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Abstrakt 
Variabilita kanálu a hovoru je velmi důležitým problémen v úloze rozpoznávání mluvčího. 
V součané době je ve velkém množství vědeckých článku uvedeno několik technik pro kom­
penzaci vlivu kanálu. Kompenzace vlivu kanálu muže být implementována jak v doméně 
modelu, tak i v doménách příznaku i skóre. Relativně nová výkonná technika je takzvaná 
eigenchannel adaptace pro G M M (Gaussian Mixture Models). Nevýhodou této metody 
je nemožnost její aplikace na jiné klasifikátory, jako například takzvané S V M (Support 
Vector Machines), G M M s různým počtem Gausových komponent nebo v rozpoznávání 
řeči s použitím skrytých markovových modelu ( H M M ) . Řešením muže být aproximace této 
metody, eigenchannel adaptace v doméně příznaku. Obě tyto techniky, eigenchannel adap­
tace v doméně modelu a doméně příznaku v systémech rozpoznávání mluvčího jsou uvedeny 
v této práci. Po dosažení dobrých výsledku v rozpoznávání mluvčího, byl přínos těchto tech­
nik zkoumán pro akustický systém rozpoznávání jazyka zahrnující 14 jazyku. V této úloze 
má nežádoucí vliv nejen variabilita kanálu, ale i variabilita mluvčího. Výsledky jsou prezen­
továny na datech definovaných pro evaluaci rozpoznávání mluvciho z roku 2006 a evaluaci 
rozpoznávání jazyka v roce 2007 obě organizované Americkým Národním Institutem pro 
Standard a Technologie (NIST). 
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Abstract 
Varibiality in the channel and session is an important issue in the text-independent speaker 
recognition task. To date, several techniques providing channel and session variability com­
pensation were introduced in a number of scientic papers. Such implementation can be done 
in feature, model and score domain. Relatively new and powerful approach to remove chan­
nel distortion is so-called eigenchannel adaptation for Gaussian Mixture Models ( G M M ) . 
The drawback of the technique is that it is not applicable in its original implementation 
to different types of classifiers, eg. Support Vector Machines (SVM), G M M with different 
number of Gaussians or in speech recognition task using Hidden Markov Models (HMM). 
The solution can be the approximation of the technique, eigenchannel adaptation in feature 
domain. Both, the original eigenchannel adaptation and eigenchannel adaptation on fea­
tures in task of speaker recognition are presented. After achieving good results in speaker 
recognition, contribution of the same techniques was examined in acoustic language iden­
tification system with 14 languages. In this task undesired factors are channel and speaker 
variability. Presented results are presented on the NIST Speaker Recognition Evaluation 
2006 data and NIST Language Recognition Evaluation 2007 data. 
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Chapter 1 

Introduction 

Text-independent recognition of speakers by their voice has been a subject of research for 
decades for its potential use. The goal is to recognize a speaker from recorded speech 
irrespective of what is being said. Speaker recognition comprehend two tasks: speaker 
verification, where the task is to either assign the given identity to the speech or not; and 
speaker identification where the identity of the speaker is to be determined given a set of 
reference speech segments. 

There are two main areas where speaker recognition can be applied: security and search 
in audio data. In security, it may be needed to wait for a suspect on-line, assign the identity 
to the given speech signal from a database of suspects and so forth. As for search in audio, 
data stores are expanding rapidly therefore there is a growing demand of fast search in this 
data. In this case, recognizing identity of the speaker can significantly enhance searching 
in audio data by narrowing the search space. 

Not of the less importance is the task of language recognition where the language of the 
speaker has to be recognized. Language recognition systems can be installed in international 
call centers or emergency services where the language of the speaker should be recognized 
during a short time period to enable a switch of the call to the operator with appropriate 
knowledge of the language. 

Variety of speaker and language recognition systems have been developed by many 
research laboratories using techniques based on different approaches. To date, speaker and 
language identification became complex tasks composed of a number of sub-tasks to be 
solved. To perform accurate modeling, a large amount of data has to be available which is 
not always feasible to achieve in real conditions. Therefore, methods to compensate on data 
deficiency have to be developed. When little data is available, the reason of errors is often be 
cross-session variability as the training and test segments may be recorded with different 
session conditions. Cross-session variability comprises such factors as different channels, 
microphones, recording (environment) conditions, speaker's (temporal) health conditions 
(relevant in case of speaker recognition). In case of language recognition, cross-speaker 
variability is comprehended as unwanted as well. 

The goal of this thesis is to analyze techniques on channel compensation for both, 
speaker and language recognition. As the primary task, speaker recognition was chosen for 
its simpler definition. A l l the introduced techniques are explained for speaker recognition 
task and consequently expanded to language recognition task. 

The organization of the thesis is as follows: In chapter 2 state of the art techniques 
in speaker and language recognition are introduced. Chapter 3 describes acoustic systems 
in more detail. Chapter 4 deals with channel variability. Description of the approaches 
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to compensate on the channel variability, eigenchannel adaptation in model and feature 
domain, is given in chapter 5. 

Speaker recognition system and the experiments achieved are described in chapter 6. 
Language recognition system and the experiments achieved are described in chapter 7. 

Chapter 8 sums up the work in conclusion. 
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Chapter 2 

State of the Art 

This chapter introduces the state of the art in speaker and language recognition. The 
structure of a general recognition system is given in figure 2.1. Overview of the methods 
used in single stages of recognition are listed in the following sections. 

2.1 N I S T Evaluations 

NIST Speaker Recognition Evaluation and NIST Language Recognition are ongoing se­
ries conducted by NIST from the year 1996 on. These evaluations provide an important 
contribution to the direction of research efforts and the calibration of technical capabili­
ties intended to be of interest to all researchers working on the general problem of text 
independent speaker and language recognition. 

The goal of the NIST evaluation series is to establish the baseline of current performance 
capability for speaker and language recognition of conversational telephone speech and to 
lay the groundwork for further research efforts in the field. 

2.2 Data Collection 

However this thesis does not deal with data collection as such due to its complexity, the 
issues with the data are addressed. It is known that in recognition the more data is available 
the more accurate classification can be done. 

In the recognition systems however, not always the required amount of data can be 
obtained for the target class. In speaker recognition, this problem is the most relevant in 
applications intended for security and defense when a new suspect who was never monitored 
before is to be tracked (in such cases, the application should be able to perform well using 
just a very little data). 

Along with the large amount of data, recordings with different session conditions should 
be available. The biggest negative impact is seen when the target data and the data to be 

Date Collection Front-end Classification Post-processing Decision 

Figure 2.1: Stages of the recognition process. 
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classified do not match in session conditions. Cross-session variability covers such factors 
as inter-speaker variability, channel variability and environment variability. 

In case of language identification, there are such issues like accent and dialect. Acoustic 
systems may get confused when enrollment and evaluation segments differ in these factors as 
acoustics reflect the 'sound' of the speech. Therefore, the data should be carefully selected. 

Over past years, several big databases have been recorded covering a large amount of 
speakers and languages. Mixer database is the most suitable database for speaker recogni­
tion as it contains recordings over different channel per speaker. For the language recogni­
tion task, the CallFriend database was recorded containing conversations of half an hour: 
then OGI-multilingual and OGI 22 languages are available containing though only little 
data; Mixer database offers recordings of different languages as well. 

2.3 Front-End 

Before data are used for classification, feature extraction is done. The role of feature 
extraction process is to extract from speech signal information that is relevant for the 
recognition (speaker-dependent information in case of speaker recognition and language-
dependent in case of language recognition) and reduce size of the input data. There are three 
types of features in speaker and language recognition tasks: acoustic features, phonotactic 
features and prosodic features. Additionally, techniques to minimize confounding effects 
from the acoustic features may be employed in the front-end processing such as Cepstral 
Mean Subtraction (CMS), Short Time Gaussianization (STG) [ ], Vocal tract Length 
Normalization ( V T L N ) [ ] (particularly, for language identification), RelAtive SpecTrAl 
(RASTA) filter [30], Heteroscedastic Linear Discriminant Analysis (HLDA) [1]. The output 
of this stage is a sequence of feature vectors representing the input signal. 

2.3.1 Acoustic Features 

The most popular features in recognition task are acoustic features. These low-level features 
reflect spectral identity information and are extracted from short time frames of speech. 
The most frequently used acoustic features in speaker and language recognition are Mel-
Frequency Cepstral Coefficients (MFCC) [ ] and Perceptual Linear Predictive (PLP) [17] 
features. To these statistical features are usually added their time derivatives (delta, double 
delta and triple delta), to catch inter-frame dynamics of the speech. In case of language 
identification Shifted Delta Ceptra (SDC) [28] calculated on M F C C proved to outperform 
delta features. 

Acoustic Feature Transformation 

After features are extracted from speech signal, there is still irrelevant information pre­
sented. To reduce this information and emphasize information important for classification, 
transformation techniques are used. This techniques deal with different aspects of the issue. 
First, distribution of the features can be transformed, secondly, dimensionality reduction 
can be applied. 

Cepstral Mean Subtraction (CMS), short-time Gaussianization (STG) [1] are methods 
doing simple feature transformation. C M S computes and consequently subtracts mean 
value of the features over the whole utterance which intends to reduce stationary noise due 
to the channel. S T G is a similar methods proven to outperform C M S . The basic idea is 
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that it maps feature distribution to normal distribution over a defined window (the length 
of the window usually varies from 1 to 3 sec). In language recognition, V T L N [ I] is applied 
in order to compensate of the impact due to the varying length of the speakers' vocal tract. 

For dimensionality reduction and decorrelation of the features, Heteroscedastic Linear 
Discriminant Analysis (HLDA) [19] and Principal Component Analysis (PCA) [4] are used. 
As it was shown in [1] H L D A performs better than P C A . 

2.3.2 High-Level Features 

As the speech caries not only the acoustic information but mainly the information the 
speaker intends to express, the smallest lexical units, phonemes, can serve as features. 
Both, in speaker recognition and in language recognition task, phoneme (or word) statistics 
can serve as the criterion for recognition. 

Analysis of longer temporal regions brings additional improvement in fusion with sys­
tems based on acoustic features. These high-level characteristics include idiosyncratic pat­
terns in pronunciation, word usage and prosody [11], [15]. The benefit of the features is 
not only complementary information but also their robustness against channel distortion. 
However usage of high-level features reliably requires long segments of speech [15]. 

These high-level features can be sequences of durations of phonemes or speech segments 
with pitch and energy fall/rise. 

2.4 Classification 

2.4.1 Model ing Feature Distribution in Acoustic Systems 

The dominant approach for modeling in text-independent speaker and language recognition 
has been Gaussian Mixture Models (GMM) [ ]. For model parameters estimation the 
following approaches can be used: Maximum Likelihood [ ] when a lot of data is available, 
which is rarely the case for speaker recognition and Maximum a Posteriori [ j] adaptation 
of a speaker-independent model, called universal background model (UBM), when little 
data is available (realistic condition). Additionally, Maximum Mutual Information [5] can 
be used for models' parameter re-estimation when a lot of training data is available. It 
provides modeling of boundaries of the classes discriminativelly (not applicable to speaker 
recognition task, good results for language recognition). 

Another classifier widely used in speaker and language recognition is Support Vector 
Machines (SVM) [ ] which is a two-class maximum-margin linear classifier. 

The focus of the S V M training process is to model the boundary between classes. For 
a separable data set, S V M optimization chooses a hyper-plane in the expansion space with 
maximum margin. 

S V M can be trained on so-called G M M supervectors which are vectors structured from 
G M M means stacked in a vector. G M M supervectors are obtained by training each utter­
ance of a class (in case of G M M systems, each class is modeled by one G M M ) producing 
a cluster of G M M supervectors for each class. In case of language recognition, phoneme 
counts or word lattices may be used [6]. 

A n advantage of S V M is that it models data discriminativelly and provides good clas­
sification performance for sparse data. 
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2.4.2 Model ing of Phonotactic Features in Language Recognition 

Phonotactic systems are based on a phoneme recognizer followed by a language model. 
First, tokenization of speech to speech units, phonemes, is done. Then the statistics on n-
grams (usually, uni-grams, bi-grams or trigrams) are represented by language model (LM). 
Language modeling can be done not only on phoneme strings but also on the on the posterior 
weighted phoneme counts from the lattice. Statistics' modeling can be as well efficiently 
done by means of Binary Decision Trees [12], [21], [22]. 

Often, one phoneme recognizer is used to segment the speech of all target languages 
to phonemes. To achieve further improvement, Parallel Phone Recognition (PPR) may be 
employed, where multiple phoneme recognizers are trained on different languages and run 
in parallel with the following score fusion. 

2.5 Post-processing 

After classification is done, score normalization or score calibration is often applied. 

2.5.1 Normalization of the Scores 

Very simple methods are zero normalization (Z-norm) and test normalization (T-norm) 
[16] which proved to be efficient (in some cases score normalization is not needed as other 
normalization/compensation methods are enrolled before or during classification). 

Z-norm method normalizes the score distribution using statistics (mean and variance) 
calculated from the score obtained testing the target model against a set of impostor test 
segments. 

T-norm on the contrary uses statistics (mean and variance) of the score distribution 
obtained by scoring each test segment against a set of impostor models. At this point the 
likelihood of the test segment given the target model is normalized. 

2.5.2 Calibration of the Scores 

For the calibration of the obtained scores, linear Gaussian backend and multi-class linear 
logistic regression (LLR) [13] can be used. 
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Chapter 3 

Acoustic System 

In the previous chapter, a brief overview of the techniques used in speaker recognition and 
language recognition task is given. This chapter gives the description of the techniques 
used in the acoustic recognition systems developed in this work in more detail. 

3.1 Front-End 

Front-end includes feature extraction and following feature post-processing. In the post­
processing phase, Cepstral Mean Subtraction (CMS), Short Time Gaussianization (STG) 
[18] and Heteroscedastic Linear Discriminant Analysis (HLDA) [ ] were applied in speaker 
recognition system. C M S and Vocal Tract Length Normalization (VTLN) was employed in 
the language recognition system. 

3.1.1 M F C C 

As the static features for both, speaker and language recognition, M F C C are used. First, 
speech is divided into overlapping frames. The conventional frame length is 25 ms with the 
shift of 10 ms. Each frame is proceeded by pre-emphasis filter to amplify higher frequencies. 
This is the approximation of psychological findings about sensitivity of human hearing on 
different frequencies. Hamming window is applied in the next step and Fourier spectrum 
is computed for the windowed signal frame. Mel filter bank is then applied to smooth 
the spectrum. The filters are triangular and equally spaced along the mel-scale. The Mel 
frequency is defined as: 

/ m e Z = 25951og 1 0(l + ^ ) (3.1) 

where / is the original frequency. To implement this filter-bank, the window of speech data 
is transformed using Fourier transform and the magnitude is taken. The magnitude coeffi­
cients are then binned by correlating them with each triangular filter. Here binning means 
that each F F T magnitude is multiplied by the corresponding filter gain and the results 
accumulated. Thus, each bin holds a weighted sum representing the spectral magnitude 
in that filter-bank channel. M F C C are calculated from the log filter-bank amplitudes rrij 
using the Discrete Cosine Transform 

f~2 N 

i=i 
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Frames SDC corresponding to 
one MFCC coefficient 

Figure 3.1: Shifted Delta Cepstra coefficients. 

In case of speaker recognition, these statistical features are concatenated with deltas, double 
deltas and triple deltas resulting to 56 dimensional feature vector. Delta coefficients are 
computed from static M F C C as: 

where dt is a delta coefficient at time t computed in terms of the corresponding static coef­
ficients ct-0 and ct+o- The value of O represents the range from which the delta coefficients 
are to be calculated. Double delta are computed in the same way as deltas with the only 
difference that they are computed from delta coefficients. And triple deltas are computed 
from double deltas. 

In case of language recognition, time derivatives described above are proved to be out­
performed by Shifted Delta Cepstra (SDC) coefficients [28] which are obtained by stacking 
delta cepstra computed across multiple speech frames. The SDC features are specified by 
4 parameters, N, d, p and k, where N is the number of cepstral coefficients computed at 
each frame, d represents the time advance and delay for the delta computation, k is the 
number of blocks whose delta coefficients are concatenated to form the final feature vector, 
and P is the time shift between consecutive blocks. Accordingly, kN parameter are used 
for each SDC feature vector. The final vector at time t is given by the concatenation of all 
the 8c(t + iP), see figure 3.1, defined as: 

3.2 Classification 

This section gives description to the classification approach used. Reader can find here 
introduction to the problematics of the modeling of the feature space using probabilistic 
Gaussian Mixture Models ( G M M ) . The models' parameters estimation methods and finally 
evaluation of the models are described. 

3.2.1 Likelihood Ratio Detector 

Speaker recognition comprehends speaker verification (1:1) and speaker identification (1:N). 
In speaker verification, the task is to verify whether the speaker is the target speaker or 
not. While in speaker identification the task is to assign the speaker the identity from a 
given set. Speaker verification can be thought of as speaker identification with only one 

E g = i d(ct+e ~ ct-e) 

2 E t i 0 2 

(3.3) 

Sc(t) = c(t + iP + d) - c(t + iP-d) (3.4) 
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target speaker and a firm decision threshold. Therefore the following explanation will be 
given for speaker verification task for its simpler model. 

Speaker verification task can be stated as a basic hypothesis test between HQ, when 
speech segment X belongs to speaker S and Hi, when speech segment X does not belong 
to speaker S. 

Let 9 be the decision threshold for acceptance or rejecting HQ. The optimum test to 
decide between these two hypotheses is a likelihood ratio test given by 

P { X ) - PJXJHV) ( 3 - 5 ) 

if P(X) >= 9 then X belongs to HQ, else X does not belong to HQ. P(X\HQJI) is the prob­
ability density function for the hypothesis HQ^ evaluated for the observed speech segment 
X, also referred to as the likelihood of the hypothesis HQ^ given the speech segment. HQ^ 
is represented by the model denoted XH0 I which represents the distribution of the features. 

Gaussian Mixture Models (GMM) has proven to best represent HQ^ in acoustic recogni­
tion systems. Thus AH denotes the mean vector and the covariance matrix of the G M M . The 
true, HQ, and alternative hypotheses, Hi, are then represented by the model XH0 and A ^ 
respectively. The likelihood ratio statistic can be rewritten then as P(X\XH0)/P(X\XH1)-
Usually, the logarithm of this statistic is used to enhance the ratio computation giving the 
log-likelihood ration: 

L(X) = logp(X\XHL) - logp(X\XHO). (3.6) 

While parameters of the model XH0 can be estimated from the training segments belonging 
to the speaker S, the parameters of the XH1 can be estimated in several ways. Perfectly, A#x 

should model the distribution of all the alternative speakers. As this is not feasible, there 
are several approximation approaches. For tasks with a small number of the alternative 
(background) speakers a set of models representing these speakers can be used. Then the 
likelihood of the hypothesis Hi is represented as an average or maximum of the likelihood 
values from the background speaker set. 

Another approach which is most used in the applications with a big number of alterna­
tive speakers is to train a single speaker-independent model representing all speakers where 
speech segments from all speakers are pooled together. This speaker-independent model is 
usually called as Universal Background Model (UBM) or world model[26]. 

3.2.2 Gaussian Mixture Models 

Gaussian Mixture Models (GMM) is a likelihood function, p(X\X), composed of a mixture 
of probability density functions. G M M is a simple approach which proved to be a powerful 
tool in text-independent speaker recognition tasks. 

Assuming the feature distribution is modeled by G M M , the likelihood function, repre­
sented as a mixture density for a Z?-dimensional feature vector, x, is defined as 

M 

p(x, A) = Wi * p(x|Ai) (3.7) 
i=i 

The likelihood is a weighted linear combination of M uni modal Gaussian probability den­
sities, p(x|Aj), each represented by a D x 1 vector, /Xj, and D x D covariance matrix, SJ: 

P(*\Xi) = (27r)0/2|s-|i/2 e x P ~ j ^ x ~ Mi) / (S i )~ 1 (x - m) (3.8) 
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The mixture weights, Wi, satisfy the constraint J2i=iwi = 1- The parameter set of the 
probability density model is demoted as A = {wi, /Xj, i = 1 , M . 

Usually, the full-covariance matrix is reduces to the diagonal covariance matrix. The di­
agonal covariance matrix has two advantages over the full-covariance matrix: first, diagonal-
matrix G M M s are more computationally efficient than full covariance G M M s (in the phase 
of training); secondly, the features represented by a diagonal covariance matrix are not 
correlated. 

The feature vector x is assumed to be independent (which is rather not correct), there­
fore the log-likelihood given the model Aj and the sequence of feature vectors, x = xi,XT, 
is computed as the sum: 

logp(x|Aj) = ^ l o g p ( x t , A j (3.9) 
t=i 

where p(xt\X) is computed as in Eq. 3.8. Usually, log-likelihood value is divided by T 
to normalize the duration effects off the log-likelihood value. 

3.2.3 Universal Background Mode l 

U B M is a G M M trained on the data from a large population of speakers to model speaker-
independent distribution of the features. U B M represents the likelihood of the alternatives 
to hypothesized speakers, p(X|A#i)-

3.2.4 Expectation Maximization Algorithm 

To directly estimate parameters of a multivariate G M M is an unfeasible task. Expectation 
Maximization (EM) algorithm is an iterative training algorithm used in statistics to find 
maximum likelihood estimates of the parameters of the probabilistic models. 

In this approach, the parameter-estimation problem is structured to incorporate vari­
ables representing information that is not directly observed, but that is assumed to be part 
of the model that generated the data (such a variable is often called hidden or missing). 
For instance, in the Gaussian mixture hidden variable could be the index of the 
Gaussian that generated a data point. The key idea of E M is to estimate the probability 
density by taking an expectation of the logarithm of the joint density between the known 

Speaker Training Data 

U B M 

Speaker Training Data 

Spekaer Model 

U B M 

Figure 3.2: M A P adaptation of the U B M in U B M - G M M framework. 
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and unknown components, and then to maximize this function by updating the parameters 
that are used in the probability estimation. The process of Expectation and Maximization 
steps is then iterated to achieve good parameter estimation. 

3.2.5 M a x i m u m Likelihood Parameter Estimation 

Maximum Likelihood Estimation of the G M M parameters is used when a large amount 
of data is available to estimate model parameters (as, for instance, for U B M parameter 
estimation). Given the training data x, M L estimate, XMLI is defined as: 

A M L = argmax/(x |A) (3 .10) 
A 

M L training process is composed of two parts: Gaussians' parameters estimation and 
splitting of the Gaussians. When Gaussians are split their parameters are re-estimated 
using E M algorithm. 

3.2.6 M a x i m u m a Posteriori Parameter Estimation 

When sparse training data are available, to obtain good models parameters' estimation 
U B M - G M M framework is used [26]. In U B M - G M M system, target models are derived 
from U B M parameters by means of Maximum a Posteriori (MAP) adaptation using the 
enrollment data, see figure 3.2. 

Assuming A to be a model parameter vector to be estimated from the sample x with 
probability density function (p.d.f.) / ( - |A) , and g is the prior p.d.f. of A , M A P adaptation 
is formulated as: 

A M A P = argmaxg(A|x) (3 .11) 
A 

= argmax/(x |A) f f(A) (3 .12) 

(When A is assumed to be fixed and unknown, then equation 3 .12 reduces to M L formu­
lation. ) New parameters of the model to fit better target speaker data distribution are 
estimated iteratively using E M algorithm in the following way: Given a sequence of training 
vectors of the hypothesized speaker X = (xi,xn) of i.i.d (independent and identically 
distributed) and prior distribution of parameters given by U B M N([XUBM,^UBM), the 
probabilistic alignment of the training vectors into the U B M mixture components i , is 
determined and statistics for the mean (weights and variances preserve unchanged) param­
eters are estimated (expectation step). Then, these statistics are used to update the old 
U B M statistics for mixture i to create the adapted parameters for mixture i (maximization 
step). The process is run in several iterations. Detailed explanation of the approach can 
be found in [26]. 

The advantage over a standard Maximum Likelihood (ML) adaptation is a prior knowl­
edge of feature distribution given by U B M . Which enables good models' parameter esti­
mation even in the case when little training data available. Second advantage of deriving 
target model parameters from U B M is acceleration during scoring. 

In this work, only mean vectors are M A P adapted from U B M . 
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Figure 3.3: Highly overlapped distributions of features. 

3.2.7 M a x i m u m M u t u a l Information Parameter Estimation 

Figure 3.3 presents highly overlapped distributions of the features of two classes. In such 
cases, training the models' parameters in a discriminative way brings significant improve­
ment [5]. 

Unlike M L training which aims to maximize the overall likelihood of training data given 
the transcriptions, the M M I objective function is to maximize the posterior probability of 
correctly recognizing all training segments: 

U

 PX(Xr\Sr)KrP(Sr 

^ EvsPx(*r\s)KrP(s) FMMI(X) = V b g " ^ I ; , 7

I ; K

Y Z \ (3-13) 
r 

where p\(xr\sr) is likelihood of r-th training segment, x r, given the correct transcription 
of the segment, sr, and model parameters, A. R is the number of training segments and 
the denominator represents the overall probability density, p\(xr). Definition of the re-
estimation formula is to be found in [20]. 

3.2.8 Log-Likelihood Ratio Computation 

In the U B M - G M M approach, the log-likelihood ratio for a test speech segment X is com­
puted as: 

A ( X ) = log(p(X\XH)) - \og{p{X\\UBM)) (3.14) 

The fact that the hypothesized speaker model was adapted from the U B M , however, allows 
acceleration of the scoring process as not all Gaussians have to be evaluated in contrast as 
it was formerly proposed in Eq. 3.9. Top-N best Expectation Log Likelihood Ratio (ELLR) 
fast scoring method aims at recognizing iV most contributing Gaussians in the recognition 
process. This fast scoring approach is based on two observations. First, when a large G M M 
is evaluated for an incoming test feature vector, only a few of the mixtures contribute 
significantly to the likelihood value. This is due to the fact that the U B M represents a 
large space of speaker-independent distribution of features and a single speaker G M M is 
derived from the U B M where not all mixtures are adopted. Additionally, in case of a 
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short test speech segment, distribution of the features will fit under only few Gaussians. 
Therefore, likelihood values can be approximated using the top iV best components. 

The second observed effect of U B M - G M M approach is that the components of the 
adapted G M M retain a correspondence with the mixtures of the U B M , so that the test 
feature vectors close to a particular mixture in the U B M will also be close to the corre­
sponding mixture in the speaker model. Thus, it is sufficient to determine iV best scoring 
mixtures of the U B M for computing likelihood for both, U B M and a speaker-dependent 
model given the test sequence of feature vectors. 

Fast scoring is efficient especially in task with multiple hypothesized speaker models 
for each test feature vector. In this work, top 10 components are evaluated. (For a U B M 
with M mixture components, calculation of log likelihood ratio using iV best mixtures 
requires M + iV computations per feature vector compared to 2 M computations for original 
likelihood ratio evaluation). 
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Chapter 4 

Channel Variability 

Often, enrollment and test data are recorded over different channels or under different 
conditions (session environment, emotional state of the speaker, possible illness, language 
mis-match and so on) which lowers the accuracy of correct recognition significantly. When 
training and test data do not match in the recording conditions, it can easily happen 
that the target will be recognized by the session configuration in the recording omitting 
the target-related information, see figure 4.1. The figure presents an example of a model 
distribution when two-dimensional G M M are trained each on an utterance recorded over 
different condition. 

To date, several techniques, such as feature mapping [25], factor analysis (FA) [ ], 
eigenchannel adaptation [2] and nuisance attribute projection (NAP) [ 7] have been used to 
compensate channel distortion. 

Formerly, channel compensation was proposed task by Kenny [23] in terms of factor 
analysis (FA). Brummer [ ] has proposed a simplified version of FA, eigenchannel adap­
tation. These methods were developed within G M M framework and are implemented in 
model domain. Later, Castaldo in [9] has introduced an approximation of eigenchannel 
adaptation, eigenchannel adaptation in feature domain. With channel compensation per­
formed in feature domain, different approaches can be used for the feature distribution 
modeling. 

This work examines effects of eigenchannel adaptation approach for speaker recognition 
task. As reported in [31], eigenchannel adaptation brings significant improvement when 
relatively long speech segments are used for training and testing and fails when only short 
segments are used. It was presented that in the later case eigen-channel compensation even 

, Speaker 'A ' 

Cross-Channel Variability 

Figure 4.1: Cross-session variability vs. cross-speaker variability. 
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affect recognition. 
Channel variability is an issue in language recognition as well as in speaker recognition. 

In speaker-independent language recognition, however, additionally to channel variability, 
influence of speaker variability has to be compensated. Additionally, dialects of the language 
and pronunciation (for instance, American English, British English and Indian English) may 
also affect correct recognition. Although, Eigenchannel adaptation was formerly proposed 
[ I] for speaker recognition, the approach performs very well in language recognition task. 
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Chapter 5 

Eigenchannel Adaptation 

The chapter gives the theoretical background on eigenchannel adaptation method in both, 
model and feature domain. 

5.1 Eigenchannel Subspace Estimation 

Let supervector be a MD dimensional vector constructed by concatenating all G M M mean 
vectors and normalized by corresponding standard deviation. M is the number of Gaussian 
mixture components in G M M and D is dimensionality of features. 

Before eigenchannel adaptation can be applied, the directions in which the supervector 
is mostly affected by a changing channel must be identified. These directions, which are 
referred to as eigenchannels, are defined by columns of MD x R matrix V , where R is 
the chosen number of eigenchannels. The matrix V is given by R eigenvectors of average 
within class covariance matrix, see figure 5.1, where each class is represented by supervectors 
estimated on different segments spoken by the same speaker. 

For each speaker, i, and all his conversations, j = 1 , J j , U B M is adapted to obtain a 
supervector, Sij . The corresponding speaker average supervector given by Si = YlJj=i $ij/Ji 

is subtracted from each supervector, , and resulting vectors form columns of MD x J 
matrix S, where J is the number of all conversations from all selected speakers ( J = 2961 in 
our case). Eigenchannels (columns of matrix V) are given by R eigenvectors of MD x MD 

Class 1 

X X 
x Class 2 

Mean-Normalized 
Supervectors 

x 

Figure 5.1: Eigenchannel vector estimation. 
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Speaker Model Test Data 

Adapted Models 

Original Models 

Channel Direction 

Figure 5.2: Eigenchannel adaptation in model domain. 

average within speaker covariance matrix -jSS corresponding to R largest eigenvalues. 
Unfortunately, for our system, where MD is of a high dimension, direct computation of 
these eigenvectors is unfeasible. The solution is to compute eigenvectors, V , of J x J 
matrix jSTS; eigenchannels are then given by V = SV. The length of each eigenchannel 
must be also normalized to the average within speaker standard deviation of supervectors 
along the direction of the eigenchannel (i.e. each eigenvector obtained in the previous step 
must be multiplied by the square root of the corresponding eigenvalue). 

5.2 Eigenchannel Adaptation in Mode l Domain 

In model domain, eigen-channel adaptation is applied on the supervector. The supervector 
is shifted in the directions given by eigenchannels to best fit the test conversation data, see 
figure 5.2. The task is to find the channel factor, x, that maximizes the following M A P 
criterion: 

p(0|s + Vx)JV(x;0,I) (5.1) 

where s is supervector representing the model to be adapted, V is given by R most relevant 
eigenvectors of average within-class covariance matrix, where each class is represented by 
supervectors estimated on different segments spoken by the same speaker, p(0|s + Vx) is 
likelihood of the test conversation given the adapted supervector and iV(x; 0,1) denotes 
normally distributed vector. Assuming fixed occupation of Gaussian mixture components 
by test conversation frames, o(t), t = 1, ...,T, it can be shown that x maximizing criterion 
(5.1) is given by: 

M T 

x = A - 1 £ v £ ] T 7 m ( t ) ^ ^ (5.2) 
m=l i=l 

where V m is M x R part of matrix V corresponding to mth mixture component, 7 m ( t ) is 
the probability of occupation mixture component m at time t, fim and am are the mixture 
component's mean and standard deviation vectors and 

M T 

A = I + ^ V ^ V m ^ 7 l ( t ) (5.3) 
m=l 4=1 
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Channel Direction Channel Direction 

Figure 5.3: Eigenchannel Adaptation in Feature Domain. 

In this implementation, occupation probabilities, 7 m ( t ) , are computed using Universal Back­
ground Model (UBM) and assumed to be fixed for the given test conversation. This allows 
to pre-compute matrix A - 1 only once for each test conversation. For each frame, only 
Top-N occupation probabilities are assumed not to be zero. 

During testing, both U B M and the target model are shifted to best fit the test segment 
and the score is obtained for both compensated models. 

5.3 Eigenchannel Adaptation in Feature Domain 

Eigenchannel adaptation in feature domain provides mapping of the compensation super-
vector on the acoustic features. In other words, while, eigenchannel adaptation in model 
domain shifts the models in the directions representing the channel variability to best fit 
the feature vector, eigenchannel adaptation in feature domain, shifts the feature vector to 
best fit the given model, see figure 5.3, left. For all the feature vectors to be adapted, the 
compensation supervector is represented by the U B M supervector. 

The adaptation of the feature vector at time t, o'(t), is obtained by subtracting to 
the observation feature either the channel compensation offset value or a weighted sum of 
compensation offset values as it is proposed in [29]: 

where N is the selected number of best-scoring Gaussians used for the compensation. V m 

and x are estimated in the same way as for the eigenchannel adaptation in model domain. 
We experimented with N is set to 10 and to 1. The adaptation using only 1-best Gaussian 
performs better. 

Both, the training data and the test data are compensated. Figure 5.3, right, present 
the scenario of using the compensated features in the recognition system. 

N 

(5.4) 

m=l 
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Chapter 6 

Speaker Recognition Experiments 

The speaker recognition system was built on the development data provided by NIST for 
SRE 2006 Evaluation according to the NIST S R E 2006 Evaluation plan 1 . The recognition 
system presented in this work is a test-independent speaker detection system where the 
task was to determine whether the target speaker is speaking in the given segment of 
conversational telephone speech. 

6.1 Setup 

6.1.1 Baseline System 

As the baseline system, state of the art U B M - G M M system was built. 

6.1.2 Training and Test Conditions 

The training and test segments are telephone continuous conversational excerpts with no 
prior removal of intervals of silence. Both sides of two-channel conversations were provided. 

There are 15 conditions defined by NIST in the NIST SRE 2006 Evaluation. However, 
the focus of this work is put to two conditions: the NIST 2006 core-condition, lside4w-
lside4w, and an optional condition, 10sec4w-10sec4w. For both conditions, only English 
trials were evaluated. 

In the core-condition, 517 speakers were used as the target speakers, for every speaker, 
one two-sides conversation of the length of approximately 5 minutes was used. Each one-side 
segment results into approximately 2 minutes of speech. 

The 10sec4w-10sec4w condition defines 429 speakers as the target speakers. For each 
speaker, one two-sides conversation of the length of approximately 20 seconds was provided. 
Each one-side segment results into approximately 10 seconds of speech. 

6.1.3 Performance Measure 

The results are presented in terms of the detection cost function Coet computed over the 
sequence of trials provided where each trial is independently judged as "true" (the model 
speaker speaks in the test segment) or "false" (the model speaker does not speak in the 
test segment) and the correctness of these decisions is tallied. The detection cost function 

xhttp://www.nist.gov/speech/tests/spk/2006/sre-06_evalplan-v9.pdf 
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is defined as a weighted sum of miss and false alarm error probabilities: 

Cr>et = CMiss X PhlissTarget X PTarget (6.1) 

+CFals eAlarm x PFalseAlarmlNotTarget x (1 — PTarget) (6.2) 

The parameters of this cost function are the relative costs of detection errors, CMISS and 
CFalseAiarm, and the a priori probability of the specified target speaker, PTarget-

Detailed information on C^et computation is to be found in the NIST SRE 2006 Eval­
uation plan. 

Graphical representation of the results in terms of Detection Error Trade-off (DET) 
curve are also provided in order to show how misses may be traded off against false alarms. 

6.1.4 Front-End 

Features 

As the features 12 M F C C (plus CO, 20-ms window, 10-ms shift, and 23 bands in a Mel 
filter bank) were used. To compensate for channel mismatch in different conversations, 
two simple feature processing techniques were applied: the cepstral mean over the whole 
conversation is subtracted from the features and S T G with 3-s window was applied. To 
this feature vector, its delta, double delta and triple delta coefficients were concatenated 
resulting in 56 dimensional vector containing information about the context of 13 frames. 

Segmentation 

At this phase, non-speech frames are discarded, and only speech frames are considered in 
the following stages of training and identification. To extract only voiced segments, B U T 
Hungarian phoneme recognizer was used where each recognized phoneme was assign to the 
voiced segments class. A post-processing with two rules based on the short-time energy of 
the signal is applied. 1) If the average energy in a speech segment is 30 dB less than the 
maximum energy in the conversation side, then the segment is labeled as silence. 2) If the 
energy in the opposite conversation side is bigger that the maximum energy minus 3 dB in 
the processed side, the segment is also labeled as silence. 

H L D A 

To decorrelate the features and reduce the dimensionality to 39, H L D A was applied. Several 
experiments were run in order to investigate to what extent the dimensionality should be 
reduced (chosen dimensions were 30, 39, 45 and no dimensionality reduction). The results 
showed that 39-dimensional feature vector performs the best. 

6.1.5 Classification 

First, single U B M was trained using the data for NIST 2004 evaluation. Consequently, the 
U B M was M A P adapted using enrollment segments. For the core condition, the models 
were composed of 2048 Gaussian Mixture components. In case of 10sec4w-10sec4w condition 
experiments with different number of Gaussian components (256, 512, 1024, 2048) were run. 
Scoring was done using top-10 Gaussians. 
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6.1.6 Eigenchannel Statistics Computation 

For channel statistics calculation 2004 S R E data (both, defined as training and test seg­
ments) were used. The nominal length of the recordings is about 2 minutes. 

Only speakers with at least two recordings available were used in further processing. 
Recordings from 310 speakers were used to calculate the statistics for the compensation. 
The eigenchannel matrix was estimated on all the available data (will be referred to as 
2-sess matrix). 

Consequently, further investigation was done on the data selection for the statistics cal­
culation as it was assumed that when using only data with higher variability, eigenchannels 
may be estimated more robust. 

First, speakers with at least 15 recordings were used (will be referred to as 15-sess 
matrix). In this case recordings only from 230 speakers were available. In the second 
experiment, speakers who has segments recorded over at least 3 different channels were 
selected (referred to as 3-chan matrix). Here, the number of speakers decreased to 202. 

Third experiment incorporated both restrictions: speakers (here, 125) recorded over at 
least 3 channels with at least 15 recordings were used for the eigenchannel computation 
(referred to as 3-chan-15-sess matrix). 

Analysis, which eigenchannel matrix performed better was made on the eigenchannel 
adaptation in model domain for its simpler implementation. The number of 50 eigenchan­
nels with the biggest corresponding eigenvalues were used. 

6.2 Results 

6.2.1 Core Condition Results 

Table 6.1 presents results achieved with the baseline U B M - G M M systems and the U B M -
G M M system with eigenchannel adaptation in both, model and feature domain. The 
U B M - G M M system with eigenchannel adaptation (denoted as U B M - G M M - c c M D system) 
in model domain was scored several times with different eigenchannel matrices. 

When employing eigenchannel adaptation in model domain, U B M - G M M - c c M D , the 
error rate decreased by almost 60 % relative. When experimenting with different eigen­
channel matrices, no significant improvement was achieved though. As it can be seen from 
the table 6.1 the performance did not improve much when only the speakers with more 
variable data are used to estimate eigenchannels. What should be noted though is that 
in case of 15-sess, 3-chan and 3-chan-15-session significantly less data were used therefore 
eigenchannel computation was less resource-consuming. 

For the eigenchannel adaptation in feature domain, eigenchannels calculated from all the 
available data were used. However, table 6.1 presents improvement after setting restrictions 
on the data used for statistics calculation, the decrease of the error is minor, therefore the 
matrix calculated from all the available data is used due to its assumed better capability 

Table 6.1: Results for speaker identification task. The abbreviation MD means the appli­
cation of eigenchannel adaptation was done in model domain 

Baseline 2-sess 15-sess 3-chan-15-sess 3-chan 
U B M - G M M - c c M D 8.7 3.79 3.74 3.74 3.74 
U B M - G M M - c c F D - 3.97 - - -
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of generalization. When, the system was trained on the compensated data, U B M - G M M -
ccFD, the accuracy was lower than in case of the U B M - G M M - c c M D system. Graphical 
representation of the performance of both system, with eigenchannel adaptation in model 
and feature domain, is presented in figure 6.1. 

6.2.2 Short-Duration Condition Results 

As the short-duration conditions are of a great interest for they simulate the real condition 
scenario of having little training and test data, investigation of the effect of eigenchannel 
adaptation was studied. The main goal of the following experiments was to verify consis­
tence in the results with other research sides and have a full set of experiments reflecting 
eigenchannel adaptation effects. The experiments were run with eigenchannel adaptation 
only in model domain. 

Two top lines of the table 6.2 present the results achieved with the baseline system and 
the system employing eigenchannel adaptation. The results show that application of eigen­
channel adaptation in the system with the same configuration as for the core condition, has 
a negative effect. As only 10 seconds of speech were used for the system training, using 2048 
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Table 6.2: Results for speaker identification task on 10-sec condition. D stands for delta 
coefficients, A stands for acceleration coefficients, T stands for triple delta coefficients. 
HLDA39 stands for HLDA with dimensionality reduction to 39. 

O N O F F 
2048G, D A T . H L D A 3 9 28.23 26.88 
2048G, D 24.88 24.39 
1024G, DAT_HLDA39 30.76 26.79 
1024G, D 26.00 23.91 
512G, DAT_HLDA39 32.69 26.48 
512G, D 24.24 
256G, D 24.48 
128G, D 25.44 

Gaussians could lead to the incorrect modeling and therefore of affecting the performance. 
Hence, further experiments were run in order to find best performing configuration for the 
10 second condition system. 

Models with different number of Gaussian components were trained and scored without 
and with eigenchannel adaptation. Experiments with a shorter feature vector were run as 
well. The feature vector was eliminated to only static M F C C and delta coefficients with no 
H L D A being applied on it, thus resulting in the vector of the dimension of 26. 

As it can be seen from the results in table 6.2, eigenchannel adaption affects accurate 
estimation in short-duration condition experiments. Negative shift in accuracy is significant. 

Experiments show, that the best configuration of the system for the short-duration con­
dition is using 12 M F C C with the only deltas and 1024 Gaussians for the feature distribution 
modeling without employing eigenchannel adaptation. 

6.3 Conclusion 

The experiments show that eigenchannel adaptation in both, model and feature domain 
greatly decrease the error in the core condition, where about 2 minutes of speech are 
available for both, training and scoring the models. Eigenchannel adaptation in model 
domain slightly outperforms eigenchannel adaptation in feature domain. 

When only 10 seconds are available for the models' training and testing, eigenchannel 
adaptation (done in model domain) decreased the accuracy of the system. 
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Chapter 7 

Language Recognition Experiments 

The language recognition system was built on the development data provided by NIST for 
L R E 2007 Evaluation according to the NIST L R E 2007 Evaluation plan 1 . The recognition 
system presented in this chapter is a test-independent language detection system where 
the task was to determine whether the target language is spoken in the given segment of 
conversational telephone speech. 

7.1 Setup 

7.1.1 Training and Test Conditions 

In the language recognition task, 14 languages were defined as the target languages. These 
languages were modeled using multiple databases with the amount of data varyng from 1.4 
for Thai to 264 hours for English. The databases used for the training the system are the 
following: 

C F CallFriend 
C H CallHome 

F Fisher English Part Land 2. 
F Fisher Levantine Arabic 
F H K U S T Mandarin 

SRE Mixer (data from NIST S R E 2004,2005,2006) 
LDC07 development data for NIST L R E 2007 

OGI OGI-multilingual 
OGI22 OGI 22 languages 

F A E Foreign Accented English 
SpDat SpeechDat-East2 

SB SwitchBoard 

The information on duration in hours for each particular subset for each language is 
presented in table 7.1. 

For testing the implemented system, three conditions were defined. The models had to 
be scored against utterances of the length of 30, 10 and 3 seconds. Altogether, over 20000 
utterances were used for testing. 

1http://www.nist.gov/speech/tests/lre/2007/LRE07E valPlan-v8b.pdf 
2see http://www.fee.vutbr.cz/SPEECHDAT-E or the E L R A / E L D A catalog 
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Table 7.1: Training data in hours for each language and source. 

sum C F C H F S R E LDC07 OGI OGI22 Other 
Arabic 212 19.5 10.4 175 5.93 1.45 0.33 
Bengali 4.27 2.86 1.42 
Chinese 93.2 41.7 1.64 17.2 44.9 4.2 0.87 0.85 
English 264 39.8 4.68 162 34.9 6.77 0.52 15.6 (FAE) 
Hindustani 23.5 19.6 0.64 1.32 1.53 0.42 
Spanish 54.3 43.8 6.71 2.63 1.18 0.38 
Farsi 22.7 21.2 0.03 1.00 0.42 
German 28.2 21.6 5.10 1.12 0.38 
Japanese 23.9 19.1 3.47 0.87 0.35 
Korean 19.7 18.4 0.09 0.72 0.5 
Russian 15.1 3.38 1.33 0.43 10.0 (SpDat) 
Tamil 19.6 18.4 0.96 0.26 
Thai 1.45 0.15 1.23 
Vietnamese 21.6 20.6 0.79 0.27 

7.1.2 Front-End 

Features 

SDC with configuration of 7-1-3-7 + 7 M F C C (including CO, 20-ms window, 10-ms shift, 
and 23 Mel bands) were used resulting in the 56 dimensional feature vector. 

V T L N 

The features were transformed using vocal-tract length normalization (VTLN) [10]. The 
warping factors are estimated using single G M M (512 Gaussians), ML-trained on the whole 
CallFriend database (using all the languages). The model was trained in standard speaker 
adaptive training (SAT) fashion in four iterations of alternately re-estimating the model 
parameters and the warping factors for the training data. 

Segmentation 

Segmentation was done using B U T phoneme recognizer where the phoneme classes were 
linked to the speech class. The frames labeled as silence were dropped from the further 
processing. Further, the segments shorter than 50 ms were omitted as it was supposed that 
the information it held was not reliable enough. 

7.1.3 Classification 

Two U B M models with 256 and 2048 Gaussian mixtures were trained using all training 
data. Consequently, 14 target models were M A P adapted from the U B M using enrollment 
data. Several experiments were then run with M M I models' parameter re-estimation (for 
the M M I criterion see chapter 3.2.7) using both, 256-Gaussian and 2048-Gaussian systems. 
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7.1.4 Calibration 

A l l systems were first processed by linear backend and then calibrated using multi-class 
linear logistic regression (LLR) [3] after classification. Both linear backend and calibration 
parameters were trained using the part of the training data which were not used for the 
training of the models. The FoCal Multi-class toolkit by Niko Brummer 3 was used for the 
processing. 

7.1.5 Eigenchannel Statistics Computation 

In the language detection task the most disturbing factors are channel and speaker vari­
ability, recordings from a high number of speakers from different databases were used to 
perform the channel and speaker variability compensation. 

To calculate the covariance matrix for eigenchannel vectors estimation, recordings from 
a large number of speakers were used covering 14 languages presented in the system. For 
each language, maximum 100 recordings from different speakers were randomly selected. 
First, to calculate the covariance matrix the mean value was subtracted over a language. 
The eigenchannel matrix computed in from this average within-class covariance matrix will 
be referred to as 14-class eigenchannel matrix. 

Then, recordings from each language were divided to subgroups containing data only 
from one particular database. The maximum number of recordings for each language was 
increased to make 100 in each subgroup. Not for every subgroup though enough data was 
available to fulfill the limit (very little data for Thai and Bengali). Subgroups with less 
than 8 recordings were omitted. The number of subgroups resulted thus into 56 and the 
computed eigenchannel matrix will be referred to as 56-class eigenchannel matrix. The 
number of 50 eigenchannels with the biggest corresponding eigenvalues were used. 

7.1.6 Assure Metric 

The results are introduced in terms of avgCDET which is the measure defined by NIST. 
Basic pair-wise likelihood ratio (LR) performance is computed for all target/non-target 
language pair. Basic L R performance is represented directly in terms of detection miss and 
false alarm probabilities. For each test, miss probability is computed separately for each 
target/non-target language pair. In addition, these probabilities are combined into a single 
number that represents the cost performance of a system, according to an application-
motivated cost model: 

C(LT,LN) = CMissPTargetPMiss(LT) (7.1) 

+CFA(1 ~ PTar9et)PFA(LT, LN) (7.2) 

where LT and Ljy are the target and non-target languages, and CMISS, CFA and Prarget 
are application model parameters. For LRE07, the application parameters are set to be: 

CMISS = CFA = 1 (7.3) 

PTarget = 0.5 (7.4) 

These performance are computed separately for each of the three segment duration cate­
gories. 

3http: / / niko.brummer.googlepages.com/focalmulticlass 
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Table 7.2: Results for language identification task, 2048-GMM. 

Baseline M D , 14 classes M D , 56 classes F D , 56 classes 
30 sec 8.03 5.4 2.76 2.91 
10 sec 12.89 8.32 7.37 7.64 
3 sec 21.77 18.98 17.63 17.48 

Table 7.3: LID: eigenchannel adaptation in feature domain and MMI parameter re-
estimation. 

256G-chcf 256G-MMI 256G-MMI-chcf 2048G-MMI-chcf 
30 sec 4.88 4.15 3.73 2.41 
10 sec 11.07 8.61 9.81 7.02 
3 sec 22.45 18.43 20.98 16.90 

7.2 Results 

The results are presented in table 7.2. As it can be seen from the table, eigenchannel 
adaptation in model domain brought a big improvement. Eigenchannel statistics calculation 
using 56 classes had an advantage over using only 14 classes. When using the 56-class 
eigenchannel matrix, the error decreased almost to its third comparing to the baseline. 
Therefore in all the following experiments the 56-class eigenchannels are considered. 

Eigenchannel adaptation in feature domain performed similar to the eigenchannel adap­
tation in feature domain and slightly outperformed on the short-duration condition. 

Further M M I training was applied on the system trained on the compensated features 
and further decrease of the error was reached. Two systems were built on the compensated 
features, 256-Gaussian system and 2048-Gaussian system. 

Table 7.2 presents three system with 256 Gaussians. 256G-chcf is the U B M - G M M 
system trained on the compensated features whereas 256G-MMI is the system with the 
M M I on top of M A P adaptation trained on the original features. The 256G-MMI performed 
better than 256G-chcf but the combination of both, 256G-MMI-chcf, brings slight decrease 
in the error on the 30 second condition. Then a system similar to 256G-MMI-chcf but with 
2048 Gaussians was trained and further decreased of the error was reached. (The details 
on the compensation setup is described in the following subsection, see the 2048G-256G 
system.) 

Besides the improvement of the results when using M M I in combination with eigenchan­
nel adaptation in feature domain, the number of iterations required for the re-estimation 
decreased to 3 comparing to the 15 iteration in case of 256G-MMI system. 

Duration-Dependent Eigenchannel Adaptation in Feature Domain for the 2048 
Gaussian Systems 

The approach of eigenchannel adaptation in model domain requires a fixed number of 
Gaussians in the system. The length of the supervectors used for the eigenchannel statistics 
calculations must equal to the numbed of Gaussians in the language-dependent models. 
Eigenchannel adaptation in feature domain overcomes this restriction. The number of 

29 



Table 7.4: LID: Results achieved using alternatively high or low dimensional UBM for 
eigenchannel adaptation in feature domain depending on the length of the speech segment. 

2048G-2048G 2048G-256G 
30 sec 4.03 2.94 
10 sec 7.51 7.40 
3 sec 18.39 17.93 

Gaussians used for statistics calculation depends only on the number of Gaussians of the 
U B M used for the compensation but may differ from the number of Gaussians in the 
system. A n intuitive assumption (also backed by a number of experiments) would be that 
with decreasing duration of speech segments the number of Gaussians in the system should 
be lowered in order to achieve better generalization. 

As the length of the training segments varies (from 20 milliseconds to tens of minutes) 
and the nominal length of the test data is 3, 10 and 30 seconds, using 2048 Gaussians for 
the compensation may not always fulfill the expectation of catching the main directions of 
the channel distortion. 

Additionally, overly high number of Gaussians may cover insignificant changes in the 
channel. This may result in lowering the performance of the approach. At this point, 
several duration-dependent compensation experiments were performed. The aim was to 
use eigenchannel matrix (and the U B M ) of lower dimension for the speech segments of 
short duration. 

In the experiments, the supervector dimensions of 256 (for short segment) and 2048 (for 
long segments) were chosen. The results for the following experiments are presented in table 
7.4. First, both the training and the test data were compensated using the 2048 Gaussian 
U B M , see the 2048G-2048G system. Then, the data from all three test data sets were 
compensated using the U B M with 256 Gaussians, see the 2048G-256G. The 2048G-256G 
system performed better. 

Observing such a decrease in the error, the training data were compensated using the 
256-Gaussian U B M , unfortunately decrease of the performance was achieved. Further, 
the training data were divided to two subsets, the short-duration data subset and the 
long-duration data subset depending on the set threshold. The threshold was set to two 
different values, 1 minute and 2 minutes. Yet, no improvement was reached comparing to 
the 2048G-256G system. (The results for these three experiments are not enclosed). 

7.2.1 Calibration 

The calibration of the obtained scores was an important part in building the systems. To 
outline the effect of the calibration, the results of the uncalibrated GMM2048-MMI-chcf 
system are present as well as of the calibrated system (see Tab 7.5). However, in case of 
3 second condition, the decrease of the error is only about 8 % relative, in case of 30 sec 
condition, more than 50 % of relative reduction in the error was observed. 

7.2.2 English, Indian and Chinese Languages 

Special attention should be paid to English, Indian and Chinese languages as they are 
assumed to be 'difficult' languages due to the variety in pronunciation and a big number of 
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Figure 7.1: LID system with eigenchannel adaptation in model domain, 30 sec test condi­
tion. 

dialects. As it can be seen from figure 7.2 the performance of the system on these languages 
is significantly lower that on the other languages. 

7.3 Languages with Lit t le Training Data 

Another issue in the language detection task can be lack of the training data. In case 
of Thai and Bengali, there were very little training data available. The solution can be 
using the telephone speech data acquired from the public media such as radio. By now, 
several preliminary experiments with Thai language were performed on investigation of the 
performance of the recognition system using the radio telephone speech data. The results 
are presented in table 7.3 for the 10-second condition. The 10-second condition was chosen 
as the results on the 30-second condition are over-optimistic. Although, the performance 
in case of the radio data is not as good as in case of the standard telephone data, the usage 
of public media data would be a good solution in case of the language for which no data is 
available. More information on the scenario of the acquiring the data and more results can 
be found in [24]. 
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Table 7.5: LID: Effect of calibration for the GMM2048-MMI-chcf on L R E 2007 data 

30 sec 10 sec 3 sec 
No back-end 
L D A + L L R 

5.75 
2.41 

9.45 
7.02 

18.44 
16.90 

Table 7.6: LID: Results achieved using alternatively original Thai telephone data and Thai 
telephone data acquired from radio. 

No channel comp. 
NIST Radio 

Channel comp. 
NIST Radio 

D C F all lang. 12.83 13.66 7.30 7.56 
Thai D C F 7.81 11.61 3.93 6.05 

7.4 Conclusion 

Eigenchannel adaptation in both model and feature domain proved to be efficient in the 
language detection task. A big decrease of the error is seen when using either of the 
compensation technique comparing to the baseline system. Eigenchannel adaptation in 
feature domain more over in combination with M M I parameter re-estimation brings further 
decrease of the error. 

It was shown that eigenchannel adaptation performs well when the radio data are used 
instead of the standard the data which allows including to the recognition system the 
languages which had been not previously used due to the absence of the training data. 
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Chapter 8 

Conclusions 

Cross-channel variability is one of the most important issues faced in recognition systems 
from recorded speech. When little data is available for the target to be recognized, cross-
channel variability may be a key factor in affecting the correct recognition as the training 
and test data can be recorded over different channels. When the recording condition of the 
segment to be recognized was never seen in the training data, then compensation techniques 
have to be applied. This work showed that cross-channel variability can be compensated 
efficiently using eigenchannel adaptation. 

Eigenchannel adaptation performs well in speaker and in language recognition systems 
based on the U B M - G M M framework. Both versions of the technique, the original eigen­
channel adaptation in model domain and its approximation, eigenchannel adaptation in fea­
ture domain proved to carry out good results. However, eigenchannel adaptation in model 
domain, being applied in the G M M systems during scoring, has its limitations. Eigenchan­
nel adaptation in feature domain is a transformation performed on features. Therefore, 
once channel compensation is done in feature domain, channel variability does not have 
to be taken into account any longer. Eigenchannel adaptation in feature domain brings 
possibility in training the G M M parameter using different training methods (MMI), mod­
eling the feature distribution with different models(SVM, G M M with different number of 
Gaussians, H M M ) . Improvement of the performance of the recognition systems, when using 
eigenchannel adaptation, was presented in two tasks, speaker recognition task and language 
recognition task. 

Both, eigenchannel adaptation in model and feature domain were performing well. The 
results show, however, eigenchannel adaptation in model domain outperforms eigenchannel 
adaptation in feature domain, the system using eigenchannel adaptation in feature domain 
may be more robust than the one using eigenchannel adaptation in model domain as ad­
dition improving techniques may be applied. This work shows on the language recognition 
task, that when a G M M system is trained on the compensated features and the models' 
parameters are consequently re-estimated using M M I re-training, the system significantly 
outperformed the classical U B M - G M M system with eigenchannel adaptation in model do­
main. Further investigation is to be done on training different type of models on the 
compensated features, especially promising is to use S V M classifier in combination with 
G M M supervectors trained on the compensated features. 

Experiments on language recognition using radio telephone data showed that for the 
previously unprocessed languages due to the missing training data, recordings from public 
media can be used. Although the data are not of the same quality as the standard telephone 
data, the recognition system employing eigenchannel adaptation performed reasonably well. 
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Further investigation on the radio telephone data for language recognition is to be done as 
the radio could be the only source of a large amount of data for some languages of interest. 
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