
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

EXCALIBUR SYSTEM - SSO IMPLEMENTATION
SYSTÉM EXCALIBUR - IMPLEMENTACE SSO

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc.JURAJ CHŘIPKO
AUTOR PRÁCE

SUPERVISOR Mgr. KAMIL MALINKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2020/2021

M a s t e r ' s T h e s i s S p e c i f i c a t i o n |||||||||||||||||||||||||
24156

Student: Chripko Juraj, Be.
Programme: Information Technology Field of study: Information Technology Security
Title: Excalibur System - S S O Implementation
Category: Security
Assignment:

1. Get familiar with Single Sign On (SSO) technologies, focus on Security Assertion Markup
Language (SAML) and Fast Identity Online 2 (FID02).

2. Get familiar with Excalibur (commercial distributed infrastructure access control system) and
other existing access control solutions and used concepts.

3. Design a solution for integrating SAML or FID02 into Excalibur system to enable SSO.
4. Implement proposed design for integrating SAML or FID02 protocols into Excalibur system.
5. Test correct functionality of implemented solution such as correct behavior from a user point

of view, soundness of access control mechanism, and access revocation.
Recommended literature:

• FIDO Alliance (available online https://fidoalliance.org/fido2/)
• Security Assertion Markup Language (SAML) V2.0 Technical Overview (available online

http://docs.oasis-open.Org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html)
• "Excalibur - No More Passwords!" (available online

https://getexcalibur.com/docs/Excalibur_pitch_2_4_2018.pdf)
Requirements for the semestral defence:

• Items 1 to 3.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Malinka Kamil, Mgr., Ph.D.
Head of Department: Hanacek Petr, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 19, 2021
Approval date: November 11, 2020

Master's Thesis Specification/24156/2020/xchrip00 Page 1/1

https://fidoalliance.org/fido2/
http://docs.oasis-open.Org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
https://getexcalibur.com/docs/Excalibur_pitch_2_4_2018.pdf
https://www.fit.vut.cz/study/theses/

Abstract
The ultimate goal of the Excalibur system is to move all authentication away from pass­
words, to the passwordless future. The aim of this thesis is the integration of the Excalibur
system with web-based, password-free protocols S A M L and FIDO.

S A M L standard was integrated into the Excalibur system and successfully tested on
multiple major applications. Excalibur is responsible for authentication and user manage­
ment, and S A M L is used to transfer authentication data to third-party applications.

FIDO, on the other hand, is a complete authentication standard, which can be integrated
into the Excalibur system in several ways. The most promising way seems to be replacing
the Excalibur authentication mechanism with F ID02 , but weak standard support and
missing features do not allow it, for now.

Abstrakt
Cieľom systému Excalibur je presunúť autentifikáciu od hesiel používaných v súčastnosti ku
bezheslovej budúcnosti. Zámerom tejto práce je integrácia systému Excalibur s webovými
bezheslovými protokolmi S A M L a F ID02 .

Standard S A M L bol integrovaný do systému Excalibur a úspešne otestovaný s niekoľkými
známymi aplikáciami. Excalibur má na starosti samotnú autentifikáciu a manažment použí­
vateľov a S A M L je použitý na predanie týchto informácii aplikáciám tretích strán.

F ID02 je, na druhú stranu, kompletný autentifikačný štandard, ktorý môže byť do
systému Excalibur integrovaný viacerými spôsobmi. Ako najsľubnejší spôsob sa javí výmena
autentifikačného mechanizmu systému Excalibur za F ID02 , ale slabá podpora štandardu
a chýbajúce funkcie to zatiaľ nedovoľujú.

Keywords
SSO, single sign-on, single sign on, S A M L , F IDO, F ID02 , WebAuthn, Excalibur, dis­
tributed crypto scheme

Klíčová slova
SSO, single sign-on, single sign on, S A M L , F IDO, F ID02 , WebAuthn, Excalibur, distribuo­
vaná kryptoschéma

Reference
C H R I P K O , Juraj. Excalibur System - SSO Implementation. Brno, 2021. Master's thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Mgr. Kamil
Malinka, Ph .D.

Rozšířený abstrakt
Heslá sú momentálne najpoužívanejší spôsob autentifikácie na internete, a zároveň sú aj naj­
častejším cieľom rôznych kybernetických útokov (phishing, hádanie hesiel, atď.). Cieľom
práce bola integrácia systému Excalibur s webovými bezheslovými autentifikačnými pro­
tokolmi F ID02 a S A M L .

Excalibur slúži ako bezpečnostný token pre autentifikáciu bez hesiel. Používa mo­
bilný telefón na overenie autentifikačných faktorov ako je poloha, P I N kód, odtlačok prsta,
Face ID atd. Používateľ je overený pomocou biometrie na svojom vlastnom telefóne, čiže
prihlasovanie sa pre neho stáva bezheslové. Avšak aplikácie stále využívajú heslá, preto
bola vyvinutá distribuovaná kryptoschéma, ktorá tvorí abstrakciu nad heslami. Heslo je
zrekonštruované až v cieľovom systéme a po prihlásení môže byť automaticky zmenené, čo
eliminuje množstvo útokov na heslá. V praxi to znamená, že používateľ nepozná aktuálne
heslo a prihlásenie je možné iba jeho telefónom po overení všetkých faktorov ako biome-
tria, poloha a pod. Používateľ teda nemôže vyzradiť heslo, ani delegovať prístup inému
používateľovi. Distribuovaná kryptoschéma je použitá pri prihlasovaní do operačného sys­
tému Windows, no webové technológie ponúkajú niekoľko možností ako zabezpečiť pravú
bezheslovú autentifikáciu. Táto práca sa bližšie venuje webovým štandardom FID02 a
S A M L .

F ID02 umožňuje používateľom využívať bežné zariadenia na ľahkú autentifikáciu pre
online služby v mobilných aj desktopových prostrediach. F I D O Alliance stojí aj za starším
štandardom Universal 2nd Factor (U2F), ktorý slúži ako 2. faktor pre autentifikáciu na
internete. F ID02 v sebe zahŕňa aj spätnú kompatibilitu so štandardom U2F, keďže U2F
je priamy predchodca štandardu FID02 .

F ID02 je kompletný autentifikačný štandard, ktorý dokáže nahradiť prihlasovanie po­
mocou mena a hesla, no môže byť použitý aj na iné účely. Je založený, podobne ako
Excalibur, na kryptografii s využitím verejného kľúča, čiže neexistuje žiadne verejné tajom­
stvo, ktoré by mohol útočník ukradnúť. Standard F ID02 je v tejto práci podrobnejšie
popísaný v teoretickej časti a výsledkom sú 4 možnosti integrácie so systémom Excalibur:
Excalibur vystupujúci ako F ID02 autentifikátor voči aplikácii, Excalibur vystupujúci ako
druhý faktor (U2F), F ID02 zariadenie ako další faktor voči systému Excalibur, F ID02
namiesto autentifikačného mechanizmu systému Excalibur.

Všetky tieto možnosti integrácie F ID02 štandardu so systémom Excalibur majú svoje
špeciálne prípady, ktoré sú podrobnejšie popísané v tejto práci. Vzhľadom na to, že zatiaľ
nebolo nájdené vhodné využitie, štandard F I D 0 2 nebol integrovaný so systémom Excali­
bur. Hlavné dôvody prečo F ID02 nebol integrovaný je aj slabá podpora F ID02 štandardu
koncovými aplikáciami, slabá podpora rozšírení štandardu F ID02 prehliadačmi, či fakt, že
schéma systému Excalibur dokáže to isté ako F ID02 , ak nie viac.

S A M L (Security Assertion Markup Language) je autentifikačný protokol slúžiaci na
výmenu autentifikačných údajov medzi poskytovateľom identít - Identity Provider (IDP)
a poskytovateľom služieb - Service Provider (SP). Protokol S A M L umožňuje presne to,
čo bolo zmyslom tejto práce - použiť viacfaktorovú autentifikáciu bez hesla k webovým
aplikáciám tretích strán a preto sa zvyšok tejto práce venuje návrhu implementácie, samot­
nej implementácii a testovaniu integrácie. Excalibur zabezpečuje prihlasovanie, čiže vys­
tupuje ako IDP a autentifikačné údaje posiela aplikáciám, kde sú použité na prihlásenie
používateľa. Predtým ako spolu začne IDP a SP komunikovať, musia si dôverovať, čo je
zabezpečené výmenou S A M L metadát. Tieto metadáta obsahujú informácie o entitách
spolu s ich certifikátmi.

Implementáciu S A M L časti je možné rozdeliť na implementáciu autentifikačného kom­
ponentu a implementáciu samotného S A M L komponentu. Pre samotnú autentifikáciu bol
použitý komponent WebSDK, ktorý nebol navrhnutý na tento účel a musel byť preto up­
ravený. V budúcnosti bude tento komponent vymenený za nový, no momentálne to nie
je možné vzhľadom na stav vývoja novej verzie systému Excalibur. Pre prácu so S A M L
správami bola použitá knižnica samlif y, no pri testovaní sa zistilo, že jej chýbajú niektoré
funkcie ako napríklad možnosť použiť šablónu pre S A M L dokumenty a tiež bolo zistené, že
obsahuje trhliny v bezpečnosti, ktorých oprava trvá neprimerane dlho. S A M L komponent
má na starosti aj manažment poskytovateľov služieb (SP). SP sú manažované pomocou
ich metadát, preto boli vytvorené prvky na pridanie, zmenu a zmazanie SP v administrá­
torskom rozhraní - Excalibur Dashboard.

Momentálne je vyvíjaná nová verzia systému Excalibur (v3.5), ktorá používa novú ar­
chitektúru a tým ponúka aj nové možnosti. Stará verzia (v3) nedokáže zabezpečiť single
sign-on (SSO) a zároveň, automatické testovanie je veľmi obmedzené. Súčasné riešenie
bolo implementované v starej verzii systému Excalibur, ktorá nedokáže zabezpečiť SSO, no
jeho návrh je súčasťou tejto práce. Návrh nového autentifikačného komponentu je takisto
súčasťou práce a bude implementovaný hned, ako to stav novej verzie systému dovolí.

Výstupom tejto práce je S A M L komponent schopný prihlásiť používateľov do známych
aplikácií ako Office 365, Google, Ping Identity, Pulse Secure a pod. Toto riešenie je nasadené
u partnerov systému Excalibur a je testované na väčšom množstve používateľov. Počas
testovania riešenia s rôznymi aplikáciami vznikla aj dokumentácia a návod na konfiguráciu
prihlasovania cez protokol S A M L do týchto aplikácií, ktorá je verejne dostupná na stránke
Excalibur dokumentácie.

Práce na S A M L komponente budú pokračovať, pretože sú plánované ďalšie nasadenia
systému Excalibur, kde bude využitý aj S A M L . Pre novú verziu systému bude potrebné
prepísať časť hotového riešenia a takisto otestovať iné S A M L knižnice, keďže zvolená knižnica
nie je ideálna, ako už bolo spomenuté.

Excal ibur System - SSO Implementation

Declaration
I hereby declare that this Master's thesis was prepared as an original work by the author
under the supervision of Mgr. Kami l Malinka, Ph .D. The supplementary information was
provided by Ing. Ivan Klimek, Ph .D. I have listed all the literary sources, publications and
other sources, which were used during the preparation of this thesis.

Juraj Chřipko
May 18, 2021

Acknowledgements
I would like to thank Mr . Kamil Malinka for his thorough guidance and his hints, and Mr .
Ivan Klimek for his valuable advice.

Contents

1 Introduction 2

2 Motivation 4
2.1 Password problems 4
2.2 Improving passwords 5
2.3 Password Alternative 6
2.4 Excalibur 7
2.5 S A M L 9
2.6 F ID02 13

3 Excalibur 20
3.1 Excalibur Components 20
3.2 Excalibur P A M 25
3.3 Excalibur system actions 28

4 Integration design 33
4.1 Excalibur - S A M L integration design 33
4.2 F ID02 Case Study 37
4.3 Single sign-on (SSO) design 42

5 Implementation 44
5.1 S A M L Server Component 44
5.2 Authentication Component 51
5.3 Single sign-on (SSO) 52

6 Testing and Documentation 53
6.1 Functional Testing 53

6.2 Documentation 57

7 Conclusion 59

Bibliography 61

Appendices 66

A C D Contents 67

1

Chapter 1

Introduction

Using passwords was for a long time the only way of authentication on the web. Today,
a lot of other authentication mechanisms can be used, but passwords stay as the first and
main factor. Wi th dozens of both personal and work accounts, there is a serial problem
of managing passwords. The average business employee must keep track of 191 passwords
and 81% of data breaches were caused by password-based attacks [1].

Password managers can help with remembering passwords and not reusing passwords
for multiple accounts, but they can not stop phishing attacks, data breaches nor vulner­
ability exploitation. A password manager can securely store passwords but in moment of
authentication, that password needs to be injected into the website, which means it can, in
theory, be stolen by a man-in-the-middle. Industry consensus is to use multiple authenti­
cation methods (factors) whenever possible, but most of the second factors can be phished
as easily as a password. So passwords are hard to remember, hard to manage, and even
dangerous. But our existence is built on top of passwords anyway.

Excalibur acts as a secure token for passwordless authentication using your mobile phone
to verify authentication factors such as location, P I N , fingerprint, Face ID, etc. In practice,
authentication for the genuine person, authentication is seamless, but it is impossible for
any other person. Excalibur created distributed crypto scheme to keep passwords secure.
Passwords are bound to the mobile device and protected by biometry, so the mobile device
is your Excalibur. Since most systems require passwords, Excalibur creates a new layer on
top of existing infrastructure, but the ultimate goal is to a create password-free future.

2020 was an unprecedented year in regards to cybersecurity. Mass remote working has
radically changed both how in which people connect and interface with their workplaces
as well as how businesses work. Wi th "everyone" working from home, in 2020 more than
ever before, attackers have shifted their focus to the outdated and weakly protected remote
worker's devices and techniques such as phishing attacks, ransomware, and data theft have
exploded.

Excalibur saw a transition to web solutions in advance, which led to the development
of the Excalibur P A M (Privileged Access Management). Excalibur P A M can provide con­
trolled access to most applications by supporting a wide range of protocols. A l l these
applications can be accessed by any web browser. For now, Excalibur was only using
abstraction to deliver passwords to the client application, where they were used for authen­
tication. But with the rising use of web applications, passwordless protocols could be used
for authentication to third-party applications.

One of the protocols which support passwordless authentication is SAML. This protocol
is widely used in the enterprise sector for transferring authentication information between

2

identity providers and service providers. This thesis aims and designing and implementing
S A M L integration to the Excalibur system. The distributed crypto scheme is developed
in such a way, that when one component is compromised, an attacker gains no access to
any resource. By using passwords, this is ensured since part of the password is stored on
the user's device and it is secured by biometry. This idea should also be extended to SAML
targets.

Another standard for passwordless authentication is F ID02 . F ID02 enables users to
leverage common devices to easily authenticate to online services in both mobile and desk­
top environments. F ID02 was chosen because it is built with a similar idea in mind as
Excalibur. F ID02 is a whole authentication standard, so how it can be integrated and
what can be gained from that concrete type of integration is also part of this thesis.

The first chapter is an introduction to authentication, mainly on the authentication
on the internet and how the most used authentication mechanism (passwords) works in
regards to Single sign-on (SSO). Description of how Excalibur tackles security problems of
web-based solutions follows. Another 2 subsections are about chosen passwordless protocols:
SAML and FID02.

The next chapter describes the Excalibur system in more depth. Especially Excalibur
components, P A M , actions, the current state of the Excalibur system, and how the Ex­
calibur distributed crypto scheme works. Excalibur P A M is a common name for multiple
technologies, so their specifics are also discussed in this chapter. Sensitive information like
certificates are still used, so their usage and storage are also described in this chapter.

Forth chapter starts by combining facts, algorithms, and authentication mechanisms
from the previous chapter into a solution that integrates S A M L protocol to the Excalibur
system. The chapter continues with a description of the F ID02 use cases since there are
multiple ways, how F I D 0 2 standard can be integrated into the Excalibur system. Integra­
tion design also contains basic design decisions for various single sign-on scenarios.

The implementation chapter is focused on S A M L implementation, since none of the
F ID02 use cases were good enough to be implemented for now. Single sign-on was also not
implemented in this project, because of ongoing efforts to develop a new major version of
the Excalibur system. S A M L implementation can be divided into 2 components: S A M L
Component, taking care of all S A M L communication, and an Authentication Component,
which responsibility is to authenticate a user to the Excalibur system. The implementation
chapter also includes a single sign-on section that describes how authentication events from
various Excalibur clients can be used for single sign-on functionality once the new version
will be released.

Another chapter describes testing and documentation of previously designed and imple­
mented S A M L integration. Testing revealed some bugs and security vulnerabilities in the
S A M L library and in a way how that library is used. During testing and configuration of
various service providers documentation was written.

3

Chapter 2

Motivat ion

In 2020, the use of video conferencing skyrocketed because of the COVID-19 pandemic
and the resulting lockdown. Video conferencing statistics and studies on remote work in
2019 show that the global remote workforce has increased by 140% since 2005 [7]. As a
consequence, technology has become even more important in both our working and personal
lives. The remote workforce continues to grow and so does the need for cybersecurity. Swiss
National Cyber Security Centre (NCSC), stated that the number of cyberattacks reported in
Switzerland during the height of the COVID-19 pandemic was up to three times higher than
normal [54]. 80% of hacking-related breaches leverage compromised passwords (phishing,
brute-forcing, keylogger attacks, credential stuffing, etc.).

This chapter includes basic information about the most used authentication mechanism
- passwords. How are they used, what are the password problems and what could be an
alternative. This chapter also introduces Excalibur system and 2 passwordless protocols:
SAML and FID02.

2.1 Password problems

Let's take a closer look at the most used authentication mechanism, passwords. Password
is a shared secret, a user knows the password and so does the other party, a server. To
increase security, passwords are not stored in clear text, but rather hashed. The hash
function is a one-way function, a function that is practically infeasible to invert [18]. The
hashed password is still a shared secret, since a user needs to give it away, to prove that he
knows it.

This creates 2 security problems: data breach problem and fraud problem. Fraud
problem is oftentimes exploited by a phishing attack. Phishing is an example of social
engineering techniques used to deceive users. It is the fraudulent attempt to obtain sensitive
information or data, such as usernames, passwords, and credit card details, by disguising
oneself as a trustworthy website [51]. 51 % of users have experienced phishing attack, 12 %
credential theft, and 8 % man-in-the-middle attack based on a survey Ponemon Institute
Research Report from 2020 [44].

Data breach exposes confidential information, like credentials, to an unauthorized
person, which can lead to another cyberattack, called credential stuffing, by using previously
exposed credentials. As long as there is a shared secret stored on the server, there will
be something to steal. Verizon showed that hacking attacks (and breaches in general)

4

are mostly credential theft driven as 80% of them involve brute force or the use of lost
credentials [1].

Passwords also suffer from the usability problem. A user needs to remember dozens
of passwords for both personal and enterprise accounts and the easiest way is just to reuse
the same passwords. A report from 2020 sponsored by Yubico showed that 50 % of IT
security respondents and 54 % of individual users reuse their passwords. In both categories,
respondents reuse passwords on an average of 10 accounts [44].

These problems are caused by password's inherited properties, we cannot use passwords
without these inhering these problems.

Password Managers can help manage passwords, but they don't protect from stolen
passwords or phishing attacks. Traditionally passwords are stored hashed since the server
only needs to compare hashes, but password managers need to store passwords in such a
way, that the password can be reconstructed. What makes them password vaults, and that
can be attacked [2]. Password manager's ability to protect the user from a phishing attack
is based on the ability to detect a fake website. Researches at the University of York fooled
40% of password managers into giving away passwords to malicious apps [13].

2.2 I m p r o v i n g passwords

There are 3 authentication factors categories [41]:

• Knowledge - something the user knows (passwords)

• Possession - something the user has (tokens - smart card, usb token, software,
certificates, etc.)

• Inherence - Something the user is or does (biometrics - fingerprint, face recognition,
signature, etc.)

When only one of these mechanisms is used it is Single-factor authentication. On
the other hand, Multi-factor authentication (MFA) combines two or more factors.

A fairly new type of authentication is contextual authentication. A user interacts
with the system in a specific way. Every user has a slightly different style of using the
system, how they type, how fast and how much they move mouse, where do the login from
(IP address), when do they log in. These factors create context [41].

Using the second factor (SMS, email, other types of One-Time-Passwords (OTP) , etc.)
eliminates the threat created by stolen passwords and passwords reuse for multiple applica­
tions, but only for the application with the configured second factor. A n attacker can still
create a fake website where the user enters passwords together with the second factor, e.g.
one-time password. Users have a hard time identifying the fake website. The best defense
against these password attacks is user education about password usage and management,
but how that's going is shown in the comics from popular xkcd series (936) [30].

The second factor can prevent phishing, but it cannot be based on a shared secret.
A l l shared secret-based authentication mechanisms (e.g. OTP) can be phished as easily
as the passwords. This thesis describes other types of authentication mechanisms that are
phishing resistant, they are typically based on public-key cryptography.

While the second factor can improve security, adding more steps to the authentication
flow is just making the usability problem worse. A solution could be replacing passwords
with a better authentication mechanism.

5

2.3 Password A l t e r n a t i v e

A reasonable requirement is to replace passwords with something hard to guess and simul­
taneously hard to steal. A long, complex password can be hard to guess, but it still needs
to be saved on the target system and in some way send through the network. Public key
infrastructure (PKI) could be the answer [17].

Public-key cryptography

Public-key cryptography, or asymmetric cryptography, is a cryptographic system
that uses pairs of keys: public keys, which may be disseminated widely, and private keys,
which are known only to the owner [50]. Public keys are stored on target service and since
they are public, disclosing them does not harm system security. Public key cryptography
best-known uses are:

• Public key encryption, in which a message is encrypted with a recipient's public
key. The message cannot be decrypted by anyone who does not possess the matching
private key, who is thus presumed to be the owner of that key and the person asso­
ciated with the public key. This is used in an attempt to ensure confidentiality. The
scheme is shown in Figure 2.2.

• Digital signature, in which a message is signed with the sender's private key and
can be verified by anyone who has access to the sender's public key. This verification
proves that the sender had access to the private key, and therefore is likely to be
the person associated with the public key. This also ensures that the message has
not been tampered with, ctS ct SI gnature is mathematically bound to the message it
originally was made with, and verification will fail for practically any other message, no
matter how similar to the original message. Figure 2.1 shows scheme digital signature.
A claim that the user is in possession of a private key can be for authentication. This
authentication mechanism is claim based because only a claim is sent through the
network, not the actual password/private key.

2. Encrypt the
message with Alice's Message + signature

Private
1. Hash the message key

Hash Encrypt Hash Encrypt

message

Sent to Bob

1. Decrypt the
message with Alice's Public key - — + \ Decrypt

ruarnHnitairamay
rtu ri tw -xdkn 1 hi ttiv\

Signature

ruarnHnitairamay
rtu ri tw -xdkn 1 hi ttiv\

"5KSS

Hash
2 . Hash the

message

Compare

Figure 2.1: Digital signing using private key [26].

4 n«quir
ement For

plaintext

4
onus*

4190 S3

ciphertext

Encrypt

Bob's public Key
(i) Encryption

-M Decrypt

Bob's private Key

(ii) Decryption

4 *%rg5
h|djrjh
CJrfcljx

gshft
%god

hs653

ciphertext

1 ,
/ } This la

the
Requlr
emcffl

J * For
the

re

plaintext

Figure 2.2: Encryption using public key [26].

Biometrics

A device supporting public-key operations is not good enough, it is still just one factor
(possession). In case of a lost or stolen device, all the user's accounts would be compromised,
since one device can be used for authentication to all the services. Biometry is a perfect
second factor in this case since it binds the device to the actual user.

The best way to utilize biometry is access to the private keys on the device. Biometric
data together with private keys should never exit the device, since a user has just one face
or just one set of fingerprints and they cannot be changed, unlike passwords (unless the
user is willing to undergo surgery). This is called on-device biometry. Modern smartphones
have biometrics sensors like fingerprint or face scanner and capabilities to generate and
store certificates in Hardware Secure Modules (HSM). H S M is responsible for managing
certificates and other cryptographic material.

Apple have Secure Enclave 1 , Android have keystore 2 . Smartphones are also widely
popular and one of the few things most of us carry with us everywhere we go. A smart-
phone application can also be easily distributed and can provide context (IP address, time,
location, etc.). It looks like a smartphone could be a key to a more secure future on the
internet.

2.4 E x c a l i b u r

Excalibur eliminates passwords, moving all your existing password-protected devices and
systems seamlessly to smartphone-based multi-factor authentication. Excalibur is not just
a password vault. By integration with existing authentication protocols/mechanisms, it is
able to inject and even change passwords, so from the user perspective - authentication is
instantly password-free. Passwords are stored in a distributed manner, secured by phone

x

https://support.apple.com/en-us/HT209632
2

https: //source.android.com/security/keystore

7

https://support.apple.com/en-us/HT209632

biometry, and can be reconstructed only at the given client the user is authenticating at
the moment.

The user only interacts with his/her smartphone - using it to provide authentication
factors such as phone-based biometry, location, proximity to other devices, peer verification,
P I N code if no phone biometry is present, and of course phone ownership is also a factor.
A l l these factors are combined into a simple and straightforward user experience where the
user can't do anything wrong but also can not delegate access in any way.

When there are no more passwords - there is nothing to phish. When the user is unable
to delegate access, there is nothing to social engineer. Excalibur authentication always
relies on at least on 2 factors: possession (Token) & inherence (biometry) or possession &
knowledge (PIN), but more can be configured on per action basis, e.g. location, IP address.
Excalibur logo is shown in Figure 2.3.

By "freeing" authentication from passwords, unique novel authentication/authorization
flows are possible - managers/colleagues are able to verify directly from their mobile phone
that you are who you claim to be, instead of having to wait for IT Security to react, problems
can be solved where they happen - at the branch office. Utilizing physical security and
existing organization structures Excalibur makes it possible for users to vouch for each
other as an additional authentication factor, exactly as in the physical world, you lose your
keys, you ask your manager/colleague to open the doors for you, give you new keys, etc.

In Excalibur every action is cryptographically signed, every session is by default recorded,
meaning there is a cryptographically signed record of everything the user/manager/admin
does, what policy allowed him to perform that action, what factors have been verified,
where why how what the whole context. Malicious actions by authorized users cannot be
prevented, but by being open about the level of monitoring the user can be made acutely
aware that any malicious action will be without a doubt tied to his identity.

In Excalibur every user has access to the Excalibur Dashboard, which is used to access
resources protected behind Excalibur P A M , all user actions and session recordings are visible
to the given user - every time the user logs in - he is made aware of the total auditability
of everything he does effectively creating a psychological deterrent.

Integration with existing protocols

Excalibur was focusing on the authentication to the operating systems, especially Windows.
But with the development of Excalibur P A M , there is a need for passwordless authentica­
tion to various web-based applications. There are multiple protocols that can be used for
web authentication, but they differ based on used accounts (identities) and how are they
managed. Two use cases are:

O

No more passwords!
Excalibur

Figure 2.3: Excalibur logo

8

• Enterprise accounts are managed by a company, typically using some identity
provider (IDP). Identity providers manage identities and provide authentication
services for multiple relying applications. S A M L — Security Assertion Markup
Language is a protocol widely supported by existing identity providers and it does
not rely on passwords. How this protocol works is explained in Section 2.5 - S A M L .

• Personal accounts are not managed, and usually, accounts are not shared between
multiple applications. There is a fairly new protocol that aims to replace password-
based authentication with PKI-based authentication: WebAuthn [12]. It's part of
the FID02 [12] standard. More on this standard can be found in Section 2.6 - F ID02 .

OpenID Connect (OIDC) is another protocol that can be used for enterprise accounts
instead of S A M L . OpenID Connect (OIDC) is an authentication protocol, which intro­
duces an identity layer on top of the authorization framework: OAuth 2.0. In a way, it
is an extension of OAuth 2.0. OIDC is a fully developed protocol for both authentica­
tion and authorization, making heavy use of JSON security tokens (JSON web token) to
communicate user attributes between the service provider and the IdP.

S A M L was chosen for this project based on Excalibur user needs. S A M L is supported
by a larger portion of applications used in enterprise environment 3 .

2.5 S A M L

Short for Security Assertion Markup Language, an XML-based framework for ensuring that
transmitted communications are secure. S A M L defines mechanisms to exchange authenti­
cation, authorization and nonrepudiation information, allowing single sign-on capabilities
for web services [48]. It was developed and continues to be advanced by the Security Ser­
vices Technical Committee of the open standards consortium, OASIS (Organization for the
Advancement of Structured Information Standards [43]). S A M L is also [24]:

• A set of X M L - based protocol messages [37]

• A set of protocol message bindings [36]

• A set of profiles (utilizing all of the above) [39]

S A M L is XML-based, which makes it extremely flexible. Two federation partners can
choose to share whatever identity attributes they want in a S A M L assertion (aka message)
payload as long as those attributes can be represented in X M L [43].

Terminology

The S A M L specification defines the following terms [57]:

• Subject - A n entity about which security information will be exchanged. A subject
usually refers to a person, but can be any entity capable of authentication, including
a software program. For the use cases, we'll discuss, the subject is generally a user of
an application.

• S A M L Assertion - A n XML-based message that contains security information
about a subject.

3

http://saml.xml.org/wiki/saml-open-source-implementations

9

http://saml.xml.org/wiki/saml-open-source-implementations

• S A M L Profile - A specification that defines how to use S A M L messages for a
business use case such as cross-domain single sign-on.

• identity provider - A role defined for the S A M L cross-domain single sign-on profile.
A n identity provider is a server that issues S A M L assertions about an authenticated
subject, in the context of cross-domain single sign-on.

• service provider - Another role defined for the S A M L cross-domain single sign-on
profile. A service provider delegates authentication to an identity provider and relies
on information about an authenticated subject in a S A M L assertion issued by an
identity provider in the context of cross-domain single sign-on.

• Trust Relationship - A n agreement between a S A M L service provider and a S A M L
identity provider whereby the service provider trusts assertions issued by the identity
provider. Trust is configured by exchanging service metadata [34].

• S A M L Protocol Binding - A description of how S A M L message elements are
mapped onto standard communication protocols, such as HTTP, for transmission be­
tween service providers and identity providers. In practice, SAML request and response
messages are typically sent over HTTPS using either HTTP-Redirect or HTTP-POST, us­
ing the HTTP-Redirect and HTTP-POST bindings, respectively.

How It Works

The most common S A M L scenario is cross-domain web single sign-on. In this scenario, the
subject is a user that wishes to use an application. The application acts as a S A M L service
provider. The service provider delegates user authentication to a S A M L identity provider
that may be in a different security domain. The identity provider authenticates a user and
returns a security token (SAML assertion) to the application. A S A M L assertion provides
information on the authentication event and the authenticated subject [57].

To establish the ability to do cross-domain web single sign-on, the organizations owning
the service provider (application) and identity provider exchange information, known as
metadata. The metadata information contains information such as U R L endpoints and
certificates with which to validate digitally signed messages. This data enables the two
parties to exchange messages. The metadata is used to configure and set up a trust rela­
tionship between the service provider and the identity provider and must be done before
the identity provider can authenticate users for the service provider (application) [57].

There are 2 ways how the user can start authentication:

• On service provider side thus called SP-Initiated SSO [57]. The service provider
creates a S A M L request, which is transferred through the user's browser to the identity
provider. IDP then authenticates the user, generates S A M L Response, which is again
transferred through the user's browser to the SP. This flow is shown in Figure 2.4.

• On the identity provider side thus called IDP-Initiated SSO [57]. IDP authenticates
the user without SP to generate an authentication request. This means that the
service provider gets an unsolicited S A M L response, so SP can't verify for whom
SAML Assertions were created. This opens doors for multiple possible attacks, Man-
in-the-middle (MITM) for example [3].

10

Service Provider User Agent

Request target resource

(Discover the IrJP)

Redirect to S S O Service

Request Assertion Consumer Servic 3

Redirect to target resource

Request target resource

Respond with requested resource

Identity Provider

Request S S O Service

(Identify the user)

Respond with X H T M L form

Figure 2.4: Single sign-on using S A M L in a Web browser [49].

SP initiated S A M L login is much more commonly used and more secure, so we will use
it for explaining how S A M L authentication looks like. The next chapter will describe SP
initiated SSO flow with Redirect/POST Bindings, as shown in Figure 2.4.

1. User requests target resource.

2. Service provider will determine which identity should be used for this user. Based on
username, domain, etc.

3. User is redirected to the IDP SSO U R L . SP knows this U R L from metadata. Redirect
is used in this example as binding. There are multiple ways (bindings) how to access
IDP. IDP authenticates user and creates S A M L response.

4. Response containing S A M L assertion is returned in XHTML form to user browser
(agent).

5. Form is consequently POST-ed to service provider Assertion Consumer Service (ACS).
This way of sending S A M L Response to SP is called HTTP-POST binding.

6. Service provider redirects the user to the target resource. This is made using property
called Relay State, which is not part of the SAML Response, but it's rather send
together with SAML Response.

7. Target resource is requested.

8. SP responds with the target resource since the user is logged in.

Identity Federation

With S A M L , identity federation establishes an agreed-upon identifier used between a service
provider (application) and an identity provider to refer to a subject (user). This enables

11

a service provider to delegate authentication of the user to an identity provider and re­
ceive back an authentication assertion with identity claims that include an identifier for
the authenticated subject that will be recognizable by the service provider. The identity
provider needs to be aware of which service provider is using what identifier. Figure 2.5
shows example with 2 applications (service providers).

SAML - Identity Federation

Identity Provider: corp.com

app1: doe
app2: doe@corp.com
app1: doe
app2: doe@corp.com

app1

ID:doe

app2

ID: doe@corp.com

Figure 2.5: Identity Federation

Establishing Trust

Before any communication between Service and identity provider, trust needs to be estab­
lished. Trust is established by exchanging S A M L Entity data, known as S A M L metadata.
Chosen Identity and service provider metadata elements and their attributes are shown
in Table 2.1. Metadata examples can be found in the Excalibur S A M L documentation [6],
or in the Listing 5.1. Metadata can be static or dynamic, which refers to the way of
exchanging them. Static metadata are exchanged manually and dynamic metadata are
exchanged by a trusted third-party service, called SAML federation.

K e y Points

• S A M L is an XML-based framework for exchanging security information between busi­
ness partners.

• A S A M L service provider delegates user authentication to an identity provider.

• A S A M L identity provider authenticates a user and returns the results of a user
authentication event in an X M L message called an authentication response.

• A n authentication response contains an authentication assertion with claims about
the authentication event and authenticated user.

• Identity federation establishes a common identifier for a user between an identity
provider and a service provider.

• New applications should consider using an authentication broker service or S A M L
library to simplify the task of supporting S A M L [57].

12

http://corp.com
mailto:doe@corp.com
mailto:doe@corp.com
mailto:doe@corp.com

2.6 F I D 0 2

FID02 ("Fast IDentity Online") is an open authentication standard, hosted by the
FIDO Alliance, that consists of the W3C Web Authentication (WebAuthn) specification,
and the Client to Authentication Protocol (CTAP). C T A P is an application layer pro­
tocol used for communication between a client (browser) or a platform (operating system)
with an external authenticator such as the security keys or even mobile phone . How
C T A P and WebAuthn protocols fit into F ID02 is shown Figure 2.6.

F ID02 is the latest generation of the U2F ("Universal 2nd Factor") protocol. U2F
is an open authentication standard that enables internet users to securely access any number
of online services with one single security key instantly and with no drivers or client software
needed .

U2F was created by Google and Yubico, and support by N X P , with the vision to take
strong public key crypto to the mass market. Today, the technical specifications are hosted
by the open-authentication industry consortium known as the F I D O Alliance. U2F has
been successfully deployed by large-scale services, including Facebook, Gmail, Dropbox,
GitHub, Salesforce.com, the U K government, and many more 6 .

RP APP SERVER
App calls for
FIDOAuthn ~~ | [• • = • • • !

Figure 2.6: F ID02 WebAuthn + C T A P Flow [12]

Protocols developed by the F I D O A l l i a n c e

In 2014, F I D O Alliance published the Universal Authentication Framework (UAF), which
was intended to implement passwordless authentication through biometrics. They then
added Universal 2nd Factor (U2F), developed by Google and Yubico as a more secure
replacement for traditional OTP-based two-factor authentication (2FA). U2F included its
own client-side protocol, Client to Authenticator Protocol (CTAP), which could be used
to authenticate a token via USB, near-field communication (NFC), or Bluetooth [14].

FID02 is a further development of Google and Yubico's U2F protocol with an expanded
version of C T A P , now called C T A P 2 . While U2F was designed to act as a second factor

4

https: //blog.google/technology/safety-security/your-android-phone-is-a-security-key/
5

https://www.yubico.com/authentication-standards/fido2/
6

https://www.yubico.com/authentication-standards/fido-u2f/

13

http://Salesforce.com
https://www.yubico.com/authentication-standards/fido2/
https://www.yubico.com/authentication-standards/fido-u2f/

for passwords, FID02's purpose is to allow authentication to become passwordless. It does
this via a new web A P I called Web Authentication (WebAuthn) [14].

Summary of discussed protocols and their usage:

• WebAuthn defines a standard web A P I that is being built into browsers and platforms
to enable support for F I D O Authentication.

• CTAP2 can be used for passwordless, second-factor or multi-factor authentication, as
shown in Figure 2.7.

• FIDO U2F (previously CTAP1) is used for a second-factor authentication as shown
in Figure 2.8.

PASS WO RD LESS EXPERIENCE
(UAF standards)

ONLINE AUTH REQUEST LOCAL DEVICE AUTH

$10,000

TRANSFER NOW

SUCCESS

_
TRANSACTION DETAIL SHOWABIOMETBIC

Figure 2.7: Paswordless F IDO Experience [12]

SECOND FACTOR EXPERIENCE
(U2F standards)

ONLINE AUTH REQUEST LOCAL DEVICE AUTH SUCCESS

I j I j

LOGIN & PASSWORD INSERT FIDO
SECURITY KEY
PRESS BUTTON

Figure 2.8: F I D O Second Factor Experience [12]

14

Terminology

FIDO uses slightly different terms same subjects as S A M L and introduces some new:

• Authenticator - A cryptographic entity, existing in hardware or software, that can
register a user with a given Relying Party and later assert possession of the registered
public key credential, and optionally verify the user when requested by the Rely­
ing Party. Authenticators can report information regarding their type and security
characteristics via attestation during registration. A WebAuthn Authenticator could
be:

— roaming authenticator,

— dedicated hardware subsystem integrated into the client device,

— or a software component of the client or client device.

Authenticators that are part of the client device as platform authenticators, while
those that are reachable via cross-platform transport protocols (USB, N F C , B L E , etc.)
are referred to as roaming authenticators. In general, an authenticator is assumed
to have only one user. If multiple natural persons share access to an authenticator,
they are considered to represent the same user in the context of that authenticator. If
an authenticator implementation supports multiple users in separated compartments,
then each compartment is considered a separate authenticator with a single user with
no access to other users' credentials [21].

• Client - an intermediary entity typically implemented in the user agent (in whole,
or in part).

• Client Device - the hardware device on which the WebAuthn Client runs, for ex­
ample, a smartphone, a laptop computer, or a desktop computer, and the operating
system running on that hardware.

• Client-Side - refers in general to the combination of the user's client platform,
authenticators, and everything gluing it all together.

• Relying Party - The entity whose web application utilizes the Web Authentication

API to register and authenticate users. Sometimes referred to as Server or service.

W e b A u t h e n t i c a t i o n (W e b A u t h n)

Most of the authentication flows performed by end-users are done through web browsers. In
a sense, web browsers have become the nexus between credentials and applications on the
two major platforms: desktop and mobile. It is natural, then, that changes to authentication
flows require support from browsers. The web, however, is built on consensus. This means
that changes to the platform need to be implemented by several players. For this reason,
the W3C WebAuthn Working Group was formed: to produce a new specification that can
be implemented by all parties and that remains interoperable [42].

Web Authentication defines an A P I enabling the creation and use of strong, attested,
scoped, public key-based credentials by web applications, for the purpose of strongly au­
thenticating users.

15

W e b A u t h n A P I

WebAuthn, a core component of F I D O Alliance's F ID02 set of specifications, is a web-based
A P I that allows websites to update their login pages to add FIDO-based authentication on
supported browsers and platforms. F ID02 enables users to leverage common devices to
easily authenticate to online services in both mobile and desktop environments [21].

Web services and apps can - and should - turn on this functionality to give their users
an easier login experience via biometrics, mobile devices, and/or F I D O security keys - and
with much higher security over passwords alone.

FIDO's higher security comes from the use of cryptographic login credentials that are
unique across every website, never leave the user's device, and are never stored on a server.
This security model eliminates the risks of phishing, all forms of password theft and replay
attacks.

The Web Authentication A P I (also referred to as WebAuthn) uses asymmetric (public-
key) cryptography instead of passwords or SMS texts for registering, authenticating, and
second-factor authentication with websites. Similar to the other forms of the Credential
Management API , the Web Authentication A P I has two basic methods that correspond
to register and login:

• navigator. credentials. create () - when used with the publicKey option, cre­
ates new credentials, either for registering a new account or for associating a new
asymmetric key pair credentials with an existing account.

• navigator. credentials .get () - when used with the publicKey option, uses an
existing set of credentials to authenticate to a service, either logging a user in or as a
form of second-factor authentication.

Registration flow is shown in Figure 2.9 and authentication flow in Figure 2.10. More
details about individual calls, messages and formats can be found in Web Authentication

standard [21] or on MDN Web Docs
 8

.

Attestation

The attestation is how authenticators prove to the relying party that the keys they generate
originate from a genuine device with certified characteristics and establish a hardware root
of trust 9 . Attestation key pair is burned into the device during manufacturing time that is
specific to a device model. For example, all YubiKey 4 devices would have the same attes­
tation certificate, or all Samsung Galaxy S8's would have the same attestation certificate.
The attestation is specific to a device model and can be used to cryptographically prove
that a user has a specific model of the device when they register. When a user creates the
new "credential key pair" mentioned above, the public key that is sent to the service is
signed with the attestation private key. The service that is creating the new account for
the user can verify that the "attestation signature" on the newly created public key came
from the device [46]. Attestation is mainly used registration: if an attacker intercepts a
registration message they would not be able to just swap out the new public key with their
own, since the attestation signature would not match.

7

https://developer. mozilla.org/en-US/docs/Web/API/Credential_Management_API
8

https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API
9

https://developers. yubico.com/WebAuthn/WebAuthn_Developer_Guide/Attestation.html

16

https://developer
http://mozilla.org/en-US/docs/Web/API/Credential_Management_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API
https://developers
http://yubico.com/WebAuthn/WebAuthn_Developer_Guide/Att

Relying Party Server server validation

challenge,
PublicKeyCredentialCreationOptiorfWI user info, M J

relying party info © © dientDataJSON, , . . _

attestationObiect ffiAuthenticatorAttestationResponse

WebAuttinAPI-

RP JavaScript Application

Browser

relying party id
user info,

relying party info,
clientDataHash

©
new public key,
credential id, ffi attestationObject

attestation

Authentkator

©
user verification,

new keypair,

Figure 2.9: F ID02 registration flow [21].

Relying Party Server

PublicKeyCredentialRequestOptions [J] challenge

server validation

A

V

0 © dientDataJSON,
authenticatorData, [E AuthenticatorAssertionResponse

signature

WebAuthnAPI

relying party id, / T \
clientDataHash \-J

authenticatorData
signature

Authenticator

©
user verification,
create assertion

Figure 2.10: F ID02 authentication flow [21].

Cl ient to A u t h e n t i c a t o r P r o t o c o l (C T A P)

The Client to Authenticator Protocol (CTAP) enables a roaming, user-controlled crypto­
graphic authenticator (such as a smartphone or a hardware security key) to interoperate
with a client platform such as a laptop. C T A P is complementary to the Web Authentica­
tion (WebAuthn) [21]. C T A P is based upon previous work done by the FIDO Alliance, in
particular, the Universal 2nd Factor (U2F) authentication standard

The C T A P specification refers to two protocol versions, the CTAP1/U2F protocol and the
CTAP2 protocol [4]. A n authenticator that implements CTAP2 is called a F ID02 authentica­
tor (also called a WebAuthn authenticator). If that authenticator implements CTAP1/U2F
as well, it is backward compatible with U2F.

17

Extensions

WebAuthn and C T A P protocols both define extensions in their standards [21] [4]. These
extensions can serve very different purposes. C T A P standard defines only one extension at
the time - hmac-secret. It can be used by the platform to retrieve a symmetric secret from
the authenticator when it needs to encrypt or decrypt data using that symmetric secret [4].

WebAuthn on the other hand defines 9 extensions at the time [21]:

• FIDO AppID Extension (appid) - This extension allows WebAuthn Relying Parties
that have previously registered a credential using the legacy FIDO JavaScript APIs
to request an assertion.

• Simple Transaction Authorization Extension (txAuthSimple) - This extension
allows for a simple form of transaction authorization. A Relying Party can specify a
prompt string, intended for display on a trusted device on the authenticator.

• Generic Transaction Authorization Extension (txAuthGeneric) - This exten­
sion allows images to be used as transaction authorization prompts as well. This
allows authenticators without a font rendering engine to be used and also supports a
richer visual appearance.

• Authenticator Selection Extension (authnSel) - This extension allows a We­
bAuthn Relying Party to guide the selection of the authenticator that will be leveraged
when creating the credential. It is intended primarily for Relying Parties that wish
to tightly control the experience around credential creation.

• Supported Extensions Extension (exts) - This extension enables the WebAuthn
Relying Party to determine which extensions the authenticator supports.

• User Verification Index Extension (uvi) - This extension enables use of a user
verification index.

• Location Extension (loc) - This extension provides the authenticator's current
location to the WebAuthn WebAuthn Relying Party.

• User Verification Method Extension (uvm) - This extension enables use of a user
verification method. User verification methods can be found in WebAuthn specifica­
tion, Section 3.1 User Verification Methods [21].

• Biometric Authenticator Performance Bounds Extension

(biometricPerf Bounds) - This extension allows WebAuthn Relying Parties to spec­
ify the desired performance bounds for selecting biometric authenticators as candi­
dates to be employed in a registration ceremony.

18

Table 2.1: Selected S A M L metadata elements and attributes.

Elements are enclosed by "<>".

Common metadata attributes

entitylD the unique identifier of the entity attribute. Note well that the
entitylD is an immutable name for the entity, not a location.

validUntil attribute gives the expiration date of the metadata.
<Signature> element containing digital signature that ensures the authenticity

and integrity of the metadata. The signatory is assumed to be a
trusted 3rd party called a metadata registrar.

<KeyDescriptor> element provides information about the cryptographic key(s) that
an entity uses to sign data or receive encrypted keys, along with
additional cryptographic details.

Identity provider specific metadata attributes

ey escriptor
 e

i
e m e n

t j
n
 which the corresponding public key is included in. The

u s e M
s l

g
n i n

g identity provider software is presumably configured with a private
S A M L signing key.

<SingleSignOnService>

one of the essential elements with 2 main attributes. Location and
Binding

location attribute of SingleSignOnService element. Used by a service
provider to route S A M L messages, which minimizes the possibility
of a rogue identity provider orchestrating.

binding also attribute of SingleSignOnService element. Binding are stan­
dard URIs specified in the S A M L 2.0 Binding specification [36].

Service provider specific metadata attributes

WantAssertionsSigned

attribute on the <SPSSODescriptor> element declares that the ser­
vice provider wants the <saml:Assertion> element to be digitally
signed. This attribute causes a metadata-aware identity provider to
auto-configure itself at run time.

<KeyDescriptor , . , . , , „ . , ,
T
 . , . . , , ,

element m wmcn a public h A M L encryption key is included. ine
use= encryption >

" service provider software is presumably configured with a private
S A M L decryption key [38].

<NameIDFormat> element gives the desired format of the <saml:NameID> element in
the S A M L assertion.

<AssertionConsumerService>

element containing index, binding and location attributes.
Location attribute where SP will receive S A M L authentication responses from

identity provider. [38, 57]
Binding also attribute of SingleSignOnService element. Binding are stan­

dard URIs specified in the S A M L 2.0 Binding specification [36].

19

Chapter 3

Excalibur

There's no silver bullet solution with cybersecurity, a layered defense is
the only viable defense.

James Scott, Institute for Critical Infrastructure Technology

Excalibur utilizes the user's smartphone to act as a secure hardware token for any and all
authentication needs. The ultimate goal is to move all forms of authentication away from
passwords, replace them seamlessly with smartphone-based strong but user-friendly multi-
factor authentication. Excalibur's unique value is in providing backward compatibility with
all the applications, Operating Systems (OS), and services used today thus creating a bridge
between the password-based present and password-free future [10].

Excalibur is not just another password manager. It accommodates multiple protocols
and tools for integrating any enterprise applications into one distributed system. This chap­
ter names Excalibur Components, how is scheme distributed, and illustrates how actions,
like registration and authorization/authentication 1 are performed.

3.1 E x c a l i b u r Components

There are 6 elemental components. These are types of components, they could, in theory,
have more implementations, and some do have, e.g. Dashboard is a special case of the client,
another client is Windows Client, P A M resources are also clients. The whole Excalibur
topology is shown in Figure 3.1.

• Client - There are more implementations of the client, but all of them are used to
grant access to some resource. The resource can be server accessed by ssh, or RDP
or Windows account. A l l types of clients can be found in Section 3.1 - Excalibur
Clients.

• Server - Essential component in Excalibur scheme. Provides a persistent network
and storage point, needs to be reachable by all components, at least at the time of
registration.

• C A - Certificate authority: Issues certificates for Excalibur components. These cer­
tificates are used mostly for signing records and messages. Can be also used for

1 Authentication is implicitly included in authorization flow, so the terms will be used interchangeably.

20

encryption. More on Excalibur certificates can be found in Section 3.1 - Certificates
used in Excalibur.

• Facade - Active Directory integration component. Also, act as an identity store. Can
be installed on the Active Directory server and integrates Windows Domain accounts
or as a lightweight service on any (Windows, Linux) system acting as identity provider
service using protocols such as LDAP.

• Dashboard - Management interface. The whole Excalibur system can be managed
from this web application. P A M is also accessible from Dashboard Section 3.1 -
Excalibur Clients.

• Token - Smartphone application. The token is based on fact that Excalibur utilizes
many of the smartphone functions and sensors, not just the software made by the Ex­
calibur team. Cryptographic material is stored in the smartphone's H S M (Hardware
security module). Figure 3.2 shows factor verification on the Token.

Certificates used in Excalibur

Certificates in Excalibur are used for several purposes. First one is client authentication
in HTTPS protocol [8]. The server verifies that HTTP client is in possession of the private key
of a certificate issued by Excalibur CA. This done for all Excalibur components which are
connecting to server or C A using HTTPS - Facade, Token, Client (for now). The first
connection is made with a built-in certificate. After first connection Certificate signing

request (CSR) 2 is created and submitted to the Excalibur CA. From this moment all
actions with certificates are made using a newly issued certificate. The only purpose of the
built-in certificate is to connect to the C A and creation of the new certificate. This needs
to be done because Excalibur CA allows connections only to clients with Excalibur signed
certificates.

Every Excalibur components have a certificate that is used to verify that message was
really sent by that component. This is done by providing digital signature of every
message. These signatures are then stored, so every action in Excalibur is audited. Another
use of certificates in Excalibur systems is encryption. Only sensitive data, like passwords,
are encrypted using issued certificates.

Overview of Excalibur certificates can be found in Table 3.1.

Table 3.1: Excalibur components certificates.

Component built-in issued
Server / X
Facade / X
Token / /
Client / /
User X /

2

https: //www.globalsign.com/en/blog/what-is-a-certif icate-signing-request-csr

21

http://www.globalsign.com/en/blog/what-is-a-certif

THE INTERNET

Excalibur Cert.
Authority

EXCALIBUR CLOUD

Server must be able to reach
PUSH notification servers for all

supported / deployed mobile
platforms

Token must be able
to connect to the CA

Client & Token
must be able

to connect from
the Internet

PUSH SERVERS

INTERNET/LAN
Firewall (FW)

A

CITRIX Storefront/
VDA with

EXC integration

Any other component
such as RADIUS, SAML,

openID, ADFS etc.

Citrix Storefront
and / or

Netscaler with
EXC integration

Client & Token must be able
to connect from LAN

Server connects to DB
outside of DMZ

Excalibur AD Facade
Facade

Excalibur Server 4?
(Server) „

Excalibur
Database Cluster

(DB)

• = •I I Active
Directory

Server
(AD)

Q.

S 3

YOUR COMPANY'S
LOCAL NETWORK (LAN)

Excalibur Web
Dashboard

(Dashboard)

Figure 3.1: Excalibur system Topology

22

Registration into Excalibur,
DEMO as John Doe

Required Factors

D 9 1 *

Registration into Excalibur, DEMO as John
Doe was successful

STRIHmC
STAGING\john
8 Aug, 12:20

w
Figure 3.2: Mobile application factor verification (location, biometrics, etc.

23

Excalibur Clients

Excalibur Client is any component that can grant access to a resource. It could be some
application (Windows Client), webpage (Dashboard), scripts (WebSDK Component) or some
service like Web-Proxy. Even Token can be considered a client since the user can view its
password.

• Windows Client - Windows application capable of logging into Windows with
biometrics-based Excalibur application (Token).

• P A M - Privileged Access Management: P A M is part of Excalibur Dashboard,
can be used to access resources using just the web browser. Supported protocols are:

- R D P

- SSH

- V N C

- W E B pages - proxies WEB (HTTPS) applications. Built on top of http-proxy
or virtual browser.

• WebSDK Components - JavaScript scripts, that can be loaded in the site and act
as a gateway to a web resource. User sees QR Code, after scanning it and logging into
Excalibur WebSDK Component is able to reconstruct password and inject it to HTML
field. Except for password inject, there are other ways how to deliver passwords to
a protected webpage, such as HTML GET/POST request. WebSDK Component can also
be used for registration to the Excalibur, or to find answers in the manual, which is
also part of the WebSDK. Typical view of the WebSDK can be found in Figure 3.3 and
more pieces of information in the Excalibur documentation [11], specifically in the
Administrator Dashboard Manual 3 These components can only be injected into the
predefined URL. URL of injected website and type of WebSDK Component is chosen from
Dashboard.

Figure 3.3: WebSDK Component as seen by the user.

3

https://docs.xclbr.com/v3/getting-started/excalibur-administrator-dashboard-manual/

#components

24

https://docs.xclbr.com/v3/getting-started/excalibur-administrator-dashboard-manual/

3.2 E x c a l i b u r P A M

Excalibur P A M is able to provide controlled access to most services/servers/applications
by supporting a wide range of protocols. Supported protocols are listed in Section 3.1 -
Excalibur Clients. A l l these applications can be accessed by any web browser supporting
H T M L 5 , even mobile web browsers are supported. SSH, VNC and RDP protocols support is
achieved using Excalibur heavily customized Apache Guacamole . Web resource access is
provided by either H T T P Proxy or Virtual Browser (VB).

Access to PAM-protected resources (such as H T T P Proxy or Virtual Browser protected
resources) is granted only on a whitelist basis and only to strongly multi-factor authenti­
cated users. Excalibur is installed to the existing customer architecture, but it can also be
installed in a separate network segment when network access to every protected resource is
allowed.

Guacamole

Guacamole is an HTML5 web application that provides access to desktop environments using
remote desktop protocols (such as VNC or RDP). Guacamole is also the project that produces
this web application and provides an A P I that drives it. This A P I can be used to power
other similar applications or services.

"Guacamole" is most commonly used to refer to the web application produced by the
Guacamole project using their A P I . This web application is part of a stack that provides a
protocol-agnostic remote desktop gateway. Written in JavaScript and using only H T M L 5
and other standards, the client part of Guacamole requires nothing more than a modern
web browser or web-enabled device when accessing any of the desktops served.

The fundamental reason to use Guacamole is constant, worldwide, unfettered access to
your computers.

Guacamole allows access to one or more desktops from anywhere remotely, without
having to install a client, particularly when installing a client is not possible. By setting
up a Guacamole server, you can provide access to any other computer on the network from
virtually any other computer on the internet, anywhere in the world. Even mobile phones
or tablets can be used, without having to install anything.

Guacamole communicates with the browser through its own protocol, so there needs to
be middleware that interprets Guacamole protocol messages and renders HTML5 webpage
which is then shown to the user. Guacamole architecture is shown in Figure 3.4. Gua­
camole supports session recordings, file transfer logging, and input indexing, which means
all user activity can be captured. Recordings can be text-based, so they can be efficiently
compressed. A l l of this activity logging is made server-side, so a would-be attacker can't
disable them.

Virtual Browser

Virtual Browser is Excalibur's implementation of Remote Browser Isolation (RBI).
It works by streaming vector images from a server-based instance of Chromium while allow­
ing full remote control of this browser instance by the user directly from his web browser.
This is beneficial mainly for security reasons since the client's browser does not have access
to the original HTML page, nor JavaScript or cookies, etc. DOM is executed in the Virtual

4

https: //guacamole.apache.org/
5

https: //guacamole.apache.org/doc/gug/guacamole-ar chitecture.html

25

http://apache.org/doc/gug/guacamole-ar

HTMLS
Web Browser

— t
I Guacsmole protocol over HTTP

T
Guacamo le Server '•, Serviet Container

(such as Apache Tomcat)

Guacamole

Guacamole protocol

'. guacd
: {di\

m I % Arbiträr

RDP VNC

Arbitrary remote desktop
protocols

Other

R e m o t e D e s k t o p s

Figure 3.4: Guacamole 'architecture.

Browser, so a web page is completely isolated from the client's browser, thus the name
- Virtual Browser. In contrast to video codecs - Virtual Browser works with vector
graphics and only the modified parts of the image are transferred. This means that the
image/text quality presented to the end-user is always lossless, no matter the resolution,
frame rate, or other factors. As with all Excalibur P A M components - Virtual Browser
records all sessions. User input is indexed and saved, so it can be used for pattern matching
or other analytics purposes.

Virtual Browser also uses Guacamole. It defines a new protocol (also based on images
and user input) but webkit rendering engine is used to creates images, which are then sent
to the Guacamole. Architecture based on the Virtual Browser is shown in Figure 3.5.

H T T P Proxy

HTTP Proxy is a light-weight alternative to Virtual Browser. It serves a similar purpose as
the Virtual Browser but does not share the same security advantages such as complete
DOM isolation, yet it has its own benefits - mostly compatibility-wise. It terminates HTTP(S)
connection from the client and creates a new one to the server, effectively acting as a Man-
in-the-Middle. Main difference between the HTTP Proxy and the Virtual Browser is where
HTML DOM is executed / interpreted. Virtual Browser executes all code on the server-
side, which has its security benefits and compatibility limitations. On the other hand, HTTP
Proxy just proxies traffic, so the code is executed in the client's browser.

HTTP Proxy injects a special script to the web page, which records user activity. For
recording user activity rrweb project is used '. Recordings are captured directly in the

6

https: //www.w3schools.com/ j s/js_htmldom.asp
7

https: //www.rrweb.io/

26

http://www.w3schools.com/
http://www.rrweb.io/

user's browser and sent to the HTTP Proxy through websocket. The biggest advantage
of HTTP Proxy is that because DOM is executed on the client browser - compatibility with
legacy S W / H W solutions that need to interact with the webpage is preserved - such as
USB security tokens, or other H S M solutions, etc.

HTTP-Proxy does not use Guacamole. It serves a similar purpose as Virtual Browser
but does not share the same security advantages such as layers separations. This doesn't
create so much overhead as the virtual browser approach but is also less secure. It can be
thought of as a lightweight virtual browser. The architecture diagram of the H T T P Proxy
is shown in the Figure 3.6.

SECURE ZONE

TARGET WEBSITE
PAM Target

E
RECORDING n r i o MFA TOKEN SCRIPT

Excalibur Client

Figure 3.6: Architecture diagram of the Excalibur H T T P Proxy.

27

3.3 E x c a l i b u r system actions

There are 2 main actions in the Excalibur system, i.e., Registration and Authorization.
Because credentials are bound to the user's smartphone and their biometrics (face, fin­
gerprint), Excalibur is simultaneously authenticating and authorizing the user. In plain
English, the user needs to prove that he is really him (by providing biometrics) every time
he wants to access some resource (open ssh connection).

Policies

The policy is a set of rules specified for an action performed by an Excalibur user which
needs to be fulfilled to allow the action. The policy can specify which factors need to be
provided by the user, allows the action to be performed just on some subset of clients, inside
specified sets of geofences, and/or at the right time and day of a week [10].

Policies can contain any of the following rules and their combinations:

• Factors

— Fingerprint

— P I N

— Face recognition

• Geofences - a subset of geofences where the user must be physically located to perform
the action.

• Clients - a subset of clients on which the action is allowed to be performed.

• Time of the day

• Day of the week

• IP address of the client

• IP address of the token

• Additional verification by manager / admin / support center

When registering, Token generates privateKey, publicKey pairs for each factor it sup­
ports using HW-backed secure enclave, publicKey is then signed by Token with
userPrivateKey and sent to the Server to be stored for Factor Verification.

Fingerprint private-public key pair is generated in such a way that every future
signing of the data with a private key requires a fingerprint to be provided to unlock it.

PIN privateKey is only accessible after entering the correct P I N , the rate limit is
applied both locally and on the Server.

Location privateKey is used to sign the location sent to the Server [10].

Registration

Registration is a process that binds together user (person) with their smartphone (token)
with Excalibur account using biometrics. Registration can be, in theory, made on every
client, but right now only 2 clients supports registration: Dashboard and Windows Client.
The registration process is shown in Figure 3.7 and the steps are:

28

1. User enters credentials (username, password) and email address.

2. (a) User's credentials are send to the Server, then forwarded to Facade,

(b) where they are confirmed against identity store 8 .

(c) Result is returned to server.

3. When entered credentials are valid, email with magic link (and fallback O T P - One-
Time-Password) is generated and send to entered email address 9 .

4. (a) User opens this email on any device,

(b) clicks on "magic" link (or rewrites O T P code 1 0) proving he owns entered email
address.

(c) O T P code is validated on the server and the result is sent back to the client.

5. When the email address is validated Q R code is generated and shown to the user.

6. User scans registration Q R code with Excalibur mobile application.

7. (a) User provides biometrics or P I N 1 1. Token validates biometrics locally.
(b) At the same time token send other factors to the server.
(c) Server validates all factors and policies and returns result.

8. When all policies and factors are valid, token sends registration data together with
login data to the server.

9. User is registered and automatically logged in using login data.

Asking users for account and password as the first step has some security benefits. The user
needs to prove that he knows something before more system resources are allocated for him.
In combination with rate-limiting (Captcha), this acts as sufficient DOS (Denial-of-Service)
protection [27].

When a password is verified by facade it encrypts the password with a random key and
this random key is then encrypted with token's public key. Encrypted password is
called server crypto part and encrypted random is called token crypto part. These
crypto parts are send back to server, where server crypto part is stored and token
crypto part is forwarded to token. Token stores it's crypto part in H S M .

Authorization

Authorization is simpler than the registration, as shown in Figure 3.8, and the steps are:

1. Client generates authorization Q R code.

2. User scans Q R code with Excalibur applications.

3. (a) Mobile application asks user for biometrics

8 Exca l ibur does not need any passwords, but existing passwords are the best way how can be Excalibur
integrated to existing enterprise infrastructure.

9 O T P is needed when users cannot access mail client on the same device he is registering, e.g. registration
via Windows client - cannot log in to open email

1 0 W h e n he opened the email on another device where he is registering.
1 1 P I N code is used when biometrics are not available.

29

5. Show QR
9. User login code

USER •
7a. Input

biometrics

1. Credentials

4a. Read OTP

4b. Input OTP

\ r

CLIENT

6. Scan QR
code
• •

A

8. Forward
loginData

Y
TOKEN

Q
<-

7b. verify factors

7.c Factors results
>

8. Send
registrationData
and loginData

A"
3. Send
email
E l

4c.
OTP

result

EXCALIBUR
SERVER

2.c Result !
L i :

2.a Forward
credentials

EXCALIBUR
FACADE

I
1

2.b Validate
credentials

Figure 3.7: Excalibur registration process.

(b) and simultaneously sends factors (locations, biometrics, etc.) to the Excalibur
server.

(c) Server verifies factors and policies and return result (c).

4. (a) When factors and policies are valid, token sends its crypto part to the server.
Crypto part is encrypted with facade*s public key, so only the facade can
reads it.

(b) This message is forwarded together with server' s crypto parts to the facade.

5. Facade reconstructs the password and encrypts it with a random key, which is then
encrypted with client's public key.

6. Encrypted random key with encrypted password is send back to client through
server.

7. Client decrypts password with it's private key and uses it for login.

30

1. Generate QR
7. User login code

USER

3a. Input
biometrics

2. Scan QR
code
• •

TOKEN

D

6. Forward
credentials

<

3b. verify factor;

3.c Factors results

4a. Send
tokenCryptoPart

EXCALIBUR
SERVER

4b. Forward with"^
serverCryptoPart y

EXCALIBUR
FACADE

1
5. Reconstruct

credentials

Figure 3.8: Excalibur authorization process.

Current State of the Excalibur Server

Latest deployed version of the Excalibur Server is v3.3.5. Right now we are developing
a new major version, which we call v3.5. It is based on a new architecture, but it is based
on the same principles. Most of the cryptographic operations in our crypto scheme stay
the same and some new ones are added.

Excalibur Server v3 is built on top of the Node, js cluster so a single instance of
Node.js runs in a single thread. A single thread is called a worker. These workers have a
single point of entry and exit for every request. Communication between threads is done
by our own implementation of inter-process communication (IPC) [16]. Workers can be
started on-demand, or at the start of the Excalibur Server. Multiple workers of the
same type can be run simultaneously in which case the IPC decides to which worker will
be the request delivered. Some workers are stateless, but some cannot be because of the

31

other architecture aspects like database connections and connections to the tokens, clients,
etc. The bottleneck is not the computation power, but communication pipes, as we find
out. Excalibur Server v3 is not actively developed right now, only bug fixes and minor
improvements are developed.

Our focus shifted to the new Excalibur Server v3.5. This server is a major overhaul
of the existing one. A new database scheme with a new IPC, which we now call router,
was developed. Workers are now services and are standalone Node.js applications commu­
nicating via a router. Outer routers for communication with Facade, Clients and Tokens
were also added. This enables us to really scale services. Excalibur Server v3.5 is more
cloud-focused than Excalibur Server v3, but it is still a hybrid model since it needs to
have some components installed in the customer's infrastructure. A new certificate issuing
process was also developed.

Excalibur Server v3.5 is a platform that should developers enable to built secure,
testable but open software on a solid foundation. Testing the old solution was nearly
impossible since a single action flow through multiple components on multiple platforms
and user action was needed. Some components were purely documented and after some
time not maintained. Version 3.5 is using various techniques and technologies for better
maintainability of the product.

Right now Excalibur Server v3.5 is still in development and just the basic building
blocks were implemented. It is not yet ready for implementing various extensions, which
are the focus of this thesis. Implementation is slower than with Excalibur Server v3, but
it enables us to continuously test our solution and to expand/modify features.

32

Chapter 4

Integration design

This chapter consists from three main sections: SAML integration, FIDO case study
and Single sign-on (SSO) integration. S A M L is a standard for exchanging authenti­
cation data, which are known to the Excalibur. The first section is divided into subsec­
tions about requirements, protocol implementation, and binding with the Excalibur crypto
scheme.

FIDO, on the other hand, is a standard for authentication. How it could be integrated
into Excalibur is not that simple as with S A M L protocol. The F I D O case study section is
focused on explaining various use cases, where F I D O could be advantageous to use.

The last section is discussing requirements for implementing SSO to the Excalibur with
regards to existing clients and also newly integrated.

4.1 E x c a l i b u r — S A M L integrat ion design

S A M L is a passwordless protocol - there is no shared secret between parties. Traditionally
a shared secret is used for establishing trust, so if the other party knows the secret, it can
be trusted. In S A M L trust is established by exchanging metadata containing certificates
with a public key. This key will then be used to validate messages. S A M L does not
specify the actual method of authentication, it is only used to present SP fact that the user
authenticated to the IDP. This is ideal for our use case since users can be authenticated
using Excalibur a then S A M L assertions can be created. One of the main advantages of
Excalibur is its distributed crypto scheme, which ensures that even when an attacker gains
control of one component, he will not gain access to any system. Using a password ensures
this since passwords can not be reconstructed unless user authorize such action using their
phone. This could be a problem with S A M L since S A M L does not use any shared secret.

As told before, S A M L is built on the concept of trust. Trust is established by ex­
changing metadata, which means that implemented solution needs to be able to generate
metadata for the SP and also manage SP metadata. Imported SP metadata are needed for
valid S A M L communication, so managing service providers means managing SP metadata.
IDP metadata needs to be publicly available, so an administrator of the service provider
can download them and import them into the SP. Some service providers also require a
signing/encryption certificate to be imported since not all IDP includes their certificates in
the metadata. So there should also be a way to download these certificates.

33

S A M L is an XML-based framework, so creating and validating actual S A M L messages
is not a trivial task. Last step should be integrating S A M L Component with the Excalibur
authentication.

For the sake of recapitulation, S A M L implementation requirements are:

1. managing and generating S A M L metadata,

2. exporting S A M L metadata and signing and encryption public keys,

3. creating and validating S A M L requests and responses,

4. binding user authentication to the creation of S A M L assertions. Only when the user
really logs in, assertion is created. Even when the attacker gained control over the
server, he can't be able to generate S A M L assertion.

S A M L l ibrary

The first, second, and third requirements can be satisfied by using the S A M L library.
Most of the Excalibur server code is run in nodejs 1 , so one of possible libraries to use is
samlify [32].

New A P I endpoints will be created: SingleSignOnService as named in metadata
(Table 2.1). This endpoint will accept only GET and POST HTTP messages containing
SAMLRequest object. GET and POST are the most commonly used S A M L bindings, so it
is a good start, artifact binding can be added in the future. In metadata this endpoint will
be presented as two <SingleSignOnService> elements with different binding attribute.

These endpoints will be used for receiving SAML AuthnRequests. S A M L library will
parse and validate this request based on the SP metadata, which were imported beforehand.
After validating the S A M L request, user authentication follows. User authentication is
responsibility of the Authentication component, which will be discussed in the Section 4.1.

After successful authentication user data, given SP metadata and AuthRequest will be
used to create SAML Response. S A M L response can be signed and optionally encrypted,
depending on the SP metadata and AuthnRequest. SAML Response will be then send
to the URL from <AssertionConsumerService element from given service provider (SP)
metadata. Based on binding attribute of <AssertionConsumerService element POST
or REDIRECT HTTP method will be used. SAMLResponse will be either posted in body of
the HTTP-POST message, or in HTML Form, which will be returned to user browser and
automatically submitted. This process is shown in Figure 4.1.

Cert i f icate store

Certificates used in S A M L flows can't be stored on the server, since Excalibur is deployed
as a Docker container to the customer server, which typically does not have an H S M .
Certificates are common for all Excalibur users, so they can't be stored on the user phone
either. One of the solutions is to move them deeper into the customer infrastructure, to
the Facade. Facade is installed on customer's Active Directory (AD), where they should
stay in H S M . This solution complicates flow by introducing a round trip to the Facade for
each authentication request.

1

https: //nodej s.org/en/

34

EXCALIBUR
ENTERPRISE

Identity Provider (IDP)

TARGET WEBSITE

Service Provider

2. SAMLRequest

7. SAMLResponse

3. Present QR code

6. LoginData

A

Browser

4. S;an QR code

5. User
authenticates 1. User visits SP website

8. Requested resource

Figure 4.1: Excalibur login via S A M L .

A d d i n g E x c a l i b u r A u t h e n t i c a t i o n to the S A M L F l o w

After successful validation of the incoming AuthnRequest, standard Excalibur authenti­
cation will start by presenting the Q R code. Q R code can be presented to the user by
one of the existing Excalibur components - WebSDK client, Section 3.1. Diagram showing
authentication via S A M L using WebSDK client is show in Figure 4.2.

This script will be presented to the user with hidden HTML form. After the user au­
thenticates, user data will be filled into the form and submitted back to the server. This
requires another endpoint where the user data will be sent - response endpoint.

WebSDK clients don't validate if returned values are really from the server. WebSDK
clients are intended to inject password in HTML form on target applications, so the validation
is done by that target system. But since S A M L does not need passwords, the server needs
to verify that login data submitted back to the server really came from the server and
that the user really interacted with the token. This can be solved by including a message
signature.

Server-side Authentication Component

The second solution is to present a Q R code to the user and wait for authentication on the
server-side. For this to work, the server will need to link authentication action with specific

35

Token Browser Serv ice
Prov ider

Exca
server

li bu r
(EXC)

1. S P redirects user to S S O
URL with {SAMLRequest }

3. User scans
QR Code

2. W e b S D K cl ient

4. Token send {Log inData }

5. {Log inData } are send to W e b S D K

6. W e b S D K send {Log inData } in HTML fo rm

5. E X C redirects user
browser with {SAMLResponse}

>: / A C S URL
6. SP respond to

the user 's or igin request

/ S S O URL

Figure 4.2: Excalibur login via S A M L using WebSDK.

browser (QR code changes every 15 seconds). Message and signature validation still need to
be done the same way as described in the previous paragraph. This method is slightly more
secure because user information will go all the way to the user's browser. At least not until
authentication is completed. This information is then embedded in S A M L response and
possibly send to the user (based on SP binding). Developing a new authentication method
can be taken as a negative, but it will simplify the authentication process and would make
it a little bit more secure. How would this method work is show in Figure 4.3.

Token Browser Serv ice
Prov ider

Exca l ibur
se rver (EXC)

1. S P redirects user to S S O
URL with { SAMLRequest }

3. User scans
QR Code

2. QR code

4. Token send {Log inData}

5. E X C redirects user
browser with {SAMLResponse}

- M / A C S URL
6. SP respond to

the user 's or igin request

/ S S O URL

Figure 4.3: Excalibur login via S A M L using server-side method.

36

4.2 F I D 0 2 Case S t u d y

The goal of the F ID02 project is to standardize an interface for authenticating users to
web-based applications and services using public-key cryptography. Whereas S A M L is
a protocol for exchanging authentication, so any authentication mechanism can be used.
WebAuthn 2 , on the other hand, specifies how authentication needs to be implemented.
This is the main difference between S A M L and F ID02 projects.

In typical F I D O flow website acts as a Relying Party and the device on which the website
is rendered acts as a F I D O Authenticator, i.e. website is rendered on the computer, so a
computer is a F ID02 Authenticator. When the computer does not have FIDO capabilities
it can utilize C T A P 2 protocol and contact some security keys (roaming authenticators)
(e.g. smartphone, USB key, smart card).

Here is a brief introduction to the use cases presented in this section.

• Excalibur as FID02 Authenticator. Excalibur would act as a F ID02 authenti­
cator. Can be useful for logging in to the web application, that supports F ID02 with
Excalibur.

• Excalibur as a second factor (U2F). Similar case as previous one, but utilizing
U2F, so Excalibur would only be a second factor, a password is still required.

• Adding more factors to the Excalibur. This use case has 2 sub-cases. We
can authenticate using security keys to the Excalibur, improving security, or we can
retransmit these security keys to the relying party. Retransmitting could be useful
when accessing a site via Excalibur PAM.

— Authentication to the Excalibur using security keys.

— Retransmitting security keys. Excalibur PAM can be used to access various
websites. When this website requires some security key, it would not always
work out of the box. F ID02 could help retransmit these security keys through
P A M .

• Replacing Excalibur Authentication with FID02. F ID02 is developed with
similar assumptions in mind. This is a direct comparison between the F ID02 and the
Excalibur authentication flow.

E x c a l i b u r as F I D 0 2 A u t h e n t i c a t o r

Excalibur would act as a F ID02 (WebAuthn) authenticator and the website as a Relying
Party, as shown in Figure 4.4. Implementing this solution would bring true passwordless
login to the websites. It is an alternative to the S A M L login. The problem with this
approach is that really no major website implements WebAuthn [47]. Could be great
one day, but right now it is not worth investing time and effort, since it would not be
used. Moreover, if the target website would support F ID02 , there would be no need for
Excalibur, since Excalibur and F ID02 have the same requirements for the smartphone.
Excalibur could add management capabilities over who is registered and so on, but for this
are better-suited protocols, e.g. S A M L .

2 W e b Authentication (WebAuthn) is a core component of the F I D 0 2 Project.

37

Excalibur as WebAuthn Authenticator

WEBSITE

Relying Party

FID02 (WebAuthn)
Authentication

< >
Excalibur Server

FIDO Authenticator

Excalibur
Authentication

Excalibur Factors
(biometry, location,...)

USER

D
Excalibur Token

Figure 4.4: Excalibur as WebAuthn (FID02) Authenticator.

E x c a l i b u r as a second factor (U 2 F)

Universal 2nd Factor (U2F) is an open standard that strengthens and simplifies two-factor
authentication (2FA). F ID02 is the latest generation of the U2F protocol. It is a very
similar case to the previous one, but Excalibur would act as a second factor (password
would still be the first one). Unlike WebAuthn, U2F is well supported in both enterprise
and personal solutions. Excalibur would act as a security key, that could be used as 2nd
factor for any website supporting security as the second factor, as shown in Figure 4.5.
A little more on the topic of U2F is discussed in Section 4.2 - Retransmitting security
keys. Implementation would include some kind of client: Excalibur client installed on the
computer, a mobile application, or a browser extension. This client would implement the
U2F (FIDO) protocol, so it would act as a software security key to the websites. Excalibur is
trying to shield users from passwords, not just add another step to the already complicated
authentication process. We also didn't see demand for this kind of solution from our current
nor potential customers.

A d d i n g more factors to the E x c a l i b u r

This use case is about utilizing FIDO in the Excalibur authentication. A large portion of
companies is already using some kind of the second factor, e.g. USB tokens, smart cards.
These security keys have issued certificate, which is used to authenticate the client. This
use case can be further divided based on target and type of certificate validation. The
target could be either a general Excalibur client or the Excalibur Dashboard, specifically.
Client authentication can be done on either HTTPS or the application layer.

38

Excalibur as U2F Authenticator

WEBSITE

Relying Party

FID02 (U2F)
Authentication

Excalibur Server

FIDO Authenticator

Username,
Password

Excalibur
Authentication

Excalibur Factors
(biometry, location,...)

USER

D
Excalibur Token

Figure 4.5: Excalibur as second factor using U2F protocol.

Authentication to the Excalibur using security keys

Excalibur Dashboard is a webpage, so standard HTTPS Client Authentication can be
used. A typical use case would be authentication to the Excalibur P A M since P A M is a part
of the Dashboard. HTTPS Client Authentication to the Dashboard (PAM) can be used
if the certificate root can be exported and subsequently imported to the Excalibur Server.
This approach is possible also with already issued security keys. It is also recommended to
forbid access on the network level to all the targets that are secured by Excalibur P A M ,
so users can only access them through Excalibur Server. HTTPS Client Authentication
is already used for some deployments, so there is no need to implement F I D O or anything
else.

On the other hand, Excalibur Windows Client is already authenticating against the
server with the built-in certificate, as mentioned in Section 3.1 - Certificates used in Exca­
libur.

FIDO could be implemented to add support for Roaming authenticators in either Ex­
calibur Client, or Excalibur Dashboard, but F ID02 does not add any value to the authen­
tication flow. Excalibur is already validating many factors, see Section 3.3 - Policies.

Retransmitting security keys

Security keys are often issued by other companies, not the customer. These keys are used
to secure federated access from the customer network to the federated network. This means
that certificate validation is done on the federated site and can't be done on the Excalibur
Server. The typical use case is accessing the federated website from the customer network
via Excalibur PAM. There are multiple ways how to authenticate clients in a federated
environment:

HTTPS Client Authentication - This is just a special case of previously analyzed Sec­
tion 4.2. In this instance certificate validation cannot take place on the Excalibur

39

Server, e.g. because of company policies. Neither HTTP Proxy nor Virtual Browser
is supporting this scenario. It is something we are investigating right now, but it has
a low priority since we do not see any demand for this feature.

Client Authentication using a thick client. This approach needs some kind of client
on the client device. Clients are often custom build for specific use cases. E.g. Slovak
government website slovensko.sk is using thick client 3 based on solution from Thales
Group [55]. Also, the National Bank of Slovakia (and some other European national
banks) is using similar solution for securing access to the Alliance Web Platform [53].
This approach cannot work with the Virtual Browser, since all commands are executed
in the Virtual Browser and the security key is plugged in the client device.

On the other hand, this approach can work with H T T P Proxy. H T T P Proxy is
retransmitting all H T T P communication, so code is executed on the client device.
However we cannot say H T T P Proxy is fully transparent for this approach since
there can be, and often are, port forwarding techniques included. Port forwarding is
done differently for different solutions, so necessary changes to the H T T P Proxy are
deployment-specific.

U2F security keys can be used as an additional method of two-step verification to online
services that support the U2F protocol, including Google, Azure [29], Dropbox [19],
GitHub [56], GitLab [33], Bitbucket [22], Nextcloud [45], Facebook [20] and others.
Again, HTTP Proxy should be transparent for this use case, but it will not work in the
Virtual Browser. Virtual Browser could act as a U2F security key. This case was
presented in the Section 4.2. For usage with a real user security key, Virtual Browser
would need to implement F IDO, which would retransmit F I D O communication from
user browser to the Virtual Browser.

We did not encounter any enterprise software that would implement U2F protocol
since developers can not specify which can or cannot be used for authentication.
Securing major websites as GitHub or Azure with Excalibur P A M does not make
sense, since it can be bypassed anytime. These websites can be reached from any
device or network in the world, so it is impossible to forbid access to them (unless
you live in China). Moreover using U2F is an indicator, that they are taking security
seriously, which is especially true for major websites listed above.

R e p l a c i n g E x c a l i b u r A u t h e n t i c a t i o n F l o w w i t h F I D 0 2

FID02 standard was introduced to enable users to easily authenticate to online services in
both mobile and desktop environments [12]. This mechanism can be used to authenticate
to the Excalibur. Replacing the Excalibur authentication flow for the F ID02 flow would
standardize the authentication process, but would also remove some of the advantages of
the Excalibur authentication flow. How would this flow looked like is shown in Figure 4.6.

One of the biggest advantages of the F ID02 flow is that the user does not need any
application. However, without the application running on the user phone we would lose
the ability to store keys and crypto material. This would mean that no password can be
reconstructed. There are cases, where this is not a problem, e.g. deployment, where the
only way of authenticating is done using passwordless protocols such as S A M L . Hopefully,
we will do such deployment in the future but for now, it is only a dream.

3

https: //techterms.com/def inition/thickclient

40

http://slovensko.sk

Login to Excalibur using FID02

Excalibur Server

FIDO Authenticator

FID02 (WebAuthn)
Authentication

FID02 Factors
(biometry, location?)

USER

Excalibur
Dashboard

FID02 (CTAP2)
Authentication

•
Excalibur Token

Figure 4.6: App-less Excalibur.

F ID02 can be also used in the mobile application using various SDKs . Most F ID02
implementations do not provide access to a low-level operation like signing or encrypting.
The only methods that are usable by developers are those that are described in the Sec­
tion 2.6 - F ID02 . These methods do not provide any means for supporting encryption,
which is vital for Excalibur.

F ID02 standard introduces extensions, which could be used for encryption and some
other functions (e.g. location), hmac-secret is an C T A P 2 extension which could be used
for retrieving a symmetric key for encryption (Section 2.6 - Extensions). Another exten­
sion what could be useful is Location Extension (loc). These extensions are not well
supported in neither browsers nor SKDs. As stated on the Mozilla Development Network
website:

"As of June 2020, only appid is supported by Chrome and Edge. Firefox does not seem
to support any extension. Also Chrome doesn't plan to support any other extension in
future" 5 .

Another problem could be the usage of CTAP2 protocol. CTAP2 is used for communication
between a computer and a mobile device, utilizing B L E , most probably. Most enterprise
does not like solutions built around B L E , because of the manageability and security. Most
desktop does not have Bluetooth transmitters out of the box. For this use case, a simple
QR code shown on the display is a way better solution.

K e y Points

FID02 standard is fighting the same war with similar tools as the Excalibur. They are both
trying to remove passwords from our lives. Implementing F ID02 to the existing Excalibur

4

https: 111 idoalliance. org/f ido- cert i f ied- showcase/
5

https://developer. mozilla.org/en-US/docs/Web/API/PublicKeyCredentialRequestOptions/

extensions

41

https://developer
http://mozilla.org/en-US/docs/Web/API/PublicKeyCredentialRequest

architecture does not make sense. At least, we did not found any use case, where it would
be worth it, for now. F ID02 could be taken as a direct alternative to the Excalibur system,
more focused on personal accounts. It can be used by any user who wants to get rid of
passwords and use the internet more securely, but it is not a very good option for enterprise
solutions. The main reasons are summarized here:

• Weak WebAuthn support by the websites.

• Weak F ID02 extension support by browsers.

• No low-level access to the cryptographic keys used for FID02.

• F ID02 is focused on personal accounts, no way to control which authenticators can
be used for authentication/registration.

• Excalibur scheme can do everything that F ID02 scheme can and much more.

• No or very little added value for F ID02 implementation.

FIDO is a solid standard, which can be utilized for many use cases. Cloudflare recently
announced their plan to use FIDO as C A P T C H A replacement [28]. The flow is very similar
to the classic F I D O login, but they are interested in the attestation signature (Section 2.6).
However, the F I D O device biometric sensor can be easily deceived and even abused for an
automatic attack, which was presented by Yuriy Ackermann [59].

4.3 Single sign-on (SSO) design

Users can authenticate to the Excalibur system from multiple clients. These clients are
fundamentally different in platform, persistence, capabilities, etc. This section is written
for the Excalibur Server v3.5. The ideal client has these properties:

• Can report that user logged in.

• Can report every user logout.

• Can log out the user.

This is true for Windows Client, but can not be said for any web client. Dashboard
 6

can report user log in, but can't always report logout, e.g. when a connection is ungracefully
terminated. Dashboard communicates with the server using REST API and login tokens
(JWT) are also stored on the server-side, so the user could be logged out.

PAM is a web client and behaves the same way as the Dashboard with regards to user
sessions with one exception. P A M has a permanent websocket connection to the server, so
it can be instantly terminated. The only exception is the HTTP-PROXY. It's based on
HTTP protocol (no websocket), so it behaves the same way as Dashboard.

When the user logs in via SAML to some web applications, Excalibur has only login
information. Single Logout (SLO) is a feature of the S A M L , but only a small portion
of applications are supporting it right now. Same as the SSO, SLO can be SP-Initiated
or IDP-Initiated [52]. It can be used for both obtaining information about user logout
and for terminating user sessions. SLO should be implemented in the Excalibur server but
should be not relied upon, since not all SAML-enabled applications support SLO.

6 Dashboard is also a client.

42

Sessions

User session in the Excalibur Server v3.5 is based on J W T tokens. These tokens are
also stored on the server-side and can contain information signed by multiple components.
User can be in these states:

• Logged in.

• Logged in but lost access tokens (e.g. device restart) - valid tokens, but user got no
access to them.

• Logs out, but a server does not know about it - e.g. lost connection to the internet.

• User logged out.

In which state the user is right now can be tricky to identify. Desktop clients can not
be taken into account. When the user which is logged in the OS visits some web resource,
e.g. Dashboard, we do not know which user it is. SSO could be determined only based on
the web clients. These clients however cannot always report log in / log out events. There
are really one 2 fundamental solutions to this problem:

• SSO based only on clients with a permanent connection.

• SSO based on the timeouts.

SSO based only on clients with permanent connection is more straightforward
and easier to implement. We should know the user state at every moment. Except for some
edge cases like dropped websocket connection, that will eventually be restored.

SSO based on the timeouts needs to be well designed. The first issue is to choose
which clients will be taken into account and how will the timeouts work for each client. We
can distinguish 3 types of clients:

• Web clients with permanent connection (Excalibur PAM). This is quite simple. The
user is using a web client with a permanent connection - he is logged in.

• Web Client without the permanent connection (Dashboard, HTTP Proxy). Since we
designed authentication scheme with JWTs, which are also stored on the backend, we
can at any moment tell, if the given user has a valid token, thus is logged in.

• Web clients used to log in to the third-party application (WebSDK, SAML). When the
user is logged in to the third-party application using WebSDK we cannot make any
assumption if she/he is still logged in or no since third party application will typically
not report that user logged out. S A M L does have a mechanism for this, called Single
Logout (SLO), but SP does not implement, nor use it. S A M L is also giving us the
option to limit the time for which he will be logged in to the SP, but this again
could be ignored by the SP. The best way is to simply ignore this kind of client when
determining if the user is logged in.

43

Chapter 5

Implementation

This chapter is focused purely on S A M L implementation since we decided not to implement
the F ID02 protocol based on facts stated in Section 4.2. S A M L implementation is divided
into:

• S A M L Server Component implementation - responsible for validating and managing
S A M L service provider (SP) metadata, creating identity provider (IDP) metadata,
consuming, validating, and generating S A M L messages, i.e. everything S A M L related.

• Authentication Component - WebSDK for this implementation, but can be and will
be replaced by a new one for S A M L implementation to the Excalibur Server v3.5.

Authentication Component is adding Excalibur authentication to the S A M L flow, or
any other future integrations.

5.1 S A M L Server C o m p o n e n t

Since majority of Excalibur Server codebase is written in JavaScript and run by nodejs
 1

S A M L Component will be also written in JavaScript. As said in Section 4.1 - S A M L
library, samlif y [32] was used for implementation.

Excalibur Server v3 is using the concept of workers, so S A M L Component is a single
worker. There is also a possibility to spawn multiple instances of the same worker, so they
should be stateless, even when this is used only for a few specific workers. More on server
architecture in Section 3.3 - Current State of the Excalibur Server.

S A M L communication

S A M L is an open standard for exchanging authentication and authorization data between
parties, in particular, between an identity provider (IDP) and a service provider (SP). What
is S A M L and how it works is discussed in Section 2.5 - S A M L . This chapter is focused on
the implementation of the solution proposed in Section 4.1 - Excalibur - S A M L integration
design.

Right now only SP-initiated login is supported since it is a typical use case for most, if
not all the users. IDP initiated flow is on the roadmap, but only for the Excalibur Server
v3.5, because it does not make sense without fully functional SSO. How IDP initiated flow
would look like is discussed at the end of this section.

1

https: //nodej s.org/en/

44

This section is describing the authentication process as presented in Section 4.1 - Ex-
calibur - S A M L integration design, but in more depth and with added details from imple­
mentation. Described flow is visualized in the Figure 4.1, Figure 4.2 or in the Figure 2.4.

SP-initiated flow starts at the SP , where the user enters credentials or chooses that
she/he wish to authenticate using Excalibur IDP. SAML AuthnRequest is generated
and delivered to the IDP. Format and how it is delivered depends on used bindings,
more in Section 2.5 - S A M L . As shown in example metadata Listing 5.1, Excali­
bur IDP supports POST and REDIRECT binding and using different endpoints for
both, so the SP needs to choose one of the bindings, binding is a attribute of
the SingleSignOn element in the S A M L metadata [38]. If the SP choose to use
POST binding, it includes AuthnRequest in the HTTP POST form submitted to the
location attribute of the selected SingleSignOnService element. On the other
hand when SP choose to use REDIRECT binding, AuthnRequest is part of the url
parameter to which is user redirected. In both cases AuthnRequest is base64 encoded.

Parsing of the S A M L AuthnRequest is done by library function
IdentityProvider.parseLoginRequest(sp, binding, request). First parameter
is the SP object which is determined based on the ref erer parameter of the HTTP
request. After successful parsing and validation of the AuthnRequest, flow object is
created. This is a library-specific object that would be used further in the flow. It
represents some kind of library state (information about SP, S A M L request, etc.).

The next step is to present the Q R code to the user. This is done by returning HTML
page with HTML form, which includes hidden elements and WebSDK script. WebSDK can
be replaced for another authentication component, but for S A M L implementation for
Excalibur Server v3, it was the only choice. It was also modified to support this
use case, more in Section 5.2 - Authentication Component.

Since our implementation should be stateless, the flow object is sent to the user's
browser. After authentication, it is sent back to the server. To make sure that flow
object was not manipulated with, a signature of the object is also included. Before
signing the flow object, a timestamp is added to prevent reuse of this object.

After user authenticates to the Excalibur , user authentication data with the flow
object is send to the server via the HTML form. Server validates signatures for both
user data and flow object and timestamp included in the flow object.

For generating SAMLResponse template is used. Templates grant us the freedom to
choose which values are shared with the SP. This template is populated with data
from the request and with user data, samlify [32] takes care of the signing and
encryption of the elements based on the configuration.

SAMLResponse is then included in the HTML form, which is presented to the user. This form
is auto-submitted to the assertion consumer service location of the SP. HTTP POST via
HTML form is used for both implemented bindings. For a user, it looks like a simple
redirect.

Using S A M L all communication goes through the user's browser, so IDP and SP don't
need to have visibility to each other. They can be in totally different networks, but users
need to have access to both IDP and SP. This is true for both POST and REDIRECT binding.

45

IDP initiated flow would start in the Excalibur Dashboard, where a user needs to
be already authenticated. Since right now we are using WebSDK client, it cannot utilize SSO,
so a user would need to authenticate once more. IDP initiated flow is not supported by
every SP and it cannot be read from metadata, so it would need to be configured manually,
or it could confuse users. When the user is already logged in to the SP and starts a new
session at the IDP it replaces the previous session. Moreover, IDP-initiated flow presents
a security risk [3]. When flow stars at the IDP, SP receives unsolicited SAMLResponse.
This response does not have InResponseTo parameter, so it can be reused. Assertions
still include validity time, but it needs to be long enough, typically several minutes, so it
mitigates attack surface.

Another S A M L profile is E C P (Enhanced Client or Proxy) Profile. In contrast
to the S A M L Single Sign-On(SSO) profiles such as web-based SSO and Single Logout,
the S A M L E C P profile is related to Enhanced Clients and Proxies which have extended
capabilities than a normal browser. Simply, an E C P may be a desktop application, a
server-side code running in a web application, or a proxy server-WAP (Wireless Access
Point) Gateway in front of a mobile device [58]. In practice, it means, that since the
authentication is done on the server-side, the user cannot be shown the Q R code. For this
scenario Excalibur IDP can send push notifications instead of using WebSDK to show the
QR code, however, the username needs to be specified beforehand authentication.

Push notifications are not using right now, since we did not encounter any application
requiring E C P . A l l of the tested applications use standard web profiles.

5.1.1 Signing and Encrypting S A M L Messages

S A M L messages: AuthRequest, Response, LogoutRequest and LogoutResponse can be
all signed. Signature is part of the xml document or added as another parameter, based
on the binding. REDIRECT binding is embedding message in the URL parameters, which
have limited length, so the signature algorithm and signature itself are sent in a separate
parameter.

SAML Response can have signed individual assertions or the whole document can be
signed. These modes can be combined with each other and moreover, assertions can also
be encrypted. Which gives us these 8 variants 2 :

• A n unsigned S A M L Response with an unsigned Assertion

• A n unsigned S A M L Response with a signed Assertion

• A signed S A M L Response with an unsigned Assertion

• A signed S A M L Response with a signed Assertion

• A n unsigned S A M L Response with an encrypted Assertion

• A n unsigned S A M L Response with an encrypted signed Assertion

• A signed S A M L Response with an encrypted Assertion

• A signed S A M L Response with an encrypted signed Assertion

2 Examples of this messages can be also found here: https://www.samltool.com/generic_sso_res.php

46

https://www.samltool.com/generic_sso_res.php

S A M L response is always sent to the assertion consumer service using POST binding, so
a signature is always a part of the xml document.

Our implementation does not require the SP to sign AuthnRequest, because of the
simplicity and usability. Validating signatures requires IDP to trust certificates used for
signing, which means they would need to be imported to the Excalibur since many SPs use
untrusted certificates. Excalibur, on the other hand, is always signing both the assertions
and the messages as a whole.

Encryption is also implemented but was not fully tested, since there is no need for
encryption. A l l the information included in the message is public and none of the tested
service providers (Section 6.1) required this functionality. Most of them didn't even have
options for encryption.

Schema validation

Since S A M L is XML based protocol, every massage, even metadata, are a XML documents
that can be validated against XSD scheme, samlif y [32] library requires developers to setup
schema validation. The developer can choose which validator with which schema will be
used, samlify library author prepared 3 packages for XSD scheme validation. Each one
is based on the different package for scheme validation, but all of them have schemes for
S A M L included:

• Oauthenio/samlify-xsd-schema-validator

• Oauthenio/samlify-validate-with-xmllint

• @authenio/samlify-node-xmllint

• @authenio/samlify-libxml-xsd

Schemes are from official OASIS documentation 3 and are saved locally in the pack­
age. M y implementation is using Sauthenio/samlify-validate-with-xmllint package
for scheme validation, but others should work as well. Validator options from author of the
samlify library do not validate metadata , but this feature is on the roadmap.

Proxy cooperation

S A M L Component was built with proxy integration in mind. Virtual Browser and H T T P -
Proxy are both capable of authenticating users via the S A M L protocol. Excalibur acts as
the identity provider (IDP), so authentication can be unified across all service providers
(SP) providing a secure and seamless Excalibur authentication experience. Virtual Browser
provides total isolation, so S A M L messages are never sent to the user's browser. S A M L
redirects users from the service provider U R L to the identity provider (Excalibur) site,
which in HTTP-Proxy context means that for the time of authentication the user is not
connected through HTTP-Proxy. After successful authentication, the user is redirected
back to the same HTTP-Proxy session.

SAML Component can detect if the request came from the Excalibur proxy based on the
URL. If the URL matches the URL used by the proxy, it is saved together with the flow object
to the user's browser. After successful authentication SAMLResponse should be send to the

3

https: //docs.oasis-open.org/security/saml/v2.0/
4

https: //github.com/tngan/samlif y/issues/371

47

http://open.org/security/

AssertionConsumerService location URL. Since the proxy is working by prepending the
Excalibur server URL to the actual URL, URL of the assertion consumer service is modified
that the user is returned to the previous proxy session. Diagram showing S A M L and Proxy
cooperation is shown in Figure 5.1, which is fairly similar to the standard S A M L flow shown
in the Figure 4.1.

lu
ll

TARGET WEBSITE
Service Provider

Figure 5.1: Excalibur S A M L authentication in proxy session.

Metadata management

S A M L provider (SP or IDP) needs to have established trust before any communication
takes place. Trust is established by import S A M L metadata of each provider [38]. This
subsection is divided into IDP Metadata and SP Metadata. IDP Metadata section discuss
metadata generation and export. SP Metadata section discuss SP metadata import and
management process.

18

Excalibur v33.i SAML
1 Administrator

1 m Service Providers + SAML Configuration

^ Overview 2add591c-085f-4b4e-alab-379eeee2a2b4 SAML IDP Metadata

£ Juraj Chripko 664970a8-122d-4e67-acd6-3dfeaf5cfd22 Signing Certificate

Users excalibur.secure.nbs.sk Encryption Certificate

E Timeline https://samltest.id/saml/sp

; = Actions pokus

f~J Sessions urn:federation:MicrosoftOnline

Figure 5.2: Excalibur Dashboard S A M L management section.
Image was scaled for better readability.

IDP Metadata

For generating Excalibur IDP Metadata library functions were used. At the start of
the S A M L worker, IdentityProvider object is creted. IdentityProvider object can
be populated with complete metadata file, or with specific values like id, signingCert,
singleSignOnService and so on [32]. When metadata file is used for initialization, no
options can be changed after that.

We decided to initialize IdentityProvider object with values from conf ig file, so val­
ues can be different for different deployment. Metadata are generated using
IdentityProvider .getMetadataO function, so metadata generation is solely samlify l i ­
brary responsibility. A n d since there is no option to specify metadata template or manip­
ulate with xml elements, generated IDP metadata are not perfect, more in Table 6.1.

IDP Metadata can be exported in several ways:

• <xclbr-hostname>/saml/metadata url is a public link for showing metadata.

• <xclbr-hostname>/saml/metadata.xml url is a public link for downloading meta­
data file.

• Button in Dashboard can also be used to download metadata file. This button is
also show in the Figure 5.2.

https://docs.xclbr.com/v3/integrations/excalibur-saml-integration-manual/#get-excalibur-

idp-metadata

49

http://excalibur.secure.nbs.sk
https://samltest.id/saml/sp
https://docs.xclbr.com/v3/integrations/excalibur-saml-integration-manual/%23get-excalibur-

<EntityDescriptor entityID="xclbr.com">

<IDPSSODescriptor

WantAuthnRequestsSigned="false"

protocolSupportEnumeration="urn:oasis:names: t c:SAML:2.0:protocol">

<KeyDescriptor use="signing">

<ds:KeyInfo>

<ds:X509Data>

<ds:X509Certificate>

Mil...

</ds:X509Certificate>

</ds:X509Data>

</ds:KeyInfo>

</KeyDescriptor>

<NameIDFormat>

urn:oasis:names:tc:SAML:2.0:nameid-format:persistent

</NameIDFormat>

<NameIDFormat>

urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress

</NameIDFormat>

<NameIDFormat>

urn:oasis:names:tc:SAML:2.0:nameid-format:transient

</NameIDFormat>

<SingleSignOnService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"

Location="https://xclbr.com/saml/login"/>

<SingleSignOnService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

Location="https://xclbr.com/saml/login-post"/>

<SingleLogoutService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"

Location="https://xclbr.com/saml/logout"/>

</IDPSS0Descriptor>

</EntityDescriptor>

Listing 5.1: Excalibur IDP metadata example

SP Metadata

Each SP that will be used with Excalibur IDP needs to have imported metadata in the
Excalibur Dashboard. SP in Excalibur IDP is represented solely by metadata and they need
to be persistent. The only way how this could be done in the current version of Excalibur
is to save metadata files on disk. Each time S A M L Component starts it find all metadata
and creates ServiceProvider object from samlify library [32]. Therefore data are stored
as the S A M L metadata. For managing service providers user interface was implemented, it
is shown in Figure 5.2. Basic CRUD operations are possible, all of them using S A M L section
in the Excalibur Dashboard. Only admin of the Excalibur Server can manage service
providers.

50

https://xclbr.com/saml/login%22/
https://xclbr.com/saml/login-post%22/
https://xclbr.com/saml/logout%22/

Update of the metadata is done the same way as adding a new SP. Service providers are
identified by the ID parameter of the metadata. If metadata with the same ID are already
imported in the Excalibur Dashboard, a user is asked if he wants to replace metadata [11].

Dialog for adding SP Metadata is shown in Figure 5.3.

Add SAML Service provider file

Choose one of the folowing methods to upload metadata

SAMtmetadalaul

Metadata file content

kDrag here or browse to upload your metadata file Uml)

Figure 5.3: Dialog for adding SP to the Excalibur IDP.

5.2 A u t h e n t i c a t i o n Component

In implementation presented in this thesis, WebSDK component, Section 3.1 - Excalibur
Clients, is used for actual user authentication to the Excalibur Server. The solution was
implemented according to the design presented in the Section 4.1 - Excalibur - S A M L
integration design.

Before WebSDK can be used for S A M L , it needs to be configured. This configuration is
typically done by the Administrator of the Excalibur system, but for the S A M L , it is done
automatically. S A M L Component at its start, checks if the WebSDK component for S A M L is
created and when it is not, it creates it. This is done by inserting values into the database.
More on the WebSDK can be found in Section 3.1 - Excalibur Clients.

There are multiple types WebSDK component, SAML is one used for . . . , well . . . , S A M L .
S A M L type of the WebSDK have modified action after user login. WebSDK automatically
enters values to the HTML form and sends it after successful use authentication. S A M L
type WebSDK is also signing data send to the user's browser, signature is included in the
password entry of the userData. S A M L component is validating this signature at the last
step of the algorithm presented in the Figure 5.4.

One of the responsibilities of the authentication component is also to report user's
actions, authentication in particular.

New Authenticationg Component

Excalibur Server v3.5 will have new authentication component, which will replace WebSDK
for this use case, as presented in the Section 4.1 - Server-side Authentication Component.
A new server-side authentication component could not be implemented because Excalibur
Server v3.5 is not ready for this kind of integration, more in Section 3.3 - Current State
of the Excalibur Server. The new authentication component will be communicating with

51

the Core service, which will provide SSO capabilities. This server-side component will
also need to implement the communication with the server. WebSDK is now using HTTP
long polling [15], but there are newer technologies like websocket available. However
websocket is not a clear winner, even Google is still using HTTP long polling for some
use cases [23].

EXCALIBUR
ENTERPRISE <3h

Excalibur Server SAML Component

7. POST {formData}

6a. use rData t

5. LoginData

D
Excalibur Token

Browser

2. Show
QR code

1. HTML page with
WebSDK client script and
form with {samlData^ }

HTML form {
samlData^

userData ̂ }

3. Span QR code

6b. userDcita
WebSDK

• a

4. User
authenticates

Figure 5.4: Excalibur Authentication to the S A M L Component using WebSDK.

5.3 Single sign-on (SSO)

SSO was not implemented because of the current state of the Excalibur Server. Excalibur
Server v3.5 is not ready for implementation of this feature and Excalibur Server v3 does
not have architecture capable of doing so.

It is also advised to monitor how different third-party applications act when S A M L is
used for logging in. Which of the applications honor the maximum length of the session
(SessionNotOnOrAfter S A M L parameter), which support SLO and which are reporting log
out events of the user. These events could be simple HTTP call, not just S A M L messages.

52

Chapter 6

Testing and Documentation

Since none of the F I D O protocols have been implemented during this project, this chapter
is focused mainly on the S A M L implementation. Last entry in the thesis assignment states:
"Test correct functionality of implemented solution such as correct behavior from a user
point of view, soundness of access control mechanism, and access revocation."

Access control is a complete responsibility of the Excalibur system, specifically the
authentication component, that is WebSDK, in this implementation. Access revocation is also
an Excalibur system responsibility since access is allowed based on the configured Excalibur
policies. To achieve correct behavior from a user point of view, multiple requirements needs
to be fulfilled:

• IDP configuration - exporting IDP metadata and importing SP metadata

• SP configuration - exporting SP metadata and importing IDP metadata

• Setting up valid Excalibur policies (default policy will work)

• Some service providers requires additional user configuration, such as creating specific
users for S A M L authentication, more in Section 6.2 - User Management

This chapter includes information about testing the actual S A M L communication -
Section 6.1 - Functional Testing with the list of service providers which were used for testing.
Functional testing also includes schema validation, security aspect of the implementation
and even performance testing. The second subsection is dedicated to the documentation
and the user management. Actual documentation can be found on our public wiki [11],
specifically in the integrations [6]. Documentation includes manuals for managing and
configuring Excalibur IDP and configuration manuals for third-party applications, which
were used as SP during functional testing. A brief technical API documentation was also
created and is in Appendix A . Configuration manual includes basic C R U D 1 operations on
S A M L service providers.

6.1 Func t iona l Test ing

Testing any software usually starts by testing a smaller part possible, a unit [5]. In our
case, the smallest part is a samlify library, which already comes with tests, so we need
to test how it is used. Because Excalibur Server v3 have no capabilities to test whole

1 Create, Read , Update , Delete

53

flows, since they are typically quite complex and flowing through multiple components,
so also multiples platforms. Moreover, these tests need user authentication on the Token.
Excalibur Server v3.5 was designed to support these complex tests using stubs and
improved architecture. A l l the tests described in this section are done manually, so they
are done to describe what the system does, i.e. they are testing functionality [5].

Tests start by initiating login at the SP, diagram of the S A M L flow is shown in Fig­
ure 2.4,Figure 4.1 or in Figure 4.2. SP generates SAML AuthnRequest, which can be ob­
served using SAML-tracer browser extension 2 .

IDP needs to validate AuthnRequest, show the Q R code for the user and after successful
user authentication it needs to validate incoming data, as discussed in the Section 5.1 -
S A M L communication and in the Section 5.2 - Authentication Component. When every­
thing is valid, IDP generates SAML Response based on the user data and the flow object
created after validating AuthnRequest. This Response is then send to the SP and is also
observed using SAML-tracer. Response need to pass these checks:

• Scheme validation against XSD (X M L Schema Definition). Unlike in the Section 5.1.1
- Schema validation where all incoming messages were validated against the scheme,
this chapter describes how outgoing messages were validated since samlify is not
validating every message it generates. S A M L is an XML-based markup language
for security assertions, so every S A M L message including metadata can be validated
against X S D . OneLogin S A M L Developer Tools [40] were used for schema, data, and
signature validation.

• Data validation against AuthnRequest. Schema validates only data structure, not the
actual data, so the next step was to validate if the metadata and message contain cor­
rect values. Response needs to contain number of values based on the AuthnRequest
and IDP Metadata. These values needed to be entered manually to the validation
tool 3 .

• Signature validation. Excalibur IDP is by default signing both assertion and message
as a whole. Certificates used for testing were issued by the Excalibur CA, so they
appeared as untrusted to the other parties. They needed to be manually entered into
the validation tool [40].

• User login to the SP. Even when Response is valid, SP needs data about the user in
a specific format, so not every valid response will end with a logged-in user.

SP metadata needed to be already imported into the Excalibur IDP, but that is discussed
in Section 6.1 - Service Providers Management testing.

S A M L is quite a big standard with lots of nuances since many features are optional,
so each implementation of S A M L SP can behave a little differently in various scenarios.
Excalibur is an identity provider, so the only S A M L messages that it generates are Meta­
data, S A M L Response, and Logout Response. Results from scheme and data validation are
in Table 6.1

Generated metadata does not pass validation against the scheme, as seen in Table 6.1.
Wrong element order is the cause. SingleLogoutService element must go before NamelDFormat
element [38]. Simply moving this tag will resolve the problem, but since samlify [32] does
not have any options to do this, the issue was created on GitHub .

2

https: //addons.mozilla.org/en-US/f iref ox/addon/saml-tracer/
3

https: //www. samltool.com/validate_response.php
4

https: //github.com/tngan/samlif y/issues/429

54

http://samltool.com/validate_response.php

Table 6.1: Table showing validation test results.

Schema Validation Data Validation
Metadata

S A M L Response
Logout Response

x
/

Testing on Service Providers

Metadata were imported to all of the tested SP and most of them accepted them without
any errors. For the SAMLtest.ID metadata element order needed to be manually changed
before importing metadata. Actual configuration and log-in were tested against multiple
service providers. Some of them are just test applications, which let the developer inspect
received assertions and even logs for better debugging. The others are mostly enterprise
applications and Identity Access Management (IAM) solutions.

List of tested service providers:

• Fortinet Fortigate 5

• Pulse Secure 6

. Cisco A S A 7

. Alliance Web Platform (SWIFT) 8

• R S A S A M L Test Service Provider configuration 9

. SAMLtest.ID by Signet 1 0

. Office 365 1 1

Security

S A M L is a well-known standard used by a lot of big companies, so it is also a tempting
target of cyberattacks. Security evaluation was also part of the testing.

Main source of information were O W A S P guidelines [25] and samlify GitHub issues 1 2 .
One of the attacks pointed out by O W A S P guidelines was the signature wrapping attack,
samlify was indeed vulnerable to this attack, but after notifying the maintainer of the
library vulnerability was fixed [9].

At the time of writing this thesis samlify is using vulnerable version of xmldom l i ­
brary [31]. Issue was raised on the samlify GitHub 1 3 , but fix was not ready even after 2
months. This vulnerability is also reported from npm when installing samlify library.

5

https: //www.fortinet.com/
6

https: //www.pulsesecure.net/
7

https://www. Cisco, com/c/en/us/products/security/adaptive-security-appliance-asa-

sof tware/index.html
8

https://www. swift.com/our-solutions/interfaces-and-integration/alliance-web-platform-se
9

https: //sptest.iamshowcase.com
10

https://samltest.id/
n

https: //www.of fice.com/
1 2

https: //github.com/tngan/samlif y/issues
1 3

https: //github.com/tngan/samlif y/issues/416

55

http://www.fortinet.com/
http://www.pulsesecure.net/
https://www
https://www
http://swift.com/our-
http://iamshowcase.com
https://samltest.id/
http://www.of
http://fice.com/

S A M L is a complex standard with lots of nuances and it can be quite tricky to implement
securely, samlify [32] is maintained by one person and most likely only in his free time.
Together with the other problems encountered during testing, such as metadata element
order problems, or missing validation of the metadata, samlify is not an ideal choice for our
purposes, but it most definitely was enough for proof of concept S A M L IDP implementation.

Performance

Basic load testing was conducted on the S A M L Component in order to find out how many
users can be served at a given time period. S A M L could be also used as an endpoint for
Denial-of-Service (DOS) attack since it can be accessed without authorization. WebSDK acts
as a rate limiter since the user needs to scan the Q R code and do the factor verification on
the Token [27]. 3 cases were tested:

• saml/metadata URL - returns metadata as XML document, which should be in mem­
ory, so it is only a static website without any prior valdiation.

• saml/login URL with valid arguments - SAMLRequest is validated, SP metadata are
loaded and static website with WebSDK is returned.

• saml/login URL with malformed arguments - SAMLRequest is malformed, so error
should be returned.

A l l the tests were done by the ab (Apache H T T P server benchmarking tool) 1 . 500 re­
quests were done for each URL with 10 concurrent connections at the time and the Excalibur
server was restarted between tests, so there were no residuals left from previous tests. The
next table (Table 6.2) is showing how many concurrent requests can be answered within it
one second and how long it takes to answer one request.

Table 6.2: Table showing load test results.

saml/met adat a
valid

AuthnRequest

malformed
AuthnRequst

Requests per
second [#/sec]

42.45 8.79 13.57

Mean time
per request [ms]

235.549 1137.426 736.867

Mean time per request [ms]
across all concurrent requests

23.555 113.743 73.687

C P U utilization of the S A M L worker was over 95% when testing login endpoint with
both valid and malformed AuthnRequest. R A M utilization started to rise, which even led
to worker restart after a few thousand requests. Testing showed, that this implementation
can serve up to 10 concurrent requests per second for a short period of time (few minutes).
Additional defense against DOS attack should be implemented before production use.

Another limiting factor can be the authentication component. Every entity of the
WebDSK needs to have opened HTTPS connection for the server, where user results are sent.
There is a deployment with around 800 concurrent WebSDK sessions and S A M L is a potential
replacement for WebSDK. For S A M L to be able to withstand such load, a new authentication
component is needed.

1 4

https: //httpd.apache.org/docs/2.4/programs/ab.html

56

Service Providers Management testing

Service providers are added as metadata files via Excalibur Dashboard. When new meta­
data are added, IDP tries to construct ServiceProvider object and when it is built suc­
cessfully, ID of the SP is compared to the other IDs. If the same ID is found, a user is asked
if he wishes to replace SP. As presented in the Section 5.1.1 - Schema validation, samlify
is not validating metadata right now, so even when SP is added successfully, it does not
mean that metadata are correct.

SP Metadata can be added by 3 options: metadata URL, metadata file content, or by up­
loading metadata file. A l l of these options were tested against all the service providers, Sec­
tion 6.1.

6.2 D o c u m e n t a t i o n

Documentation was made during S A M L functionality testing, where all of the service
providers, Section 6.1 - Testing on Service Providers, needed to be configured. Since only
the S A M L part was implemented, documentation includes a manual for configuring Ex­
calibur S A M L IDP via Dashboard and configuration manuals for applications used during
testing [6]. S A M L Documentation published on the Excalibur public wiki [11]. This chapter
also includes a user management section, since every application takes a slightly different
approach regarding user identifiers and user management in general.

User Management

In S A M L terminology, Excalibur is an identity provider, meaning, it should provide iden­
tities to other services, known as service providers. Correct user mapping a key for correct
behavior from a user point of view. User mapping is a method, where user identification
used in the SAML Response is mapped to the service provider's entity. The most application
creates new user when new ID is used, but some require the user to be created beforehand.
SAML Response contains NamelD element, which is typically used for user identification, but
any other claim can be used. Excalibur IDP is sending 3 values: mail, whole name, and
username. However, the real claim count is greater, since various formats are used, espe­
cially for the mail. Mai l is also used as the NamelD. NamelD can also have different formats
and they can be required from the SP. Excalibur IDP supports these NamelD formats:

• urn:oasis:names:tc:SAML:2.0:nameid-f ormat:persistent - Should be the same
NamelD for the same user, but also anonymous. Hash function could be used to
produce transient NamelD, but right now mail is used to ease the configuration.

• urn: oasis:names :tc: SAML: 2.0 :nameid-f ormat:transient - New anonymous NamelD
for every user. Excalibur IDP is sending random string when transient NamelD format
is requested in the AuthnRequest.

• urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress - used by default,
typically gained from the mail attribute from the Active Directory.

Another S A M L attribute used by the SP is authentication context (AuthnContext [35].
This element is used by the SP to determine which authentication mechanism was used.
SP can optionally specify which authentication context is required in the S A M L request
using RequestedAuthnContext parameter. Example are:

57

• urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport - the
user should be authenticated through login/password, protected by S S L / T L S .

• urn:oasis:names:tc:SAML:2.0:ac:classes:MobileTwoFactorContract - used by
default by the Excalibur IDP.

There are plenty of other authentication contexts and more can be made using schema [35].
Different authentication contexts can be compared using a set of rules [37]. Some service
providers have options to set required authentication context, some have supported contexts
specified in the documentation, others seem like they do not care.

If the SP specifies the required authentication context, Excalibur will use that specified
context in the S A M L response, since we believe, that Excalibur authentication supersedes
most, if not all, typical authentication mechanisms. When the SP does not specify au­
thentication context, MobileTwoFactorContract is used since it best represents actual
authentication. During testing with all the service providers (Section 6.1), this does not
cause any trouble, but there could be SP that requires another authentication context than
MobileTwoFactorContract but does not specify it in S A M L request, which will lead to
unsuccessful login.

58

Chapter 7

Conclusion

Excalibur acts as a security token for passwordless authentication using your mobile phone
to verify authentication factors such as location, P I N , fingerprint, Face ID, etc. For now,
Excalibur used its distributed crypto scheme to log in to the operation system, Windows
specifically. Excalibur is expanding to the web, so new integrations with web-based pass-
wordless standards are needed. The goal of this thesis is to design and implement integration
with F ID02 or S A M L passwordless authentication standards.

F ID02 is a standalone standard for authentication on the web, that can be integrated
into the Excalibur system in several ways to provide various functionality. After a detailed
analysis of various use cases, it was clear, that F ID02 is more like an Excalibur alterna­
tive than anything else. The most promising use case is to use F ID02 authentication for
Excalibur login, i.e. replacing Excalibur authentication with F ID02 authentication. Using
F ID02 authentication to the Excalibur would not require an application, however, it cannot
be done since F ID02 lacks capabilities such as encryption support or location reporting.
F ID02 can also be used in smartphone applications, which would allow the application to
use location or encrypt messages, but the library implementations are not mature enough.
F ID02 standard defines a variety of extensions and some of them can be used with Ex­
calibur, but additional extensions are needed for a complete replacement of the Excalibur
authentication mechanism. Moreover, an overall lack of support is the major problem with
the F ID02 standard. There is no point in integrating F ID02 into the Excalibur system,
but the integrations case study described in this thesis can be used in the future. F ID02 is a
well-designed standard, that could change how we authenticate with our personal accounts
in the future, but its adoption is quite slow.

On the other hand, S A M L protocol enabled us to do exactly what was the point of this
project - use multi-factor passwordless authentication to third-party web applications. For
S A M L functionality, samlif y [32] library was used. It worked fine for proof-of-concept im­
plementation, which is currently installed in some of our partner's deployments. Although,
after fully testing this solution, we found out, that it lacks capabilities and even exposes
security vulnerabilities. Capabilities can be improved by the library author or us, but for
future use, a well tested and maintained library will be needed. For actual authentication
a modified WebSDK Component is used. This component was not designed for this use case,
so a new Authentication Component will be developed for future versions.

Single sign-on (SSO) capabilities were also discussed in this thesis but were not imple­
mented, since Excalibur Server does not have infrastructure capable of utilizing SSO, for
now. This will change with the deployment of the Excalibur Server v3.5, which is not
yet ready for this type of integration.

59

The implemented solution is capable of communication with major S A M L service
providers, such as Office 365, Pulse Secure, Fortinet Fortigate, CISCO A S A , proving its
functionality. During functionality testing with various service providers, configuration
manuals for each service providers were made. Documentation also contains configuration
manuals for Excalibur IDP as well as notes about the specific behaviour of some service
providers and is publicly available [6].

Integration with other service providers will follow as we will continue to deploy S A M L
to our partners. The current version is proving that S A M L integration is doable and even
desired since S A M L is well supported in the enterprise environment. Major improvements
in form of the new authentication component, single sign-on integration, and other security
and functionality fixes are needed before production deployment. Testing with other S A M L
libraries is recommended since the chosen library lacks capabilities and security vulnera­
bilities are not patched soon enough. S A M L Component was developed for the Excalibur
Server v3 and since Excalibur Server v3.5 is using new architecture, more work is
needed to rewrite the S A M L component for the new version of the Excalibur Server.

Similar to fighting the global pandemic, there is no silver bullet solution in the fight for
cybersecurity. More layered defense is the only viable defense.

60

Bibliography

[1] B A S S E T T , G . , H Y L E N D E R A N D , C . D . , L A N G L O I S , P., P I N T O , A . and W I D U P , S.
Verizon: 2021 Data Breach Investigations Report [online]. 2021 [cit. 8. May 2021].
Available at: https: //enterprise.verizon.com/resources/reports/2021-data-

breach-investigations-report.pdf.

[2] B E D N A R E K , A . Password Managers: Under the Hood of Secrets Management [online].
Feb 2 0 1 9 [cit. 14. May 2021]. Available at:
https://www.ise.io/casestudies/password-manager-hacking/.

[3] B R A D Y , S. The Dangers of SAMI IdP-Initiated SSO [online]. June 2 0 1 9 [cit.
7. January 2021]. Available at:
https: //www. identityserver.com/articles/the-dangers-of-saml-idp-initiated-sso.

[4] B R A N D , C , E H R E N S V Á R D , J. , J O N E S , M . B . , L I N D E M A N N , R . , K U M A R , A . et al.
Client to Authenticator Protocol (CTAP). Proposed Standard. W 3 C , January 2019.
Available at: https://f idoalliance.org/specs/f ido-v2.0-ps-20190130/f ido-client-

to-authenticator-protocol-v2.0-ps-20190130.html.

[5] C H Ř I P K O , J . Automatizované testování systému Fitcrack. Brno, CZ, 2018.
Bakalářská práce. Vysoké učení technické v Brně, Fakulta informačních technologií.
Available at: https://www.fit.vut.cz/study/thesis/20498/.

[6] C H Ř I P K O , J . Excalibur SAML integration Manual [online]. 2021 [cit. 28 . Apr i l 2021].
Available at:
https://docs.xclbr.com/v3/integrations/excalibur-saml-integration-manual/.

[7] D E C A R L O , M . Remote Work in 2019: Facts, Figures, Tips and Anecdotes [online].
May 2 0 1 9 [cit. 8. May 2021]. Available at: https://getvoip.com/blog/2019/05/06/

remote-work-in-2019-facts-figures-tips-and-anecdotes/.

[8] D I E R K S , T . and R E S C O R L A , E . The Transport Layer Security (TLS) Protocol
Version 1.2 [Internet Requests for Comments]. R F C 5246. R F C Editor, August 2008.
Section 7.4.6. Client Certificate. Available at:
https://tools, ietf.org/html/rfc5246#section-7.4.6.

[9] E R L E N D O F T E D A L (W E B T O N U L L) . Samlify is vulnerable to signature wrapping
[online]. May 2 0 1 8 [cit. 8. May 2021]. Available at:
https: //hackerone.com/reports/356284.

[10] E X C A L I B U R . Excalibur Whitepaper [online]. 2 0 1 8 [cit. 7. December 2020] . Available
at: https:

//docs, google. com/document/d/lBFMoiEhGkLQJGljzP-fQlpEmLhjt4-YeYlyXpdiByeQ.

61

https://www.ise.io/casestudies/password-manager-hacking/
http://identityserver.com/articles/the-dangers-of-saml-idp-
https://f
https://www.fit.vut.cz/study/thesis/20498/
https://docs.xclbr.com/v3/integrations/excalibur-saml-integration-manual/
https://getvoip.com/blog/2019/05/06/
https://tools
http://ietf.org/html/rf

[11] E X C A L I B U R . Excalibur Documentation [online]. 2020 [cit. 28. A p r i l 2021]. Available
at: https://docs.xclbr.com.

[12] FID02: WebAuthn & CTAP [online], [cit. 28. April 2021]. Available at:
https: Iii idoalliance.org/f ido2/.

[13] F O R R E S T E R , N . Case study: 40% of password managers vulnerable to breach [online].
May 2020 [cit. 14. May 2021]. Available at: https://securitybrief.asia/story/case-
study-40-of-password-managers-vulnerable-to-breach.

[14] F R E D E R I C O , H . Understanding FIDO Standards: Your Go-To Guide. Okta Security.
January 2019. Available at: https:

//www.okta. com/blog/2019/01/under standing-fido-standards-your-go-to-guide/.

[15] G A N E S A N , B. Polling vs SSE vs WebSocket - How to choose the right one [online].
July 2018 [cit. 28. April 2021]. Available at: https://codeburst.io/polling-vs-sse-

vs-websocket-how-to-choose-the-right-one-1859e4el3bd9.

[16] G R A Y , A . Interprocess Communication in Linux. Prentice Hall Professional
Technical Reference, 2002. ISBN 0130460427.

[17] H A R N , L . , H U A N G , D. and L A I H , C. Password authentication using public-key
cryptography. Computers & Mathematics with Applications. 1989, vol. 18, no. 12,
p. 1001 - 1017. DOI: https://doi.org/10.1016/0898-1221(89)90028-X. ISSN
0898-1221. Available at:
http://www.sciencedirect.com/science/article/pii/089812218990028X.

[18] H A R N I K , D. , K I L I A N , J. , N A O R , M . , R E I N G O L D , O. and R O S E N , A . On Robust
Combiners for Oblivious Transfer and Other Primitives. In: C R A M E R , R.,
ed. Advances in Cryptology - EUROCRYPT 2005. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, p. 96-113. ISBN 978-3-540-32055-5.

[19] H E I M , P. and P A T E L , J . Introducing U2F support for secure authentication [online].
August 2015 [cit. 26. April 2021]. Available at:
https: //blog.dropbox.com/topics/product/u2f-security-keys.

[20] H I L L , B. Security Key for safer logins with a touch [online]. January 2017 [cit.
26. April 2021]. Available at: https://www.facebook.com/notes/10157814544346886/.

[21] J O N E S , M . , L I N D E M A N N , R., K U M A R , A . , H O D G E S , J . , J O N E S , J . et al. Web
Authentication: An API for accessing Public Key Credentials Level 1. W3C
Recommendation. W3C, march 2019. Available at:
https://www.w3.org/TR/2019/REC-webauthn-l-20190304/.

[22] K E L L S , T. Universal 2nd Factor (U2F) now supported in Bitbucket Cloud [online].
June 2016 [cit. 26. April 2021]. Available at:
https: //bitbucket.org/blog/universal-2nd-f actor.

[23] K I L B R I D E S I N G H , K . Google: Polling Like It's the 90s [online]. October 2019 [cit.
28. April 2021]. Available at:
https: //dzone.com/articles/google-polling-like-its-the-90s.

62

https://docs.xclbr.com
http://idoalliance.org/
https://securitybrief.asia/story/case-
http://www.okta
https://codeburst.io/polling-vs-sse-
https://doi.org/10.1016/0898-1221(89)90028-X
http://www.sciencedirect.com/science/article/pii/089812218990028X
http://dropbox.com/topics/product/u2f
https://www.facebook.com/notes/10157814544346886/
https://www.w3.org/TR/2019/REC-webauthn-l-20190304/

[24] M A L E R , E . Minutes of 9 January 2001 Security Services TC telecon [online]. January
2001 [cit. 28. April 2021]. Security-services at oasis-open (Mailing list). Available at:
https: //lists.oasis-open.org/archives/security- services/200101/msg00014.html.

[25] M A N I C O , J . and J . , M . OWASP Cheat Sheets [online], [cit. 5. May 2021]. Available at:
https: / / cheatsheetseries.owasp.org/index.html.

[26] M B A N A S O , U C H E and C O O P E R . Privacy Enhancement Technologies in Access
Control. IRIS Postgraduate Journal. October 2005 , p. 7 -15 .

[27] M E H R A , M . , A G A R W A L , M . , P A W A R , R. and S H A H , D. Mitigating denial of service
attack using C A P T C H A mechanism. In:. January 2011 , p. 2 8 4 - 2 8 7 . DOI:
10 .1145 /1980022 .1980086 . ISBN 978-1-4503-0449-8 .

[28] M E U N I E R , T. Humanity wastes about 500 years per day on CAPTCHAs. It's time to
end this madness [online]. May 2021 [cit. 14. May 2021]. Available at: https:

//blog. cloudflare.com/ introducing- cryptographic-attestation- of-per sonhood/.

[29] Passwordless authentication options for Azure Active Directory [online]. February
2021 [cit. 26. April 2021]. Available at:
https: //docs.microsoft.com/en-us/azure/active-directory/authentication/

concept-authentication-passwordless#fido2-security-keys.

[30] M U N R O E , R. Password Strength [online]. August 2 0 1 1 [cit. 7. January 2021]. Available
at: http://www.xkcd.com/936.

[31] N A T I O N A L I N S T I T U T E O F S T A N D A R D S A N D T E C H N O L O G Y . CVE-2014-0160 [online].
March 2021 [cit. 8. May 2021]. Available at:
https://nvd.nist.gov/vuln/detail/CVE-2021-21366.

[32] N G A N , T. SAMLIFY - Node.js SAML2 API [online], [cit. 28. April 2021]. Available
at: https://samlify.js .Org/#/ .

[33] N W A I G W E , A . Support for Universal 2nd Factor Authentication [online]. June 2016
[cit. 26. April 2021]. Available at:
https://about.gitlab.com/blog/2016/06/22/gitlab-adds-support-for-u2f/.

[34] Security Assertion Markup Language (SAML) v2.0 [online]. Standard. Organization
for the Advancement of Structured Information Standards, March 2008 [cit.
7. December 2020] . Available at: http:

//docs.oasis-open.org/security/saml/Post2.0/sst c-saml-tech-overview-2.0.pdf.

[35] Authentication Context for the OASIS Security Assertion Markup Language(SAML)
V2.0 [online]. Standard. Organization for the Advancement of Structured
Information Standards, March 2005 [cit. 7. December 2020] . Available at:
https: //docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf.

[36] Bindings for the OASIS Security Assertion Markup Language (SAML) v2.0 [online].
Standard. Organization for the Advancement of Structured Information Standards,
March 2005 [cit. 7. December 2020]. Available at:
http: //docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf.

63

http://open.org/archives/
http://cheatsheetseries.owasp.org/
http://cloudflare.com/
http://docs.microsoft.com/
http://www.xkcd.com/936
https://nvd.nist.gov/vuln/detail/CVE-2021-21366
https://samlify.js.Org/%23/
https://about.gitlab.com/blog/2016/06/22/gitlab-adds-support-for-u2f/

[37] Assertions and Protocols for the OASIS Security Assertion Markup Language
(SAML) v2.0 [online]. Standard. Organization for the Advancement of Structured
Information Standards, March 2005 [cit. 7. December 2020]. Available at:
http://docs, oasis-open, org/ security/saml/v2.0/saml-core-2.0-os.pdf.

[38] Metadata for the OASIS Security Assertion Markup Language (SAML) v2.0 [online].
Standard. Organization for the Advancement of Structured Information Standards,
March 2005 [cit. 7. December 2020]. Available at:
http: //docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf.

[39] Profiles for the OASIS Security Assertion Markup Language (SAML) v2.0 [online].
Standard. Organization for the Advancement of Structured Information Standards,
March 2005 [cit. 7. December 2020]. Available at:
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf.

[40] OneLogin SAML Developer Tools [online]. 2015 [cit. 26. April 2021]. Available at:
https: / / www.samltool.com/online_tools.php.

[41] P A U L M A D S E N . The Top 6 Authentication Mechanisms [online], [cit. 30. December
2020]. Available at: https://www.pingidentity.com/en/company/blog/posts/2016/the-
top-6-authent i cat ion-me chani sms .html.

[42] P E Y R O T T , S. Introduction to Web Authentication: The New W3C Spec [online]. June
2018 [cit. 9. January 2021]. Available at:
https: //authO.com/blog/ introduction-to-web-authentication/.

[43] P I N G I D E N T I T Y . SAML 2.0: How It Works [online], [cit. 7. December 2020]. Available
at:
https: / / www.pingidentity.com/en/resources/client-library/articles/saml.html.

[44] P O N E M O N I N S T I T U T E L L C . The 2020 State of Password and Authentication
Security Behaviors Report [online]. February 2020 [cit. 2. January 2021]. Available at:
https://resources.yubico.com/53ZDUYE6/as/q9ugik-5mv8o0-dkloty/
The_2020_State_of_Password_and_Authentication_Security_Behaviors_Report.pdf.

[45] P O O R T V L I E T , J . Nextcloud 11 sets new standard for security and scalability [online].
December 2016 [cit. 26. April 2021]. Available at: https://nextcloud.com/blog/
nextcloud-11-sets-new-standard-for-security-and-scalability/.

[46] P O W E R S , A . FIDO TechNotes: The Truth about Attestation [online]. July 2018 [cit.
9. January 2021]. Available at:
https: //f idoalliance.org/fido-technotes-the-truth-about-attestation/.

[47] S A M I , L . WebAuthn Is Great and It Sucks. Okta Security, april 2020. Available at:
https: //sec.okta.com/articles/2020/04/webauthn-great-and-it-sucks.

[48] SAML [online]. A p r i l 2021 [cit. 28. April 2021]. Available at:
https: //www.webopedia.com/def init ions/saml/.

[49] S C A V O , T. Single sign-on using SAML in a Web browser [online]. 2011 [cit.
7. December 2020]. Available at:
https: / / en.wikipedia.org/w/index.php?curid=32521419.

64

http://docs
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://www.samltool.com/
https://www.pingidentity.com/en/company/blog/posts/2016/the-
http://www.pingidentity.com/
https://resources.yubico.com/53ZDUYE6/as/q9ugik-5mv8o0-dkloty/
https://nextcloud.com/blog/
http://idoalliance.org/fido-technotes-the-truth-about-attestation/
http://okta.com/articles/2020/04/webauthn-
http://www.webopedia.com/def
http://en.wikipedia.org/

[50] S T A L L I N G S , W . Cryptography and Network Security: Principles and Practice.
Prentice Hall , 1999. ISBN 9780138690175 . Available at:
https: //books, google. sk/books?id=Dam9zrVi J j EC.

[51] S T A V R O U L A K I S , P. and S T A M P , M . Handbook of Information and Communication
Security. Springer Berlin Heidelberg, 2010. Handbook of Information and
Communication Security. ISBN 9783642041174 . Available at:
https: //books.google.sk/books?id=I-9PlEkTkigC.

[52] S U N D A S C H O U D R Y . The Challenge of Building SAML Single Logout [online]. May
2020 [cit. 10. January 2021]. Available at: https://www.identityserver.com/articles/
the-challenge-of-building-saml-single-logout.

[53] S W I F T . Alliance Web Platform SE [online]. 2021 [cit. 26. April 2021]. Available at:
https://www. swift.com/our-solutions/interfaces-and-integration/alliance-web-

platform-se.

[54] Jump in cyber attacks during Covid-19 confinement [online]. June 2020 [cit. 8. May
2021]. Available at: https://www.swissinfo.ch/eng/jump-in-cyber-attacks-during-

covid-19-confinement/45818794.

[55] T H A L E S . Banking & Payment [online]. 2021 [cit. 26. April 2021]. Available at: https:

//www. thalesgroup.com/en/markets/digital-identity- and-security/banking-payment.

[56] T O E W S , B. GitHub supports Universal 2nd Factor authentication [online]. October
2 0 1 5 [cit. 26. April 2021]. Available at: https:

//github.blog/2015-10-01-github-supports-universal-2nd-factor-authentication/.

[57] W I L S O N , Y . and H I N G N I K A R , A . Solving Identity Management in Modern
Applications: Demystifying OAuth 2.0, OpenID Connect, and SAML 2.0. Apress,
2019. ISBN 9781484250952 . Available at:
https: //books.google.sk/books?id=EJXFDwAAQBAJ.

[58] W I N M A H E E N A T I G A L A . SAML ECP (Enhanced Client or Proxy) Profile [online].
July 2 0 1 8 [cit. 8. May 2021]. Available at: https:

//medium.com/Owinma. 15/saml-ecp-enhanced-client-or-proxy-profile-97f8fd051c6.

[59] Y U R I Y , A . Why Cloudflare's CAPTCHA replacement with FID02/WebAuthn is a
really bad idea [online]. May 2021 [cit. 14. May 2021]. Available at:
https://herrjemajid.medium.com/why-cloudflares-captcha-replacement-with-fido2-

webauthn-is-a-really-bad-idea-d5487f6c7566.

65

https://www.identityserver.com/articles/
https://www
http://swift.com/our-
https://www.swissinfo.ch/eng/jump-in-cyber-attacks-during-
http://thalesgroup.com/en/markets/digital-
https://herrjemajid.medium.com/why-cloudflares-captcha-replacement-with-fido2-

Appendices

66

Appendix A

C D Contents

Attached C D contains:

• xchripOOdp .pdf - this thesis,

• tex - directory with sources for DTgX

• saml - directory with source codes for S A M L Authentication Component

— saml. j s - main JavaScript file

— README. md - internal (technical) documentation

— client .html - HTML file with WebSDK script used for authentication

— push_client.html - HTML file, which can be used instead of WebSDK for push
notification instead of showing the QR code, so a WebSDK alternative

— actions.html - HTML file for auto-submitting responses

— login_response_template .xml - XML file including login response template

• doc - sources for Excalibur S A M L public documentation [6]

• websdk - directory containing sources for the WebSDK component (Section 3.1 - Ex­
calibur Clients), only minor changes were made to this component

67

