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ABSTRACT 
The goal of this master's thesis was to carry out middle voltage DC contactor diagnostics 

w i th a focus on back-commutat ion and st icking, to propose and test alterations which 

would remove these negative phenomena. 

The arc voltage, fast camera and pressure measurements were used to determine these 

effects. Changes to arcrunners and pole plates o f the magnetic circuit were used t o l imit 

them. 

The proposed alterations l imited the t ime delay caused by back-commutat ion and thus 

shortened the arc transfer t ime. 

KEYWORDS 
Contactor, breaking, diagnostics, pressure measurement, fast camera, back-

commuta t ion , reignit ion. st icking, arcrunner, pole plate 

ABSTRAKT 
Cílem té to diplomové práce bylo provést diagnostiku vysokonapěťového stejnosměrného 

stykače se zaměřením na zpětnou komutaci a lepení oblouku, navrhnout a ověřit úpravy, 

které odstraní t y to negativní jevy. 

Měření obloukového napětí, t laku a pomocí rychlokamery byly použity při diagnostice 

těchto jevů. Změny na arcrunnerech a jhu magnetického obvodu byly využity při jej ich 

odstraňování. Úpravy na arcrunneru zmenšily skokové nárůsty délky oblouku a úpravy na 

jhu navýšily sílu na oblouk mezi rozevírajícími se kontakty. 

Navrhnuté změny na stykači snížily časovou z t rá tu v důsledku zpětné komutace, a tak 

zkrát i ly čas přenosu oblouku. 
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Rozšířený abstrakt 

Cílem této diplomové práce bylo provést diagnostiku vysokonapěťového stejnos­
měrného stykače se zaměřením na zpětnou komutaci a lepení oblouku, navrhnout 
a ověřit úpravy, které odstraní tyto negativní jevy. 

První kapitola se zaobírá prve obecně používanou konstrukcí stykače a následně 
konkrétní konstrukcí zkoumaného stykače. Hlavní důraz je přitom kladen na proudo-
vodnou dráhu a magnetický obvod s permanentními magnety. 

Následující dvě kapitoly popisují zhášení oblouku ve spínacích přístrojích a s tím 
spojený negativní jev znovuzápalu. Dále jsou rozebrány důvody vzniku tohoto jevu 
a jsou ukázány speciální případy, které se vyskytovaly ve zkoumaném stykači. Jmen­
ovitě se jednalo o jevy zpětné komutace a lepení oblouku, které se projevují ještě 
během samotného zhášecího pochodu, narozdíl od klasického znovuzápalu. 

Kapitoly čtyři a pět obsahují popis použitých měřicích metod a popis prvotního 
měření, které sloužilo k určení možností použití daných metod. Jednalo se o měření 
obloukového napětí, tlaku a za pomocí rychlokamery. Během prvotních měření byla 
potvrzena přítomnost výše zmíněných negativních jevů a byla určena místa a časy 
jejich výskytu. 

Kapitola šest je literární rešerše možných odstranění zpětné komutace a lepení 
oblouku a výběr vhodných řešení pro daný stykač. 

Následující kapitola obsahuje výkresy a důvody použití jednotlivých úprav prove­
dených na stykači, které vycházejí z předchozí kapitoly. Tyto úpravy byly prove­
deny na proudovodné dráze, a to na arcrunnerech a na jhu magnetického obvodu. 
Úpravy na arcrunnerech byly provedeny za cílem snížení výskytu náhlých nárůstů 
délky oblouků, a s tím spjatého obloukového napětí. Změny na jhu navyšovaly sílu 
na oblouk v oblasti rozepínaných kontaktů. 

Kapitola osm poskytuje metriky použité k hodnocení jednotlivých variant pří­
stroje. Jedná se o čas potřebný pro transport oblouku do zhášecí komory ti, celkový 
vypínací čas t2 a časovou ztrátu v důsledku zpětných komutací td-

Následující kapitola devět shrnuje naměřené výsledky jednotlivých variant a popi­
suje postup výběru finální verze včetně kontrolního měření. 

V závěru práce jsou tyto změny shrnuty včetně zkrácení jednotlivých časů, které 
byly použity pro porovnání. Je zde také popsán další možný postup, sestáva­
jící se z měření na jiných parametrech testovacího obvodu a měření na novém, 
nepoškozeném přistrojí pro získání finálních dat. 
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Introduction 

The demand for increased switching capability and compactness of switching de­
vices has been increasing. To address this, new approaches and designs are applied. 
But new ways to determine whether these changes bring the desired effects also have 
to be studied. 

The reason why I chose this topic was to determine which of the wide range of 
applicable diagnostic methods are of use when trying to measure specific negative 
phenomena in a contactor. The focus of this thesis was on arc sticking and back-
commutation which are both effects afflicting the arc transfer from the contact to 
the quenching chamber. 

The first part of this thesis describes the contactor construction and phenomena 
accompanying the breaking of the circuit. 

The second part focuses on the diagnostic methods and the preliminary mea­
surements realized on the contactor. 

The last segment gives possible alterations with a goal of limiting the negative 
phenomena of back-commutation and sticking. These alterations were tested and 
the best combination was proposed as a solution to the diagnosed problems. 
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1 Construction and function 

As is true for all contactors, this device was built for frequent switching of op­
erational currents. So, its construction is not that different from commonly used 
models at the first glance. First, the basic construction of a electromechanical con­
tactor will be addressed and then different changes used to facilitate the enhanced 
demands for this product will be discussed. 

1.1 Basic construction 

The most common construction of a contactor uses two contact pairs and linear 
movement of a contact bridge facilitated by an electromagnet. The main parts of 
a single pole of a contactor follows: 

• current conducting path 
• contact system 
• electromagnet 
• arc quenching chamber 
• enclosure and other insulation 
A l l of the mentioned parts can be seen in fig. 1.1 

Fig. 1.1: Basic contactor construction [1] 

As we can see, the current conducting path is bent and brought back under the 
contact system to achieve movement of the arc due to its interaction with magnetic 
field created by current passing through the path. The only other requirements for 
the path are to serve as a way to transfer heat away from the contact point, as it is 
the main source of heat losses, and to mechanically withstand the force generated 
by passing current. 
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Because of the gap length effectively doubled by the circuit being divided in 
two separate places the distance between the contacts when fully opened can be 
shortened. This also positively affects the electromagnet because the length of its 
air gap depends on the contact distance. 

The innate short length of the arc, when it is ignited, is referred to as a problem 
of DC contactors with this topology and needs to be addressed with additional 
measures. [1] 

The contact system apart from its duty to facilitate galvanic connection between 
two parts with minimal contact resistance without using excessive force has to with­
stand very high amount of operations both with and without load. So, the incentive 
on high erosion and abrasion resistance is applied more severely than on other types 
of switching devices. 

As the contactor is a device designed for switching operational currents, the 
quenching chamber is not often of the same importance as in breakers where current 
limitation is often required. But it should be mentioned that this is not the case for 
the DC switching where overvoltage always needs to be created to force the current 
to reach zero as discussed later. [1] 

1.2 Changes made 

This particular contactor is being developed for application in DC traction. The 
main requirements are to reliably switch its rated current and to occupy as little 
space as possible. To tackle these demands, changes needed to be done. 

First, the main difference must be mentioned and it is the addition of a new 
component - permanent magnets and joined yokes which serve instead of the curved 
current path to route the arc to the quenching chamber. This influences all following 
parts. 

1.2.1 Current path and contacts 

The current path now serves other purposes than primarily affecting the arc. It 
can still have a noticeable impact in the current range above 1 kA but that is only 
a secondary effect of the U-shaped current path. 

The main objective is to allow the arc to reach a sufficient length and transfer it 
to the quenching plates. This is accomplished by shaping the path and adding new 
components to serve as arc runners. 

13 



Static contact 

Arc runner 3 

Arc runner 4 

Arc runner 2 

Arc runner 1 

Moving contact 

Fig. 1.2: Current path 

The mechanism of arc motion begins after ignition between the static and the 
moving contact. After this, the lower arc roots move along the arc runner 3 and the 
upper arc roots move subsequently to arc runner 1 and 2. This serves the purpose 
of lengthening the arc while not allowing the arc roots to stay in one place to limit 
the arc erosion. 

1.2.2 Magnetic field 

The magnetic field's purpose is to force the arc to move along its designed trajec­
tory to the quenching chamber. This is a commonly used practice and when reaching 
higher currents the breaking process would not be possible without it. But while 
most of contactors use a shaped current carrying path to achieve this, this contactor 
uses a system of permanent magnets and steel yokes to create the required field. 

The magnetic circuit is separate for each contact gap and therefore for each arc 
produced. 

The first version of the device used steel arc runners 1 and 2 (see fig. 1.2) and 
in later versions they were changed to bronze ones with identical shape. 

Fig. 1.3: Magnetic field distribution with steel arc runners 
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1.2.3 Quenching chamber 

After the transfer when the stable arc is finally established, the arcrunners 2 and 
4 serve as its electrodes. Both arcrunners serve as an anode and cathode due to the 
existence of two serial arcs. 

If the arc was let burn freely with length defined only by the electrode distance, 
the produced arc voltage would be inadequately low and the slope of current drop 
would be unacceptably long. Therefore, several non-conducting plates are inserted 
to prolongate the arc and to drain the heat from it. 

To achieve even better prolongation with constant electrode, gap length using 
combination of plates of different shape is used. 

Fig. 1.4: Two types of non-conducting plates 

The plates are stacked upon each other while alternating between the left and 
right design. The lower parts of the plates then force the arc to weave between them 
while the previously mentioned magnetic field still presses the arc against the top 
part of the plates. By this, magnetic force again bends the arc and increases its 
length. 

The ceramic plates are commonly used in DC switching devices as they always 
lead to greater increase of arc voltage. But they lack the ability of steel plates to 
draw in the arc due to magnetic force. 

In addition, the non-conducting plates made from ceramics bring the distinctive 
advantage of high erosion and ablation resistance in comparison to the metallic ones. 
While also the molten droplets of metal, which solidify on its surface, can never 
short-circuit the neighbouring plates and render them useless regarding dividing the 
arc. 
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2 Arc extinguishing 

Although the contactor serves both for making and breaking, the breaking pro­
cess is more important for the contactor construction as a whole. Therefore, it will 
be the primary focus. But at first, it must be established what constitutes a suc­
cessful breaking of a circuit and which parameters and circumstances must be met 
for proper function of the contactor. 

The extinguishing process consists of several parts: 
• creating and burning of the original arc 
• current passing through zero 
• race of T R V against reignition voltage 
• dissipating of heat to the surroundings 
The creation of an arc and its existence will not be discussed here up to the point 

of first current zero. [2] 

2.1 Current passing through zero 

The moment when the arc current stops flowing through the circuit is also the 
moment when no further heat is being pumped into the plasma of the arc. The arc 
can cool down properly and the ions can recombine due to exchange of heat with the 
surroundings - at first with contacts and the current path and then to the enclosure 
of the contactor. 

The cooling itself actually starts even before the first zero point. The arc starts 
cooling after achieving equilibrium between the heat losses caused by the passage of 
current and the heat transfer from the arc by the means of conduction and radiation. 

We can fairly precisely determine when this equilibrium is reached by examining 
the current and voltage curves. The moment is well documented and signified by 
so called minimal arc current. After this, the current rapidly drops to zero and 
voltage steeply rises both due to rise of resistance of the arc caused by the starting 
deionization of plasma. The rise of voltage is furthermore given by the voltage surge 
on the circuit inductance due to the increase of di/dt. 

The minimal arc current is not a constant but is highly dependant on the con­
struction of the contactor. The main influence on the value of the minimal current 
is the rate of energy losses to the surroundings. So, it can be expected that with 
longer lengths of the arc and better cooling the minimal sustainable current will be 
higher. [2] 
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Fig. 2.1: Minimal arc current 

As the fig. 2.1 shows, the minimal arc current coincides with the maximal arc 
voltage. So, the time of equilibrium of losses and transferred heat can be determined 
either by the local voltage maximum or by the change in the decline rate of the 
current. 

The current zero occurrence depends both on the type of voltage type (AC/DC) 
and measures to achieve it. 

The D C contactors have to decrease the current from its original value to zero by 
increasing the arc voltage above the supply voltage as can be seen from the following 
formula: 

([Uc-Ri\-Ua {A/s-H-V-n-A-V) (2.1) 
di 
dt = L 

The actual increasing of arc voltage can be done in a number of ways namely: 
increasing the length, cooling the arc and dividing it into several smaller arcs which 
uses the fact that arc voltage is not a linear function of its length to its advantage. 

Alternatively, designs using totally different approaches have been made, such as 
superposition of high frequency current signal on top of the original one with reverse 
polarity of the first half-wave. [3] 

A C contactors and breakers do not have to rely on these techniques to reach 
the current zero for it naturally occurs twice in one period of the signal. So, the 
only duty of the breaker is to not let the arc reignite. This is both very convenient 
and suboptimal because it might be needed to limit the passing current and namely 
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Joule integral to properly protect the device that is being switched off. When this 
demand arises, the steps to achieve it are the same that were already mentioned 
when describing the extinguishing of DC current.[2] 

2.2 Race of T R V against reignition voltage 

As the current and power losses in arc and electrodes go to zero, the space 
between electrodes changes from relatively good conductor to an insulator. Thus, 
the current stops flowing though the gap. As this happens, the voltage across the 
contact gap changes from arc voltage to Transient recovery voltage (TRV). This 
voltage impressed over the gap is not dependant on the actual switching device 
by a great margin. The main factors are circuit inductance, stray capacitance and 
residual conductance. This transient voltage has two distinct components: the power 
frequency one and oscillatory transient component as shown in the fig. 2.2. [2] 

Fig. 2.2: Transient recovery voltage [1] 

The power frequency component is there due to system voltage and the oscilla­
tory is there because of the inductance and capacitance of the circuit. The oscillatory 
part vanishes in a few microseconds while the power frequency component continues. 
The frequency can be given by the Thompson's equation: 

f = V^7T^ iHz-H-C) (2.2) 

The real system oscillatory waveform has several frequencies and cannot be 
summed up by the previously stated equation. [1] 

While this transient voltage is impressed over the decaying plasma another volt­
age can be discerned - reignition voltage. This voltage is the maximal voltage the 
gap can be stressed with and not cause another arc to be ignited. If the T R V was 

18 



higher than this reignition voltage at any point in time, the arc would be reestab­
lished, current would again start to flow and the whole process would have to start 
anew. 

This reignition voltage is very much influenced by the construction of the switch­
ing device namely the arc current before current zero, the gap length, contact ma­
terial, arc chamber design and the ambient gas. But is it does not depend on the 
circuit parameters. During the recovery process the reignition voltage does not 
linearly increase with time but we can differentiate four distinct stages: 

1. instantaneous recovery of reginition voltage that occurs in <1 us 
2. a slight increase in the dielectric strength followed by a plateau 
3. a steady increase of reignition voltage that lasts between a few tens or a few 

hundred microseconds 
4. the full dielectric strength of the "cold" contact gap [2] 

Fig. 2.3: Stages of recovery voltage [2] 

2.2.1 Instantaneous recovery 

At the very beginning of the first stage, the arc column is uniformly distributed 
between the electrodes and has not started to decay yet. But the emission of elec­
trons is halted from the cathode and due to the voltage impressed over the gap, 
redistribution of particles is initiated. Let us assume that the slow moving ions can 
be treated as stationary. Then, the process starts with electrons in immediate vicin­
ity of the cathode, being repelled and creating a space charge sheath about 10e-7 m 
wide. This sheath by itself covers approximately the first 300 V of reignition voltage 
for cold cathode. If the T R V is smaller than or equal to this reignition voltage then 
there is no voltage impressed over the rest of the arc column. In the case of TRV 
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being higher than these 300 V then the full 300 V is covered by this sheath and 
only what is left affects the the plasma while electrons start to be ejected from the 
cathode again. 

The actual reignition voltage of this sheath depends mostly on the material 
and temperature of contacts. And thus partially on the switching current and the 
construction of the device such as the size of current-carrying members as they serve 
as the primary way of draining the heat from the contacts. 

For example Cu and Ag would have the value of initial reignition voltage close 
to the mentioned 300 V as they are non-thermionic emitters. But for the thermionic 
emitters such as W the reignition voltage drops and the greater the switching current 
the bigger the drop is. Simply because of the higher temperatures, which go hand in 
hand with higher current, the tungsten needs lesser voltage to emit electrons again. 

The material properties that dictate this value of reignition voltage are many, 
for example density, melting and boiling point, work function, ionisation potential 
and thermal diffusivity. 

Apart from the material of the contacts other variables influence the reignition 
voltage covered by cathode gap. Mainly the ability to transfer heat away from the 
surface of contacts, the maximal value of current and its rate of decrease. [2] 

Cathode Anode Peak 
ofTRV 

Voltage 
across 

decaying 
plasma 

300 V 

Voltage drop 
across the 
cathode 
sheath 

Fig. 2.4: Distribution of T R V across contact gap [2] 

This effect can be again enhanced by using the same technique used for arc 
extinguishing. If the splitter plates from conductive material are used to generate 
additional cathode and anode spots, these same spots will serve as additional cathode 
layers and again increase the reignition voltage as they effectively serve as new 
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contact gaps in series. The reignition voltage increase is however not proportional 
to the number of splitter plates used due to the electric field distribution along the 
contact gap. [2] 

2.2.2 Arc decay 

After the instant increase of recignition voltage due to creation of cathode gap 
there is another increase although it is not as steep. It occurs due to rapid cooling of 
the arc roots by axial conduction to the relatively cool contact spots. This cooling 
again increases the cathode layer gap additionally to increasing local resistivity. 

The plateau in reignition voltage characteristics represents cooling of the arc 
column, deionisation and gradual decrease of arc conductivity. After the arc is cooled 
under approximately 2000 K the thermal ionisation due to the Sasha's equation is 
negligible and the voltage is uniformly distributed across the whole length of the 
contact gap. 

The rise after the plateau is caused by the general cooling of the arcing chamber 
and the whole switching device. 

Both of these parts depend on the construction of the device, its ability to transfer 
heat from both the contacts and the chamber, the type of ambient gas used and the 
amount of metal particles in evaporated in the gas. 

After the thermal equilibrium is achieved the reignition voltage stays constant. 
This part is marked as stage 4 in the diagram. 

The contact gap after this moment acts as a normal break in a circuit with full 
dielectrical strength derived from its length, shape of the electrodes and materials 
used for the surrounding parts. [2] 
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3 Arc reignition 

The arc reignition is a phenomenon in which there is an additional ignition of 
an electrical arc after the initial one, which starts the breaking process. The arc 
reignition can occur in two ways: 
a) After the extinguishing of the arc 
b) During the extinguishing of the arc 

The first one mentioned is well documented because its occurrence can often lead 
to failure of switching device and damage to the protected device. 

The second one, while not always causing a failure, prolongates the switching 
time, damages the device and severely reduces the number of operations the device 
can successfully execute. This phenomenon is generally called Back-commutation of 
the arc. 

3.1 Creation of arc reignition 

3.1.1 Dielectric reignition 

The dielectric reignition is the direct result of T R V reaching and acceding the 
recovery voltage of the gap. This process is equivalent to Long-gap gas breakdown 
with the benefit of electrons already existing in the space between the two electrodes. 

The process itself is based on existence of electric field between the electrodes. 
If the cathode layer is not accounted for, the impressed voltage is evenly distributed 
along the rest of the gap length. 

As there are still free electrons in the decaying arc, they are accelerated by the 
the electric field and can collide with atoms of the ambient gas. If the result of 
these collisions can reliably produce additional electrons, the number of created 
electrons spirals to high enough numbers to reignite the arc. This process is termed 
the Townsend avalanche. It requires the colliding electron to have energy exceeding 
the ionization energy of the weakest bound electron in the atom. The ionization 
potential of atom depends on the type of gas used and the energy of electron Ee is 
a function of intensity of electrical field E and distance it travels undisturbed. 

Ee = E-\e = ^ - A e {J-V/m-m-V-m) (3.1) 

Where A e is electron mean path which stands for average distance travelled be­
tween two collisions. U and d represent voltage between electrodes and their distance 
respectively. 

The electron mean path is a simple function of pressure with constant A. 
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A e = {m;m-lPa-l;Pa) (3.2) 

To discern the conditions that limit the reignition of a self-sustaining discharge 
the genesis of new electrons needs to be enumerated. 

Let us establish a new coefficient a or the Firts Townsend coefficient which is 
a number of electrons generated by one electron if it traverses distance of one meter. 

dn = a • dx (—;l/m;m) (3.3) 

n = n0eax ( - ; - ; l /m;m) (3.4) 

Where n is the number of electrons and UQ is the original number of electrons. 
After deducing the number of original electrons the number of new electrons is 
obtained. To simplify, only simple ionizations are accounted for. In that case the 
number is equal to newly generated positive ions. 

These ions are also propelled by the electric field and when they hit the cathode 
there is a chance of generating a new electron. This probability is expressed by 
a coefficient 7 or the Third Townsend coefficient. By definition, if the discharge is 
self-sustaining, the electrons leaving cathode produced by positive ion collision need 
to be able to sustain them selves. Any other sources of electrons only support this 
process. If n\ is declared as the number of electrons leaving cathode per second 
and x is established as equal to the contact gap length d, the following formula will 
apply. 

n i = n i 7 (ead - l ) ( - ; - ; - ; 1/m; m) (3.5) 

The only way for this formula to apply and the number of electrons leaving cathode 
be different from zero is to reach the following condition. 

7 (ead - l ) = 1 (-; 1/m; m) (3.6) 

The coefficient a can be further expressed as a function of coefficient A, pressure, 
present voltage, electrode gap distance and effective ionization potential V*. 

a = Ap-e v {l/m;m~YPa~Y;Pa;V;m;V) (3.7) 

If ead » 1, the formula can be reduced to equation 3.6. Then the new expression 
for a can be used. 

/ 1 \ 

ad (—; 1/m; m) (3.8) 

Apd-e—— (-;m-1PaT1;Pa;m;V;V) (3.9) 

U = , ~flyd

d\ {V;m-lPa-l;V;Pa;m;-) (3.10) 
ln\ln(lH)) 
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The gained voltage is the minimal voltage needed to start an ignition of a discharge. 
This relation is referred to as the Paschen's law. For the purpose of this thesis, 
this is the voltage needed to be impressed over the body of an arc. To get the total 
voltage needed between electrodes voltage spent on cathode layer needs to be added. 

If the function should be plotted over the product of pressure and distance of 
electrodes, function with single minimum would emerge. This can be qualitatively 
explained by the fact that with high pressure there is low electron mean path and the 
electrons do not achieve high enough energies and with low pressure the collisions 
are just too rare to start the avalanche needed to sustain this process. [2] [4] 

3.1.2 Thermionic and thermal reignition 

While the dielectric reignition was a race between two voltages, the thermionic 
reignition is a race between the power losses in the remains of the arc and the heat 
transfer away form the plasma. 

First, losses in the plasma need to be defined. If there is voltage greater than 
the cathode sheath drop impressed over the contact gap, there is voltage over the 
decaying plasma column. This column has still non-zero conductivity due to ionised 
particles. As a result, a post-arc current can pass through the gap and by Joule 
losses heat up the column. For this, the power input into the plasma depends on 
the source voltage, gap length, ambient gas used and the arc chamber design. 

If these losses cannot be sufficiently transferred, the temperature rises and with it 
the conductivity which further fuels this process and will quickly lead to thermionic 
reignition. 

But there is one more type of reignition which is not as common in switching 
devices but when it occurs it can lead to a total failure of the device. The therm 
thermal reignition is used to describe a phenomenon where the cathode is able to 
emit electrons even right after current zero. This can be the case of the electrodes 
reaching high temperatures while using refractory materials. But even when not 
using refractory materials there is the danger of this reignition if the contacts can 
not sink the heat effectively. [2] 

3.2 Back-commutat ion and Sticking 

As was discussed at the beginning of this chapter, there are phenomena connected 
to reignition even while the current is still flowing. Both of these effects cause the 
quenching process to take more time and cause uneven thermal stress to different 
parts of contact system and arc runners. 

24 



3.2.1 Sticking 

When observing a switching device with magnetic blow-out the expected pro­
gression of arc movement should depend on several quantities like current, magnetic 
flux and fluid resistance. With this, when not accounting for turbulence the velocity 
of an arc should be only increasing or reaching a steady state as the forces affecting 
the arc reach an equilibrium. 

But on the contrary to this first look, there can be a value of current which when 
exceeded will change the nature of arc movement. If this phenomenon appears, it 
is called sticking and it is manifested as arc stopping at one spot typically where 
arc runners or horns diverge or just before the arc chute with plates. Both of these 
spots are characterised by a steep increase of arc voltage when crossed. [2] 

So, the arc is held in place by a fictional force that stems from the fact that 
moving in any direction would cause the arc to increase its energy. 

dW 
F=-te (N;J;m) (3.11) 

The the increase in energy is twofold but both are connected to voltage increase. 
The first one is simply caused by a prolongation and when near metal arc chute the 
arc splitting and creating new anode and cathode spots. Both of these effects are 
demonstrated in following equation where N is the number of metal splitter plates. 

Ua = (N + 1) (AUA + AUc) + El {V- -• V- V; V/m; m) (3.12) 

Where Ua is the total arc voltage, AUA and AUc are anode and cathode voltage 
drops and 1 is length of arc without anode and cathode drops. 

The second one is the fact that both heat transfer from the arc and energy of 
particles hitting the electrode spots heat up the arc root regions and in the case of 
cathode further increase its ability to emit electrons. This again influences the arc 
voltage by needing less voltage to extract enough electrons to transfer the current. 
This is conveyed by decreasing AUc m equ. 3.12 with increasing temperature of 
cathode spot. Thus, when the arc is forced to move to a place with cold cathode 
spot the AUc increases and so does entire arc voltage and with it the energy. And 
so, the arc displays tendency to stay in its original place. 

This effect is multiplied when using arc chute due to forcing the arc to create 
multiple cold cathode spots in one moment. This is a major problem that needs to 
be addressed when using this solution for current limiting as documented in [5]. 
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3.2.2 Back-commutation 

If the arc successfully overcomes the previously mentioned hurdles on its way to 
quenching chamber it can face another phenomenon. When the arc voltage increases 
so does the voltage across the whole contact gap. If the space between electrodes does 
not have enough time to increase its dielectric strength by processes of recombination 
and heat transfer, an event can occur very similar to dielectric reignition.[2] 

This effect can be enhanced by additional transfer of ionised particles from the 
arc by different causes like diffusion, radiation and transfer by hot gas propelled by 
the moving arc and reflected back by the arc chute. 

The exact spot where this reignition occurs influenced by the gap length, electric 
field distortion by edges of the contacts and the lateral walls and the temperature 
distribution of the gas. [6] 

When this causes a new arc to ignite on some previous position the old arc is 
immediately extinguished and the process of arc motion starts anew. This obviously 
stresses the arc runner and needlessly prolongates the breaking process. This again 
makes the arc voltage drop and current rise. [5] 
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4 Arc diagnostics 

The purpose of diagnostics is to determine parameters of certain device or to 
observe some phenomena that can influence these parameters. By this definition, 
the types of tests imposed on the device vary widely depending on the used device 
and the information one desires to obtain. 

When concerning switching devices test focus mainly on the following parts: 
• switching capabilities 
• material degradation and endurance 
• safety 
The switching process is always observed by measuring current and arc voltage 

on the device under defined loads. But this can be enhanced by adding fast camera, 
pressure sensor or measuring spectra of the arc to better understand the ongoing 
processes. 

The material degradation and erosion concerns almost all parts of the device. 
Every device is exposed to thermal effects of current and arc. Some are even directly 
exposed to arc. Some are mechanically stressed. Some are exposed to U V radiation. 
A l l of this lowers the lifetime of the device and in the case of contacts often can lead 
to malfunction. 

For the safety reasons, it is demanded that plasma emission cannot occur in 
a place occupied by operating personnel. Dangerous voltage or temperatures are 
restricted to places the operator cannot come into contact with. 

4.1 Chosen methods 

The chosen methods for measurement always depend on the phenomena one 
wants to observe. So, for the first test only current and arc voltage were measured. 
These are the easiest to implement and can always be used because there are no 
limitations stemming from the device construction. 

After this, further needed methods can determined. In this case, the observed 
effect was back-commutation and sticking. To address these problems, places on 
arcrunners where these effects occur need to be identified. Fast camera was the 
method of choice for this. At first, this was not an option due to the fact that the 
material of enclosure did not let through any light from the arc at the used arc 
parameters. This was solved by using an enclosure made for the prototype of this 
contactor. This can bring up two influences on the breaking process. The first is 
the presence of another plastic in the immediate vicinity of an arc. This can alter 
the composition of the arc and thus its behaviour. The seconds problem is the fact 
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that there are several minute construction differences between the used version and 
the prototype. This can cause improper sealing of the enclosure. 

Another things needed to be investigated were the forces causing the arc move­
ment and eventually stagnation. The pressure field was measured in three places 
along the arc trajectory. The possibility of substitution of the fast camera measure­
ment by the pressure measurement for the purposes of determining the arc position 
was investigated. 

The magnetic field was not measured but was modelled by finite element method 
in Ansys. 

4.2 Arc voltage 

When taking any measurement of a switching device the voltage and current 
measurements are the most widely used and easiest to implement methods. The 
measurement methods are commonly known and do not need to be discussed in this 
thesis. 

What is worth discussing is the evaluation of the data gained. For the simplicity 
of all the following waveform diagnostics let us assume that the voltage drop across 
the current carrying path is negligeable in comparison to the arc voltage. 

The following effects will be demonstrated on waveforms of M C C B switching 
short circuit current. 

0 0,001 0,002 0,003 0,004 0,005 0,006 0,007 0,00B 0,009 0,01 

Us] 

Fig. 4.1: Breaking operation voltage waveform - M C C B 
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Let us start in chronological order and focus on the steep rise in voltage in about 
2 ms from the start. It consists of two distinctive edges. This represents the parting 
of contacts and ignition of the arcs. The voltage rise consists mainly of the anode 
and cathode voltage drops. The reason why there are the two edges is construction of 
this breaker. There are two pairs of contacts and due to tolerances the two contacts 
do not separate at the same exact moment. Therefore, separate ignitions of the arcs 
can be seen. 

The second process after arc ignition is arc travel across the arcrunners. This 
can be seen in the time frame from 2 ms to 7 ms. This part is recognizable by 
the continual increase in voltage given by arc prolongation and cooling. In this 
particular case, the waveform is very smooth. This is not always the will be 
shown later. This is due to a smooth increase in arcrunner distance which translates 
to smooth increase in arc length and the fact that the arc is stable due to relatively 
short length and magnetic constriction as a result of high arc current. For this the 
arc is not disturbed by gas flow. 

The last part from 7 ms to about 9 ms shows a distinctive increase in voltage 
combined with great fluctuation in the voltage value. This is a simple indicative of 
the arc reaching the arc chute. The arc rapidly changes its length and location of 
electrode spots and this causes the fast changes in voltage. 

300C 

250G 

20tH 

-

£• 150C 

1D0C 

50C 

0 
0,285 0.29 0,295 0.3 0,305 0.31 0.315 0,32 0.325 0,33 0.335 0,34 

t [s] 

Voltage Current 

Fig. 4.2: Breaking operation voltage waveform - contactor 

Figure 4.2 depicts waveform from the diagnosed contactor. By comparing it to 
the fig. 4.1 several differences to the M C C B can be discerned. Firstly, the voltage 
rise from 290 ms to 320 ms is not a smooth function as it was in the breaker. The 
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value of voltage stagnates or rises very slowly in comparison to the M C C B for the 
majority of time. This long period of stagnation is intersected by a steep rise and 
fall in several timestamps namely 307, 309 and 317 ms. These rises indicate a quick 
movement of the arc along the arcrunner and subsequent back-commutation. This 
was validated by joined fast camera observation. The second thing to note is the 
voltage of the arc in the quenching chamber (about 320-335 ms). The voltage rise 
is far steeper and far more stable. This is due to usage of non-conducting material 
for the splitter plates. 

4.3 Pressure 

As the pressure field influences the arc movement alongside the magnetic field it 
is of an importance to be able to measure its distribution. For this there is a number 
of possible pressure sensors that can be used. 

Piezoelectric principle is one of the most commonly used in pressure sensors. 
This principle uses the fact that some crystals are capable of producing electric 
charge on its surface when force is applied to the crystal. This is due to positive 
and negative crystal lattice elements are displaced relative to one another and as 
such create an electric dipole. This charge manifests several positive attributes. It 
is proportional to the applied force and depends only on the material used and not 
on the physical dimensions of the crystal. This can be used to reduce the size of 
sensors and increase their sensitivity by stacking multiple crystals on top of each 
other while connecting them in parallel. But voltage output is needed for following 
measuring chain the charge has to be processed by a charge amplifier to get the 
output voltage that matches the measured pressure. 

Other principle also uses a crystal deformation but it uses the changes in its di­
mensions to create a variable resistor. That is called a piezoresistive sensor. By ap­
plying a constant current to this resistor a variable voltage is obtained corresponding 
to the measured pressure. Other material than crystal could be used. For example 
metal but the change of resistivity is more pronounced for semiconductors. [10] 

There are other principles like the capacitive sensors which also measure the 
change of a property in this case capacity with pressure. The configuration often 
consists of two parallel electrodes with a thin gap. One of the electrodes is moving 
the other is static. The change of capacity is measured by making it part of a tuned 
circuit. 

The last but not least is an optical sensor which encompasses two working princi­
ples. The first one is that the moving membrane just covers part of the light source 
and the light sensor registers this decrease in intensity as an increase of pressure. 
Other uses a configuration a moving mirror and optical path with variable length. 

30 



And by comparing the phase of the light returning to the sensor the change in the 
position of the mirror carrying membrane can be discerned. [11] 

With such a wide array of possible sensors there is a great need to choose the 
one suitable for the right application. 

The piezoelectric sensors are mostly suited for fast processes due to both having 
high natural frequency and due to the virtue of its principle drift occurrence during 
longer measurements without pulsations. They also have very high thermal stability 
which is needed for measurements in arc chamber. [10] 

The piezoresistive sensors lack the downfall of an output voltage drift and as 
such are used for static measurements. They have very simple construction and are 
the most common ones. This leads to low costs and durability. But the construction 
carries a drawback that it is temperature dependent and its response time is about 
1 ms in comparison to 1 fj,s of a piezoelectric. 

The capacitive sensors show little temperature dependence and have a very low 
hysteresis. They can be also easily implemented as wireless but the main drawback is 
that in comparison to previous sensor these sensors have a non-linear characteristics. 
There are ways to compensate this but at a cost of worsening of sensitivity and 
hysteresis. 

Optical sensors have both high sensitivity and low temperature dependence due 
to the measurement and reference detectors being affected equally. They are also 
very resilient to surrounding interference hence it uses optical signal. But their high 
sensitivity can be a cause of error by acoustic and mechanical vibrations of the whole 
sensor. [11] 

Even after choosing the correct type of sensor several effects need to be addressed 
that can still influence the validity of the output data. 

First one to mention is sensor acceleration. If the sensor is mounted in a place 
that can be moved, it can read this movement as a false change in pressure. This 
can be avoided by properly fixing the sensor and emplacing it to a place that is 
not prone to moving. Alas, this is sometimes not achievable in combination with 
the requirements on the sensor placement. If this is the case. Cross examining 
with other sensors placed on immovable parts and with other quantities such as arc 
voltage and current can help to filter out this error. Additionally, if the movement 
is mostly caused by the contact movement, the test can be performed without load 
and the data can be used for filtering. 

As the sensor cannot be used alone but in a conjunction with an adapter, there is 
another phenomenon influencing the measurement. The sensor and adapter create 
a resonator and superimpose a high frequency oscillations on top of the actual wave­
form. But if the frequency of these oscillations is much higher than of the pressure, 
it can be filtered out by low-pass filter either hardware or in post-process. 
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Last but not least, there is a problem common to a switching device pressure 
measurements and it is thermal shock. This leads to pressure decrease that does not 
reflect real conditions. The only way to address this is to apply protective grease 
layer of appropriate thickness. [9] 

4.4 Fast camera 

Many of the previous measurements are used to assume the arc behaviour from 
indirect effects. The usage of fast camera provides data about actual arc movement 
and behaviour. This in conjunction with measurement of mechanical movement 
without load can bear significant insight into the inner workings of the designed 
device. 

Both test with and without load carry their own advantages and shortcomings 
but both can prove invaluable as a diagnostic tools. While other methods were 
basically universally applicable this is often not the case of fast camera. This is 
caused by the simple need of a direct optical path to the spot desired to observe. 

First, let us aim to investigate process which is without an arc for the majority of 
time. For example the dynamics of closing contacts. It is needed both to use a light 
source and to recapture the light. Seldom is the optical path is open and it has to be 
created. The simplest way is cutting open the side of the enclosure and aligning the 
light source with the camera and recording the reflected light. Even if there is no 
arc which would be affected by the pressure changes caused by the alteration of the 
enclosure, the natural frequency of the system can be altered and thus, for example 
the contact bounce can differ after this change. To counteract this, the missing part 
can be replaced by a translucent part to a varying degree of success. To address 
this disadvantage, the position of the light source can be changed. It can directly 
face against the camera and not capture the reflected light but the shadow cast by 
the observed object. A source of parallel rays of light is needed for this and in both 
cases the access to the contacts or any other observed part cannot be obstructed by 
any part that either cannot be removed or is opaque. 

In case of arc measurements, the light source is not needed for every type of 
measurement as the arc produces light of its own. Depending on the switching 
load, the intensity of the arc changes and determines the measurement method. 
For low intensities one needs to again resort to removing a part of the device but 
now the replacement with translucent part is not optional. This in addition to the 
problems mentioned above creates the problem of adding a new type of plastics to 
the immediate vicinity of the arc. This can alter the transport quantities of the arc 
by the process of ablation. With high power arc the intensity can be high enough to 
radiate even through the plastic enclosure. But this is not always the case as some 
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plastic materials can absorb the light emitted by the arc. Then even for high power 
arcs one needs to again resort to the first approach. 

But if none of the previously mentioned methods is sufficient there is one more ap­
proach to spot the arc movement. It is based on the methods used for the movement 
without load but instead of using regular light source a laser light with wavelength 
both not emitted by the arc and not absorbed by the enclosure and a narrow band 
filter are used. The laser light source can again be positioned either aligned or facing 
the fast camera. 

There are more uses for filters in arc measurement. If the arc composition is 
known in advance either by previous measurements or by accounting for contact 
and plastic materials, wavelength emitted by only one of the present element can be 
chosen. Thus, its distribution in arc can be observed. This finds its application for 
example in observing arc erosion and follow-up re-deposition of contact materials. 

It is important to mention another method of an optical observation primarily 
used when fast cameras did not have high enough resolution. It is the usage of optical 
fibre arrays. Basically, a matrix of points in the enclosure could be created and the 
emitted light could be transfered by optical fibres to a photosensitive element which 
converted the photosignal to a voltage signal. From this the position of the arc may 
be assumed. This while only giving discrete information about the arc location can 
be done in great success while limiting the influencing the actual switching. [12] 

For all the previously mentioned approaches, apart from qualitative evaluation, 
a measurement of movement based on tracking chosen points is possible while having 
referential dimension for each setup. This can be done in any relative position of 
camera and the plane in which the movement is realized. The measurement is most 
easily accomplished when the plane of movement is parallel to the plane of lens. 
This is often the deciding factor in camera placement together with limiting factors 
of the optical path. 

33 



5 Preliminary measurements 

The goal of this thesis was to realise changes that reduce or eliminate the oc­
currence of sticking and back-commutation phenomena. Therefore, the time and 
location of their occurrence had to be determined first. This had to be done by 
reliable and non-invasive methods. 

Z\ I\ I\ 

current signal 

LEM 4000 

Z\ I\ I\ 

Divider 1:1005.2 

arc voltage signal 

Contactor 

Fast cam 3A-X2 

trigger and synchronisation 

Charge multiplier 

KistlerType 501E 
pressure signals 

Fig. 5.1: Measurement setup 

The whole setup is shown in the fig. 5.1. Not all parts were always used. But 
the parameters of the circuit were always the same. 

The first measurements were done without fast camera due to the plastic material 
of the contacor sample. The contacor was tested at 1800 V of D C voltage at current 
1700 A and time constant 1.51 ms. The purpose was to determine several things - if 
there is a relation between the pressure waveforms and voltage drops caused by the 
back-commutation, if there are any significant pressure gradients causing either arc 
stagnation or transfer of particles from the arc back to places with shorter electrode 
distance and thus helping back-commutation. 

The second measurement was performed after acquirement of a previously used 
enclosure which transmits light. Thus, fast camera could be used to actually de­
termine the places where the sticking and back-commutation occur. The contacor 
was tested at 2250 V of DC voltage at current 960 A and time constant 8.6 ms. To 
synchronise the data and reliably link the events on camera recording and voltage 
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waveform, data card NIUSB-6361 B N C or trigger signal waveform from the system 
was used. The pressure was not measured this time to streamline the process. 

The third measurement was a combination of the previous ones. This was to link 
the pressure waveforms with voltage ones while gaining more data on the problem 
tackled in second measurement. 

5.1 Pressure measurements 

The pressure was monitored in three places. Their location was determined 
both by separate function of each location and by limitation given by contactor 
construction. 

The three chosen places were: at the start of arcrunner 1 (1), in the middle of 
the trajectory to the quenching chamber (2), at the ceramic plates (3) as shown in 
the fig. 5.2. 

Fig. 5.2: Pressure sensor placement 

Several types of pressure sensors were available. A l l of them were tested to 
select the most suitable one. A l l of them contained charge output which is suitable 
for high temperature range and dynamic measurement. A l l of them had sufficient 
pressure and temperature ranges. They used the same connection system and charge 
amplifier so, they were comparable. 

The comparison was based on influence of mechanical vibrations. Due to the 
fact that the better properties like shock resistance and natural frequency the worse 
the linearity of the sensor is. So, the sensor with the best linearity which was not 
yet influenced by the mechanical vibrations was chosen. 

These tests were done for sensors 603B, 701A, 601C produced by the company 
Kistler. 
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By comparing the fig. 5.3-5.5 the impact of closing of the contacts can be ob­
served. The sensor 701 A reads this as a change in pressure and gives output with 
constant offset. This was not suitable for further measurement due to the mechanical 
stress to the enclosure. 

Both 603B and 601C do not react to this operation so severely but the change 
in value can be observed in both waveforms. 

But the sensor 601C has much lower distortion of the signal and as such it proves 
to be the most suitable sensor to be used. 

The sensors were then tested by switching with no load on mechanical stress and 
interference from the surroundings. 

-0.01 

Fig. 5.6: Switching with no load 

This figure shows that the mechanical impact cannot be distinguished by the 
sensors and that the peak-to-peak value of the interference reaches maximally 5 mbar 
which is about 10% of the pressure rise measured during the switching with load. 

5.2 High speed camera 

The high speed camera was used at first to determine the location of places 
where the arc sticks and where does the back-commutation occurs. This was done 
together with arc voltage measurement so, its changes can now be reliably described 
in dependence on the arc location and movement. 

The process of arc movement in the chamber consisted of several phases. Some 
of them could be skipped whereas some of them occurred always. The sequence is 
listed in the order of occurrence. 
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• sticking in position 1 
• transfer of arc root to arcrunner 1 joined with back-commutation back to the 

moving contact 
• sticking in position 2 
• quick change of arc root from arcrunner 1 to arcrunner 2 (position 3) 
• quick change of the lower arc root to position near arc runner 4 (position 4) 

often joined with back-commutation to position 2 or 3 
• slow transit to position 5 

Fig. 5.7: Arc movement positions 

To put these stages into perspective, the images taken by the fast camera were 
compared to voltage waveforms. 

-Current Voltage 

Fig. 5.8: Arc voltage and current waveforms 
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In the fig. 5.8, several of the mentioned stages can be discerned. A slow rise 
in voltage can be seen from 320 ms to 322.6 ms. This signifies that the arc is 
staying between the contacts. The period from 322.6 ms to 324 shows a transfer 
from position 1 to 2 and 3. This was accompanied by several back-commutations 
onto the moving contact. These re-strikes are signified by a drop in voltage. Then 
from 324 ms to 327.9 ms the arc is in position 4 and just slowly transfers to the 
position 5 and comes into contact with the ceramic plates. This is marked by a now 
steeper rise in voltage. This rise is again disrupted by a fall in 327 ms. This was 
again a back-commutation to the position 2. After that arc burns on the plates from 
time 327.9 ms to 340.7 ms. This is again shown as a slow rise in arc voltage. 

That means it takes the arc 7.9 ms from 20.7 ms total to reach the quenching 
chamber. The average of these times from 20 measurements is 7.65 ms and 21.49 
ms respectively. This amounts to 35% of arc time is used solely on arc movement 
and contributes only a little to the breaking itself. 

This applies only to a fully successful breaking. But switchings can occur that 
proceed abnormally and the arc movement takes up to 70% of the time. These 
switchings, while not common, are significant contributors to the degradation of the 
device. 

3DDC 

2500 

2DDC 

i. 15DC 

1D0C 

50C 

0 
0,285 0,29 0,295 0,3 0,305 0,31 0,315 D,32 0,325 0,33 0,335 0,34 

t [s] 

Voltage Current 

Fig. 5.9: Abnormal breaking 

5.3 Combined measurement 

This last test was performed to find out if it can be reliably determined where the 
back-commutation occurs from the pressure waveforms. The same pressure sensor 
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position as for the separate pressure measurement was used. The time synchroni­
sation with camera was done by reading the camera trigger as a new input signal. 
But the signal from the sensor no.3 was either so low that it was indistinguishable 
from background or was lost due to other reasons. Therefore, it was discarded. 

The purpose was to provide an alternative way to determine the location of back-
commutation occurrence in the case the changes to the magnetic yokes would limit 
our ability to observe the arc by means of fast camera. Alternatively, this approach 
will be useful in the final tests with enclosure which does not transmit the light. 

From the performed tests it can be stated that with pressure waveforms alone 
nothing can be assumed about the arc position. However, in conjunction with arc 
voltage differences between transitions between different positions can be discerned 
as shown in fig. 5.7. 

Fig. 5.10: Combined measurement 

As stated before, if the time of back-commutation occurrence is to be determined 
the voltage waveforms need to be analyzed as described in previous chapters. Then, 
the pressure waveforms in corresponding time need to be observed. If the curves 
copy the same shape as shown in time 294 ms in fig. 5.10, the jump appeared from 
position 3 or 2 to position 1 and as such was detected by sensor number 1. But if 
the first sensor is undisturbed and only the second sensor records a change, then 
the back-commutation occurred between position 4 and 3. This is shown in time 
297 ms in fig. 5.10. 

This differentiation can be enhanced by adding pressure measurements to more 
places and thus having more references. But this will be done only if the opportu­
nities to use fast camera become limited. 
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6 Possible solutions to back-commutation and 

sticking 

One of the possible ways that have been used is a usage of a narrow slot or 
a hybrid of a slot and arch chute. This has been proven to make the transition to 
increased voltage smoother and gave the arc more time to adapt. Although this is 
also connected to lowering of the peak arc voltage it is still a good way to address this 
problem. There are several proposed mechanisms why it is so. The close insulator 
slot effectively cools the hot gas while also preventing it from moving back behind 
the arc. In addition, the plastic usage can serve as a gassing material to cool the 
gas and increase the dielectric strength of the gap. While this can be used when 
designing a new contactor it is highly unsuited for a small change to already existing 
device. [5] [8] 

Other possible solutions are given by [6], namely increase of recovery time. This 
is the time between the arc leaving a defined place and time of voltage increase 
due to lengthening or splitting. It has been shown that the re-strike voltage rises 
linearly after about 0.9 ms. This can be used in conjunction with slower arc motion 
to address the reignition problem without significant changes to the device. This 
can be done either by changing the magnetic field distribution by differently shaping 
the magnetic yokes or by changing the air vents to modify the aerodynamic forces 
influencing the arc. The magnetic field is also one of few ways to influence the 
sticking between the parting contacts, see fig. 6.1, where d is a contact gap length. 
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Fig. 6.1: Sticking time as a function of flux density [13] 

41 



Additionally, [6] gave other characteristics for increasing the re-strike voltage 
and thus preventing back-commutation. One of them is increasing the contact gap 
length. But the relation is highly non-linear and saturates at about 7 mm gap 
length. That is about half the length used so, this effect has already been fully 
used. Another of them is a small effect of the lateral wall distance. While slight 
changes to the distance could be implemented the change itself has both positive and 
negative effect. The closer the walls are the more effective the cooling and gassing 
of the insulating material is. However, at the same time the close walls distort the 
electric field. Other mechanism influenced by lateral wall distance is presented by 
[7]. They demonstrated influence of wall distance on temperature and pressure field 
distribution in DC CB by experiment and simulation but concluded that under 100 
mm distance these effects are negligible. Even though this number will differ for 
every device one can argue that there is a limit to reduction of wall distance which 
when reached bears no more benefit. For this, change of wall distance was not 
considered as a primary option. 

Another approach was mentioned by [8] and it is to appropriately shape the 
arcrunners to achieve maximally smooth increase in arc voltage to reduce the chance 
of back-commutation while choosing the right material. This is a sensible solution 
for arc runners 2-4 because a change in their shape does not need to affect other 
parts while the amount of material used does not change considerably. The arcrunner 
material used by the providing company is either steel or bronze. For further testing 
bronze was used to prevent the material to distort the magnetic field used to propel 
the arc to the quenching chamber. 

As demonstrated in previous chapter, the problems of sticking and back-commu­
tation are generally linked together. The more the arc lingers in one place the more 
ionised the vapours in that place become and the higher the chance of re-strike is. 
Also the bigger the change in voltage when moving the longer it takes for the arc to 
move and again the bigger the chance of back-commutation. This can be addressed 
by the methods mentioned above with addition of increasing the magnetic field in 
the places where the sticking occurs and shaping the arcrunners 2-4 are the most 
viable. 

So, to conclude the selected changes to the contactor are: 
• shapes of arc runners 
• shape of yokes to influence the magnetic field distribution 
• size of air vents 
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7 Alterations of contactor parts 

The main changes were done to arcrunners 1 and 2 and pole plates 1, see fig. 7.1. 
This was both due to the fact that according to available literature they might be 
suitable for addressing the back-commutation problem and changes made to them 
do not pose a technological problem. A l l these separate changes are addressed in 
the following sections. 

Fig. 7.1: Altered parts in a setup 

7.1 Arcrunner 1 

The arcrunner 1 had been modified into two versions. Both of them with the aim 
to shorten the sticking time between the contacts. This was done by stretching the 
ends of the arcrunner apart to shorten the air gap between them and the arcrunner 
3 (the main current carrying path). The narrower gap makes it easier for the arc 
to transition from the moving contact to the arcrunner 1. On the other hand, the 
now lower dielectric strength of the shortened gap makes the breaking process more 
susceptible to back-commutation. 

Fig. 7.2: Versions of arcrunner 1 
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7.2 Arcrunner 2 

The most extensive changes were done to arcrunner 2 due to the fact that the 
gap between the arcrunners 1 and 2 is the source of most of the addressed negative 
phenomena. As stated before, the change in arc length should be as fluent as 
possible. 

Apart from closing the gap, as mentioned above, it was tested whether the lateral 
length of arcrunner 2 has any influence on the quenching process. The idea was that 
better prolongation of the arc could be achieved if longer electrode was used. This 
was tested in version 2. However, the tests showed that the arc root position did 
not change. This was observed by comparing the erosion of version 1 and 2 after 
tests. 

Fig. 7.3: A l l versions of arcrunner 2 

Fig. 7.4: Original arcrunner 2 
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265,00 

Fig. 7.5: Version 1 of arcrunner 2 

287,00 

55,82 

Fig. 7.6: Version 2 of arcrunner 2 

265,00 

37,13 

Fig. 7.7: Version 3 of arcrunner 2 
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Fig. 7.8: Version 4 of arcrunner 2 

7.3 Pole plates 

The pole plate 1 was altered by adding two pieces in the immediate vicinity of 
the contacts to speed up the process of arc leaving the contacts. Version 1 was done 
by filling a gap in the original pole plate. Version 3 was achieved by adding a part 
bellow the original piece. Version 2 was a combination of the previous changes. 

Original part-

Version 1-

Version 3-

Q  
1 c 

3,00 

Version 2 
(combined) 

L / 

Fig. 7.9: Versions of pole plate 1 
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8 Methodology 

A l l tests were done with the same setup as preliminary tests. The first series of 
tests was done on the prototype chamber. This brought the possibility of observation 
by highspeed camera. However, the chamber was becoming worn out due to ablation 
of plastic. This led to several test failures. For this, the serially manufactured 
chamber was used further on. This led to prolongation of all switching times due to 
the different plastic used for this new chamber. 

Tests of all parts were done in series of minimally five tests. Between each test, 
there was a three minutes long waiting time to allow the chamber to cool down. The 
contactor was cooled again by pressurised air between each set of tests (different 
configuration) to provide comparable data. 

However, even with this the new chamber also degraded over the time and the 
breaking performance worsened. For this, the test of original configuration with no 
alterations was repeated several times and the results are therefore be expressed as 
percentual changes in behaviour. 

8.1 Measured quantities 

To be able to compare the individual breakings, metrics were needed. Two 
primary ones were chosen. The time from separation of the contacts (rise of arc 
voltage) to the arc being fully transported onto the ceramic plates. The end of 
this period can be dicserned on voltage wavefunction as the first peak. This was 
confirmed by fast camera observations. This time was labeled as t\. And time from 
contacts separating to current zero was labeled as £ 2 -

-Voltage 

Fig. 8.1: Demonstration of t\ and £2 
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9 Measured data 

In this chapter, all relevant test results are provided. Tests with no alterations 
are labeled "no changes". Alterations to the arcrunners are labeled AR"number of 
arcrunner"-"version". For example, version 1 of arcrunner 2 was labeled AR2-01. 
Pole plates were labeled PP-"version". If a part is missing label of a part, the part 
was not altered. 

A worsening of the total switching time £ 2 can be observed in a substantial part 
of the data as the number of test increased. This can be attributed to heating of 
the chamber. 

With both prototype and the new chamber, first tests were sometimes discarded 
as an outliers due to impurities from assembly being burned away by the first test. 
These data are crossed out and are not accounted for in the averages. 

9.1 Prototype chamber 

test no. ti t 2 

1 8.00 21.28 

2 9.92 22.40 

3 8.16 20.88 

4 6.72 20.00 

5 8.64 22.32 

6 6.80 20.88 

7 7.04 21.28 

8 6.96 22.40 

9 6.64 22.00 

avrg. 7.65 21.49 

Tab. 9.1: No changes 

test no. ti t 2 

1 6.42 23.86 

2 7.38 23.88 

3 7.44 23.90 

4 7.42 24.06 

5 7.20 25.54 

6 8.90 28.22 

7 7.66 28.58 

8 7.24 30.74 

avrg. 7.46 26.10 

Tab. 9.2: AR2-01 
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test no. ti tz 
1 7.54 17.14 

2 7.52 18.16 

3 7.76 18.06 

4 9.22 18.92 

5 6.92 17.58 

6 9.06 20.56 

7 7.04 18.66 

8 7.70 19.32 

9 8.56 20.04 

10 8.78 20.62 

avrg. 8.01 18.91 

Tab. 9.3: No changes 

test no. ti t 2 

1 7.60 29.34 

2 7.42 30.36 

3 7.20 33.34 

4 7.20 29.02 

5 7.56 30.58 

avrg. 7.40 30.53 

Tab. 9.4: PP-01 

test no. ti t 2 

1 8.20 20.00 

2 7.88 20.20 

3 7.74 18.48 

4 8.14 21.16 

5 8.20 20.64 

avrg. 8.03 20.10 

test no. ti t 2 

1 8.96 20.46 

2 9.70 22.08 

3 7.42 20.00 

4 7.78 20.10 

5 6.44 20.06 

6 6.70 20.26 

avrg. 7.83 20.49 

Tab. 9.5: AR2-02 

test no. ti t2 

1 6.70 22.00 

2 7.20 22.84 

3 7.64 23.32 

4 7.56 22.72 

5 7.54 23.72 

avrg. 7.33 22.92 

Tab. 9.6: No changes Tab. 9.7: PP-01 
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test no. ti t2 

1 

2 7.30 21.08 

3 7.14 20.54 

4 7.02 21.44 

5 7.00 21.42 

avrg. 7.12 21.12 

Tab. 9.8: PP-02 

test no. ti t 2 

1 7.60 21.36 

2 6.78 22.06 

3 7.48 22.36 

4 6.66 22.12 

5 7.74 23.14 

avrg. 7.25 22.21 

Tab. 9.9: PP-03 

A l l the alterations proved effective in shortening the travel time t\. However, 
all of them suffer from prolongation of overall time t2. This was due to lower arc 
voltage when in contact with the ceramic plates. 

In case of altered pole plates, this can be attributed to lower magnetic field in 
the vicinity of ceramic plates. That led to smaller prolongation of the arc and thus 
lower voltage. 

At this point, no arcrunner 2 had yet been chosen for further testing. However, 
from the three tested pole plate alterations version 2 was chosen as it had provided 
shortest times for both t\ and t2-

9.2 New chamber 

test no. ti t2 
test no. ti t 2 

1 7.92 21.28 1 7.56 22.38 

2 7.30 22.14 2 7.40 23.06 

3 7.48 22.84 3 7.70 23.54 

4 7.88 23.70 4 6.78 22.90 

5 7.68 23.16 5 6.67 23.62 

avrg. 7.65 22.62 avrg. 7.22 23.10 

Tab. 9.10: No changes Tab. 9.11: AR1-01 
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test no. ti t2 
test no. ti t 2 

1 6.78 23.00 1 7.26 23.62 

2 7.38 23.48 2 6.88 23.48 

3 7.86 23.78 3 6.96 24.78 

4 7.06 23.42 4 6.66 24.26 

5 7.38 25.34 5 6.68 24.14 

avrg 7.29 23.80 avrg. 6.89 24.06 

Tab. 9.12: PP-02 Tab. 9.13: ARl-01;PP-02 

test no. ti tz test no. ti t 2 

1 6.88 22.08 1 6.68 21.74 

2 7.88 23.22 2 6.98 22.22 

3 6.94 21.82 3 8.08 24.86 

4 8.86 23.94 4 7.16 24.84 

5 7.00 22.76 5 7.12 25.42 

avrg. 7.51 22.76 avrg. 7.20 23.82 

Tab. 9.14: AR2-03 Tab. 9.15: AR1-02 

With the new chamber, the original setup was tested again to account for the 
change of plastic material and minor construction details. Also, version 2 of pole 
plates was tested again. 

Arcrrunner 1 was the focus of this group of tests. Version 1 again followed the 
trend of shortening the time ti and prolonging the time ti. Version 2 only furthered 
this trend. However, it shortened t\ by only a negligable amount but prolonged 
ti by 0.7 ms. For this, no further widening of arcrunner 1 was tested and for any 
further tests version 1 was used. 

Also, combination of pole plate version 2 and arcrunnerl version 1 was tested. 
This let to further shortening of time t\ and slight prolongation of time ti. 

test no. ti t 2 

1 7.14 24.58 

2 7.22 24.20 

3 7.62 26.54 

4 7.16 26.28 

5 7.36 28.26 

avrg. 7.30 25.97 

Tab. 9.16: No changes 

51 



test no. t i t 2 
test no. t i t 2 

1 6.52 24.90 1 7.34 23.24 

2 6.76 25.08 2 7.14 22.68 

3 6.76 24.38 3 7.50 23.46 

4 7.10 26.92 4 6.52 22.78 

5 7.54 25.26 5 6.92 23.94 

avrg. 6.94 25.31 avrg. 7.08 23.22 

Tab. 9.17: AR2-03 Tab. 9.18: AR2-03;AR1-01 

test no. t i t 2 

1 ^ ~ m 6 £ 

2 7.28 24.10 

3 6.78 24.30 

4 6.88 24.56 

5 6.62 25.04 

avrg. 6.89 24.50 

Tab. 9.19: AR2-03;PP-02 

test no. t i t 2 

1 6.60 23.40 

2 6.40 23.08 

3 6.30 24.58 

4 6.82 24.68 

5 6.28 25.32 

avrg. 6.48 24.21 

Tab. 9.20: AR2-03;ARl-01;PP-02 

test no. t i t 2 test no. t i t 2 

1 7.70 23.10 1 7.70 26.08 

2 7.36 25.02 2 6.42 26.02 

3 7.24 24.40 3 6.30 27.08 

4 8.26 24.94 4 7.28 28.32 

5 7.34 24.56 5 6.32 28.08 

avrg. 7.58 24.40 avrg. 6.80 27.12 

Tab. 9.21: AR2-04 Tab. 9.22: AR2-04;AR1-01 

test no. t i t 2 test no. t i t 2 

1 7.06 25.34 1 6.98 25.00 

2 6.92 24.84 2 6.42 24.16 

3 7.06 26.30 3 6.60 24.72 

4 6.96 24.96 4 6.84 24.92 

5 6.96 27.16 5 6.54 26.18 

avrg. 6.99 25.72 avrg. 6.68 25.00 

Tab. 9.23: AR2-04;PP-02 Tab. 9.24: AR2-04;ARl-01;PP-02 
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In this group of tests, only AR2-04;AR1-01 and AR2-04;PP-02 performed worse 
than the original by any of the chosen metrics. 

AR2-04 performed worse in every combination of parts than AR2-03. For this, 
it was discarded from further considerations. 

From the combinations with AR2-03, AR2-03;AR1-01 had the shortest total 
switching time £ 2 of 23.22 ms which is 10.6% improvement over the original version. 
However, AR2-03;ARl-01;PP-02 had the lowest time t\ of 6.48 ms which is an 
improvement of 11.2%. 

ti t2 

No change 7.30 25.97 
AR2-03,AR1-01 7.08 23.22 
AR2-03;AR1-01;PP-02 6.48 24.21 

Tab. 9.25: Comparison of the best re­
sults 

9.3 Influence of back-commutation 

£ 2 is a necessary parameter whose value needs to be equal or lower to the £ 2 of the 
original chamber not to worsen the switching performance of the device. However, 
it does not point to whether the problem with back-commutation and sticking have 
been addressed. 

The parameter £ 1 ; while expressing the goal of reducing the time of arc travel 
time, can be influenced by other phenomena apart from sticking and back-commuta­
tion (eg. by magnetic field distribution). 

To check for the influence of back-commutation, delays caused by it were calcu­
lated and voltage waveforms were compared. 

9.3.1 Determination of delay caused by back-commutation 

The time delay td was defined as the time needed for the arc voltage after back-
commutation to reach its original value before the back-commutation as shown in 
fig.9.1. The total time delay was not calculated from every drop but only from 
drops lasting at least 0.1 ms. This can lead to a substantial error due to the high 
number of small changes in voltage as the arcs transition from moving contact to the 
arcrunners. For this, the quantification of delay is to be used only as a comparative 
method between the used alterations. It needs to be accompanied by a qualitative 
comparison of the voltage curves. 
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Fig. 9.1: Back-commutation delay 

9.3.2 Comparison of the final versions 

Although the version AR2-03;AR1-01 achieved the shortest switching times, ver­
sion AR2-03;ARl-01;PP-02 had both the shortest time t\ and time td- It also had 
the smoothest voltage waveforms during the transition period of breaking. Examples 
of these waveforms are provided in fig. 9.2, fig. 9.3 and fig. 9.4. 

No change AR2-03;AR1-01;PP-02 AR2-03,AR1-01 

test no. td [ms] test no. td [ms] test no. td [ms] 

1 0.84 1 0.40 1 1.24 

2 0.78 2 0.60 2 0.76 

3 1.02 3 0.40 3 1.30 

4 1.72 4 0.26 4 0.38 

5 1.44 5 0.96 5 0.66 

6 0.50 6 0.32 avrg. 0.87 

7 0.94 avrg. 0.49 

8 1.76 

9 0.92 

10 0.84 

avrg. 1.08 

Tab. 9.26: Delay times 
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0,006 

Fig. 9.2: Arc voltage - No change 
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Fig. 9.3: Arc voltage - AR2-03;ARl-01;PP-02 

0,006 

Fig. 9.4: Arc voltage - AR2-03;AR1-01 
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0,001 0,002 0,003 0,004 0,005 

t [ s ] 

AR2-03;AR1-01 AR2-03;ARl-01;PP-02 No change 

Fig. 9.5: Comparison of final versions 

9.3.3 Control measurement 

After the tests which compared different versions of the contactor, control mea­
surement of only the version AR2-03;ARl-01;PP-02 and the original with no changes 
was carried out. 

The tests were done in groups of five with five minutes between each test and 
cooling by pressurised air between each group. The parameters of the tests were the 
same as for all previous tests. 

During these tests, the total switching time £ 2 increased from 25 ms to values 
above 35 ms and in the last two tests the circuit was interrupted by the system 
rather than by the contactor. This was due to damage sustained by the quenching 
chamber over the course of the entire testing. 
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No change AR2-03;AR1-01;PP-02 

test no. ti [ms] td [ms] ti [ms] td [ms] 

1 7.04 0.80 7.00 0.76 

2 6.94 1.07 6.76 0.34 

3 7.14 0.78 7.56 1.34 

4 6.74 1.34 6.44 0.42 

5 6.52 0.28 6.52 0.66 

6 7.22 1.00 7.10 1.90 

7 7.06 1.20 7.50 0.78 

8 6.40 0.50 7.00 1.22 

9 7.04 1.36 7.08 1.28 

10 7.62 1.42 6.04 0.36 

11 7.42 1.92 6.64 0.86 

12 7.30 1.80 6.30 0.42 

13 6.88 0.70 7.34 1.22 

14 6.72 0.86 7.18 0.54 

15 7.14 0.86 7.90 0.62 

avrg. 7.01 1.06 6.96 0.85 

Tab. 9.27: Control measurement 

Again, the altered version has both shorter travel time and time delay due to 
back-commutation but because of the fact that the contactor failed to operate these 
tests do not bring reliable data about the improvement. For clearly determining the 
difference between original contator and the final version, tests on a new undamaged 
contactor would be needed. 
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10 Conclusion 

After choosing appropriate diagnostic methods and examining the provided con­
tactor, it has been concluded that the contactor's function to reliably transfer the arc 
from contact region to its quenching chamber is afflicted by two phenomena: stick­
ing and back-commutation. Possible ways to address these problems were suggested 
while considering the limits of possible changes to the contactor. 

The changes were focused on the arcrunners and pole plates of the contactor as 
they have the highest influence on arc mobility. 

A combination of three alterations of the contactor was chosen: 
• widening of the arcrunner 1 to allow easier arc transfer from the contacts 
• shaping of the arcrunner 2 so the arc root transfer from arcrunner 1 to arcrun­

ner 2 causes minimal prologantion of the arc 
• changing the pole plates of magnetic circuit to increase the magnetic field in 

the vicinity of the contacts. 
This modification limited the back-commutation both in the transition from 

arcrunner 1 to arcrunner 2 and during the transfer of arc onto the ceramic plates. 
This resulted in shortening of the arc travel time by 11.2% and the total breaking 
time by 6.8%. 

To validate these results, final tests on a new contactor would be needed. As well 
as tests with different circuit parameters (current, voltage, time constant) would be 
needed to confirm if these alterations provide positive effect in the whole spectrum 
of switching currents. 
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List of symbols, physical constants and abbre­

viations 

TRV Transient recovery voltage 

i Current 
t Time 
L Inductance 

uc 
Source voltage 

R Resistance 

ua 
Arc voltage 

uml 
Power frequency component of T R V 
T R V with only one frequency of oscillatory component 

c Capacitance 

f Frequency 
Cu Copper 
w Tungsten 
Ag Silver 

Ee 
Electron energy 

U Voltage 
E Electric field intensity 
D Magnetic flux density 
d Electrode distance 

Electron mean path 
A Electron mean path constant 

P Pressure 
a Firts Townsend coefficient 
X Distance 
n Number of electrons 
n0 Original umber of electrons 

7 Third Townsend coefficient 

II-L Number of electrons leaving cathode per second 

V, Effective ionization potential 
F Force 
W Energy of the arc 
N Number of splitter plates 
AUA Anode voltage drop 
AUC Cathode voltage drop 
I Arc length 
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uv Ultraviolet 
MCCB Molded case circuit breaker 
fi2dt Joule integral 

h Arc transfer time 

h Total breaking time 

U Back-commutation delay 
Sticking time 

G2 


