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ABSTRACT 
This work deals with the implementation of an algorithm for data analysis for quantitative 
magnetic resonance relaxometry. Magnetic resonance (MR) is a non-invasive imaging 
technique using the magnetic properties of atomic nuclei. The motivation for the use of 
relaxation parameters of tissue is scanner-independent diagnostics. The work describes 
the essential theoretical foundations of MR mechanisms and the contrast mechanisms. 
Using them, an algorithm in Python is designed for fitting the relaxation parameters 
of the sample. Fitting is done according to an exponential model functions for three 
different combinations of parameters - individual fitting of T l or T2 relaxation time 
and simultaneous fitting of both times. A locally linearized model and Cramer-Rao lower 
bounds are used to calculate the standard deviation of the fitted parameters. The results 
of the work were successfully verified on a fixed rat brain relaxometry. 

KEYWORDS 
Magnetic resonance, magnetic resonance imaging, quantitative relaxometry, data ana­
lysis, programming in Python, parameter fitting, standard deviation estimation, locally 
linearized model, Cramer-Rao lower bounds 

ABSTRAKT 
Tato práce se zabývá implementací algoritmu pro analýzu dat pro kvantitativní relaxo-
metrii magnetické rezonance. Magnetická rezonance (MR) je neinvazivní zobrazovací 
technika využívající magnetických vlastností atomových jader. Motivací pro využívání 
relaxačních parametrů tkání je nezávislost na MR skenerech či jednotlivých pacientech. 
V práci jsou popsány nezbytné teoretické základy MR mechanizmů a vzniku kontrastu v 
obrazech. S jejich využitím je navržen algoritmus v jazyce Python pro fitování relaxač­
ních parametrů vzorku. Fitování probíhá podle exponenciálních modelových funkcí pro 
tři různé kombinace parametrů - individuální fitování T l nebo T2 relaxačního času a 
simultánní fitování obou časů. Pro výpočet směrodatné odchylky fitovaných parametrů 
je použit lokálně linearizovaný model a dolní meze podle teorie Cramér-Rao. Výsledky 
práce byly úspěšně ověřeny na relaxometrii fixovaného potkaního mozku. 
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Magnetická rezonance, kvantitativní relaxometrie, analýza dat, programování v jazyce 
Python, fitování parametrů, odhad směrodatné odchylky, lokálně linearizovaný model, 
Cramér-Rao dolní meze 
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ROZŠÍŘENÝ ABSTRAKT 
Tato bakalářská práce se zabývá implementací algoritmu pro analýzu dat pro 

kvantitativní relaxometrii magnetické rezonance. Magnetická rezonance (MR) je 
neinvazivní zobrazovací technika využívající magnetických vlastností atomových ja­
der, zejména jader vodíkových. Zkoumaný objekt je vložen do homogenního magne­
tického pole, které je generováno skenerem. Intenzita pole je v jednotkách Tesla. 
Budicí radiofrekvenční (RF) cívky na vhodné frekvenci pak generují signál, který 
excituje rezonující jádra. Magnetický vektor se po skončení R F pulzu navrací zpět 
do rovnovážného stavu pomocí relaxačních mechanizmů. Emise elektromagnetic­
kého vlnění je snímána a jako měřený signál využita pro zobrazování relaxačních 
parametrů zkoumaného objektu. 

Motivací pro využívání M R relaxometrie je hlavně bezpečnost vyšetření, při 
kterém není použito ionizační záření. Možnými kontraindikacemi k vyšetření mo­
hou být M R nekompatibilní kovy v těle pacienta jako například kardiostimulátor 
nebo různé kostní výztuhy a implantáty. Dále je výhodou dobrý kontrast pro měkké 
tkáně, objektivní porovnání relaxometrie těchto tkání a rozpoznávání a identifikace 
patofyziologií v organizmu, hlavně nádorů. M R relaxometrie se využívá ve výzkumu 
léčiv k určení místa jejich působení pomocí značení kontrastními látkami. 

První kapitola práce se věnuje nezbytným teoretickým základům pro popis jevu 
magnetické rezonance, nukleární magnetické rezonance a mechanizmům vzniku kon­
trastu v obrazech. Jsou zde vysvětleny základní pojmy jako jaderný spin, magnetické 
pole a magnetizace. Pro pochopení principu fungování M R mechanizmů jsou zde 
vysvětleny pojmy jako Larmorova precese, volně indukovaný signál (free induction 
decay, FID) a gradientní magnetické pole, které je nezbytné pro excitaci dané oblasti. 
Dále jsou popsány relaxační mechanizmy reprezentované především relaxačními časy 
T I a T2. Ty jsou definovány jako spin-mřížková (TI, neboli návrat vektoru magne­
tizace do rovnovážneho směru) a spin-spinová (T2, neboli ztráta fázové koherence 
dipólů) relaxace. 

Ve druhé kapitole je zmíněna historie měření od měření relaxace ve spektroskopii 
až po nejmodernější metody deep learningu a fingerprintingu. V této kapitole jsou 
popsány základní pulzní sekvence jako je gradientní echo, spinové echo a inversion 
recovery, a z nich odvozené pulzní sekvence. 

Třetí kapitola diskutuje o důvodech pro použití relaxometrie. Těmi jsou přede­
vším nezávislost měřených parametrů na skeneru nebo instituci, tím je dosaženo 
možnosti porovnávání relaxačních parametrů nezávisle na pacientovi či nastavení 
parametrů snímání. Lepší kontrast pro rozlišení jednotlivých tkání díky zobra­
zování relaxačních map. Určující role při rozpoznávání patofyziologií díky porovnání 
měřených relaxačních parametrů. A v neposlední řadě sledování koncentrace kon­
trastních látek v organizmu a jejich trajektorií. Konkrétně v této prácí bylo použito 



nanolipozomů značených gadoliniem (ovlivňuje relaxační parametry molekul vody 
v okolí), které se využívají ke značenému transportu léčiv mimo krevní oběh skrz 
hematoencefalickou bariéru do mozku. 

Kapitola čtvrtá popisuje použité metody pro vznik algoritmu, jeho samotnou 
implementaci a odhad chyby. Dále je zde popsáno rozložení a obsah fantomů, na 
kterých byly provedeny testy funkčnosti a správnosti algoritmu. 

V páté kapitole jsou diskutovány výsledky. 
Algoritmus byl vyvíjen v programovacím prostředí jazyka Python. Měření probí­

halo na preklinickém M R systému Bruker Biospec 9.4 T scanner na Ústavu přístro­
jové techniky Akademie věd ČR, v. v. i . 

K ověření správnosti fitovacích modelů byly vytvořeny pokusné vzorky - fantomy 
tak, aby bylo možné prozkoumat relaxační parametry. Pravdivost modelů byla dále 
ověřena na relaxometrii myšího mozku. 

V rámci implementace samotného algoritmu byly použity pythonovské knihovny 
numpy, scipy a matp lo t l ib a také knihovna pro načítání brukerovských dat vytvoře­
ná na ÚPT AV. Po načtení knihoven jsou načtena měřená data ve formě datasetu 
se všemi parametry měření, ty jsou poté využity při fitování. Byly vytvořeny tři 
pythonovské skripty pro tři použité fitovací metody - individuální T I fitování, indi­
viduální T2 fitování a simultánní fitování obou relaxačních parametrů. Pro každou 
metodu existuje jiná modelová funkce. 

Data pro fitování byla vybírána na základě hodnot v pixelu převyšujících odhad­
nutou hodnotu šumu v obraze. Hodnota šumu byla počítána z okrajových pixelů 
obrazu za předpokladu, že se zde nenachází fantom nebo duch. Tato skutečnost 
může být uživatelem vizuálně ověřena při spuštění programu. 

Fitování parametrů poté probíhalo pomocí minimalizační funkce l ea s t . squares 
z knihovny sc ipy . optimize. Fitované parametry byly zapsány do matice, ze které 
byla následně vypočítaná směrodatná odchylka fitovaných parametrů. Výpočet 
směrodatné odchylky byl proveden dvěma způsoby - lokálně linearizovaným mo­
delem a výpočtem dolních mezí metodou Cramér-Rao. Všechny fitované parametry 
a jejich vypočtené směrodatné odchylky jsou nakonec zobrazeny v šedotónových 
obrázcích s přiloženou škálou hodnot. 

Správnost a funkčnost programu byla testována na datech měřených na fanto-
movém vzorku, který obsahoval gadoliniem značené nanolipozomy. Tyto výsledky 
byly dále úspěšně ověřeny na relaxometrii fixovaného potkaního mozku. 
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Introduction 
This work focuses on quantitative M R relaxometry parameters fitting, particularly 
T l and T2 relaxation times. M R relaxometry has become an important tool in 
quantitative M R I by providing maps which interpret the individual contrast mech­
anisms independent of the M R protocol (software) or the M R hardware. Unlike 
conventional qualitative M R images, the quantitative images can provide the ab­
solute interpretation of signal intensity in tissues. Then the comparison of images 
from different scanners or institutions can be objective thanks to quantitative mea­
surement of fundamental parameters such as relaxation times. 

The general description of basic theory of magnetic resonance (MR) is the topic 
of the first chapter, including nuclear magnetic resonance (NMR) and magnetic 
resonance imaging (MRI) and contrast mechanisms. Chapter 2 focuses on the his­
tory of relaxation measurement from relaxation in spectroscopy, through MRI pulse 
sequences, up to state-of-the-art techniques using replacing regularity by pseudo-
randomness such as fingerprinting or deep learning. 

Chapter 3 discusses the main motives for relaxometry, including scanner indepen­
dent diagnostics and interinstitutionally transferrable knowledge, optimizing MRI 
pulse sequences for obtaining specific contrast for discrimination of tissues, obtain­
ing intermediary parameters reflecting contrast agent concentration and securing 
physical information underpinning pathophysiology research. 

Materials and methods used in this work are introduced in chapter 4. These 
include M R I experiment settings, fitting methods, algorithm implementation and 
confidence interval estimation. Results are presented in chapter 5. 

12 



1 Nuclear magnetic resonance 

1.1 Spin, magnetic field and magnetization 

In the human body 62% of all atoms are hydrogen atoms. Their nuclei have a spin 
of V2, which is manifested by magnetic moment and angular momentum. Their 
behavior could be compared to that of a tiny cylindrical bar magnet rotating about 
its axis: it has similar magnetic and inertial properties. These qualities determine 
the behavior of these nuclei in an external magnetic field, where they tend to partially 
align along this external magnetic field. Thanks to the excess of nuclei with the 
lower-energy orientation, the result is a macroscopic magnetic moment. Its amount 
results from the equilibrium distribution of orientations, and can be calculated from 
the Boltzmann distribution of spin energies. The magnetization is then the sum of 
magnetic moments per unit volume. 

The main magnetic field in a MRI scanner is a strong, static field, BQ, gene­
rated by the MRI scanner magnet (usually superconducting, or permanent). It is 
measured in SI units of Tesla [T] or CGS units of Gauss [G]. In addition, another 
magnetic field, Bi, perpendicular to BQ, is generated by the M R I scanner in the form 
of radiofrequency (RF) pulses with a short duration serving to rotating (exciting, 
refocusing, or deexciting) the spins. Another set of magnetic fields generated by the 
MRI scanner on demand are the 3 gradient fields which can modify the static field 
BQ linearly along any spatial direction. [18] 

The M R I signal is obtained from the nuclear magnetization component perpen­
dicular to the static field. It is proportional to the proton density linearly, but it 
is also affected by other parameters such as the relaxation properties and the type 
and parameters of the excitation pulse sequence. Depending on the pulse sequence, 
the M R I images reflect the concentrations of water, fat, and other compounds by 
signals specifically reflecting the properties of hydrogen nuclei. 

1.2 Precession 

The static magnetization is stationary in the BQ field. After a short B\ pulse is 
applied, the magnetization is tilted from its equilibrium [BQ orientation), and the 
resulting magnetization starts precessing around BQ. This phenomenon is called 
Larmor precession. The precessing magnetization produces an oscillating transverse 
field (perpendicular to BQ), thanks to which in the receive coil, immediately the 
signal induction begins. Simultaneously with the total magnetization vector being 
rotated away from the equilibrium, the magnetization undergoes relaxation back 
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to the equilibrium. Typically, the relaxation processes are much slowlier than the 
oscillation due to precession (e.g. 10-5000 ms versus 2-40 ns). 

The magnetization vector rotates about the main magnetic field with an angular 
velocity, UQ, where 

CO0 = 27Tf0 (1.1) 

and /o is known as the Larmor frequency, given by 

fo = lB0 (1.2) 

where B0 is the applied main magnetic field and 7 is the gyromagnetic ratio (in 
Hz /T) , which for protons equals to approximately 42,6 • 106 Hz /T . For the B l 
excitation to be successful, it has to spectrally overlap the Larmor frequency so that 
resonance transfer of energy can occur, and for the sake of efficiency, on-resonance 
R F pulses whose carrier is close to the Larmor frequency are used. 

1.3 Free induction decay (FID) 

Right after the excitation by a hard (i.e. very short, broadband) or soft (i.e. usually 
1-20 ms long, band-limited) R F pulse, the nuclear spins are tilted towards the trans­
verse plane with the same phase, adding up to the maximum-coherence signal. The 
tilted magnetization performs precession motion. Immediately, the initially coherent 
spins dephase due to random interactions of any kind spins, such as with magnetic 
field inhomogeneities or dipolar interactions [1], and the original coherence is getting 
lost. This transversal coherence loss is partially reversible (local static field inho-
mogeneity) and partially irreversible (given by random interactions between excited 
hydrogen atoms with surroundings, or each other). 

Simultaneously the spins realign in the direction of BQ and return to the Boltz-
man equilibrium exponentially with a time constant T l (longer than T2, varies with 
tissues). 

1.4 Gradient field, excitation of a selected slice 

The gradient fields are referred to as BX, BY, BZ and the magnetic field in MRI 
scanner is given by 

B = B0 + BX + BY + BZ. (1.3) 

These gradients are applied multiple times during the experiment and are used for 
slice selection, image encoding (including frequency and phase encoding), diffusion 
weighting, or spurious signal suppression. 

14 



To excite a specific slice perpendicular to z direction, the gradient in z direc­
tion is applied and the required slice-center Larmor frequency is calculated and set 
as the carrier frequency for the excitation. The carrying frequency is amplitude-
(and sometimes also phase-) modulated so that the excitation affects the required 
frequency bandwidth. In small-fiip-angle approximation, the frequency spectrum of 
the excitation pulse corresponds to the distribution of the flip angle. Thus if we 
need a slice selection profile with a constant flip angle within, and a zero flip angle 
outside this region, we modulate the carrier amplitude by sine (sin t/t). [18] 

Once the desired slice is excited, the spin positions inside the excited slice are 
encoded by gradients applied in the x-y plane (still assuming that the z direction is 
perpendicular to the excited slice). Then the magnetization in the selected area is 
characterized by phase 

6(t) = 2ir(kx(t)x + ky(t)y) (1.4) 

where 

kx{t) = 7 J' Gx{r)dr,0,t, (1.5) 

ky{t) = 7 J Gy{r)dr,0,t, (1.6) 

and Gx and Gy represent the gradients waveforms. 

The resulting signal measured in the receiver coil is the signal from all spins 
expressed as 

s(t) = J f{x,y)ei27r{k*x+kyy)dxdy (1.7) 

where f(x,y) describes the distribution of magnetization in the moment when 
kx—ky—0. This equation expresses the fact that the signal at time t corresponds to 
the value of the Fourier transform F(kx, ky) of f(x, y) in the spatial-frequency point 
(kx(t),ky(t)), i.e., 

s(t) = F(kx(t),ky(t)). (1.8) 

[18] 

1.5 T l and T2 relaxation times 

Relaxation is in fact a process related to molecular motion which causes random 
interactions and energy exchange. 

Tl relaxation time, also known as the spin-lattice relaxation time, is the recovery 
time of longitudinal magnetization (in the same direction as the static magnetic 
field). T l involves energy exchange between protons and the lattice (surrounding 
macromolecules, lipids, and proteins). The sequence can be designed in such a way 
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that the resulting images are predominantly T l weighted; in this case the contrast 
between tissues is given by the various recovery rates of longitudinal magnetization. 
T l can be modified by Gd-based contrast agents. 

T2 relaxation is the time describing the loss of phase coherence (or entropy 
increase) of the water protons due to irreversible interactions and spin exchange 
between them. T2 is termed the spin-spin relaxation. T2 can be shortened by 
iron-oxide-based contrast agents. 

T2* (also called apparent T2) is related to the spin-spin relaxation time T2 by 

1 
T2^ ~ 

where 
T2' 

where A/3 is the BQ field inhomogeneity (standard deviation) and T2' is termed 
microscopic dephasing and refers to static inhomogeneities caused by dephasing of 
the water protons due to small variations in their local magnetic fields. 

Tab. 1.1: Typical values of relaxation times for different tissues at 1.5T. 

Tissue T l [s] T2 [ms] 
Water/CSF 4 2000 
Fat 0.25 70 
Gray matter 0.9 90 
Muscle 0.9 50 
Liver 0.5 40 

1.6 Magnetic resonance imaging and contrast 
mechanisms 

To generate an image, the surveyed volume of tissue must be spatially encoded to 
define a position in a slice and allocate the signal intensities in the plane. The 
displayed image is then composed of a set of pixels or voxels. Let's consider a single 
slice already excited. 

The k-space sampling can be done by a rectilinear or a nonrectilinear trajectory, 
such as spiral or projection acquisition. M R image reconstruction simply requires 
2D- or 3D-IFT, which can be calculated by a series of FFTs. These can be applied 

— + — (1.9) 
T2 T2' y 1 

; i . io) 
7a/3 
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only at rectilinearly sampled data. Consequentially, the data sampled using nonrec-
tilinear trajectories require regridding - an operation resampling data to a rectilinear 
grid - to enable the usage of FFTs. Projection data can also be reconstructed using 
filtered back-projection, typical for CT. [2] 

Another difference in sampling can be the k-space coverage. When the data 
are sampled symmetrically over both positive and negative spatial frequencies, we 
call this the full Fourier acquisition. In the partial Fourier acquisition the k-space 
sampling is not symmetric: typically, one half of k-space is fully filled and the other 
half contains only a small amount of data. This approach can considerably shorten 
the scan time due to reduced acquisition time if the properties of excitation allow 
the use of some symmetries in k-space data. [2] 

17 



2 History of relaxation measurement 

2.1 Relaxation in spectroscopy 

In N M R spectroscopy, the spectrum can be calculated quite precisely using classical 
electromagnetic theory. Each sample either absorbs, or emits electromagnetic energy 
of a certain wavelength A, which can be measured. Then a spectrum is expressed 
by the distribution and intensities of the measured energy. Therefore, the M R 
spectroscopy is providing information about the physical and chemical properties of 
the sample. 

The fundamentals of M R spectroscopy and M R imaging are the same. Both are 
built on the basic physics discovered by Bloch et al. The signals acquired from M R 
measurement can be displayed either as converted signal intensities to gray scale 
image or as a function of frequency as a spectral plot. [10] 

The Bloch equations 
In 1946 the differential equations to model the dynamics of the magnetization pro­
duced by magnetic dipoles in magnetic field were derived by Felix Bloch, who won 
the Nobel prize in Physics in 1952 for his discovery. In the equations, the precession 
and exponential relaxation (described by T l and T2) are included. The equations 
are written separately for the three components of magnetization MX, MY and MZ. 
[25] 

To describe the Bloch equations [3] we need to decompose the vector of magne­
tization M into longitudinal (parallel to BQ), represented by a real value MZ, and 
transverse (perpendicular to B0, represented by a complex value M _ = MX + %MY 

and M + = MX — %MY. Then the magnetic moment M per unit volume is given by 

dM 
~dT ' 

Bloch equations without relaxation 

dM 

M x 7B. (2.1) 

dt 
M(t) x 7 B ( t ) (2.2) 

di 

(Mx\ ( 0 
lBz{t) -lBy{t)\ (Mx\ 

My = -lBz(t) 0 lBx{t) My 
\MZ) V lBy{t) -lBx{t) 0 / \MZ) 

(2.3) 
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Bloch equations with relaxation 

(Mx\ ( -1/T2 lBz(t) -lBy{t)\ (Mx\ 1 (0 \ 
My = -lBz{t) - 1 / T 2 lBx(t) My -L 

+ 0 

V lBy{t) -lBx(t) - 1 / T 1 J 

-L 

+ 

where T l relaxation is the restoration of equilibrium M^ and T2 relaxation 
decay of Mx, My. 

19 



2.2 MRI pulse sequences 

Basic pulse sequences 
1. Gradient echo pulse sequence 

Gradient echo pulse sequence (GRE) is using the free induction decay (FID) 
for imaging. 3 parameters are used - the repetition time TR, , the echo time 
TE and the flip angle a. The signal intensity of G R E depends on parameters 
of the sequence TR, TE, a, the tissue parameter proton density So and the 
relaxation times T l and T2. [4] In addition to fast acquisition, G R E pulse 
sequence can provide images with bright blood signal. The G R E images are 
contrast weighted by e~TE/T2* what makes them more prone to signal loss due 
to T2* instead of T2. [2] 

TR 

A A 
RF 

Slice 
Li 

Phase 
encoding 

Readout 

Signal 

TE 

Fig. 2.1: Gradient echo pulse sequence diagram. 
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2. Spin echo pulse sequence After the initial 90° R F pulse is applied, the in­
dividual magnetization vectors are tilted and start dephasing due to magnetic 
field inhomogeneities and dipolar interactions. This dephasing can be reversed 
through subsequent application of a 180° R F pulse. These vectors are rotated 
in the transverse plane. This causes the conversion of the transverse mag­
netization phase 0 into a negative phase —0. After this rotation, all vectors 
precess at the same rate as before. At TE they all rephase and create an echo. 
That's why the 180° pulse is usually called the refocusing pulse. [4] 

TR 

RF 

Slice 

Phase 
encoding 

Readout 

Signal 

J V f 

A 

vi 

Fig. 2.2: Spin echo pulse sequence diagram. 
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3. Inversion recovery pulse sequence 
Inversion recovery (IR) is a useful magnetization preparation module used be­
fore other imaging pulse sequences in order to enhance T l weighting of signal 
intensities. IR begins with a 180° inversion pulse, which inverts the longi­
tudinal magnetization from +z to — z direction. After a delay TI (inversion 
time), a host pulse sequence such as G R E or SE is started. The resulting 
signal reflects the degree of recovery during TI. When TI is comparable to 
T l , the image is strongly Tl-weighted, even more pronounced than a typical 
Tl-weighted image because of wider dynamic recovery range (from — M 0 to 
M 0 instead of from 0 to Af 0 ). [4] 

Tl 

A 
RF 

inversion 
pulse 

Host 
pulse 

sequence 

Fig. 2.3: Inversion recovery pulse sequence diagram. 

GRE derived pulse sequences 
When the transverse magnetization is actively suppressed to zero before each ex­
citation pulse, then the G R E pulse sequence is said to be spoiled. Spoiled G R E 
sequences are used in short-Ti? sequences, which are suitable to obtain T l weighted 
images. In this case, TR may be shorter than T2 four or five times so that trans­
verse magnetization would not decay fully near zero by the end of the pulse sequence 
and would affect following signals, thus producing artifacts. Active crushing of the 
transverse magnetization is achieved by the application of end-of-sequence gradient 
spoiler pulses or by using phase-cycled R F spoiling pulses. [2] 

SSFP - steady state free precession - The greatest SNR per unit time is provided 
by a balanced SSFP with high flip angle and full rephasing of magnetizations in each 
TR cycle. Because these sequences are prone to static-field inhomogeneity artifacts 
(banding), a deliberately non-balanced SSFP, characterized by constant gradient 
dephasing in each TR, is a similarly efficient option. The bright fluid signal is 
obtained, so this technique works well as a bright-blood technique in cardiac imaging. 
Multiacquisition SSFP is a good choice if banding artifacts cause a problem. SSFP-
FID is a robust alternative when patient motion is a problem. [2] 
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Names of the common G R E pulse sequences vary with the M R equipment ven­
dors. For example: 

SPGR - spoiled gradient echo by General Electric = F L A S H - fast low-angle shot 
by Siemens or T l - F F E - Tl fast field echo by Philips. 

SSFP-FID or gradient echo = GRASS - gradient recalled acquisition in the steady 
state by General Electric or F F E - fast field echo by Philips or FISP - fast imaging 
with steady (-state free) precession by Siemens. [2] 

SE derived pulse sequences 

R A R E - rapid acquisition with relaxation enhancement - is using a train of refocusing 
pulses in order to produce multiple R F spin echoes. Each of echoes is distinctively 
spatially encoded which provides reduction of the scan time due to multiple k-space 
lines sampling. [2] 

EPI - echo planar imaging - is one of the fastest M R I pulse sequences. The main 
difference is the application of a series of bipolar readout gradients (a gradient echo 
train) and phase-encoding gradients with multiple k-space lines sampled under a 
FID or an R F spin echo. That's why the EPI pulse sequence data acquisition is 
even faster than R A R E (using R F spin echo train). [2] 

IR derived pulse sequences 

STIR - short tau (or TI) inversion recovery - uses TI typically from 150 to 170 ms 
to null the lipid signal which has the T l relaxation time around 230 ms. This lipid 
signal suppression makes STIR an important clinical application of IR based on the 
difference in T l between water and lipid. The lipid signal suppression can increase 
evidence of lesions embedded in fat. [2] 

F L A I R - fluid attenuated inversion recovery - can, similarly as STIR nulls lipid 
signal, null the hyperintense fluid (e.g. cerebrospinal fluid, CSF) signal in T2 
weighted images. This technique is widely used in neuroradiologic diagnosis for 
it's ability to gain tl contrast among tissuer different from CSF such as brain 
parenchyma and a majority of lesions. [2] 

Multiple IR - is using two IR pulses (double IR - DIR), the first one spatially 
non selective following the second one slice selective IR pulse. This is applied in 
black-blood M R angiography to null the signal from moving blood. Sometimes the 
triple IR - TIR is used to null both blood and lipid signals. [2] 
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Combined pulse sequences 
G R A S E - gradient and spin echo - or T G S E - turbo gradient spin echo - is a com­
bination of EPI and R A R E pulse sequences using a train of R F refocusing pulses 
each combined with a train of alternating polarity readout gradients. [2] 

2.3 Regularity replaced by pseudorandomness 

Parallel M R I is using data acquired from multiple-coil arrays with reduction of scan 
times (by skipping certain k-space measurements). The reconstruction process can 
either be realised by filling in the missing k-space data (simultaneously acquired 
using multiple coins) or by unfolding aliased undersampled images. Parallel M R I is 
the most used current routine in clinical examinations. However, the limitations of 
this technique are the number of coil element and the design of coil arrays which 
affect the maximum acceleration of parallel imaging. 

Nowadays, deep learning has quickly expanded to many modern scientific disci­
plines, including MRI . Deep learning is a part of machine learning using combination 
of model representations to learn complex functions from simple linear features in 
the beginning to more sophisticated features in deeper layers. To achieve this deep 
learning is using a multiple layer neural network inspired by the anatomy and func­
tions of neurons. 

M R Fingerprinting (MRF) [9] was introduced in 2013, since then M R F emerged 
as a method for M R acquisition, reconstruction, and analysis because of its faster, 
more efficient, and simultaneous quantification of multiple tissue properties from 
a single rapid acquisition. M R F uses pseudorandomized acquisition parameters, 
for example repetition times and flip angles, instead of steady-state signals, and 
template matching algorithm to generate quantitative tissue parameters and unique 
signal signatures, or 'fingerprints', for different tissue types. 

These fingerprints are captured as undersampled images per time point (scan 
acceleration, signal matching is robust to incoherent aliasing artifacts). Quantitative 
maps are reconstructed by matching measured signal evolutions to a dictionary 
of simulated signals (a huge look-up table of all likely resonance signals derived 
using the Bloch equation simulations). Moreover, this dictionary generation and 
signal matching can be in some circumstances slow and memory-intensive process. 
Recently, several groups have proposed using state-of-the-art methods that employ 
machine learning to accelerate the extraction of quantitative maps from the M R F 
data. [16] 

M R F method includes M R F pulse sequence, data sampling, M R F dictionary, 
and pattern recognition. M R F pulse sequence differs from standard mapping tech-

24 



niques and qualitative scans by using acquisition settings that change throughout 
the scan to enhance the sensitivity to T l and T2. Exploited sequences have variable 
flip angles, repetition time, echo time, or different imaging readouts. Afterwards the 
measured signal is used for identification of tissue property values. These data are 
collected at a high temporal resolution in k-space. Typically, sampling is accom­
plished by non-Cartesian trajectories, such as spiral, radial, rosette, or echo planar 
imaging (EPI), because of their incoherent aliasing when undersampled, frequent 
sampling in the k-space centre, robustness in motion, and efficient k-space cove­
rage. M R F dictionaries are generated from known pulse sequence parameters and 
the discrete set of tissue property values by Bloch equation simulation or extended 
phase graphs. In the end, the measured signal is compared with the dictionary using 
vector-dot product. The dictionary entry with the highest dot product is deemed 
the best match and the parameters associated with that entry are assigned to the 
voxel. 
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3 Reasons for relaxometry 
In this chapter are described reasons for M R relaxometry 

• scanner-independent diagnostics, interinstitutionally transferrable knowledge 
• M R I contrast for discrimination of tissues, optimization of MRI pulse se­

quences 
• intermediary parameter reflecting contrast agent concentration 
• explanatory role in pathophysiology research 

3.1 Scanner-independent diagnostics, 
interinstitutionally transferrable knowledge 

Magnetic resonance imaging is based on the magnetic properties of tissues. [8] Com­
pared with other imaging modalities such as computed tomography (CT) or positron 
emission tomography (PET), M R I offers superior soft-tissue characterization and 
more flexible contrast mechanisms without radiation exposure. This means that 
MRI is non-invasive technique serving to evaluation of tissues even better than C T 
regarding contrast in soft tissue via response of protons in a strong external magnetic 
field to a radiofrequency (RF) pulse. MRI allows acquisitions of functional, hemody­
namic, and metabolic information in addition to high-spatial-resolution anatomical 
images for a comprehensive examination. 

Conventional M R images (providing excellent tissue contrast) are limited to the 
qualitative assessment of contrast-weighted images [23], because the quantitative 
metric for absolute interpretation of pixel signal intensity is dependent on particu­
lar hardware and software settings. Then the comparison of M R images subjective 
and dependent on the M R protocol. On the contrary quantitative M R I refers to mea­
surement of the fundamental parameters as the relaxation times T l , T2, T2* (the 
times taken for relaxation of proton spin precession in the longitudinal and trans­
verse planes) reflecting biophysical features that contribute to M R signal. These 
maps are independent on the M R protocol and their physical interpretation express 
absolute units. 

In a clinical sphere [13], there is increasing value of M R relaxometry in diagnosis, 
stage evaluation, and monitoring of various human diseases, including neurocognitive 
disorders, neuro degenerát ion, cancer, myocardial and cardiovascular abnormalities, 
degenerative musculoskeletal diseases, and hepatic and pulmonary diseases. M R 
relaxometry could enables early identification of pathologies, delivers more specific 
information about tissue composition and microenvironment, and provides better 
sensitivity to different diseases compared with conventional M R images. 
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Quantitative imaging is providing many advantages as removal of influences un­
related to tissue properties (operator dependency, different scan parameters, various 
magnetic field, image scaling, . . . ) , comparison of different measurements (between 
different patients or the same patient during certain time period) within multi-
institutional studies. 

Still there are well known limitations of M R relaxometry, which include long scan 
times because of the necessity of repeated acquisitions with varying sampling para­
meters, sensitivity to different system imperfections, and clumsy post-processing. 
But lately these imperfections have been improved by faster imaging sequences, 
more efficient sampling trajectories, better gradient systems, and more. Moreover, 
the introduction of techniques based on fingerprinting and deep learning allowed 
more efficient generation of multiple M R parameters from a single acquisition. Deep 
learning in quantitative M R I has recently attracted considerable attention in the 
MRI community especially in research, e.g., image reconstruction, analysis and pro­
cessing, and image-based disease diagnostic and prognosis. 

3.2 MRI contrast for discrimination of tissues; opti­
mization of MRI pulse sequences 

Traditional methods for quantitative M R I generate maps of pixel representations by 
absolute measurement of a tissue property, such as T l or T2. These features are 
acquired sequentially at particular time points after an inversion or saturation pulse 
to vary the T l contrast or with different echo times (TE) after a 90° excitation to 
obtain different T2 contrast. After acquisition, the signal intensity in each pixel is 
fitted to a simple model, such as exponential recovery for T l or exponential decay 
for T2, then a quantitative map is extracted. 

However, traditional methods stand on accuracy, precision, and reproducibi­
lity. Resulted values are dependent on chosen pulse sequences, image reconstruction 
techniques, or signal models. They also can be affected by motion artifacts such as 
bulk patient movement, respiration, cardiac motion, peristalsis, or flow. In addition, 
there is a persistent disadvantage of long scan times, which may be uncomfortable 
for patients and limit scan throughput. As we can see, even the same method may 
produce different measurements across scanners. That is why we want to unify 
quantitative results of individual measurements across the scanners, workplaces, or 
even institutions to help radiologists better reflect pathology, make more informed 
diagnosis, directly compare images, and reduce subjectivity. 

Moreover, the increasing interest in the use of biological markers [19] in clinical 
diagnosis over the past two decades made quantitative mapping techniques even 
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more desired to complement qualitative imaging. Biomarkers such as water diffusion 
constants, blood flow fields, fat fraction, tumour volume, brain volume, functional 
network connectivity, and more, are objectively measured parameters. To reach 
this objectivity, it is necessary to comply the use of a standard system phantom, a 
calibration/standard reference object, to assess the performance of an MRI machine. 
Then a great reliability and comparability of the data can be achieved. 

3.3 Intermediary parameter reflecting contrast agent 
concentration 

MRI contrast agents [27] first appeared shortly after the clinical introduction of MRI 
in 1981. A few years later, in 1988, the first contrast agent for clinical use was born -
Gd-DTPA. These chemicals are used in general because of their impact on T l and T2 
relaxation times which increase the contrast between normal and abnormal tissues 
in the minutes after injection. Positive agents are mostly paramagnetic contrast 
agents which increase signal intensity (shorten T l of neighbouring water protons) 
and display brighter in Tl-weighted images. On the other hand, negative agents such 
as dysprosium, superparamagnetic and ferromagnetic agents reduce signal intensity 
by shortening T2 which appear darker in T2-weighted images. 

Nowadays are contrast agents under strict scrutiny because of their safety for 
clinical use. The contrast agents can be divided by their chemical composition into 
two groups: paramagnetic compounds (including lanthanide ions such as gadoli­
nium or manganese) and superparamagnetic iron oxides (as iron and platinum). To 
prepare nontoxic contrast agents based on metallic ions, the concept of chelation is 
widely used. [26] 

MRI contrast agents can be administered intravenously, orally, or by inhalation. 
The intravenous route of administration is more useful, used contrast agents are 
paramagnetic compounds (ionic gadolinium and non-ionic gadodiamide and gado-
teridol). The oral administration is appropriate for GI tract scans and includes 
Gadolinium-based agents (GBCAs), SPIOs, manganese-based agents and barium 
sulfate suspensions. Ventilation contrast agents are inhaled to improve the diag­
nostic value of M R I for the lungs. These include Gadolinium-based aerosols and 
oxygen gas, both paramagnetic, and hyperpolarized gases (3He, 129Xe) and inert 
perfluorinated gases (SF6). 

G B C A s [26] are so successful because of their provision of non-invasive technique 
for detection of blood brain barrier (BBB) disruption. G B C A s do not cross the B B B , 
that is why the contrast enhancement of the brain can only be caused by pathologies 
(e.g., multiple sclerosis, cancer, or stroke). G B C A s is also used in detection of 
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increased vascular permeability, breast cancer, blockages or aneurysms in blood 
vessels, or to measure regional perfusion of heart. 

The contrast agents are divided into three groups [27] according to biodistribu-
tion and application: extracellular fluid (ECF), blood pool and target/organ-specific 
agents. E C F agents are the most used agents based on distribution within the ex­
tracellular space with little or no interactions with proteins or cells. Blood pool 
contrast agents (BPCAs) are, after injection, restricted to the intravascular space 
and providing longer view for imaging arteries and veins than E C F agents because of 
their longer remaining in intravascular space. Targeted and organ specific contrast 
agents, such as iron oxides and liposomes, can target specific tissues, for example 
the liver, spleen, or lymph nodes. 

The E C F agent's distribution [26] within tissues is observed using great contrast 
between anatomical structures and pathophysiology. To achieve biochemical speci­
ficity two approaches are available: to couple the contrast agent to a targeting vector 
to localize the agent to a specific protein or cell type, or to modulate the contrast 
generating signal in response to some stimulus. 

3.4 Explanatory role in pathophysiology research 

Quantitative relaxometry has explanatory role in pathophysiology research studies 
in the brain, body, and heart. [23] 

Brain pathology is often represented by prolongation of the T l , T2, and T2*, 
which can even refer to autism, dementia, and Parkinson disease. The greatest ex­
posure to relaxometry studies have brain tumours, stroke, epilepsy, and multiple 
sclerosis. Brain tumours are usually studied using qualitative MRI , but quantifica­
tion can expose tumour type by length of T l (glioblastomas have the longest T l , 
meningiomas have shorter T l , but still longer than healthy white matter). Stroke 
is characterized by T l and T2 prolongation and relaxometry maps can even distin­
guish savable and nonsavable tissues. Epilepsy is described in relaxometry maps by 
increased T l and T2 values in the temporal lobe. Multiple sclerosis is described by 
changes in the relaxation times in both grey and white matter. 

Quantification of relaxometry in the body is exploited to characterization of iron 
overload, cartilage disease, injuries and infections, and cancer. Iron overload is a 
result of accumulation of iron in the liver and spleen as a result of frequent blood 
transfusions (to treat anemia), in evaluation of iron levels in extra-hepatic organs 
(as liver, spleen, pancreas, and kidney) relaxometry has replaced biopsy procedures. 
In organs with iron overload the relaxation times are shorter than in those with 
normal values. Cartilage diseases including osteoarthritis, rheumatoid arthritis, and 
other degenerative conditions of the cartilage can not only be detected in their early 
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phases but also can be treated using relaxometry. Injury and infection assignment 
using quantitative relaxometry is occasionally used in clinic. Cancer is normally 
detected by quantitative relaxometry through contrast-enhanced protocol. 

The contrast of soft tissues provided by relaxometry can describe differences be­
tween pathological and normal heart muscle. Moreover, quantitative relaxometry 
can monitor treatment development and rate severity of disease. The quantitative 
relaxometry is exploited in the management of patients suffering from cardiac iron 
overload, can recognise the state of the tissue damage after acute myocardial in­
farction, monitor edema or inflammation, identify intramyocardial hemorrhage, and 
more. 
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4 Materials and methods 

4.1 MRI experiment 

First imaging protocol was performed on a phantom with eight test tubes containing 
different concentrations of Gd-nanoliposomes and control samples as following, see 
illustrations in Fig. 5.11. Second experiment was performed on fixed rat brain by 
paraformaldehyde in an agar gel, see illustrations in Fig. 5.12. 

Used R A R E sequences were performed with following parameters: T R = [0.15; 
0.282; 0.435; 0.615; 0.835; 1.118; 1.513; 2.176; 5] s, T E = [0.015; 0.03; 0.045; 0.06; 
0.075; 0.09; 0.105; 0.12] s. 

Tab. 4.1: Phantom contents 

Sample Contents Gd [mmol/1] 
1 Gd-nanoliposomes 150 
2 Gd-nanoliposomes 75 
3 Gd-nanoliposomes 37.5 
4 Gd-nanoliposomes 18.75 
5 Gd-nanoliposomes 9.375 
6 Buffer 0 
7 Physiological saline 0 
8 Vegetable oil 0 

Fig. 4.1: Phantom composition. 
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Fig. 4.2: Rat brain fixed in agar gel. 

4.2 Methods 

Usually the quantitative MRI techniques are provided using T2 and/or T l weighted 
images where the contrast is based on relative contributions from different tissues. 
Also the relaxometry maps can be created based on the relaxation time itself. These 
can be figured considering each one of the relaxation times separately or together. 
The principles of individual and simultaneous fitting of relaxation times T l and T2 
are presented below. 

Relaxometry maps can be generate either by spin-echo or gradient-echo sequences 
with two or more different TE and TR, in general, these sequences are called multi-
spin-echo sequences (MSE). The noise is bigger when the magnetizing field is greater 
and the sensitivity of the map depends on many acquired parameters such as type of 
sequence, TR, TE, number of images and the model function used for data fitting. 
Increasing T R increases signal-to-noise ratio (SNR) and the larger number of TEs 
the better is SNR. [5] 

Algorithm implementation 

The implemented algorithm, see illustrations in Fig. 4.3, uses multidimensional data 
from Gd-nanoliposomes relaxation study performed on Bruker Biospec 9.4 T scanner 
at ÚPT A V ČR, v. v. i . Data are loaded using already developed library from ÚPT 
A V C R developer Tomáš Pšorn. This algorithm for quantitative relaxometry is 
the next step in development of independent software for M R images viewing and 
processing. 

First the necessary libraries, i.e. numpy, s c i p y . o p t i m i z e , m a t p l o t l i b . p y p l o t , 

and b r u k e r a p i . d a t a s e t , and data from dataset are loaded. Data dimensions are 
detected - the first two dimensions describe the position of pixel in 2D space, the 
third one is definition of slice in 3D space (not in our study), the fourth and fifth 
dimension contains T E and T R data. Then data for T l relaxometry fitting are 
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obtained a s d a t a s e t . d a t a [ y , z , 0, t e , : ] , o r d a t a s e t . d a t a [ y , z , 0, : , t r ] 

for T2 fitting, for each pixel [y, z] and each TE or TR. 
After the initialization of starting matrixes for writing resulted fitted parameters 

and deviations, the nested for cycle is initiated for all y, z, and TEs or TRs. Data 
are sent into fitting process only if they are bigger than expected noise value. The 
selection of the model function is dependent on required relaxometry parameters, 
such as T l , T2, or both. The model function is based on least squares function 
implemented in s c i p y . o p t i m i z e library. Fitting mechanisms and error estimation 
are described below. Results are written into matrixes (one for each parameter). 

The resulting images are shown using m a t p l o t l i b . p y p l o t library in a figure 
for all parameters and deviations simultaneously and individually. The results can 
be also displayed for an individual pixel comparing acquired relaxometry data and 
fitted resulting curves. 
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BEGIN 

import numpy 
import scipy.optimize 

import matplotlib.pyplot 
import baikerapi.dataset 

load dataset 

> f 
y = size[0] 
z = size[1] 

te = size[te] 
tr = sizejtr] 

> t 
model_function 

> * 

initialize matrixes 

> f 
- X ^ for i in y ^ > 

— f o r j in z ^ > 

> 1 
data 

data 

= dataset[i,j,te] 
or 

= dataset[i,j,tr] 

if data > max val 

fit = 
least_squares(data, 

model_function) 

fitted. .params 
mistake evaluation 

show_ results 

> t 
END 

Fig. 4.3: Process flow diagram. 
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Individual T2 fitting 
Since 1971, when the first publication of T2 relaxometry from Damadian [11] was 
published, there are efforts to determine the T2 as bio markers for various diseases 
and as a parameter for prognosis and therapy control. 

Usual approach to determine T2 relaxometry is from data acquired using multiple 
single Spin Echo (SE) sequences with different echo times (TE). Generally, Multi 
Spin Echo (MSE) sequences are used in clinical sphere because of their possibility of 
multiple echoes within one acquisition depending on the number of 180° refocusing 
pulses. Echo train length (ETL) is than term for the number of echoes and echo 
spacing (ESP) is the time between echoes. 

Major reasons for incorrect T2 times are imperfect slice excitation profiles and is­
sues with B l inhomogeneities yielding low refocusing flip angles (FA). The correction 
of B l field inhomogeneities is usually computationally intensive and the implemen­
tation is complicated. Therefore, the post-processing and data fitting can eliminate 
some of these known systematic errors using these techniques [24]: 

1. Data fitting of all echoes with an exponential curve: 

S(TE) = Ae~TEk-m (4.1) 

where A is factor of proton density and signal gain or attenuation by the 
scanner's hardware/software, TE is the echo time and k — 1,2, . . . 

2. Data fitting of all echoes with an exponential curve with adjusted offset (base­
line): 

S{TE) = Ae~TEk-m + C (4.2) 

where C is the offset representing non-zero baseline, when the T2 decay does 
not tend towards zero, but to an asymptote > 0. The offset represents the 
noise (can be also caused by Bl inhomogeneities and imperfect refocusing 
pulses). The more FA deviates from 180° the higher the offset is. The highest 
offset is while E T L and ESP are low, which is usually used in clinical scan­
ners to shorten the acquisition time. The offset also helps to compensate the 
oscillation between even and odd echoes. 

3. Discarding of the first echo: 

S(TE) = Ae~TEk-m + C. (4.3) 

By discarding the first echo for curve fitting we reduce the signal oscillations 
in the early echoes, which is a major source of error in T2 quantification. 
By discarding the first echo and adding the offset as a fitting parameter we 
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should get rid of the most of the systematic error and provides fast and reliable 
post-processing method. 
Regardless, this method does not completely compensate the errors of T2 
caused by B1 inhomogeneities, these should be reduced while acquiring using 
advanced acquisition techniques such as using a larger spatial width of the 
refocussing pulse compared to the excitation pulse or by parallel transmission. 

Individual T l fitting 

Exact determination of T l longitudinal relaxation time of brain tissues is important 
in multiple clinical applications such as distinguish several neurological disorders, 
e.g. multiple sclerosis and Parkinson's disease, delineation of brain structures and 
differentiation of pathologies. Moreover, the extraction of pharmacokinetic para­
meters requires accurate T l values. Finally, while approximating the T2 values in 
certain methods the knowledge of T l values leads to better results. [22] 

For T l fitting was used the following model function using data fitting of all 
repetition times with an exponential curve: 

S(TR) = A{1 - e-(TRm-TEK).Ri^ + c (44) 

where A is factor of proton density and signal gain or attenuation by the scanner's 
hardware/software, TR is the repetition time, m — 1, 2, ..., length(TR), TEK = 
max(TE) and C is the offset representing non-zero baseline. 

Simultaneous T l and T2 fitting 

Two variable model function for T l and T2 simultaneous fitting: 

S(TE, TR) = A(l - e(-TRm-TEK).Rl)e-TEk.R2 + Q ^ 

where A is factor of proton density and signal gain or attenuation by the scanner's 
hardware/software, TR is the repetition time, m — 1, 2, ..., length(TR), TEK 
= max(TE), TE is the echo time, k — 1, 2, ..., length(TE) and C is the offset 
representing non-zero baseline. 

4.3 Noise estimation 

Noise in data can be estimated using a great deal of methods. Unfortunately, there 
is not the most universal one. 

To estimate noise in phantom data, the values from the edge of the image were 
chosen (all left edge, right edge, bottom edge and top edge values). These values 
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should be independent on the phantom data values. To verify this statement, vector 
of values from which the noise is assessed is figured in the beginning of the algorithm. 
User can check up if there is a ghost or phantom overrun and can adjust the area 
to calculate the assumed noise value. 

4.0 -

0 10000 20000 30000 40000 50000 60000 70000 0 5000 10000 15000 20000 25000 30000 35000 

(a) incorrect - all edges, phantom overrun (b) correct - top and bottom edge 

Fig. 4.4: Noise estimation area in fixed brain data. 

4.4 Standard deviation estimation - locally linearized 
model 

A simple estimation of the standard deviation of the estimated parameters can be 
based on a linearized model of the parameter-to-data mapping in the neighborhood 
of the solution, and the knowledge of data noise, assumed to be Gaussian and white 
with zero mean. 

Let us assume that the mapping of parameters X — (^1 •)••••) Xp ) and experimental 
conditions c = (ci, ...,CQ)T to data y = (yi, ...yN)T is described by multiparametric 
mapping i.e. 

y = \ ř (z ,c) . (4.6) 

In practice the measurement is repeated with a limited number of experimen­
tal conditions, CI,...,CK, so that the k-th data value obtained with experimental 
conditions ck is supposed to be a random variable whose expectation is 

yk = V(x,ck), (4.7) 

and so depends on the unknown parameters x. In a limited neighborhood of the 
true parameters XQ, the sensitivity of the model data to a parameter change from 
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XQ to XQ + Ax can be supposed to be sufficiently described by the first-order Taylor 
expansion of mapping i.e.. 

yk + Ay = q{x0 + Ax, ck) = * (x 0 , ck) + DAx, (4.8) 

where 
yk = ty(x0,ck) (4.9) 

and 

D ^ = W ( 4 ' 1 0 ) 

This leads to a linear relationship 

Ay = DAx, (4.11) 

This relation can be used to estimate how data noise Ay is transformed into para­
meter noise A x . In this way, data noise limits the achievable precision of the fitted 
parameters x. Matrix D can be decomposed by singular value decomposition: 

Ay = USVHTAx, (4.12) 

where U is unitary matrix (m x n, where m is number of TEs (TRs, or TE • TR) 
and n is number of singular values > 0), S is matrix of singular values sorted in 
descending order (m x n, where m = n = number of singular values > 0), and VH is 
unitary matrix (m x n, where m is number of singular values > 0, and n is number 
of parameters). Then using matrix operations we get 

VHT-lS-lU~lAy = Ax, (4.13) 

Ax = VHS~1UTAy, (4.14) 

std(nk) = ]JJ2Dfc2- (4-!5) 

1. Individual T2 fitting 
The basic consideration is that we measure a perfect spin echo with different 
TE echo times. Ie. it can be a spin echo or (with a little good will) a series of 
spin echoes (RARE) . It does not depend much on TR and perfect relaxation, 
if we measure all echoes from the same dynamic balance. For T2 fitting the 
model function is used 

fk = $(x,c) = $((A,R2,C),TEk) = Ae~TEk-R2 + C (4.16) 
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then 

D 
dA dR2 dC ' 

. dfrfc 9$ f c . 
\ dA 8R2 dC I 

(4.17) 

where 

and 

R2 = 1/T2 

dA 
-R2-TEk 

(9$ 
' -A-TEk-e-R2-TEK 

dC 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

2. Individual T l fitting 

For Tl fitting the model function is used 

fk = $(rc, c) = $((A, m , C) , (Ti?, T £ K ) ) = A(l-e-(TRm-TEK)-R1)+C (4.22) 

then 

<9A <9B1 <9C * 

• 9*fe . 
\ dA 8R1 dC I 

(4.23) 

where 

and 

dA 

Rl = 1/T1 

1 _ e-RHTRk-TEK) 

am A.e-Rl<TRk-TE^-(TRk-TEK), 

d$k 

dC 

(4.24) 

(4.25) 

(4.26) 

(4.27) 
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3. Simultaneous T l and T2 fitting 
In general, we could combine TR and TE in any way, but in R A R E V T R it is 
natural to combine each TR from a certain set with each TE in the series in 
one scan. For simultaneous T l and T2 fitting the model function is used 

fk = ${x,c) = ${{A,Rl,m,C), (TR,TE)) 
= A(l - e(-TRm-TEK)-Rl^e-TEk-R2 + Q 

(4.28) 

then 

D 
dA dRl dR2 dC < 

. d$k d$k d$k d$k • 
\ dA dRl dR2 dC I 

(4.29) 

where 

9 ® k = 1 _ e-Rl-(TRm-TEK) . e-R2-TEk^ (4.30) 

| | * = g—Rl-(TRm,—TEK) . ( T j R m _ T £ ; x ) . ^ . e H 2 . T i ^ 

a i l l 
- A • T £ f c • (1 - e-RHTRm-TEK) . e H 2 . T S f e ) ; ( 4 3 2 ) dR2 

dC 
1. (4.33) 

The model function / is used to gain fitted parameters from the acquired data. The 
M matrix, containing the partial derivations of the inverse function $, is used to 
estimate the confidence interval of parameter fitting. 

4.5 Standard deviation estimation - Cramer Rao lower 
bounds 

The Cramer Rao lower bounds theory [6], [7] is based on the Likelihood function 
supposing that the noiseless data can be exactly modeled by model function yn. The 
measured n-th data sample can be written as 

yn = yn + bn (4.34) 

where bn is the Gaussian-distributed noise N(0, a). Then the probability of bn (and 
yn) is given by likelihood function 

P(y n | x ) = P(6 n |x) = -jL=e-§i (4.35) 
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where a is the standard deviation of the noise. The joint probability function P. 
or likelihood function, for dataset y = (yi, y2, VN) equals the product of the 
probability functions of all samples 

N 
P(y|x) = [J P(y n|x) 

1 N h2 n-1 

(2*0*)»/* 

The logarithm of this function (log-likelihood) is usually used. 

(4.36) 

L(y|x) = logP(y„|x) 
N 1 N 

N, . 2 N 1 
- — log(27ra ) - — }_^{yn - yr, 

(4.37) 

The key role in the estimation of fitting precision is played by the Fisher matrix. 
The Fisher matrix is defined by 

F = E 'dL\T(dL" (4.38) 

where E stands for the expectation value and x = (xi, x2, XNX) represents the 
model parameters. The Fisher information matrix is then modified for real (bipolar) 
data: 

N N 

kl. E dL dL 
dxk dxi a1 

1 
m=l m=l 

' dxi 

N 

cr2 ^ dxk dxi a nl • 
n=l 

(4.39) 

Dnk dxk 

(4.40) 

- D T D . 
a* 

(4.41) 

The variance of the n-th parameter is found at the n-th position in the diagonal 
of inversion of F, which means that the standard deviation is estimated as 

(4.42) 

where 

F " 1 = c r W D ) - 1 . (4.43) 
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5 Measurement results 
In all measurements a volume transmit coil was used, providing fairly homogeneous 
flip angle in the whole sample. 

5.1 Individual T2 fitting 

Figures 5.1, 5.5 and 5.4 show the results of individual T2 fitting by model function 

S(TE) = Ae~TEk-R2 + C (5.1) 

using all T E samples for each TR individually. Because of the dependence of steady-
state magnetization on TR, the SNR is higher in TE-deca,j series for higher TR. 
Then the resulting grayscale images display fitted model parameters A, 1/T2, and 
C, and the estimates of the standard deviations of these parameters appropriate to 
the SNR present. The color images represent the fitted curves and the original data 
points for the first phantom - samples 1 and 8, see Fig. 5.2 and 5.3. 

Discussion - phantom 

• Parameter A describes the initial signal amplitude, as if no T2 decay existed. 
Therefore, higher values are expected and found where 

— proton density is high - identical for 1-7, different for 8 
— TR is long - higher scan index 
— local coil sensitivity is high - center of image 

• Relaxivity (R2 = 1/T2), as a property of the sample, should be found identical 
regardless of TR. High values correspond to samples with fast T2 relaxation: 
Fig. 5.1 shows, indeed, 

— shorter T2 (1/10 s = 100 ms) in samples with higher concentrations of 
the contrast agent (1) 

— long T2 (1/2.6 s = 380 ms) in saline with no contrast agent (6, 7) 
— shortest T2 (1/22 s = 45 ms) in oil (8) 

• The D C offset value C, introduced only in order to adapt the theoretical model 
to the presence of unipolar noise in magnitude data, should not exceed the true 
noise level. This is 

— right for samples 1-7 
— wrong for oil (8) 

The reason for the anomaly in the oil sample is obviously in the insufficiency of 
the simple model 5.1 to accurately describe relaxation of oil, exhibiting many 
resonance frequencies and coupled resonances. 
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Results - phantom 

Fig. 5.1: Individual T2 fitting - parameter 1/T2. 
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Fig. 5.2: Individual T2 fitting - sample 1. 

Fig. 5.3: Individual T2 fitting - sample 8. 
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Results - fixed rat brain 

forTR 1 = 0.150 s 

parám 1ÍT2 

forTR 2 = 0.282 s 

forTR 8 = 2.176 s 

t 

forTR 3 = 0.435 s 

forTR 6 = 1.118 s 

forTR 9 = 5.000 s 

Fig. 5.4: Individual T2 fitting - fixed rat brain, whole FOV, parameter 1/T2. 
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forTR 1 = 0.615 s 

pa ram A 

forTR 2 = 0.835 s forTR 3 = 1.118 s 

forTR 1 = 0.615 s 

param 1/T2 

forTR 2 = 0.835 s forTR 3 = 1.118 s 

Fig. 5.5: Individual T2 fitting - fixed rat brain, all parameters, zoomed. 
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5.2 Individual T l fitting 
Figures 5.6, 5.9 and 5.10 show the results of individual T l fitting by model function 

S(TR) = A{1 - e-(TRm-TEK).R^ + c (52) 

using all TR samples for each TE individually. Then the resulting grayscale images 
display fitted model parameters A, l/Tl and C, and the estimates of the standard 
deviations of these parameters appropriate to the SNR present. The color images 
represent the fitted curves and the original data points for the first phantom -
samples 1 and 8, see Fig. 5.7 and 5.8. 

Discussion - phantom 

• Higher values of parameter A are expectable and found 
— in samples with higher proton density - identical for 1-7, different for 8 
— in measurements with shorter TE - lower scan index 
— in areas with higher detection coil sensitivity 

• Identical value of T l should be found regardless of the TE value used (albeit 
the lower SNR at higher TE values may result in noisier T l maps). High 
relaxivity (Rl = l / T l ) corresponds to fast T l relaxation. The values found 
correspond to the expectations: 

— short T l (1000 ms) in samples with higher concentration of contrast agent 

(1) 
— long T l (4500 ms) for zero concentration (6, 7) 
— low T l (670 ms) in the fast relaxing oil 

• The DC offset C, here again, is an artificial adjustment of the theoretical 
model to the noisy reality. It should not exceed the noise level, which is 

— right for 1-7 
— wrong for oil (8) 

The offset C again reflects the anomalous steady-state. 
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Results - phantom 

pa ram 1,'Tl 

forTE 1 = 0.015 s forTE 2 = 0.03 s 

deviation of parám 1/T1 

forTE 1 = 0.015 s forTE 2 = 0.03 s 

Fig. 5.6: Individual T l fitting - parameter 1/T1. 
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Fig. 5.7: Individual T l fitting - sample 1. 
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Fig. 5.8: Individual T l fitting - sample 8. 
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Results - fixed rat brain 

param 1/T1 

for TE 1 = 0.015 s for TE 2 = 0.030 s for TE 3 = 0.04b s forTE 4 = 0.060 s 

Fig. 5.9: Individual T l fitting - fixed rat brain, whole FOV, parameter 1/T1. 
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forTE 1 = 0.015 s 

param A 

for TE 2 = 0.030 s forTE 3 = 0.045 s 

forTE 1 = 0.015 s 

param 1/T1 

forTE 2 = 0.030 5 forTE 3 = 0.045 s 

Fig. 5.10: Individual T l fitting - fixed rat brain, all parameters, zoomed. 
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5.3 Simultaneous T l and T2 fitting 
Figures 5.11 and 5.12 show the results of simultaneous T l and T2 fitting by model 
function 

S(TE, TR) = A(l - e(-TRm-TEK).Rl)e-TEk.R2 + Q ^ 

then the resulting grayscale images display fitted model parameters A, 1/T1, 1/T2 
and C, and the estimates of the standard deviations of these parameters appropriate 
to the SNR present. 

Discussion - phantom 

Comparing the resulted values of fitted parameters obtained from the two methods 
(individual or simultaneous fitting) we get the following conclusions: 

• T2 values obtained from individual fitting are two or three times higher for 
sample 8 (oil) than from simultaneous fitting 

• the oil sample does not follow the model - the signal does not decay with 
increasing echo number - using individual T2 fitting 

• the best quality series, regarding the deviation values, are: 
— for individual T l fitting: the shortest TE series 
— for individual T2 fitting: the longest TR series 

• simultaneous fitting is more precise, the parameters are fitted with smaller 
deviations 
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Results - phantom 

Fig. 5.11: Simultaneous fitting - phantom, all fitted parameters. 
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Discussion - fixed rat brain 
The fixed rat brain images, shown in Fig. 5.12, 5.13 and 5.14, display two distinct 
regions: the brain and the surrounding homogeneous agar gel. Although the gel 
itself is not the object of interest, homogeneity of the fitted parametric maps in this 
area is a co-indicator of the fitting quality. The results demonstrate several facts 
that may be important in applications: 

• despite the inhomogeneous detection sensitivity, the quantitative maps of Rl 
and R2 are homogeneous in the whole brain, and the gel indicates reliability 
even in very dark areas. This can 

— facilitate brain segmentation: in the brain images, to highlight structures 
— be used to quantitation of contrast agent concentration 

• the Gibbs artifact, resulting from limited k-space extent (i.e., limited spatial 
resolution), is manifested also in parametric maps, and may interfere with 
layered structures in the brain. For high quality imaging, data acquisition and 
image reconstruction should be designed to avoid this artifact 

• corpus callosum is a typical white matter that appears dark on A. This cor­
responds to the water content: the average gray matter content is known to 
be 82%, white matter 68%. The estimated ratio is about 1.4, the expected is 
1.2. Less water in white matter probably corresponds to the fact that there 
are nerve fibers and the space is probably more solid than in gray matter. In 
addition to the fact that there is less free water, the water relaxes faster, so 
Rl and R2 are higher than in gray matter. Due to the fixation of the brain 
with paraformaldehyde, which dehydrates the brain structures, the relaxation 
times were shortened 

— live brain T l values [21] - gray matter 2000 ms, white matter 1700 ms 
— fixed brain T l values - gray matter 800 ms, white matter 600 ms 
— live brain T2 values [21] - gray matter 38 ms, white matter 33 ms 
— fixed brain T2 values - gray matter 43 ms, white matter 29 ms 

• outliers often occur at sharp edges 

54 



Results - fixed rat brain 

parameter values (A, Rl, R2, C) 

parameter deviations (A, Rl, R2, C) 

parameter CRLBs (A, Rl, R2, C) 

Fig. 5.12: Simultaneous fitting - fixed rat brain, whole FOV. 
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Resume 
The aim of this bachelor's thesis was to implement the algorithm in Python for 
data analysis for quantitative M R relaxometry. The results were verified using data 
measured by preclinical Bruker Biospec 9.4 T scanner at U P T A V CR, v. v. i . 

At the beginning, the theoretical foundations were given in Chapter One, which 
focuses on M R theory and basic terms explanation. History of relaxation mea­
surements from spectroscopy to state-of-the-art methods such as fingerprinting or 
deep learning is presented in Chapter Two. The Third Chapter discuss reasons for 
relaxometry. 

The Fourth Chapter is finally dedicated to the algorithm implementation. There 
are described the methods used in the algorithm implementation and materials used 
to verify the results. In the Fifth Chapter, the results are presented and discussed. 

Once the algorithm was designed, the phantom was measured and data were 
fitted. It was found that in the context of the data processed in this study, both 
approaches to precision assessment lead to the same result. Numerically the simpler 
linearized-neighborhood approach was found to be more stable. 

The phantom contained Gd-nanoliposomes in different concentrations and con­
trol samples such as physiological saline or vegetable oil. The results are as expected, 
except for the oil sample. Finally the results were successfully verified on a relax­
ometry of a rat brain fixed in agar gel. 
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Symbols and abbreviations 
2DFT 2D Fourier transform 

B B B Blood brain barrier 

C T Computed tomography 

DIR Double inversion recovery 

E C F Extracellular fluid 

EPI Echo planar imaging 

ESP Echo spacing 

E T L Echo train length 

FA Flip angle 

F F E Fast field echo 

F F T Fast Fourier transform 

FID Free induction decay 

FISP Fast imaging with steady (-state free) precession 

F L A I R Fluid attenuated inversion recovery 

F L A S H Fast low-angle shot 

F O V Field of view 

F S E Fast spin echo 

G B C A s Gadolinium based contrast agents 

Gd Gadolinium 

G d - D T P A Gadolinium (III) diethylenetriamine pentaacetate 

GI Gastrointestinal 

G R A S E Gradient and spin echo 

GRASS Gradient recalled acquisition in the steady state 

G R E Gradient echo 
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IFT Inverse Fourier transform 

IR Inversion recovery 

M R Magnetic resonance 

M R F Magnetic resonance fingerprinting 

M R I Magnetic resonance imaging 

M S E Multi spin echo 

N M R Nuclear magnetic resonance 

P E T Positron emission tomography 

R A R E Rapid acquisition with relaxation enhancement 

R F Radiofrequency 

SE Spin echo 

SNR Signal-to-noise ratio 

S P G R Spoiled gradient echo 

SPIOs Superparamagnetic iron oxides 

SR Saturation recovery 

SSFP Steady state free precession 

STIR Short time inversion recovery 

T l T l relaxation time 

T l - F F E T l fast field echo 

T2 T2 relaxation time 

T2* T2* relaxation time 

T E Echo time 

T G S E Turbo gradient spin echo 

TIR Triple inversion recovery 

T R Repetition time 
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A Contents of the electronic attachment 
The electronic attachment contains all the Python scripts and a file with the image 

results of fitting. 

/ the root directory of the attached archive 
images. pdf image attachments 
codes Python scripts 

individual_Tl_fitting.py 

individual_T2_fitting.py 
simultaneous_fitting.py 
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