achieves 98.3 % average match rate. Adding hidden layer to the
neural network further improves the classi�cation to average match rate of 99.7 %.

1.7.2 Nelder-Mead algorithm

As a powerful and robust way of �nding a minimum of N -dimension fuctions
without the need of a gradient, Nelder-Mead simplex algorithm was presented
way back in 1965 [46] and is still commonly used in optimization algorithms, for
example the fminsearch function in Matlab or fmin function in the Python Scipy
module.

The Nelder-Mead simplex algorithm minimizes a chosen cost function C in a
multidimensional space with the dimension corresponding to the number of the
function parameters N . The algorithm takes (N + 1) points in the parameter
space to create a (N + 1) dimensional initial simplex S (each point corresponds
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to one of the simplex vertices). For example, with 2 parameters being optimized,
the algorithm creates a triangle, for 3 parameters it creates a tetrahedron and so
on.

The value of the cost function at each vertex of the simplex is then evaluated,
the algorithm calculates the centroid c of the best side (side opposite of the vertex
VH with highest value of C) and then transforms the simplex in order to �nd a
point of local minimum. The algorithm can transform the simplex in four ways,
re�ect, expand, contract and shrink (see Fig. 1.4, where the new simplex is
displayed in blue color). The algorithm always tries to calculate as few vertices
as possible, so it prioritizes on replacing the worst vertex via using re�ection,
expansion or contraction (the new test points always lie on the line along VH and
c). If any of these operations do not yield better result, the algorithm shrinks
the simplex towards the vertex VL with the lowest value of C. In this case, new
vertices have to be computed.

Mathematically, the four possible transformations conditions for 2D simplex
can be described as following. The multiplicative constants with conditions λ >
0, 0 < κ > 1, τ > 1 ∧ τ > λ, 0 < χ > 1 used as parameters in these
transformations equal λ = 1, κ = 1

2
, τ = 2, χ = 1

3
in most of the implementations.

Step 1:

Re�ection → compute the re�ection point VR = c + λ ∗ (c − VH) and
tests a condition CL ≤ CR < CM. If the result is true, accept the new simplex
VLVRVM and terminate the iteration.
Step 2:

if CR < CL:
Expansion→ compute the expansion point VE = c + τ ∗(VR − c) and test a

condition CE ≤ CR < CL. If the result is true, accept the new simplex VLVEVM
and terminate the iteration, otherwise if false, accept the simplex VLVRVM from
previous step and terminate the iteration.
else if CR < CM:

Contraction → compute the contraction point VC. If CR < CH, create the
VC = c + κ ∗ (VR − c) outside the simplex and test a condition CC < CR.
If the result is true, accept the new simplex VLVCVM and terminate the itera-
tion, otherwise if false, perform the Shrink operation. If CH ≤ CR, create the
VC = c + κ ∗ (VH − c) inside the simplex and test a condition CC < CH. If
the result is true, accept the new simplex VLVCVM and terminate the iteration,
otherwise if false, perform the Shrink operation.
else:

Shrink computes N new vertices, Vj = VL + χ∗(Vj − VL) for j ∈ {0,...,N}
and j 6= L and accepts the new triangle VLVj.
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Figure 1.4: Nelder-Mead simplex transformations in 2D in following order: 1) Re�ection, 2)
Expansion, 3) Contraction and 4) Shrink.
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Chapter 2

Construction and stability of the

experimental setup

Parts of the text adopted from Jan Ja²ek, Kate°ina Jiráková, Karol Bartkiewicz,
Antonín �ernoch, Tomá² Fürst and Karel Lemr, Optics Express, vol. 27, p.
32454, oct 2019 [1].

In previous chapter, we have described the basic theoretical concepts of quan-
tum cloning and quantum information processing. We have also highlighted linear
optics as a suitable platform for manipulating qubits encoded into photons and
introduced machine learning as a viable methods of algorithmic optimization. In
the experimental section, we will merge these concepts together to create a linear-
optical quantum gate and show how to optimize it using reinforcement learning
methods performed by classical information processing. Conceptually, this prob-
lem belongs to the QC class of reinforced quantum machine learning, which is
visualized in Fig. 2.1.

quantum gate
quantum register measurement

classical control

ac
tio

n

reward

Figure 2.1: Conceptual scheme of hybrid reinforcement learning of quantum gate driven
by classical control. In single iteration of the learning process, the control imposes action
on the quantum gate, which alters the state of qubits in quantum register. The state of
the qubits is then measured and used to evaluate the reward for the action, that is provided
back to the classical control.

For our experiment, we chose to optimize the process of symmetrical 1 → 2

28



HWP2

HWP1

1
HWP3

HWP4

QWP6
HWP7

QWP5

HWP8

2

1

2

PS

PBS

PBS

Det2

Det1

P

P

Figure 2.2: Scheme of built Mach-Zehnder interferometer. Legend: PBS � polarization beam
splitter, PS � piezoelectric stage, HWP � half-wave plate, QWP � quarter-wave plate, Det
� detector, P � polarizer. For measuring stability, the power meters were used as detectors.
During cloning experiments, we detected single photons using avalanche photodiodes running
in Geiger mode. Spatial modes are denoted by numbers.

phase-covariant quantum cloning discussed in Section 1.6.3, which is simple to
realize and has known optimal results. The usual approach in quantum cloning is
to explicitly derive the optimal (maximizing the output clones �delities) cloning
transformation of the system in particular quantum state, and then set the pa-
rameters of the experimental setup accordingly to perform such a transformation.
In our case, however, we show that these parameters can be self-learned by the
quantum cloner, provided the feedback based on the prior output clones �delities.

2.1 Construction and stability of the interferom-

eter, the core part of the experimental setup

There are many ways to realize a quantum cloner on the linear-optical platform.
For our purposes, we built the device as a bulk type (i.e. the photon beams propa-
gate in free space rather than optical �bers) Mach-Zehnder interferometer, which
consists of two polarizing beam splitters (PBS) and two re�ective pentaprisms,
that can be seen in Fig. 2.2. One of the pentaprisms is attached to piezoelectric
stage (PS). Apart from the interferometer, the experimental setup also included
pairs of single mode optical �bers, decouplers (representing two input spatial
modes) and couplers (representing two output spatial modes) and polarizers set
to transmit only horizontally polarized modes. There are also eight wave plates in
total, two quarter-wave plates (QWPs) and six half-wave plates (HWPs), which
are described in detail in Section 2.2. The bulk type interferometer is convenient
to use, as using �ber interferometer makes polarization states of the photons very
di�cult to control.

In order to successfully perform quantum cloning, the trasnformation per-
formed on the input states has to be coherent and one of the most illustrative
ways to prove coherence is interference. For observing interference, we have to
ensure that both arms (paths of the optical signal) of the interferometer (spatial
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Figure 2.3: The ongoing construction of the experimental setup

modes 1 and 2) are equal in length, or rather that the temporal delay of photons
in both modes equals. Moreover, we need to control the gate components with
great precision, as the width of the core of single mode optical �ber is only 5 µm.
Coupling and decoupling of the optical signal in such small dimensions can be
done using precise translation and rotation stages.

In our case, couplers and decouplers can be both translated and rotated in two
dimensions, which gives us four degrees of freedom, �ve in the combination with
variable focusing distance of the coupler lenses. The pentaprisms also have to be
mobile, one is tiltable in single dimension and the other one can be translated
in one direction using movable piezoelectric stage (denoted by the arrow). Right
PBS is also movable and is able to rotate in two dimensions a translate in one
dimension.

Combining all of these components together allows us to equalize the photons
temporal delay and couple the optical signal with high e�ciency, although the
process of con�guring the whole interferometer is rather time consuming. To
ensure maximum possible stability of the used components, we used a supporting
cage system to reinforce the setup and bind the components together, as seen
in Fig. 2.3. The �gure shows work-in-progress experimental realization of the
interferometer setup proposed above.

Ensuring that the temporal delay of photons in both spatial modes remains
equal requires the interferometer to be highly stable. In this regard, we can
distinguish two types of stability, construction stability, i.e. interferometer is
stable in a sense of invariant indistinguishability of interfering modes, and phase
stability, which can be interpreted as �ne temporal stability of the interference
of single input mode split at the �rst beam splitter.

In order to observe and quantify construction stability of the interferometer,
i.e. whether the arms of the interferometer remain aligned, we can use visibility V .
Visibility is an important parameter which quanti�es the contrast of interference

30



Figure 2.4: Visibility of the interferometer observed over 4 hours.

and is de�ned as
V =

IMax − IMin

IMax + IMin

, (2.1)

where IMax and IMin stand for maximum and minimum signal intensity measured
respectively while changing the optical path di�erence of the interferometer arms
from zero to whole wavelength. For an ideally coherent light, V = 1, in real case
scenarios (due to the experimental imperfections), we measure a number that is
always lower.

We measured V as time dependent function of optical intensity from a test-
ing laser beam at wavelength λ = 695 nm. Each realization of measuring V
consisted of changing the voltage applied on the piezoelectric stage from −2.0 V
to 2.0 V with step 0.1 V. This allowed us to scan the full interferometric fringe
(including both the point of destructive interference and the point of constructive
interference) and thus locate IMax and IMin needed for computing V .

For detection, we used power meters Thorlabs PM100 + S120B and PM100D
+ S151C. The measured visibility of our interferometer is plotted in Fig. 2.4. As
we can see, with the use of reinforced setup construction, the visibility maintained
a stable value around V = 0.85 for approximately four hours. The measured
value of V is rather low during the setup construction as the perfect alignment
of the setup wasn't required, because we used a testing laser beam at di�erent
wavelength than the single photon input later used for the cloning itself. Note
that during the cloning process itself, visibility (more precisely, SPDC signal-
photon visibility when detection is triggered by SPDC idler) was measured to be
V = 94.1± 0.6 %.

Ensuring that the construction of the interferometer is stable, we can observe
the interference and quantify phase stability. Phase stability can be quanti�ed
by measuring a rate of change of optical intensity in selected period of time. As
time progresses, �uctuations in temperature and elasticity of the material cause
the components of the device to modify their mutual position, which actually
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π
2

Figure 2.5: The original (passive) stability of the interferometer. Value 0 indicates minimal
phase di�erence and thus constructive interference and value π

2 indicates point of maximal
phase di�erence and destructive interference.

changes the photons temporal delay. That leads to the shift of phase di�erence
between the optical signal in each path, which changes the interference and thus
measured optical intensity.

As can be seen in Fig. 2.5, while the measurement started at the point of
constructive interference (zero phase di�erence) on Det2, the phase di�erence
between the optical paths slowly changed close to a point of destructive inter-
ference (phase di�erence π

2
) after approximately 16 hours. The corresponding

optical path distance of the shift equals to the half of the wavelength of used
laser beam. The initial rapid �uctuation was probably caused by the vibrations
induced by movement in the laboratory.

For this measurement, we set HWP2 to 22.5° and HWP8 to the value cor-
responding to orthogonal state with respect to the required input signal state
on HWP2. All other HWPs were set to 0°, both QWPs to 45° and a minimum
in single-input interference detections on Det2 was found by tuning the voltage
applied to PS (see Fig. 2.6). Note that for the measurement of phase stability,
we only used the spatial mode 2 and measure optical intensity on Det2.

To increase the stability of the interference, we used piezoelectric stage con-
trolled by active stabilization algorithm, which used a parabolic curve �t of the
function of signal in order to localize the minimum of the signal with increased
precision and then moved the stage to that point of the minimum. Every tenth
run, the algorithm also measured visibility V of the interferometer. Part of our
Python implementation of the active stabilization can be seen in Source code
2.1. Our main focus here was to �nd out how often do we have to stabilize the
interferometer in order to maintain phase and observe the interference.
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Figure 2.6: The con�guration of experimental setup used for phase stabilization. Angles
denote the speci�c con�guration of wave plates used in Fig. 2.2 (QWPs are highlighted in
purple color). Legend: PBS � polarization beam splitter, PS � piezoelectric stage, Det �
detector, P � polarizer. Spatial modes are denoted by numbers. For measuring stability,
the power meters were used as detectors. During cloning experiments, we detected single
photons using avalanche photodiodes running in Geiger mode. Note that for the phase
stability measurement, we only use the spatial mode 2.

1 def check ( center , s tep ) :
2 k = 0
3 p = [ 0 , 0 , 0 ]
4 for i in [ center−step , center , c en t e r+step ] :
5 mujepcd . s e tVo l tage ( i )
6 temp = dev . getPower ( )
7 mujepcd . c l e a r ( )
8 p [ k]=temp
9 print ( i , p [ k ] )
10 k = k + 1
11 return p
12
13 def my_range ( s ta r t , end , s tep ) :
14 while s t a r t <= end :
15 y i e l d s t a r t
16 s t a r t += step
17
18 def minmax ( ) :
19 V = ""
20 min = 1000
21 max = 0
22 for f in my_range (−2 ,2 ,0 .1) :
23 mujepcd . s e tVo l tage ( f )
24 temp = dev . getPower ( )
25 mujepcd . c l e a r ( )
26 i f ( temp > max) :
27 max = temp
28 i f ( temp < min) :
29 min = temp
30 v i s = (max−min) /(max+min)
31 V = str (max) + "\ t " + str (min) + "\ t " + str ( v i s ) + "\n"
32
33 dev = pm100d( opt ions . port , Fa l se )
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34 mujepcd = epcd ( opt ions . epcdPort , opt i ons . defaultChannel , True , Fa l se
)

35
36 step = 0 .2
37 cente r = 0
38 p = [ 0 , 0 , 0 ]
39 P = 1000
40 i = 0
41 lastPower = −1
42
43 while True :
44 temp = dev . getPower ( )
45 i = i + 1
46 i f ( i%10 == 0) :
47 minmax ( )
48 while True :
49 i f ( center−s tep < −5) :
50 cente r = 0
51 i f ( c en t e r+step > 5) :
52 cente r = 0
53 p = check ( center , s tep )
54
55 i f (p [ 1 ] < p [ 0 ] and p [ 1 ] < p [ 2 ] ) :
56 print ( " Success ?" ,p)
57 break

58 e l i f (p [ 0 ] < p [ 1 ] and p [ 0 ] < p [ 2 ] ) :
59 cente r = cente r − s tep
60 else :
61 cente r = cente r + step
62
63 x1 = center−s tep
64 x2 = cente r
65 x3 = cente r+step
66 y1 = p [ 0 ]
67 y2 = p [ 1 ]
68 y3 = p [ 2 ]
69 denom = ( x1 − x2 ) *( x1 − x3 ) *( x2 − x3 )
70 A = ( x3 * ( y2 − y1 ) + x2 * ( y1 − y3 ) + x1 * ( y3 − y2 ) ) / denom
71 B = ( x3**2 * ( y1 − y2 ) + x2**2 * ( y3 − y1 ) + x1**2 * ( y2 − y3 ) ) /

denom
72
73 cente r = −B / (2*A) ;
74 mujepcd . s e tVo l tage ( c en te r )
75 lastPower = dev . getPower ( )
76 mujepcd . c l e a r ( )

Source code 2.1: Implementation of the parabolic curve �t active stabilization loop

We ran �ve measurements in total, each with di�erent repetition rate of the
stabilization algorithm. Resulting stability can be seen in Figs. 2.7, 2.8, 2.9, 2.10,
2.11 which actually represent a histogram of the frequency of speci�c optical path
deviations from default position in between two stabilizations. Rather than us-
ing units corresponding to the translation in length, we used distance expressed
in unit fractions of wavelength to emphasize how much has the optical paths
changed with respect to the used laser beam wavelength. As one can expect, we
can see that as the frequency of stabilization decreases, the higher mean wave-
length fraction (and thus higher temporal delay between photons) we measure.
For the last two measurements, we installed motorized half-wave plates into the
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Table 2.1: Summary of active stabilization phase stability measurement. The asterisk (*)
indicates usage of motorized components inducing mechanical vibrations. WF denoted wave-
length and con�denal interval (Conf. interval) shows the range of 66.67% values around the
median. The 8th (9th) decils indicates the worst value (i.e. the highest wave fraction) after
subtracting worst 20% (10%) respectively.

Time period [s] Median WF [m] Conf. interval 8th decil 9th decil

10 λ
146.8

λ
92.3

� λ
285.7

λ
97.2

λ
81.3

100 λ
170.7

λ
112.9

� λ
360.2

λ
116.6

λ
95.3

1000 λ
58.4

λ
49.7

� λ
67.1

λ
51.1

λ
37.7

30* λ
76.1

λ
61.33

� λ
85.1

λ
62.5

λ
50.5

300* λ
64.8

λ
62.3

� λ
70

λ
62.3

λ
53.7

interferometer, and measured the in�uence of rotating parts on the phase stabil-
ity. Note that the motorized wave plates did not a�ect the polarization state of
the propagating beam, they were used only to simulate the e�ect of mechanical
vibrations.

A subplot on the right side of the �gures represents the time function of
relative voltage applied on the piezoelectric stage, which illustrates needed voltage
di�erence to keep the phase stable. The scale of the voltage is recalculated to full
wave units so that value 1 corresponds to a movement of piezoelectric stage of a
whole wavelength. In other words, applying one unit to the piezoelectric stage
changes the optical path length by the value of whole wavelength. We can see
that the applied voltage increased more rapidly in the last two �gures, with the
motorized half-wave plates installed.

We can summarize resulting stability in Table 2.1. The table shows the time
period between each stabilization, median wave fraction of the data as well as
the values of 66.7% con�dence interval and 8th and 9th decils. The con�dence
interval shows the range of 66.67% values around the median and the values
of 8th (9th) decils indicates the worst value (i.e. the highest wave fraction)
after subtracting worst 20% (10%) respectively. Curiously, the lowest mean wave
fraction was achieved in second measurement with stabilization period 100 s,
which is probably caused by the imperfect operation of piezo shift if the voltage
is frequently changed, or by the e�ects of surrounding environment.

The asterisk in the last two lines indicates the measurement with used motor-
ized components and we can clearly see, that there is a substantial increase in the
mean wave length fraction. The motorized components thus have a signi�cant
impact on the phase stability.
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Figure 2.7: The interferometer stability with active stabilization used with period T = 10 s

Figure 2.8: The interferometer stability with active stabilization used with period T = 100 s
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Figure 2.9: The interferometer stability with active stabilization used with period T = 1000 s

Figure 2.10: The interferometer stability with active stabilization used with period T = 30 s
measured while rotation stage was moving.
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Figure 2.11: The interferometer stability with active stabilization used with period T = 300 s
measured while rotation stage was moving.

2.2 Completion of the experimental setup and two

photon interference

In the last section, we have described construction of Mach-Zehnder interferom-
eter using linear-optical elements and then secured its phase stabilization using
an active algorithm running on a classical computer. In this section, we insert a
SPDC generated individual photon pairs as optical input of the quantum gate.
The SPDC signal photon sets the input state of the qubit [see Eq. (1.42)], while
the SPDC idler serves as the ancilla. In order to manipulate and clone the states,
we also need to add active optical elements (motorized wave plates) which are
controllable by computer, with respective angles ω, φ, θ serving as parameters
for the cloning transformation.

The experimental setup is depicted in Fig. 2.12. The core part of the pre-
sented quantum gate is a Mach-Zehnder-type interferometer presented in section
2.1 which consists of two polarizing beam splitters and two re�ective pentaprisms,
one of which is attached to the piezoelectric stage. Pairs of photons are generated
in Type I spontaneous parametric down-conversion occurring in a nonlinear BBO
crystal. This crystal is pumped by Coherent Paladin Nd-YAG laser with inte-
grated third harmonic generation at λ = 355 nm. The generated pairs of photons
are both horizontally polarized and highly correlated in time. The temporal delay
between photons of the pair can be adjusted using motorized translation stage
(MT).

These photons are then spectrally �ltered by 10 nm wide interference �lters
and spatially �ltered by two single mode-optical �bers each guiding one photon of
the pair. In our experimental setup, qubits are encoded into polarization states
of individual photons (|0〉 ↔ |H〉 and |1〉 ↔ |V 〉). The photon in the upper path
(spatial mode 2) represents the signal qubit, quantum state of which we want to
clone, and the photon in the lower path (spatial mode 1) serves as the ancilla,
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Figure 2.12: Experimental setup. Legend: PBS � polarization beam splitter, PC � polariza-
tion controller, BBO � barium beta borate, Det � detector, HWP � half-wave plate, QWP �
quarter-wave plate, MT � motorized translation stage, PS � piezoelectric stage, TAC&SCA
� time-to-amplitude converter & single channel analyzer. Spatial modes are denoted by
numbers.

the state of which reads

|ψa〉 = cos (2ω) |H〉+ sin (2ω) |V 〉 . (2.2)

The parameter ω is controlled by the rotation of HWP1 (see Fig. 2.12).
Using polarization controllers (PC) we can ensure that both photons are hori-

zontally polarized at the output of the �bers. From now on, polarization states of
the photons are set using a combination of half-wave plates (HWPs) and quarter-
wave plates (QWPs). There are eight wave plates in total, two stationary QWPs
�xed at angle 45°1 and six motorized HWPs which make it possible to control
the whole quantum gate using a computer.

The �rst two half-wave plates HWP1 and HWP2 are used to set input polar-
ization states of the ancilla and cloned photons, respectively. With the addition
of two HWPs (HWP3 and HWP4) placed in its arms, this whole interferometer
implements a polarization dependent beam splitter with variable splitting ratio.
Mathematically, the transformation matrix of the gate reads

1All mentioned angles of wave plates are angles between the wave plates optical axis and
horizontal plane.
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âHout,1
âVout,1
âHout,2
âVout,2

 = Mbias×MPBS×Mθφ×MPBS×Mbias


âHin,1

âVin,1

âHin,2

âVin,2



=


cos(2φ) 0 sin(2φ) 0

0 cos(2θ) 0 sin(2θ)
− sin(2φ) 0 cos(2φ) 0

0 − sin(2θ) 0 cos(2θ)



âHin,1

âVin,1

âHin,2

âVin,2


(2.3)

where âx,i represents the annihilation operators of the individual input, polar-
ization (x ∈ {H,V}) as well as spatial (i ∈ {1,2}) modes. In the matrix product
(2.3), the matrix

MPBS =


1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0

 (2.4)

represents transformation of single polarizing beam splitter and the matrix

Mθφ =


cos(2θ) sin(2θ) 0 0
sin(2θ) − cos(2θ) 0

0 0 cos(2φ) sin(2φ)
0 0 sin(2φ) − cos(2φ)

 (2.5)

represents the combination of HWP3 and HWP4, while angles θ and φ correspond
to the rotations of HWP3 and HWP4. In order for the gate to be formally
equivalent to the transformation by a polarization dependent beamsplitter [see
Eq. (1.35)], one input and one output mode (spatial mode 1) needs to have
their polarization modes swapped, e�ectively interchanging (|H〉 ↔ |V 〉). This is
represented by the �rst and last matrix of the product,

Mbias =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , (2.6)

and experimentally implemented by adding a constant bias angle to rotations of
HWP1 and HWP7. Intensity splitting ratios of such beam splitter for horizontal
and vertical polarizations equal cot2(2φ) and cot2(2θ), respectively.

The two spatial modes at the output of the interferometer are subjected to
polarization projection (QWP5, QWP6 and HWP7, HWP8) and then led via
single-mode optical �bers to a pair of avalanche photodiodes COUNT NIR 100N
by Laser Components running in Geiger mode. We use detection electronics to
register both single photons at each of the detectors and coincident detections as
successful operation of the gate is indicated by the presence of single photon in
each output of the interferometer. The electronic signal is then sent to a classical
computer.

Our next task is to minimize the temporal delay between the individual pho-
tons of the discrete pairs. To achieve this, all HWPs are set to2 0° with the

2Note that the bias of 45° applies to HWP1 rendering its true rotation angle to 0° + 45° =
45°.
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Figure 2.13: The con�guration of experimental setup used for �nding Hong-Ou-Mandel
dip (two-photon interference). QWPs are highlighted in purple color. Legend: PBS �
polarization beam splitter, PC � polarization controller, BBO � barium beta borate, Det
� detector, PS � piezoelectric stage, TAC&SCA � time-to-amplitude converter & single
channel analyzer. Spatial modes are denoted by numbers.

exception of HWP4 being at 22.5° as can be seen in Fig. 2.13. In this regime,
we minimize the number of two-photon coincident detections (Hong-Ou-Mandel
dip [53]) by changing the temporal delay between the photons using a motorized
translation stage MT.

By minimizing the temporal delay between photons, we observe their bunching
on the HWP4 which acts on the polarization modes like a balanced beam splitter
on spatial modes. The coincident detection count as a function of relative position
of MT in µm is expected as a product of Gaussian function and a sinc function [54]

cc(x) = b− a exp

(
−4 ln(2) (x− c)2

w2

)(
sin(f (x− c))
f (x− c)

)
. (2.7)

The parameters of the �t were calculated as a = 1910 ± 70, b = 2000 ±
40, c = 0.7 ± 0.3, f = 0.105 ± 0.005, w = 70 ± 10 can be seen in Fig. 2.14.
The line segments of the individual measured points represents the Poisson noise
uncertainty, which is equal to a square root of the measured value. Visibility of
the measured dip equals V = 92 ± 4 %.
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Figure 2.14: Measured two-photon interference (Hong Ou Mandel) dip with a curve �t of
function 2.7.
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Chapter 3

Experimental quantum cloner:

algorithmization, training and

results

Parts of the text adopted from Jan Ja²ek, Kate°ina Jiráková, Karol Bartkiewicz,
Antonín �ernoch, Tomá² Fürst and Karel Lemr, Optics Express, vol. 27, p.
32454, oct 2019 [1].

In the previous section, we have completed the construction of a proposed
linear optical quantum gate. Our next goal is to algorithmize the gate using
classical information processing. While the gate itself is capable of a broad range
of two qubit transformations, our focus was aimed on its ability to act as a
phase-covariant quantum cloner. Its �gure of merit is the individual �delity of
the output copies as de�ned in Section 1.6.1.

As mentioned before, the input quantum states will be limited to the class of
Equatorial states [see Eq. (1.42)] and the maximal theoretical �delity of clones
of such states equals F = 1

2

(
1 + 1√

2

)
≈ 0.8535. In the best-case scenario, the

cloner would achieve this �delity after the learning is completed.
For speci�c parameters of the presented linear-optical elements, this quantum

gate functions as a 1 → 2 symmetric phase-covariant cloner, optimal analytical
cloning transformation of which is well known [40]. On a linear-optical platform,
this optimal cloning transformation can be achieved by a polarization dependent
beam splitter with intensity transmissivities for horizontal and vertical polariza-
tion at TH ≈ 0.21 and TV ≈ 0.79, while setting the ancilla to be horizontally
polarized. Note that our quantum gate is capable of implementing this transfor-
mation when set approximately to φ = 31.3◦, θ = 13.7◦.

To showcase the capability of our gate to learn to clone phase-covarient
states optimally, we deliberately ignore this analytical solution and employ self-
optimization procedure seeking to maximize the cloning �delities. The optimiza-
tion process consists of a number of measurements (runs), each performed for a
set of variable optimization parameters φ, θ, ω. That is, the variable splitting
ratio for horizontal (φ) and vertical (θ) polarization as well as the state of the
ancilla (ω). In each run, output clones �delities are evaluated and supplied to
the classical Nelder-Mead algorithm [46] for a decision about the parameters of
future runs.

In between any two runs, the setup is stabilized. We �rst minimize temporal
delay between the two individual photons as described in Section 2.2. In the
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next step, the phase is stabilized in the interferometer in accordance with Section
2.1. Moreover, we make use of the fact that the phase shift in the interferometer
additively contributes to the phase α of the signal state. This allows us to use
interferometer phase stabilization for setting of any signal state of the equatorial
class. Note that the entire stabilization procedure is completely independent of
the learning process itself.

While all six of the HWPs are controlled by a PC, only three (HWP1, HWP3

and HWP4) are speci�cally controlled by the optimization algorithm. In contrast
to that, HWP2 is used to set the quantum state of the cloned qubit and HWP7 and
HWP8 are used to choose polarization projections, therefore their con�guration
shall not be accessible to the optimization algorithm.

In this reinforced-learning scenario, the cloner is trained on a sequence of
random equatorial signal states (1.42) di�erent for each run. The phase α is
randomly picked from interval [0; 2π[. The optimization algorithm then rotates
HWP1, HWP3 and HWP4 to chosen angles φ, θ, ω. Finally, the cloner is fed back
the measured �delities F1, F2 of the �rst and second respective clones. The core
part of the optimization process is the Nelder-Mead simplex algorithm described
in Section 1.7.2 which minimizes a chosen cost function C . In our case, we de�ned
the cost function C to maximize the obtained �delities and simultaneously achieve
symmetry of the cloning

C = (1− F1)2 + (1− F2)2 + (F1 − F2)2. (3.1)

The �delities are obtained by measuring coincidence detections in four di�erent
projection settings that correspond to the angles set on HWP7 and HWP8. We
label these coincident detections ccij, where i,j ∈ {‖;⊥}. The ‖ and the ⊥ sign
denote projection on the signal state |ψs〉 and its orthogonal counterpart

∣∣ψ⊥s 〉.
We calculate the �delities as

F1 =
cc‖‖ + cc‖⊥

Σ
, F2 =

cc‖‖ + cc⊥‖
Σ

, (3.2)

where Σ denotes cc‖‖ + cc‖⊥ + cc⊥‖ + cc⊥⊥.
In the previous section, we have also de�ned the transformatin matrix of the

quantum gate as in Eq. (2.3). To simulate this transformation (and to create a
theoretical reference to our experimental approach), we have implemented Python
algorithm that can be seen in Source code 3.1

1 def s i n ( ang le ) :
2 ang le = ang le * np . p i / 180
3 return np . s i n ( ang le )
4
5 def cos ( ang le ) :
6 ang le = ang le * np . p i / 180
7 return np . cos ( ang le )
8
9 def f i d e l i t y ( ang l e s ) :
10 global alpha
11 global beta
12 global F1 , F2
13 f i = ang l e s [ 0 ]
14 theta = ang l e s [ 1 ]
15 omega = ang l e s [ 2 ]
16 #Creation o f s t a t e d e s c r i b i n g ke t

17 s t a t e = np . matrix ( [ [ alpha ] , [ beta ] , [ 0 ] , [ 0 ] ] )
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18
19 #Transformation matrix

20 mres = np . matrix ( [ [ complex( cos (2*omega ) * cos (2* theta ) * cos (2* f i ) ,
−1* s i n (2*omega ) * s i n (2* theta ) * s i n (2* f i ) ) /2**(1/2) ] ,

21 [ complex( s i n (2*omega ) * cos (4* theta ) ,0 ) /2**(1/2) ] ,
22 [ complex (0 ,1* cos (2*omega ) * cos (4* f i ) ) /2**(1/2) ] ,
23 [ complex(−1* cos (2*omega ) * s i n (2* theta ) * s i n (2* f i ) ,

1* s i n (2*omega ) * cos (2* f i ) * cos (2* theta ) ) /2**(1/2) ] ] )
24
25 mrestr = np . matrix ( [ [ complex( cos (2*omega ) * cos (2* theta ) * cos (2* f i )

, 1* s i n (2*omega ) * s i n (2* theta ) * s i n (2* f i ) ) /2**(1/2) ] ,
26 [ complex( s i n (2*omega ) * cos (4* theta ) ,0 ) /2**(1/2) ] ,
27 [ complex(0 ,−1* cos (2*omega ) * cos (4* f i ) ) /2**(1/2) ] ,
28 [ complex(−1* cos (2*omega ) * s i n (2* theta ) * s i n (2* f i )

,−1* s i n (2*omega ) * cos (2* f i ) * cos (2* theta ) ) /2**(1/2) ] ] )
29
30 #Pro b a b i l i t y o f succe s s

31 pu = abs (mres [ 0 ] ) **2 + abs (mres [ 1 ] ) **2 + abs (mres [ 2 ] ) **2 + abs (
mres [ 3 ] ) **2

32
33 #Densi ty matrix

34 mro = np . dot (mres , np . t ranspose ( mrestr ) )
35 mro = np . d i v id e (mro , pu)
36
37 #Par t i a l t r a ce 1

38 mtr1 = mro [ np . ix_ ( [ 0 , 1 ] , [ 0 , 1 ] ) ] + mro [ np . ix_ ( [ 2 , 3 ] , [ 2 , 3 ] ) ]
39
40 #F i d e l i t y 1

41 s t a t e = np . matrix ( [ [ alpha ] , [ beta ] ] )
42 s t a t e t r = np . matrix ( [ [ alpha ] , [−1* beta ] ] )
43 temp = np . dot (np . t ranspose ( s t a t e t r ) ,mtr1 )
44 Fid1 = np . dot ( temp , s t a t e )
45
46 #Par t i a l t r a ce 2

47 mro [ : , [ 1 , 2 ] ] = mro [ : , [ 2 , 1 ] ]
48 mro [ [ 1 , 2 ] , : ] = mro [ [ 2 , 1 ] , : ]
49 mtr2 = mro [ np . ix_ ( [ 0 , 1 ] , [ 0 , 1 ] ) ] + mro [ np . ix_ ( [ 2 , 3 ] , [ 2 , 3 ] ) ]
50
51 #F i d e l i t y 2

52 temp = np . dot (np . t ranspose ( s t a t e t r ) ,mtr2 )
53 Fid2 = np . dot ( temp , s t a t e )
54
55 F1 = np . r e a l ( Fid1 )
56 F2 = np . r e a l ( Fid2 )
57 pot = (F1−F2) **2 + (1−F1) **2 + (1−F2) **2
58
59 anglesMat . append ( [ f i +45, theta+45,omega ] )
60 return pot
61
62 F1 = 0
63 F2 = 0
64 alpha = (1/2) **(1/2) # Sta t e

65 beta = complex ( 0 , ( 1/2 ) **(1/2) ) # Sta t e

66 f i = 0
67 theta = 0
68 omega = 22 .5
69 ang l e s = [ f i , theta , omega ]
70 anglesMat = [ ]
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71 i n i t i a l S imp l e x = np . array ( [ [ f i , theta , omega ] , [ f i −15, theta −15,omega
+15 ] , [ f i −15, theta , omega ] , [ f i , theta −15,omega ] ] )

72
73 xopt = sc ipy . opt imize . minimize ( f i d e l i t y , angles , method=' Nelder−Mead ' ,

opt i ons={ ' i n i t i a l_ s imp l e x ' : i n i t i a l S imp l e x , ' d i sp ' : True , '
r e tu rn_a l l ' : True })

Source code 3.1: Theoretical 3D model of quantum cloner implemented in Python.

3.1 Results

We have experimentally implemented two machine learning models using two and
three parameters, respectively. We have also run computer simulations to both
of the models to visualize and cross-reference theoretical optimum scenario.

In the �rst model, we �xed the ancillary state to one of its theoretically
known optimum |ψa〉 = |H〉 (the parameter ω was therefore �xed at ω = 45◦).
The remaining two parameters of the gate φ and θ were machine learned. To
minimize the cost function (i.e. optimize the performance of the cloner) we ap-
plied Nelder-Mead simplex algorithm which iteratively searches for a minimum
of a cost function [see Eq. (3.1)].

Training of the gate consists of providing it with training instances of equato-
rial qubit states (randomly generated in each cost function evaluation) and with
the respective �delity of the clones. In each training run, the underlying Nelder-
Mead algorithm sets the gate parameters to initial vertices of simplexes in the
parameter space and then decides on a future action.

In the case of a two-parameter optimization, these simplexes correspond to tri-
angles and can be visualized onto a contour plot of the cost function, as depicted
in Figure 3.1. In this Figure, we plot the exact path taken by the Nelder-Mead
simplex algorithm to minimize the cost function C for the case of a real experi-
ment (b) and its simulation (a). We can see that while the initial runs created
almost identical simplexes, as the area of the simplex decreased, the experimen-
tally measured simplexes started to deviate from its simulation. This is likely
caused by the experimental error, such as Poisson noise and misalignment of the
device. Note that the selected initial simplex was intentionally chosen well away
from the optimal position � its �rst vertex resembles the trivial cloning strategy
[55,56].

In Figure 3.2 we illustrate the evolution of both the �delities F1, F2 and the
cost function C during the training for (a) the simulation and (b) experimental
data. We can see that the convergence point was found more precisely in the
simulation, but the resulting values of both simulated and experimentally learned
�delities and cost function match. After 40 runs (i.e. 40 instances from the
training set), this model was deemed trained because the size of simplexes dropped
to the experimental uncertainty level (i.e. ∼ 0,1◦ on rotation angles of wave
plates). However, in general, setting the simplex to converge within a given
precision is a nontrivial problem [57].

For the second model, we added third parameter and let the gate learn the
optimal setting of the ancilla ω along with the gate parameters φ and θ. The
training procedure ran identically to the �rst model, with notable di�erence that
optimized simplexes had 3 vertices, which can't be clearly visualized in 2D plot.
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Figure 3.1: Contour plot of the cost function C for the angles φ and θ (corresponding
to HWP4 and HWP3 in Figure 2.12, respectively). The solid yellow lines denote the �nal
triangles reached by the Nelder�Mead simplex algorithm in each of its iteration. The dashed
lines mark intermediate steps, which were rejected (see Fig. 1.4). The circled numbers
stand for gate runs and point F depicts the �nal state of the gate at the end of training. A
simulation was performed prior to the experiment to verify our implementation of the learning
algorithm. Di�erences between the experimentally learned and simulated parameters can
be explained by imperfections in the experimental setup. Author gratefully acknowledges
Kate°ina Jiráková, coauthor of the article [1], as the author of this Figure.
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Figure 3.2: Plots showing the evolution of �delity of both the clones (top) as well as the
cost function (bottom) throughout the training in case of (a) simulation of the �rst model
and (b) experimental data of the �rst model with two free parameters φ and θ. The thick
dashed black line marks the theoretical optimum of achieved �delity F ≈ 0.8535. Fidelity
of the �rst clone F1 is visualized by a solid blue line and the �delity of the second clone F2

is shown in solid red line. The cost function C is indicated by solid green line.

The evolution plot of the measured �delities F1, F2 and cost function C through-
out the training of this three-parameter model can be seen in Fig. 3.3. We can see
that while the experimentally measured plots are less smooth than its simulated
counterparts, the �nal values of the �delities match the theoretical optimum. The
initial value of the ω parameter was set naively to ω = π

8
so it lied on the equator

of the Poincaré-Bloch sphere. Using a similar stopping criterion as in the �rst
model, the training of the second model was terminated after 60 runs.

After the training procedure was completed, we have tested the performance
of both our models on independent test sets each consisting of 40 instances of
random equatorial states and summarized the results in Table 3.1. Table provides
the �nal learned parameters together with the mean values of the �delities on the
test sets 〈F1〉 and 〈F2〉 for both simulated and experimental data.

The experimentally observed clone �delities on test sets are bordering on the
theoretical limit (at most 0.013 below it) which renders our gate highly precise
in context of previously implemented cloners [40,58�61]. Unlike the �delities, the
optimized parameteres φ, θ, ω converged to a di�erent values than the simulation
during the experimental training procedure. While the theoretically expected
(simulated) values equal φ = 31.3◦, θ = 13.7◦, ω = 45◦, the �rst model yielded φ =
28,59◦, θ = 17.11◦ and the second model converged to the values φ = 27.44◦, θ =
21.68◦, ω = 41.49◦. This is likely caused by the imperfections of the experimental
setup, especially the misalignment of the interferometer and imprecise setting of
both each of the wave plates reference value (0◦) and polarization controllers at
the input of the setup.
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Figure 3.3: Plots showing the evolution of �delity of both the clones (top) as well as the
cost function (bottom) throughout the training in case of (a) the simulation of the second
model and (b) experimental data of the second model with three free parameters φ, θ and
ω. The thick dashed black line marks the theoretical limit of F ≈ 0.8535. Fidelity of the
�rst clone F1 is visualized by a solid blue line and the �delity of the second clone F2 is shown
in solid red line. The cost function C is indicated by solid green line.

Table 3.1: Summary of the �nal values for both models and their respective simulations.
Angles φ, θ, ω show the �nal values of the optimized parameters after a number of training
runs. Values 〈F1〉 and 〈F2〉 denote the mean �delities observed on the independent test sets
after the training of the cloner was completed.

Final values Sim. 1 Sim. 2 Model 1 Model 2

training:

Angle φ 31.31◦ 31.31◦ 28.59◦ 27.44◦

Angle θ 13.68◦ 13.68◦ 17.11◦ 21.68◦

Angle ω 45◦ (Fixed) 45◦ 45◦ (Fixed) 41.49◦

No. of training 40 60 40 60
instances (runs)

testing:

〈F1〉 0.854 0.854 0.840± 0.033 0.849± 0.040
〈F2〉 0.854 0.854 0.843± 0.046 0.853± 0.022
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Conclusions

In this thesis, we demonstrated reinforcement-learned quantum cloner for a class
of phase-covariant quantum states, constructed as a two qubit gate on the plat-
form of linear optics. The �rst chapter highlighted basic theoretical concepts and
principles that are used in the �elds of quantum optics, quantum information
processing, quantum cloning and both classical and quantum machine learning.
We also thoroughly described design of the Nelder�Mead simplex algorithm used
in our work.

In the second chapter, we described the construction and stability character-
ization of the gate itself. The gate constitutes of several linear-optical elements,
the core part of which is a bulk Mach-Zehnder-type interferometer. To ensure the
coherence of the transformations performed by the gate and equalize temporal
delay between photons propagating through the interferometer, we have realized
several stability measurements, distinguishing the stability of construction and
phase stability. The stability of construction was quantized using visibility V to
the value V = 94.1 ± 0.6 %. We also showed that visibility maintained a stable
value over the course of four hours.

For the phase stability, we measured optical intensity of interference between
the photons of single input mode split at the beam splitter. The phase di�erence
between the photons slowly changed from 0 to π

2
over the course of 16 hours. In

order to improve the phase stability, we have successfully implemented an active
stabilization algorithm that applied voltage to a piezoelectric stage. The algo-
rithm located the minimum of the measured signal, corresponding to destructive
interference, and moved the stage to that point. We have run several experiments
with various time periods between the stabilizations. The highest stability was
measured by stabilizing the gate every 100 s. Corresponding median of distances
(expressed in fraction of used wavelength) the gate moved from the default point
equals to a distance λ

170.7
.

Using similar algorithmic approach, we also minimized the temporal delay
between the individual photons of the SPDC pair that served as the input to the
quantum gate. In this case, we measured a drop in detection of two-photon coin-
cident counts, which is caused by bunching of the photons as the temporal delay
equalizes. The visibility of corresponding Hong-Ou-Mandel dip was measured to
the value of V = 92 ± 4 %.

The third chapter described how to machine-learn the built quantum gate to
optimally clone qubits for a class of phase-covariant quantum states. The gate
formally operates as a polarization dependent beam splitter with tunable splitting
ratios for horizontal |H〉 and vertical |V 〉 polarization states. This tunability pro-
vides two parameters for self-learning labeled φ and θ throughout the text, while
the third learnable parameter ω is embedded in the state of the ancillary pho-
ton. The learning is achieved by optimizing the parameters using Nelder�Mead
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simplex algorithm. The feedback to the optimization algorithm is represented by
measured �delities F1 and F2, which express the quality of both respective clones.

We have conducted two successful cloning experiments and implemented cor-
responding simulations to validate the measured values. In the �rst experimental
model, the parameter ω was �xed at a value of ω = 45◦ and the parameters
φ, θ converged to the values φ = 28.59◦, θ = 17.11◦. In the second experiment
with three learnable parameters, the algorithm trained the gate to the values
ω = 41.49◦, φ = 27.44◦, θ = 21.68◦. The corresponding theoretically optimal val-
ues that were acquired by the simulations equal ω = 45◦, φ = 31.31◦, θ = 13.68◦.

In both experiments, the �delities measured throughout the test set averaged
closely to the optimal theoretical limit of F = 0.854. We measured values of
F1 = 0.840 ± 0.033, F2 = 0.849 ± 0.040 for the �rst experimental model and
F1 = 0.843± 0.046, F2 = 0.853± 0.022 for the second experimental model. The
fact that the cloner was able to reach the optimal �delities even though the param-
eters converged to di�erent values suggests that the cloner was able to counter all
experimental imperfections, both in the preparation of the input state and align-
ment of the device. It was therefore performing better than one would perform
strictly adhering to analytical solution, having various experimental imperfections
present in the setup.
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Abstract: We report on experimental implementation of a machine-learned quantum gate driven
by a classical control. The gate learns optimal phase-covariant cloning in a reinforcement learning
scenario having fidelity of the clones as reward. In our experiment, the gate learns to achieve
nearly optimal cloning fidelity allowed for this particular class of states. This makes it a proof
of present-day feasibility and practical applicability of the hybrid machine learning approach
combining quantum information processing with classical control. The quantum information
processing performed by the setup is equivalent to boson sampling, which, in complex systems,
is predicted to manifest quantum supremacy over classical simulation of linear-optical setups.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Machine learning methods are extensively used in an increasing number of fields, e.g., automotive
industry, medical science, internet security, air-traffic control etc. This field conveys many
algorithms and structures ranging from simple linear regression to almost arbitrarily complex
neural networks which are able to find solutions to highly complex problems. Recently, a
considerable attention was drawn to the overlap between quantum physics and machine learning
[1]. Depending on the type of input data and data processing algorithms, we can distinguish four
types of quantum machine learning (QML), i.e., CC (classical data and classical data processing
– classical limit of quantum machine learning), QC (quantum data and classical data processing),
CQ (classical data and quantum data processing), and QQ (quantum data and quantum data
processing).
QML offers reduced computational complexity with respect to its classical counterpart in

solving some classes of problems [1]. Depending on the problem at hand the speedup can be
associated with various features of quantum physics. A number of proposals and experiments
focused on QML have been reported, such works include quantum support vector machines
[2], Boltzmann machines [3], quantum autoencoders [4], kernel methods [5], and quantum
reinforcement learning [6,7]. In reinforcement learning a learning agent receives feedback in
order to learn an optimal strategy for handling a nontrivial task. Next, the performance of the
agent is tested on cases that were not included in the training. If the agent performs well in these
cases, learning is completed. The difference between machine learning and mere optimization is
often very subtle. For instance in a recent Letter [3], Gao et al. have trained a neural network
to classify quantum states according to their capability to violate the CHSH inequality. In that
case, a classical computer learned a set of five real-valued numbers used as weight factors in

#370024 https://doi.org/10.1364/OE.27.032454
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the sum of correlation coefficients obtained in an already known measurement configuration. In
contrast to that, our protocol relies on a feed-back between a classical control and a quantum gate
rendering it genuinely quantum-classical machine learning.

Here we demonstrate experimentally that reinforcement learning can be used to train an optical
quantum gate (see Fig. 1). This problem is related to the boson sampling [9–13], where one knows
the form of the scattering matrix of a system and computes modulus squared of its permanent.
However, here we optimize the probabilities of obtaining certain outputs of the gate by finding
the optimal parameters of the scattering matrix. Calculating the probabilities (moduli squared
of permanents of scattering matrix) is in general a computationally hard task while measuring
them is much faster. This feature of quantum optics allows us to expect that complex integrated
interferometers could be applied as special-purpose quantum computers (e.g. [14]). This sets our
problem in the class of CQ quantum machine learning tasks. There are other QML approaches
to optimizing quantum circuits. One approach uses classical machine learning to optimize the
design of a quantum experiment in order to produce desired states [15]. Another QML approach
consists of optimizing quantum circuits to improve the solution to some problems solved on a
quantum computer [16]. The latter method can be applied even to minor computational tasks to
save resources [17,18].

Fig. 1. Conceptual scheme of hybrid reinforcement learning of a quantum gate driven by
a classical control. The transformation of the quantum register performed by the gate is
evaluated by measurement providing a reward to the classical control that iteratively modifies
the gate’s parameters. The core of this procedure can be viewed as boson sampling, classical
simulation of which is known to be computationally #P-hard in N [8].

We applied online reinforcement learning methods to train an optimal quantum cloner.
Quantum cloning is indispensable for safety tests of quantum cryptography systems or of other
quantum communications protocols. Perfect quantum cloning of an unknown state is prohibited
by the no-cloning theorem [19]. However, it is possible to prepare imperfect clones that resemble
the original state to a certain degree. Usually the approach towards quantum cloning involves
direct optimization of the experimentally implemented interaction between the system in the
cloned state and another systems to maximize the fidelity of the output clones [20]. In contrast to
that, we present a quantum gate (learning agent) that is capable to self-learn such interaction
(policy) based on provided feedback (implicit setting of the parameters). For the purposes of this
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proof-of-principle experiment, we limit ourselves to equatorial qubits in the form of

|ψs〉 = 1/
√
2
(
|0〉 + eiη |1〉

)
, (1)

where |0〉 and |1〉 denote logical qubit states. Cloning of these states is known to be the optimal
means of individual attack on the famous quantum cryptography protocols BB84 [21] and
RO4 [22,23] or quantum money protocol [24] (see also Bartkiewicz et al. for experimental
implementation [25,26]).

2. Experimental realization

We constructed a device composed of a linear optical quantum gate and a computer performing
classical information processing. While the gate itself is capable of a broad range of two qubit
transformations, this paper focuses on its ability to act as a phase-covariant quantum cloner.
Its figure of merit is the individual fidelity of the output copies. The fidelity of the j-th clone
Fj = in〈ψ | %̂j |ψ〉in is defined as overlap between the state of the input qubit |ψ〉in and the state of
the clone %̂j. In case of the state in Eq. (1), the maximum achievable fidelity of symmetric 1→ 2
cloning accounts for F1 = F2 =

1
2

(
1 + 1√

2

)
≈ 0.8535 [27,28].

The experimental setup is depicted in Fig. 2. Pairs of photons are generated in Type I
spontaneous parametric down-conversion occurring in a nonlinear BBO crystal. This crystal
is pumped by Coherent Paladin Nd-YAG laser with integrated third harmonic generation of
wavelength at λ = 355 nm. The generated pairs of photons are both horizontally polarized and
highly correlated in time.

Fig. 2. Experimental setup. Legend: PBS – polarization beam splitter, PC – polarization
controller, BBO – beta barium borate, Det – detector, HWP – half-wave plate, QWP – quarter
wave-plate, PS – piezoelectric stage, TAC&SCA – time-to-amplitude converter & single
channel analyzer.

These photons are then spectrally filtered by 10 nmwide interference filters and spatially filtered
by two single mode optical fibers each guiding one photon from the pair. In our experimental
setup, qubits are encoded into polarization states of the individual photons (|0〉 ⇔ |H〉 and
|1〉 ⇔ |V〉). The photon in the upper path (spatial mode 2) represents the signal qubit, quantum
state of which we want to clone, and the photon in the lower path (spatial mode 1) serves as the
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ancilla the state of which reads

|ψa〉 = cos 2ω |H〉 + sin 2ω |V〉 . (2)

The parameter ω is controlled by the rotation of HWP1 (Fig. 2).
Using polarization controllers (PC) we can ensure that both photons are horizontally polarized

at the output of the fibers. Next, polarization states of the photons are set using a combination of
half-wave plates (HWPs) and quarter-wave plates (QWPs). There are two stationary QWPs fixed
at angle 45° and six motorized HWPs which make it possible to control the whole quantum gate
using a computer. The first two half-wave plates HWP1 and HWP2 are used to set polarisation
states of the ancilla and cloned photons, respectively.
The core part of the presented quantum gate is a Mach-Zehnder-type interferometer which

consists of two polarizing beam splitters (PBS) and two reflective pentaprisms, one of which
is attached to the piezoelectric stage (PS). With the addition of two HWPs (HWP3 and HWP4)
placed in its arms, this whole interferometer implements a polarization dependent beam splitter
with variable splitting ratio. Mathematically, the scattering matrix Û of the gate transforms the
bosonic modes

©«

âH,1

âV,1

âH,2

âV,2

ª®®®®®®®¬
→

©«

cos 2φ 0 sin 2φ 0

0 cos 2θ 0 sin 2θ

− sin 2φ 0 cos 2φ 0

0 − sin 2θ 0 cos 2θ

ª®®®®®®®¬

©«

âH,1

âV,1

âH,2

âV,2

ª®®®®®®®¬
, (3)

where âx,i represents the annihilation operators of the individual input, polarization (x ∈ {H,V})
as well as spatial (i ∈ {1, 2}), modes. The angles θ and φ correspond to the rotations of HWP3
and HWP4 with respect to the horizontal axis. The transformation (3) is formally equivalent
to the transformation by a polarization dependent beam splitter, the intensity splitting ratios of
which for horizontal and vertical polarizations are cot2 2φ and cot2 2θ, respectively.

The two spatial modes at the output of the interferometer are subjected to polarization
projection (QWP5, QWP6 and HWP7, HWP8) and then led to a pair of avalanche photodiodes
by Perkin-Elmer running in Geiger mode. We use detection electronics to register both single
photons at each of the detectors and coincident detections as successful operation of the gate is
indicated by the presence of single photon in each output of the interferometer. The electronic
signal is then sent to a classical computer.

For specific parameters of the presented linear-optical elements, this quantum gate functions as
a 1→ 2 symmetric phase-covariant cloner, optimal analytical cloning transformation of which
is well known [27]. On a linear-optical platform, this optimal cloning transformation can be
achieved by a polarization dependent beam splitter with intensity transmissivities for horizontal
and vertical polarization at tH ≈ 0.21 and tV ≈ 0.79, while setting the ancilla to be horizontally
polarized. Note that our quantum gate is capable of implementing this transformation when
set approximately to φ = 31.3, θ = 13.7. To showcase the capability of our gate to learn to
clone phase-covariant states optimally, we deliberately ignore this analytical solution and employ
self-optimization procedure seeking to maximize the cloning fidelities. The optimization process
consists of a number of measurements (runs), each performed for a set of variable optimization
parameters φ, θ,ω. That is, variable splitting ratio for horizontal (φ) and vertical (θ) polarization
as well as the state of the ancilla (ω) [Eq. (2)]. In each run, output clones fidelities are evaluated
and supplied to the classical Nelder-Mead algorithm [29] for a decision about the parameters of
the future runs.
In between any two runs, the setup is stabilized. We first minimize temporal delay between

the two individual photons. In this case, all HWPs are set to 0° with the exception of HWP4
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being at 22.5°. In this regime, we minimize the number of two-photon coincident detections
(Hong-Ou-Mandel dip) by changing the temporal delay between the photons using a motorized
translation stage MT. In the next step, the phase is stabilized in the interferometer. Moreover, we
make use of the fact that the phase shift in the interferometer additively contributes to the phase
η of the signal state [Eq. (1)]. This allows us to use interferometer phase stabilization for setting
of any signal state of the equatorial class. We achieve this task by setting HWP2 to 22.5° and
HWP8 to the value corresponding to orthogonal state with respect to the required input signal
state. All other HWPs are set to 0° and a minimum in single-photon detections on Det 2 is found
by tuning the voltage applied to PS. Note that the entire stabilization procedure is completely
independent of the learning process itself.

In this reinforced-learning scenario, the cloner is trained on a sequence of random equatorial
signal states [Eq. (1)] different for each run. The phase η is randomly picked from interval (0; 2π).
The fidelities are obtained bymeasuring coincidence detections in four different projection settings.
We label these coincident detections ccij, where i, j ∈ {‖;⊥}. The ‖ and the ⊥ sign denote
projection on the signal state |ψs〉 and its orthogonal counterpart |ψ⊥s 〉. We calculate the fidelities
as F1 =

(
cc‖ ‖ + cc‖⊥

)
/Σ and F2 =

(
cc‖ ‖ + cc⊥‖

)
/Σ, where Σ denotes cc‖ ‖ + cc‖⊥ + cc⊥‖ + cc⊥⊥.

To see the connection between boson sampling (i.e., sampling probabilities corresponding to
a permanent of scattering matrix) and the optimal quantum cloning let us consider scattering
matrix Û [see Eq. (3)] defined in Fock space of both spatial and polarization modes. This
matrix, when optimized, describes the desired optimal quantum operation. Let us also consider a
unitary scattering matrix Ŝ, which transforms a single H–polarized photon into the sampled state
|ψs〉 = Ŝ† |1H,1, 0V ,1〉 = α |1H,1, 0V ,1〉+ β |0H,1, 1V ,1〉, where |α |2+ |β |2 = 1. Global cloning fidelity
FG for 1→ 2 phase-covariant cloning can be expressed in terms of the measured detection rates
as

FG =
cc‖ ‖
Σ
= |〈1H,1, 0V ,1, 1H,2, 0V ,1 |Ŝ⊗2Û†Ŝ ⊗ 1̂|1H,1, 0V ,1, 1H,2, 0V ,1〉|

2 = perm2[Ĝodd], (4)

where perm[Ĝodd] is the permanent of a matrix [9] constructed by removing even rows and
columns from the composite scattering matrix Ĝ = Ŝ⊗2Û†Ŝ ⊗ 1̂ and 1̂ is the identity operator
acting on the relevant part of the Fock space. Similarly, for an ancilla-free process delivering
N clones from M copies of qubits we can define global fidelity as FG = perm2[Ĝodd] for Ĝodd
constructed from Ĝ = Ŝ⊗NÛ†Ŝ⊗M ⊗ 1̂. Similarly as before, the global fidelity is associated with
permanent of the scattering matrix [9] which governs the evolution of bosons undergoing arbitrary
unitary transformation. Simulating outcomes of such scattering process on a classical computer
is known to be #P–hard [8] and becomes exponentially harder with the number of photons and
polynomially harder with the number of output modes [30]. Considering that the number of
iterations needed for the Nelder-Mead algorithm to converge grows linearly with the number of
parameters of a quadratic cost function [31,32], the predominantly demanding computational
task is the calculations of permanents (simulation of boson sampling). When we analyze the
clones independently, the relevant figure of merit is the already introduced local fidelity that in
our experiment reads

F1 = FG +
cc‖⊥
Σ

, F2 = FG +
cc⊥‖
Σ

. (5)

However, for larger system applying global fidelity as a figure of merit is more practical [20].
Note that similarly as in case of global fidelity we can express the remaining detection rates ccij

Σ

for i , j as permanents, i.e.,
cc‖⊥
Σ
= |〈1H,1, 0V ,1, 0H,2, 1V ,1 |Ŝ⊗2Û†Ŝ ⊗ 1̂|1H,1, 0V ,1, 1H,2, 0V ,1〉|

2 = perm2[Ĝ‖⊥], (6)

and
cc⊥‖
Σ
= |〈0H,1, 1V ,1, 1H,2, 0V ,1 |Ŝ⊗2Û†Ŝ ⊗ 1̂|1H,1, 0V ,1, 1H,2, 0V ,1〉|

2 = perm2[Ĝ‖⊥], (7)



Research Article Vol. 27, No. 22 / 28 October 2019 / Optics Express 32459

where Ĝ‖⊥ (Ĝ⊥‖) are constructed by removing even rows and columns 2, 3 (1, 4) from the
composite scattering matrix Ĝ. Thus, for evaluating single-copy fidelities of 1→ 2 cloning we
need to evaluate 2 permanents more than for evaluating global fidelity.
Note that in the experiment, we do not measure the permanent itself but rather its modulus

squared. Further to that, we only consider cases when 0 or 1 photon is present in an output
mode. Thus, we avoid the problem of exponentially small detection probabilities of higher
photon-number states [see Eq. (4)]. As a result, our measurement scales better that classical
methods of calculating permanents.

3. Results

We demonstrate reinforcement-learned quantum cloner for a class of phase-covariant quantum
states. The gate operates formally as a polarization dependent beam splitter with tunable splitting
ratios. This tunability provides two parameters for self-learning, φ and θ. The third learnable
parameter ω is embedded in the state of the ancillary photon [Eq. (2)]. We have experimentally
implemented two machine learning models using two and three parameters, respectively. In
the first model, we fixed the ancilla state to its theoretically known optimum |ψa〉 = |H〉. The
remaining two parameters, φ and θ, were machine learned. To minimize the cost function (i.e.
optimize the performance of the cloner) we applied Nelder-Mead simplex algorithm which
iteratively searches for a minimum of a cost function. We chose the cost function to be in the
form of C = (1 − F1)

2 + (1 − F2)
2 + (F1 − F2)

2, where F1 and F2 stand for the fidelity of the
first and second clone, respectively. This choice reflects the natural requirements to obtain
maximum fidelities of both the clones as well as to force the cloner into a symmetrical cloning
regime. Training of the gate consists of providing it with training instances of equatorial qubit
states (randomly generated in each cost function evaluation, i. e. an online machine learning
scenario) and with the respective fidelity of the clones. In each training run, the underlying
Nelder-Mead algorithm sets the gate parameters to vertices of simplexes in the parameter space
and then decides on a future action. In the case of a two-parameter optimization, these simplexes
correspond to triangles as depicted in Fig. 3. In this figure, we plot the exact path taken by the
Nelder-Mead simplex algorithm to minimize the cost function C for the case of a real experiment
and its simulation. The selected initial simplex was intentionally chosen well away from the
optimal position – its first vertex resembles the trivial cloning strategy [26,33]. In Fig. 4(a),
we illustrate the evolution of both the fidelities F1 and F2 during the training. After 40 runs
(i.e. 40 instances from the training set), this model was deemed trained because the size of
simplexes dropped to the experimental uncertainty level (i.e. ∼ 0.1 degrees on rotation angles of
wave plates). However, in general, setting the simplex to converge within a given precision is a
nontrivial problem [34].
In the second model, we let the gate learn the optimal setting of the ancilla ω along with the

gate parameters φ and θ. The training procedure ran similarly to the first model. The initial value
of the ω parameter was set naively to ω = π

8 so it lied on the equator of the Poincaré-Bloch sphere.
We present evolution of the intermediate fidelities of this three-parameter model in Fig. 4(b).
Using a similar stopping criterion as in the first model, the training of the second model was
terminated after 60 runs.
We have tested the performance of both our models on independent random test sets each

populated by 40 instances of equatorial states. We summarize the results of the two models in
Table 1, where we provide the final learned parameters together with the mean values of the
fidelities on the test sets 〈F1〉 and 〈F2〉. The observed fidelities on test sets are bordering on the
theoretical limit (at most 0.013 below it) which renders our gate highly precise in context of
previously implemented cloners [27,35–39].
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Fig. 3. Plot of the cost function C for the angles φ and θ (corresponding to HWP4 and
HWP3 in Fig. 2, respectively). The solid yellow lines denote the final triangles reached by
the Nelder–Mead simplex minimization [29] algorithm in each of its iteration. The dashed
lines mark intermediate steps. The circled numbers stand for gate runs and point F depicts
the final state of the gate at the end of training. A simulation was performed prior to the
experiment to verify our implementation of the learning algorithm. Note that the starting
simplex is chosen in advance and is identical in both cases. Subsequent paths in case of the
simulation and actual experiment differ due to setup imperfections.
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F1

F2

F1

F2

Fig. 4. Plots showing the evolution of fidelity of both the clones (top) as well as the
cost function (bottom) throughout the training in case of (a) the first model with two free
parameters φ and θ and (b) the second model with three free parameters φ, θ and ω. Fidelity
of the first clone F1 is visualized by a solid red line and the fidelity of the second clone F2 is
shown in blue (dashed line). The thick solid black line stands for the theoretical limit of
≈ 0.8535. This theoretical limit bounds the value of fidelity averaged over both clones and
over all equatorial states. It is legitimate and expected for F1 to be close to 1 as the cloner
starts in a highly asymmetric regime. Moreover, slight deviation from perfect sampling of
equatorial input states can cause the average fidelity to surpass the theoretical limit by a few
percent.
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Table 1. Summary of the Final Values for Both Models. 〈F1 〉 and 〈F2 〉 Denote the Mean Fidelities
Observed on the Test Sets.

Final values Model 1 Model 2

training:

Angle φ 28.59 27.44

Angle θ 17.11 21.68

Angle ω 45°(fixed) 41.49°

No. of training 40 60

instances (runs)

testing:

〈F1 〉 0.840 ± 0.033 0.849 ± 0.040

〈F2 〉 0.843 ± 0.046 0.853 ± 0.022

4. Conclusions

In our proof of principle experiment, we implemented a CQ reinforcement quantum machine
learning algorithm driven by a hybrid of classical Nelder–Mead method and quantum computing
performed as a measurement of modulus squared of a permanent. This approach was used to
train a practical quantum gate (i.e., a quantum cloner). The task of the training was to optimize
parameters of the gate (interferometer) φ, θ and ω (setting of the ancilla in the second experiment)
to perform phase-covariant cloning. The quality of both the clones measured by their fidelities
F1 and F2 which were evaluated within both experiments (Fig. 4) successfully reached the
theoretical limit for phase-covariant cloning 0.854. Remarkably, the cloner managed to achieve
almost optimal cloning by learning setup parameters, slightly different from analytical values,
that counter all experimental imperfections including imperfections in the cloner itself and in the
input state preparation.

To see the connection between boson sampling and our results, let us focus on computing the
modulus squared of the permanent perm[Û] of scattering matrix describing the gate operation.
The unitary scattering matrix Û performs linear transformation on the annihilation operators
âi of the input modes (i can be an index labeling both the polarization and the spatial degrees
of freedom). Then the input-output relation of an quantum-optical interferometer is given
as b̂j =

∑
Û†i,jâi. If all the input modes of an interferometer are injected with single photons

and single photons are detected at specific outputs (no bunching) the probability of obtaining
the desired detection coincidence is p = |perm[Û]|2. However, this expression becomes more
complex if some modes are occupied by more than one photon. Then factorials of mode-specific
photon numbers appear as denominator and the respective rows/columns of U must be repeated a
corresponding number of times [9]. If some output modes are not to be populated, the respective
row of Û matrix is deleted. Calculating the moduli squared of permanents of the scattering
matrix associated with our cloner by hand is already challenging (we have polarization and spatial
degrees of freedom for two photons) and in general it falls into the #P-hard complexity class. The
quantum information processing performed by the setup is equivalent to boson sampling which,
in complex systems, is predicted to manifest quantum supremacy over classical simulation of
linear-optical setups. This makes our research a relevant application of so-called quantum circuit
learning described in [40], Mitarai et al. The integrated-optics platform [13] or superconducting
qubits [41] seem to be promising platforms for large-scale quantum machine learning of this type.

Our results also opens possibilities of further research or applications in the field of quantum
key distribution. Suppose a typical attack on the key distribution scheme: Bob and Alice share
quantum states and the attacker Eve is eavesdropping on them. Bob and Alice exchange quantum
states and, via a classical line, they can decide to stop exchanging qubits (because of noise). Let
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us assume that Eve is eavesdropping on both quantum and classical communication. Eve can in
principle use reinforcement learning to train a cloner to perform the attack by feeding it with
information on the behavior of Bob and Alice, e.g., their decision on continuing or aborting
the exchange of a quantum key and/or their decision on parameters of privacy amplification.
For such application the proposed gate would have to be modified since Eve does not know the
specific class of states used by Bob and Alice, but that is out of the scope of this paper.
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