DIVERSITY AND DISTRIBUTION OF EPIPHYTIC DIATOMS

Ph.D. Thesis

Mgr. Markéta Letáková

Supervisor: Prof. RNDr. Aloisie Pouličková, CSc.

Olomouc 2018
ACKNOWLEDGEMENTS

In the first place, I would like to thank Professor Aloisie Poulíčková for giving me the occasion to enter a world of science, which changed my view of many things, and for her kind supervision which was professional and friendly at the same time. Secondly, I wish to thank Dr. Marco Cantonati, for transferring to me his great enthusiasm for the work with diatoms and for teaching me the diatom morphology. I am grateful also to Doc. Petr Hašler and Dr. Markéta Fránková, for their various precious advices and inspiring cooperation, as well as to Dr. Nicola Angeli, for showing me his cool laboratory improvements which I have been using ever since. I would like to express my gratitude to all my colleagues of the Department of Botany for an inspiring and pleasant environment. Special thanks to Timothy Jones for the English corrections. Above all, I would like to thank to my family which has always been a great support for me.

The research was funded by the Internal grant agency of Palacký University: PrF-2014-001, PrF-2015-001, PrF-2016-001 and PrF-2017-001.
DECLARATION

I declare that I wrote this Ph.D. only by myself. All the sources used are included in References. The published results have been approved with the help of mentioned co-authors.

3rd January, 2018, Olomouc

Mgr. Markéta Letáková
ABSTRACT

This work is focused on one group of sessile diatoms that live attached to water plants – epiphytic diatoms. Many aspects of their life are unique and have not been explored enough yet, even though they may create considerable parts of primary production, and despite their importance in biomonitoring and paleolimnological reconstructions. The questions of substrate specificity, epiphytic diatom diversity, the range of species complexes within epiphytic diatom communities and the methods used for evaluation of the ecological status were investigated.

The study of epiphytic diatoms was based on the diatom sampling and measuring the ecological parameters in the field, preparation of the permanent diatom slides, analysis of the species composition of the diatom communities and the statistical evaluation of acquired data. The aim of the work was to find the answers to the following question: i) Does the epiphytic diatom composition reflect the ecological parameters of the locality? ii) Does the type of macrophyte sampled influence the community composition? iii) What is the overall diversity of the epiphytic diatom communities? iv) What is the composition and frequency of the problematic species complexes? v) Do the unresolved species complexes reflect the state of water less precisely than other species do? vi) Are there any species complexes that if resolved could improve biomonitoring?

Epiphytic diatoms reflected the ecological parameters of water in all investigated localities. The host-substrate preference was negligible in waters of higher trophy, in the lower trophy some significant specificity was found. Epiphytic assemblages have high overall diversity with considerable proportion of species complexes consisting of cryptic or semi-cryptic species. Although the pure genus level identification seemed appropriate for the routine monitoring, fine taxonomic resolution still shows sufficient variance related to the
environmental variable and increases the sharpness of classification. Species complexes showed lower sensitivity to change in phosphorus concentration than the rest of species. Some cryptic species have potential to improve bio-assessment models. Therefore resolving the species complexes is a crucial and urgent issue that would result also in better understanding the ecological state of waters.
ABSTRAKT (ČESKY)

Tato disertační práce je zaměřena na jednu skupinu bentických rozsivek – na epifytické rozsivky, tj. na ty, které žijí přisedle na rostlinném substrátu. Mnoho aspektů jejích života není totiž stále dostatečně objasněno, přestože mohou tvořit velmi podstatnou část primární produkce a navzdory jejich důležitosti v biomonitoringu a paleolimnologických rekonstrukcích. Byla zkoumána substrátová specifita, diverzita epifytických rozsivek, rozsah druhových komplexů ve společenstvu epifytických rozsivek a také metody používané pro hodnocení ekologického stavu vod.

Epifytické rozsivky odpovídaly na ekologické parametry vody ve všech zkoumaných lokalitách. Substrátová specifita byla zanedbatelná ve vodách vyšší trofie, v čistém horském jezeře Valagola byla nalezena signifikantní substrátová specifita. Skupina epifytických rozsivek má celkově velkou družovou bohatost a podstatná část je tvořena družovými komplexy, tvořenými kryptickými a semikryptickými druhu. Ačkoliv se pouhé rodové určení zdá být naprosto dostačující pro rutinní monitoring, jemné taxonomické rozlišení stále vykazuje odchytku v souvislosti s proměnnými prostředí a zvyšuje přesnost klasifikace.
Nerozlišené druhové komplexy měly nízkou citlivost pro změny v koncentraci fosforu. Některé kryptické druhy mají potenciál zlepšit bioindikační modely. Proto rozlišení těchto druhových komplexů je zásadní a naléhavou záležitostí, která by vedla mimo jiné k lepšímu pochopení ekologického stavu vod.
CONTENT

1. Introduction.. 10

 1.1 General diatom characteristics... 10

 1.2 Diatom age, diversity and ecological functions... 10

 1.3 Life strategies .. 11

 1.3.1 Planktonic diatoms.. 11

 1.3.2 Benthic diatoms ... 12

 1.4 Epiphyton - Paper I ... 14

2. Objectives of the dissertation.. 15

3. Methods.. 16

 3.1 Material, sampling and preparation ... 16

 3.2 Measuring ecological parameters .. 17

 3.3 Statistical analysis.. 17

4. Results.. 18

 4.1 Paper II .. 19

 4.2 Paper III .. 20

 4.3 Paper IV .. 21

 4.3 Paper V .. 22

5. Conclusions... 23

 5.1 Species richness and composition of epiphytic diatom communities 23

 5.2 Epiphytic diatoms and ecological parameters ... 23
5.3 Substrate specificity problematics and implications to biomonitoring 24

5.4 Proportion of species complexes within epiphytic assemblages .. 25

5.5 Species complexes indicatory power and taxonomic resolution in biomonitoring 26

5.6 Species complexes of epiphytic diatoms with potential to improve monitoring............. 26

6. References .. 28
1. INTRODUCTION

1.1 General diatom characteristics

Diatoms are unicellular autotrophic organisms, belonging into the group of Stramenopiles (Adl et al., 2012). Their typical feature is a silica cell wall – a frustule. They appear all over the world in various aquatic or wet terrestrial habitats. Traditionally they have been divided into two groups according to the valve symmetry: to *centrics* with radial symmetry and *pennates* with bilateral symmetry.

1.2 Diatom age, diversity and ecological functions

Diatoms are a relatively young group of species, existing probably from the early Mesozoic era (Kooistra & Medlin, 1996; Medlin et al., 1997) but they are the most species-rich group of algae (Guiry, 2012; Mann & Vanormelingen, 2013). Today, 14,575 species are described (Guiry & Guiry, 2017), however this number seems to underestimate the overall diversity. There are still undersampled habitats and areas on the earth, such as epipelon (Pouličková et al. 2008; 2014), subtidal marine epipsammic diatoms (Mann et al., 2016), together with freshwater and aerophytic diatoms in tropical regions. Also, diatoms are substantially underclassified for the cryptic and semicryptic species diversity (Sims et al., 2006). Estimations of the real diversity differ a lot. Mann & Droop (1996) suggest 200,000 existing species, Williams and Reid (2006) claim it is even more than that, Guiry is more conservative with 20,000 species (Guiry, 2012), however, most probably the number lies somewhere between 30,000 and 100,000 (Mann & Vanormelingen, 2013) which still makes diatoms „the beetles of algae“ (Mann & Vanormelingen, 2013). Even though there is such a large number of species, diatoms are still rapidly evolving as they have a very fast substitution rate in rRNA coding regions (Kooistra & Medlin, 1996).
Diatoms, mainly marine planctonic species, one of the main marine planctonic groups (Benoistion et al., 2017), create a huge biomass which gives them great ecological importance. They are oxygen factories and they are responsible for around 20% of the global net primary production (Field et al., 1998; Mann, 1999; Benoiston et al., 2017) and they hugely influence the CO₂ concentration in the atmosphere (Armbrust, 2009). Diatoms participate in the global biogeochemical cycles, mainly of carbon (Benoiston et al., 2017) silica (Tréguer et al., 2013), and nitrogen (Armbrust, 2009).

1.3 Life strategies

Life strategy, the way how a diatom adapts to the environment and to biotic influences, is classified in various ways according to different authors. Mann et al. (2016) divides diatoms into three groups: they live either suspended, attached or they are motile. The latter two, living in the association with the surface, are often called benthic.

1.3.1 Planktonic diatoms

Diatoms living suspended in the water column are called planktonic. They float passively and as they are not actively movable, they might sink thanks to the heavy silica frustule. To stay in more illuminated surface waters, some species create adaptations. They might either form spatially extensive colonies like e.g. Asterionella formosa Hassall creating a star, some produce chitin fibres that slow down the sinking (Walsby & Xypoleta, 1977), or incorporate compounds of low density inside their vacuoles like some marine species do (Boyd & Gradman, 2002). However, sinking also represents an important part of the life strategy. When the ocean surface waters turn hostile, diatoms sink and the upwelling brings them back later to better conditions (Smetacek, 1985). The removal of diseased cells can also cause a better accessibility of nutrients (Raven & Waite, 2004). Therefore, diatoms are able to use chitin fibres also for aggregation which accelerates sinking (Smetacek, 1985).
1.3.2 Benthic diatoms

Benthic diatoms are a diverse group of species living close to the substrate. They include motile and non-motile species. Every type of surface is very specific and diatoms are usually divided according to that. Benthic algae are divided into: epipelon, endopelon, epipsammon, endopsammon, epilithon, endolithon, epixylon, epizoon, endozoon, endophyton and finally epiphyton (reviewed by Poulíčková et al., 2008).

Epipelic and endopelic diatom communities live in association with fine sediments. They coat the surface of mud, where they can create brownish films. Boundaries between species on and in the sediments do not exist (Poulíčková et al., 2008) as diatoms are usually biraphid and therefore capable of biologically driven circadian or diurnal movements up and down (Palmer & Round, 1967). It is generally thought that the movement up during a day ensures better illumination and down later in the day brings diatoms into contact with higher concentration of nutrients, as nutrients are more accessible in the hypoxic or anoxic conditions. Movement seems to be an essential property in sediment conditions because diatoms are often buried because of disturbances and they can stay active only in the top few millimetres of the sediment (Mann et al., 2016).

Epipelic diatoms are important from the ecological point of view, apart from the primary production they stabilize sediments and participate in the nutrient cycling (Poulíčková et al., 2008).

Diatoms living in the sandy environment are divided into endopsammon – living within the substrate like Surirella sp. or epipsammon – tiny diatoms living attached to a grain of sand, e.g. small representants of Navicula sp. and Nitzschia sp. (Poulíčková et al., 2008). One grain can be inhabited by up to a hundred diatoms (Mann et al., 2016). As in the case of
epipelon, motility represents a great advantage. It is a way of coping with disturbances, and these diatoms are also known to perform vertical movement for the same reasons as epipelon.

Epilithic diatoms live either on the stones, calcified surfaces or similar hard substrata that are regarded as inert. This is a reason why epilithic diatoms are accepted as suitable for biomonitoring purposes. Bacterial activity within the epilithic community, however, causes chemical weathering and therefore makes some elements more available (Hiebert & Bennett, 1992).

The Endolithic way of life is oftenly connected with extreme environments and it is rather typical for other groups of algae, mainly cyanobacteria. However, diatoms are known to live within the rock material. Hernández-Chavarría & Sittenfeld (2006) have even described an endolithic community which was dominated by the diatom *Pinnularia* in volcanic rocks in Costa Rica.

Diatoms are also able to live on or inside animals. *Epizoon* is known from various species, they are found on marine (e.g. Majewska et al., 2015) and freshwater turtles (Wu & Bergey, 2017), sperm whale (Denys, 1997), small crustaceans (Fernandes & Calixto-Feres, 2012) and many others. Algae use animals as vectors for their dispersal (Atkinson, 1972).

Finally, diatoms can live in association with plant material. They can live either inside – *endophytic*, or on the surface – *epiphytic*, creating sometimes very large extensive colonies. Epiphyton, as the key topic of this dissertation, is discussed in detail in the following review, paper I.
1.4 Epiphyton - Paper I

Ecology and applications of freshwater epiphytic diatoms – review

Markéta LETÁKOVÁa, Markéta FRÁNKOVÁb & Aloisie POULÍČKOVÁa

aDepartment of Botany, Faculty of Science, Palacký University,
Šlechtitelů 27, CZ – 783 71 Olomouc, Czech Republic

bLaboratory of Paleoecology, Institute of Botany of the CAS, Lidická 25/27, CZ – 602 00 Brno, Czech Republic

Abstract - Epiphytic diatoms perform a variety of ecological functions. Diatoms are important primary producers and sources of oxygen which can modify the chemistry of the surrounding aquatic environment. They may live attached to plant surfaces with the help of extracellular polymeric substances and compete with plants for resources (e.g., light, nutrients). Thus, they represent an excellent model system for studies on interactions between epiphytes and their host plants under different environmental conditions. Further, the practical usage of epiphytic diatoms in biomonitoring begs questions concerning substrate specificity, diatom biodiversity, and species delimitations. This review focuses on specific aspects of freshwater epiphytic diatom ecology as adaptations for epiphytic way of life, epiphyte-host relationships, and implications for biomonitoring.

epiphytic diatoms / ecology / substrate specificity / biomonitoring / species complexes

1. INTRODUCTION

Diatoms live either freely in the water column or attached to substrates. Attached diatoms are differentiated according to substrate type, such as epipelic (living on fine bottom sediments; reviewed by Poulíčková et al. 2008a; 2014), epilithic (growing on stones or hard substrata), epipsammic (attached on sandy sediments),
epizoic (living on animals) and finally epiphytic (growing on different plant material such as algae, bryophytes and vascular plants, Round & Lee, 1989; Tiffany & Lange, 2002; Tiffany, 2011).

The need to study epiphytes arises from their ecological importance and functions. Community ratios among primary producers (e.g., macrophytes, phytoplankton, periphyton) are crucial to maintaining a favourable transparent states in lakes with applications in lake management and restoration (Špoljar et al., 2017). Attached littoral algal communities represent an important component of food webs as primary producers (Michael et al., 2006). This productivity may be comparable (Wetzel, 1964) or, under certain circumstances, even higher than the productivity of phytoplankton (Vadenboncoeur et al., 2003; Adame et al., 2017). We speak mainly about oligo-mesotrophic shallow lakes or littoral zones (Vadenboncoeur et al., 2003; 2008; Althouse et al., 2014) where the transparency of water is higher and enables periphyton development. This may also be the case in lotic systems (mainly in mid-sized streams), where the primary production of epiphyton is considerable (Vannote et al., 1980).

Attached algae, similar to submerged macrophytes, chemically modulate the aquatic environment by nutrient uptake and assimilation-dissimilation processes (Lock et al. 1984; Celewicz-Goldyn & Kuczyńska-Kippen, 2017) Epiphytic diatoms actively metabolize and therefore change chemical compositions and ratios in water, while their photosynthetic activity leads to diurnal fluctuations of oxygen and CO₂ with subsequent pH variation (Lelková & Poulíčková, 2004). Although the ability of atmospheric nitrogen fixation is mainly connected with cyanobacteria, some diatoms can participate in nitrogen cycling via their endosymbionts (i.e., members of the family Rhopalodiaceae, sensu Precht et al., 2004; Nakayama et al., 2014). Finally, epiphytic diatoms play an important role in bioindication and paleoecological reconstructions (Kitner & Poulíčková, 2003; Poulíčková et al., 2004a; Denys, 2009; Poulíčková et al., 2013b).

Although the attached photoautotrophs have received less attention than the phytoplankton, the number of epiphyte studies exceeds studies of other bentic habitats. The ratio of papers in Web of Knowledge database (Thomson Reuters, New York) on planktonic, epiphytic, and epipelic microalgal assemblages was 62:32:4 in 2013 (Poulíčková et al., 2014). However, there exist knowledge gaps which restricts the practical applications based on epiphytic assemblages. The purpose of this
review is to address some specific aspects of freshwater, epiphytic diatom ecology, plant-diatom relationships within epiphytic communities, implications for biomonitoring, and to suggest the directions for future research.

2. LIFE ON THE SUBSTRATE

An attached growth form provides periphytic diatoms several advantages over phytoplankton – stability, light and nutrient access. In an ecological niche, phototrophic organisms compete for light and only those with suitable adaptations can be successful. Light appears to be the overriding factor controlling both macrophyte and epiphyton biomass, composition, and distribution (Mosisch et al. 2001; Laugaste & Reunanen, 2005; Pettit et al., 2016). The relative cover of periphyton decreases with decreasing light, which means that light conditions influence the vertical distribution of photoautotrophs (Pouličková et al., 2006). Periphytic diatom species are low light tolerant, which could explain their higher abundance at sites with high overshading (Celewicz-Goldyn & Kuczyńska-Kippen, 2017).

Attachment enables epiphytes to stay in places with optimal light conditions and perhaps in the vicinity of decaying plant cells, which may serve as a nutrient source (Cattaneo & Kalf, 1979). However, competition for such surfaces is stiff even amongst the periphyton itself (Hoagland et al., 1982), favouring motile diatoms (Hudon & Legendre, 1987). Secondly, attachment to the surface prevents current stress, mainly to diatom cells living closest to the substrate (Stevenson, 1996). Passy (2007) classified attached diatoms into three guilds: low-profile, high-profile, and motile diatoms (Fig. 1-15). Low profile representatives have small body size, horizontal growth, and tolerate unfavourable positions close to the substrate (Fig.4-5). Both the high-profile and motile guilds may secure more beneficial positions due to specialized habits (Fig.6-7, Soininen et al., 2016). As planktonic diatoms can settle into the benthos, a fourth “planktic” guild has been added (Rimet & Bouchez, 2012b) to the classification mentioned above (Fig.16).

Fránková et al. (2017) divided epiphytic diatoms in a similar way. They created five functional groups according to their relation to the host plant surface (“life style”): FT1 planktonic taxa represented by centric diatoms; FT2 typically periphytic...
taxa adhering to the surface directly by a mucous film or with a mucilaginous stalk; FT3 facultatively periphytic araphid taxa, passively moving diatoms able to attach; FT4 facultatively periphytic taxa with raphe with fibulae, actively moving diatoms able to attach; FT5 epipelic taxa with raphe, actively moving, mainly symmetrical biraphid pennate diatoms.

2.1 Attachment to living surface

Diatoms should not be considered parasitic since they stick to the external tissue only, with the help of extracellular polymeric substances (EPS, Tiffany, 2011; Fránková et al., submitted), that are considered to be one of the reasons for diatom ecological success. Because, apart from sessile adhesion, they enable a variety of other functions such as motility), colony formation and they also serve as antidessicants (Hoagland et al., 1993). EPS are composed mainly of acidic polysaccharides (Wustman et al., 1998), more or less carboxylated or sulphated, while more detailed composition is genus- or species specific (Hoagland et al., 1993). Occasionally, proteins have been identified as well (Daniel et al., 1987; Wustman et al., 1998), but never lipids (Hoagland et al., 1993).

EPS may form a variety of structures, such as stalks, pads, and adhering films, all of which are crucial for attachment (Fig. 1-16). Stalks are more or less long fine fibrils connecting the substrate and diatoms. They are exuded from the siliceous cell wall either through the apical pore field (Hoagland et al., 1993, e.g., Cymbella cistula (Ehr.) Kirchn. (Hufford & Collins, 1972), Cymbella affinis Kützing (Roemer et al., 1984), Gomphonema olivaceum (Hornemann) Brébisson (Roemer et al., 1984), Rhoicosphaenia curvata (Kütz.) Grun. (Mann, 1982), etc.), or from the raphe, at the terminal nodule on the valve face (Hoagland et al., 1993, e.g. Achnanthes longiceps (Daniel et al., 1987; Novarino, 1992) and A. minutissima Kütz (Roemer et al, 1984). Pads do not differ much from stalks: they are even called ‘short stalks’. They are also secreted through the apical pore field (Hoagland et al., 1993). However, apart from the attachment to the surface they enable also the cell to cell attachment and therefore are responsible for colony formation (Geitler, 1971). Diatoms forming pads include Fragilaria acus Kütz. and Gomphonema parvulum (Kütz.) Grun. (Hoagland et al., 1982), Fragilaria vaucheriae (Ehr.) Peter (Roemer et al., 1984), Diademis confervacea Kützing (Rosowski et al., 1983), etc. Adhering films are found in
prostrate diatoms such as *Amphora* (Daniel et al., 1980, Round & Lee, 1989), and *Cocconeis* (Daniel et al., 1987, Wang et al., 2014).

The movement of chemotactic diatoms is influenced by the chemical nature of the substrate (Chet & Mitchell, 1976). This chemotaxis can be passive or active, as observed on the marine diatom *Achnanthes longiceps* (Wang et al., 1997). Diatoms inoculated to the hydrophobic substrate attached passively and reversibly but diatoms inoculated to hydrophilic substrate did not attach until they produced extracellular polymers. Active attachment can be observed on the hydrophobic surface as well. However, much more time is needed and the action has four steps. Raphe-associated transient attachment enabling movement is followed by the formation of pads which prevents motility. Then, a shaft is secreted from the pole of the raphe valve and it elongates. Finally, the cells at the end expand creating colonies (Wang et al., 1997).

Like higher plant assemblages, attached algal succession appears to be a result of interactions among processes such as colonization, environmental filtering, interspecific, and intraspecific competition (Hoagland et al., 1982; Kitner et al., 2005; Passy & Larson, 2011). As Hoagland et al. (1982) describe, firstly the substrate becomes coated with organic film and the bacteria attach, sometimes even actively via mucilaginous material. The presence of bacteria definitely plays an important role, as Buhmann et al. (2011) note that *Achnanthidium minutissimum* produces mucilaginous material only if bacteria are present. Second, early colonizers may be various types of microbes, including low-profile diatoms. Later, clumps or rosettes of diatoms develop, finally followed by long stalked (high profile) diatoms. Their stalks represent a surface for further epiphytic attachment (secondary epiphytes) and therefore further structuring (Fig. 11-12). Secondary epiphyton species richness, abundance and even biomass (Whitton et al., 2009) can exceed quantitative parameters of primary epiphyton (Letáková, unpublished data). The arrangement of epiphytic assemblages in the climax stadium of succession resembles the multilayered structure of forests (Kitner et al., 2005; Pouličková et al., 2006).

The microbial community has a diffusive boundary around itself (Jørgensen & Revsbech, 1985), where the chemical conditions inside may differ significantly from the surrounding environment and affect the metabolism of the whole community (Carlton & Wetzel, 1987; Riber & Wetzel, 1987). The older the community, the bigger the difference in chemical conditions where the exchange of chemicals from an older
community with external water is significantly less important than that of a young and thin community (Sand-Jensen, 1983).

2.2 Host plant surface

Diatom flora is influenced by the physical, chemical, and biological characteristics of the host plant surface, even though there is not a strict boundary between these influences. Biological interaction is often run by chemical substances and the physical one is often associated with the chemical one, etc. The section is divided according to these three interconnected aspects.

2.2.1 Physical influence

The physical influence of the host surface is represented mainly by macrophyte host morphology (overall body architecture, form of leaves, etc.), anatomy (particularly surface microtopography, e.g. roughness or smoothness), and growth forms (emerged, submerged and floating). The length of host life cycle is also important (Laugaste & Reunanen, 2005; Pomazkina et al., 2012; Letáková et al., 2016; Pettit et al., 2016).

Primarily, diatom composition is influenced by the size and surface texture (Whitton, 1975), which is most evident in lotic waters where it is harder to stay attached, but it is present also in lentic waters (Laugaste & Reunanen, 2005), highlighted in splash zones. Finely branched and morphologically complex submerged plants, such as Myriophyllum, Ranunculus or Elodea, seem to be rich in epiphytes (Laugaste & Reunanen, 2005; Celewicz-Gołdyn & Kuczyńska-Kippen 2017). Similarly, higher diatom density was found on bryophytes with more crevices than on leafy liverworts (Knapp & Lowe, 2009) because the current is decelerated within the bryophyte thallus (Suren et al., 2000) creating a shielded habitat enabling higher attachment rates (Burkholder, 1996). Similarly, in the study conducted on the River Durance in South-East of France, significant differences in epiphyton densities were observed in different parts of plants (Compte & Cazaubon, 2002). The influence of water movement is also known from lentic ecosystems. Albay & Akçaalan (2008) show that physical disturbances, such as water-level fluctuation, influence colonisation of epiphyton. Fráňková et al. (2017) found in the Dehtář fishpond (the Czech Republic) different compositions of epiphytes according to their functional
traits (diatom “life style” in relation to the substrate) caused by different intensity of wave action.

Epiphytic species composition may also differ significantly between various macrophytes taken under similar conditions (Compte & Cazaubon, 2002; Fernandes et al., 2016; Mutinová et al., 2016). Diatoms have diverse body shapes, sizes, and means of attachment, and for thus heterogeneity of colonization may be most prominent in the presence of a current, but again it appears also in lentic waters. For instance, large adnate diatoms, such as Epithemia adnata, Rhopalodia gibba, Eunotia arcus, E. arcubus, are the most frequent and abundant inhabiting Potamogeton gramineus rather than Chara aspera, which are favored mainly by small-sized and motile taxa – such as Brachysira neoexilis and Encyonopsis cesatii (Laugaste & Reunanen, 2005; Letáková et al., 2016). Micro-scale distribution pattern of periphyton taxa is associated with microhabitats and influences the overall distribution and diversity of benthic autotrophs (Yang et al., 2009). Such fine-scale distributions can finally be studied using new and promising tools for in vivo observation (Fig. 1-3, Fránková et al., 2017). For example, Low Temperature Method for Environmental Scanning Electron Microscopy (LTMESEM) enables the study of fresh diatom material attached on plant substrate without any chemical pretreatment and conductive coating.

The variation of diatom epiphytic assemblages can be expected in consequence of host plant life forms as emergent macrophytes (e.g., Typha spp.), submerged macrophytes (e.g., Myriophyllum), free floating macrophytes (e.g., Lemna), macrophytes with floating leaves (e.g., Nymphaeaceae), and wet bryophytes (Pouličková et al., 2004b; Fernandes et al., 2016; Letáková et al., 2016; Adame et al., 2017). Floating-leaved macrophytes increase shading, reduce both planktic and benthic algal/diatom photosynthesis and reject zooplankters, whilst emergent macrophytes prevent coastal erosion (reviewed by Špoljar et al., 2017). In summary, a mosaic structure of macrophyte community caused higher habitat heterogeneity and support overall diversity (Wang et al., 2009). Over the last two decades, increasing attention has been paid to bryophytes because of the ecological significance of wetlands. Mosses often have unique diatom flora, therefore Johansen (1999) uses the term bryophytic diatoms and Cantonati named epiphytic algal
assemblages inhabiting mosses *epibryon* (Cantonati *et al.*, 2012; Poulíčková *et al.*, 2013a). The moss thallus protects the epiphyton from heat, wind, and desiccation since it is able to retain a great amount of water. Moisture content is the major ecological parameter determining diatom assemblages in moss communities, especially in the terrestrial environment (Nováková & Poulíčková, 2004; Poulíčková *et al.*, 2004b; 2013a). Epibryon (diatoms on bryophytes) is common and abundant in regions where mosses comprise the dominant vegetation: Subarctic and Subantarctic islands (Van de Vijver & Beyens, 1997; Van de Vijver *et al.*, 2003; Chattová *et al.*, 2014), peat bogs and mires (Poulíčková *et al.*, 2004b; Buczkó & Wojtal, 2005; Buczkó, 2006; Kokfelt *et al.*, 2009; Poulíčková *et al.*, 2013a,b) and spring fens of boreal and temperate zones (Cantonati 1998; Poulíčková *et al.*, 2003; 2004b; Fránková *et al.*, 2009; Hájek *et al.*, 2011; Cantonati *et al.*, 2012).

2.2.2 Chemical influence

Various chemical substances influence benthic diatoms with two main groups bearing note: nutrients and allelopathic substances.

Apart from nutrients supplied via the water column, benthic diatoms may also obtain nutrients from underlying substrata (Burkholder & Wetzel, 1990). The use of nutrient-diffusing artificial substrates has shown that benthic diatoms receive nutrients from underlying substrata, (Fairchild *et al.*, 1985; Carrick & Lowe, 1989; Pringle, 1990), particularly phosphorus (Burkholder & Wetzel, 1990), silica (Sand-Jensen, 1990) and organic matter (Kassim & Al-Saadi, 1995). The prevailing source also influences the community structure and species diversity (Pringle, 1990). Substrates releasing nutrients were described in the epipelon (Pringle, 1990; Hašler *et al.*, 2008; Poulíčková *et al.*, 2008a; 2014), in studies on artificial substrates (Fairchild *et al.*, 1985; Carrick & Lowe, 1989), and also in freshwater epiphyton (Burkholder & Wetzel, 1990) particularly in the early stages of colonization (Albay & Akçaalan, 2003). Host-plant nutrient supplies play an even more important role in habitats with low turbulence of water because water flow enables nutrient cycling that diffuse across a thin boundary level (Riber & Wetzel, 1987).

In contrast to the oldest studies suggesting macrophytes as an inert material (Cattaneo & Kalff, 1979), Burkholder & Wetzel (1990) consider host plant surface as important nutrient source for epiphyton. The importance of this nutrient source
increases particularly in oligotrophic and moderately eutrophic waters (Kitner & Poulíčková, 2003; Poulíčková et al., 2004a; Laugaste & Reunanen, 2005).

The release of nutrients from plants is pronounced on sites of tissue damage, where more epiphytes may grow (Roos, 1983). Also, with increasing plant age, the integrity of the material decreases and therefore more nutrients are diffused, particularly phosphorus (Landers, 1982) or silica (Laugaste & Reunanen, 2005). Furthermore, the release of nutrients is greater in the spring time after winter decomposition than in the late summer time. However, no matter the age and seasonality, there is always nutrient release to some extent (Burkholder & Wetzel, 1990). Unfortunately, new studies in this field are missing, although new methods and sophisticated facilities have recently become available.

2.2.3 Biological interactions

Life on a plant substrate is usually regarded as beneficial for diatoms: their gain is quite clear. As it is mentioned above, they acquire a better position in the water column, higher light illumination together with a wider source of nutrients. But the question is: How do epiphytes influence their hosts? Different studies often support completely opposite opinions.

2.2.3.1 Negative influence of hosts

At first, the epiphyte vs host macrophyte relationship can be regarded as negative. Epiphytes shade aquatic plants and therefore decrease their photosynthetic activity (Philips et al., 1978; Eminson & Moss, 1980; Sand-Jensen & Borum, 1984). Epiphytes also compete with macrophytes for space and nutrients, they increase pH and oxygen levels, and during the night, they contribute to the induction of hypoxic conditions (Sand-Jensen & Borum, 1984). Consequently, aquatic macrophytes have developed certain protective adaptations: either a smooth surface (Eminson & Moss, 1980), quick growth of new tissue/leaves and changes in macrophyte morphology (Eminson & Moss, 1980; Sultana et al., 2010), or the production of algal antibiotics (Mähnert et al., 2017). Changes in leaf shape were reported in response to water depth and phosphorus limitation (reviewed by Sultana et al., 2010). The average number of leaves, total length of newly recruited shoots, and diameter of stems seems to be greater in the epiphyton-free control plants than in the epiphyton-colonized plants under low light conditions (Sultana et al., 2010). They also showed
that in laboratory conditions plants with epiphyton allocate more biomass in their rhizomes and roots. In contrast to epiphyton free plants, epiphyton-laden plants did not show internodal elongation, which is considered as a response of plant to red light under shading conditions (Sultana et al., 2010). It is known that primary producers can produce allelopathic substances in order to beat rivals (Gross, 2003; Mähnert et al., 2017). The toxic influence on cyanobacteria and algae has been shown experimentally in case of Myriophyllum (Gross et al., 2002), Ceratophyllum (Iványi et al., 2002), and Chara (Mähnert et al., 2017). Allelopathic effects of submerged macrophytes on phytoplankton have been studied for their practical usage in water management (Körner & Nicklisch, 2002; Gross et al., 2007; Hilt & Gross, 2008; Hu & Hong, 2008). Epiphyton is considered to be less vulnerable to allelopathic chemicals than phytoplankton (Hilt, 2006), probably because epiphytic algae might have developed resistance to some extent by the process of co-evolution (Reigosa et al., 1999).

Allelopathic substances are not only those with an inhibitory effects but also stimulatory ones (Molish, 1937), although the latter are the main discussed in the literature (Letáková et al., 2016). Understanding allelopathic substances still represents a challenge because elucidating their roles and prevalence in an aquatic environment is not an easy task, and the laboratory evidence does not necessarily apply in nature (Gross, 2003; Berger & Schagerl, 2003; 2004; Mähnert et al., 2017). The question is also if the chemicals are secreted in biologically active amounts and if they are secreted ‘intentionally’ or just as a coincidence of factors, to know if they should be called toxins or allelopathic substances (Inderfit & Dakshini, 1994). These are the reasons why this chemical-biological issue still requires further investigations.

A typical group studied for allelopathic release are Charophytes. They produce toxic substances inhibiting the photosynthesis of microalgae, which together with the incrustation of their surface by calcium carbonate is responsible for the lower epiphyton densities on Chara spp. (Hafner & Jasprica, 2013; Letáková et al., 2016). Allelopathic substances produced by Charophytes are known to lower the photosynthetic rates (Dodds, 1991) or even completely inhibit photosynthesis of different species of the genus Nitzschia (Wium-Andersen et al., 1982). Fránková et al. (2017) observed lower diatom species richness on the non-incrusted Chara braunii (20–24 diatom species per sample) in comparison with Elatine hydropiper (44–46 diatom species per sample) studied at the same locality. The species of the
genus *Nitzschia* present on other macrophytes were almost absent. On the other hand, stoneworth epiphyton from south Bohemian fishponds was inhabited by common euryvalent species, which probably have a high tolerance to stress factors (Fránková et al., 2017).

Low epiphyte density is also known from *Spirogyra*. Tannin-like compounds released by this filamentous macroalga might be responsible for this (Pankow, 1961). Jorgensen (1956) notes that *Chlorella pyrenoidosa* filtrate inhibits the growth of *Nitzschia palea*, while the same substance stimulates the growth of *Desmodesmus quadricula*. *Nitzschia palea* produces an autotoxic substance, while *Asterionella formosa* forms a substance accelerating its own growth (Jorgensen, 1956). Unfortunately, the evidence of influences of chemicals secreted by macrophytes or other benthic organisms on diatoms and chemicals secreted by diatoms themselves is greatly lacking.

2.2.3.2 Neutral influence

Not all consider the macrophyte – diatom relationship to be determinative for the occurrence of diatoms species. According to the ‘neutral substrate hypothesis,’ there is no significant effect of the plant substrate on its epiphytes (Cattaneo & Kalff, 1979; Blindow, 1987; Kitner & Pouličková, 2003; Cejudo-Figueiras et al., 2010) and algal communities growing on surfaces other than plants do not differ greatly. Neither plant nor diatom influences are essential, and, although macrophytes provide some nutrients to epiphytes, their influence can be neglected (Cattaneo & Kalff, 1979), especially in waters with high trophy. If a water plant is substituted with an artificial substrate, the diatom community does not differ significantly (Cattaneo & Kalff, 1979; Millie & Lowe, 1983).

2.2.3.3 Positive/symbiotic interactions

Finally, there are studies suggesting that this type of relationships can be regarded as mutualistic (Ulanowicz, 1995). Epiphytes have been defined as loose non-obligate ectosymbiotic (Allen, 1971; Wetzel, 1975; 1983; Kies, 1992) though it sounds too bold after all the facts mentioned above. We already know what the diatom gains, but what advantage can epiphytic diatoms bring to their hosts? If the shading effect of epiphyton is not too heavy, it brings the benefit of absorption of UV radiation and therefore protects the macrophytes (Klančnik, 2014). There is one more...
important factor within the water environment and that is grazing pressure. Aquatic plants and macroalgae are under the risk of consumption. Epiphytic cover can represent a barrier against host grazers (Hutchinson, 1975), since they are eaten first and the aquatic plant might stay unhurt. Grazing pressure strongly influences the epiphytic community and it prevents the undesirable shading (Brönmark, 1989; Hillebrand, 2005).

3. EPiphytic Diatoms in Biomonitoring

3.1. Overall diversity

Biomonitoring is based on specific ecological requirements of organisms called bioindicators (Adams, 2002). Aquatic bioassessment based on phytobenthos, particularly diatoms, seems to be quite popular especially in freshwater ecosystems (Lavoie et al., 2014). However, major taxonomic revisions clearly showed that the overall diversity of diatoms is underestimated. Although we have 12,000 currently described diatom species, the estimates of total diversity range between 30,000 and 200,000 (Mann & Vanormelingen, 2013). Recent evidence from molecular data and mating experiments has shown that some traditional morphospecies are aggregates and contain several cryptic species (e.g., *Achnanthidium minutissimum* agg.), which are ecologically differentiated (Pouličková et al., 2008c; 2017). Increasing numbers of described diatom species lead to problems with their usage in routine biomonitoring (Zampella et al., 2007). Analyses based on epiphytic assemblages lead to the recommendation employ fine taxonomic resolution in cases where the assemblage is dominated by a “good indicator”, which is an easily recognized diatom taxon (Pouličková et al., 2017). Species as *Achnanthidium minutissimum* (Kützing) Czernnecki, A. *lineare* W. Smith and A. *caledonicum* (Lange-Bertalot) Lange-Bertalot seems to be promising as indicators of lower trophic levels and A. *eutrophilum* (Lange-Bertalot) Lange-Bertalot and A. *straubianum* (Lange-Bertalot) Lange-Bertalot as indicators of higher trophic levels.

3.2 Host specificity

The issue of substrate preference arises from physical, chemical, and biological influences. Since the relationship between epiphyte and macrophyte is complex, the idea of substrate specificity is intriguing. The fundamental question is if
the environmental conditions or the host type are more responsible for the community structure. The answer has obvious relevance for the use of diatoms in biomonitoring. Conflicting data has been generated from different studies, localities, and macrophyte species.

Prowse (1959) suggests there is a probable relationship between macrophytes and their epiphytes, i.e. certain species of macrophytes have certain species of epiphytes. This might be due to different surface architecture (Laugusté & Reunanen, 2005), possible allelopathic release (Gross, 2003; Hilt, 2006), or for other biotic interactions (e.g., Pip & Robinson, 1984; Cattaneo et al., 1998; Laugasté & Reunanen, 2005; Letákova et al., 2016). Some researchers have noted host specificity only for certain macrophytes while not for others (Blindow, 1987; Kollár et al., 2015; Mutinová et al., 2016; Messyasz & Kuczynska-Kippen, 2006). In a similar way, the diatom *Lemnicola hungarica* is recorded as a typical inhabitant of *Lemna* sp. (Buczkó, 2007; Pouličková et al., 2008b). However, *Lemnicola* has also been recorded from *Phragmites australis* (Kollár et al., 2015). *Cocconeis placentula* is well known from algal surfaces, particularly *Cladophora-Cocconeis* association (Laugasté & Reunanen, 2005; Tiffany 2011, our observations Fig.4-5). On the other hand, negligible or no substrate-dependent differences have been noted (e.g., Cattaneo & Kalff, 1979; Milie & Lowe, 1983; Cejudo-Figueras, 2010).

Related to this issue, most studies agree that host specificity is usually observed in places with lower trophy (e.g. Eminson & Moss, 1980; Pouličková et al., 2004a; Letákova et al., 2016; Mutinová et al., 2016). The higher the trophic status the less the specificity, which, if present, is likely due to plant morphology (Eminson & Moss, 1980; Kitner & Pouličková, 2003). For example, Messyasz & Kuczyńska-Kippen (2006) documented the substrate preference in eutrophic lakes and concluded that the specific architecture of a host plant is more determinant than the features of the lake. In oligotrophic waters, the possible release of nutrients by plant surface might play a more important role than in waters full of inorganic and organic compounds (Eminson & Moss, 1980; Kitner & Pouličková, 2003). However, some studies claim the opposite (Kahlert & Peterson, 2002).

In the case of bryophytes, water chemistry is still found to be the most relevant determinant. For example, *Sphagnum* seems to influence epiphyton by altering the pH (acidification) in the surrounding environment (Clymo, 1964; Mutinová et al., 2016), although the effect is not universal. Although some authors found a
significant relationship or affinity between some diatom species and bryophytes (Cantonati, 1998; Poulíčková et al., 2004b; Cantonati & Spitale, 2009), the environment (especially water chemistry represented mainly by pH) appears to be more important than the substrate (Buczkó, 2006; Cantonati & Spitale, 2009; Hájková et al., 2011).

In sum, host preference is an unresolved issue relating to epiphytic diatoms. The chemical and biological interaction between the host plant of various species and its epiphyton should be in the centre of attention, although it is problematic from the practical point of view.

3.3 Biomonitoring and limnological reconstructions

Water is an essential substance for humans and therefore there is a need to maintain and protect it. These actions are impossible without deep understanding of what constitutes a “healthy” and “natural state”. To analyse such complex systems, chemical analyses need to be accompanied by the biological ones (Round, 1991): the chemical analysis illuminate the immediate information about the environment, while organisms provide complex and long-term information, as they need some time to develop their community. Furthermore, simple chemical analysis may be biased by the organisms that cause the fluctuations, thus the simultaneous usage of bioindicators is necessary (Cox, 1991; Round, 1991). Among other chemical and biocenotic investigations, diatoms seem to show the most precise results (Leclercq, 1988; Hájek et al., 2014; Rimet et al., 2015; Kelly et al., 2016). The composition of the community reflects various physico-chemical characteristics (van Dam, 1982), since diatoms have preferences for pH, conductivity, humidity, trophy, presence of organic matter, oxygen, nutrients, current and so on (Lobo et al., 2016). Diatoms are perfect bioindicators (Blanco et al., 2004; 2014) that help to distinguish eutrophication (Descy & Coste, 1990; Kitner & Poulíčková, 2003; Poulíčková et al., 2004a) and pollution (Lange-Bertalot, 1979). Moreover, their response to changing conditions is fast (Blanco et al., 2004), even faster than that of macroorganisms (Rühland et al., 2003; Hájek et al., 2014). Therefore, diatoms are among the organisms mentioned in the Water Framework Directive (WFD; 2000/60/EC) as fundamental bioindicators of waters.

Periphyton based monitoring must be segregated by ecosystems (e.g., lotic, lentic waters, and wetlands), because different factors apply in each. Many river
periphyton studies exist (e.g. Whitton & Rott, 1996; Prygiel et al., 1999; Rimet & Bouchez, 2012a, b) and there is also a standardized sampling method available (CEN, 2003). For ponds and lakes the number of studies is increasing lower (Kelly et al., 2008; 2016), and even more scant for wetlands (Della Bella et al., 2007; Chen et al., 2016). Overall, the epiphytic community has a great potential for biomonitoring of all the three habitat types.

In running waters, the most commonly sampled substrates are epilithon and epiphyton (CEN, 2003; King et al., 2006), with epilithon preferred if present (Round, 1991; Álvarez-Blanco et al., 2013), although in slower parts of a stream it can be contaminated with mud (Round, 1991). The use of epiphyton for biomonitoring purposes also has its difficulties. There are numerous species of macrophytes growing along streams, and a comparison between epiphytes growing on different macrophyte species might be burdened by an error, for the reasons mentioned above. The comparison of epilithon and epiphyton has been done several times for both streams and lakes (Danilov & Ekelund, 2000; Pouličková et al., 2004a; Torrisi et al., 2006).

In lentic waters, mainly in shallow lakes and littoral parts of deep lakes (Kitner & Pouličková, 2003; Blanco et al., 2004; Pouličková et al., 2004a; Ács et al., 2005; King et al., 2006; Blanco et al., 2014; Cejudo-Figueiras et al., 2010), epiphyton was found to be suitable for bioindication, and actually very similar principles can be applied as in lotic systems (King et al., 2006). Cantonati et al. (2012) proposed epibryon for the assessment of spring habitats. Epilithon is tied to substrate preferences, but contamination by dead frustules may lead to biased results (Pouličková et al., 2004a). This can be prevented by using epiphytic samples from vertically orientated macrophytes (reeds), where covering by silt is minimized (see Round, 1991; Pouličková et al., 2004a; King et al., 2006).

Epiphytic diatoms can be further used in paleolimnological reconstructions. The Water Framework Directive (WFD; 2000/60/EC) requires researchers to derive ecological status categories from „reference conditions“. The sheer absence of reliable reference sites all over Europe, and difficulties with sediment-based paleolimnology limited by poor stratigraphic resolution due to sediment mixing, has inspired some authors to look for other sources of information on a pristine situation (Denys, 2009). Macrophytes that are stored in a herbarium together with their diatom epiphytes represent an easy way to reconstruct past conditions from the composition
of their epiphytic assemblage (van Dam & Mertens, 1993; Cocquyt & De Wever, 2002; Shirey et al., 2008; Denys, 2009; Poulíčková et al., 2013b).

4. CONCLUSIONS

We have outlined a number of knowledge gaps with respect to the ecology and importance of freshwater epiphytic diatoms as bioindicators. Future research directions are summarized below:

1. Studies on epiphytic species diversity, distribution, dispersal, and autecology, together with improvements in taxonomy using a combination of molecular and traditional methods with emphasis to compile taxonomic reference libraries for environmental barcoding, should ameliorate limits of biomonitoring systems.

2. Studies on microhabitats and fine-scale distribution of epiphytic taxa “in situ” should bring better understanding of diatom life strategies and adaptations.

3. Studies on chemical influences and exchanges within host-epiphyte system, as well as biological interactions (e.g. allelopathy), is necessary for better understanding of host-epiphyte specificity.

Acknowledgements. We would like to thank Sarah A. Spaulding for lending us the photo of Didymosphenia. Dale Casamatta for English corrections and special thanks to Kateřina Šumberová, an expert on macrophytes for her kind help and consultations. Research has been supported by the Internal Grant Agency of Palacký University PrF-2017-001 and by the Institute of Botany CAS as long-term research development project no. RVO 67985939.

5. REFERENCES

LECLERCQ L., 1988 — Utilisation de trois indices, chimique, diatomique et biocénétique, pour l’évaluation de la qualité de l’eau de la Jonquiere, riviè
calcaire polluée par le village de Doische (Belgique, Prov. Namur). Mémoires de la Société Royale de Botanique de Belgique 10: 26-34.

MOLISH H., 1937 — Der einfluss einer pflanze auf die andere – Allelopathie, Fisher, Jena.

RÜHLAND K., PRIESNITZ A. & SMOL J.P., 2003 — Paleolimnological evidence from diatoms for recent environmental changes in 50 lakes across Canadian Arctic Treeline. *Arctic, Antarctic, and Alpine Research* 35: 110e123.

ŠPOLJAR M., ZHANG CH., DRAŽINA T., ZHAO G. & LAJTNER J., 2017 — Development of submerged macrophyte and epiphyton in a flow-through

Fig. 1-3 Epiphyton on plant epidermis imaged using environmental scanning electron microscopy (ESEM; method described in Fránková et al., submitted): 1. Cocconeis (asterisk), Gomphonema (arrow), 2. Cocconeis, Planothidium, 3. Gomphonema attached by mucilagenous stalks (arrow).

4-12, 15-16 Epiphytic diatoms imaged using light microscopy (bright field 4-5,11-12,15-16 or Nomarski contrast 6-10, 13-14) 4,5 – Cocconeis (arrow) attached to Pleurosira and green alga respectively by valve face (low profile guild), 6-7 Gomphonema attached by mucilagenous stalks (arrow, high profile guild), 8-9 Achnanthidium attached by mucilagenous stalk, 10. Fragilaria attached to green alga by one end using mucilage pad (arrow), 11-12 Didymosphenia with Achnanthidium as secondary epiphytes on their stalks (photo Sarah Spaulding), 13. free living Navicula (motile guild), 14. Tabellaria colonies connected by mucilage (arrow), 15. Fragilaria and 16. Asterionella planktonic guild.
2. OBJECTIVES OF THE DISSERTATION

This dissertation focuses on the community of epiphytic diatoms in order to account for the knowledge about life on the plant substrate and it tries to connect this with the practical aspects important in biomonitoring. In the centre of interest are the following aims:

1) To investigate structure, diversity and composition of epiphytic diatom communities.

2) To study the influence of ecological parameters to the epiphytic diatoms composition.

3) To try to summarize and clarify the problematics of the substrate specificity and its consequences for biomonitoring.

4) To investigate the contribution of species complexes and cryptic/semicryptic diatom species to overall epiphyton diversity.

5) To compare how species complexes and other species follow the trophic gradient and to find out how the accuracy of diatom identification influences water monitoring.

6) To point out epiphytic species complexes whose resolving has the potential to meliorate biomonitoring.
3. METHODS

3.1 Material, sampling and preparation

Epiphytic diatoms with their substrate (microphytes and macrophytes) were collected from altogether 79 localities. They were mostly represented by shallow fishponds and small local streams of the Czech Republic (Kollár et al., 2015; Poulíčková et al., 2017). For the Letáková et al. (2016) study, samples were taken in Lake Valagola in the Brenta Dolomites in Italy. Basic characteristics of each place are given in the individual papers.

Sampling always started when the submersed part of the plant was cut with the scissors and placed into a plastic container. In the laboratory, samples were worked out within few hours. Macrophytes were cut into smaller pieces, they were placed in the Erlenmeyer flasks and filled with around 300 ml of 30% H$_2$O$_2$ (volume differed according to the amount of plant material) in order to start the slow oxidation. All was done with great attention to prevent contaminations. After few days, the samples were boiled until the volume decreased considerably and a small amount of K$_2$Cr$_2$O$_7$ and 1 ml of conc. HCl were added. In such a way the oxidation process was finished. The diatom samples were washed out in distilled water several times until they reached neutral pH. The appropriate concentration of clean diatom frustules was prepared, and permanent samples were mounted with Naphrax.

Diatoms were observed using a light microscop Zeiss ‘Primo star‘(Germany) and Zeiss Axioskop 2 (Zeiss, Jena, Germany) with phase contrast and images were taken using an Axiocam digital camera. All the samples were investigated qualitatively and semi-quantitatively. For the later one, 400 diatom valves were counted within each sample. Diatoms were identified using the following diatom determination keys: Krammer, (2000, 2002, 2003), Lange-Bertalot (2001), Levkov (2009), Lange-Bertalot et al. (2011), Hofmann et al. (2013), Lange-Bertalot et al. (2017). Nomenclature has been unified according to AlgaeBase (Guiry & Guiry, 2015a; 2015b; 2016).
For SEM observation, clean diatom frustules or herbarized materials were mounted on aluminium stubs, coated with gold and observed in Scanning Electron Microscope Zeiss EVO 40 XVP Zeiss.

Fresh algal assemblages were observed on a stem epidermis using the LTM for ESEM without any pretreatment. Samples were observed using the FEI ESEM QUANTA 650FEG with beam energy 20 kV, probe current 35 pA and working distance 8.5 mm. The method is described in more details in Paper II.

3.2 Measuring ecological parameters

Ecological parameters including temperature, pH and conductivity were measured in situ using the WTW company instrument (Wissenschaftlich-Technische Werkstätten GmbH, Weilheim, Germany) or with a multiparametric Hydrolab, Transparency was measured using a Secchi disk. Major ions, main algal nutrients and chlorophyl a concentrations were determined following the standard methods (Vernon, 1960; Hekera, 1999; APHA, 2000).

3.3 Statistical analysis

Various multivariate statistical analyses were used in order to find the patterns of diatom distribution and factors influencing epiphytic diatom communities. Methods are described in detail in attached articles (Kollár et al., 2015; Letáková et al., 2016; Poulíčková et al., 2017).
4. RESULTS

The key results of the dissertation are included in the five attached articles. Recent knowledge about freshwater epiphytic diatoms has been summarized in paper I (Letáková et al., 2018 - see attached in the introduction). New LTM ESEM method, as the method allowing observation of diatom communities *in vivo* is the topic of paper II (Fránková et al., submitted). Substrate specificity and the spatial distribution of epiphytic diatoms in the lake Valagola were investigated in paper III (Letáková et al., 2016). Overall diversity of epiphytic diatom communities and the key factors of their distribution were studied in paper IV (Kollár et al., 2015). And finally finding the information about species complexes and their potential for biomonitoring was the target of paper V (Pouličková et al., 2017).
4.1 Paper II

The Low Temperature Method for Environmental Scanning Electron Microscopy – a New Method for Observation of Diatom Assemblages in vivo

MARKÉTA FRÁNKOVÁ1*, ALOISIE POULÍČKOVÁ2, VILÉM NEDĚLA3, EVA TIHLAŘÍKOVÁ3, KATEŘINA ŠUMBEROVÁ4 & MARKÉTA LETÁKOVÁ2

1 Laboratory of Paleoecology, Institute of Botany of the CAS, Brno, Czech Republic
2 Department of Botany, Faculty of Sciences, Palacký University Olomouc, Šlechtitelů 27 Olomouc, Czech Republic
3 Environmental Electron Microscopy Group, Institute of Scientific Instruments of the CAS, Brno, Czech Republic
4 Department of Vegetation Ecology, Institute of Botany of the CAS, Brno, Czech Republic

Abstract
The Low Temperature method for sample stabilization in environmental scanning electron microscopy appears to be a promising tool for the observation of diatom assemblages in vivo. Use of the environmental scanning electron microscope, in comparison to the conventional scanning electron microscope, enables study of fresh material without any chemical pretreatment and conductive coating. The newly developed Low Temperature Method, introduced in this paper, offers higher resolution and better resistance of wet samples to radiation damage. We used natural epiphytic algal assemblages to image 3D structure of: i) biofilm/periphyton and its physical complexity, ii) diatoms with their extracellular mucilaginous secretions enabling cells to attach to the substrate, iii) diatom colony formation, and iv) intact diatom cells/frustules in contrast to separated empty valves observed in the conventional scanning electron microscope. This study demonstrates the potential of this new method for environmental scanning electron microscopy in diatom biology and ecology in comparison with other imaging methods.

Key words: living diatoms, epiphyton, low temperature method for ESEM

* Corresponding author. E-mail: marketka.kozakova@seznam.cz
Introduction

Diatoms are the most species-rich algal group represented by 75,000 described diatom taxa (Kociolek et al. 2018) and potentially many more species exist, as determined by extrapolation from an eclectic sample of genera and species complexes (Mann & Vanormelingen 2013) and the large number of unknown DNA sequences found in environmental samples (Adl et al. 2007). Diatoms are recognized as powerful bioindicators and used for water quality monitoring (Ibáñez et al. 2010, Rimet 2012).

Since the beginning of the 18th century when diatoms were first observed and described using a simple light microscope (LM), the technological advances in microscopy over the past 300 years have allowed the study of these amazing organisms in greater detail (Stoermer et al. 1964, Drum et al. 1966). The next period in the microscopic techniques development (20th century) is characterized by introduction of electron microscopy, at first Transmission electron microscope (TEM; Crawford 1974, von Stosch 1982) and later on Scanning electron microscope (SEM; Mann 1982, Cohn et al. 1989). TEM is useful mainly in algal cytology (organelles structure and organization) and contributed also to understanding of diatom frustule structure (Stoermer et al. 1964, Drum et al. 1966, Pickett-Heaps et al., 1979a, b; Edgar & Pickett-Heaps, 1984). SEM has provided amazing 3-D imagery of frustular morphology (Round et al. 19090), as well as the physiognomy of communities (Letáková et al. 2016). Unfortunately, most biological samples have a high-water content, thus observation in SEM requires several steps of pretreatment. Sample preparation for SEM involves fixing, freezing, dehydration and gold/platinum coating and some of these procedures may damage delicate samples (Joubert and Pillay 2008, Timp & Matsudaira 2008). However, preservation of delicate structures (e.g. mucilage) requires Critical Point Drying (Poulíčková et al. 2007) before SEM observation. Diatom taxonomy based on 3D frustule architecture went through significant progress, particularly after introduction of SEM techniques (Gerloff & Helmcke, 1974, Mann 1981). Nowadays SEM is a widely used tool and many new diatom taxa were erected based on diagnostic features recognizable in SEM only (Morales et al. 2001, Taylor et al. 2016, Ács et al. 2016). Although SEM techniques are irreplaceable in diatom taxonomy, their use in other fields (e.g. ecology) has certain limits. Primarily, we cannot observe intact fresh, native material such as shape and type of a colony or epiphyton directly in situ in great detail and with large depth of field.

The above-mentioned problems caused by sample preparation, can be overcome by using an environmental scanning electron microscope (ESEM). ESEM is an independent instrument
and in majority of cases it is not a modification of conventional SEM, although there has been some attempt to modify a SEM for this purpose (Zetsche et al. 2016). The direct study of fully hydrated or electrically nonconductive dry samples in their native state, without the necessity of their surface covering by a conductive layer is possible due to the presence of high gas pressure, mostly water vapour in a specimen chamber of the ESEM (Donald 2003). The most important benefit of the ESEM is its capability of dynamical in-situ investigation of sample changes or reactions under influence of various conditions (Krausko et al. 2014). Moreover, detail sample description regarding diatom identification at the species level is possible (Richard et al. 2017).

Advantages of the ESEM for plant investigations have been already demonstrated (Popielarska-Konieczna et al. 2008, 2010, Stabentheiner et al. 2010, McGregor & Donald 2010, Vlašínová et al. 2017). The great potential of this method was also proved by introduction of the new method for study of small live mites (Tihlaříková et al. 2013). ESEM has also been used to visualize the microbial (particularly diatom) colonization of different types of substrates (sand grains, stones, artificial substrates; Joubert & Pillay 2008, Norbäck Ivarsson et al. 2013, Richard et al. 2017).

The ESEM observation of native aquatic samples is usually affected by radiation damage, whose effects can be reduced by working under low beam current and energy as well as by the use of special methods such as the Low Temperature Method (LTM) for ESEM (Neděla et al. 2012). Ideally, these two ESEM parameters are applied in combination, along with advanced low noise detectors with very high detection efficiency (Neděla et al. 2011). The LTM for ESEM is a method pushing the limits in electron beam observation of untreated fresh samples with higher resolution and under lowered impact of electron beam radiation. The method is based on low temperature stabilization of a sample using mutual combination of optimized speeds of gas pumping and sample cooling and is generally applicable in ESEM. On the other hand, if environmental humidity in ESEM is decreased, this method can be also used for gentle sample drying and preparation for repetitive high-resolution observation in SEM.

The purpose of the present study is to present a summary of basic principles of the new LTM for ESEM described by Neděla et al. (2015). The potential application to microalgal, particularly fresh diatom material is demonstrated on epiphytic assemblages.
Material and methods

Fresh diatom material origin

Epiphyton samples were collected with the whole substrate at two eutrophic fishponds in June 2016. The localities are namely the Dehtář fishpond (49°0'26"N, 14°17'36"E) and the Žebětinský fishpond (49°12'50"N, 16°29'32"E) in the Czech Republic. The host plants investigated were common aquatic macrophytes *Lemma gibba* L., *Phalaris arundinacea* L. and *Phragmites australis* (Cav.) Steud. The whole plants (*Lemma gibba*) or plant stalks (10 cm long sections) were tacked to a polystyrene matrix with paper pins, placed into plastic containers containing water from the locality and transported to the laboratory.

Observation of the samples using the LTM for ESEM

Fresh algal assemblages were observed on a stem epidermis (*Phalaris arundinacea, Phragmites australis*) and roots (*Lemma gibba*) using the LTM for ESEM without any pretreatment. Samples were observed using the FEI Peltier stage equipped with a special flat cylindrical brass sample holder. Samples were cut to 4–8 mm2 (in the case of *Lemma gibba* smaller) segments and placed into a drop of 2 µl of water, to obtain better thermal contact between the sample and the Peltier stage. The conditions for observation were adjusted as follows: the air pressure was 250 Pa, sample temperature –20 °C (Neděla et al. 2015). All observations were performed on FEI ESEM QUANTA 650FEG with beam energy 20 kV, probe current 35 pA and working distance 8.5 mm.

Results

Observation of epiphyton complexity (Figs 1–2)

A mixture of organisms constituting epiphytic assemblages on *Phalaris arundinacea* is presented in figure 1. Pennate diatoms are attached to the substrate (Figs 1 c, e) within the biofilm. We can also recognize some planktonic microalgae present, due to their sedimentation from the water column, including *Parapediastrum biradiatum* (Meyen) E. Hegewald (Fig. 1 a), *Microcystis* Lemmermann (Fig. 1 b), *Desmodesmus* (Chodat) S.S.An, T. Friedl & E. Hegewald (Fig. 1 d) and *Puncticulata balatonis* (Pantocsek) Wojtal & Budzyńska (Fig. 1 f).

Other planktonic microalgae are clearly visible in Fig. 2, including *Monactinus simplex* (Meyen) Corda (Fig. 2 a) and intact colonies of the diatom species *Aulacoseira ambiguа* (Grunow) Simonsen (Fig. 2 b).
Observation of extra cellular mucilaginous secretions (Figs 3–4)

The rhizodermis of *Lemma gibba* is colonized by diatoms producing extracellular mucilaginous secretions (e.g. pads, stalks). Some genera are attached by their valve face (*Cocconeis* Ehrenberg, Fig. 3 b), while others are attached by one end (*Gomphonema* Ehrenberg Fig. 3 a, 4 a, *Fragilaria* Lyngbye Fig. 4 c). Stalks are clearly visible in the case of *Gomphonema* (Fig. 4 a). Fine filaments evident (Fig. 4 b) are hyphae of saprotrophic fungi (Vohník, pers. comm.).

Observation of colony formation (Figs 2, 6)

Both, pennate and centric diatoms create typical colonies, which can be observed in natural form using the LTM for ESEM. The centric diatom *Aulacoseira ambigu* creates spiral coiled colonies (Fig. 2 b). *Fragilaria* (Fig. 6) cells are attached to each other by valve face and mucilaginous connections are clearly visible (arrow).

Observation of details of the whole intact diatom cell (Fig. 7)

Figure 7 shows external the valve surface of *Navicula radiosa* Kützing, including the raphe. The image shows enough details important for species identification and the result is almost comparable with classic SEM.

Discussion

Diatom taxonomy is traditionally based on silica frustule architecture and requires detailed analysis of many fine structures. Although, molecular methods are increasingly used in the last decade (Zimmermann et al. 2014), microscopy remains a principal tool for species identification and new taxa description (Pouličková et al. 2016). Classic diatom microscopic observations are made only after extensive preparation, including cleaning in strong acids or oxidation agents (mixture of nitric and sulphuric acids, hydrogen peroxide) and subsequent mounting to permanent slides in the case of LM, or conductive coating (using gold or platinum) in the case of SEM. Small depth of field is the most serious limitation of classical light microscopy (LM). This disadvantage of LM should be eliminated using a complementary technique to traditional LM – holographic microscopy (HM, Gabor 1948, Almeida et al. 1971) and digital holographic microscopy (DHM). Holographic microscopy enables ten- to a hundred times greater depth of focus than LM (Zetsche et al. 2016). These authors showed that DHM enables not only visualization of internal frustule structures, but
also transparent excretions of diatoms – extracellular polysaccharide substances (EPS). DHM is a versatile technique allowing investigation “in vivo” without staining, however it still works at magnification scales comparable to LM (Zetsche et al. 2016).

Thin and hollow cleaned diatoms were used for testing many imaging techniques (Bertilson et al. 2009, Piper 2011). High-resolution computed tomography reconstructs the frustule inner structure from a set of projections. Reconstructed tomograms can be visualized using software on standard personal computers (Bertilson et al. 2009). During the procedure, the diatom is mounted at the fine tip of a glass capillary placed in a rotatable holder. The tomogram resolution is limited by the number of projections, i.e. more projections bring higher resolution (Bertilson et al. 2009). Similar principles are used in x-ray imaging laminography, where a sample is placed on a membrane, which simplifies the sample preparation (Hoshino et al. 2011). We should mention also confocal laser scanning microscopy (CLSM) and methods combining data from CLSM and SEM. Indeed, they generate exact 3D models of diatom frustules (Friedrichs et al. 2012). For imaging using this technology, diatoms should be free of organic content, particularly the frustulin membrane surrounding silica frustule (Poll et al. 1999).

ESEM seems to be highly promising for diatom ecological research, due to resolution higher than in LM and easier and less destructive sample preparation than in the case of classic SEM. Moreover, it is much cheaper than Cryo-SEM (Neděla et al. 2014, 2016). However, it cannot replace standard SEM in diatom taxonomy. LTM for ESEM represents a methodological improvement with an even better stability of wet samples and higher resolution than for a suitable pressure at the temperature closely above 0°C, as it is usual in ESEM observation. Observed samples in commonly used ESEM are mostly covered by a thin layer of water (Fig. 5) ensure hydration of sample surface. LTM for ESEM is based on a suitable sample chamber pumping procedure in combination with sample cooling - with a defined temperature gradient. These conditions lead to a gentle evaporation/sublimation of the surface water layer covering the sample. The sample is stabilized at a temperature around -20 °C and pressure around 150 Pa, and it is still observed with 100 % of moisture. A clean sample surface (without ice or water) enables higher resolution (Figs 1-4, 6,7). Note that the described method is different from the method previously used for biofilms and it is referred to as the Low-temperature SEM (Decho 2000). LT SEM is based on deep sample freezing (from -100 to -170°C) under the conditions at the sample chamber pressure lower than 0.01 Pa and observation in conventional SEM. It means that samples in this case are not native, but frozen.
LTM for ESEM brings advantages of fresh material observation, which is particularly useful in the case of attached microalgae and diatoms. Density and distribution of epiphytes on plant surfaces are of interest in substrate specificity studies (Mutinová et al. 2016, Letáková et al. 2016, Fránková et al. 2017), where reasons for differences between host plants are discussed. Better knowledge about diatom/microalgae adaptations to sessile life can bring new insight into their autecology (light, nutrient requirements).

Benthic diatoms are classified into functional groups, e.g. ecological guilds (Passy 2007, Rimet and Bouchez 2012a,b, Fránková et al. 2017) or eco-morphological functional groups (B-Béres et al. 2016) which reflect relationships between taxa and environmental factors (B-Béres et al. 2016). However, all standard sampling methods (for LM and SEM) are based on substrate scraping (for instance using a tooth brush or a scalpel) which lead to destruction of the periphyton structure (Kelly et al. 1998). Diatoms are characterized by formation of different types of colonies, which can be species specific. ESEM enables us to study colony formation in great details – how cells are stick together using extracellular mucilaginous secretions (Fig. 6).

Moreover, there exist other natural diatom cell associations which should be imaged without disturbances, particularly during sexual reproduction. Briefly, compatible sexualized cells freely moving on the substrate are pairing valve-valve or girdle-girdle creating pairs or triplets. Gametes fusion is followed by zygote formation and expansion which is called auxosporulation. During this process auxospores produce very fine, slightly silicified structures and envelopes such as incunabula and perizonia. Although the silicified structures should be studied in details using SEM (Mann & Poulíčková 2009), most gentle components (mucilage capsules, specific position of cells) are lost during preparation. ESEM should be ideal method to observe these processes in vivo.

Moreover, mucilaginous material is produced by diatoms also during sexual reproduction (Poulíčková et al. 2007). Such mucilaginous envelopes protecting gametangia were observed in LM using India ink staining and in SEM fixation, dehydration through an ethanol series followed by drying in a critical point dryer, which are time consuming procedures (Poulíčková et al. 2007). ESEM seems to be a suitable method for imaging such protective envelopes.

In summary, fresh material in ESEM is observed under thermodynamic equilibrium in 100% relative humidity. Usually, these conditions are maintained slightly above 0°C when the sample surface is covered with thin layer of liquid water. The thickness of this layer can be
reduced by decreasing relative humidity, however the fine surface microstructure details can be still invisible (Fig. 8). This method is useful for study of liquids or samples sensitive for cooling. The LTM for ESEM was optimized for using under reduced sample temperature below 0°C. The clear liquid water on the sample surface is gently evaporated whereas the liquid solution stays inside the sample due to its different partial pressure. Thank to this procedure the sample is stabilized, hydrated and free of ice crystals. The soft sample morphology can be observed with higher resolution (Fig. 9) and specific structures like mucilaginous material (Fig. 3, 4 – stalks of *Gomphonema* and Fig. 6 white arrow – mucilaginous connection within a *Fragilaria* colony) are visible.

Conclusion

The paper shows applicability of the LTM for ESEM for observation of aquatic plants with epiphytic microalgae (particularly diatoms). In comparison with standard ESEM methods, LTM achieves higher resolution and better sample stability by reducing sample temperature and gas pressure, while the humidity is kept almost 100%.

Acknowledgements

This study was supported by the Ministry of Education, Youth and Sports in frame of the research program COST CZ, grant no. LD 14045, internal grant agency of the Palacký University, grant no. Prf-2018-001, by the Institute of Botany CAS as a long-term research development project no. RVO 67985939 and the NPUI LO1417; the MEYS CR (LO1212), its infrastructure by the MEYS CR and the EC (CZ.1.05/2.1.00/01.0017) and by the CAS(RVO:68081731). We are very thankful to Jan Potužák for his kind help with collecting the samples. We are also very thankful to Patrick Kociolek for language correction.

References

Figs. 1–4, 6. Epiphyton samples from the locality Dehtář imaged by LTM ESEM. Fig. 5. Epiphyton from the locality Žebětín imaged in wet state by commonly used ESEM (without LTM). Fig. 7. Epiphyton from the locality Žebětín imaged by LTM ESEM. Scale bars: Figs 1–3. 50 µm, Figs 4, 6. 20 µm, Fig. 5. 10 µm and Fig. 7. 3 µm. Fig. 1. heterogeneous assemblage of cyanobacteria and algae on epidermis of Phalaris arundinacea, a – Parapediastrum biradiatum, b – Microcystis sp., c – Gomphonema sp., d – Desmodesmus sp., e – Cymbella sensu lato, f – Puncticulata balatonis. Fig. 2. epiphyton, sedimented planctic species, a – Monactinus simplex, b – Aulacoseira ambigu. Fig. 3. rhizodermis of Lemna gibba, a – Gomphonema sp. attached by a stalk, b – Cocconeis sp. attached by valve face, c – Ulnaria ulna Fig. 4. rhizodermis of Lemna gibba, a – stalks of Gomphonema sp., b – hyphae of saprotrophic fungi, c – Fragilaria sp. Fig. 5. Achnanthidium minutissimum on Phragmites australis in commonly used ESEM without our methodological improvement LTM Fig. 6. Fragilaria sp., mucilaginous connection between cells in a colony (arrow). Fig. 7. epidermis of Phragmites australis, detail external view of Navicula radiosa.
4.2 Paper III

Substrate specificity and fine-scale distribution of epiphytic diatoms in a shallow tarn in the Brenta Dolomites...

Article · July 2016
DOI: 10.5091/plecevo.2016.1206

CITATION
1

READS
183

5 authors, including:

Markéta Letáková
Palacký University Olomouc
5 PUBLICATIONS 6 CITATIONS

Marco Cantonati
Museo delle Scienze, Trento, Italy
179 PUBLICATIONS 1,736 CITATIONS

Petr Hasler
Palacký University Olomouc
93 PUBLICATIONS 334 CITATIONS

Some of the authors of this publication are also working on these related projects:

The role of the land-water interface (littoral) in preserving ecosystem integrity and services in reservoirs and lakes with controlled levels affected by marked WLF View project

Patterns and causes of elevational gradients in freshwaters View project

All content following this page was uploaded by Markéta Letáková on 03 August 2016.
The user has requested enhancement of the downloaded file.
Substrate specificity and fine-scale distribution of epiphytic diatoms in a shallow tarn in the Brenta Dolomites (south-eastern Alps)

Markéta Letáková1, Marco Cantonati2, Petr Hašler1, Angeli Nicola2 & Aloisie Poulíčková1,*

1Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, CZ–783 71 Olomouc Czech Republic
2Museo delle Scienze - MUSE, Limnology and Phycology Section, Corso del Lavoro e della Scienza 3, IT-38123 Trento, Italy
*Author for correspondence: aloisie.poulickova@upol.cz

INTRODUCTION

While lake environments are separated in habitats, zones, and gradients (Poulíčková et al. 2008, 2014), microphototrophs are typically classified as benthic and planktic. Both categories perform a range of ecosystem functions and contribute significantly to lake biodiversity. However, photoautotrophs that inhabit benthic environments have received less attention than the phytoplankton (Cantonati & Lowe 2014, Poulíčková et al. 2014). Aquatic macrophytes are key components in spatial heterogeneity (Thomaz et al. 2008). Epiphytic microalgae living in association with macroalgae and aquatic macrophytes contribute significantly to the primary production of lakes, particularly in the littoral zone (Cattaneo & Kalff 1980, Vander Zanden et al. 2006, Cano et al. 2008). Epiphyton is an important source of food for invertebrates (Cattaneo 1983), and has been proposed as a target community for the assessment of lake trophic status (Lalonde & Downing 1991, Pouličková et al. 2004).

Epiphytic algae are challenging to be studied quantitatively because they are difficult to separate from their substrate, and because their spatial distribution is heterogeneous and not fully understood. Diatoms, cyanobacteria, and green algae are the most common benthic microalgae (Pouličková et al. 2014), comprising the majority of the epiphyton biomass (Pomazkina et al. 2012, Neif et al. 2013). Diatoms are represented by motile species gliding on various substrates, and species attached mostly via mucilagenous structures.

Epiphyton species composition on submerged macrophytes differs between lakes (Kiss et al. 2003) and phosphorus has been shown to have a significant influence (Cattaneo & Kalff 1980, Fairchild et al. 1985). Lake trophic status can influence phytoplankton abundance (and consequently light availability at the bottom), biomass of submerged plants (substrate availability), and subsequent vertical distribution of epiphyton (Lalonde & Downing 1991, Romo et al. 2007). Substrate specificity, which in real ecosystems is combined with other possible influencing factors (physical, chemical,
Letáková et al., Distribution of epiphytic diatoms

This study aims to analyse the detailed spatial distribution of epiphytic diatom assemblages in the shallow Alpine Lake Valagola. We tested differences in epiphyte composition and distribution on a single sampling date: (1) between the marginal and central part of the lake, and (2) between different macrophytes.

MATERIAL AND METHODS

Study site

Lake Valagola (46°9′56,462″N 10°49′13,980″E) is located in the western part of the Brenta Dolomites (south-eastern Alps, Adamello-Brenta Nature Park, Italy), at an elevation of 1,595 m a.s.l. The lake was formed by a Daun stadial moraine (Trevisan 1939). The lake does not have direct inlets. The Valagola stream, flowing down the Nardis Valley and collecting the meltwaters of the small Agola and Prato-Fiorito glaciers, disappears into the alluvial fan formed by the stream itself slightly upstream of the tarn. Since the average discharge of the Valagola stream is about four times that of the tarn outlet, it must be assumed that its waters reach the groundwater through the fan deposits, and part of this water re-emerges from the bottom of the tarn feeding it, which would be consistent with the tectonic and carbonate context. The lake level can consequently undergo important fluctuations, almost reaching the height of the small forest-operations road bordering the eastern bank and the hiking path during very-rainy periods. The morainic rim is permeable, and the depths reached by the lake today are possible

Figure 1 – Location of 36 sampling sites (L1–L36; for details see table 3) within seven transects in West-East direction and their characteristics as follows: A, sampling site depths; B, epiphytic diatom species richness; C, Chara aspera cover; D, Potamogeton gramineus cover.
Table 1 – Hydrochemical analysis.
Average from nine measurements (9 September, 16 October, 13 November, 16 December 2013; 19 March, 19 June, 25 July, 3 September, 14 October 2014) and minimum and maximum value.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Temperature (°C)</th>
<th>Conductivity (µS cm⁻¹)</th>
<th>pH</th>
<th>Redox</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.0 (0.2–13.8)</td>
<td>239 (187–305)</td>
<td>8.2 (7.9–8.7)</td>
<td>264 (208–320)</td>
</tr>
<tr>
<td>0.5</td>
<td>10.9 (3.3–18.2)</td>
<td>222 (159–295)</td>
<td>8.2 (7.8–8.8)</td>
<td>247 (208–320)</td>
</tr>
<tr>
<td>1</td>
<td>10.9 (3.3–17.9)</td>
<td>222 (160–295)</td>
<td>8.3 (7.9–8.8)</td>
<td>249 (207–320)</td>
</tr>
<tr>
<td>1.5</td>
<td>9.7 (3.3–14.8)</td>
<td>232 (187–296)</td>
<td>8.2 (8.0–8.6)</td>
<td>248 (206–320)</td>
</tr>
<tr>
<td>2</td>
<td>10.7 (3.4–17.7)</td>
<td>222 (159–296)</td>
<td>8.3 (8.1–8.8)</td>
<td>249 (206–321)</td>
</tr>
<tr>
<td>2.5</td>
<td>10.6 (4.1–17.7)</td>
<td>240 (195–355)</td>
<td>8.3 (8.1–8.6)</td>
<td>250 (206–321)</td>
</tr>
</tbody>
</table>

Table 2 – Hydrochemical analysis.
Data measured on 11 September 2013 and 3 September 2014. *measurement only on 11 September 2013, ** measurement only on 3 September 2014.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Alkalinity (mg/l)</th>
<th>TN (µg/l)</th>
<th>N-NO₃⁻ (µg/l)</th>
<th>N-NH₄⁺ (µg/l)</th>
<th>P-PO₄ (µg/l)</th>
<th>TP (µg/l)</th>
<th>SiO₂ (mg/l)</th>
<th>SO₄²⁻ (mg/l)</th>
<th>F (µg/l)</th>
<th>Chl-a (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>81–116</td>
<td>427–407</td>
<td>190*</td>
<td>12–39</td>
<td>1–1</td>
<td>14–12</td>
<td>2.2–0.5</td>
<td>1.4*</td>
<td>68</td>
<td>0.002**</td>
</tr>
<tr>
<td>1.5</td>
<td>80–116</td>
<td>401–403</td>
<td>187*</td>
<td>13–38</td>
<td>1–1</td>
<td>15–14</td>
<td>2.2–0.5</td>
<td>1.5*</td>
<td>54</td>
<td>0.001**</td>
</tr>
<tr>
<td>2.5</td>
<td>81–116</td>
<td>341–408</td>
<td>190*</td>
<td>12–70</td>
<td>1–1</td>
<td>17–16</td>
<td>2.3–0.5</td>
<td>1.3*</td>
<td>89</td>
<td>0.001**</td>
</tr>
</tbody>
</table>

only thanks to an artificial rim, which was completed in the 1970s. Lake Valagola might thus have been characterized by a very long period of fluviolacustrine regime during its postglacial history.

Lake Valagola is a shallow tarn with depths ranging from 1.6 to 2.7 m in the western portion and from 0.5 to 2.8 m in the deeper eastern part (fig. 1A). From the thermal point of view, Lake Valagola is a cold polymeric lake (table 1) with average surface temperature 8°C. Snow and ice cover last 5–6 months. Conductivity and slightly alkaline pH are consistent with the carbonate lithology of the area. The values of the main algal nutrients (table 2) measured during the present investigation (in particular nitrates and total phosphorus) do not differ significantly from the few hydrochemical data available in the literature (ISMA 1997). Nitrate values even appear to be lower today. A meso-oligotrophic status can thus be confirmed. This condition is favored by its shallowness, and it is mainly determined by the nearby cattle barn thus be confirmed. This condition is favored by its shallowness, and it is mainly determined by the nearby cattle barn.

Table 3 – Distribution of algal groups.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Alkalinity (mg/l)</th>
<th>TN (µg/l)</th>
<th>N-NO₃⁻ (µg/l)</th>
<th>N-NH₄⁺ (µg/l)</th>
<th>P-PO₄ (µg/l)</th>
<th>TP (µg/l)</th>
<th>SiO₂ (mg/l)</th>
<th>SO₄²⁻ (mg/l)</th>
<th>F (µg/l)</th>
<th>Chl-a (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>81–116</td>
<td>427–407</td>
<td>190*</td>
<td>12–39</td>
<td>1–1</td>
<td>14–12</td>
<td>2.2–0.5</td>
<td>1.4*</td>
<td>68</td>
<td>0.002**</td>
</tr>
<tr>
<td>1.5</td>
<td>80–116</td>
<td>401–403</td>
<td>187*</td>
<td>13–38</td>
<td>1–1</td>
<td>15–14</td>
<td>2.2–0.5</td>
<td>1.5*</td>
<td>54</td>
<td>0.001**</td>
</tr>
<tr>
<td>2.5</td>
<td>81–116</td>
<td>341–408</td>
<td>190*</td>
<td>12–70</td>
<td>1–1</td>
<td>17–16</td>
<td>2.3–0.5</td>
<td>1.3*</td>
<td>89</td>
<td>0.001**</td>
</tr>
</tbody>
</table>

assured to the opposing shores (table 3). A boat moved along the ropes and distance from the shore (with a measuring tape ribbon), GPS position, and depth (with an echosounder) of each site (five sites per each transect, L1-L36, table 3) were measured. Samples of epiphytic algae together with their substrate were obtained by collecting the upper 10–20 cm of macrophytes (enough plant material to fill a large transparent polyethylene bag) growing on the bottom at sites mentioned above (L1-L36). Samples close to lake banks belong to the group “marginal part of the lake” (sites L1, 5, 6, 10, 11, 15, 16, 20, 21, 25, 26, 30, 31, 36). Subsamples (100 ml sampling bottles) for the study of epiphytic diatoms were taken and fixed with formaldehyde (2–4% final conc.). Samples and slides are kept in the Museo delle Scienze – MUSE, Trento diatom collection under numbers clIM005 DIAT 2316-2351. The rest of plant material served for identification of macrophytes and a selection will be deposited in the herbarium of the Museo delle Scienze – MUSE (TR). General limnological characterization of the site was based on measurements of ecological variables in 2013–2014 and single sampling of epilithon, epipelon, and plankton taken from the southern shore (close to L1) on 10 Sep. 2013. Phyttoplankton was sampled qualitatively with a 10-µm mesh net towed by a boat operated as to describe a sinusoidal trajectory.

During 2013–2014, physical and chemical factors (temperature, conductivity, pH, redox) were measured with a multiparametric Hydrolab probe (2013: 9 September, 16 October, 13 November, 16 December; 2014: 19 March, 19 June, 25 July, 3 September, 14 October). On 19 Mar. 2014 no operations could be carried out on the water column, since the lake was covered by ice and snow (several layers). In September 2013 and 2014, complete (major ions and algal nutrients) measurements could be carried out on the water column, since the lake was covered by ice and snow (several layers). In September 2013 and 2014, complete (major ions and algal nutrients)

Table 3 – Distribution of algal groups.

Sampling
Macrophytes were sampled with the assistance of Scuba divers on 10 Sep. 2013. Seven transects (length: 30–144 m) in c. West-East direction (i.e. perpendicular to the maximum dimension of the lake) were marked by strong ropes firmly in c. West-East direction (i.e. perpendicular to the maximum dimension of the lake) were marked by strong ropes firmly

<table>
<thead>
<tr>
<th>Tratment</th>
<th>Alkalinity (mg/l)</th>
<th>TN (µg/l)</th>
<th>N-NO₃⁻ (µg/l)</th>
<th>N-NH₄⁺ (µg/l)</th>
<th>P-PO₄ (µg/l)</th>
<th>TP (µg/l)</th>
<th>SiO₂ (mg/l)</th>
<th>SO₄²⁻ (mg/l)</th>
<th>F (µg/l)</th>
<th>Chl-a (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>81–116</td>
<td>427–407</td>
<td>190*</td>
<td>12–39</td>
<td>1–1</td>
<td>14–12</td>
<td>2.2–0.5</td>
<td>1.4*</td>
<td>68</td>
<td>0.002**</td>
</tr>
<tr>
<td></td>
<td>80–116</td>
<td>401–403</td>
<td>187*</td>
<td>13–38</td>
<td>1–1</td>
<td>15–14</td>
<td>2.2–0.5</td>
<td>1.5*</td>
<td>54</td>
<td>0.001**</td>
</tr>
<tr>
<td></td>
<td>81–116</td>
<td>341–408</td>
<td>190*</td>
<td>12–70</td>
<td>1–1</td>
<td>17–16</td>
<td>2.3–0.5</td>
<td>1.3*</td>
<td>89</td>
<td>0.001**</td>
</tr>
</tbody>
</table>
Table 3 – Basic characteristics and host plants of sampling points.

<table>
<thead>
<tr>
<th>Sampling point</th>
<th>Transect</th>
<th>Depth (m)</th>
<th>Latitude WGS84_N</th>
<th>Longitude WGS84_E</th>
<th>Calliergon giganteum</th>
<th>Chara aspera</th>
<th>Chara virgata</th>
<th>Potamogeton gramineus</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>1</td>
<td>2</td>
<td>4609894</td>
<td>1049180</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L2</td>
<td>1</td>
<td>1.9</td>
<td>4609891</td>
<td>1049196</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>L3</td>
<td>1</td>
<td>1.6</td>
<td>4609891</td>
<td>1049208</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>L4</td>
<td>1</td>
<td>1.2</td>
<td>4609888</td>
<td>1049218</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L5</td>
<td>1</td>
<td>0.5</td>
<td>4609888</td>
<td>1049229</td>
<td>0</td>
<td>0.7</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>L6</td>
<td>2</td>
<td>1.8</td>
<td>4609906</td>
<td>1049251</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>L7</td>
<td>2</td>
<td>2</td>
<td>4609909</td>
<td>1049234</td>
<td>0</td>
<td>0.6</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>L8</td>
<td>2</td>
<td>1.6</td>
<td>4609910</td>
<td>1049218</td>
<td>0</td>
<td>0.9</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>L9</td>
<td>2</td>
<td>2.5</td>
<td>4609912</td>
<td>1049204</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L10</td>
<td>2</td>
<td>2.1</td>
<td>4609909</td>
<td>1049191</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>L11</td>
<td>3</td>
<td>1.6</td>
<td>4609932</td>
<td>1049197</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L12</td>
<td>3</td>
<td>2.1</td>
<td>4609932</td>
<td>1049216</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L13</td>
<td>3</td>
<td>2.3</td>
<td>4609930</td>
<td>1049234</td>
<td>0</td>
<td>0.9</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>L14</td>
<td>3</td>
<td>2.3</td>
<td>4609929</td>
<td>1049249</td>
<td>0</td>
<td>0.9</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>L15</td>
<td>3</td>
<td>2.7</td>
<td>4609928</td>
<td>1049264</td>
<td>0</td>
<td>0.9</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>L16</td>
<td>4</td>
<td>2</td>
<td>4609956</td>
<td>1049192</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>L17</td>
<td>4</td>
<td>2</td>
<td>4609955</td>
<td>1049208</td>
<td>0</td>
<td>0.9</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>L18</td>
<td>4</td>
<td>2.3</td>
<td>4609955</td>
<td>1049227</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>L19</td>
<td>4</td>
<td>2.6</td>
<td>4609937</td>
<td>1049229</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L20</td>
<td>4</td>
<td>2.8</td>
<td>4609928</td>
<td>1049239</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L21</td>
<td>5</td>
<td>1.9</td>
<td>4609977</td>
<td>1049292</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>L22</td>
<td>5</td>
<td>2.7</td>
<td>4609973</td>
<td>1049282</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L23</td>
<td>5</td>
<td>2.6</td>
<td>4609972</td>
<td>1049251</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L24</td>
<td>5</td>
<td>2.3</td>
<td>4609975</td>
<td>1049228</td>
<td>0</td>
<td>0.9</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>L25</td>
<td>5</td>
<td>2.4</td>
<td>4609975</td>
<td>1049200</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L26</td>
<td>6</td>
<td>1.6</td>
<td>4609998</td>
<td>1049197</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>L27</td>
<td>6</td>
<td>1.8</td>
<td>4609998</td>
<td>1049207</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L28</td>
<td>6</td>
<td>1.6</td>
<td>4609998</td>
<td>1049215</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L29</td>
<td>6</td>
<td>2.3</td>
<td>4609998</td>
<td>1049222</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L30</td>
<td>6</td>
<td>2.4</td>
<td>4609997</td>
<td>1049239</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L31</td>
<td>7</td>
<td>1.3</td>
<td>4610017</td>
<td>1049195</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>L32</td>
<td>7</td>
<td>2.2</td>
<td>4610014</td>
<td>1049207</td>
<td>0</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>L33</td>
<td>7</td>
<td>2.3</td>
<td>4610014</td>
<td>1049214</td>
<td>0</td>
<td>0.9</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>L34</td>
<td>7</td>
<td>2.6</td>
<td>4610001</td>
<td>1049222</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L35</td>
<td>7</td>
<td>1.7</td>
<td>4609998</td>
<td>1049238</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L36</td>
<td>7</td>
<td>2.2</td>
<td>4609997</td>
<td>1049241</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
analyses were carried out at the environmental chemistry lab of the E. Mach Foundation following standard methods (APHA 2000).

Diatom preparation

Samples were treated with 30% H₂O₂ for 24 hours. The Erlenmayer flasks with treated samples were subsequently heated up to a boiling point and kept boiling approximately for 60 minutes. Small amounts of K₂Cr₂O₇ and c. 500 μl, 37% HCl were added into the hot samples. Samples were centrifuged and cleaned with distilled water until reaching neutrality. Cleaned diatom frustules were mounted in Naphrax. At least 400 valves were counted and percentage of relative abundance for every of 36 slides were evaluated together with species level identification using the following literature: Krammer (2000, 2002, 2003), Lange-Bertalot (2001), Levkov (2009), Lange-Bertalot et al. (2011), and Hofmann et al. (2013). Nomenclature was harmonized using AlgaeBase (Guiry & Guiry 2015). Slides were observed using light microscope Zeiss Axioskop 2 (Zeiss, Jena, Germany) equipped with phase-contrast and with an Axiocam digital camera. Two permanent slides representing samples of epiphyton exclusively from Chara/Potamogeton (N. DIAT 2327, DIAT 2317) were used for diatom cell size measurements (200 cells were measured for each substrate). SEM images were taken from herbarized (dried) material from the stations 4.4 and 7.1, corresponding to epiphytic-diatom samples eLIM005 DIAT 2334 (for Chara aspera Wildl. 100%) and eLIM005 DIAT 2346 (for Potamogeton gramineus L. 100%) respectively, using a Scanning Electron Microscope Zeiss EVO 40 XVP Zeiss after gold coating.

Statistical analysis

The statistical package Canoco for Windows 4.5 (ter Braak & Šmilauer 2002) was used to test relationship among diatom assemblages and host plants. Species data were transformed using the Hellinger transformation before carrying out multivariate analyses. Detrended Correspondence Analysis (DCA) based on detrending by segments showed short gradients on first (2.509) and second axis (1.137). Redundancy Analysis (RDA) was carried out as follows: Chara aspera and Potamogeton gramineus as the most frequent host plants in the Lago di Valagola were set as environmental data, depth as covariable, and position in the lake as supplementary variable. Scaling method was focused on inter-species correlation. Both automatic and manual forward selection of environmental variables (Monte Carlo Permutation test, 499 unrestricted permutations) was used to test statistical significance of species-environmental variables relationship. Both Chara aspera and Potamogeton gramineus showed low inflation factor (VIFCHA = 2.602, VIFPotgram = 2.674). Visualisation, T-values biplot statistics and Shannon diversity index calculation were processed by CanoDraw for Windows 4.0. Differences between averages of diatom length, width, length/width ratio and Shannon diversity index between Chara aspera and Potamogeton gramineus were tested statistically using One Way ANOVA (NCSS, Hintze 2006).

Table 4 – Results of Redundancy Analysis.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Lambda1</th>
<th>p</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chara</td>
<td>0.17</td>
<td>0.002</td>
<td>7.13</td>
</tr>
<tr>
<td>Potgram</td>
<td>0.11</td>
<td>0.006</td>
<td>4.35</td>
</tr>
</tbody>
</table>

RESULTS

The majority of the tarn bottom was overgrown with the stonewort Chara aspera, with scattered populations of C. virgata Kütz. The lake shore in the western portion was covered by a narrow belt of Potamogeton gramineus. A small population of the bryophyte Calliergon giganteum (Schimp.) Kindb. grew only in one site (L21) located on the western shore. Host (substrate) plant composition of each sample is given in table 3 and co-dominating host plant’s relative representation is shown in fig. 1C & D. A total of 78 epiphytic-diatom species (some of them are documented in fig. 2) were identified (electronic appendix). Species richness of the individual epiphyton samples ranged from 11 to 38 taxa. In comparison, single samples of epilithon and epipelon (close to site L1) included 28 and 30 species respectively. The vast majority of species found on the macrophytes were benthic pennate, while the percentage of centric diatoms was < 36% (Cyclotella sp.). The most frequent epiphytic diatoms were Pseudostaurosira polonica (M.Witak & Lange-Bert.) E.Morales & Edlund, with relative representation ranging from 1 to 74%, Staurosirella pinnata (Ehrenb.) D.M.Williams & Round, with proportions up to 27%, and Encyonopsis subminuta Krammer & E.Reichardt, with relative abundances up to 25%. In comparison, epilithon and epipelon (site L1), were dominated by Pseudostaurosira polonica and Achnanthidium straubianum (Lange-Bert.) Lange-Bert. Phytoplankton was represented by Cyclotella cf. radiosa (Grunow) Lemmerm. Redundancy Analysis (table 4) showed statistically significant relationships between species composition and environmental variables (F = 7.024, p = 0.004). The first ordination axis explains 18.0% and the second 6.9% of species variation. The analysis separated sampling sites into two basic groups: (i) sites dominated by Chara aspera (central part of the lake) and (ii) sites dominated by Potamogeton gramineus (marginal parts of the lake), host plants at L1, L9 and L11 were not identified (fig. 3). Monte Carlo permutation test showed a statistically significant effect of Chara aspera on distribution of epiphytic diatoms (conditional effect: F = 7.13, p = 0.002; Marginal effect: F = 7.13, p = 0.002).
The influence of *Potamogeton gramineus* on diatom distribution was also significant (conditional effects: F = 3.05, p = 0.0053) in diatom distribution (expressed as Shannon index; fig. 4) was found between *C. aspera* (2.33±0.21) and *P. gramineus* (2.57±0.19). Diatom taxa positively correlated with *C. aspera* (fig. 5) included: *Brachysira neoexilis* Lange-Bert., *Cyclotella* sp., *Encyonopsis cesatii* (Raben.) Krammer (zone 1 in fig. 5). Diatoms positively correlated with *P. gramineus* included *Epithemia adnata* (Kütz.) Bréb., *Eunotia arcus* Nörpel & Lange-Bert., *Eunotia arcus* Ehrenb., *Rhopalodia gibba* (Ehrenb.) O.Müll., *Cymbella subleptoceros* Krammer (zone 3 in fig. 5). Zone 2 in fig. 5 contains species present on both plants, e.g. the euryvalent species complex *Achnanthidium minutissimum* (Kütz.) Czarn. Observations on herbarized material showed, that *Potamogeton* was colonized by higher number of diatom cells than *Chara*, moreover attached diatoms usually comprised large colonies on *Potamogeton* (fig. 6E–G). Single diatom cells were able to colonize sporadically *Chara* thalli (fig. 6A–D). Diatom size measurements exclusively from *Potamogeton/Chara* samples showed that significantly longer diatoms are present on the surface of *Potamogeton* than on *Chara* (length F = 11.49, p = 0.0008, length/width ratio F = 12.39, p = 0.0005, fig. 7). These results are in congruence with species composition typical for *Chara/Potamogeton* (fig. 5).

DISCUSSION

Freshwater benthic communities are influenced by a wide spectrum of biotic and abiotic factors (Round 1971). Benthic diatom distribution in lakes is driven by microhabitat

Figure 3 – Redundancy Analysis: L1–L36 sampling sites (see table 3; abbreviations of species see electronic appendix), Charaspe – *Chara aspera*, Potgram – *Potamogeton gramineus*, Central - central part of the lake), Bank – first sample of each transect situated at the lake bank: L1, L5, L6, L10, L11, L15, L16, L20, L21, L25, L26, L30, L31, L36). F = 7.024, p = 0.004.

150
distribution, and depends upon hydrological situation (Neif et al. 2013), lake bathymetry, light (Cano et al. 2012), nutrient and substrate availability (Cantonati et al. 2009, Cano et al. 2012) and grazing (Meerhoff et al. 2007). Some results show that epiphytic diatom communities respond mainly to physical/chemical variables, and only secondarily to lake depth, size, and location (Blanco et al. 2014). Plankton in the limnetic zone have primary access to solar light, whereas benthic associations in the littoral zone to nutrients released by mineralization processes in the sediment (Wetzel 1996). The decrease of light intensity with water depth is certainly influenced by dispersed particles in the water column, and high phytoplankton abundance dramatically decreases the depth distribution of benthic algae by shading. Although competition for light between plankton and microphytobenthos has been discussed in some Alpine lakes (Pouličková et al. 2004, Cantonati et al. 2009), phytoplankton seems to be a poor competitor in Lake Valagola (table 2 cf. chlorophyll a concentration).

Figure 4 – One way ANOVA: epiphytic diatom diversity (Shannon index) on *Chara aspera* (Charaspe) and *Potamogeton gramineus* (Potgram). $F = 9.01, p = 0.0053$.

Figure 5 – T-value biplot diagram showing species sorted into Van Dobben circles showing positive or negative influence of substrate (Charaspe - *Chara aspera*, Potgram - *Potamogeton gramineus*). See electronic appendix for species names and abbreviations. Species inside circles responded significantly to the substrate. Black circles indicate positive responses, and gray circles indicate negative responses. Van Dobben circles in the case of *Chara and Potamogeton* partially cover each other, which means that in zone 2 are species colonizing both substrates. Zone 1 represents species colonizing *Chara aspera*, zone 3 represents species colonizing *Potamogeton gramineus*.

Letáková et al., Distribution of epiphytic diatoms
Dramatic changes in epiphyton biomass and structure observed along transects across deep lakes from the littoral to the limnetic zone (Yang et al. 2009) were not expected in our shallow, clear lake. However, the differences between central and marginal parts are still detectable, even though a true limnetic zone is missing (fig. 3). Indeed, similar differences between the central and peripheral zone were found in other European lakes/ponds and have been explained by macrophyte density, animal and wind disturbances, wave action or solar radiation (Cano et al. 2012, Kitner et al. 2005, Pouličková et al. 2006) irrespective to their depth.

In contrast to substrate specificity, depth influence was not found to be significant in this study (analysis not illustrated). However, some differences found in this study can be explained by the biology and ecology of both dominant macrophytes. Growth and development of Potamogeton follows an annual cycle (with regrowth in spring that starts from tubers or from buds on relic stems; e.g. Wiegleb & Kadono 1989) whilst Chara is a perennial with apical growth (e.g. Krause 1997).

The western shore of Lake Valagola is dominated by Potamogeton (depth 0.5 to 2.2 m) whereas Chara aspera grows in the rest of the lake. Their spatial distribution should be explained by competition for light and free CO\textsubscript{2}, as previously reported for C. aspera and Potamogeton pectinatus L. (van den Berg et al. 1998). However, Stuckenia pectinata (L.) Börner (previously Potamogeton pectinatus) and P. gramineus differ significantly and van den Berg’s model consider much more turbid conditions. The depth distribution of macrophytes in Lake Valagola suggests that C. aspera is tolerant to shading. This is in agreement with records highlighting that charophytes colonize deeper parts than angiosperms (Blindow 1992). Although depth distribution cannot explain why Potamogeton colonizes only the western shore of the lake, light could again be the possible factor, because the eastern shore of the tarn is shaded by wood, while the western shore is more open.

Both dominant macrophytes (Chara aspera and Potamogeton gramineus) host significantly different diatom species assemblages. Diatom species richness, diversity, and composition differed significantly between these two main host plants. Moreover, the diversity hot spot (L21; Calliergon giganteum; fig. 1B) might be influenced by groundwa ter inflow (Cantonati et al. 2012). Potamogeton gramineus assemblages were characterized by higher species richness and diversity, and by the large-celled, adnate diatom species Epithemia adnata, Rhopalodia gibba, Eunotia arcus, and E. arcubus. Chara aspera was preferred by the small-celled, motile diatom species Brachysira neoexilis, Encyonopsis cesatii. As we documented by measurements and host plant surface SEM images, Chara thalli seems to be a more difficult surface for diatom colonization, particularly for longer species (fig. 6).

Because macrophyte distribution is spatially structured in this lake, we can hardly separate differences induced by substrate/host from other possible influences. Substrate preferences caused either by morphology of plant species (mechanical cause; Laugaste & Reunanen 2005, Pomazkina et al. 2012) or nutrient uptake from host plants (chemical cause) are accompanied by seasonal aspects of epiphyte distribution.

Seasonal changes have been found to be significant in shallow lowland ponds (Kitner et al. 2005). Final cover and rate of colonization was higher in summer than in spring.

Figure 6 – SEM images of herbarium material of Chara aspera (A–D) and Potamogeton gramineus (E–G) showing diatom epiphytes on the surface. Scale bars: A, 1 mm; B, 100 µm; C, D & F, 10 µm; E, 200 µm; G, 20 µm.
The vegetative season in Lake Valagola is shorter (about 6 months) because of the elevation, and the lake was sampled at the end of the summer when colonization of substrata and assemblage development are maximal in temperate mountain lakes (Catalan & Donato Rondón 2016). The architecture of the host plant is undoubtedly of significance, particularly, in lakes with low nutrient levels. According to Hinojosa-Garro et al. (2010) macrophyte architectural complexity leads to an increase of the epiphytic species richness and diversity. In highly-eutrophic lakes, substrate specificity can be less pronounced (Eminson & Moss 1980, Kairesalo 1984, Kitner & Poulíčková 2003, Laugaste & Reunanen 2005). No qualitative or quantitative specificity for substrata was observed in eutrophic ponds and streams in Czech Republic (Kollár et al. 2015) or in a study on Lake Erie (Millie & Lowe 1983).

However, Cejudo-Figueiras et al. (2010) rejected Blindow’s (1987) neutral substrate hypothesis, and observed significant differences in the composition of diatom assemblages among host macrophytes. In contrast, diatom-based indices for trophic level assessment did not differ significantly. Thus, they hypothesize that epiphytic diatoms can be used as indicators for shallow lakes irrespective of the dominant macrophyte (Cejudo-Figueiras et al. 2010).

As we expected, we found a significantly higher diversity on Potamogeton, more likely due to appropriate plant architecture and surface, which is in agreement with the opinion of other authors (Pomazkina et al. 2012). The development of epiphyton can be affected also by allelopathic interactions (Gross 2003). Whereas cyanobacteria are strongly inhibited by compounds produced by Chara aspera, surprisingly no inhibition was noted in eukaryotic target strains including one diatom strain (Berger & Schagerl 2003, 2004).

In contrast to some studies mentioned above, our results support the existence of substrate specificity for diatom assemblages. Although, such distinct model cases as Lemma spp. vs. Lemnicola hungarica (Grunow) Round & Basson seem to be rare (Buczko 2007). Chara aspera and other Charophyceae of the Balkan Peninsula were inhabited by other diatom species (Hafner & Jasprica 2013), because the localities were brackish. Variation in species composition of epiphyton growing on Potamogeton and other macrophytes (Myriophyllum sp., Elodea sp.) were rarely studied (Pomazkina et al. 2012). The most common epiphytic diatom seems to be Cocconeis placentula Ehrenberg (Birkett & Gardiner 2005, Potapova & Charles 2005, Lebreton et al. 2009). We found it to be more common on Potamogeton rather than on Chara. Cocconeis preferring shores exposed to wind with active wave mixing (Kozhov 1962, Pomazkina et al. 2012) was accompanied in Lake Valagola by diverse species of Epithemia and Rhopalodia.

In conclusion, our work pointed out general features of diatom assemblages colonizing two macrophytes with contrasting depth-preferences and architectures, particularly in terms of size structure of epiphytic diatoms.

SUPPLEMENTARY DATA

Supplementary data are available in pdf at *Plant Ecology and Evolution*, supplementary data site (http://www.ingenta-
connect.com/content/botbel/plecevo/supp-data) and consist of a list of species with abbreviations and host plants.

ACKNOWLEDGEMENTS

Marco Cantonati and Angeli Nicola are grateful to the Adamello-Brenta Nature Park for supporting macrophyte sampling and limnological analyses within the Project Valagola SEFIRA (Reconstruction of the development of the mountain Lake Valagola -Adamello-Brenta Nature Park., and prediction of senescing and filling rates, 2013–2014). We further thank the Scuba divers of the Permanent Fire Brigade of Trento for precious assistance during macrophyte sampling; D. Jäger (Hohenems, Austria) for stonewort identification; D. Spitale (MUSE – Limnology & Phycology Section, Trento) for bryophyte identification; L. Cerasino (E. Mach Foundation, S. Michele all’Adige, Trento) for making available the results of hydrochemical analyses; M. Bąk, G. Daniszewska-Kowalczyk, A. Kierzek, S. Dobosz (University of Szczecin, Poland) for kind support during macrophyte sampling. This study was funded by Internal grant agency of Palacký University PrF-2015-001 and PrF-2016-001. The topic of the present paper was presented at the International Workshop on Benthic Algae (InBAT, Trento, June 17th–19th 2015) by Markéta Letáková and was awarded the prize for the best student poster presentation.

REFERENCES

Cano M.G., Casco M.A., Claps M.C. (2008) Implications of rapid changes in chlorophyll-a of plankton, epipelon, and epiphyton in a Pam-

Manuscript received 9 Dec. 2015; accepted in revised version 12 May 2016.

Communicating Editor: Bart Van de Vijver.
4.3 Paper IV

Epiphytic diatoms in lotic and lentic waters – Diversity and representation of species
Epiphytic diatoms in lotic and lentic waters – diversity and representation of species complexes

Jan KOLLÁR¹, Markéta FRÁNKOVÁ², Petr HAŠLER¹, Markéta LETÁKOVÁ¹ & Aloisie POULÍČKOVÁ¹

¹ Department of Botany, Faculty of Sciences, Palacký University Olomouc, Str. Šlechtitelů 27, CZ–783 71 Olomouc, Czech Republic
² Department of Vegetation Ecology, Institute of Botany, Czech Academy of Sciences, Lidická 25/27, CZ–657 20 Brno, Czech Republic

Abstract: Small streams and shallow ponds represent sensitive ecosystems and attached diatoms can serve as integrative indicator with fast response to environmental changes. Development of methods for ecological monitoring throughout Europe and their calibration for particular ecoregions are not finished yet and databases need to be filled by data from undersampled regions and overlooked substrates. The present study aims to explore the diversity of epiphytic diatoms in unexplored catchment areas with special attention to substrate specificity and distribution of unresolved diatom species complexes. Significant differences were found in diversity of both regions and water types (lotic/lentic). No significant differences were found in the case of substrates. CCA analysis showed significant influence of pH, water streaming (streaming/stagnant) and Lemna substrate to species composition. Surprisingly species complexes represent the majority of epiphytic assemblages with no significant differences between lotic and lentic waters or substrates except of Lemna. The high representation of complexes does not lead automatically to reduction of overall diversity of the sample.

Key words: diatoms, epiphyton, lotic and lentic waters, species complexes

INTRODUCTION

In Europe, most shallow lakes/ponds and rivers are strongly affected by human activities. The EU members in the frame of Water Framework Directive (WFD) developed standardized methods to assess the ecological status of surface waters using bioindicators. Diatoms are considered to be good indicator organisms in aquatic ecosystems (BLANCO et al. 2004, 2014). The cross–taxon congruence of six contrasting groups of organisms (vascular plants, bryophytes, fungi, diatoms, desmids and testate amoebae) in the same permanent plots were analysed in freshwater wetlands (HÁJEK et al. 2014). The main difference among different taxa corresponded clearly with body size and life span (micro versus macroorganisms), conforming the assumption of faster response of microorganisms to environmental changes. Generally, macroorganisms provide similar information, while diatoms behave most independently (HÁJEK et al. 2014). Diatoms occupy a variety of substrates in both lotic and lentic waters. Development of methods for ecological monitoring throughout Europe (KELLY et al. 2009) and their calibration for particular ecoregions are not finished yet and databases need to be filled by data from undersampled regions and less sampled substrates. Moreover there are many problems with cryptic diversity and their ecological significance (POULÍČKOVÁ et al. 2008, 2014). Some diatom traditional morphospecies included in regional floras (Sellaphora pupula, Achnanthidium minutissimum, Gomphonema parvulum etc.) have long been considered cosmopolitan, ubiquitous, and morphologically highly variable taxa. However molecular methods revealed, that these diatoms are species complexes consisting of few or many species, whose identification in LM is difficult or impossible (POTAPOVA & HAMILTON 2007; MANN et al. 2008; POULÍČKOVÁ et al. 2010). The use of benthic diatoms in the context of ecological status assessment (KING et al. 2006; KELLY et al. 2007) seems to be broadly accepted, although more studies are dealing with running waters and epilithon (RIMET & BOUchez 2012). Methodology for shallow lakes using epiphyton has been suggested quite recently (BLANCO et al. 2014). The present study aims to explore epiphytic diatoms of small ponds and streams covering main ecological gradients of Southeastern Moravia (Czech Republic). Special attention was paid to representation of diatom species complexes at different substrates and water types and its influence to epiphyton bioindication capacity.
Material and Methods

Samples were collected in summer 2013 and 2014 in 25 ponds and 13 streams of two sampling areas. Both regions (the Svitava region and the White Carpathian Mountains) belong to the Morava River Basin. The first one – the Svitava Highland is a part of the Svitava River basin (SB) and geologically belongs to the southeastern part of the Cretaceous Table. In the area prevail mesozoic (sandstone, marstone, marlstone, claystone) and quaternary (loam, loess, gravel, sand) sedimentary rocks. Annual mean temperature is around 6 °C and annual mean precipitation is around 600 mm (Tolasz et al. 2007). Sites located in this area lay in elevation around 500 m a.s.l. (Fig. 1). The second area – the White Carpathian Mountains (WC) is situated on southeast of the Czech Republic (on the western margin of the Western Carpathians) along the border with Slovakia. Geological bedrock is formed by flysch belt, in which sandstone and claystone of variable calcium content alternate. Prevailing is marl, lime-rich claystone, limestone and calcareous sandstone (Hálek et al. 2002). Groundwaters are carbonatogenic and their dominant mineralization process is carbonate dissolution which leads to the calcium–(magnesium)–bicarbonate type of chemistry (Rapant et al. 1996). This chemistry type supports cold water travertine (tufa) formation. Annual mean temperature is about 8 °C and annual mean precipitation is about 700 mm (Tolasz et al. 2007). Sites located in this area are situated in altitudes from 225 m up to 535 m above sea level. Basic characteristics of investigated localities are given in Table 1.

Epiphytic communities (in littoral part of ponds and/or streaming part of the rivers) growing on submerged macrophytes Phragmites australis (Cav.) Steud.; Poaceae (incl. Phalaris arundinacea L., Arrhenatherum elatius (L.) J. Presl et C. Presl, Poa sp., Dactylis sp., Glyceria sp); Typha sp.; Lemna sp.; Salix sp.; Callitriche sp. and Sparganium sp. were examined.

Diatom sampling methods followed those recommended by Kelly et al. (1998), diatom frustules were cleaned in hydrogen peroxide (Taylor et al. 2007) and mounted in Naphrax. Four hundred individuals were identified in each sample to species level using literature (Krammer & Lange-Bertalot 1986; Krammer & Lange-Bertalot 1988; Krammer & Lange-Bertalot 1991; Krammer 2000; Lange-Bertalot 2001; Krammer 2002; Krammer 2003; Krammer & Lange-Bertalot 2004; Lange-Bertalot et al. 2011). Nomenclature has been unified following Algaebase (Guiry & Guiry 2015). Species complexes selection was based on actual list of species, recent molecular literature and own experience and are summarized in Table 2, although their list can expand in near future due to molecular studies boom. Few examples of species complexes representatives are documented in Fig. 2.

Statistical analysis. Our hypothesis assumes that diatom distribution among sampling sites is influenced by measured environmental variables. Prior to main statistical analyses we disproved correlation between geographical position and environmental variables (Spearman’s correlation coefficient, pH: \(r_s = 0.587\), conductivity: \(r_s = 0.033\)). Multivariate analysis using Canoco 4.5 (ter Braak & Šmilauer 2002) was carried out to test relationships between identified diatoms and environmental variables (pH, conductivity, host plant, streaming/stagnant water). First, length of the gradient was computed using Detrended correspondence analysis (DCA, detrending by segments, without transformation, length of the gradient on the first axis = 5.258, species data explain 11.8% on the first axis). Protocol of the Canonical correspondence analysis (CCA) was carried out as follows: imported data included diatom occurrence (%) and environmental variables (pH, conductivity, flowing/stagnant water, host plant), then biplot scaling focused on inter–species distances, Log transformation \((Y' = \log(A*Y+B))\), A=1, B=1) with downweighting of rare species, Monte–Carlo permutation test was used (reduced model, 499 permutations), forward selection of environmental variables (both automatic and manual selection) were performed. Analysed environmental variables did not show any collinearity. Their VIF ranged from 1.82 to 5.92. Results of CCA were visualized using Canoco Draw.

Fig. 1. Sampling sites in White Carpathians (WC) and the Svitava river basin (SB).
Table 1. Basic characteristics of investigated localities, (Cond) conductivity (μS.cm⁻¹).

<table>
<thead>
<tr>
<th>Area</th>
<th>Sample</th>
<th>Locality (Cadaster)</th>
<th>GPS coordinates</th>
<th>pH</th>
<th>Cond</th>
<th>Pond/ stream</th>
<th>Macrophyte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC</td>
<td>LOK1</td>
<td>Lučina (Tvarožná Lhota)</td>
<td>48°51'46.14"N 17°23'41.04"E</td>
<td>8.19</td>
<td>505</td>
<td>P</td>
<td>Poaceae</td>
</tr>
<tr>
<td>WC</td>
<td>LOK2</td>
<td>Kejda (Kněždub)</td>
<td>48°52'3.84"N 17°24'37.26"E</td>
<td>8.13</td>
<td>470</td>
<td>P</td>
<td>Poaceae</td>
</tr>
<tr>
<td>WC</td>
<td>LOK3</td>
<td>Radějovka (Radějov)</td>
<td>48°51'38.16"N 17°20'32.70"E</td>
<td>8.32</td>
<td>546</td>
<td>S</td>
<td>Poaceae</td>
</tr>
<tr>
<td>WC</td>
<td>LOK4</td>
<td>Hrubý potok (Javorník)</td>
<td>48°51'49.56"N 17°31'54.24"E</td>
<td>8.36</td>
<td>414</td>
<td>S</td>
<td>Poaceae</td>
</tr>
<tr>
<td>WC</td>
<td>LOK5</td>
<td>Rasová (Komňa)</td>
<td>48°58'32.40"N 17°48'43.86"E</td>
<td>8.24</td>
<td>317</td>
<td>P</td>
<td>Typha</td>
</tr>
<tr>
<td>WC</td>
<td>LOK6</td>
<td>Lubná (Suchá Loz)</td>
<td>48°56'47.88"N 17°40'54.60"E</td>
<td>7.93</td>
<td>451</td>
<td>P</td>
<td>Sparganium</td>
</tr>
<tr>
<td>WC</td>
<td>LOK7</td>
<td>Lubná (Suchá Loz)</td>
<td>48°56'32.16"N 17°40'55.80"E</td>
<td>8.09</td>
<td>523</td>
<td>S</td>
<td>Poaceae</td>
</tr>
<tr>
<td>WC</td>
<td>LOK8</td>
<td>Basin on the Hradecký járek (Suchá Loz)</td>
<td>48°57'1.68"N 17°42'14.58"E</td>
<td>7.79</td>
<td>368</td>
<td>P</td>
<td>Typha</td>
</tr>
<tr>
<td>WC</td>
<td>LOK9</td>
<td>Hradecký járek (Suchá Loz)</td>
<td>48°57'8.52"N 17°42'53.88"E</td>
<td>7.92</td>
<td>408</td>
<td>S</td>
<td>Salix</td>
</tr>
<tr>
<td>WC</td>
<td>LOK10</td>
<td>Nivnička (Suchá Loz)</td>
<td>48°58'13.20"N 17°42'36.30"E</td>
<td>8.06</td>
<td>539</td>
<td>S</td>
<td>Poaceae</td>
</tr>
<tr>
<td>WC</td>
<td>LOK11</td>
<td>Basin near Čupák (Suchá Loz)</td>
<td>48°57'53.52"N 17°40'23.34"E</td>
<td>8.13</td>
<td>430</td>
<td>P</td>
<td>Typha</td>
</tr>
<tr>
<td>WC</td>
<td>LOK12</td>
<td>Nivnička (Nivnice)</td>
<td>48°58'48.00"N 17°38'30.84"E</td>
<td>8.45</td>
<td>547</td>
<td>S</td>
<td>Poaceae</td>
</tr>
<tr>
<td>SB</td>
<td>Ra1</td>
<td>Radiměřský potok (Radiměř)</td>
<td>49°41'31.163"N 16°27'26.189"E</td>
<td>6.2</td>
<td>175</td>
<td>S</td>
<td>Poaceae</td>
</tr>
<tr>
<td>SB</td>
<td>HnS1</td>
<td>Dolní hradecký rybníček (Hradec nad Svítavou)</td>
<td>49°41'7.646"N 16°28'57.071"E</td>
<td>7.85</td>
<td>743</td>
<td>P</td>
<td>Phragmites</td>
</tr>
<tr>
<td>SB</td>
<td>HnS2</td>
<td>Horní hradecký rybníček (Hradec nad Sitavou)</td>
<td>49°41'8.094"N 16°28'55.294"E</td>
<td>4.80</td>
<td>534</td>
<td>P</td>
<td>Lemna</td>
</tr>
<tr>
<td>SB</td>
<td>HnS4</td>
<td>Řeka Svítava (Hradec nad Svítavou)</td>
<td>49°41'6.744"N 16°28'51.934"E</td>
<td>7.00</td>
<td>540</td>
<td>S</td>
<td>Poaceae</td>
</tr>
<tr>
<td>SB</td>
<td>Sy1</td>
<td>Lánský rybník (Svitavy – Lány)</td>
<td>49°44'35.760"N 16°28'8.220"E</td>
<td>6.3</td>
<td>385</td>
<td>P</td>
<td>Phragmites</td>
</tr>
<tr>
<td>SB</td>
<td>Sy2</td>
<td>Svitavský rybník (Svitavy – Lačnov)</td>
<td>49°45'58.719"N 16°27'37.682"E</td>
<td>6.60</td>
<td>401</td>
<td>P</td>
<td>Phragmites</td>
</tr>
<tr>
<td>SB</td>
<td>Sy3</td>
<td>Rosnička (Svitavy – Předměstí)</td>
<td>49°46'15.313"N 16°27'5.582"E</td>
<td>7.98</td>
<td>506</td>
<td>P</td>
<td>Phragmites</td>
</tr>
<tr>
<td>SB</td>
<td>Sy6</td>
<td>Svitavy (Svitavy – Lány)</td>
<td>49°44'36.775"N 16°28'41.705"E</td>
<td>6.90</td>
<td>528</td>
<td>S</td>
<td>Phragmites</td>
</tr>
<tr>
<td>SB</td>
<td>Sy8</td>
<td>Lačnovský západní rybník (Svitavy – Lačnov)</td>
<td>49°46'25.950"N 16°28'7.276"E</td>
<td>5.75</td>
<td>293</td>
<td>P</td>
<td>Typha</td>
</tr>
<tr>
<td>SB</td>
<td>Sy12</td>
<td>Outlet at Lačnovský západní rybník (Svitavy – Lačnov)</td>
<td>49°46'24.584"N 16°28'10.762"E</td>
<td>6.00</td>
<td>251</td>
<td>P</td>
<td>Typha</td>
</tr>
</tbody>
</table>
Table 1 Cont.

SB	V1	U Rybníčku (Vendolí)	49°43'33.575"N 16°26'39.028"E	6.30	148	P	Lemna
SB	Po2	Fishpond (Pohledy)	49°41'46.008"N 16°33'39.107"E	6.30	252	P	Phragmites
SB	KH1	Fishpond (Kamenná horka)	49°44'18.342"N 16°31'43.116"E	5.80	459	P	Typha
SB	K1	Pool (Koclířov)	49°46'20.363"N 16°31'21.760"E	5.88	332	P	Phragmites
SB	BnS1	Svitava (Březová nad Svitavou)	49°39'25.761"N 16°30'27.857"E	6.10	552	S	Poaceae
SB	Br1	Svitava (Brněnec)	49°37'23.628"N 16°31'26.769"E	7.65	518	S	Phragmites

Table 2. Species complexes occurring in the White Carpathians and the Svitava Basin, their trophic preferences, (nd) no data available.

<table>
<thead>
<tr>
<th>Species complex</th>
<th>References</th>
<th>Trophic state (Van Damm et al. 1994)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achnanthidium minutissimum</td>
<td>Potapova & Hamilton 2007</td>
<td>euryvalent</td>
</tr>
<tr>
<td>Planothidium lanceolatum</td>
<td>Van de Viver et al. 2013</td>
<td>eutrophic</td>
</tr>
<tr>
<td>Amphora pediculus</td>
<td>Bruder 2006, Wang 2014</td>
<td>eutrophic</td>
</tr>
<tr>
<td>Cocconeis pediculus</td>
<td>Jahn et al. 2007</td>
<td>eutrophic</td>
</tr>
<tr>
<td>Cocconeis placentula</td>
<td>Jahn et al. 2009</td>
<td>eutrophic</td>
</tr>
<tr>
<td>Encyonema minutum</td>
<td></td>
<td>nd</td>
</tr>
<tr>
<td>Eunotia bilinaris</td>
<td>Vanormeling et al. 2013</td>
<td>euryvalent</td>
</tr>
<tr>
<td>Ulnaria ulna</td>
<td>Williams 2011</td>
<td>euryvalent</td>
</tr>
<tr>
<td>Fragilaria capucina</td>
<td>Kahler et al. 2009</td>
<td>euryvalent</td>
</tr>
<tr>
<td>Staurosirella pinnata</td>
<td>Morales et al. 2013</td>
<td>euryvalent</td>
</tr>
<tr>
<td>Gomphonema parvulum</td>
<td>Abarca et al. 2014</td>
<td>eutrophic</td>
</tr>
<tr>
<td>Navicula cryptocephala</td>
<td>Poulikova et al. 2010</td>
<td>euryvalent</td>
</tr>
<tr>
<td>Nitzschia palea</td>
<td>Kahler et al. 2009; Trobajo et al. 2009</td>
<td>hypertrophic</td>
</tr>
<tr>
<td>Nitzschia paleacea</td>
<td></td>
<td>eutrophic</td>
</tr>
<tr>
<td>Sellaphora pupula</td>
<td>Mann et al. 2004, 2008; Vanormeling et al. 2013</td>
<td>mesotrophic</td>
</tr>
</tbody>
</table>

4.0. Shannon diversity indexes of diatoms were computed (then sorted according to: host plants, sampling site, streaming/stagnant water, geographical location of sampling sites). Variation of Shannon diversity indexes among sampling sites and streaming/stagnant water was analysed with One-Way ANOVA. Because of unequal number of host plants sampled, variation of Shannon diversity index was analysed with non-parametric Kruskal-Wallis multiple comparison test (NCSS statistical package, Hintze 2007). With respect to different plant habitus and physiology, difference in Shannon’s diversity was analysed for Lemna minor versus group of other submerged vascular plants. Response of diatoms to the best fitting environmental variables was analysed using T-value statistics (CanocoDraw 4.0).

RESULTS

A total of 131 diatom species was found during the study. Species richness ranged from 1 to 34 species per sample. Species richness was higher in the West Carpathians (19–34) than in the Svitava river basin (1–15 per sample). The highest number of diatom species was found on Poaceae and Typha. The dominant diatom species was Achnanthidium minutissimum agg., creating up to 88% of the community. The most frequently occurring species were Gomphonema parvulum agg. with representation 1–48% and Cocconeis placentula with representation 1–100%. Frequent species for both regions were also Nitzschia palea and Ulnaria ulna. Planktonic diatoms (Cyclotella, Actinocyclus and Asterionella) frequently occurred in ponds.
Surprisingly species complexes (Table 2) represent the majority of epiphytic assemblages (lotic/lentic: 67.1% and 66.5% respectively; substrates: Poaceae 63%, Typha 60%, Sparganium 79.2%, Salix 74.9%, Phragmites 75%, Callitriche 89.8%, Lemna 25%). However, differences in percentage of species complexes among sampled host plants were not significant (F = 1.91, P = 0.1341). There was no close correlation between Shannon’s diversity and percentage of species complexes among sampled host plants as well (Pearson correlation coefficient: r = 0.4113) by other words: the high representation of complexes does not automatically lead to reduction of overall diversity of the sample.

Canonical correspondence analysis spread sampling points through the ordination space with respect to their geographical position (West Carpathians and Svitava river basin) and ecological nature (stream and pond). Sampling sites in the Western Carpathians, both ponds and streams, form more coherent clusters than in the Svitava river basin (Fig 3). Significant differences in Shannon’s diversity index were found between sampling sites in the Svitava river basin and Western Carpathians (Fig. 6, F = 5.88, p = 0.0204). Sampling sites located in the Western Carpathians (Fig. 3, squares) possess statistically higher Shannon diversity (1.95±0.55) than those in the Svitava river basin (1.43±0.68). Similarly, statistically significant differences were found between sampling sites from streaming (2.08±0.47) and stagnant water bodies (1.33±0.63; Fig. 5, F = 13.94, p = 0.0006).

Species data explain 11.8% of variability on the first and 19.8% on the second ordination axis (p = 0.002, F = 3.792). Diatom ordination is significantly influenced by pH (F = 3.84, p = 0.002), water hydrodynamism (streaming/stagnant, F = 2.59, p = 0.002) and Lemna minor as a host plant (F = 1.97, p = 0.018, for details see Table 3, Fig. 4). Species such as Amphora pediculus, Cocconeis pediculus, Cymbella excisiiformis, Encyonopsis cesatii, Encyonopsis microcephala, Eunotia arcus, Gomphonema pumilum, Nitzchia palaearctica or Nitzchia sinuata prefer significantly higher pH than Mayamaea atomus, Planothidium ellipticum, Planothidium lanceolatum or Nitzchia palea, which prefer lower pH value within investigated scale (4.80–8.45). Species preferring stagnant water bodies include Fragilaria brevistriata, Encyonopsis microcephala, Eunotia arcus and Denticula tenus. On the other hand, streaming water prefer Cocconeis pediculus, Gomphonema angustatum and Navicula triplunctata. Diatom assemblages among sampled host plants possess almost the same diversity. Lemna minor showed the lowest variability of Shannon diversity (1.37±0.17) in contrast to other host plants (Phrag = 1.56±0.72, Poac = 1.82±0.53, Salix = 1.54±1.38, Typha = 1.50±0.59). However, Shannon’s diversity did not show any statistically significant differences among host plants (Table 4). Similarly, difference in Shannon’s diversity between Lemna minor and other vascular submerged plants was not significant as well (z = 0.874, α = 0.05).

Diatoms showed low specificity to host plants except of Lemna minor (F = 1.97, p = 0.018). Species such as Fragilaria brevistriata, Staurosirella pinnata or Nitzchia palaearctica avoid Lemna minor as a host plant. Surprisingly, Lemnicola hungarica as a diatom typical for Lemna minor, inhabited also Phragmites australis in the Svitava river basin.

DISCUSSION

Small streams and shallow ponds represent ecosystems sensitive to environmental changes. It can be demonstrated by much higher nutrient variation in shallow than deep waters (JEPPESEN et al. 2000). In comparison with physicochemical variables, attached diatoms seem to be more integrative indicators with fast response to environmental changes (BLANCO et al. 2004; HÄJEK et al. 2014). Diatoms are able to inhabit all available substrates, which are mostly represented by...
Fig. 3 CCA ordination diagram: investigated sites, (circles) Western Carpathians, (squares) Svitava river basin, (green) ponds, (red) streams; symbol size corresponds to value of Shannon’s diversity index (Si).

suspended particules (Kelly et al. 1998, Poulíčková et al. 2004, 2008, 2014). Planktonic diatoms were not frequent and were represented by *Aulacoseira granulata* (SB), *Asterionella formosa* and *Cyclotella* sp. (WC). In general, the relationship between epiphyton and water chemistry has been demonstrated many times (Ács et al. 1991, 1994; Kitner & Poulíčková 2003; Blanco et al. 2004; Poulíčková et al. 2004; Hájková et al. 2011) and submerged macrophytes have been recommended for routine monitoring (Kelly et al. 1998; Blanco et al. 2004). We found significant relationship to selected environmental variables (water streaming, pH) in congruence with other studies (Putapova & Charles 2003; Kitner & Poulíčková 2003; Kovács et al. 2006; Fráňková et al. 2009; Yang & Flower 2012). However, the results of this method of water quality status assessment are strongly influenced by following stones and sediments in streams and by macrophytes and sediments in shallow lakes and ponds. Homogeneity of periphytic communities and their composition are more related to chemical characteristics of the surrounding environment than to the substrate type, particularly in eutrophic systems (Eminson & Moss 1980; Cattaneo et al. 1998; Kitner & Poulíčková 2003; Poulíčková et al. 2004; Celudo–Figueiras et al. 2010). However, substrate specificity has been described in some oligotrophic waters (Eminson & Moss 1980; Blindow 1987; Buczko 2006; Cantona–ti 1998; Poulíčková et al. 2004). Our results did not confirm substrate specificity, except of specific assemblage growing on *Lemna* sp., similar to more complex study already published (Buczko 2007). In contrast to other periphytic assemblages, epiphytic assemblages include lower number of planktonic diatom taxa and
Fig. 5. Box plot of diatom Shannon diversity: comparison of habitat (streams, ponds; F=13.94, p=0.0006).

Fig. 6. Box plot of diatom Shannon diversity: comparison of sampling sites (SB) Svitava river basin, (WC) Western Carpathians (F=5.88, p=0.0204).

two factors: 1) trophic indices are working in ecoregions where they were intercalibrated (Prygiel et al. 2002; Pouličková et al. 2004; Kovác et al. 2006) and 2) some traditional „euryvalent and cosmopolitan species“ represent species complexes consisting of few or many ecologically differentiated biological species (so called cryptic species), whose distinguishing in the LM is difficult or even impossible (Mann et al. 2008; Kahlert et al. 2009; Pouličková et al. 2010).

Although many studies noticed that attached diatoms in wide spectrum of ecological conditions are dominated particularly by Achnanthidium minutissimum (Kützing) Czarnecki 1994 (Blanco et al. 2004, Céjudo–Figueiras et al. 2010), the assessment what is the proportion of species complexes within attached diatom assemblages has not been specified yet. Sigee (2005) summarized dominant diatom species along a river course with increasing nutrient pollution. First zone (clean water) is characterized by small–celled species directly attached to stone surface (Eunotia exigua, Achnanthes microcephala). Zones 2 and 3 are dominated by Fragilaria capucina, Achnanthidium minutissimum, Encyonema minutum and Cocconeis placenta. Eutrophic zone 4 is characterized by Gomphonema parvulum and highly eutrophic zone 5 by Nitzschia palea (Sigee 2005). In fact the majority of these „indictatory dominants“ represent species complexes (Table 2; Kwandrans et al. 1998; Kahlert et al. 2009). If species complexes as a whole are not ecologically differentiated and create the majority of assemblage composition, it means that in this field is a great potential for trophic indices improvement. The ongoing progress with identification of cryptic diversity is in motion with implementation of molecular methods. Following six examples demonstrates the importance of species complexes investigation.

Sellaphora pupula agg.

An extreme example of species complexes seems to be Sellaphora pupula agg. (Fig. 2; Mann et al. 2008) with almost 50 morphospecies (demes), some of them already confirmed using molecular methods (Evans et al. 2007, 2009; Wetzel et al. 2015). This diatom is typical for epipelic rather than epiphytic assemblages, with high representation in British lakes. It creates up to 40% of epipelic assemblages in lakes/ponds of Great Britain, while its representation in Czech and Hungarian ponds does not exceed 3% (Pouličková et al. 2008, Špácková et al. 2009). Although their identification is difficult particularly in the LM, some of them seem to be ecologically differentiated (Pouličková et al. 2008). Many lakes contain several different morphospecies, the greatest numbers of coexisting demes occurred in eutrophic Blackford Pond, Great Britain (Pouličková et al. 2008). Five morphospecies inhabiting Czech pond Bezedník (temperate zone) showed seasonal dynamics with significant correlation of their occurrence with temperature (Špácková et al. 2009).

Achnanthidium minutissimum agg.

Although molecular methods have not been used in this case yet, the opinion that previously described varieties within A. minutissimum can represent ecologically differentiated species seems to be evident (PotaPová & Hamilton 2007). Moreover this species complex has been recorded as the most frequent dominant of epilithic and epiphytic assemblages in both lotic and limnetic freshwaters (Ponader & PotaPová 2007; PotaPová & Hamilton 2007). Morphometric study (Potapova & Hamilton 2007) revealed 6 morphological groups, however authors were not able to draw clear boundaries between them. These morphospecies differed significantly in their ecology and could serve as indicators of water quality (PotaPová & Hamilton 2007). However, an analysis of the results of 25 diatomists participating in intercalibration exercise showed, that even experienced diatomists have problem to recog-
nize varieties/morphospecies of *A. minutissimum* in the LM (KAHLER et al. 2009), due to small size close to the LM resolution limits (length 5 – 25 µm, width 2.5 – 4 µ and dense striaion 26–30/10 µm; HOFFMANN et al. 2013). Improvement in bioassessments in this case strongly depends on application of molecular methods.

Gomphonema parvulum agg.

The name *G. parvulum* represents a diatom species which is relatively small in size (length 10–36 µm, width 5–8 µm) and has cosmopolitan distribution (HOFMANN et al. 2013). It has been used as a collective name for a species complex for two centuries. Morphologically highly variable diatom occurs in wide range of water qualities (PATRICK & REIMER 1975; HUDSTEDT 1985; KRAMMER & LANGE-BERTALOT 1997). Molecular as well as morphological data obtained during the recent studies (KERMAREC et al. 2013; ABARCA et al. 2014) resulted in separation of at least four taxa based on their biogeography.

Eunotia bilunaris agg.

E. bilunaris sensu lato is a good candidate for studies on semicryptic species diversity in diatoms. It is a cosmopolitan and common epiphytic diatom in oligotrophic, mainly acidic freshwater bodies (KRAMMER & LANGE-BERTALOT 1991; VANORMELINGEN et al. 2008). Based on its phenotypic plasticity, a number of species have been described (LANGE-BERTALOT et al. 2011). Moreover morphological, molecular and reproductive data suggest the existence of several reproductively isolated species (VANORMELINGEN et al. 2008).

Navicula cryptocephala agg.

N. cryptocephala is a common benthic diatom of moderate size (20–40 µm long, 5–7 µm wide; LANGE-BERTALOT 2001). In contrast to species complexes with broad morphological variation, *N. cryptocephala* represents a complex with almost identical valve morphology. However, it has been found to be polymorphic with respect to interphase nuclear structure (Fig. 2; GEITLER 1951, 1952a,b, 1958; POULÍČKOVÁ et al. 2010). Phylo-
genetic analyses of 52 strains confirmed the existence of two genetically distinct lineages within *N. cryptocephala* that coexist sympatrically and are widely distributed, occurring in European and Australian ponds (Pouličková et al. 2010).

Nitschia palea agg.

N. palea is believed to be a widely distributed diatom in lotic and lentic freshwater habitats (Finlay et al. 2002; Potapova & Charles 2007). In general, the genus *Nitschia* is difficult for identification and discrimination between members, particularly in the section Lanceolatae Grunow (Hustedt 1930). Moreover identification is complicated by morphological variability during the life cycle and phenotypic plasticity due to environmental conditions. On the base of their results (morphological, genetic and mating diversity) Trobajo et al. 2009 concluded that *N. palea* is not a simple, homogeneous taxon and that this complex will probably have to be split into three or more species. At least two of them appear to be geographically widespread. Ecological preferences and potential indicator value need to be further investigated (Trobajo et al. 2009).

In conclusion, species complexes are important, because of their common occurrence, frequent dominance and difficulties with their distinguishing.

Acknowledgement

This study was supported as a long–term research development project no. RVO 67985939 and IGA PrF–2015–001. This study was supported as a long–term research development project no. RVO 67985939 and IGA PrF–2015–001. This study was supported as a long–term research development project no. RVO 67985939 and IGA PrF–2015–001. This study was supported as a long–term research development project no. RVO 67985939 and IGA PrF–2015–001.

References

4.3 Paper V

Species complexes within epiphytic diatoms and their relevance for the bioindication of trophic status

Aloisie Poulíčková a,⁎, Markéta Letáková a, Petr Hašler a, Eileen Cox b, Martin Duchoslava

a Department of Botany, Faculty of Science, Palacký University Olomouc, Štechitelů 27, CZ-783 71 Olomouc, Czech Republic
b The Natural History Museum, Cromwell Road, London SW7 5BD, UK

HIGHLIGHTS
• Freshwater diatoms were examined at localities along a trophic gradient.
• Number of indicator species increased with fine taxonomic resolution.
• Species complexes showed low sensitivity to changes in phosphorus concentration.
• Cryptic species had contrasting relationships to trophic gradient.
• Some cryptic species have potential to improve bioassessment models.

GRAPHICAL ABSTRACT

ABSTRACT

The popularity of aquatic bioassessments has increased in Europe and worldwide, with a considerable number of methods being based on benthic diatoms. Recent evidence from molecular data and mating experiments has shown that some traditional diatom morphospecies represent species complexes, containing several to many cryptic species. This case study is based on epiphytic diatom and environmental data from shallow fishponds, investigating whether the recognition and use of fine taxonomic resolution (cryptic species) can improve assessment of community response to environmental drivers and increase sharpness of classification, compared to coarse taxonomic resolution (genus level and species level with unresolved species complexes). Secondly, trophy bioindication based on a species matrix divided into two compartments (species complexes and remaining species) was evaluated against the expectation that species complexes would be poor trophy indicators, due to their expected wide ecological amplitude. Finally, the response of species complexes and their members (cryptic species) to a trophic gradient (phosphorus) were compared.

Multivariate analyses showed similar efficiency of all three taxonomic resolutions in depicting community patterns and their environmental correlates, suggesting that even genus level resolution is sufficient for routine bioassessment of shallow fishponds with a wide trophic range. However, after controlling for coarse taxonomic matrices, fine taxonomic resolution (with resolved cryptic species) still showed sufficient variance related to the environmental variable (habitat groups), and increased the sharpness of classification, number of indicator species for habitat categories, and gave better separation of habitat categories in the ordination space. Regression

Abbreviations: \(P_{\text{tot}} \), total phosphorus concentrations; SPC, species complexes; RSP, remaining species; GL, genus level resolution; SLC, species level resolution with unresolved species complexes; SL, species level resolution with cryptic species recognized; DCA, detrended correspondence analysis; CCA, canonical correspondence analysis; CoCA, co-correspondence analysis; pCCA, partial canonical correspondence analysis; ANOVA, analysis of variance.

⁎ Corresponding author.
E-mail address: aloisie.poulickova@upol.cz (A. Poulíčková).
1. Introduction

Cryptic species can be defined as two or more distinct species that are classified as a single taxon (Bickford et al., 2007), a “species complex” or “aggregate”. Cryptic species are morphologically similar, superficially indistinguishable, but separable with molecular data or other techniques (Pouličková et al., 2016). Cryptic species have been recognized for nearly 300 years but research into them has increased exponentially over the past three decades due to the increasing availability of DNA sequences (Bickford et al., 2007). Cryptic diversity is recorded from various groups of organisms (Bickford et al., 2007; Fernandez et al., 2006; Funk et al., 2016; Trontelj and Fišer, 2009), including microalgae and diatoms (Degerlund et al., 2012; Kaczmarska et al., 2014; Kulichová and Fialová, 2016).

Bickford et al. (2007) surveyed the literature for references containing the phrases “cryptic species” or “sibling species” in the title, abstract, or keywords, and found surprisingly few papers reporting cryptic species in higher plants or microorganisms. Botanists do not use these phrases, but species complexes due to polyploidy in angiosperms are common (e.g., Dančák et al., 2012; Duchoslav et al., 2013; Husbands et al., 2012; Kobrlová et al., 2016; Soltis et al., 2007). Barker et al. (2015) recently estimated that there are ca 50–60,000 cryptic polyplody species in angiosperms that await discovery and naming. Microorganismal molecular data are still limited because of problems associated with DNA isolation. To obtain sufficient material microorganisms must be grown up in clonal culture. Single cell/filament PCR potentially solves this problem but is time consuming. In addition, some microorganisms groups have cell wall structures that complicate DNA isolation, e.g., different types of frustules, loricas, and particularly different types of mucilage envelope (Maréš et al., 2015; Mazalová et al., 2011).

Many reasons have been given for the value of recognizing cryptic species, e.g., biodiversity, conservation, disease treatment and bioprospecting (Barker et al., 2015; Geller, 1999). Bioindication and biomonitoring are based on organisms having known, distinctive ecological requirements, or specific responses to environmental stressors, such as pollution and nutrient enrichment (Adams, 2002; Diekmann, 2003; Zonneveld, 1983). Aquatic bioassessments have increased in popularity in Europe, methods being based mostly on macrophytes and benthic invertebrates (54%), phytoplankton (21%), fish (15%) and phytothens (10%); Birk et al., 2012). Bioindication requires standardized sampling, sample processing and identification of collected organisms, mostly (74%) to species level (Birk et al., 2012). However, species complexes are often common, widespread and euryvalent (Pouličková et al., 2008b; Schlick-Steiner et al., 2007) and thus less suitable (Diekmann, 2003). The importance of recognizing cryptic species is relevant when entities within species complexes are ecologically differentiated (Pouličková et al., 2008b). Knowledge of the bioindication value of cryptic species could improve the sensitivity of bioassessment methods, particularly for the European Water Framework Directive (European Commission, 2000), which requires an assessment of ecological quality at an ecoregional level (Rimet and Bouchez, 2012a).

Diatoms are widespread organisms playing a key role in all freshwater ecosystems (Round, 1981). Therefore, they are considered powerful indicators for recent and past water quality and climates (Birks et al., 1990; Smol and Stoermer, 2010). Recent evidence from molecular data and mating experiments has shown that some traditional diatom morphospecies represent species complexes containing several to many cryptic species (Kulichová and Fialová, 2016). Sellaphora pupula agg., a characteristic epipelic taxon (Supplementary Fig. S1), is an excellent example of diatom cryptic diversity, with >50 morphotypes (probably cryptic species) in Great Britain alone (Mann et al., 2008), some of which have been found to be ecologically differentiated with respect to trophic gradients (Pouličková et al., 2008b). Achnanthes minutissimum agg. (Supplementary Fig. S1) is another example of cryptic diversity. Although many ecological studies have reported its dominance (lentic vs lotic freshwaters, epiphyton, epilithon; Rimet and Bouchez, 2012a; Cantonati et al., 2014), few have tried to document cryptic diversity within this complex (Potapova and Hamilton, 2007; Wojtal et al., 2011). Together with a few other complexes, A. minutissimum can dominate stream and pond epiphyton, contributing up to 97% of the assemblage (Kollár et al., 2015; Supplementary Table S1), not a trivial percentage.

Ignoring taxonomic heterogeneity and potential ecological differentiation within such species complexes may bias ecological assessments of water quality, despite evidence that evaluations adopting lower taxonomic resolution (genus, family, life-forms or guilds; ‘taxonomic sufficiency’ or ‘taxonomic surrogates’; Terlizzi et al., 2003) show similar, or even better pollution assessment than species-level resolution (e.g., Grows, 1999; Hill et al., 2001; Rimet and Bouchez, 2012b). Indeed, a requirement for cost-effective methods for elucidating the response of ecosystems (across terrestrial, freshwater and marine environments) to anthropogenic impacts has focused on the use of higher taxa as surrogates for species (reviewed by Terlizzi et al., 2003), stemming from the idea of phylogenetic niche conservatism (Losos, 2008; Webb et al., 2002; Keck et al., 2016). However, our knowledge of the extent to which ecological similarity is related to phylogenetic relatedness among species is generally limited (Bivalacqua et al., 2012), partly because the taxonomic classification of many organisms does not mirror phylogenetic relatedness (Wheeler, 2004). More recently, Bivalacqua et al. (2012, 2013) found that the statistical power to detect environmental changes with coarse taxonomic resolution depends on the degree of species aggregation (i.e., the higher taxa/species ratio) rather than the taxonomic resolution (see also Siqueira et al., 2012). Due to the discovery of closely related taxa (cryptic species) (Bickford et al., 2007) that can exhibit ecological niche differentiation (Vanelslander et al., 2009), the continual increase in the number of diatom species may decrease the usefulness of coarse taxonomic resolution for the assessment of community responses to environmental variables. In this respect, Bivalacqua et al. (2012, 2013) suggested combining species surrogacy (difficult taxa, tolerant species) with the retention of high taxonomic detail when necessary (indicator taxa, sensitive species, easy recognizable species). Following these ideas we focused on the potential utility of diatom cryptic species for improving the identification of community response to environmental variation. The philosophy of this study is based on expectation that species complexes are generally euryvalent and blur community response to environmental variation, while cryptic species should be ecologically differentiated and thus might be useful for the detection of (subtle) community responses to
environment. In our case study based on epiphytic diatom and environmental data from shallow fishponds we tested the following null hypotheses:

1. Three levels of taxonomic resolution, genus (GL), species level with unresolved complexes (SLC), species level with cryptic species (SL), are equally effective in revealing community response to environmental variation and do not show significant differences in assessing the main environmental gradients.

2. After splitting the species matrix into species complexes and remaining species, there is no difference in the tropho bioindication of both parts of the epiphyton assemblages.

3. Species complexes and their members (cryptic species) share the same ecological responses to trophic level.

4. Using finer taxonomic resolution did not increase sharpness of classification, i.e. number of indicator taxa for habitat categories with contrasting trophic levels relative to taxonomic richness.

2. Material and methods

2.1. Localities, sampling and measurements

Fifty-two samples were taken from 40 ponds in the Czech Republic during September 2013, and May, June and July 2014. Epiphytic diatoms were sampled from one of the following substrata: macrophytes Typha angustifolia L., Epilobium hirsutum Huds., Carex sp., Salix sp., Phragmites australis Trin. ex Steud., Lemma minor Grif., Carex vesicaria Leers, Lysimachia thyrsiflora Geners, Juncus effusus Auct. Am. ex Schult. F., Polygonum amphibium L., Poaceae; and microphytes Oedogonium sp., Cladophora sp. If more than one substratum occurred at a sampling site, more samples were taken, from each of the respective substrata (for sample and locality details see Supplementary Table S2).

Diatom samples with their substratum were placed in plastic bags. In the laboratory all the contents, including the substratum, were transferred into Erlenmeyer flasks with 30% H2O2 and left for 24 h to start the oxidation process slowly (as described in Letáková et al., 2016). The samples with hydrogen peroxide were then boiled until the volume decreased by two thirds, and a few milligrams of K2Cr2O7 and 1 ml of concentrated HCl were added into the hot liquid. All the chemicals were washed out through careful rinsing with distilled water until the final pH was neutral. Clean diatom samples were mounted in Naphrax (two slides per sample). Diatoms were investigated by light microscopy using a Zeiss ‘Primo star’ (Germany), firstly qualitatively and then semi-quantitatively (relative abundance as %). At least 400 diatom valves were counted per sample according to European standards (Kelly et al., 1998; Rimet and Bouchez, 2012a). Identifications were carried out using Krammer and Lange-Bertalot (1991, 1997ab, 2004) and nomenclature was unified using Algaebase (Guiry and Guiry, 2016).

Environmental variables (pH, conductivity) were measured in situ using instruments from the WTW company (Wissenschaftlich-Technische Werkstätten GmbH, Weilheim, Germany), and transparency was measured using a Secchi disc. Total phosphorus (Ptot) and chlorophyll-a concentration were determined following standard methods (Heckera, 1999; Vernon, 1960).

2.2. Dataset construction and bioindication calculation

We combined four kinds of data for each sample: (i) taxon abundances at three different levels of taxonomic resolution; (ii) ecological variables delimiting trophic status; (iii) sample classification according to selected ecological parameters, and (iv) bioindication calculation.

(i) We generated three datasets of diatom relative abundance (percentage) for each sample: the first resolved to genus level (GL), the second resolved to species level but including unresolved species complexes (SLC), and the third to species level with cryptic species recognized (SL).

(ii) Total P (Ptot), transparency and chlorophyll-a concentration were selected as factors delimiting trophic gradients.

(iii) Each sample was placed in one of three habitat categories (A, B, C; see Supplementary Table S2) based on hierarchical clustering analysis against pH, conductivity, nutrient concentration and sediment type data (Hašler et al., 2008). Group A (19 localities) was represented by fishponds with low conductivity, pH > 8, high nitrogen or phosphorus concentration and bottom sediments with medium to high proportions of fine mud. Group B (21 localities) was represented by sites with high conductivity (above 500 μS.cm⁻²), pH from 7.5 to 8.5, low nitrogen (2–2.5 mg·l⁻¹) concentration and black organic bottom sediments. Group C (12 localities) was represented by dystrophic ponds (low conductivity, low pH) and sandy bottom sediments. Differences in Ptot, transparency and chlorophyll-a are shown in Supplementary Table S3.

(iv) The trophic index for each sample in the SLC dataset was calculated following Van Dam et al. (1994). We split the species matrix of the SLC dataset into two parts: species complexes (see Table 1) and remaining taxa. For each sample, mean weighted indicator values for trophy were calculated, based on either species complexes (SPC) or remaining taxa (RSP).

2.3. Data analyses

2.3.1. Influence of taxonomic resolution on composition patterns and their environmental correlates

Detrended correspondence analyses (DCA) were carried out to assess main (unconstrained) gradients in the datasets at different taxonomic resolutions (GL, SLC, SL). DCA was used because a preliminary test indicated that a unimodal approach was appropriate for the study (Šmilauer and Lepš, 2014). The species data were square-root transformed before analyses. Environmental factors (Ptot, transparency, chlorophyll-a, habitat categories) were correlated with the results of DCA to help with interpretation of the ordination results.

To test the direct effect of a selected environmental factor (Ptot as a proxy of trophic status) and habitat classification (habitat categories A, B, C) on species composition constrained ordination (Canonical correspondence analysis, CCA; Šmilauer and Lepš, 2014) was used, with each variable tested separately. The significance of each predictor was tested by a Monte Carlo permutation test with 999 permutations. Phosphorus (Ptot) was log-transformed before all analyses.

Finally, we used symmetric co-correspondence analysis (symmetric CoCA) to measure co-correspondence between pairs of matrices with different levels of taxonomic resolution. Co-correspondence analysis maximizes the weighted covariance between weighted averaged species scores of data sets. It thus attempts to identify patterns that are common to both data-sets (Schaffers et al., 2008; ter Braak and Schaffers, 2004). We used axis correlations, inertias (% model fit based on 4 axes), and P values based on the Monte Carlo permutation test with 999 permutations to interpret associations between pairs of matrices.

We then used partial CCA (pCCA) to explore the remaining (residual) variability in the SL and SLC matrices, after removal of variance attributable to the GL and SLC matrices in the CoCA. We controlled for the effects of coarse taxonomy in the CCA models by including coarse-taxonomy-derived WA site scores from four ordination axes in CoCA as covariates in pCCA. CoCA site scores reflect adjustments to maximize covariance between species matrices as described above (see Hanson et al., 2015; Šmilauer and Lepš, 2014). We tested the influence of Ptot and habitat classification separately using the Monte Carlo permutation test with 999 permutations. CANOCO 5 (ter Braak and Šmilauer, 2012) was used for DCA, (p)CCA and symmetric CoCA analyses.
2.3.2. Relationship between weighted averages of indicator values and measurements of water variables

Linear regression analysis was used to relate weighted averages of indicator values for trophic status (sensu Van Dam et al., 1994) to measured trophy (Ptot) using the SLC dataset split into two parts: species complexes (see Table 2) and remaining species. We assumed that species complexes (SPC) and remaining species (RSP) should indicate identity of indicator (= diagnostic) species for habitat categories (A, B, C). The indicator value of a taxon was used for GLM calculations. Calculations were performed with the use of the “co-corresp” package (Simpson, 2009) in R (R Development Core Team, 2008).

2.3.3. The predictive capacity of unresolved complexes and cryptic species

The predictive capacity of the species complexes and cryptic species to predict the species composition of the remaining assemblage was examined using predictive co-correspondence analysis (predictive CoCA; ter Braak and Schaffers, 2004). Models were created as follows: prediction of the remaining species assemblage with excluded species complexes by the species complexes partition, and by partition with resolved taxonomy, i.e. containing resolved cryptic species. In all cases, models were chosen with the number of axes corresponding to the highest prediction ability (% cross-validated fit). Any fit above zero indicates that prediction is better than could have been expected by chance, implicitly validating the model. We always used the number of axes at which maximum prediction accuracy was obtained (ter Braak and Schaffers, 2004). Calculations were performed with the use of the “co-corresp” package (Simpson, 2009) in R (R Development Core Team, 2008).

2.3.4. Species responses to trophic gradients

Species-response curves for selected species complexes and their members (cryptic species) were modelled using generalized linear models (GLM). Due to overdispersion, presence–absence data were used and GLMs using the quasi-binomial distribution and logit-link function were calculated. Only species complexes that occurred in more than five sites were analysed. In addition, we excluded cryptic species with rare occurrences (<5 sites) from the analyses. Phosphorus concentration (= trophic gradient, Ptot) was used as a predictor. Model complexity was evaluated using the Akaike Information Criterion statistic (AIC; Šmilauer and Lepš, 2014). Only significant response curves are reported. CANOCO 5 (ter Braak and Šmilauer, 2012) was used for GLM calculations.

2.3.5. Influence of taxonomic resolution on the identification of indicator species for habitat categories

We used the phi coefficient as a fidelity measure (De Cáceres and Legendre, 2005; Chytrý et al., 2002) to identify indicator (= diagnostic) taxa for the habitat groups (A, B, C). The indicator value of a taxon
(\(\phi \times 100\)) varies from \(-100\) to 100, and attains its maximum value when all individuals of a taxon occur in all samples of a single group, but not in any sample outside the group. In fidelity calculations, each sample in which the taxon is present is counted as an occurrence of the taxon, disregarding any abundance information. All groups were standardized to equal sizes (Tichý, 2002). The significance of the indicator value for each taxon was tested by the Fisher exact test at \(P < 0.05\). Quality of delimitation was subsequently calculated as the average of positive fidelity values for all taxa of the respective group (“mean fidelity”) and the number of diagnostic species in a group relative to its average taxonomic richness (“sharpness of classification”; Chytrý and Tichý, 2003). Mean fidelity statistics are high if many taxa have their occurrences concentrated in the group, and relatively low if the group includes mostly generalist species with broad ecological ranges. The sharpness index attains high values for groups with many diagnostic taxa with a high phi values (Chytrý and Tichý, 2003). Calculations were done using JUICE 7.0 (Tichý, 2002).

3. Results

A total of 263 species (SL matrix) belonging to 65 genera were identified. Diatom genera were unequally represented at the species level; Gomphomena was represented by 25 species, 28 genera were monospecific, and 17 genera were represented by 2 species. In all, 18 species complexes were represented by 43 cryptic species (Table 1).

3.1. Influence of taxonomic resolution on composition patterns and their environmental correlates

Separate DCA analyses of matrices at three taxonomic levels showed clear, similar patterns along the first two ordination axes (Fig. 1), suggesting that the main gradient along the first axis is strongly correlated with trophic status and also reflects the three habitat category classification (A, B, C), established on the basis of water chemistry and sediment type. As expected, total variation and gradient length increased (sharply) with increasing resolution from GL to SLC, but only slightly from SLC to SL (Table 2). Variation explained by the first two DCA axes dropped from ca. 18% for GL to ca. 12 and 11% for SLC and SL, respectively. Fine taxonomic resolution was responsible for decreased overlay and better separation of habitat categories along the first axis (Fig. 1). Explained variation \(R^2\) of site scores among habitat categories along the first DCA axis separated by ANOVAs increased in the direction GL-SLC-SL, from 35% through 41% to 59%.

With GL resolution DCA, the more eutrophic part of the gradient is characterized by Cyclotella, Cycl Stephano, and Lemnicola. The less eutrophic part may be characterized by Achnanthidium (Fig. 1A). With SLC and SL resolution, Lemnicola hungarica and Cyclotella meneghiniana were the most typical species for the eutrophic part of the gradient. The less eutrophic part was represented by Achnanthidium and Tabellaria aggregates with SLC resolution (Fig. 1B), but by A. lineare and A. caledonicum with SL resolution (Fig. 1C).

3.2. Relationship between trophic measures and diatom indication: comparison of species complexes and remaining species

Regression analysis of trophic indication based on the species complexes (SPC) and remaining species (RSP) on measured \(P_{tot}\) showed a close relationship between indicated and measured values for RSP \(R^2 = 0.32, P < 0.001\), but a weak relationship for SPC \(R^2 = 0.09, P = 0.032\). The slope of the regression for RSP bioindication was steeper than for SPC, indicating the higher sensitivity of RSP bioindication to changes in the phosphorus concentration (Supplementary Table S4, Fig. 2). SPC indication only matches RSP indication values above 0.4 ml·L\(^{-1}\) \(P_{tot}\), below this SPC always indicated higher and mostly similar values compared to RSP (Fig. 2). The same pattern was found for chlorophyll-a, but a negative relationship for transparency (Supplementary Fig. S2).

3.3. The capacity for the unresolved and resolved species complexes to predict the species composition of the remaining assemblage

All predictive CoCA cross-validations gave results above zero, meaning that the predictive ability of the model was better than by chance. Predictive ability was, however, generally quite low; at most 1.4% of the matrix of remaining species was predicted by the cryptic species matrix (\% cross validation; SL: 0.627%, 2 axes; SLC: 1.352%, 2 axes). The cryptic species matrix predicted the matrix of remaining species better (twice) than the unresolved complex species matrix did.

Table 2

Results of DCA and CCA of matrices of diatom assemblages at three resolution levels (GL = genus level resolution, SLC = species level resolution with unresolved species complexes, SL = species level resolution with cryptic species recognized). In the CCA, the effect of each variable \(P_{tot}\) (habitat category) was tested separately. Significance of the canonical axes was tested by the Monte Carlo permutation test with 999 permutations (**P ≤ 0.01**).

| Matrix | DCA | | | | | CCA | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | Total variation | Eigenvalue | Length of gradient (SD) | Explained variation (first two axes; %) | | Explained variation (first canonical axis; %) | Habitats categories | Explained variation (all canonical axes; %) |
| GL | 2.53 | 0.28 | 0.17 | 2.7 | 1.9 | 8.1** | 5.8** |
| SLC | 7.14 | 0.49 | 0.34 | 3.8 | 2.9 | 11.7 | 6.2** | 3.7** |
| SL | 8.11 | 0.5 | 0.37 | 3.7 | 3.2 | 10.7 | 6.4** | 3.8** |

3.4. Examination of species complex and cryptic species responses to trophy

In most species complexes with frequent occurrence within the dataset, cryptic species differed in trophic responses from their aggregate species and from each other (Table 4, Fig. 3). The three most frequent species complexes, *Gomphonema parvulum* agg., *Achnanthes minutissima* agg. and *Cocconeis placentula* agg. (occurring in 81–94% of samples), did not show a relationship with Ptot (null model; data not shown). Separate analyses of their members showed that cryptic species within each complex behaved contrastingly (Figs. 1.)

![Fig. 1](image-url)

![Table 1](image-url)
Table 3
Results of symmetric CoCA and partial CCA analyses of matrices of diatom assemblages at three resolution levels (GL = genus level resolution, SLC = species level resolution with unresolved species complexes, SL = species level resolution with cryptic species recognized). CoCA measures co-correspondence between pair of matrices with three different levels of taxonomic resolution. Axis correlations, inertias (% model fit based on four CoCA axes), and p-values based on Monte Carlo permutational test are reported. In partial CCA, the effect of each explanatory variable (Ptot, habitat categories) was tested separately on SLC and SL matrices. Coarse-taxonomy-derived WA site scores from 4 ordination axes in CoCA were used as covariates in the analyses (e.g. in GL-SLC GL site scores from CoCA represent covariates and SL represent dependent matrix). Significance of the canonical axes was tested by Monte Carlo permutation test with 999 permutations.

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Symmetric CoCA</th>
<th>Partial CCA (pCCA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total variation</td>
<td>Cross-correlation</td>
</tr>
<tr>
<td></td>
<td>Cross-correlation</td>
<td>between CoCA axes</td>
</tr>
<tr>
<td></td>
<td>Explained variation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(two first axes)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td></td>
</tr>
<tr>
<td>GL-SLC</td>
<td>0.59</td>
<td>0.985</td>
</tr>
<tr>
<td>GL-SL</td>
<td>0.64</td>
<td>0.979</td>
</tr>
<tr>
<td>SLC-SL</td>
<td>1.78</td>
<td>0.999</td>
</tr>
</tbody>
</table>

3A-C, Table 4). Some cryptic species had increased probability of occurrence at oligotrophic (G. exilissimum, A. lineare, A. caledonicum) or eutrophic sites (G. parvulum, A. eutrophilum, A. straubianum). The most common, A. minutissimum sensu stricto, was frequent at sites with low and intermediate Ptot concentrations (Fig. 3D, Table 4). Fragilaria capucina agg. and Encyonema/Cymbella agg. were unimodal species, with an optimum (and narrow tolerance) at lower Ptot (Table 4, Fig. 3C).

Nitzschia palea agg. was a less frequent (32%) complex and its probability of occurrence decreased slightly, but non-significantly, with increasing Ptot. Nitzschia palea var. 1 behaved like the species complex, and because it was the most frequent cryptic species, strongly affected the response of the complex. The less frequent N. palea var. paelea showed a unimodal response, with an optimum at higher Ptot concentrations (Fig. 3D, Table 4). Fragilaria capucina agg. and Encyonema/Cymbella agg. were frequent in the data set (60% and 56%, respectively), and intermediate Ptot. Their sharpness of classification increased with in-}

4. Discussion

Over recent years biomonitoring of European aquatic ecosystems has been driven by the EU Water Framework Directive 2000/60/EC. Changes in “ecological status” are defined by the biotic response rather than by changes in environmental parameters (Birk et al., 2012), as for water quality monitoring worldwide (European-Committee-for-Standardization, 2003; Kelly et al., 1998; Kusber, 2001; Lavoie et al., 2014; Schaumburg et al., 2004, 2005; Watanabe et al., 1988). Simultaneously, there have been major taxonomic revisions, including the recognition of cryptic species (Pouličková et al., 2008b; Vaneˇslander et al., 2009).

4.1. Taxonomic resolution vs. assemblage composition and correlation with environment

Except for a few diatom indices based on genus level identification (Chessman et al., 1999, Rumeau and Coste, 1988; Wu, 1999), fine taxonomic resolution to species level is required by most diatom indices used in Europe (Coste et al., 2009; Lavoie et al., 2006; Rimet and

Table 4
Results of GLM testing the effect of Ptot on the probability of occurrence of selected cryptic species. The report provides the best model selected by the lowest AIC value with a test of the selected model against the null model based on a F statistic. Type represent model complexity (linear, quadratic), R² (%) provides a measure of explained variation, F test statistic and following P estimate of type I error rate correspond to an overall parametric test of the selected model against the null model. Only significant models are showed. Responses of all aggregate species to Ptot were not significant (not shown). In all models, a quasi-binomial model type with logit-link function on binarized response of species to log Ptot was used.

<table>
<thead>
<tr>
<th>Species</th>
<th>Type</th>
<th>R² (%)</th>
<th>F</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achnanthidium caledonicum</td>
<td>Linear</td>
<td>24.3</td>
<td>10.3</td>
<td>0.002</td>
</tr>
<tr>
<td>Achnanthidium eutrophilum</td>
<td>Linear</td>
<td>7.3</td>
<td>4.6</td>
<td>0.037</td>
</tr>
<tr>
<td>Achnanthidium lineare</td>
<td>Linear</td>
<td>7.9</td>
<td>4.3</td>
<td>0.043</td>
</tr>
<tr>
<td>Achnanthidium minutissimum</td>
<td>Linear</td>
<td>10.8</td>
<td>5.1</td>
<td>0.029</td>
</tr>
<tr>
<td>Achnanthidium straubianum</td>
<td>Linear</td>
<td>11.3</td>
<td>5.5</td>
<td>0.022</td>
</tr>
<tr>
<td>Gomphonema parvulum</td>
<td>Linear</td>
<td>22.9</td>
<td>12.3</td>
<td>0.001</td>
</tr>
<tr>
<td>Gomphonema exilissimum</td>
<td>Quadratic</td>
<td>20.0</td>
<td>6.2</td>
<td>0.004</td>
</tr>
<tr>
<td>Nitzschia palea var. 1</td>
<td>Linear</td>
<td>10.6</td>
<td>5.8</td>
<td>0.020</td>
</tr>
<tr>
<td>Nitzschia palea var. paelea</td>
<td>Quadratic</td>
<td>18.3</td>
<td>4.5</td>
<td>0.016</td>
</tr>
<tr>
<td>Cocconeis placentula var. euglypta</td>
<td>Quadratic</td>
<td>10.6</td>
<td>3.8</td>
<td>0.030</td>
</tr>
<tr>
<td>Cocconeis placentula var. placenta</td>
<td>Quadratic</td>
<td>71.9</td>
<td>12.4</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Fig. 2. Relationships between trophic indices calculated separately from RSP (empty circles) and SPC (full circles) and Ptot in 52 studied samples. For each species category (RSP, SPC), separate regression line with 95% confidence limits is shown (RSP: dashed lines, SPC: full lines).
Bouchez, 2012a; Van Dam et al., 1994). However, increasing numbers of diatom species, described in a variety of publications, create problems for their use in routine analyses (Zampella et al., 2007). Some authors suggest that species sharing the same ecology/morphology should be grouped for biomonitoring purposes (DeNicola, 2000), whereas Rimet and Bouchez (2012b) compiled a check-list of diatom taxa with their allocation to life-forms, size classes and ecological guilds as a means to simplify biomonitoring. On the other hand, others see the future for biomonitoring in barcoding and new generation sequencing, producing taxonomic reference libraries for environmental barcoding (Zimmermann et al., 2014) or even in taxonomy-free approach (Apothéloz-Perret-Gentil et al. 2017).

Our results showed overall similarity in the efficiency of the three levels of taxonomic resolution for assessing the main environmental gradients in the data, suggesting that taxonomic resolution had little influence on matrix structure. The trophic gradient (total phosphorus, transparency and chlorophyll-a concentration) was the underlying factor behind the main gradient in the unconstrained analyses, and phosphorus also had a significant effect on assemblage composition in the constrained analyses, as frequently reported elsewhere (e.g. Poulíčková et al., 2004; Schönfelder et al., 2002). With fine taxonomic resolution heterogeneity in the dataset increased, and this increased total inertia and gradient length in unconstrained analyses (Schaffers et al., 2008), and slightly decreased predictability of the data sets (fit values) in the constrained analyses. More importantly, finer taxonomic resolution had no effect on the predictive merit of predictor factors but separated habitat categories better along the first ordination axis (Fig. 1). It is however clear that even genus level resolution seems sufficiently robust to describe the main gradients in our dataset, which may have important consequences for cost-efficiency decisions about particular methods (Growns, 1999). Previous comparisons of species or genus level bioassessment performance of diatoms (Growns, 1999; Hill et al., 2001; Chen et al., 2016; Raunio and Soininen, 2007; Rimet and Bouchez, 2012a; Wunsam et al., 2002) also showed the robustness and efficacy of genus level discrimination. Rimet and Bouchez (2012a) tried to explain this by the interaction of several factors, including the elimination of noise due to high proportions of extremely rare species, limited scope of studied environmental parameters, and difficulties around correct species identification.

Indeed, a certain proportion of diatom assemblages (up to 26%, Rimet and Bouchez, 2012a) can constitute extremely rare species, observed in only one sample (singletons). Low frequency, abundance, and/or narrow geographical range are generally considered as limiting factors, reducing a species’ biomonitoring suitability (Diekmann, 2003), and such extremely rare species are usually eliminated from assessments (Lavoie et al., 2009, 2014). However, low abundance may be related to the specific habitat conditions to which the species is confined (Diekmann, 2003), and some authors therefore argue for the ecological importance of rare species (Potapova and Charles, 2004). Nevertheless, Lavoie et al. (2009) found that, after elimination of 40% of the rarest taxa, the indication power was still very good, suggesting that bioindications are fairly robust and resilient against incomplete sampling of taxonomic units (Ewald, 2003). The long tail of species with low abundance and/or frequency appears to represent large amounts of noise that may not be related to the studied environmental factors (Downes et al., 2000; Ewald, 2003), but caused by other factors operating locally or by chance (Diekmann, 2003). Indeed, our study showed that, with fine resolution, matrix heterogeneity increased when some
Table 5

Summary of the significant indicator taxa (species or genera) for three habitat categories (A, B, C), and evaluation of the quality of delimitation of the categories (mean fidelity, sharpness) for three matrices: GL = genus level resolution, SLC = species level resolution with unresolved species complexes, SL = species level resolution with cryptic species recognized. Indicator values represent phi > 0.001 coefficients and are based on presence/absence data. Only significant phi coefficients (with P ≤ 0.05 in a Fisher exact test) are shown. Species aggregates and cryptic species are in bold. Species abbreviations see in Table 1 and Fig. 1. The rest of species: Navicula – Navicula species; Fragilaria – Fragilaria species; Gomphonema – Gomphonema species; Surirella – Surirella species; Aulacoseira – Aulacoseira species; Cyclotella – Cyclotella species; Eucalyptus – Eucalyptus species; and Platella – Platella species.

<table>
<thead>
<tr>
<th>Category</th>
<th>Genus level resolution (GL)</th>
<th>Species level resolution with unresolved species complexes (SLC)</th>
<th>Species level resolution with cryptic species recognized (SL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Mean taxon richness</td>
<td>18</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Mean fidelity</td>
<td>1.2</td>
<td>7.0</td>
<td>10.9</td>
</tr>
<tr>
<td>Sharpness</td>
<td>2.6</td>
<td>11.6</td>
<td>18.9</td>
</tr>
<tr>
<td>Genus level resolution (GL)</td>
<td>45.8</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CratSp</td>
<td>–</td>
<td>50.4</td>
<td>–</td>
</tr>
<tr>
<td>RhoSp</td>
<td>–</td>
<td>37.1</td>
<td>–</td>
</tr>
<tr>
<td>TrySp</td>
<td>–</td>
<td>33.7</td>
<td>–</td>
</tr>
<tr>
<td>TabulSp</td>
<td>–</td>
<td>33.7</td>
<td>–</td>
</tr>
<tr>
<td>HalamSp</td>
<td>–</td>
<td>32.6</td>
<td>–</td>
</tr>
<tr>
<td>EunorSp</td>
<td>–</td>
<td>–</td>
<td>55.4</td>
</tr>
<tr>
<td>PlatsSp</td>
<td>–</td>
<td>–</td>
<td>50.0</td>
</tr>
<tr>
<td>RositSp</td>
<td>–</td>
<td>–</td>
<td>43.2</td>
</tr>
<tr>
<td>DenteSp</td>
<td>–</td>
<td>–</td>
<td>42.6</td>
</tr>
<tr>
<td>TabSp</td>
<td>–</td>
<td>–</td>
<td>38.1</td>
</tr>
<tr>
<td>AmphSp</td>
<td>–</td>
<td>–</td>
<td>34.3</td>
</tr>
<tr>
<td>StaurSp</td>
<td>–</td>
<td>–</td>
<td>33.9</td>
</tr>
<tr>
<td>StaurSp</td>
<td>–</td>
<td>–</td>
<td>30.2</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Highly abundant genera (e.g. *Gomphonema*) or complexes (e.g. *Selaphora pupula agg.*) were replaced by numerous but low abundance, and rare cryptic species.

However, to explain strong co-correspondence between the matrices of various taxonomic resolutions, the respective genus and subordinate members (species, cryptic species) in the dataset must have similar ecological behaviour. This assumption stems from the idea that shared evolutionarily ancestry can account for shared ecology (Losos, 2008). In diatoms, for example, some genera are known to have high trophic demands (*Stephanodiscus*); while others (*Aulacoseira*, *Cyclotella*) are representative of rather meso- or even oligotrophic waters (Krammer and Lange-Bertalot, 1991). Using phylogenetic tools, a recent study dealing with phylogenetic signal in diatom ecology (Keck et al., 2016) found several clades containing species that exhibited homogeneous ecology, especially for ions, inorganic nutrients (incl. phosphorus) and organic matter. There are, however, many studies on various organisms providing evidence that ecological similarity and phylogenetic relatedness are unrelated (see Losos, 2008 for review; Heino and Soininen, 2007). Moreover, we showed, in line with several recent papers (Pouličková et al., 2008b; Vanelander et al., 2009; Kulichová and
Fialová (2016), that cryptic species within many species complexes exhibit niche differentiation despite their close phylogenetic relatedness (see below). This finding also explains why we found that, after controlling for coarse taxonomic matrices (GL or SLC), some remaining variance in the fine taxonomic resolution matrix (SL) was directly related to the environmental variable (habitat groups). Hence, ignoring the existence of cryptic species by using coarse taxonomic resolution might cause the loss of ecological information (Heino and Soininen, 2007) and obscure potentially suitable indicator cryptic species.

Alternatively, similar efficiency of different taxonomic resolutions in the assessment of community responses to environmental drivers can occur when, for example, each genus contains a small number of species (or is even monospecific), which decreases the chance of differential species responses (Growns, 1999). In our dataset, 43% of the genera were represented by a single species and 69% by less than three species. Chen et al. (2016) and Growns (1999) noted analogous situations with their datasets. Indeed, in a literature review of various organismal types, including algae and random simulations on various marine mollusc assemblages, Bevlacqua et al. (2012) showed that the level of species aggregation (i.e., higher taxa to species ratio) rather than taxonomic relatedness is important for the different levels of taxonomic resolution to be effective in detecting community responses to environmental variation. Intermediate values of genus/species ratio (SLC: 0.28, SL: 0.25) and the marked environmental gradient found within our dataset support Bevlacqua's analysis, showing the comparable effectiveness of higher taxonomic rank (genus) in depicting the community response to environmental variations under particular conditions.

However, defining a higher taxonomic level a priori may be un rewarding because it frequently restricts inferences about the causality of community patterns (Bevlacqua et al., 2013). Bevlacqua et al. (2013) therefore recommend mixing surrogates (taxonomic, phylogenetic, functional, etc.) and prefer the choice of ecologically meaningful groupings. Retention of greater (species level) ecological information has been recommended in the cases of easily recognizable indicator taxa or sensitive species (Bevlacqua et al., 2012). Species level identification is still supported by many diatomists (Jüttner et al., 2013; Kociolek, 2005; Patrick and Palavaje, 1994; Ponader and Potapova, 2007). Thus, using a more relaxed approach with different surrogate types, which includes (cryptic) species level identification, particularly for big genera with known wide ecological amplitude and common occurrence, such as Navicula, Pinnularia, Gomphonema, and Nitzschia, could improve the interpretation of statistical analyses. We can demonstrate this phenomenon using two examples.

A recent multivariate analysis (Chen et al., 2016) showed a moisture gradient in peatlands, with the genus Pinnularia appearing typical for relatively dry places. However, this is one of the most species-rich raphid diatom genera, with 730 accepted taxa (Guiry and Guiry, 2016). It is considered a cosmopolitan genus, occurring in a broad range of freshwater habitats, particularly with low electrolyte content (Round et al., 1990). However, in interpreting its position in ordination space as correlated with decreasing moisture (Chen et al., 2016), it is important to remember that one of its species complexes, Pinnularia borealis, is aeroiphytic, unlike many other Pinnularia species. Similarly, our recent results (Fig. 1) showed that the eutrophic part of the DCA ordination space was characterized by Cyclotella. This genus currently has 133 accepted taxa (Guiry and Guiry, 2016) and occurs in the plankton of standing waters, preferably with high electrolyte content (Round et al., 1990). The presence of centric diatoms on macrophytes can be explained by sedimentation from the plankton, and the presence of planktonic species in the epiphyton increases in plankton-rich eutrophic waters (Pouličková et al., 2004). However, Cyclotella species frequently occur in mesotrophic waters, so when interpreting the position of Cyclotella in ordination space, it is important to be aware that Cyclotella meneghiniana, found in our samples (Fig. 1), tolerates eutrophic waters. Thus knowledge of species composition can help with the interpretation of results and extrapolations from particular datasets.

4.2. Indicator value of species complexes versus remaining species

Although cryptic diversity has recently been observed in many diatom species (Degerlund et al., 2012; Kaczmarska et al., 2014; Kulichová and Fialová, 2016; Pouličková et al., 2010), there is still a broad gap in understanding the distribution, geography and ecological demands of cryptic species. Indeed, most floristic and ecological papers do not recognize cryptic species, because their identification is very difficult or even impossible without molecular data or special techniques (geometric morphometry, DAPI staining; Kulichová and Fialová, 2016; Pouličková et al., 2016). However species complexes represent a considerable portion of periphytic assemblages (Supplementary Table S1; Kollár et al., 2015), most of which have broad ecological tolerances or no apparent optima (Pouličková et al., 2008b; Schlick-Steiner et al., 2007). Our results showed that trophic bioindication based on a reduced diatom dataset (after removal of species complexes) closely followed the measured trophic gradient, while that based on a dataset comprising species complexes only was weakly related to trophic gradient. This was corroborated by non-significant responses of species complexes to phosphorus in our GLM analyses. Such weak indication-environment associations suggest that the indicator values of the majority of species complexes are unreliable. This may be explained simply by the ecological heterogeneity of their members that together give the broad tolerance of species complexes. Incorporating indicator values of species complexes into the calculation of weighted mean indicator values of the whole assemblage may in some cases result in worse environmental calibrations, especially when species complexes dominate the assemblage.

4.3. Species complexes versus their members: towards improving our knowledge of their ecology and environmental prediction

We found that, while most species complexes were poor indicator species for habitat categories, incorporating knowledge about cryptic diversity led to an increase in the number of indicative cryptic species, and also increased the classification precision (Table 5). This suggests that ecological heterogeneity exists within species complexes (De Cáceres and Legendre, 2009, Chytřý et al., 2002). However, inspection of each species complex within our dataset revealed more complicated patterns, and species complexes within our dataset (Table 1) could be divided into three types: 1. cryptic species with indistinguishable frustule morphology, lacking keys for identification, and/or with limited information on their distribution and ecology (e.g. Navicula cryptocephala agg.). These are worthy of future attention and investigation to fill the information gap, and to allow them to be transferred into one of the following groups: 2. cryptic species with low potential for improving indicative power due to shared ecology, or without a response to the studied gradient (e.g. Fragilaria capucina agg., Encyonema/Cymbella agg.); 3. morphologically (LM) more or less distinguishable cryptic species that are ecologically differentiated (Achnanthes minutissimum agg., Gomphonema parvulum agg., Nitzschia palea agg.), with high potential for use in biomonitoring. These types are discussed below.

(1) The first type of “unresolved” species complex is represented by Navicula cryptocephala/lothargetierii agg., which is more frequent in the epipelon than in the epiphyton (Supplementary Fig. S1; Pouličková et al., 2010, 2016). These species are pseudocryptic, having extremely similar valve morphologies but distinguishable cytologically and using geometric morphometry (Pouličková et al., 2016). Their autecology and geographical distribution are not yet understood, because neither technique for their identification (interphase nuclear structure, geometric morphometry) is routinely used in biomonitoring. The new species, N. lothargetieri (Pouličková et al., 2016), seems to occur rarely, but sympatric occurrence with N. cryptocephala has been recorded (Pouličková et al., 2016). The routine use of barcoding may reveal the ecological
potential of this complex. Some progress in discriminating cryptic species has been made in cases such as Nitzschia palea agg. (Trobajo et al., 2009), Eunotia bilunaris agg. (Vanormelingen et al., 2008), Fragilaria and Staurosira (Schmidt et al., 2004). The unusual response of Cocconeis placentula var. euglypta (member of Cocconeis placentula agg.), with a high probability of occurrence in both low and high P concentrations (Fig. 3C) might mean that it still includes two, ecologically differentiated, entities. Sellaphora pupula agg. also plays an important role locally in the epipelon (Supplementary Fig. S1), but further investigations are necessary because its biogeography and autecology are unknown. Although it is rare in Czech ponds in general, this complex is common, particularly in British lakes (40% of epipelic assemblages in UK, 3% in the Czech and Hungarian ponds, Poutlícová et al., 2008b, 2014; Mann et al., 2004). Some cryptic species within this complex have been confirmed by molecular methods (Evans et al., 2008, 2009; Vanormelingen et al., 2013) and some of the morpho-
species seem to be ecologically differentiated (Poutlícová et al., 2008b). Molecular data, autecology and identification criteria are still lacking for Amphora pediculus agg., A. ovalis agg., Cocconeis pediculus agg., Hippodonta capitata agg., Planothidium lanceolatum agg., Staurosirella minuta agg., Tabellaria flocculosa agg., and Ulnaria ulna agg.

(2) Although the second type of species complex occurs frequently in our dataset, we cannot use them for biomonitoring trophic status, because neither the complex nor its members show any relationship with P_{tot} concentration. This does not mean that they cannot be indicators of other gradients (e.g., pH, moisture). Encygnella silesiacum and E. minutum (previously grouped under Cymbella ventricosa) have overlapping sizes (E. silesiacum: length 16–42 μm, breadth 5.9–9.6 μm; E. minutum: 7–23 μm and 4.2–6.9 μm) but can be distinguished by their strig density (E. silesiacum 11–14 per 10 μm, E. minutum 15–18 per 10 μm) (Hofmann et al., 2013). Although the species are distinguishable and quite frequent, they do not seem to be promising for trophic status assessment, like Fragilaria capucina agg.

(3) The third type of species complex seems promising due to the morphological variation and ecological differentiation of its components. Achnanthidium minutissimum agg. is a common species complex (Rimet and Bouchez, 2012a), often abundant in the epiphyton and epilithon (Supplementary Fig. S1) of both lentic and lotic waters (Almeida et al., 2014; Kollár et al., 2015). Although mostly reported as an indicator of good water quality (Almeida et al., 2014; Feio et al., 2007), it seems to be highly tolerant to metal contamination and natural disturbance (Cantoni et al., 2014; Kovács et al., 2006). This complex consists of 18 entities (varieties according to Omnida software v. 5.3.; Lecointe et al., 1993) which are morphologically difficult to identify (Coste et al., 2009). New species have even been described from the Antarctic region (Van de Vijver and Kopalová, 2014). Using a refined identification key based on samples from similar geographical area (Wojtal et al., 2011) we were able to distinguish seven morphospecies. Achnanthidium minutissimum agg. did not show any relationship to trophic gradient (P_{tot}), but three of the cryptic species, A. minutissimum, A. linearis, A. caledonicum, were characteristic for lower trophic levels (Fig. 1B, C). This was also supported by the GLM models (Fig. 3B). The most frequent cryptic species, A. minutissimum, strongly influenced the response of the whole complex. Two other cryptic species, A. eutrophihium and A. strauberianum, show positive relationships to higher P_{tot} concentrations, but are less frequent. The other cryptic species are extremely rare. Only two A. minutissimum agg. members (A. caledonicum, A. affine) can be considered as indicative (diagnostic) species in our dataset (Table 5). Based on our results and literature data (Potapova and Hamilton, 2007), we recommend paying attention to this complex in future studies and biomonitoring.

Cocconeis parvulum agg. is present in >51% river samples (Rimet and Bouchez, 2012a) and occurred in 88% of our samples. This is a morphologically highly variable diatom (Rose and Cox, 2014) that occurs in a wide range of water qualities (Almeida et al., 2014; Krammer and Lange-Bertalot, 1997a,b). Based on both molecular and morphological data (Abarca et al., 2014; Kermarec et al., 2013), at least four taxa have been discriminated. Life history studies (Rose and Cox 2013, 2014) have demonstrated the distinctiveness of strains within this species, and highlight its taxonomic complexity. We were able to distinguish two cryptic species in the epiphyton of Czech fishponds that were significantly differentiated with respect to phosphorus concentration. Cocconeis parvulum showed positive, and G. exilissimum negative, relationships to P_{tot} (Figs. 1C, 3C), which is in agreement with previous records (reviewed by Jüttner et al., 2013). They are morphologically very similar and overlap significantly in size, requiring careful observation of each sample (C. parvulum: length 10–36 μm, breadth 5–8 μm, stria density in 10 μm 7–20; G. exilissimum: length 20–38 μm, breadth 4.5–6 μm; stria density in 10 μm 12–14) (Hofmann et al., 2013). Moreover, Jüttner et al. (2013) described another morphologically similar species, G. varioreduccum Jüttner, Ector, E. Reichardt, Van de Vijver & E. Cox, typical of slightly to moderately acidic, usually oligotrophic waters (Sweden, Walles). If this taxon is misidentified as G. parvulum, the sites would be misclassified in the ecological status assessments (Jüttner et al., 2013). This complex would benefit from further investigation, including the application of barcoding techniques.

The diatom species complexes we discuss (Table 1) are the most frequent in our dataset, representing epiphytic communities in shallow mesotrophic and eutrophic ponds. Other diatom complexes can be found in the plankton (Degerlund et al., 2012; Kaczmarska et al., 2014), peat bogs and acidic waters (Kulichová and Fialová, 2016, Vanormelingen et al., 2008), and in oligotrophic lakes (Schmidt et al., 2004). We have tried to point out those aspects that need to be taken into account in contemporary ecological studies. We believe that investigations into cryptic diversity, including morphological and molecular approaches, have the potential to overcome recent limits and should improve bioassessment methods in the future.

5. Conclusions

Diatom epiphytic assemblages are dominated by species complexes that consist of different number of cryptic species. Bioindication based exclusively on species complexes showed lower sensitivity to the phosphorus gradient than the reduced dataset without these complexes. Fine taxonomic resolution was responsible for increasing the heterogeneity of the dataset, increasing the number of indicator species for habitat categories, and better separation of habitat categories in the ordination space. Within most frequently occurring species complexes, cryptic species differed in their responses to trophy from their complexes and from each other. Fine taxonomic resolution is recommended for cases where the assemblage is dominated by good indicator, easily recognized cryptic species. Thus research into the autecology of cryptic species is worth future study.

Funding

The study was funded by the Palacký University internal grant [PrF-2017-001].

5. CONCLUSIONS

5.1 Species richness and composition of epiphytic diatom communities

Diatoms form complex and structured films on plant substrate (Fig. 1-6 in paper II, Fig. 6 in paper III). Significant differences were found in the diversity of different ecoregions and water types - lotic/lentic. Altogether, 131 taxa were found in 25 fishponds and 13 small streams located in the Svitava River Basin and the White Carpathian Mountains in the Czech Republic (Kollár et al., 2015). In the meso-oligotrophic alpine Lake Valagola 78 taxa were identified (Letáková et al., 2016). And finally 263 taxa were found in the study focused on ponds of various characteristics located throughout the Czech Republic (Poulíčková et al., 2017), where species diversity varied from 11 to 51 taxa. The most species-rich place was the dystrophic Novozámecký Pond, the smallest taxon amount was found in the highly eutrophied Staňkovský Pond. The dominant epiphytic diatom Achnanthidium minutissimum agg. (Kollár et al., 2015; Poulíčková et al., 2017) was able to create even 88% of the community (Kollár et al., 2015). The other two most frequently occurring species/aggregates (Kollár et al., 2015; Poulíčková et al., 2017) were Gomphonema parvulum agg. with representation 1–48% and Cocconeis placentula Ehrenberg with representation 1–100% (Kollár et al., 2015). Species complexes represented the majority of epiphytic assemblages but this dominance did not lead automatically to reduction of overall diversity of the sample. Fragilaria polonica M. Witak & Lange-Bertalot and Staurosirella pinnata (Ehrenberg) D. M. Williams & Round were the most common species in Lake Valagola (Letáková et al., 2016).

5.2 Epiphytic diatoms and ecological parameters

CCA analysis showed significant influence of pH and water streaming – running/stagnant water (Kollár et al., 2015). Species correlating with higher pH were Amphora pediculus (Kützing) Grunow, Cocconeis pediculus Ehrenberg, Cymbella excisiformis Krammer,
Encyonopsis cesatii (Rabenhorst) Krammer, Encyonopsis microcephala (Grunow) Krammer, Eunotia arcus Ehrenberg, Gomphonema pumilum (Grunow) E. Reichardt & Lange-Bertalot, Nitzschia palaeformis Hustedt and Nitzschia sinuata (Thwaites) Grunow, lower pH was preferred by Mayamaea atomus (Kützing) Lange-Bertalot, Planothidium ellipticum (Cleve) M. B. Edlund, Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot and Nitzschia palea (Kützing) W. Smith. Typical for lentic waters were diatoms like Fragilaria brevistriata (recently accepted name Pseudostaurosira brevistriata (Grunow) D.M. Williams & Round), Encyonopsis microcephala (Grunow) Krammer, Eunotia arcus Ehrenberg, Denticula tenuis Kützing, lotic waters often contained Cocconeis pediculus Ehrenberg, Gomphonema angustatum (Kützing) Rabenhorst and Navicula tripunctata (O. F. Müller) Bory.

Regression analysis confirmed that epiphytic diatom assemblages reflect trophic gradient, although there are significant differences in the relationship of species complexes and remaining taxa to phosphorus concentrations (Pouličková et al., 2017). Oligo or mesotrophic waters were preferred by Achnanthidium minutissimum sensu stricto (Kützing) Czarnecki, Achnanthidium lineare W. Smith, Achnanthidium caledonicum (Lange-Bertalot) Lange-Bertalot, Gomphonema exilissimum (Grunow) Lange-Bertalot & Reichardt. Eutro or hypertrophic waters were correlated with Achnanthidium eutrophilum (Lange-Bertalot) Lange-Bertalot, Achnanthidium straubianum (Lange-Bertalot) Lange-Bertalot, Gomphonema parvulum (Kützing) Kützing.

The spatial distribution of epiphytic diatoms is also influenced by host plant distribution (Letáková et al., 2016).

5.3 Substrate specificity problematics and implications to biomonitoring

The influence of the substrate on the composition of the epiphytic community did not show uniform results in investigated localities. No significant specificity was noted in the
Czech ponds and small streams except *Lemna minor* L. Species such as *Fragilaria brevistriata* (*Pseudostaurosira brevistriata*), *Staurosirella pinnata* or *Nitzschia palaeformis* avoid *Lemna minor* as a host plant. *Lemnicola hungarica* (Grunow) Round & Basson, a diatom typical for *Lemna minor*, inhabited also *Phragmites australis* (Cav.) Steud in the Svitava River basin (Kollár et al., 2015). In case of the oligo-mesotrophic Lake Valagola, significant differences were found in diatom species richness, diversity and composition between the two main host plants. *Potamogeton gramineus* L. assemblages were characterized by higher species richness and diversity, and by the large-celled, adnate diatom species *Epithemia adnata* (Kützing) Brébisson, *Rhopalodia gibba* (Ehrenberg) Otto Müller, *Eunotia arcus* Ehrenberg and *E. arcubus* Nörpel & Lange-Bertalot. *Chara aspera* Willd was preferred by the small-celled, motile diatom species *Brachysira neoexilis* Lange-Bertalot and *Encyonopsis cesatii* (Rabenhorst) Krammer (Letáková et al., 2016).

It has been proved then, that epiphytic diatoms are suitable for bioindication in generally more nutrient rich Czech fishponds and rivers, as their distribution is not biased by plant substrate type. Although *Lemna* sp. should be excluded from the macrophytes used for this purpose.

5.4 Proportion of species complexes within epiphytic assemblages

Surprisingly, species complexes represented the majority of epiphytic assemblages (up to 97%) with no significant differences between lotic and lentic waters or substrates. In the case of pond epiphyton (Pouličková et al., 2017), 18 species complexes were formed by 43 cryptic species and created 3-97% of the community (average 56.81 ± standard deviation 25.19 %). The most common was the complex of *Achnanthidium minutissimum* agg. (with the following morphotypes: *Achnanthidium affine* (Grunow) Czarnecki, *Achnanthidium caledonicum* (Lange-Bertalot) Lange-Bertalot, *Achnanthidium eutrophilum* (Lange-Bertalot) Lange-Bertalot, *Achnanthidium jackii* Rabenhorst, *Achnanthidium lineare* W. Smith,
Achnanthidium minutissimum (Kützing) Czarnecki and Achnanthidium straubianum (Lange-Bertalot) Lange-Bertalot. Even though the research in Valagola was focused in a different way, out of these 18 species complexes, Achnanthidium minutissimum, Amphora pediculus, Cocconeis placentula and Gomphonema parvulum species complexes have been noticed.

5.5 Species complexes indicatory power and taxonomic resolution in biomonitoring

Precise taxonomical identification did not play such an important role in biomonitoring as could have been expected. Simple genus level identification of epiphytic diatoms brought sufficient information required for normal routine biomonitoring (Poulíčková et al., 2017). However, fine taxonomic resolution (with resolved cryptic species) still showed sufficient variance related to the environmental variable (habitat groups), and increased the sharpness of classification, number of indicator species for habitat categories, and gave better separation of habitat categories in the ordination space. Species complexes showed lower sensitivity to changes in phosphorus concentration than the rest of species, thus seem to have low indicatory power in trophic state bioassessment (Poulíčková et al., 2017).

5.6 Species complexes of epiphytic diatoms with potential to improve monitoring

Ecological heterogeneity exists within species complexes. Species complexes of epiphytic diatoms might be divided into three groups: 1. cryptic species with indistinguishable frustule morphology, lacking keys for identification, and/or with limited information on their distribution and ecology (e.g. Navicula cryptocephala agg.). These are worthy of future attention and investigation to fill in the information gap, and to allow them to be transferred into one of the following groups: 2. cryptic species with low potential for improving indicative power due to shared ecology, or without a response to the studied gradient (e.g. Fragilaria capucina agg., Encyonema/Cymbella agg.); 3. morphologically (LM) more or less
distinguishable cryptic species that are ecologically differentiated (*Achnanthidium minutissimum* agg., *Gomphonema parvulum* agg., *Nitzschia palea* agg.), with high potential for use in biomonitoring (Pouličková et al, 2017).
6. REFERENCES

Palacký University Olomouc
Faculty of Science
Department of Botany

Markéta Letáková

DIVERSITY AND DISTRIBUTION OF
EPIPHYTIC DIATOMS

Summary of Ph.D. Dissertation

Supervisor: Prof. RNDr. Aloisie Poulíčková, CSc. Olomouc 2018
This Ph.D. thesis was carried out within the framework of internal Ph.D. studies at the Department of Botany, Faculty of Science, Palacký University Olomouc during the years 2013-2018.

Aspirant: Mgr. Markéta Letáková

Department of Botany, Faculty of Science, Palacký University Olomouc

Supervisor: Prof. RNDr. Aloisie Poulíčková, CSc.

Department of Botany, Faculty of Science, Palacký University Olomouc

Opponents: - Dr. hab. Agata Wojtal, Prof. (Institute of Nature Conservation, Polish Academy of Science, Krakow)

- RNDr. Linda Nedbalová, Ph.D. (Department of Ecology, Faculty of Science, Charles University Prague)

- Doc. RNDr. Jiří Neustupa, Ph.D. (Department of Botany, Faculty of Science, Charles University Prague)

The review on the Ph.D. thesis has been written by the Department of Botany, Faculty of Science, Palacký University.

The summary of Ph.D. thesis was sent out on ...

The oral defence of the thesis takes place in front of the Commission for Ph.D. thesis for Study Subject Botany in the conference room at the Department of Botany, Faculty of Science, Palacký University, Olomouc – Holice, Šlechtitelů 27, on

The Ph.D. Thesis is available in the Library of Biological Department of Faculty of Science at Palacký University, Olomouc – Holice, Šlechtitelů 27.

Prof. Ing. Aleš Lebeda, DrSc.

Chairman of the Commission for the Ph.D.

Theses for Study Subject Botany

Faculty of Science, Palacký University
CONTENT

1. Introduction .. 4

 1.1 Paper I .. 5

2. Main aims of the doctoral thesis .. 6

3. Methods ... 7

 3.1 Material, sampling and preparation .. 7

 3.2 Measuring ecological parameters ... 8

 3.3 Statistical analysis ... 8

4. Results .. 9

 4.1 Paper II ... 9

 4.2 Paper III .. 10

 4.3 Paper IV .. 12

 4.4 Paper V .. 13

5. Conclusions ... 15

6. References .. 19

7. List of published papers ... 22

8. Presentations at meetings ... 23

9. Participation on projects .. 23

10. Souhrn: (Summary, in Czech) .. 24
1. **INTRODUCTION**

Diatoms are unicellular autotrophic organisms, belonging into the group of Stramenopiles (Adl et al., 2012). Their typical feature is a silica cell wall – a frustule. They appear all over the world in various aquatic or wet terrestrial habitats. Traditionally they have been divided into two groups according to the valve symmetry: to *centrics* with radial symmetry and *pennates* with bilateral symmetry.

Diatoms adapt to the environment and biotic influences forming different life strategies. They are classified in various ways according to different authors. Mann et al. (2016) divides diatoms into three groups: they live either suspended, attached or they are motile. The latter two, living in the association with surface, are often called benthic. Benthic diatoms are a diverse group of species living close to the substrate, they include motile and non-motile species. Every type of surface is very specific and diatoms are usually divided according to this. Benthic algae are divided into: epipelon, endopelon, epipsammon, endopsammon, epilithon, endolithon, epixylon, epizoon, endozoon, endophyton and finally epiphyton (reviewed by Poulíčková et al., 2008).

Epiphytic diatoms are a special diatom group that lives in association with plant material. Diatoms can live either inside – *endophytic*, or on the surface – *epiphytic*, creating sometimes very huge extensive colonies. For a detailed introduction of epiphytic diatoms see Paper I.
1.1 Paper I

Ecology and applications of freshwater epiphytic diatoms – review

Markéta Letáková, Markéta Fránková & Aloisie Pouličková

Abstract

Epiphytic diatoms perform a variety of ecological functions. Diatoms are important primary producers and sources of oxygen which can modify the chemistry of the surrounding aquatic environment. They may live attached to plant surfaces with the help of extracellular polymeric substances and compete with plants for resources (e.g., light, nutrients). Thus, they represent an excellent model system for studies on interactions between epiphytes and their host plants under different environmental conditions. Further, the practical usage of epiphytic diatoms in biomonitoring begs questions concerning substrate specificity, diatom biodiversity, and species delimitations. This review focuses on specific aspects of freshwater epiphytic diatom ecology as adaptations for epiphytic way of life, plant-diatom relationships, and implications for biomonitoring.

Key words: epiphytic diatoms, ecology, substrate specificity, biomonitoring, species complexes
2. MAIN AIMS OF THE DOCTORAL THESIS

This dissertation focuses on the community of epiphytic diatoms in order to account for the knowledge about the life on the plant substrate and it tries to connect this with the practical aspects important in biomonitoring. At the centre of interest are the following aims:

- To investigate the structure, diversity and composition of epiphytic diatom communities.
- To study the influence of ecological parameters on the epiphytic diatoms composition.
- To try to summarize and clarify the problematics of the substrate specificity and its consequences for biomonitoring.
- To investigate the contribution of species complexes and cryptic/semi-cryptic diatom species to overall epiphyton diversity.
- To compare how species complexes and other species follow the trophic gradient and to find out how the accuracy of diatom identification influences water monitoring.
- To point out epiphytic species complexes whose resolving has the potential to meliorate biomonitoring.
3. METHODS

3.1 Material, sampling and preparation

Epiphytic diatoms with their substrate (microphytes and macrophytes) were collected from altogether 79 localities. They were mostly represented by shallow fishponds and small local streams of the Czech Republic (Kollár et al., 2015; Poulíčková et al., 2017). For the Letáková et al. (2016) study, samples were taken in Lake Valagola in the Brenta Dolomites in Italy. Basic characteristics of each place are given in the individual papers.

Sampling always started when the submersed part of the plant was cut with the scissors and placed into a plastic container. In the laboratory, samples were worked out within a few hours. Macrophytes were cut into smaller pieces, they were placed in the Erlenmeyer flasks and filled with around 300 ml of 30% H₂O₂ (volume differed according to the amount of plant material) in order to start the slow oxidation. Everything was done with great attention to prevent contaminations. After several days, the samples were boiled until the volume decreased considerably, a small amount of K₂Cr₂O₇ and 1 ml of conc. HCl were added. In such a way the oxidation process was finished. The diatom samples were washed out in distilled water several times until they reached neutral pH. The appropriate concentration of clean diatom frustules was prepared, and permanent samples were mounted with Naphrax.

Diatoms were observed using a light microscope Zeiss ‘Primo star’ (Germany) and Zeiss Axioskop 2 (Zeiss, Jena, Germany) with phase contrast, and images were taken with an Axiocam digital camera. All the samples were investigated qualitatively and semi-quantitatively. For the later one, 400 diatom valves were counted within each sample. Diatoms were identified using the following diatom determination keys: Krammer, (2000, 2002, 2003), Lange-Bertalot (2001), Levkov (2009), Lange-Bertalot et al. (2011), Hofmann et al. (2013), Lange-Bertalot et al. (2017). Nomenclature has been unified according to AlgaeBase (Guiry & Guiry, 2015a; 2015b; 2016).
For SEM observation, clean diatom frustules or herbarized materials were mounted on aluminium stubs, coated with gold and observed in Scanning Electron Microscope Zeiss EVO 40 XVP Zeiss.

Fresh algal assemblages were observed on a stem epidermis using the LTM for ESEM without any pre-treatment. Samples were observed using the FEI ESEM QUANTA 650FEG with beam energy 20 kV, probe current 35 pA and working distance 8.5 mm.

3.2 Measuring ecological parameters

Ecological parameters including temperature, pH and conductivity were measured in situ using the WTW company instrument (Wissenschaftlich-Technische Werkstätten GmbH, Weilheim, Germany) or with a multiparametric Hydrolab. Transparency was measured using a Secchi disk. Major ions, main algal nutrients and chlorophyll a concentrations were determined following the standard methods (Vernon, 1960; Hekera, 1999; APHA, 2000).

3.3 Statistical analysis

Various multivariate statistical analyses were used in order to find the patterns of diatom distribution and factors influencing epiphytic diatom communities. Methods are described in detail in attached articles (Kollár et al., 2015; Letáková et al., 2016; Poulíčková et al., 2017).
4. RESULTS

4.1 Paper II

The low temperature method for Environmental Scanning Electron Microscopy – a new tool for observation of diatom assemblages in vivo

Markéta Fránková, Aloisie Pouličková, Eva Tihlaříková, Vílem Neděla, Kateřina Šumberová & Markéta Letáková

Abstract

The Low Temperature method for sample stabilization in environmental scanning electron microscopy appears to be a promising tool for the observation of diatom assemblages in vivo. Use of the environmental scanning electron microscope, in comparison to the conventional scanning electron microscope, enables study of fresh material without any chemical pretreatment and conductive coating. The newly developed Low Temperature Method, introduced in this paper, offers higher resolution and better resistance of wet samples to radiation damage. We used natural epiphytic algal assemblages to image 3D structure of: i) biofilm/periphyton and its physical complexity, ii) diatoms with their extracellular mucilaginous secretions enabling cells to attach to the substrate, iii) diatom colony formation, and iv) intact diatom cells/frustules in contrast to separated empty valves observed in the conventional scanning electron microscope. This study demonstrates the potential of this new method for environmental scanning electron microscopy in diatom biology and ecology in comparison with other imaging methods.

Key words: living diatoms, epiphyton, low temperature method for ESEM
4.2 Paper III

Substrate specificity and fine-scale distribution of epiphytic diatoms in a shallow tarn in the Brenta Dolomites (south-eastern Alps)

Markéta Letáková, Marco Cantonati, Petr Hašler, Nicola Angeli & Aloisie Poulíčková

Abstract

The host-specificity of epiphytic diatom species has long been debated. Scuba divers sampled epiphytic diatoms in the shallow Alpine Lake Valagola (average depth c. 2 m) along seven transects (length: 30–144 m) in West-East direction. The bottom of the tarn was covered by macrophytes dominated by Chara aspera and Potamogeton gramineus. Factors affecting epiphytic-diatom spatial distribution at a fine scale were tested.

Dataset was tested using Redundancy Analysis (CANOCO package) and one-way ANOVA (NCSS package).

The analysis separated sampling sites into two groups: the tarn shore dominated by Potamogeton gramineus, and the central area dominated by Chara aspera. Diatom species richness, diversity, and composition differed significantly between the two main host plants. Potamogeton gramineus assemblages were characterized by higher species richness and diversity, and by the large-celled, adnate diatom species Epithemia adnata, Rhopalodia gibba, Eunotia arcus and E. arcubus. Chara aspera was preferred by the small-celled, motile diatom species Brachysira neoexilis and Encyonopsis cesatii.

The spatial distribution of epiphytic diatoms in the shallow, oligo-mesotrophic Lake Valagola is influenced by host plant composition and distribution. Epiphyton size structure suggests that Chara represents a less appropriate substrate for long diatoms.
Epiphyton, mountain lake, host specificity, epiphyton size structure, *Chara aspera*, *Potamogeton gramineus*, diatoms.

Key words – Epiphyton, mountain lake, host specificity, epiphyton size structure, *Chara aspera*, *Potamogeton gramineus*, diatoms.
4.3 Paper IV

Epiphytic diatoms in lotic and lentic waters – diversity and representation of species complexes

Jan Kollár, Markéta Fránková, Petr Hašler, Markéta Letáková & Aloisie Pouličková

Abstract

Small streams and shallow ponds represent sensitive ecosystems and attached diatoms can serve as integrative indicator with fast response to environmental changes. Development of methods for ecological monitoring throughout Europe and their calibration for particular ecoregions are not finished yet and databases need to be filled by data from undersampled regions and overlooked substrates. The present study aims to explore the diversity of epiphytic diatoms in unexplored catchment areas with special attention to substrate specificity and distribution of unresolved diatom species complexes. Significant differences were found in diversity of both regions and water types (lotic/lentic). No significant differences were found in the case of substrates. CCA analysis showed significant influence of pH, water streaming (streaming/stagnant) and Lemna substrate to species composition. Surprisingly species complexes represent the majority of epiphytic assemblages with no significant differences between lotic and lentic waters or substrates except of Lemna. The high representation of complexes does not lead automatically to reduction of overall diversity of the sample.

Key words: diatoms, epiphyton, lotic and lentic waters, species complexes
4.4 Paper V

Species complexes within epiphytic diatoms and their relevance for the bioindication of trophic status

Aloisie Poulíčková, Markéta Letáková, Petr Hašler, Eileen Cox & Martin Duchoslav

Abstract

The popularity of aquatic bioassessments has increased in Europe and worldwide, with a considerable number of methods being based on benthic diatoms. Recent evidence from molecular data and mating experiments has shown that some traditional diatom morphospecies represent species complexes, containing several to many cryptic species. This case study is based on epiphytic diatom and environmental data from shallow fishponds, investigating whether the recognition and use of fine taxonomic resolution (cryptic species) can improve assessment of community response to environmental drivers and increase sharpness of classification, compared to coarse taxonomic resolution (genus level and species level with unresolved species complexes). Secondly, trophy bioindication based on a species matrix divided into two compartments (species complexes and remaining species) was evaluated against the expectation that species complexes would be poor trophy indicators, due to their expected wide ecological amplitude. Finally, the response of species complexes and their members (cryptic species) to a trophic gradient (phosphorus) were compared. Multivariate analyses showed similar efficiency of all three taxonomic resolutions in depicting community patterns and their environmental correlates, suggesting that even genus level resolution is sufficient for routine bioassessment of shallow fishponds with a wide trophic range. However, after controlling for coarse taxonomic matrices, fine taxonomic resolution (with resolved cryptic species) still showed sufficient variance related to the...
environmental variable (habitat groups), and increased the sharpness of classification, number of indicator species for habitat categories, and gave better separation of habitat categories in the ordination space. Regression analysis of trophic bioindication and phosphorus concentration showed a weak relationship for species complexes but a close relationship for the remaining taxa. GLM models also showed that no species complex responded to phosphorus concentration. It follows that the studied species complexes have wide tolerances to, and no apparent optima for, phosphorus concentrations. In contrast, various responses (linear, unimodal, or no response) of cryptic species within species complexes were found to total phosphorus concentration. In some cases, fine taxonomic resolution to species level including cryptic species has the potential to improve data interpretation and extrapolation, supporting recent views of species surrogacy.

Keywords: epiphyton, cryptic species, ecological resolution, taxonomic resolution, indicator species
5. CONCLUSIONS

Diatoms form complex and structured films on plant substrate. Significant differences were found in species richness of different ecoregions and water types. Altogether, 131 taxa were found in 25 fishponds and 13 small streams located in the Svitava River Basin and the White Carpathian Mountains in the Czech Republic (Kollár et al., 2015). In the meso-oligotrophic alpine Lake Valagola 78 taxa were identified (Letáková et al., 2017). And finally 263 taxa were found in the study focused on ponds of various characteristics appearing all over the Czech Republic (Pouličková et al., 2016), where species diversity varied from 11 to 51 taxa. The most species-rich place was the dystrophic Novozámecký Pond, the smallest taxon amount was found in the highly eutrophied Staňkovský Pond. The dominant epiphytic diatom Achnanthidium minutissimum agg. (Kollár et al., 2015; Pouličková et al., 2017) was able to create even 88% of the community (Kollár et al., 2015). The other two most frequently occurring species (Kollár et al., 2015; Pouličková et al., 2017) were Gomphonema parvulum agg. with representation 1–48% and Cocconeis placentula Ehrenberg with representation 1–100% (Kollár et al., 2015). Species complexes represented the majority of epiphytic assemblages but this dominance did not lead automatically to a reduction of overall diversity of the sample. Fragilaria polonica M. Witak & Lange-Bertalot and Staurosirella pinnata (Ehrenberg) D. M. Williams & Round were the most common species in Lake Valagola (Letáková et al., 2016).

CCA analysis showed significant influence of pH and water streaming – running/stagnant water (Kollár et al., 2015). Species correlating with higher pH were Amphora pediculus (Kützing) Grunow, Cocconeis pediculus Ehrenberg, Cymbella excisiformis Krammer, Encyonopsis cesatii (Rabenhorst) Krammer, Encyonopsis microcephala (Grunow) Krammer, Eunotia arcus Ehrenberg, Gomphonema pumilum (Grunow) E. Reichardt & Lange-Bertalot, Nitzschia palaeformis Hustedt and Nitzschia
sinuata (Thwaites) Grunow, lower pH was preferred by Mayamaea atomus (Kützing) Lange-Bertalot, Planothidium ellipticum (Cleve) M. B. Edlund, Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot and Nitzschia palea (Kützing) W. Smith. Typical for lentic waters were diatoms like Fragilaria brevistriata (recently accepted name Pseudostaurosira brevistriata (Grunow) D.M. Williams & Round), Encyonopsis microcephala (Grunow) Krammer, Eunotia arcus Ehrenberg, Denticula tenuis Kützing, lotic waters often contained Cocconeis pediculus Ehrenberg, Gomphonema angustatum (Kützing) Rabenhorst and Navicula tripunctata (O. F. Müller) Bory.

Regression analysis confirmed that epiphytic diatom assemblages reflect trophic gradient, although there are significant differences in the relationship of species complexes and remaining taxa to phosphorus concentrations (Pouličková et al., 2017). Oligo or mesotrophic waters were preferred by Achnanthidium minutissimum sensu stricto (Kützing) Czarnecki, Achnanthidium lineare W. Smith, Achnanthidium caledonicum (Lange-Bertalot) Lange-Bertalot, Gomphonema exilissimum (Grunow) Lange-Bertalot & Reichardt. Eutro or hypertrophic waters were correlated with Achnanthidium eutrophilum (Lange-Bertalot) Lange-Bertalot, Achnanthidium straubianum (Lange-Bertalot) Lange-Bertalot, Gomphonema parvulum (Kützing) Kützing.

The spatial distribution of epiphytic diatoms is also influenced by host plant distribution (Letáková et al., 2016).

The influence of the substrate on the composition of the epiphytic community did not show uniform results in the localities investigated. No significant specificity was noted in the Czech ponds and small streams except Lemna minor L. Species such as Fragilaria brevistriata (Pseudostaurosira brevistriata), Staurosirella pinnata or Nitzschia palaearctica avoid Lemna minor as a host plant. Lemnicola hungarica (Grunow) Round & Basson, a diatom typical for Lemna minor, inhabited also Phragmites australis (Cav.) Steen in the
Svitava river basin (Kollár et al., 2015). In the case of the oligo-mesotrophic Lake Valagola, significant differences were found in diatom species richness, diversity and composition between the two main host plants. *Potamogeton gramineus* L. assemblages were characterized by higher species richness and diversity, and by the large-celled, adnate diatom species *Epithemia adnata* (Kützing) Brébisson, *Rhopalodia gibba* (Ehrenberg) Otto Müller, *Eunotia arcus* Ehrenberg and *E. arcubus* Nörpel & Lange-Bertalot. *Chara aspera* Willd. was preferred by the small-celled, motile diatom species *Brachysira neoexilis* Lange-Bertalot and *Encyonopsis cesatii* (Rabenhorst) Krammer (Letáková et al., 2016).

It has been proved then, that epiphytic diatoms are suitable for bioindication in generally more nutrient rich Czech fishponds and rivers, as their distribution is not biased by plant substrate type. However, *Lemma* sp. should be excluded from the macrophytes used for this purpose.

Surprisingly, species complexes represented the majority of epiphytic assemblages (up to 97%) with no significant differences between lotic and lentic waters or substrates. In the case of pond epiphyton (Pouličková et al., 2017), 18 species complexes were formed by 43 cryptic species and created 3-97% of the community (average 56.81 ± standard deviation 25.19 %). The most common was the complex of *Achnanthidium minutissimum* agg. (with the following morphotypes: *Achnanthidium affine* (Grunow) Czarnecki, *Achnanthidium caledonicum* (Lange-Bertalot) Lange-Bertalot, *Achnanthidium eutrophilum* (Lange-Bertalot) Lange-Bertalot, *Achnanthidium jackii* Rabenhorst, *Achnanthidium lineare* W. Smith, *Achnanthidium minutissimum* (Kützing) Czarnecki and *Achnanthidium straubianum* (Lange-Bertalot) Lange-Bertalot. Even though the research in Valagola was focused in a different way, out of these 18 species complexes, *Achnanthidium minutissimum*, *Amphora pediculus*, *Cocconeis placentula* and *Gomphonema parvulum* species complexes have been noticed.
Precise taxonomical identification did not play such an important role in biomonitoring as could have been expected. Simple genus level identification of epiphytic diatoms brought sufficient information required for normal routine biomonitoring (Pouličková et al., 2017). However, fine taxonomic resolution (with resolved cryptic species) still showed sufficient variance related to the environmental variable (habitat groups), and increased the sharpness of classification, number of indicator species for habitat categories, and gave better separation of habitat categories in the ordination space. Species complexes showed low sensitivity to changes in phosphorus concentration, and thus seems to have low indicatory power in trophic state bioassessment (Pouličková et al., 2017).

Ecological heterogeneity exists within species complexes. Species complexes of epiphytic diatoms might be divided into three groups: 1. cryptic species with indistinguishable frustule morphology, lacking keys for identification, and/or with limited information on their distribution and ecology (e.g. Navicula cryptocephala agg.). These are worthy of future attention and investigation to fill in the information gap, and to allow them to be transferred into one of the following groups: 2. cryptic species with low potential for improving indicative power due to shared ecology, or without a response to the gradient studied (e.g. Fragilaria capucina agg., Encyonema/Cymbella agg.); 3. morphologically (LM) more or less distinguishable cryptic species that are ecologically differentiated (Achnanthidium minutissimum agg., Gomphonema parvulum agg., Nitzschia palea agg.), with high potential for use in biomonitoring (Pouličková et al, 2017).
6. REFERENCES

7. **LIST OF PUBLISHED PAPERS**

8. PRESENTATIONS AT MEETINGS

- **LETÁKOVÁ M., CANTONATI M., HAŠLER P., ANGELI N., & POULÍČKOVÁ A. (2015):** Substrate specificity and fine-scale distribution of epiphytic diatoms in a shallow tarn in the Brenta Dolomites (South-eastern Alps). 15th-19th June, 2015, 9th Use of Algae for Monitoring Rivers and comparable habitats (UAMRICH) and International Workshop on Benthic Algae Taxonomy (Inbat). (poster). – *awarded by the price for the best student poster presentation*

9. PARTICIPATION ON PROJECTS

- Participation on a project focused on monitoring of the Czech wetlands (the Ramsar Convention) coordinated by Ministry of the Environment of the Czech Republic.

- Internal grant agency of Palacký University PrF-2014-001, PrF-2015-001, PrF-2016-001 and PrF-2017-001.
10. **SOUHRN: (SUMMARY, IN CZECH)**

Tato disertační práce je zaměřena na jednu skupinu bentických rozsivek – na epifytické rozsivky, tj. na ty, které žijí přisedle na rostlinném substrátu. Mnoho aspektů jejich života není totiž stále dostatečně objasněno, přestože mohou tvořit velmi podstatnou část primární produkce a navzdory jejich důležitosti v biomonitoringu a paleolimnologických rekonstrukcích. Byla zkoumána substrátová specifita, diverzita epifytických rozsivek, rozsah druhových komplexů ve společenstvu epifytických rozsivek a také metody používané pro hodnocení ekologického stavu vod.

Epifytické rozsivky odpovídaly na ekologické parametry vody ve všech zkoumaných lokalitách. Substrátová specifita byla zanedbatelná ve vodách vyšší trofie, v čistém horském jezeře Valagola byla nalezena signifikantní substrátová specifita. Skupina epifytických rozsivek má celkově velkou druhovou bohatost a podstatná část je tvořena druhovými komplexy, tvořenými kryptickými a semikryptickými druhy. Ačkoliv se pouhé rodové určení zdá být naprosto dostačující pro rutinní monitoring, jemné taxonomické rozlišení stále vykazuje odchylku v souvislosti s proměnnými prostředí a zvyšuje přesnost klasifikace.
Nerozlišené druhové komplexy měly nízkou citlivost pro změny v koncentraci fosforu. Některé kryptické druhy mají potenciál zlepšit bioindikační modely. Proto rozlišení těchto druhových komplexů je zásadní a naléhavou záležitostí, která by vedla mimo jiné k lepšímu pochopení ekologického stavu vod.