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A B S T R A C T

This thesis presents my contributions to the state-of-the-art in Intelligent Trans-

portation Systems and Computer Vision. Specifically, the work is focused on two

tasks – automatic speed measurement of vehicles and fine-grained recognition of

vehicles.

The problem of vehicle fine-grained recognition can be defined as a task where

the system is supposed to produce exact fine-grained type (e.g. “Škoda Octavia

combi mk2”) for a presented vehicle. In my first paper on this topic, a method

exploiting automatically constructed 3D bounding boxes around vehicles is pro-

posed. The results show that the method significantly improves classification and

verification accuracy. Further improvements and analysis of the approach was pub-

lished in my second paper dealing with the problem. The improved approach elim-

inates necessity to know vanishing points a priori – it is possible to construct the

3D bounding box of the vehicle from a single image of the vehicle. The results

show that our proposed method consistently improves classification accuracy by

up to 12 percentage points with different Convolutional Neural Networks. The

classification error was also reduced by up to 50 %.

The second addressed problem is automatic speed measurement of vehicles. The

proposed system should work from a single camera without any manual calibra-

tion or input. First, we had to collect a large dataset with precise ground truth

speed measurements as there was no such dataset. The dataset contains over 20 000

vehicles with ground truth speed measurement acquired from two synchronized

LIDAR optical gates. Furthermore, we proposed a method for fully automatic traf-

fic surveillance camera calibration enabling precise speed measurement of vehi-

cles. The approach is based on vanishing point estimation and 3D model align-

ment of several common vehicle models. The experimental results show that our

method achieves 1.10 km/h mean speed measurement error while outperforming

both state-of-the-art methods and manual calibration in the speed measurement

task.

K E Y W O R D S

fine-grained recognition, traffic surveillance, camera calibration, speed measure-

ment
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A B S T R A K T

V rámci této dizertační práce se zaměřuji na Inteligentní dopravní systémy a Počí-

tačové vidění – především automatické měření rychlosti a rozpoznání automo-

bilů podle typů.

Rozpoznání automobilů podle typů je úkol, ve kterém system má predikovat

přesný typ (např. „Škoda Octavia combi mk2“) pro daný obrázek automobilu.

Publikoval jsem dva články, které popisují navržený přístup k tomuto problému a

tvoří jádro této dizertace. Prezentovaná metoda je založena na 3D obalových kvá-

drech postavených okolo automobilů, které jsou následně využity pro rozbalení

obrázku automobilu do roviny a tudíž normalizaci vstupu neuronové sítě, která

dělá následné rozpoznání. Přístup byl dále rozpracován v druhé publikaci, kde

je navržena metoda pro určení tohoto 3D obalového kvádru z jediného obrázku –

tudíž není nutné mít zkalibrovanou kameru. Experimentální výsledky ukazují, že

navržená metoda zlepšuje úspěšnost rozpoznání o 12 procentních bodů – chyba

rozpoznání je redukována o 50 procent.

Při měření rychlosti má systém za úkol odhadnout rychlost projíždějících aut z

videa. Cílem je také, at’ měření probíhá plně automaticky bez jakékoli manuální

kalibrace. Jelikož neexistoval žádný dataset, který by obsahoval velké množství

průjezdů s přesně změřenou rychlostí, tak jsme nejprve takovýto dataset pořídili.

Dále jsem navrhnul metodu pro plně automatickou kalibraci dopravní dohledové

kamery což umožňuje měřit rychlost automobilů pozorovaných touto kamerou.

Metoda je založena na odhadu kalibrace pomocí detekovaných úběžníků scény

a následného zarovnání 3D modelů několika běžných typů automobilů. Experi-

mentální výsledky ukazují, že navržená metoda dosahuje průměrné chyby měření

rychlosti 1,10 km/h.

K L Í Č O VÁ S L O VA

rozpoznání typů automibilů, dohled dopravy, kalibrace kamery, měření rychlosti
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1
I N T R O D U C T I O N

United Nations Economic Commission for Europe in document Intelligent Transport

Systems (ITS) for sustainable mobility [42, page 18] claims that:

Intelligent Transport Systems play an important role in shaping the future

ways of mobility and the transport sector. We expect that through the use of

ITS applications, transport will become more efficient, safer and greener. The

huge potentials and benefits, however, can only be reaped if ITS solutions are

put in place – internationally harmonized as much as possible.

Also, in my opinion, it will be possible to use Intelligent Transport Systems

for tasks which will increase comfort and safety of drivers and pedestrians. For

example, it will be possible to navigate vehicles and control lights in a way that will

improve permeability of the traffic network. Another improvement for the drivers

could be automatic warning about collisions on the road ahead of the drivers. Or in

an ideal case, it would be possible to predict precisely where vehicles are heading

and prevent congestion before it will even happen. Another task where the traffic

surveillance system can be beneficial is estimation of demographic statistics. There

is for example a recent paper by Gebru et al. [50] tackling the demographic data

acquisition using fine-grained recognition of vehicles.

However, for all these tasks and Intelligent Transportation Systems in general,

it is necessary to have a high amount of statistical data about the traffic flow on

roads. Also, in order to be the system deployable on a large scale, it is useful that

the system is cheap and it does not require any sensor settings on a per-sensor

basis.

Such cheap sensor can be a camera. Therefore, my focus in this Ph.D. thesis is

on enabling acquisition of complex statistical data from traffic surveillance cam-

eras in a fully automatic manner. In particular, I address the problems of auto-

matic speed measurement of vehicles from camera and fine-grained recognition

of vehicles. Methods for acquisition of other traffic flow statistics are addressed in

paper [Soc14], which is based on my Master’s thesis.

1



2 introduction

1m

1m

Figure 1.1: An example of calibration for speed measurement obtained by a fully auto-

matic algorithm proposed in the thesis. The calibration is represented by an

orthogonal regular grid with 1m sides.

1.1 problem definition

The primary goal of this Ph.D. thesis is to push the state of the art in two areas of

research: fine-grained recognition of vehicles and automatic speed measurement of

vehicles. Both these algorithms are focused mainly on traffic surveillance cameras.

The fine-grained recognition of vehicles is a task where the method is expected

to determine the exact model of a given vehicle in an image. The differentiation

should be done up to model years of the vehicles as they may differ in vehicle

geometry. The goal regarding the fine-grained recognition of vehicles in this thesis

is to develop a method which will be able to recognize vehicles on images taken

by a surveillance camera. The requirement of applicability with surveillance cam-

eras has several implications. First, it is necessary to handle low resolution images

with significant video compression. Also, the method should be able to recognize

images of vehicles taken from an arbitrary viewpoint.

The other area of addressed research is automatic speed measurement from

a single monocular surveillance camera. For the speed measurement, it is neces-

sary to be able to measure time and distances on the road. The time measurement

in video sequences with known framerate is relatively direct. However, the mea-

surement of real world distances on the road plane is more challenging, consider-

ing the fact that it should be done in a fully automatic manner. For the distance

measurement, it is necessary to calibrate the camera (i.e. estimate intrinsic and

extrinsic camera parameters) and also estimate the scale of the scene (or distance

from camera to the road plane). With all these information available, it possible
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to measure distances on the road plane. See Figure 1.1 for an example of the full

(including scale) calibration.

1.2 core contributions

My contributions to fine-grained recognition of vehicles include improving clas-

sification accuracy of Convolutional Neural Networks [85] using automatically

constructed 3D bounding boxes constructed around vehicles [DSH14] using traf-

fic surveillance data. The results show that the proposed method consistently im-

proves classification accuracy by up to 12 percentage points with different CNNs

[82, 143, 62, 47]. The classification error was also reduced by up to 50 %. The con-

tributions were presented in the following papers:

• BoxCars: 3D Boxes as CNN Input for Improved Fine-Grained Vehicle Recognition

– CVPR1, 2016 [SHH16]. The first paper dealing with the fine-grained recog-

nition using the 3D bounding boxes. The method was applied both on fine-

grained classification and verification with consistent improvement in both

tasks.

• BoxCars: Improving Vehicle Fine-Grained Recognition using 3D Bounding Boxes

in Traffic Surveillance – IEEE T-ITS2, 2018 [SŠH18]. Extended journal version

of the previous paper. The classification results were further improved and

complex and in-depth analysis of the method is presented. Also, we propose

a method for 3D bounding box estimation in situations where it is not possi-

ble to construct the precise 3D bounding box from the surveillance data.

My contributions to the speed measurement are based on the proposed algo-

rithm for precise traffic surveillance camera calibration. The experimental results

show that our method achieves 1.10 km/h speed measurement mean error while

outperforming both state-of-the-art method and manual calibration in the speed

measurement task. The contributions are described in these papers:

• Comprehensive Dataset for Automatic Single Camera Visual Speed Measurement

– IEEE T-ITS3, 2018, under review [SJŠ+18]. Survey and dataset paper

for speed measurement. The dataset BrnoCompSpeed is by far the largest

dataset for speed measurement from video with precise ground truth. The

dataset contains more than 18 hours of videos from various viewpoints and

1 IEEE Conference on Computer Vision and Pattern Recognition

2 IEEE Transactions on Intelligent Transportation Systems – IF: 3.724

3 IEEE Transactions on Intelligent Transportation Systems – IF: 3.724
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varying traffic intensity. The dataset also contains more than 20,000 of vehi-

cles with precise ground truth speed. The paper is currently under review

with last status “Accept as Regular Paper after Minor Revision” while the

reviewers requested only very subtle changes in the text of the paper.

• Traffic Surveillance Camera Calibration by 3D Model Bounding Box Alignment

for Accurate Vehicle Speed Measurement – CVIU4, 2017 [SJH17]. Paper with

proposed method for traffic camera calibration for speed measurement. The

method is based on vanishing point detection and alignment of 3D models

of several common vehicle types to estimate the scene scale. The method was

evaluated on the BrnoCompSpeed dataset and the final mean speed measure-

ment error is 1.10 km/h.

All these papers present my contribution to the state of the art in Intelligent

Transportation Systems and Computer Vision in two important areas (automatic

speed measurement and fine-grained recognition of vehicles). Furthermore, results

or our ongoing research showed that the 3D bounding boxes improve performance

even for vehicle re-identification task [SŠJH18].

1.3 other publications

I have also authored and co-authored other publications during my studies while

all of them are directly connected to the topic of the dissertation thesis. Therefore,

I provide the list of the papers in chronological order of publication:

• Fully Automated Real-Time Vehicles Detection and Tracking with Lanes Analysis –

CESCG5, 2014 [Soc14]. Paper on a student conference based on my Master’s

thesis. The paper was accepted for oral presentation and I have received

award for the 3rd best paper on the conference.

• Automatic Camera Calibration for Traffic Understanding – BMVC6, 2014 [DSH14]

Our first publication dealing with automatic speed measurement of vehicles

from traffic surveillance camera.

• Fully Automatic Roadside Camera Calibration for Traffic Surveillance – IEEE T-

ITS7, 2014 [DHJS15]. Publication introducing traffic camera calibration by

detection of vanishing points.

4 Computer Vision and Image Understanding – IF: 2.498

5 Central European Seminar on Computer Graphics

6 British Machine Vision Conference

7 IEEE Transactions on Intelligent Transportation Systems – IF: 3.724
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• Unsupervised Processing of Vehicle Appearance for Automatic Understanding in

Traffic Surveillance – DICTA8, 2015 [SH15]. Clustering of fine-grained vehicle

samples from a camera. Method proposed in the paper was used for con-

struction of the BoxCars21k dataset [SHH16]. The paper was accepted for

oral presentation.

• INCAST: Interactive Camera Streams for Surveillance Cams AR – ISMAR9, 2015

[SZK+15]. Paper dealing with Augmented Reality with static cameras and

dynamic content. Our automatic traffic camera calibration methods [DSH14,

DHJS15] were used for the static camera calibration for the paper.

• Holistic Recognition of Low Quality License Plates by CNN using Track Annotated

Data – IWT4S-AVSS10, 2017 [ŠSJ+17]. In this paper, we propose to use single

CNN for recognition of license plates. As the method does not require any

segmentation of characters, it is able to recognize even license plate of low

quality. The results show that our method outperforms other solutions by

an order of magnitude.

• Learning Feature Aggregation in Temporal Domain for Re-Identification – ECCV11,

2018, submitted [SŠJH18]. This paper is focused on aggregation of learned

features in temporal domain. We propose an end-to-end approach which

produces different weights for different elements of the feature vectors. Fur-

thermore, the experimental results show that 3D bounding boxes [SHH16,

SŠH18] improve performance even for the vehicle re-identification task.

1.4 thesis organization

This dissertation thesis consists of several parts. Part I introduces relevant back-

ground and state-of-the-art methods for both fine-grained recognition of vehi-

cles and automatic speed measurement of vehicles. My contributions to the fine-

grained recognition and speed measurement are described in Parts II and III. Both

these parts consist of re-formated copies of papers [SHH16, SJŠ+18, SJH17, SŠH18]

which form the core of the dissertation thesis. Finally, discussion about the impact

of the work is presented in Part IV together with thesis conclusions.

8 International Conference on Digital Image Computing: Techniques and Applications

9 IEEE International Symposium on Mixed and Augmented Reality

10International Workshop on Traffic and Street Surveillance for Safety and Security (in conjuction with

IEEE AVSS)

11 European Conference on Computer Vision





Part I

S TAT E O F T H E A RT

This part of dissertation thesis provides overview of state of the art

methods for vehicle fine-grained recognition and speed measurement

of vehicles using traffic surveillance cameras. Different methods for

both these tasks are introduced and described. Limitations of these

methods and implications for the direction of my work are also dis-

cussed.





2
F I N E - G R A I N E D R E C O G N I T I O N O F V E H I L E S

Fine-grained object recognition received increasing levels of attention by the com-

puter vision community in the past few years [76, 46, 49, 38, 160, 7, 71, 157, 191].

The fine-grained recognition is a task where different subtypes (e.g. animal breeds,

vehicle types) should be classified. This is usually harder than standard classifi-

cation (e.g. is that a building or a person?) as there is much smaller inter-class

variation and still relatively high intra-class variation due to pose variance.

More specifically, fine-grained recognition of vehicles is a task of determining

what model is present on a given image. The fine-grained recognition can have

different granularities. In our work, we consider the finest and complex granularity

where we want to distinguish even different model years of the same vehicle model.

Therefore, our task is to recognize the make, model, submodel, and model year of

a given vehicle (e.g. “Škoda Octavia sedan mk1”).

To provide context to the proposed method, we provide a summary of existing

fine-grained recognition methods (both general and focused on vehicles). We also

briefly describe recent advancements in Convolutional Neural Networks as they

are used for the fine-grained recognition in the proposed method.

2.1 fine-grained object recognition in general

A number of papers addressing this topic was published and some of them are

discussed in this part of the text. Methods used also on other fine-grained recogni-

tion tasks (not only vehicles) are described in this section. However, some of these

algorithms described in this part were used also for fine-grained recognition of ve-

hicles. Methods focused only on fine-grained recognition of vehicles are described

in the following section.

Quite a large number of papers [117, 14, 43, 149, 164, 107, 139, 179, 183, 142,

54, 115, 170, 34, 171, 180, 181] propose to use parts of the object for fine-grained

recognition. Several papers [149, 164] use saliency masks to obtain the location of

the parts. Other papers [139, 54] use transfer of parts’ locations from objects of

the same type with annotated parts. Lam et al. [107] propose to use HSNet for an

iterative search of discriminative parts. Zhang et al. [179] use detected parts in a

dense manner with superpixels corresponding to different parts of birds. Several

papers [178, 72] propose to unify fine-grained classification and semantic parts

9



10 fine-grained recognition of vehiles

detection into one end-to-end trainable network. Zhang et al. [183] propose to

iteratively train and pick deep filters which correspond to parts. Simon et al. [142]

use deep neural activation maps to detect parts of objects which are used to build

a star shape constellation model. Xiao et al. [163] proposed to use two nets – one

for object level classification and the second one for part level classification. Zhang

et al. [182] proposed to use part-based fine-grained recognition with R-CNN [52].

Lin et al. [91] use three neural networks for simultaneous localization, alignment,

and classification of images. Liu et al. [95] focused on dog breed classification and

proposed to use parts localized on dogs’ faces (e.g. nose, ears, nose).

Other papers focused on exploiting segmentation for the fine-grained recogni-

tion. Chai et al. [19] propose to use segmentation to identify discriminative fore-

grounds of objects. In their later paper [20], the segmentation is used in combi-

nation with Deformable Part Models [40]. The segmentation approach was also

proposed by Li et al [89]; however, they use a segmentation algorithm which is op-

timized and fine-tuned for the purpose of localization of discriminative parts for

fine-grained recognition. Krause et al. [81] proposed to use co-segmentation and

automatic part localization in combination with R-CNN to overcome missing anno-

tations of parts. Gavves et al. [48] propose to detect objects, for each pixel compute

probability that the pixel is a part of the object based on the detections, and use

GrabCut [129] for segmentation of the objects which is initialized by the probabil-

ities. The authors then encode the shape of the object by Histograms of Oriented

Gradients [29], use this for alignment, and finally encode the object appearance by

Fisher vectors [118].

Sanchez et al. [132] also use Fisher vectors [133] for fine-grained recognition.

There are also improvements to this approach using Fisher vectors; Gosselin

et al. [55] propose to use late fusion of two different Fisher vector systems,

Nakayama [108] augment descriptors by adding polynomials of feature vector ele-

ments and reduce dimensionality by canonical correlation analysis [65].

Some authors use bilinear classification [120] for fine-grained recognition. Lin

et al. [92] use only convolutional layers from a Convolutional Neural Network for

feature extraction which are classified by a bilinear classifier [120]. Gao et al. [47]

followed the path of bilinear pooling [92] and proposed a method for Compact

Bilinear Pooling which achieves same accuracy as the full bilinear pooling [92]

with a lower number of features.

There were also attempts to address a hierarchy of fine-grained classes. Xie et

al. [166] proposed to use hyper-class for data augmentation and regularization of

multi-task fine-grained deep learning. Zhou et al. [189] use CNN with Bipartite-

Graph Labeling to achieve better accuracy by exploiting the fine-grained annota-



2.2 fine-grained recognition of vehicles 11

tions and vehicle body type (e.g. van, sedan). Some authors [76, 46] addressed

fine-grained recognition with a high number of classes.

Chabot et al. [18] constructed a single network for estimation of 3D structure of

the objects in images. The network is used for alignment of several typical simple

3D models. Such information can be used for feature localization on the objects and

other related tasks. Farrel et al. [39] use pose normalization based on Poselet [10,

11] in cooperation with Random Forests [12] for fine-grained recognition of birds.

Also, an analysis of importance of image resolution in fine-grained recognition

was performed by Chevalier et al. [105]. Cai et al. [13] propose to use one Convolu-

tional Neural Network which first estimates super-resolution version of the image

and the enhanced image is then used for the fine-grained classification.

Finally, Gebru et al. [49] propose a method for model adaptation from other

image domain (e.g. e-commerce presentation images) to target domain for fine-

grained recognition.

2.2 fine-grained recognition of vehicles

Fine-grained recognition of vehicles is discussed in this section as it is a special

case of fine-grained recognition based on visual appearance. The goal of the recog-

nition is, in an ideal case, to identify the exact type of the vehicle (e.g. make, model,

submodel, model year). The recognition system focused only on vehicles (in rela-

tion to general fine-grained classification of birds, dogs, etc.) can benefit from that

the vehicles are rigid, have some distinguishable landmarks (e.g. license plates) or

there are 3D CAD models of the vehicle.

2.2.1 Methods Limited to Frontal Images of Vehicles

Petrovic et al. [119] propose an algorithm for fine-grained recognition of vehicles

based on that the vehicle is seen from the front and therefore it is possible to detect

the license plate. The license plate is used for extraction of a patch around the

license plate. Different types of features are extracted for the patch and classified

by a nearest neighbor framework with euclidean or cosine distance.

Dlagnekov et al. [31] also use detection of license plates to obtain region of inter-

est for make & model recognition. The license plate is detected by AdaBoost [156]

and the surroundings of the license plate is extracted as the region of interest. For

the recognition of vehicles’ types, the authors propose to use SIFTs [101] and match

their location with all other images of vehicles.

He et al. [61] focus on surveillance cameras which are located above the road in

a way that vehicles are seen from the frontal side. The authors detect vehicles by
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DPM [40], use different types of anchors (license plates, headlights, statistical) to

rectify and normalize the image. Illumination is also normalized to achieve better

performance and edges are extracted from the frontal rectified image as features

for each vehicle. Finally, the features are classified by a standard neural network.

Liao et al. [90] propose to use Strongly Supervised DPM [3] to identify different

parts on a frontal image of a vehicle. A representation of the vehicle is extracted

from the detected parts, which are weighted by their discriminative power. The

authors show that using the proposed weighting scheme improve the recognition

accuracy. The results also show that the most discriminative parts are air grille and

headlamps.

Baran et al. [4] use different descriptors to achieve real-time recognition perfor-

mance. The authors use SURF [5], SIFT [101] or Edge Histogram [114] descriptors

classified by binary SVM [137] in one-vs-all approach. The experiments show that

the best results are achieved by weighting these descriptors. This approach is not

inherently limited only to frontal viewpoints; however, it was only used on frontal

images of vehicles, thus it is hard to generalize the achieved results to an arbitrary

viewpoint.

Zhang et al. [175, 176] propose to use a different technique for extraction of

feature vectors for vehicles. They used a modified version of HMAX descriptor

[125]. The classification itself was performed by numerous classifiers (k-nearest

neighbor, decision trees, multilayer perceptron [127], Random Forests [12], and

SVM [27]). The experiments were carried out on frontal images of vehicles taken

during different illumination conditions (day, night, etc.).

Hu et al. [69] propose a novel real-time method for recognition of vehicle brands.

The authors detect vehicles by DPM [40] and learn the most discriminative parts

by a new algorithm which the authors named Spatially Coherent Discriminative

Pattern Learning. The results show that the authors achieve a high accuracy in the

brand recognition task (0.94); however, as the authors process relatively high reso-

lution (for surveillance cameras) frontal images of vehicles, the brand recognition

is easier because brand logos are visible and recognizable.

Hsieh et al. [68] propose a make & model recognition method which builds on

the symmetry property of vehicles. The authors propose to use a novel version

of SURF [5] descriptor called Symmetrical SURF and use this novel descriptor for

detection and recognition of vehicles. The classification itself is performed by SVM.

Unfortunately, the usage of Symmetrical SURF limits the method to frontal/rear

images of vehicles, as vehicles are not symmetrical from sides or different view-

points.

Pearce et al. [116] use license plate detection to obtain ROI for fine-grained recog-

nition. The authors use different features (Canny edges [15], Square mapped gra-
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dients [119] and Harris corners [59]) and recursively sum features from different

areas for better alignment. The final class is obtained by k-nearest neighbor classi-

fier or SVM.

2.2.2 Methods Based on 3D CAD Models

Lin et al. [93] propose to jointly optimize 3D model fitting and fine-grained classi-

fication of vehicles to overcome pose variation of different vehicle types. First, the

initial pose is obtained by DPM [40] and positions of landmarks are estimated by a

linear Support Vector Regressor which is used for the alignment in further process-

ing. Then, 3D model represented by Active Shape Model [25] is fitted to the vehicle

image with average pixel distance used as the alignment metric between the vehi-

cle and the model. Model with the lowest average pixel distance is selected for the

fitting (the models represent all sedans, pickups, etc.). Finally, HOG [29] features

and Fisher vectors [118] are used for classification by linear multi-class SVM.

Hsiao et al. [67] propose to use 3D CAD model to deal with viewpoint vari-

ance. The authors propose to detect edges on the vehicle and use the 3D model

(formulated as Active Shape Model [25, 88]) for alignment which is done by 3D

chamfer matching. In the recognition step, the alignment is done for every 3D

model present in the dataset and the vehicle is classified by logistic regression

with average chamfer distances for each model as inputs.

Krause et al. [80] propose to use synthetic data to train geometry and viewpoint

classifiers for 3D model and 2D image alignment. The authors directly sample

patches from the 3D surface of aligned vehicles; rectify the patches and compute

RootSIFT [2, 101] for each rectified patch. For the final feature representation, the

authors use novel 3D versions of Spatial Pyramid [84] and BubbleBank [30]. The

classification is performed by SVM.

Prokaj et al. [121] use synthetic 3D CAD models to deal with viewpoint varia-

tions. The authors propose to detect SIFT [101] features on the vehicle image and

on every 3D model seen from a set of discretized viewpoints. The final type is ob-

tained as the type with the highest similarity under the recognized viewpoint. This

simple method has, however, several limitations and one of the biggest of them is

that it is computationally expensive and does not scale with the number of vehicle

types.

2.2.3 Other Methods

Yang et al. [169] propose to use Deep Convolutional Neural Networks [85, 82]

for fine-grained classification of vehicles. This possibility was enabled by their rela-
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tively big dataset of vehicles (see Section 2.4). The authors also focused on maximal

speed estimation of vehicles, number of doors, and other features of vehicles.

Similarly, Zwemer et al. [191] use CNN without any modification. However, the

authors acquired training data automatically by using license plates and a public

database of vehicles which includes the license plate and make & model.

Gu et al. [58] propose a pipeline for recognition of vehicles from different view-

points. First, they extract the center and roughly estimate the viewpoint from the

bounding aspect ratio. Then, they use a different Active Shape Model for align-

ment in different viewpoints and they use segmentation for background removal;

finally, the authors use template matching for obtaining the final vehicle type.

Stark et al. [146] propose to use an extension of DPM [40] to be able to handle

multi-class recognition. The model is represented by latent linear multi-class SVM

with HOG [29] features. The authors show that the system outperforms different

methods based on LLC [158] and HOG [29]. The recognized vehicles are used for

eye-level camera calibration.

Boonsim et al. [9] propose a method for fine-grained recognition of vehicles at

night. The authors use relative position and shape of features visible at night (e.g.

lights, license plates) to identify the make & model of a vehicle, which is visible

from the rear side.

Lee et al. [86] try to overcome small rotation variance (0◦ − 15◦) by detection of

license plate and normalizing the image to the frontal view of vehicle. For clas-

sification, the authors use Region of Intereset (ROI) extracted around the license

plate.

Fang et al. [38] propose to use an approach based on detected parts. The parts

are obtained in an unsupervised manner as high responses from mean response

map of the last convolutional layer of used CNN. The classification itself is then

done by merging all feature vectors from whole image and parts and classifying by

SVM. Although the method is not explicitly limited to frontal/rear viewpoints, the

design and evaluation of the method was done only on frontal images of vehicles.

Wang et al. [160] propose to use detected parts of vehicles and extracted features

by CNN and HOG followed by SVM classification and voting scheme between

different parts of the vehicle. Hu et al. [71] introduce spatially weighted pooling

of convolutional features in CNNs to extract important features from the image.

Birglari et al. [7] propose to use discriminative parts and use classification model

formulated as Latent SVMs.

A different approach was proposed by Wang et al. [157]. The authors propose

to train the classifier on data acquired from web and use Maximum Mean Discrep-

ancy [57] to match the feature domains of the web nature source training data and

surveillance nature target data.
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Table 2.1: Summary of different algorithms for fine-grained recognition of vehicles. The

view flag indicates whether the method is suitable for images from arbitrary

viewpoint. The surv determines whether the method is suitable for surveillance

images (e.g. the method does not require a 3D model, it is able to work with

low-resolution images). The table continues on the next page.

author method view surv

Petrovic, 2004 [119] ROI extracted around license plate, multiple fea-

tures computed for the ROI, classified by nearest

neighbor

✗ ✓

Dlagnekov, 2005 [31] License plate detection by AdaBoost for ROI ex-

traction, SIFT matching for recognition

✗ ✓

Prokaj, 2009 [121] Direct comparison of SIFT similarity detected on

vehicle image and 3D model under different view-

point

✓ ✗

Pearce, 2011 [116] Recursively sum different features for better align-

ment, classification by k-NN or SVM

✗ ✓

Stark, 2012 [146] Extension of DPM [40] to multi-class problem,

HOG [40] features

✓ ✓

Gu, 2013 [58] Viewpoint estimation, active shape model align-

ment, segmentation to background and vehicle,

template matching for final class recognition

✓ ✗

Krause, 2013 [80] Alignment of images by viewpoint classifiers

trained on synthetic data from 3D CAD models,

3D version of [84] and [30] for feature extraction,

SVM for classification

✓ ✗

Lee, 2013 [86] Detection of license plate corners and normaliza-

tion of the license plate position

✗ ✓

Zhang, 2013 [175, 176] Detection of license plate for ROI extraction, en-

semble by majority voting of different features

and different classifiers for recognition

✗ ✓

Hsiao, 2014 [67] 3D chamfer matching of 2D edges and 3D CAD

model for alignment, classification by logistic re-

gression with average chamfer distance as input

✓ ✗

Hsieh, 2014 [68] Novel version of SURF [5] called Symmetrical

SURF used for detection and recognition of vehi-

cles, classification done by SVM

✗ ✓

Lin, 2014 [93] Simultaneous optimization of predicted class la-

bel and 3D Active Shape Model [25] for align-

ment, classification by SVM

✓ ✓
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author method view surv

Baran, 2015 [4] Weighting different descriptors (SURF [5], SIFT

[101], Edge Histogram [114]), classification by

SVM

✗ ✓

He, 2015 [61] DPM detection of vehicles seen from the frontal

side, different anchors for position normalization,

edges as features classified by neural network

✗ ✓

Hu, 2015 [69] Detection of vehicles by DPM [40], learning the

most discriminative patches and their classifica-

tion by linear multi-class SVM

✗ ✓

Liao, 2015 [90] SSDPM [3] parts identification on frontal image,

parts weighting scheme to improve accuracy of

recognition

✗ ✓

Yang, 2015 [169] Convolutional Neural Network without any mod-

ification

✓ ✓

Boonsim, 2016 [9] Detection of lights at night and extraction of fea-

tures from ROI relative to the detected lights

✗ ✓

Fang, 2016 [38] Detection of parts discovered from convolutional

layers high responses

✗ ✓

Wang, 2016 [160] HOG and CNN features with SVM and voting

scheme

✗ ✓

Biglari, 2017 [7] Localisation of discriminative parts and classifica-

tion by Latent SVMs

✓ ✓

Hu, 2017 [71] Spatially weighted pooling of CNN convolutional

features

✓ ✓

Wang, 2017 [157] CNN training on web-nature images and with

Maximum Mean Discrepancy [57] to match the

target domain

✓ ✓

Zwemer, 2017 [191] CNN without any modifications, training on au-

tomatically acquired data using license plates

✓ ✓

2.2.4 Summary

Quite a large number of methods for recognition of vehicle make & model were

described. One large group [119, 31, 90, 61, 4, 176, 69, 68, 116, 175, 9, 86] is limited

to frontal/rear images of vehicles. One part [119, 31, 116, 175, 86] of this group

uses license plates for ROI localization and extraction, other methods [90, 61, 69,

146, 7] use Deformable Part Models [40] (or modifications of DPM) to detect and

recognize vehicles and there are also methods [4, 176, 68] using directly different

descriptors and feature point detectors.
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Other methods [93, 67, 80, 121] utilize available 3D CAD models to deal with

viewpoint variations. The modeling is done usually by Active Shape Models [25]

(in case of methods [58, 93, 67]) or other feature point detectors and descriptors

(methods [80, 121]). Then, some works [169, 191, 157] propose to use Deep Con-

volutional Neural Networks [85, 82] for the classification of fine-grained vehicles.

There were also papers [38, 160] exploiting features extracted from CNN for the

classification.

A summary of all the methods can be found in Table 2.1 and as the table shows,

only a small number of methods are able to deal with images taken from reason-

ably arbitrary viewpoint and at the same time to be usable in surveillance scenar-

ios where it is impossible or impractical to provide other data (such as 3D CAD

models). Thus, my work in the fine-grained recognition is focused on this area –

recognition of vehicles’ make & model from images taken by a surveillance camera

from an arbitrary viewpoint.

2.3 deep convolutional neural networks

The first version of Convolutional Neural Networks was proposed by LeCun et

al. [85] in 1998 and the authors used it for on-line handwriting recognition. Much

more recently, Deep Convolutional Neural Networks got much attention than be-

fore, thanks to the paper by Krizhevsky et al. [82]. This network was used for

ImageNet classification [130] and decreased Top-5 error by 38 % (from 26.2 % to

16.4 %). After the network by Krizhevsky et al. [82], deeper and more complex

CNNs such as the GoogLeNet by Szegedy et al. [151] or ResNets by He et al. [62]

seem to be consistently winning the ImageNet contest [130].

Besides the image classification, the deep CNNs can be used recognition of peo-

ple [153, 150], verification [153] object detection [52, 184, 123], text debluring [66],

deconvolution [136, 167], video analysis [77, 144, 148], text recognition [73], people

counting [177], metric learning [70], edge detection [138], pose estimation [37, 155],

and other computer vision [161, 165, 141] and non computer vision tasks [24].

Recently, authors also used input normalization to improve performance of

CNN [153] and adding additional training data to CNN [82]. Also, parts of the

CNN can be viewed as feature extractors and independently reused. These trained

feature extractors outperform the hand-crafted features [8, 153].

To sum up, CNNs are currently used for a wide variety of tasks and they seem

to outperform previous solutions by a great margin. However, these nets require

a large amount of training data and long training (usually on GPU).
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2.4 existing datasets for fine-grained recognition of vehicles

For accurate fine-grained vehicle recognition, it is also important to have a good

dataset, besides the algorithm itself. This importance grows with the last years

with boost of Deep Convolutional Neural Networks as to train these networks, it

is necessary to have a high number of training samples. For the purposes of traffic

surveillance, it is necessary to have a dataset containing vehicles captured from

multiple viewpoints (to eliminate limitations to frontal or rear viewpoint) and also

the vehicles must not be only from eye-level viewpoints, as surveillance cameras

are typically above observed vehicles.

There is a large number of datasets of vehicles [130, 1, 113, 36, 162, 16, 111, 87, 53,

134, 51, 112, 106] which are usable mainly for vehicle detection, pose estimation,

and other tasks. However, these datasets do not contain annotation of the precise

vehicles’ make & model; thus these datasets cannot be used for fine-grained vehicle

recognition.

When it comes to the publicly available fine-grained datasets, a few of them exist

and all are quite recent. Lin et al. [93] published FG3DCar dataset (300 images, 30

classes), Stark et al. [146] made another dataset containing 1,904 vehicles from

14 classes. Krause et al. [80] published two datasets; one of them, called Car-197,

contains 16k of images and 196 classes. The other one, BMW 10, is made of 10

models of BMW vehicles and 500 images. Finally, Liao et al. [90] created a dataset

of 1,482 vehicles from 8 classes. All these datasets are relatively small for training

the CNN for real-world surveillance tasks.

Yang et al. [169] published a large dataset CompCars in 2015. The dataset consists

of a web-nature part, made of 136k of vehicles from 1,600 classes taken from differ-

ent viewpoints. Then, it also contains a surveillance-nature part with 44k frontal

images of vehicles taken from surveillance cameras. Finally, Tafazzoli et al. [152]

collected quite large VMMR dataset. However, the dataset was acquired by web

crawling, therefore it does not contain images taken from surveillance cameras

and viewpoints.

A summary of the dataset attributes can be found in Table 2.2. As the table

shows, none of these datasets can be directly used for traffic surveillance appli-

cations which are not limited to frontal viewpoint. Exemplar images from the

datasets are in Figure 2.1.
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Table 2.2: Overview of publicly available datasets for fine-grained vehicle classification.

View denotes whether the dataset contains multiple viewpoints and surv flag

defines whether the dataset contains images from surveillance cameras.

name granularity images classes view surv

Stark et al., [146] model 1,904 14 ✓ ✗

BMW-10 [80] model year 512 10 ✓ ✗

Car-197 [80] model year 16,185 196 ✓ ✗

FG3DCar [93] model year 300 30 ✓ ✗

Liao et al. [90] make 1482 8 ✗ ✓

CompCars-web [169] model year 136,727 1,687 ✓ ✗

CompCars-surv [169] model year 44,481 281 ✗ ✓

VMMR [152] model year 291,752 9,170 ✓ ✗

(a) Car-197 [80]

(b) FG3DCar [93]

(c) CompCars – web nature [169]

(d) CompCars – surveillance nature [169]

Figure 2.1: Examples of vehicles from different datasets for fine-grained recognition of ve-

hicles.
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A U T O M AT I C V E H I C L E S P E E D M E A S U R E M E N T F R O M

T R A F F I C S U RV E I L L A N C E C A M E R A S

An important part of speed measurement of vehicles from a single monocular

camera is calibration of the camera. This includes in a general case dealing with

perspective projection, different rotations of the camera, and it is also necessary to

deal with unknown distance from the camera to the ground plane of a road, and

possibly with radial and tangential distortion of camera.

Generally, in Computer Vision, the task of camera calibration is a task computing

intrinsic and extrinsic camera parameters [60]. These parameters are usually rep-

resented by K [R T] matrices, where K denotes intrinsic parameters, and rotation

and translation of the camera is represented by R and T.

However, in the area of traffic surveillance, it is also usually necessary to obtain

a representation of the road plane. Therefore, in the previous works and in ours as

well, the vanishing points are usually used for the calibration and representation

of the road plane. In a general case, the vanishing points may be ideal points (lie

in infinity). An example of camera model used for traffic surveillance can be found

in Figure 3.1.

With the traffic surveillance camera calibrated, the task of speed measurement

becomes rather straightforward. It is necessary to track the vehicle in the image

and estimate the passed distance using the calibration. The passed distance and

elapsed time can directly be used for the estimation of vehicles’ speed. Therefore,

the review of state-of-the-art methods for speed measurement is focused primarily

on the camera calibration.

K

[R,T]

ϱP
p U

V

W

u

p̅

Figure 3.1: Possible camera model for traffic surveillance. Road plane is represented by ρ

and vanishing points by U, V, and W. A point on the road plane is denoted by

P and its projection to image space by p.
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3.1 methods for camera calibration and speed measurement

One important attribute of the camera calibration algorithm which should be kept

in mind is that whether the algorithm works automatically in the sense that there

is no manual input required per installed camera. The automaticity became more

important as the number of installed cameras grows. There is a large number of

papers and approaches to this problem and they will be discussed in detail in the

following text.

Another important aspect of the camera calibration methods for traffic surveil-

lance are their limitations. For example, some methods assume one vanishing point

in infinity or that the camera has zero pan angle with respect to the road plane.

An ideal camera calibration algorithm would be free of all these camera placement

limitations.

As we will need to differentiate different vanishing points in the following text,

we define the following naming convention. The first vanishing point is the one in

the direction of vehicle movement, the direction towards second vanishing point

is perpendicular to this direction and it is parallel to the road plane in 3D. Finally,

the direction towards the third vanishing point is perpendicular to the road plane.

3.1.1 Methods Based on Acquired Line Markings

He and Yung [63] proposed a method for speed estimation of vehicles which is

based on calibration using a calibration pattern formed by lane markings on the

road [64]. The authors of the paper use a rectified image in further processing to

deal with perspective projection. To obtain points of vehicles on the ground plane,

shadows cast by rear bumpers are used. The vehicles and shadows are detected by

background subtraction and binary block matching. The method achieves mean

error rate 3.27 % for day and 8.51% at night. The speeds were compared with a

ground truth obtained by a radar and ranges from 41 to 122 km per hour.

Cathey and Dailey [17] used a method based on detection of the vanishing point

which is in the direction of vehicles movement. To obtain this vanishing point, de-

tected line markings are used and their intersection in the least squares manner.

The scale (pixels/meters ratio) for the camera is computed from average line mark-

ing stripe length and known stripe length in the real world. Finally, the authors

used cross correlation to compute the number of pixels which vehicles passed be-

tween consecutive frames.

Grammatikopoulos et al. [56] use the assumption that the camera is only tilted

along x-axis; thus they assume that the second vanishing point is in infinity. The

first vanishing point is detected as the intersection of line markings with least
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squares adjustment. The vehicles are detected by background subtraction and

tracked by normalized cross-correlation. The authors require that one distance in

the scene is known for the speed measurement. The reported mean error is 3 km/h.

Filipiak et al. [41] propose to use sequences of detected license plates of vehicles

for finding intrinsic and extrinsic camera parameters by an evolutionary algorithm.

The method was evaluated on a dataset captured by surveillance cameras with a

small field of view on the road.

You et al. [172] propose to use detection of vanishing point in the direction of

vehicles’ movements from lane markings and vanishing point perpendicular to

road plane from detected poles and pedestrians. The authors obtain the scale from

known height of camera above the road or known dimensions on the road.

3.1.2 Methods Based on Vehicles’ Movement

Dubská et al. [DSH14] published a speed measurement system using calibration

method by detection of two vanishing points [DHJS15]. The first vanishing point

(which is in the direction of vehicles’ movement) is computed from tracked feature

points on the vehicles and Hough transformation-based line-to-line mapping to ob-

tain intersection of the lines. The second vanishing point is extracted from edges

present on vehicles with the same mapping. The authors propose an algorithm for

3D bounding box computation around the vehicle blobs and measure their dimen-

sions and match mean of these measured dimensions with the mean dimensions

of vehicles for a given country. The reported mean error rate is 1.99 %.

Schoepflin et al. [135] use an activity map to obtain lane boundaries and the

intersection of the boundaries treat as vanishing point in the direction of vehicle

motion. The second vanishing point is detected as the intersection of lines formed

by the bottom edges of the vehicles. One known length in the image is used for

scale inference.

3.1.3 Methods using Manual Measurements

Maduro et al. [104] assume a known angle on the ground plane to calibrate the

camera and use lengths of line markings’ stripes to obtain the camera scale for

a given scene. The authors used background subtraction to detect vehicles and

Kalman filter [75] for tracking of the vehicles. The reported error rate is 2 % relative

to ground truth speed obtained by GPS.

Nurhadiyatna et al. [110] used GMM background subtraction [190] for detection

of vehicles and tracked them by Kalman filter. The authors use a calibrated pinhole
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camera with zero pan and known distances in the real world. The mean error of

their method is 7.63 km/h.

Sina et al. [145] focus on speed measurement at night. They used detected and

paired headlights to detect vehicles, track them and measure their speed. The cam-

era calibration is based on manual measurements of camera angles and distance

of the camera from the ground plane. The average error is 3.3 km/h relative to

ground truth obtained by GPS.

Luvizon et al. [103, 102] used a different approach and they propose to detect

and track license plates in order to obtain movement of vehicles in the scene. The

movement is then converted to real world passed distance by rectifying and scaling.

The scale inference is based on a priori known real world measures. The reported

mean error is 1.63 km/h.

Furthermore, Ke et al. [78] propose to use measurements on standard shipping

container which was observed on a passing vehicle by the camera. Although it

eliminates the requirement to stop the traffic, it is still necessary to use a vehicle

with the container and drive it in front of the camera.

3.1.4 Other Methods

Dailey et al. [28] proposed a method for vehicles speed measurements based on

tracking of vehicle blobs and constraining them to move along a line. The blobs are

detected as inter-frame differences followed by Sobel edge detector. The authors

assume that the vehicles are moving towards or from the camera and use mean

length of vehicles to obtain the scale of the scene. The mean reported error is

6.5 km/h relative to manual measurements.

Do et al. [32] proposed a camera calibration method for speed measurement

based on artificial markers drawn on the road. They assume that the camera has

zero pan angle and that markers determining vertices of equilateral triangle with

a known distance between vertices which are visible on the road. They used the

triangle to obtain the scale factor and the tilt angle. The reported mean error from

three scenarios with relatively low speed is 2.9 %.

Lan et al. [83] use optical flow to compute speed of different points of vehicle

and the authors average this speed to get the speed of the vehicle in image units.

However, to convert them into kilometers per hour, the authors assume that there

is no perspective projection effect and the width of the ROI (width of lanes) is

known. The reported mean error is between 0.9 % and 2.5 %.

Llorca et al. [99] propose to use two synchronized cameras, with different focal

lengths focused on different parts of the road. The cameras are manually calibrated

using a calibration pattern and the speed is computed as a section speed between
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these cameras. The authors use detected license plates for re-identification of the

vehicles.

Zheng et al. [188] use a simplified 3D model with known distances between

markers on the model. The model is aligned with observed vehicle and scene ge-

ometry extracted from the distances between the landmarks. However, the method

has high mean error in distance measurement in the traffic flow direction (5.14 %).

Very recently, Bhardwaj et al. [6] proposed to use detected keypoints (e.g. mir-

rors, lights) on the observed vehicles. The keypoints with known geometry are

used as 3D points for the PnP problem [60]. The acquired calibrations are then

averaged over multiple observations of different vehicles.

3.1.5 Summary

Summary of the presented camera calibration methods can be found in Table 3.1.

As the table shows, some of the approaches have different limitations and do not

work under all conditions, and the reported mean error varies greatly – it should be

noted that the error is not directly comparable, as it was evaluated by the authors

on different datasets and by different protocols.

To sum up the overview of camera calibration methods, some of them [28, 83]

do no take perspective projection into account, some algorithms [28, 56, 110, 83, 32]

have limitations about the camera placement. Quite a large number of approaches

[104, 110, 145, 103, 41, 172, 78] use measurements in the scene which enable di-

rect camera calibration. Methods [63, 32, 99] using a calibration pattern (virtual or

drawn on the road) have been proposed. Another set of methods use vanishing

points to obtain camera calibration [135, 17, 56, DSH14].

Several approaches to scale calibration have been proposed. Besides the multiple

manual measurements on the road [104, 110, 145, 103, 41, 172] and calibration

patterns [63, 32], there are two groups of methods. The algorithms from the first

group [135, 17, 56, 83] use one known distance in the scene (e.g. length of line

marking stripe). The other methods use dimensions of vehicles [28, DSH14] to

obtain proper scale calibration.

One important attribute of the calibration methods is whether they work fully

automatically and do not require any manual per camera calibration input. This

helps reduce the cost of the camera installation and the automatic methods have

better scaling properties. Only a small number approaches are fully automatic

and do not require any manual camera calibration. Two of these methods [28,

DSH14] use mean dimension of vehicles to obtain proper scaling factor for the

given camera. Another, very recent, fully automatic approach was proposed by
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Table 3.1: Summary of different camera calibration methods for speed measurement. It should be

noted that the reported errors are only informative as all the methods are evaluated on

different datasets and by different protocols. We consider a system to be automatic if

it does not require any manual calibration for each individual camera. auto – denotes

whether the system works fully automatically, view – denotes whether the system is

usable from arbitrary viewpoint.

camera calibration method auto view mean error

Dailey, 2000 [28] multiple assumptions on vehicle movements

and known mean length of vehicles
✓ ✗ 6.5 km/h

Schoepflin, 2003 [135] detection of two vanishing points, one known

length
✗ ✓ N/A

Cathey, 2005 [17]
vanishing point obtained from detected line

markings, scale computed from lengths of

stripes

✗ ✓ N/A

Grammatik., 2005 [56]
one vanishing point obtained from detected

line markings, second assumed in infinity, one

known distance is required

✗ ✗ 3 km/h

He, 2007 [63] calibration by pattern formed by lane markings ✗ ✓ 3.27 %

Maduro, 2008 [104] known angle of the ground plane, lengths of

line markings’ stripes
✗ ✓ 2 %

Nurhadiyatna, 2013 [110] known distances in the real world and in the

scene, zero pan assumption
✗ ✗ 7.63 km/h

Sina, 2013 [145] manual measurements ✗ ✓ 3.3 km/h

Dubská, 2014 [DSH14]
detection of two vanishing points, scale com-

puted by matching of statistics of vehicles’ di-

mensions to mean dimensions of vehicles

✓ ✓ 1.99 %

Lan, 2014 [83] relaxation of perspective projection, known

width of lanes
✗ ✗ 0.9 % – 2.5 %

Do, 2015 [32] zero pan assumption, equilateral triangle drawn

on the road
✗ ✗ 2.91 %

Filipiak, 2016 [41]
constant speed assumption, evolutionary algo-

rithm to recover intrinsic and extrinsic parame-

ters from detected license plate sequences

✓ ✗ 2.3 km/h

Llorca, 2016 [99] two synchronized cameras with speed section

measurement based on license plate detection
✗ ✓ 1.44 km/h

You, 2016 [172]
first vanishing point from lane markings and

third vanishing point from poles and pedestri-

ans, known height of camera installation

✗ ✓ N/A

Zheng, 2016 [188] alignment of simplified 3D model to vehicles ✓ ✓ 5.14 %

Bhardwaj, 2017 [6] automatically detected keypoints on vehicles ✓ ✓ 12 %

Ke, 2017 [78] measurements on standard shipping container ✗ ✓ N/A

Luvizon, 2017 [103, 102] known real world measures ✗ ✓ 1.63 km/h
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Table 3.2: Summary of datasets used for evaluation of visual speed measurement methods.

dataset videos vehicles source of GT resolution evaluation metrics

Dailey, 2000 [28] 1 532 induction loops N/A speed measurement error

Schoepflin, 2003 [135] 2 1 015 induction loops 320× 240 speed measurement error

Grammatik., 2005 [56] 1 20 manual measurements 768× 576 speed measurement error

He and Yung, 2007 [63] 1 64 RADAR 1280× 1024 speed measurement error

Maduro, 2008 [104] 2 few GPS N/A speed measurement error

Nurhadiyatna, 2013 [110] 10 15 GPS 320× 240 speed measurement error

Sina, 2013 [145] 13 13 GPS N/A speed measurement error,

vehicle counting

Dubská, 2014 [DSH14] 6 29 GPS 864× 480

speed measurement error,

distance measurement er-

ror

Lan, 2014 [83] 1 2 010 RADAR 640× 480 speed measurement error

Luvizon, 2014 [103] 1 75 induction loops 768× 480
speed measurement error,

license plate detection

Do, 2015 [32] 1 3 speedometer N/A speed measurement error

Filipiak, 2016 [41] 2 955 induction loops 1280× 720 speed measurement error

Bhardwaj et al. [6], and it is based on the geometry of the detected keypoints on

the observed vehicles.

Another important attribute is whether the camera can be placed in any position

above the road, as some papers require for example that the camera has zero pan.

In real world scenarios, this can be hard to guarantee if the camera will not be

placed on a portal above the road.

Thus we want to take an approach for traffic camera calibration which will be

fully automatic and it will not have any placement constraints. There are only two

papers [DSH14, 6] which satisfy both these conditions and we want to build on

the approach proposed by Dubská et al. [DSH14] and extend the camera and scale

calibration method.

3.2 evaluation datasets used in existing works

The described methods usually used different methods for evaluation of the speed

measurement and ground truth speed acquisition. Some methods [28, 135, 103, 41]

use inductive loops for ground truth acquisition, other methods [104, DSH14] GPS

or RADAR [83]. Do et al. [32] used the speedometer on a motorbike, which should

be considered very imprecise.
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When it comes to the number of evaluated speed measurements, Lan et al. [83]

used 2 010 ground truth speeds (only one video sequence), others [28, 135, 41]

have hundreds of vehicles with known ground truth. And there are also works

[56, 63, 104, 110, 145, DSH14, 83, 103, 32] that use at most tens of ground truth

speeds with the lowest number in [32] (one ground truth speed) and the highest

number of 75 measurements in [103]. Cathey at al. [17] have no evaluation at all.

A summary of existing datasets can be found in Table 3.2. It should be noted that

with the exception of [110, DSH14], the datasets are not publicly available which

makes comparison of the methods impossible.

Almost every mentioned dataset (except [145] and a part of [63]) is recorded in

daylight as the methods usually become unusable at night when only headlights of

vehicles are visible. Existing datasets usually evaluate only the speed measurement

error (with different statistics – mean, deviation etc.) and some exceptions (see

Table 3.2) evaluate also other tasks.

The existing evaluation of algorithms should be considered insufficient as exist-

ing works use a relatively low number of observed vehicles and scenes. Also, for

GPS and speedometer, the ground truth is imprecise as in our evaluation, GPS has

mean error over 2 % and the speedometer reports a higher speed then the actual.

Therefore, we created our novel dataset [SJŠ+18] with precise ground truth and

20 865 of vehicles with ground truth speed. It is also possible to evaluate other

camera calibration aspects such as calibration error and distance measurement on

the road plane with the computed scale. These two metrics can provide interesting

insights into properties of camera calibration algorithms as they are needed and

harnessed in the intelligent transportation surveillance.



Part II

F I N E - G R A I N E D R E C O G N I T I O N O F V E H I C L E S

This part of the dissertation thesis contains re-formatted copies of my

two papers dealing with fine-grained recognition of vehicles. The first

paper is a CVPR conference paper which introduces the idea of using

3D bounding boxes of vehicles to improve the fine-grained recognition.

As experimental results in the paper show, exploiting the 3D bounding

boxes improves classification and verification accuracy.

In the second paper, which is published in IEEE Transactions on Ingel-

ligent Transportation Systems (IF: 3.724), we explore the 3D bounding

boxes for fine-grained classification further. Also, a method for estima-

tion of the 3D bounding box is provided and evaluated. The experimen-

tal evaluation is significantly extended and as the results show, using

the 3D bounding boxes improves classification accuracy consistently

with different Convolutional Neural Networks and we also outperform

other state-of-the-art methods for fine-grained recognition.
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B O X C A R S : 3 D B O X E S A S C N N I N P U T F O R I M P R O V E D

F I N E - G R A I N E D V E H I C L E R E C O G N I T I O N

citation SOCHOR Jakub, HEROUT Adam a HAVEL Jiří. BoxCars: 3D Boxes

as CNN Input for Improved Fine-Grained Vehicle Recognition. In: The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE Computer

Society, 2016, s. 3006-3015. ISBN 978-1-4673-8851-1. ISSN 1063-6919.

abstract We are dealing with the problem of fine-grained vehicle

make & model recognition and verification. Our contribution is showing that ex-

tracting additional data from the video stream – besides the vehicle image itself –

and feeding it into the deep convolutional neural network boosts the recognition

performance considerably. This additional information includes: 3D vehicle bound-

ing box used for “unpacking” the vehicle image, its rasterized low-resolution

shape, and information about the 3D vehicle orientation. Experiments show that

adding such information decreases classification error by 26 % (the accuracy is

improved from 0.772 to 0.832) and boosts verification average precision by 208 %

(0.378 to 0.785) compared to baseline pure CNN without any input modifications.

Also, the pure baseline CNN outperforms the recent state of the art solution by

0.081. We provide an annotated set “BoxCars” of surveillance vehicle images aug-

mented by various automatically extracted auxiliary information. Our approach

and the dataset can considerably improve the performance of traffic surveillance

systems.

4.1 introduction

We are developing a system for traffic surveillance from roadside cameras. It is

meant to be fully automatic (not requiring manual per-camera configuration) and

tolerant to sub-optimal camera placement (the cameras will not be placed above

the lanes, but on the road side, wherever it is naturally possible).

One important component of such a system is recognition of vehicle

make & model – as accurate as possible. This fine-grained recognition serves multi-

ple purposes. Besides obvious collection of statistics and demographic information

and verification of license plate authenticity, recognition of dominant and charac-

teristic types can establish a highly accurate scale calibration of the camera, much

31
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Figure 4.1: We take advantage of the surveillance camera being fixed, use its automatically

obtained calibration to unpack the input image so that it is better aligned, and

we add additional inputs to the CNN. These modified inputs boost the perfor-

mance of vehicle recognition and especially vehicle make & model verification.

more precise than a statistic of undifferentiated cars [DSH14]. The system should

also be able to adapt to new models of cars on its own. It should therefore not only

recognize the pre-trained set of models, but also verify whether two given vehicle

samples are of the same make & model or not – without previously seeing these

particular vehicle types.

Fine-grained vehicle recognition has been receiving increased research attention

recently. Many works and datasets focus on recognition of “web images” shot from

a limited set of viewpoints, typically from eye-level views [169, 68, 80, 58, 93, 146].

Some works also deal with data of surveillance nature [169, 90, 61].

Our work goes beyond a recent work by Yang et al. [169]. They collected pre-

sumably the first dataset of sufficient proportion for training convolutional neural

networks (the surveillance-nature portion of their dataset contains around 50k sam-

ples). They also propose a CNN architecture for fine-grained vehicle recognition

and publish benchmarking results.

Since we aim at a fixed-camera surveillance system, we take advantage of fully

automatic camera calibration including scale [DSH14] and we use the automati-

cally extracted information for improving the recognition system (Fig. 4.1). The
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automatically calibrated camera allows us to extract a 3D bounding box of the pass-

ing vehicle. The system then “unpacks” the bounding box to get a better aligned

image representation. The shape and location of the bounding box is also input

to the CNN and helps it to reference the relevant information. Lastly, the view

direction extracted for each vehicle sample is also encoded and input to the fully

connected CNN layers, further boosting the performance. The whole algorithm is

designed to work with low-resolution vehicle images taken from arbitrary view-

points of surveillance nature (frontal, sideways, varying elevation, etc.).

We collected a dataset BoxCars from a network of surveillance cameras and we

make it publicly available for training and benchmarking. The cameras are auto-

matically calibrated and the vehicle samples are automatically augmented by the

3D bounding box information. This information is easily obtainable in real time

and it can be a part of any surveillance system.

The experiments show that the proposed enhanced information boosts the aver-

age precision of vehicle recognition considerably (0.772 to 0.832 for medium diffi-

culty, 0.733 to 0.804 for hard cases). The same modification helps even much more

for the vehicle type verification task: given observations of two vehicles, tell if they

are of the same type (in the fine-grained sense, i.e. including make, model, year).

The particular vehicle types have not been necessarily seen by the classifier dur-

ing training. The improvement in this task was from 0.378 to 0.785 for medium

difficulty samples and 0.353 to 0.710 for difficult cases. This verification task is

important for growing the set of vehicles recognizable by the system in an unsu-

pervised manner – without collecting and annotating the samples in advance.

The contributions of this paper are the following: i) We show that additional

information easily obtainable in real time for static surveillance cameras can boost

the CNN verification performance greatly (by 208 %), ii) The vehicle fine-grained

classification error was decreased by 26 %, iii) We collected a dataset of vehicle sam-

ples accompanied with the 3D bounding boxes (BoxCars, 21,250 samples, 63,750

images, 27 different makes, 148 make & model + submodel + model year classes).

4.2 related work

When it comes to fine-grained vehicle classification, many approaches are limited

to frontal or rear viewpoint and they are based on detection of the license plate for

ROI extraction [119, 31, 116, 109, 175, 4]. Authors of these papers are using differ-

ent schemes for extracting the feature vectors and for the classification itself. Stark

et al. [146] use fine-grained categorization of cars by DPM in order to obtain metric

information and get a rough estimate of depth information for single images (con-

taining cars in usable poses). Another approach proposed by Prokaj and Medioni
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[121] is based on pose estimation and it is able to handle any viewpoint. The au-

thors suggest to use 3D models of vehicles, fit them to the recognized pose, project

them to 2D and use SIFT-like features for the comparison of the vehicles. Krause

et al. [80] used 3D CAD models to train geometry classifiers and improve results

of 3D versions of Spatial Pyramid and BubbleBank [30] by 3D patch sampling and

rectification. Lin et al. [93] proposed to use 3D Active Shape Model fitting to obtain

positions of landmarks and achieved much better results than other methods on

their own dataset FG3DCar. Authors of [79] propose to learn discriminative parts

of vehicles with CNN and use the parts for fine-grained classification. Gu et al. [58]

used pose estimation and active shape matching to deal with pose variation and

normalization. Hsiao et al. [67] use 3D chamfer matching of backprojected curves

on an automatically generated visual hull of the vehicle. However, the authors as-

sume to have shots of vehicles against clean background and that the shots are

taken under regular intervals.

Very recent work by He et al. [61] focuses on surveillance images; however, the

authors assume to have high-resolution frontal image of the vehicle to correctly

detect license plate and other artificial anchors. Liao et al. [90] used Strongly Su-

pervised DPM (SSDPM) to categorize frontal images of vehicles and classification

based on discriminative power of different parts of SSDPM. Hsieh et al. [68] pro-

posed a new symmetrical SURF keypoint detector to detect and segment frontal

vehicle images into several grids for fine-grained classification. Very recent work by

Yang et al. [169] proposed to use Convolutional Neural Networks for fine-grained

classification, regression of parameters etc. Krause et al. [81] proposed to use co-

segmentation and automatic part localization in combination with R-CNN to over-

come missing parts annotations.

Recently, Deep Convolutional Neural Networks (CNN) consistently succeed in

hard image recognition tasks such as the ImageNet [130] contest. After the network

by Krizhevsky et al. [82], deeper and more complex CNNs such as the GoogLeNet

by Szegedy et al. [151] seem to be consistently winning the contest. Authors also

used input normalization to improve performance of CNN [153] and adding ad-

ditional training data to CNN [82]. Parts of the CNN can be viewed as feature

extractors and independently reused. These trained feature extractors outperform

the hand-crafted features [8, 153]. Recently, a relatively large number of authors

proposed to use Deep Neural Networks for fine-grained classification in general

[153, 163, 169, 91, 166, 105, 92].

To sum up, in most cases, the existing approaches either use 2D frontal images,

or 3D CAD models to allow viewpoint invariance. We propose to extract and use

3D information based on video data from the surveillance camera at general view-



4.3 fine-grained vehicle classification and verification methodology 35

points. This information is fed to a CNN as additional input, leading to better car

classification and especially type verification.

4.3 fine-grained vehicle classification and verification method-

ology

In agreement with the recent progress in the Convolutional Neural Networks

[153, 82, 22], we propose to use CNN for both classification and verification. The

classification task will be done directly by the net and for the verification task,

we use features (activations) extracted from the last-but-one layer and cosine dis-

tance. We enhance the input of the net by several techniques using automatically

extracted 3D bounding boxes [DSH14]. We focus on vehicle images obtained from

surveillance cameras where the automatic extraction of 3D bounding boxes is pos-

sible cheaply in real time. We used BVLC Reference CaffeNet [82] pretrained on

ImageNet [130] and then fine-tuned on our dataset as a baseline from which we

improve.

4.3.1 Unpacking the Vehicles’ Images

We based our work on 3D bounding boxes [DSH14] (Fig. 4.2) which can be auto-

matically obtained for each vehicle seen by a surveillance camera (see our original

paper [DSH14] for further details). These boxes allow us to identify side, roof, and

front/rear side of vehicles in addition to other information about the vehicles. We

use these localized segments to normalize the image of observed vehicles.

The normalization is done by unpacking the image into a plane. The plane con-

tains rectified versions of the front/rear (F), side (S), and roof (R). These parts are

adjacent to each other (Fig. 4.3) and they are organized into the final matrix U:

U =





0 R

F S



 (4.1)

The unpacking itself is done by obtaining homography between points bi (Fig.

4.3) and perspective warping parts of the original image. The left top submatrix

is filled with zeros. This unpacked version of the vehicle can be used instead of

the original image to feed the net. The unpacking is beneficial as it localizes parts

of the vehicles, normalizes their position in the image and all that without the

necessity to use DPM or other algorithms for part localization.
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Figure 4.2: Examples of vehicles (top), their 3D bounding boxes (middle) and unpacked

version of the vehicles (bottom).

4.3.2 Viewpoint Encoding

We also found out that it improves the results when the net is aware of the view-

point of the vehicles. The viewpoint is extracted from the orientation of the 3D

bounding box – Fig. 4.4. We encode the viewpoint as three 2D vectors vi, where

i ∈ {f, s, r} (front/rear, side, roof ) and pass them to the net. Vectors vi are connecting

the center of the bounding box with the centers of the box’s faces. Therefore, it

can be computed as vi =
−−−→
CbCi. Point Cb is the center of the bounding box and

it can be obtained as the intersection of diagonals
←−→
b2b4 and

←−→
b5b3. Points Ci for

i ∈ {f, s, r} denote the centers of each face, again computed as intersections of face

diagonals. The vectors are normalized to have unit size; storing them with a differ-

ent normalization (e.g. the front one normalized, the other in the proper ratio) did

not improve the results.
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Figure 4.3: Unpacking the input vehicle image based on its bouding box. Points bi are

vertices of the 3D bounding box [DSH14].

Figure 4.4: Examples of vectors encoding the viewpoint.

4.3.3 Rasterized Bounding Boxes

Another way of encoding the viewpoint and also the relative dimensions of vehi-

cles is to rasterize the 3D bounding box and use it as an additional input to the net.

The rasterization is done separately for all sides, each filled by one color. The final

rasterized bounding box is then a three-channel image containing each visible face

rasterized in a different channel. Formally, point (x,y) of the rasterized bounding

box T is obtained as

Tx,y =



































(1, 0, 0) (x,y) ∈ b0b1b4b5

(0, 1, 0) (x,y) ∈ b1b2b5b6

(0, 0, 1) (x,y) ∈ b0b1b2b3

(0, 0, 0) otherwise

(4.2)

where b0b1b4b5 denotes the quadrilateral defined by points b0, b1, b4 and b5

in Figure 4.3.
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Figure 4.5: Examples of rasterized bounding boxes for CNN (colors are R,G,B in the actual

computation, but are changed here for aesthetic reasons).

Finally, the 3D rasterized bounding box is cropped by the 2D bounding box of

the vehicle. For an example, see Figure 4.5, showing rasterized bounding boxes for

different vehicles taken from different viewpoints.

4.3.4 Final CNN Using Images + Auxiliary Input

All this information is finally passed to the CNN (Fig. 4.1). The unpacked version

of vehicles is used directly as the image input instead of the original image. The

rasterized bounding box and encoded viewpoints are added to the net after the

convolutional layers. We experimented with changing the layer where the informa-

tion is added but different positions did not improve the results further and the

mentioned setting is easiest with regard to pre-training the network.

As the auxiliary input is added after the convolutional layers, it needs to be

passed in 6× 6 matrices. The rasterized bounding box is rescaled (Lanczos interpo-

lation) to 6× 6 and added to the net. The encoded viewpoints are added to the net

in 6× 6 one-channel matrix with zeros everywhere except for the first row which

contains normalized vectors encoding the viewpoint. The first row t of this matrix

contains all three 2D vectors: t = (vxf , vyf , vxr , vyr , vxs , vys ).

For better understanding of the text, we define labels for the nets with differ-

ent input modifications. The original CNN processing cropped images of vehicles

without any modifications is referenced as baseline. Network denoted as Rast

contains the rasterized bounding boxes, View net is augmented by the encoded

viewpoints, and in Unp version of the net, the original image is replaced by the
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Figure 4.6: A sample of the novel BoxCars dataset. In total, it captures 21,250 vehicles in

63,750 images, from 27 different makes (148 fine-grained classes).
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Figure 4.7: Distribution of samples in our BoxCars dataset across vehicle types. The distri-

bution corresponds to real-life occurence of the models.

unpacked image of vehicles. All these input modifications can be combined, yield-

ing RastView, RastUnp and RastViewUnp nets.

4.4 boxcars : new dataset for surveillance vehicle verification

There is a large number of datasets of vehicles [130, 1, 113, 36, 162, 16, 111, 87, 53,

134, 51, 112, 106] which are usable mainly for vehicle detection, pose estimation,

and other tasks. However, these datasets do not contain annotation of the precise

vehicles’ make & model.

When it comes to the fine-grained datasets, a few of them exist and all are quite

recent. Lin et al. [93] published FG3DCar dataset (300 images, 30 classes), Stark

et al. [146] made another dataset containing 1,904 vehicles from 14 classes. Krause

et al. [80] published two datasets; one of them, called Car Types, contains 16k of

images and 196 classes. The other one, BMW 10, is made of 10 models of BMW

vehicles and 500 images. Finally, Liao et al. [90] created a dataset of 1,482 vehicles

from 8 classes. All these datasets are relatively small for training the CNN for

real-world surveillance tasks.
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Yang et al. [169] published a large dataset CompCars this year (2015). The dataset

consists of a web-nature part, made of 136k of vehicles from 1,600 classes taken

from different viewpoints. Then, it also contains a surveillance-nature part with

50k frontal images of vehicles taken from surveillance cameras.

We collected and annotated a new dataset BoxCars. The dataset is focused on im-

ages taken from surveillance cameras as it is meant to be useful for traffic surveil-

lance applications. We do not restrict that the vehicles are taken from the frontal

side (Fig. 4.6). We used surveillance cameras mounted near streets and tracked the

passing vehicles. Each correctly detected vehicle is captured in 3 images, as it is

passing by the camera; therefore, we have more visual information about each ve-

hicle. The dataset contains 21,250 vehicles (63,750 images) of 27 different makes.

The vehicles are divided into classes: there are 102 make & model classes, 126

make & model + submodel classes, and 148 make & model + submodel + model

year classes. The distribution of types in the dataset is shown in Figure 4.7 and

samples from the dataset are in Figure 4.6. The data include information about

the 3D bounding box [DSH14] for each vehicle and an image with a foreground

mask extracted by background subtraction [147, 190]. The dataset is made publicly

available1 for future reference and evaluation.

Our proposed dataset is difficult in comparison with other existing datasets

in size of the images (thousands of pixels, min/mean/max): CompCars –

107/503/1114, Cars-196 – 4/479/42120, BoxCars – 8/39/253. Also, the samples

in our dataset are compressed by realistic h264 codec settings, and unlike most

existing surveillance datasets, our viewpoints are diverse and not just frontal/rear.

4.5 experimental results

The evaluation of the improvement caused by our modifications of the CNN input

can be only done on our BoxCars dataset as other fine-grained datasets listed in

Section 4.4 do not include the information about the bounding boxes. However, to

put the performance of the system into context with other published methods, we

evaluated the BVLC Reference net [82] on the most recent dataset CompCars and

the improvement will be measured relatively to this baseline.

4.5.1 Evaluation on the CompCars Dataset

We trained the baseline net on the CompCars dataset [169] and evaluated its accu-

racy. As Table 4.1 shows, this net significantly outperforms the CNN used by Yang

1 https://medusa.fit.vutbr.cz/traffic

https://medusa.fit.vutbr.cz/traffic
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Table 4.1: Comparison of classification results on the CompCars [169] dataset (accuracy).

Top-1 Top-5

[169] 0.767 0.917

Ours 0.848 0.954

Table 4.2: Comparison of verification results on the CompCars dataset (accuracy).

Easy Medium Hard

[169] 0.833 0.824 0.761

Ours 0.850 0.827 0.768

et al. [169] in their paper in both Top-1 and Top-5 categories. We used the All-view

split as the authors achieved the best results if they did not take the viewpoint into

account, but instead, they trained a common net on all the viewpoints at once.

We also evaluated the make & model verification accuracy using the activations

extracted from the baseline net and cosine distance. The results are shown in Ta-

ble 4.2 and our system outperforms the original paper in verification as well. It

should be noted that the CompCars verification dataset has a high random baseline

(0.5).

Since the baseline net outperforms the method published by Yang et al. [169],

we measure the improvement achieved by our modifications of the CNN input

relatively to the performance of this baseline net on our BoxCars dataset.

4.5.2 Classification Results

We defined two ways of splitting the BoxCars dataset into the training and testing

parts. In both of them, medium and hard, vehicles taken from 70 % of cameras are

included in the training part and the vehicles taken by the rest of the cameras are

in the test set. The difference of viewpoints between the training and the test sets is

not too large, as it would be if for example the rear views would be in the training

set and frontal views in the test set. This kind of splitting is suitable for benchmark-

ing surveillance algorithms because real-life applications would also use cameras

placed in roughly predictable viewpoints. The difference between the medium and

hard splittings is that we consider vehicles of the same make+model+submodel

but differing in their model year as the same types in the medium dataset. In the

hard dataset, we differentiate also the model year. For stability of the classification,
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Table 4.3: Training and testing set sizes for the classifications task. Numbers of samples

represent the amount of all images used. The number of unique vehicles is one

third of these counts.

# types # training samples # test samples

medium 77 40,152 19,590

hard 87 37,689 18,939
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Figure 4.8: Top-1 accuracies for different input modifications. The dashed line represent

the baseline accuracy achieved by the CNN without any input modification.

The method identifiers are explained in Sec. 4.3.4.

types with too few samples were omitted and the training/testing set sizes can be

found in Table 4.3 (this approach is consistent with [169]).

All the CNNs were pre-trained on ImageNet [130] and then fine-tuned on one

of the medium or hard datasets. When the rasterized bounding boxes or encoded

viewpoints are introduced to the nets, the weights of fully connected layers are

randomly re-initialized and in that case we do not use the pre-trained weights on

ImageNet in those layers.

We evaluated all the net’s input modifications and also their combinations. The

results are shown in Table 4.4 and Figure 4.8. As we have multiple samples for

each vehicle, we can use mean probability for each vehicle type and achieve better

results, see Table 4.5. The improvement between one sample and three samples is

0.073 (0.731 to 0.804 in Top-1 accuracy). Also, Table 4.5 shows that the improvement

achieved by the modified CNN in the medium dataset is 0.060 (0.772 to 0.832) and

0.071 (0.733 to 0.804) in the hard case.

We consider the improvement in classification accuracy as interesting because

the task itself is complex and difficult even for a human. Also, the classification

error was reduced by 26 % for both splittings. Consider the examples of the most

confused types shown in Figure 4.9, where Volkswagen Up and Skoda Citigo are

manufactured in the same production plant and they differ only in subtle branding

parts in the region of the frontal mask. Also, Figure 4.10 shows examples of proba-

bilities obtained for different vehicles. These graphs indicate that the net is aware
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Table 4.4: Comparison of classification accuracy results for one sample per vehicle. The method identifiers

are explained in Sec. 4.3.4.

baseline Unp Rast View RastUnp ViewUnp RastViewUnp

med hard med hard med hard med hard med hard med hard med hard

Top-1 0.720 0.669 0.764 0.730 0.748 0.694 0.712 0.676 0.750 0.722 0.739 0.725 0.754 0.731

Top-5 0.910 0.883 0.915 0.897 0.903 0.872 0.885 0.865 0.891 0.882 0.894 0.883 0.901 0.890

Table 4.5: Comparison of classification accuracy results for three samples per vehicle, the final probability

for a class is obtained as mean probability over the samples.

baseline Unp Rast View RastUnp ViewUnp RastViewUnp

med hard med hard med hard med hard med hard med hard med hard

Top-1 0.772 0.733 0.832 0.794 0.812 0.764 0.778 0.759 0.813 0.787 0.810 0.801 0.821 0.804

Top-5 0.924 0.903 0.945 0.926 0.927 0.906 0.913 0.901 0.928 0.923 0.930 0.919 0.937 0.929

of the sample being similar to multiple types and that it can safely distinguish

from completely disparate models.

The experimental results indicate that the most important improvement is un-

packing the image (Section 4.3.1), presumably because it leads to better alignment

of the vehicle features on the input CNN level. The further input modifications

help only in the hard splitting, where subtler details make a difference.

4.5.3 Verification Results

Verification of pairs of vehicle types (for two vehicle samples decide: same types

/ different types) is as important as classification, especially when it comes to rea-

soning about unseen and untrained vehicle types. We selected even more difficult

splitting for evaluation of the verification performance. Only some cameras are

present in the training set (the same ones as in the classification task) and only

some vehicle types are present in the training set. The testing is done on pairs

of randomly selected 3,000 vehicles mainly taken from cameras which were not

present during training (over 80 % of vehicles is from unseen cameras) and the

testing set of vehicles also contains types which were not seen during training

(over 10 % of samples, approximately 25 % of pairs contain at least one vehicle of

an unseen type). Thus, the algorithm is required to verify unseen types of vehicles

taken from unseen viewpoints and it has to generalize well.

We have three splittings for the verification task. Easy contains pairs of vehicles

from the same unseen camera, medium contains pairs from different unseen cam-

eras and finally, hard contains pairs of vehicles from different unseen cameras and
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Figure 4.9: Most misclassified vehicle types for the RastViewUnp version of the net. left:

Volkswagen Up and Skoda Citigo, middle: Volkswagen Caddy and Citroen

Berlingo, right: Kia Ceed and Renault Megane.

Table 4.6: Training and test sets sizes for the verification task. The number of training

samples represent the number of images used in training. The number of unique

training vehicles is one third of this number.

training testing

# types # samples # types # pairs

easy 113 34 929 100 1 394 008

medium 113 34 929 99 1 435 532

hard 126 32 658 113 1 501 156

the model year is also taken into account. The training/testing set sizes can be

found in Table 4.6.

Again, we used nets pre-trained on ImageNet [130], fine-tuned them during

the training and then used the features from the last fully connected layer (fc7)

and compared them by cosine distance. Two different training passes were done,

one for the easy and medium splitting (both splittings do not take model year into

account) and one for the hard one.

We evaluated the algorithm on the three dataset splittings using only one sample

for each vehicle and the results are in Figure 4.11. When the three samples are taken

into account by working with the median cosine distance, the results improve as

shown in Figure 4.12. Using the median cosine distance improved the average

precision on average by 0.094.
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chevrolet cruze hatchback

hyundai i30 hatchback
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Figure 4.10: Examples of types probabilities for different vehicles for the RastViewUnp

version of the net. Only one sample was used for the classification and the

model year was differentied in the first example.
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Figure 4.11: Precision-Recall curves for different verification dataset splittings. Only one

sample was used for the verification. Numbers denote Average Precision. The

method identifiers are explained in Sec. 4.3.4; rnd baseline denotes random

baseline based on the number of positive pairs. Numbers in legend denote

Average Precision.

The plots show that our CNN input modifications have a huge impact on the

average precision in the verification task. For example, considering the medium set

and the median cosine distance over the three samples, RastViewUnp improved AP

of the baseline CNN by 208 %. Figure 4.13 shows what improved the average pre-

cision in verification. The numbers gradually increase as we add more and more

modifications of the CNN input. It is rather interesting that both rasterized bound-

ing boxes and orientation encoding help the net, even in combination; we expected

that these two would be alternative ways of encoding the same information, but

apparently, they encode it slightly differently and both turn out to be helpful.

We also obtained vehicle type verification precision and recall of human subjects

for the BoxCars dataset. We randomly selected 1,000 pairs of vehicles; one third of

the pairs included vehicles of different types, one third of pairs had the same
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Figure 4.12: Precision-Recall curves for different verification dataset splittings. Median co-

sine distance over three vehicle samples was used in this case. Black dots

represent mean precision and recall obtained by human annotators, see text

for details. Numbers in legend denote Average Precision.
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Figure 4.13: Schematic image of improvements in the verification AP for different CNN

input modifications. The image is based on the medium splitting with median

distance over the samples.

make & model + submodel, but differed in the model year, and the last third con-

tained pairs of vehicles of the same type including model year. Participants were

requested to manually indicate one of these three situations for each given pair

of vehicles. All three captured images of the vehicles, taken by different cameras,

were shown to the participants (that is why the human data is present in medium

and hard cases in Fig. 4.12 but not in Fig. 4.11). We received a total of 8,011 inputs (8

per pair) with mean precision 0.946 and mean recall 0.844 for the medium case. On

the other hand, the results show that the human annotators have problems with

correctly distinguishing different model years (the hard case), with mean precision

0.685 and mean recall 0.646. These results are shown in Figure 4.12 as black dots;

note that in the hard case, the system outperforms the human annotators.
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4.6 conclusions

Surveillance systems can and should benefit from the camera being fixed. The cam-

era can be fully automatically calibrated and more information can be extracted

for the passing vehicles. We show that this information considerably improves the

fine-grained recognition by CNN, and tremendously boosts the verification task

average precision.

Our dataset BoxCars is meant to help experiments in this direction by providing

sufficient amount of data enriched by information which can be automatically ex-

tracted in real time in actual surveillance systems. We keep collecting samples from

new surveillance cameras, so that the size of the dataset will gradually increase in

near future.
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abstract In this paper, we focus on fine-grained recognition of vehicles

mainly in traffic surveillance applications. We propose an approach that is orthog-

onal to recent advancements in fine-grained recognition (automatic part discovery,

bilinear pooling). Also, in contrast to other methods focused on fine-grained recog-

nition of vehicles, we do not limit ourselves to a frontal/rear viewpoint, but allow

the vehicles to be seen from any viewpoint. Our approach is based on 3D bound-

ing boxes built around the vehicles. The bounding box can be automatically con-

structed from traffic surveillance data. For scenarios where it is not possible to use

precise construction, we propose a method for an estimation of the 3D bounding

box. The 3D bounding box is used to normalize the image viewpoint by “unpack-

ing” the image into a plane. We also propose to randomly alter the color of the

image and add a rectangle with random noise to a random position in the image

during the training of Convolutional Neural Networks. We have collected a large

fine-grained vehicle dataset BoxCars116k, with 116k images of vehicles from vari-

ous viewpoints taken by numerous surveillance cameras. We performed a number

of experiments which show that our proposed method significantly improves CNN

classification accuracy (the accuracy is increased by up to 12 percentage points and

the error is reduced by up to 50 % compared to CNNs without the proposed modi-

fications). We also show that our method outperforms state-of-the-art methods for

fine-grained recognition.

5.1 introduction

Fine-grained recognition of vehicles is interesting, both from the application point

of view (surveillance, data retrieval, etc.) and from the point of view of general

fine-grained recognition research applicable in other fields. For example, Gebru

49
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Figure 5.1: Example of automatically obtained 3D bounding box used for fine-grained vehi-

cle classification. Top left: vehicle with 2D bounding box annotation, top right:

estimated contour, bottom left: estimated directions to vanishing points, bot-

tom right: 3D bounding box automatically obtained from surveillance video

(green) and our estimated 3D bounding box (red).

et al. [50] proposed an estimation of demographic statistics based on fine-grained

recognition of vehicles. In this article, we are presenting methodology which con-

siderably increases the performance of multiple state-of-the-art CNN architectures

in the task of fine-grained vehicle recognition. We target the traffic surveillance

context, namely images of vehicles taken from an arbitrary viewpoint – we do not

limit ourselves to frontal/rear viewpoints. As the images are obtained from surveil-

lance cameras, they have challenging properties – they are often small and taken

from very general viewpoints (high elevation). We also construct the training and

testing sets from images from different cameras as it is common for surveillance

applications that it is not known a priori under which viewpoint the camera will

be observing the road.

Methods focused on the fine-grained recognition of vehicles usually have some

limitations – they can be limited to frontal/rear viewpoints or use 3D CAD mod-

els of all the vehicles. Both these limitations are rather impractical for large scale

deployment. There are also methods for fine-grained recognition in general which

were applied on vehicles. The methods recently follow several main directions –

automatic discovery of parts [81, 142], bilinear pooling [92, 47], or exploiting struc-
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ture of fine-grained labels [166, 189]. Our method is not limited to any particular

viewpoint and it does not require 3D models of vehicles at all.

We propose an orthogonal approach to these methods and use CNNs with

a modified input to achieve better image normalization and data augmentation

(therefore, our approach can be combined with other methods). We use 3D bound-

ing boxes around vehicles to normalize vehicle image (see Figure 5.4 for exam-

ples). This work is based on our previous conference paper [SHH16]; it pushes

the performance further and we mainly propose a new method on how to build

the 3D bounding box without any prior knowledge (see Figure 5.1). Our input

modifications are able to significantly increase the classification accuracy (up to 12

percentage points, classification error is reduced by up to 50 %).

The key contributions of the paper are:

• Complex and thorough evaluation of our previous method [SHH16].

• Our novel data augmentation techniques further improve the results of the

fine-grained recognition of vehicles relative both to our previous method and

other state-of-the-art methods (Section 5.3.3).

• We remove the requirement of the previous method [SHH16] to know the 3D

bounding box by estimating the bounding box both at training and test time

(Section 5.3.4).

• We collected more samples to the BoxCars dataset, increasing the dataset size

almost twice (Section 5.4).

We will make the collected dataset and source codes for the proposed algorithm

publicly available1 for future reference and comparison.

5.2 related work

In order to provide context to the proposed method, we present a summary of

existing fine-grained recognition methods (both general and focused on vehicles).

5.2.1 General Fine-Grained Object Recognition

We divide the fine-grained recognition methods from recent literature into several

categories as they usually share some common traits. Methods exploiting anno-

tated model parts (e.g. [72, 179]) are not discussed in detail as it is not common in

fine-grained datasets of vehicles to have the parts annotated.

1 https://medusa.fit.vutbr.cz/traffic

https://medusa.fit.vutbr.cz/traffic
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5.2.1.1 Automatic Part Discovery

Parts of classified objects may be discriminatory and provide lots of information for

the fine-grained classification task. However, it is not practical to assume that the

location of such parts is known a priori as it requires significantly more annotation

work. Therefore, several papers [170, 34, 171, 79, 142, 81, 183] have dealt with

this problem and proposed methods how to automatically (during both training

and test time) discover and localize such parts. The methods differ mainly in the

ways in which they are used for the discovery of discriminative parts. The features

extracted from the parts are usually classified by SVMs.

5.2.1.2 Methods using Bilinear Pooling

Lin et al. [92] use only convolutional layers from the net for extraction of features

which are classified by a bilinear classifier [120]. Gao et al. [47] followed the path

of bilinear pooling and proposed a method for Compact Bilinear Pooling getting

the same accuracy as the full bilinear pooling with a significantly lower number of

features.

5.2.1.3 Other Methods

Xie et al. [166] proposed to use a hyper-class for data augmentation and regulariza-

tion of fine-grained deep learning. Zhou et al. [189] use CNN with Bipartite Graph

Labeling to achieve better accuracy by exploiting the fine-grained annotations and

coarse body type (e.g. Sedan, SUV). Lin et al. [91] use three neural networks for

simultaneous localization, alignment and classification of images. Each of these

three networks does one of the three tasks and they are connected into one bigger

network. Yao et al. [171] proposed an approach which uses responses to random

templates obtained from images and classifies merged representations of the re-

sponse maps by SVM. Zhang et al. [180] use pose normalization kernels and their

responses warped into a feature vector. Chai et al. [19] propose to use segmen-

tation for fine-grained recognition to obtain the foreground parts of an image. A

similar approach was also proposed by Li et al. [89]; however, the authors use a

segmentation algorithm which is optimized and fine-tuned for the purpose of fine-

grained recognition. Finally, Gavves et al. [48] propose to use object proposals to

obtain the foreground mask and unsupervised alignment to improve fine-grained

classification accuracy.
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5.2.2 Fine-Grained Recognition of Vehicles

The goal of fine-grained recognition of vehicles is to identify the exact type of the

vehicle, that is its make, model, submodel, and model year. The recognition system

focused only on vehicles (in relation to general fine-grained classification of birds,

dogs, etc.) can benefit from that the vehicles are rigid, have some distinguishable

landmarks (e.g. license plates), and rigorous models (e.g. 3D CAD models) can be

available.

5.2.2.1 Methods Limited to Frontal/Rear Images of Vehicles

There is a multitude of papers [119, 31, 23, 116, 122, 86, 175, 98] using a common

approach: they detect the license plate (as a common landmark) on the vehicle and

extract features from the area around the license plate as the front/rear parts of

vehicles are usually discriminative.

There are also papers [176, 68, 69, 90, 4, 61] directly extracting features from

frontal images of vehicles by different methods and optionally exploiting the stan-

dard structure of parts on the frontal mask of car (e.g. headlights).

5.2.2.2 Methods based on 3D CAD Models

There were several approaches on how to deal with viewpoint variance using syn-

thetic 3D models of vehicles. Lin et al. [93] propose to jointly optimize 3D model

fitting and fine-grained classification, Hsiao et al. [67] use detected contour and

align the 3D model using 3D chamfer matching. Krause et al. [80] propose to use

synthetic data to train geometry and viewpoint classifiers for the 3D model and 2D

image alignment. Prokaj et al. [121] propose to detect SIFT features on the vehicle

image and on every 3D model seen from a set of discretized viewpoints.

5.2.2.3 Other Methods

Gu et al. [58] propose extracting the center of a vehicle and roughly estimate the

viewpoint from the bounding box aspect ratio. Then, they use different Active

Shape Models for alignment of data taken from different viewpoints and use seg-

mentation for background removal.

Stark et al. [146] propose using an extension of Deformable Parts Model (DPM)

[40] to be able to handle multi-class recognition. The model is represented by latent

linear multi-class SVM with HOG [29] features. The authors show that the system

outperforms different methods based on Locally-constrained Linear Coding [158]

and HOG. The recognized vehicles are used for eye-level camera calibration.

Liu et al. [94] use deep relative distance trained on a vehicle re-identification

task and propose training the neural net with Coupled Clusters Loss instead of
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triplet loss. Boonsim et al. [9] propose a method for fine-grained recognition of

vehicles at night. The authors use relative position and shape of features visible at

night (e.g. lights, license plates) to identify the make&model of a vehicle, which is

visible from the rear side.

Fang et al. [38] propose using an approach based on detected parts. The parts

are obtained in an unsupervised manner as high activations in a mean response

across channels of the last convolutional layer of used CNN. The authors in [71]

introduce spatially weighted pooling of convolutional features in CNNs to extract

important features from the image.

5.2.2.4 Summary of Existing Methods

Existing methods for the fine-grained classification of vehicles usually have signif-

icant limitations. They are either limited to frontal/rear viewpoints [119, 31, 23,

116, 122, 86, 175, 98, 176, 68, 69, 90, 4, 61] or require some knowledge about 3D

models of the vehicles [121, 80, 67, 93] which can be impractical when new models

of vehicles emerge.

Our proposed method does not have such limitations. The method works with

arbitrary viewpoints and we require only 3D bounding boxes of vehicles. The 3D

bounding boxes can either be automatically constructed from traffic video surveil-

lance data [DSH14, DHJS15] or we propose a method on how to estimate the

3D bounding boxes both at training and test time from single images (see Sec-

tion 5.3.4).

5.2.3 Datasets for Fine-Grained Recognition of Vehicles

There is a large number of datasets of vehicles (e.g [130, 106]) which are usable

mainly for vehicle detection, pose estimation, and other tasks. However, these

datasets do not contain annotations of the precise vehicles’ make and model.

When it comes to the fine-grained recognition datasets, there are some [146,

80, 93, 90] which are relatively small in number of samples or classes. Therefore,

they are impractical for the training of CNN and deployment of real world traffic

surveillance applications.

Yang et al. [169] published a large dataset CompCars. The dataset consists of a

web-nature part, made of 136k of vehicles from 1 600 classes taken from different

viewpoints. It also contains a surveillance-nature part with 50k frontal images of

vehicles taken from surveillance cameras.

Liu et al. [97] published dataset VeRi-776 for the vehicle re-identification task.

The dataset contains over 50k images of 776 vehicles captured by 20 cameras cover-

ing an 1.0 km2 area in 24 hours. Each vehicle is captured by 2 ∼ 18 cameras under
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Figure 5.2: 3D bounding box construction process. Each set of lines with the same color

intersects in one vanishing point. See the original paper for full details [DSH14].

The image was adopted from the paper with the authors’ permission.

different viewpoints, illuminations, resolutions and occlusions. The dataset also

provides various attributes, such as bounding boxes, vehicle types, and colors.

5.2.4 Vehicle Detection

In traffic surveillance applications, it is common that prior fine-grained vehicle

classification is necessary to detect vehicles; therefore, we include a brief overview

of existing methods for vehicle detection. It is possible to use standard object de-

tectors – either based on convolutional neural networks [124, 123], AdaBoost [33],

Deformable Part Models [40] or Hough Transformation [45]. There were also at-

tempts to improve specifically vehicle detection based on geometric information

[159], during night [131], or to increase the accuracy of localization of occluded

vehicles [26].

5.3 proposed methodology for fine-grained recognition of vehi-

cles

In agreement with recent progress in the Convolutional Neural Networks [153,

82, 22], we use CNN for both classification and verification (determining whether

a pair of vehicles has the same type). However, we propose to use several data

normalization and augmentation techniques to significantly boost the classifica-

tion performance (up to 50% error reduction compared to base net). We utilize

information about 3D bounding boxes obtained from traffic surveillance camera

[DSH14]. Finally, in order to increase the applicability of our method to scenarios

where the 3D bounding box is not known, we propose an algorithm for bounding

box estimation both at training and test time.
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Figure 5.3: 3D bounding box and its unpacked version.

5.3.1 Image Normalization by Unpacking the 3D Bounding Box

We based our work on 3D bounding boxes proposed by [DSH14] (Fig. 5.4) which

can be automatically obtained for each vehicle seen by a surveillance camera (see

Figure 5.2 for schematic 3D bounding box construction process or the original

paper [DSH14] for further details). These boxes allow us to identify the side, roof,

and front (or rear) side of vehicles in addition to other information about the

vehicles. We use these localized segments to normalize the image of the observed

vehicles (considerably boosting the recognition performance).

The normalization is done by unpacking the image into a plane. The plane con-

tains rectified versions of the front/rear (F), side (S), and roof (R). These parts are

adjacent to each other (Fig. 5.3) and they are organized into the final matrix U:

U =





0 R

F S



 (5.1)

The unpacking itself is done by obtaining homography between points bi (Fig.

5.3) and perspective warping parts of the original image. The left top submatrix

is filled with zeros. This unpacked version of the vehicle is used instead of the

original image to feed the net. The unpacking is beneficial as it localizes parts of

the vehicles, normalizes their position in the image and it does all that without the

necessity of using DPM or other algorithms for part localization. Later in the text,

we will refer to this normalization method as Unpack.

5.3.2 Extended Input to the Neural Nets

It it possible to infer additional information about the vehicle from the 3D bound-

ing box and we found out that these data slightly improve the classification and

verification performance. One piece of this auxiliary information is the encoded

viewpoint (direction from which the vehicle is observed). We also add a rasterized

3D bounding box as an additional input to the CNNs. Compared to our previously

proposed auxiliary data fed to the net [SHH16], we handle frontal and rear vehicle

sides differently.
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Figure 5.4: Examples of data normalization and auxiliary data fed to nets. Left to right:

vehicle with 2D bounding box, computed 3D bounding box, vectors encoding

viewpoints on the vehicle (View), unpacked image of the vehicle (Unpack), and

rasterized 3D bounding box fed to the net (Rast).

Figure 5.5: Examples of proposed data augmentation techniques. Left most image contains

the original cropped image of the vehicle and other images contains augmented

versions of the image (Top – Color, Bottom – ImageDrop).

View. The viewpoint is extracted from the orientation of the 3D bounding box

– Fig. 5.4. We encode the viewpoint as three 2D vectors vi, where i ∈ {f, s, r} (fron-

t/rear, side, roof ) and pass them to the net. Vectors vi are connecting the center of

the bounding box with the centers of the box’s faces. Therefore, it can be computed

as vi =
−−−→
CcCi. Point Cc is the center of the bounding box and it can be obtained

as the intersection of diagonals
←−→
b2b4 and

←−→
b5b3. Points Ci for i ∈ {f, s, r} denote the

centers of each face, again computed as intersections of face diagonals. In contrast

to our previous approach [SHH16], which did not take the direction of the vehicle

into account; instead, we encode the information about the vehicle direction (d = 1

for vehicles going to camera, d = 0 for vehicles going from the camera), in order to

determine which side of the bounding box is the frontal one. The vectors are nor-

malized to have a unit size; storing them with a different normalization (e.g. the

front one normalized, the other in the proper ratio) did not improve the results.

Rast. Another way of encoding the viewpoint and also the relative dimensions

of vehicles is to rasterize the 3D bounding box and use it as an additional input to

the net. The rasterization is done separately for all sides, each filled by one color.

The final rasterized bounding box is then a four-channel image containing each
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visible face rasterized in a different channel. Formally, point p of the rasterized

bounding box T is obtained as

Tp =















































(1, 0, 0, 0) p ∈ b0b1b4b5 and d = 1

(0, 1, 0, 0) p ∈ b0b1b4b5 and d = 0

(0, 0, 1, 0) p ∈ b1b2b5b6

(0, 0, 0, 1) p ∈ b0b1b2b3

(0, 0, 0, 0) otherwise

(5.2)

where b0b1b4b5 denotes the quadrilateral defined by points b0, b1, b4 and b5

in Figure 5.3.

Finally, the 3D rasterized bounding box is cropped by the 2D bounding box of

the vehicle. For an example, see Figure 5.4, showing rasterized bounding boxes for

different vehicles taken from different viewpoints.

5.3.3 Additional Training Data Augmentation

In order to increase the diversity of the training data, we propose additional data

augmentation techniques. The first one (denoted as Color) deals with the fact that

for fine-grained recognition of vehicles (and some other objects), their color is irrel-

evant. The other method (ImageDrop) deals with some potentially missing parts

of the vehicle. Examples of the data augmentation are shown in Figure 5.5. Both

these augmentation techniques are done only with predefined probability during

training, otherwise they are not modified. During testing, we do not modify the

images at all.

The results presented in Section 5.5.5 show that both these modifications im-

prove the classification accuracy both in combination with other presented tech-

niques or by themselves.

Color. In order to increase training samples color variability, we propose to ran-

domly alternate the color of the image. The alternation is done in the HSV color

space by adding the same random values to each pixel in the image (each HSV

channel is processed separately).

ImageDrop. Inspired by Zeiler et al. [174], who evaluated the influence of cover-

ing a part of the input image on the probability of the ground truth class, we take

this a step further and in order to deal with missing parts on the vehicles, we take

a random rectangle in the image and fill it with random noise, effectively dropping

any information contained in that part of the image.
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Figure 5.6: Estimation of 3D bounding box. Left to right: image with vehicle 2D bounding

box, output of contour object detector [168], our constructed contour, estimated

directions towards vanishing points, ground truth (green) and estimated (red)

3D bounding box.

5.3.4 Estimation of 3D Bounding Box from a Single Image

As the results (Section 5.5) show, the most important part of the proposed algo-

rithm is Unpack followed by Color and ImageDrop. However, the 3D bounding

box is required for unpacking the vehicles and we acknowledge that there may be

scenarios when such information is not available. For these cases, we propose a

method on how to estimate the 3D bounding box for both training and test time

when only limited information is available.

As proposed by [DSH14], the vehicle’s contour and vanishing points are re-

quired for the bounding box construction. Therefore, it is necessary to estimate

the contour and vanishing points for the vehicle. For estimating the vehicle con-

tour, we use Fully Convolutional Encoder-Decoder network designed by Yang et

al. [168] for general object contour detection and masks with probabilities of vehi-

cles contours for each image pixel. To obtain the final contour, we search for global

maxima along line segments from 2D bounding box centers to edge points of the

2D bounding box (see Figure 5.6 for examples).

We found out that the exact position of the vanishing point is not required for

3D bounding box construction, but the directions to the vanishing points are much

more important. Therefore, we use regression to obtain the directions towards the

vanishing points and then assume that the vanishing points are in infinity.

Following the work by Rothe et al. [128], we formulated the regression of the

direction towards the vanishing points as a classification task into bins correspond-

ing to angles and we used ResNet50 [62] with three classification outputs. We

found this approach more robust than a direct regression. We added three sepa-

rate fully connected layers with softmax activation (one for each vanishing point)

after the last average pooling in the ResNet50 (see Figure 5.7). Each of these layers

generates probabilities for each vanishing point belonging to the specific direction

bin (represented as angles). We quantized the angle space by bins of 3◦ from −90◦

to 90◦ (60 bins per vanishing point in total).
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Figure 5.7: Used CNN for estimation of directions towards vanishing points. The vehicle

image is fed to ResNet50 with 3 separate outputs which predict probabilities

for directions of vanishing points as probabilities in a quantized angle space

(60 bins from −90◦ to 90◦).

As the training data for the regression we used BoxCars116k dataset (Section 5.4)

with the test samples omitted. The direction to vanishing points were obtained

by method [DSH14, DHJS15]; however, the quality of the ground truth bounding

boxes was manually verified during annotation of the dataset and imprecise sam-

ples were removed by the annotators. To construct the lines on which the vanishing

points are, we use the center of the 2D bounding box. Even though there is bias in

the direction of the training data (some bins have very low number of samples), it

is highly unlikely that for example, the first vanishing point direction will be close

to horizontal.

With all this estimated information it is then possible to construct the 3D bound-

ing box in both training and test time. It is important to note that by using this

3D bounding box estimation, it is possible to use this method outside the scope of

traffic surveillance. It is only necessary to train the regressor of vanishing points

directions. For the training of such a regressor, it is possible to use either the direc-

tions themselves or viewpoints on the vehicle and focal lengths of the images.

Using this estimated bounding box, it is possible to unpack the vehicle image

in test time without any additional information required. This enables the usage

of the method when the traffic surveillance data are not available. The results in

Section 5.5.3 show that by using this estimated 3D bounding boxes, our method

still significantly outperforms other convolutional neural networks without input

modification.
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Figure 5.8: Collate of random samples from the BoxCars116k dataset.

5.4 boxcars116k dataset

We collected and annotated a new dataset BoxCars116k. The dataset is focused

on images taken from surveillance cameras as it is meant to be useful for traf-

fic surveillance applications. We do not restrict that the vehicles are taken from

the frontal side (Fig. 5.8). We used surveillance cameras mounted near streets and

tracked passing vehicles. The cameras were placed on various locations around

Brno, Czech Republic and recorded the passing traffic from an arbitrary (rea-

sonable) surveillance viewpoint. Each correctly detected vehicle (by Faster-RCNN

[124] trained on COD20k dataset [74]) is captured in multiple images, as it passes

by the camera; therefore, we have more visual information about each vehicle.

5.4.1 Dataset Acquisition

The dataset is formed by two parts. The first part consists of data from BoxCars21k

dataset [SHH16] which were cleaned up and some imprecise annotations were

then corrected (e.g. missing model years for some uncommon vehicle types).

We also collected other data from videos relevant to our previous work

[DSH14, DHJS15, SJŠ+18]. We detected all vehicles, tracked them and for each

track collected images of the respective vehicle. We downsampled the framerate

to ∼ 12.5 FPS to avoid collecting multiple and almost identical images of the same

vehicle.

The new dataset was annotated by multiple human annotators with an interest

in vehicles and sufficient knowledge about vehicle types and models. The anno-

tators were assigned to clean up the processed data from invalid detections and

assign exact vehicle type (make, model, submodel, year) for each obtained track.

While preparing the dataset for annotation, 3D bounding boxes were constructed

for each detected vehicle using the method proposed by [DSH14]. Invalid detec-

tions were then distinguished by the annotators based on these constructed 3D

bounding boxes. In the cases when all 3D bounding boxes were not constructed

precisely, the whole track was invalidated.

Vehicle type annotation reliability is guaranteed by providing multiple annota-

tions for each valid track (∼ 4 annotations per vehicle). The annotation of a vehicle
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Figure 5.9: BoxCars116k dataset statistics – top left: 2D bounding box dimensions, top

right: number of fine-grained types samples, bottom left: azimuth distribution

(0◦ denotes frontal viewpoint), bottom right: elevation distribution.

type is considered as correct in the case of at least three identical annotations.

Uncertain cases were authoritatively annotated by the authors.

The tracks in BoxCars21k dataset consist of exactly 3 images per track. In the new

part of the dataset, we collect an arbitrary number of images per track (usually

more than 3).

5.4.2 Dataset Statistics

The dataset contains 27 496 vehicles (116 286 images) of 45 different makes with

693 fine-grained classes (make & model & submodel & model year) collected from

137 different cameras with a large variation of viewpoints. Detailed statistics about

the dataset can be found in Figure 5.9 and Appendix A. The distribution of types

in the dataset is shown in Figure 5.9 (top right) and samples from the dataset

are in Figure 5.8. The dataset also includes information about the 3D bounding

box [DSH14] for each vehicle and an image with a foreground mask extracted by

background subtraction [147, 190]. The dataset has been made publicly available2

for future reference and evaluation.

Compared to “web-based” datasets, the new BoxCars116k dataset contains im-

ages of vehicles relevant to traffic surveillance which have specific viewpoints (high

elevation), usually small images, etc. Compared to other fine-grained surveillance

datasets, our dataset provides data with a high variation of viewpoints (see Fig-

ure 5.9 and 3D plots in Appendix A).

2 https://medusa.fit.vutbr.cz/traffic

https://medusa.fit.vutbr.cz/traffic
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5.4.3 Training & Test Splits

Our task is to provide a dataset for fine-grained recognition in traffic surveillance

without any viewpoint constraint. Therefore, we have constructed the splits for

training and evaluation in a way which reflects the fact that it is not usually known

beforehand from which viewpoints the vehicles will be seen by the surveillance

camera.

Thus, for the construction of the splits, we randomly selected cameras and used

all tracks from these cameras for training and vehicles from the rest of the cameras

for testing. In this way, we are testing the classification algorithms on images of

vehicles from previously unseen cameras (viewpoints). This splits selection process

implies that some of the vehicles from the test set may be taken under slightly

different viewpoints from the ones that are in the training set.

We constructed two splits. In the first one (hard), we are interested in recognizing

the precise type, including the model year. In the other one (medium), we omit the

difference in model years and all vehicles of the same subtype (and potentially

different model years) are present in the same class. We selected only types which

have at least 15 tracks in the training set and at least one track in the testing set.

The hard split contains 107 fine-grained classes with 11 653 tracks (51 691 images)

for training and 11 125 tracks (39 149 images) for testing. Detailed split statistics

can be found in Appendix A.

5.5 experiments

We thoroughly evaluated our proposed algorithm on the BoxCars116k dataset.

First, we evaluated how these methods improved classification accuracy with dif-

ferent nets, compared them to the state of the art, and analyzed how using approx-

imate 3D bounding boxes influence the achieved accuracy. Then, we searched for

the main source of improvements, analyzed improvements of different modifica-

tions separately, and also evaluated the usability of features from the trained nets

for the task of vehicle type identity verification.

In order to show that our modifications improve the accuracy independently on

the used nets, we use several of them:

• AlexNet [82]

• VGG16, VGG19 [143]

• ResNet50, ResNet101, ResNet152 [62]

• CNNs with Compact Bilinear Pooling layer [47] in combination with VGG

nets denoted as VGG16+CBL and VGG19+CBL.
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Table 5.1: Summary statistics of improvements by our proposed modifications for different

CNNs. The improvements over baseline CNNs are reported as single sample ac-

curacy/track accuracy in percentage points. We also present classification error

reduction in the same format. The raw numbers can be found in Appendix A.

.

modif. improvement [pp] error reduction [%]

mean best mean best
m

e
d

iu
m ALL 7.49/6.29 11.84/10.99 26.83/34.50 36.71/50.32

IMAGE 7.19/6.15 12.09/11.63 27.38/36.21 35.23/49.55

CVPR16 2.99/3.18 5.22/5.65 10.86/17.71 19.76/32.25

h
a

rd

ALL 7.00/5.83 11.14/10.85 25.59/33.52 33.40/48.76

IMAGE 6.74/5.81 11.02/10.53 26.12/35.95 33.04/47.33

CVPR16 2.12/2.44 3.56/3.92 7.93/14.57 12.68/24.10

As there are several options how to use the proposed modifications of input data

and add additional auxiliary data, we define several labels which we will use:

• ALL – All five proposed modifications (Unpack, Color, ImageDrop, View,

Rast).

• IMAGE – Modifications working only on the image level (Unpack, Color,

ImageDrop).

• CVPR16 – Modifications as proposed in our previous CVPR paper [SHH16]

(Unpack, View, Rast – however, the View and Rast modifications differ from

those ones used in this paper as the original modifications do not distinguish

between the frontal and rear side of vehicles).

5.5.1 Improvements for Different CNNs

The first experiment which was done was evaluation how our modifications have

improved classification accuracy for different CNNs.

All the nets were fine-tuned from models pre-trained on ImageNet [130] for ap-

proximately 15 epochs which was sufficient for the nets to converge. We used the

same batch size (except for ResNet151, where we had to use a smaller batch size be-

cause of GPU memory limitations), the same initial learning rate and learning rate

decay and the same hyperparameters for every net (initial learning rate 2.5 · 10−3,

weight decay 5 · 10−4, quadratic learning rate decay, loss is averaged over 100 iter-

ations). We also used standard data augmentation techniques as a horizontal flip

and randomly moving bounding box [143]. As ResNets do not use fully connected

layers, we only use IMAGE modifications for them.
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For each net and modification we evaluate the accuracy improvement of the

modification in percentage points and also evaluate the classification error reduc-

tion.

The summary results for both medium and hard splits are shown in Table 5.1

and the raw results are in Appendix A. As we have correspondences between the

samples in the dataset and know which samples are from the same track, we are

able to use mean probability across track samples and merge the classification for

the whole track. Therefore, we always report the results in the form of single sample

accuracy/whole track accuracy. As expected, the results for whole tracks are much

better than for single samples. For the traffic surveillance scenario, we consider to

be more important the whole track accuracy as it is rather common to have a full

track of observations of the same vehicle.

There are several things which should be noted about the results. The most im-

portant one is that our modifications significantly improve classification accuracy

(up to +12 percentage points) and reduce classification error (up to 50 % error re-

duction). Another important fact is that our new modifications push the accuracy

much further compared to the original method [SHH16].

The table also shows that the difference between ALL modifications and IMAGE

modifications is negligible and therefore it is reasonable to only use the IMAGE

modifications. This also results in CNNs which just use the Unpack modification

during test time as the other image modifications (Color, ImageDrop) are used

only during fine-tuning of CNNs.

Moreover, the evaluation shows that the results are almost identical for the hard

and medium split; therefore, we will only report additional results on the hard

split, as it is the main goal to distinguish also the model years. The names for the

splits were chosen to be consistent with the original version of dataset [SHH16] and

the small difference between medium and hard split accuracies is caused mainly

by the size of the new dataset.

5.5.2 Comparison with the State of the Art

In order to examine the performance of our method, we also evaluated other state-

of-the-art methods for fine-grained recognition. We used three different algorithms

for general fine-grained recognition with a published code. We always first used

the code to reproduce the results in respective papers to ensure that we are using

the published work correctly. All of the methods use CNNs and the used net

influences the accuracy; therefore, the results should be compared with respective

base CNNs.
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Table 5.2: Comparison of different vehicle fine-grained recognition methods. Accuracy is

reported as single image accuracy/whole track accuracy. Processing speed was

measured on a machine with GTX1080 and CUDNN. ∗ FPS reported by authors.

method accuracy [%] speed [FPS]

AlexNet [82] 66.65/77.75 963

VGG16 [143] 77.26/86.71 173

VGG19 [143] 76.74/86.06 146

Resnet50 [62] 75.48/84.61 155

Resnet101 [62] 76.46/85.31 95

Resnet152 [62] 77.68/86.20 66

BCNN (VGG-M) [92] 64.83/72.22 87∗

BCNN (VGG16) [92] 69.64/78.56 10∗

CBL (VGG16) [47] 70.38/80.11 165

CBL (VGG19) [47] 70.69/80.26 141

PCM (AlexNet) [142] 63.24/73.94 15

PCM (VGG19) [142] 75.99/85.24 4

AlexNet + ALL (ours) 77.79/88.60 580

VGG16 + ALL (ours) 84.13/92.27 154

VGG19 + ALL (ours) 84.12/92.00 133

VGG16+CBL + ALL (ours) 75.06/83.42 146

VGG19+CBL + ALL (ours) 75.62/83.76 126

Resnet50 + IMAGE (ours) 82.27/90.79 151

Resnet101 + IMAGE (ours) 83.41/91.59 93

Resnet152 + IMAGE (ours) 83.74/91.71 65

It was impossible to evaluate methods focused only on fine-grained recognition

of vehicles as they are usually limited to frontal/rear viewpoint or require 3D

models of vehicles for all the types. In the following text we define labels for each

evaluated state-of-the-art method and describe details for the method separately.

BCNN. Lin et al. [92] proposed to use Bilinear CNN. We used VGG-M and

VGG16 networks in a symmetric setup (details in the original paper), and trained

the nets for 30 epochs (the nets converged around the 20th epoch). We also used

image flipping to augment the training set.

CBL. We modified compatible nets with Compact BiLinear Pooling proposed by

[47] which followed the work of [92] and reduced the number of output features

of the bilinear layers. We used the Caffe implementation of the layer provided
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by the authors and used 8 192 features. We trained the net using the same hyper-

parameters, protocol, and data augmentation as described in Section 5.5.1.

PCM. Simon et al. [142] propose Part Constellation Models and use neural ac-

tivations (see the paper for additional details) to get the parts of the model. We

used AlexNet (BVLC Caffe reference version) and VGG19 as base nets for the

method. We used the same hyper-parameters as the authors with the exception

of fine-tuning number of iterations which was increased, and the C parameter of

used linear SVM was cross-validated on the training data.

The results of all comparisons can be found in Table 5.2. As the table shows, our

method significantly outperforms both standard CNNs [82, 143, 62] and methods

for fine-grained recognition [92, 142, 47]. The results for fine-grained recognition

methods should be compared with the same used base network as for different

networks, they provide different results. Our best accuracy (84%) is better by a

large margin compared to all other variants (both standard CNN and fine-grained

methods).

In order to provide approximate information about the processing efficiency,

we measured how many images different methods are able to process per sec-

ond (referenced as FPS). The measurement was done with GTX1080 and CUDNN

whenever possible. In the case of BCNN we reported the numbers as reported by

the authors, as we were forced to save some intermediate data to disk because we

were not able to fit all the data to memory (∼200 GB). The results are also shown in

Table 5.2; they show that our input modification decreased the processing speed;

however, the speed penalty is small and the method is still usable for real-time

processing.

5.5.3 Influence of Using Estimated 3D Bounding Boxes instead of the Surveillance Ones

We also evaluated how the results will be influenced when, instead of using the

3D bounding boxes obtained from the surveillance data (long-time observation of

video [DSH14, DHJS15]), the estimated 3D bounding boxes (Section 5.3.4) would

be used instead.

The classification results are shown in Table 5.3; they show that the proposed

modifications still significantly improve the accuracy even if only the estimated

3D bounding box – the less accurate one – is used. This result is fairly important

as it enables to transfer this method to different (non-surveillance) scenarios. The

only additional data which is then required is a reliable training set of directions

towards the vanishing points (or viewpoints and focal length) from the vehicles

(or other rigid objects).
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Table 5.3: Comparison of classification accuracy (percent) on the hard split with standard

nets without any modifications, IMAGE modifications using 3D bounding box

from surveillance data, and IMAGE modifications using estimated 3D BB (Sec-

tion 5.3.4).

net no modification GT 3D BB estimated 3D BB

AlexNet 66.65/77.75 77.67/88.28 74.81/87.30

VGG16 77.26/86.71 83.79/92.23 80.60/90.59

VGG19 76.74/86.06 83.91/92.17 81.43/91.57

VGG16+CBL 70.38/80.11 75.04/83.16 72.83/82.92

VGG19+CBL 70.69/80.26 75.47/83.56 73.09/83.09

ResNet50 75.48/84.61 82.27/90.79 79.60/90.40

ResNet101 76.46/85.31 83.41/91.59 80.20/90.42

ResNet152 77.68/86.20 83.74/91.71 80.87/90.93

5.5.4 Impact of Training/Testing Viewpoint Difference

We were also interested in finding out the main reason why the classification ac-

curacy is improved. We have analyzed several possibilities and found out that the

most important aspect is viewpoint difference.

For every training and testing sample we computed the viewpoint (unit 3D vec-

tor from vehicles’ 3D bounding boxes centers) and for each testing sample we

found one training sample with the lowest viewpoint difference (see Figure 5.11).

Then, we divided the testing samples into several bins based on the difference an-

gle. For each of these bins we computed the accuracy for the standard nets without

any modifications and nets with the proposed modifications. There is 56% of the

test samples in the first bin (0◦ − 2◦), and in the middle bins there are 22% and

17% of test data. In the last bin, there are 5% of the test data. Finally, we obtained

an improvement in percentage points for each modification and bin, by comparing

the net’s performance on the data in the bin with and without the modification

harnessed. The results are displayed in Figure 5.10.

There are several facts which should be noted. The first and most important is

that the Unpack modification alone improves significantly the accuracy for larger

viewpoint differences (the accuracy is improved by more than 20 percent points

for the last bin). The other important fact, which should be noted, is that the other

modifications (mainly Color and ImageDrop) improve the accuracy furthermore.

This improvement is independent on the training-testing viewpoint difference.
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Figure 5.10: Correlation of improvement relative to CNNs without modification with re-

spect to train-test viewpoint difference. The x-axis contains bins viewpoint

difference bins (in degrees), and the y-axis denotes improvement compared

to base net in percent points, see Section 5.5.4 for details. The graphs show

that with increasing viewpoint difference, the accuracy improvement of our

method increases. Only one representative of each CNN family (AlexNet,

VGG, ResNet, VGG+CBL) is displayed – results for all CNNs are in Ap-

pendix A.

angle: 0.14◦

angle: 3.02◦

angle: 5.28◦

angle: 11.06◦

Figure 5.11: Examples of viewpoint difference between the training and testing sets. Each

pair shows a testing sample (left) and its corresponding “nearest” training

sample (right); by “nearest” we mean the sample with the lowest angle be-

tween its viewpoint and the test sample’s viewpoint.

5.5.5 Impact of Individual Modifications

We were also curious how different modifications by themselves help to improve

the accuracy. We conducted two types of experiments which focus on different

aspects of the modifications. The evaluation is not done on ResNets, as we only

use IMAGE level modifications with ResNets; thus, we cannot evaluate Rast and

View modifications with ResNets.
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Table 5.4: Summary of improvements for different nets and modifications computed as

[base net + modification] − [base net]. The raw data can be found in Appendix A.

mean best

Unpack +2.11/+2.55 +3.47/+4.37

View −0.32/−0.35 +0.19/+0.31

Rast −0.03/−0.04 +0.30/+0.72

Color +3.17/+2.03 +4.80/+3.60

ImageDrop +0.70/+0.20 +1.53/+0.96

Table 5.5: Summary of improvements for different nets and modifications computed as

[base net + all] − [base net + all − modification]. The raw data can be found in Ap-

pendix A.

mean best

Unpack +3.41/+3.48 +6.93/+7.60

View −0.14/−0.15 +0.36/+0.18

Rast −0.03/−0.08 +0.30/+0.20

Color +3.42/+2.43 +6.34/+6.18

ImageDrop +1.32/+0.77 +4.24/+3.54

The first experiment is focused on the influence of each modification by itself.

Therefore, we compute the accuracy improvement (in accuracy percent points) for

the modifications as [base net + modification] − [base net], where [. . .] stands for the

accuracy of the classifier described by its contents. The results are shown in Ta-

ble 5.4. As it can be seen in the table, the most contributing modifications are

Color, Unpack, and ImageDrop.

The second experiment evaluates how a given modification contributed to the

accuracy improvement when all of the modifications are used. Thus, the improve-

ment is computed as [base net + all] − [base net + all − modification]. See Table 5.5 for

the results, which confirm the previous findings and Color, Unpack, and Image-

Drop are again the most positive modifications.

5.5.6 Vehicle Type Verification

Lastly, we evaluated the quality of features extracted from the last layer of the con-

volutional nets for the verification task. Under the term verification, we understand

the task to determine whether a pair of vehicle tracks share the same fine-grained
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Figure 5.12: Precision-Recall curves for verification of fine-grained types. Black dots repre-

sent the human performance [SHH16]. Only one representative of each CNN

family (AlexNet, VGG, ResNet, VGG+CBL) is displayed – results for all CNNs

are in Appendix A.

type or not. In agreement with previous works in the field [153], we use cosine

distance between the features for the verification.

We collected 5 million random pairs of vehicle tracks from the test part of Box-

Cars116k splits and evaluate the verification on these pairs. As we used tracks

which can have a different number of vehicle images, we used 9 random pairs of

images for each pair of tracks and then used median distance between these image

pairs as the distance between the whole tracks.

Precision-Recall curves and Average Precisions are shown in Figure 5.12. As the

results show, our modifications significantly improve the average precision for each

CNN in the given task. Moreover, as the figure shows, the method outperforms

human performance (black dots in Figure 5.12), as reported in the previous paper

[SHH16].

5.6 conclusion

This article presents and sums up multiple algorithmic modifications suitable for

CNN-based fine-grained recognition of vehicles. Some of the modifications were
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originally proposed in a conference paper [SHH16], while others are results of the

ongoing research. We also propose a method for obtaining the 3D bounding boxes

necessary for the image unpacking (which has the largest impact on performance

improvement) without observing a surveillance video, but only working with the

individual input image. This considerably increases the application potential of

the proposed methodology (and the performance for such estimated 3D boxes is

only somewhat lower than when “proper” bounding boxes are used). We focused

on a thorough evaluation of the methods: we coupled them with multiple state-of-

the-art CNN architectures [143, 62], and measured the contribution/influence of

individual modifications.

Our method significantly improves the classification accuracy (up to +12 per-

centage points) and reduces the classification error (up to 50 % error reduction)

compared to the base CNNs. Also, our method outperforms other state-of-the-art

methods [92, 142, 47] by 9 percentage points in single image accuracy and by 7

percentage points in whole track accuracy.

We collected, processed, and annotated a dataset BoxCars116k targeted to fine-

grained recognition of vehicles in the surveillance domain. Contrary to a majority

of existing vehicle recognition datasets, the viewpoints are greatly varying and cor-

respond to surveillance scenarios; the existing datasets are mostly collected from

web images and the vehicles are typically captured from eye-level positions. This

dataset has been made publicly available for future research and evaluation.



Part III

A U T O M AT I C S P E E D M E A S U R E M E N T O F V E H I C L E S

This part of the dissertation thesis contains re-formatted copies of two

my papers on the topic of fully automatic speed measurement of ve-

hicles. The first paper introduces a new comprehensive dataset for

speed measurement of vehicles. The dataset, BrnoCompSpeed, is the

largest publicly available dataset for speed measurement of vehicles

from video with very precise ground truth information about the speed

of passing vehicles. The videos are recorded at different locations and

under various viewpoints.

In the second paper, we propose a novel method for fully automatic

speed measurement of vehicles from video. The method is based on

detection of two vanishing points and it also uses 3D model bounding

box alignment of several common vehicle types for scene scale estima-

tion. The results on BrnoCompSpeed dataset show that our method

significantly outperforms previous state-of-the-art methods and man-

ual calibration from manual distance measurements on the road plane.
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abstract In this paper, we focus on traffic camera calibration and visual speed

measurement from a single monocular camera, which is an important task of vi-

sual traffic surveillance. Existing methods addressing this problem are hard to

compare due to a lack of a common dataset with reliable ground truth. There-

fore, it is not clear how the methods compare in various aspects and what are

the factors affecting their performance. We captured a new dataset of 18 full-HD

videos, each around one hour long, captured at 6 different locations. Vehicles in

the videos (20 865 instances in total) are annotated with precise speed measure-

ments from optical gates using LIDAR and verified with several reference GPS

tracks. We made the dataset available for download and it contains the videos

and metadata (calibration, lengths of features in image, annotations, etc.) for fu-

ture comparison and evaluation. Camera calibration is the most crucial part of the

speed measurement; therefore, we provide a brief overview of the methods and

analyze a recently published method for fully automatic camera calibration and

vehicle speed measurement and report the results on this dataset in detail.

6.1 introduction

Speed measurement is one of the crucial problems in traffic surveillance. So far,

the field is dominated by radar and section speed measurements because they

meet tight methodological requirements and standards. However, these methods

are limited in the information they provide and they may be expensive. For exam-

ple, in radar measurement it is impossible to recognize the fine-grained models of

passing cars and the radar antenna must be placed at a specific position regard-

ing the traffic. Section speed measurement requires two cameras for each position

and a complex infrastructure for processing the data. Speed measurement from

75
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D

cam-left

cam-center

cam-right

Figure 6.1: The data recording setup. We use two LIDARs synced by GPS time, and three

cameras recording the highway from different surveillance viewpoints.

a single monocular camera is not typically used for surveillance; however it can

be beneficial – one camera can be used for surveillance on multiple lanes, it is

possible to use the data for fine-grained make & model recognition of the vehicles

[61, 4, 69, 68] and other tasks. Another interesting aspect is that it is possible to use

already installed monitoring/security cameras for speed measurement and other

traffic analysis tasks.

A number of works dealing with monocular speed measurement can be found

in the literature [135, 28, 56, 63, 104, 110, 145, DSH14, 83, 103, 32] (detailed indi-

vidually below). Such systems are on the rise especially recently, with the growing

number of IP cameras, with increase of their resolution, and with the development

of computer vision algorithms used for their processing. Our aim is to provide

an important missing piece: a dataset which would allow for reliable comparison

between the approaches. These systems are described in detail in the following

section.

We captured a new benchmark dataset of 18 full-HD videos taken from surveil-

lance viewpoints on the traffic (see Figure 6.1). Each of the videos is around one

hour long to allow for even lengthy calibration procedures and self-adjustment of

the surveillance system. Triplets of videos are observing the same time interval at

the same location from different angles. These shots were captured at 6 different

locations. Vehicles in the videos (20 865 instances in total) are annotated with pre-

cise speed measurements from optical gates using LIDAR and verified with several

reference GPS tracks. We provide1 the videos and metadata (calibration, distances

measured on the road plane, annotations, etc.) for future comparison and evalua-

tion. To illustrate the properties of the dataset and to establish a first baseline, we

analyze the data by a recently published method for fully automatic camera cal-

1 https://medusa.fit.vutbr.cz/traffic

https://medusa.fit.vutbr.cz/traffic
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ibration and vehicle speed measurement [DSH14] and we report the quantitative

results.

Although the dataset is focused on speed measurement, it can be used also for

different traffic surveillance tasks, for example vehicle counting, tracking, vehicle

classification and other.

We consider the camera calibration algorithm to be the most crucial part of

speed measurement. It defines how well the speed measurement is done as it

is impossible to measure speed accurately with a poorly calibrated camera. The

used algorithm also defines whether it is usable with a camera observing the road

from arbitrary viewpoint and it determines whether the method can be used fully

automatically which is important for large scale deployment. Therefore, we include

a brief overview of existing camera calibration algorithms for traffic surveillance

applications.

The key contributions of this paper are: a) Novel, publicly available dataset for

evaluation of camera calibration in traffic surveillance and speed measurement.

The dataset contains 18 videos and 20 865 vehicles with known precise ground

truth. b) Thorough and complex evaluation of a recent fully automatic method for

traffic camera calibration [DSH14].

6.2 related work – camera calibration for speed measurement of

vehicles

One of the most important parts of speed measurement of vehicles from a single

monocular camera is calibration of the camera. In a general case, this includes

dealing with perspective projection and different rotations of the camera; it is also

necessary to deal with unknown distance from the camera to the ground plane of

the road and possibly with radial and tangential distortion. It is usually necessary

to obtain intrinsic and extrinsic camera parameters together with the scene scale

(or the distance of the camera from the road/ground plane). Therefore, we include

also a brief overview of the typical solutions of camera calibration for speed mea-

surement of vehicles. However, first we include the definition of traffic surveillance

camera calibration.

6.2.1 Traffic Surveillance Camera Calibration

General mathematical model for camera calibration is represented by a projection

matrix P = K [R T], where K denotes intrinsic camera parameters, R stands for

camera rotation, and T represent camera translation. The extrinsic parameters (ro-

tation and translation) are relative to defined world coordinate system (see Figure
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Figure 6.2: The essential goal of traffic surveillance camera calibration is to be able mea-

sure real world distance d between two points (P1, P2) on road plane given

their projection to the image (p1, p2). X,Y, and Z axes represent a real world

coordinate system and K represent intrinsic camera parameters, while R and T

are extrinsic camera parameters.

6.2). Since the calibration for traffic surveillance is specific, we describe all these

aspects with application to vehicle speed measurement in mind.

goal The essential goal of traffic surveillance camera calibration is to measure

speed of vehicles. For the speed measurement, it is required to be able measure

time and distances on the road plane. The time measurement part is rather trivial.

However, for the distance measurement it is necessary to measure the distance

between two points on the road plane (or any other plane parallel to the road

plane and with known distance from the road plane) given their projection to the

image. See Figure 6.2 for an example.

input For fully automatic methods, the camera calibration input is usually a

video of the observed traffic scene. However, for methods which include manual

steps, part of the input are also usually distance measurements on the road plane.

assumptions Zero pixel skew is generally used as an assumption about the

camera model. Another widely used assumption is that the camera’s principal

point is in the center of the image. Also, there is usually the assumption that

the road can be approximated by a plane. The authors usually assume that the

observed road segment is approximately straight, that the vehicles move straight

and their velocity is constant on the measured segment (no acceleration).
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mathematical model As the standard camera model with K [R T] matrices

is sufficiently described in existing literature [60]; we refer the readers there. How-

ever, it is also possible to use a different formulation based on vanishing points

of the road plane [DHJS15]. This formulation is easily convertible to the standard

one. Finally, for computation of 3D real world coordinates on the road plane of a

point in image space, it is necessary to compute intersection of the road plane (e.g.

z = 0 as shown in Figure 6.2) and a ray defined by the camera optical center and

the coordinates on the image plane.

attributes One important attribute of the camera calibration algorithm,

which should be kept in mind, is whether the algorithm works automatically in the

sense that there is no manual input required per installed camera. The property

of being automatic becomes more important as the number of installed cameras

grows. A number of papers and approaches to solving this problem exist and they

will be discussed in detail in the following text. Another important attribute is

whether the algorithm works from arbitrary viewpoint, as it is a significant draw-

back of a method if it requires specific camera placement relative to the observed

road.

6.2.2 Methods Based on Acquired Line Markings

He and Yung [63] proposed a method for speed estimation of vehicles which

is based on calibration using a calibration pattern formed by lane markings on

the road [64]. The authors use a rectified image in further processing in order to

deal with perspective projection. To obtain the locations of the vehicles within the

ground plane, shadows cast by rear bumpers are used. The vehicles and shadows

are detected by background subtraction and binary block matching.

Cathey and Dailey [17] used a method based on detection of the vanishing point

which is in the direction of vehicles movement. To obtain this vanishing point,

detected line markings are used and their intersection is found in the least squares

manner. The scale (pixels/meters ratio) for the camera is computed from average

line marking stripe length and known stripe length in the real world. Finally, the

authors used cross correlation to compute the number of pixels which vehicles

passed between consecutive frames.

Grammatikopoulos et al. [56] use the assumption that the camera is only tilted

along Y axis in Figure 6.2; thus they assume that the second vanishing point (hori-

zontal and perpendicular to the first one) is in infinity. The first vanishing point

is detected as the intersection of the line markings with least squares adjustment.
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The vehicles are detected by background subtraction and tracked by normalized

cross-correlation.

You et al. [172] propose to use detection of vanishing point in the direction of

vehicles’ movements from lane markings and vanishing point perpendicular to

road plane from detected poles and pedestrians. The authors obtain the scale from

known height of the camera above the road or known dimensions on the road.

By definition, this class of methods based on observed line markings is usable

only when the line markings are present, visible, and recognizable. This fact can

be limiting on local roads, where the line markings are not drawn or on highways

during work on the road with additional temporary line markings. Also, some of

the methods require measurements on the road which is a great disadvantage.

6.2.3 Methods Based on Vehicles’ Movement

Dubská et al. [DSH14] published a speed measurement system using a calibration

method by detection of two vanishing points [DHJS15]. We give the details on this

method below in Section 6.2.5.

Schoepflin et al. [135] use an activity map (by detecting the vehicles as the mov-

ing foreground) to obtain lane boundaries and the intersection of the boundaries

treat as the first vanishing point in the direction of the vehicle motion. The second

vanishing point is detected as the intersection of lines formed by the bottom edges

of the vehicles. One known length (manually measured and entered per camera)

in the image is used for scale inference.

Filipiak et al. [41] propose to use sequences of detected license plates of vehicles

for finding intrinsic and extrinsic camera parameters by an evolutionary algorithm.

The method was evaluated on a dataset captured by zoomed surveillance cameras

with a small field of view on the road.

The methods based on vehicles’ movement no longer need visible road markings;

however, when used on small local roads, the calibration may take some time as it

usually improves with more observed vehicles.

6.2.4 Methods Using Manual Measurements

Maduro et al. [104] assume two known arbitrary angles on the ground plane to

calibrate the camera and use lengths of line markings’ stripes to obtain the camera

scale for the given scene. The authors used background subtraction for detecting

the vehicles and Kalman filter [75] for tracking them.
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Nurhadiyatna et al. [110] used GMM background subtraction [190] for detection

of vehicles and tracked them by Kalman filter. They use a calibrated pinhole cam-

era with zero pan and known distances in the real world.

Sina et al. [145] focus on speed measurement at night. They used detected and

paired headlights to detect vehicles, track them and measure their speed. The cam-

era calibration is based on manual measurements of camera angles and distance of

the camera from the ground plane. The reported average error is 3.3 km/h relative

to ground truth obtained by GPS.

Luvizon et al. [103] used a different approach and they propose to detect and

track license plates in order to obtain motion of vehicles in the scene. The motion

is then converted to the real world distance by rectifying and scaling. The scale

inference is based on a priori known real world measures.

Methods using manual measurements on the road have the biggest disadvantage

that it is necessary to do the manual measurements, which potentially can mean

stopping traffic on the road. The advantage of the methods may be (in some cases)

that they are more accurate than automatic or semi-automatic ones.

6.2.5 Automatic Calibration Method based On Statistics of Dimensions

Here we give details on the speed measurement method of Dubská [DSH14], as

it meets all our requirements (it is fully automatic and it is usable from arbitrary

viewpoint) and we use it later in the experiments. In principle, the method relies

on camera calibration from two automatically detected vanishing points.

Figure 6.3: Automatic camera calibration according to Dubska [DSH14]. From left to right:

Tracked keypoints for VP1, oriented edges voting for VP2, and road plane with

bounding boxes for the cars and reference points for tracking.

The authors use a simple foreground detection model to filter areas with move-

ment. The first vanishing point (VP1, which is in the direction of vehicles’ move-

ment) is recovered from tracked feature points on the vehicles using min eigen-
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Table 6.1: Summary of different camera calibration methods for speed measurement. It

should be noted that the reported errors are only informative as all the methods

are evaluated on different datasets and by different protocols. We consider a

system to be automatic if it does not require any manual calibration for each

individual camera. auto – denotes whether the system works fully automatically,

view – denotes whether the system is usable from arbitrary viewpoint

camera calibration method auto view mean error

Dailey et al., 2000 [28] multiple assumptions on vehicle move-

ments and known mean length of vehicles
✓ ✗ 6.5 km/h

Schoepflin et al., 2003 [135] detection of two vanishing points, one

known length
✗ ✓ N/A

Cathey et al., 2005 [17]
vanishing point obtained from detected

line markings, scale computed from

lengths of stripes

✗ ✓ N/A

Grammatik. et al., 2005 [56]

one vanishing point obtained from de-

tected line markings, the second one as-

sumed in infinity, one known distance is

required

✗ ✗ 3 km/h

He and Yung, 2007 [63] calibration by pattern formed by lane

markings
✗ ✓ 3.27 %

Maduro et al., 2008 [104] known angle of the ground plane, lengths

of line markings’ stripes
✗ ✓ 2 %

Nurhadiyatna et al., 2013 [110] known distances in the real world and in

the scene, zero pan assumption
✗ ✗ 7.63 km/h

Sina et al., 2013 [145] manual measurements ✗ ✓ 3.3 km/h

Dubská et al., 2014 [DSH14]

detection of two vanishing points, scale

computed by matching of statistics of ve-

hicles’ dimensions to mean dimensions of

vehicles

✓ ✓ 1.99 %

Lan et al., 2014 [83] relaxation of perspective projection, known

width of lanes
✗ ✗ 0.9 % – 2.5 %

Luvizon et al., 2014 [103] known real world measures ✗ ✓ 1.63 km/h

Do et al., 2015 [32] zero pan assumption, equilateral triangle

drawn on the road
✗ ✗ 2.91 %

Filipiak et al., 2016 [41]

constant speed assumption, evolutionary

algorithm to recover intrinsic and extrinsic

parameters from detected license plate se-

quences

✓ ✗ 2.3 km/h

You et al., 2016 [172]

detection of vanishing point in the di-

rection of vehicles’ movements from lane

markings and vanishing point perpendic-

ular to road plane from poles and pedes-

trians, the scale is obtained from known

height of camera above the road

✗ ✓ N/A
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value detector and KLT tracker. The tracked points’ motion is transformed using a

line-to-line Hough transformation parametrized by parallel coordinates [35] where

the global maximum corresponds to the image of the first vanishing point. The sec-

ond vanishing point (VP2) is extracted from strong edges present on the moving

vehicles meeting some conditions given by the position of the VP1. The edges (and

their orientations) are, again, transformed to the Hough space where the strongest

maximum accounts for the vanishing point. From these two vanishing points, the

camera intrinsics and extrinsics can be recovered (assuming principal point in the

image center, square pixels and zero skew).

The authors propose an algorithm for computing the 3D bounding box around

the vehicle blobs. Mean size of the bounding boxes and known mean dimensions

of the vehicles for a given country accounts for the scene scale. Vehicle speed is

measured simply by tracking 3D bounding boxes around the blobs using Kalman

filter and measuring the travel distance in the real world.

The authors evaluated their method on several videos with several car passes

with ground truth speed obtained from GPS.

6.2.6 Other Methods

Dailey et al. [28] proposed a method for vehicles speed measurement based on

tracking of vehicle blobs and constraining them to move along a line. The blobs are

detected as inter-frame differences followed by Sobel edge detector. The authors

assume that the vehicles are moving towards or from the camera and use mean

length of vehicles to obtain the scene scale.

Do et al. [32] proposed a camera calibration method for speed measurement

based on artificial markers drawn on the road. They assume that the camera has

zero pan angle and that markers determining vertices of an equilateral triangle

with a known distance between vertices which are visible on the road. They used

the triangle to obtain the scale factor and the tilt angle.

Lan et al. [83] use optical flow to compute the speed of different points of a

vehicle and they average this speed to get the speed of vehicle in image units.

However, to convert them into kilometers per hour, the authors assume that there

is no perspective projection effect and the width of the ROI (width of lanes) is

known.

6.2.7 Summary and Analysis of the Methods

A summary of the presented camera calibration methods can be found in Table 6.1.

As the table shows, some of the approaches have different limitations and they
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Table 6.2: Summary of datasets used for evaluation of visual speed measurement methods.

dataset videos vehicles source of gt resolution evaluation metrics

[28] 1 532 induction loops N/A speed measurement error

[135] 2 1 015 induction loops 320× 240 speed measurement error

[56] 1 20 manual measurements 768× 576 speed measurement error

[63] 1 64 RADAR 1280× 1024 speed measurement error

[104] 2 few GPS N/A speed measurement error

[110] 10 15 GPS 320× 240 speed measurement error

[145] 13 13 GPS N/A speed measurement error, ve-

hicle counting

[DSH14] 6 29 GPS 864× 480
speed measurement error, dis-

tance measurement error

[83] 1 2 010 RADAR 640× 480 speed measurement error

[103] 1 75 induction loops 768× 480
speed measurement error, li-

cense plate detection

[32] 1 3 speedometer N/A speed measurement error

[41] 2 955 induction loops 1280× 720 speed measurement error

proposed 18 20 865 LIDAR gates 1920 × 1080

calibration error, distance

measurement error, speed

measurement error, vehi-

cle counting recall, false

positives vehicles per minute

do not work under all conditions. The reported mean error varies greatly – it

should be noted that the error is not directly comparable, as it was evaluated by

the authors on different datasets (generally not publicly available) and by different

protocols.

To sum up the camera calibration methods, some of them [28, 83] do no take per-

spective projection into account, some algorithms [28, 56, 110, 83, 32] have limita-

tions in camera placement. Quite a large number of approaches [104, 110, 145, 103]

use measurements in the scene which enable direct camera calibration. Methods

[63, 32] using a calibration pattern (virtual or drawn on the road) have been pro-

posed. Another set of methods use vanishing points to obtain camera calibration

[135, 17, 56, DSH14].

Several approaches to scale calibration have been proposed. Besides the multiple

manual measurements on the road [104, 110, 145, 103] and calibration patterns

[63, 32], two groups of methods exist. The algorithms from the first one [135, 17,

56, 83] use one known distance in the scene (e.g. length of line marking stripe).

The other methods use dimensions of vehicles [28, DSH14] to obtain a proper scale

calibration.
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One important attribute of the calibration methods is whether they work fully

automatically and do not require any manual per camera calibration input. The

automation helps reduce the cost of camera installation and the automatic methods

have better scaling properties. Only two approaches are fully automatic and do

not require any manual camera calibration. Both of these methods [28, DSH14] use

mean dimension of vehicles to obtain a proper scaling factor for the given camera.

Methods [104, 110, 145, 103, 63, 32] which require measurements of physical

dimensions on the road have even more significant drawbacks with respect to the

scaling properties. To perform the measurements, it is usually necessary to stop

(or limit) traffic on the road increasing installation time and costs.

Another important attribute is whether the camera can be placed at any position

above the road, as some methods require for example that the camera has zero

pan. In real world scenarios, this can be hard to guarantee when the camera is not

placed on a portal above the road. The only method that satisfies the conditions

of automatic calibration and arbitrary view is [DSH14] which we use later in the

experiments.

6.2.8 Evaluation Datasets Used in Existing Works

The described methods usually used different methods for evaluation of the speed

measurement and ground truth speed acquisition. Some methods [28, 135, 103, 41]

use inductive loops for ground truth acquisition, other methods [104, DSH14] GPS

or RADAR [83]. Do et al. [32] used the speedometer on a motorbike, which should

be considered very imprecise.

When it comes to the number of evaluated speed measurements, Lan et al. [83]

used 2 010 ground truth speeds (only one video sequence), others [28, 135, 41]

have hundreds of vehicles with known ground truth. And there are also works

[56, 63, 104, 110, 145, DSH14, 83, 103, 32] that use at most tens of ground truth

speeds with the lowest number in [32] (one ground truth speed) and the highest

number of 75 measurements in [103]. Cathey at al. [17] have no evaluation at all.

A summary of existing datasets can be found in Table 6.2. It should be noted that

with the exception of [110, DSH14], the datasets are not publicly available which

makes comparison of the methods impossible.

Almost every mentioned dataset (except [145] and a part of [63]) is recorded

in daylight as the methods usually become unusable in the night when only head-

lights of vehicles are visible. Existing datasets usually evaluate only speed measure-

ment error (with different statistics – mean, deviation etc.) and some exceptions

(see Table 6.2) evaluate also other tasks.
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Figure 6.4: Markings and measured distances on the road plane. Blue dashed lines – an-

notated lane dividing lines, yellow dashed lines – measurement lines, red line

segments – measured distances towards the first vanishing point, green line

segments – measured distances towards the second vanishing point. Images

with these annotations for all videos can be found in Appendix B. Best viewed

on screen.

The existing evaluation of algorithms should be considered insufficient as exist-

ing works use a small number of observed vehicles and scenes. Also, for GPS and

speedometer, the ground truth is imprecise as in our evaluation GPS has mean

error over 2 % and speedometer reports higher speed then the actual. Therefore,

we created our novel dataset with precise ground truth and 20 865 of vehicles with

ground truth speed. It is also possible to evaluate other camera calibration aspects

such as calibration error and distance measurement on the road plane with the

computed scale. These two metrics can provide interesting insights into properties

of camera calibration algorithms as they are needed and harnessed in the intelli-

gent transportation surveillance.

6.3 dataset acquisition methodology

We performed six recording sessions at different locations with free flow traffic. For

each session, we obtained three videos (approximately one hour long) from differ-

ent positions by different video cameras (Panasonic HC-X920, Panasonic HDC-

SD90, Sony Handycam HDR-PJ410). The videos were recorded in full-HD reso-

lution and with 50 frames per second progressive scan. The recording setup is

schematically shown in Figure 6.1 and an example of the scene is in Figure 6.4.

Reference speed values of passing vehicles were obtained from a pair of ex-

perimental setups, containing a LIDAR (LaserAce® IM HR 300), a GPS module

(Leadtek LR9540D), and a PC. These were placed on the side of the road perpen-

dicular to the direction of traffic flow at a defined distance D between them. It was

important to place the lasers to the same height and parallel in the vertical and hor-

izontal axes (see Figure 6.1). This requirement guarantees that an incoming vehicle

always disturbs the laser beams at the same point.
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t11 t12

t21 t22

Figure 6.5: The four phases of a passing car which are used for ground truth speed anno-

tation. Best viewed on screen.

The LIDAR works in the single shot mode (one laser pulse per range measure-

ment). The sampling rate is 1 kHz and maximal measurement range is 300 m. GPS

receiver synchronizes times on PC using TIMEMARK signal (1 pulse per second

with 1 s precision). The data from each LIDAR and GPS module were recorded by

the computer and each measurement was assigned with a high resolution times-

tamp obtained from the operating system.

Distance logs from both LIDARs are pre-processed individually. We search for

timestamps txy (see Figure 6.5) which correspond to car entering/leaving first/sec-

ond laser beam. And each excitation is assigned with the lane based on the mea-

sured distance from the LIDAR. Excitations generated by the same car on the first

and second LIDAR need to be matched. The matching is based on the correspon-

dence of lane with limits on speed and acceleration of cars. We calculate immediate

speed when entering the first laser v11 (at the time t11), length of the vehicle L, and

its average acceleration a over measured span of known length D by the following

set of equations:

v11 +
1

2
a(t12 − t11) =

L

t12 − t11
(6.1)

v21 +
1

2
a(t22 − t21) =

L

t22 − t21
(6.2)

v11 +
1

2
a(t22 − t11) =

D+ L

t22 − t11
(6.3)

Then, it is possible to compute immediate speed at any point of the measured span.

Unfortunately, when a car is partially occluded by another vehicle, the equations

above cannot be used for the calculation (as some timestamps are unknown). If at

least timestamps t11 and t21 are known, the average speed can be computed as

vavg =
D

t21 − t11
. (6.4)

As we are using LIDARs (instead of e.g. optical gates), we are able to detect situ-

ations when a vehicle is partially occluded by a closer vehicle using the measured

distances by the LIDARs. See Figure 6.6 for examples of all possible occlusion

types. There are several possibilities of occlusion on the pair of LIDARs:
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a) b) c) d)

Figure 6.6: Possible variants of occlusion. a) the vehicles are not occluded at all, b) the

closer vehicle is occluding the frontal part of the farther vehicle c) the farther

vehicle is fully covered, d) the farther vehicle’s rear part is covered. The graphs

below represent LIDAR responses with different levels for empty road, fast lane

(top dashed line), and slower lane (bottom dashed lane). See text for description

of how all these situations are handled. Best viewed on screen.

1. Occlusion situations on both the LIDARs are either a) or d) – in these situa-

tions we are able to detect that there is a occluded vehicle and measure their

speed.

2. Occlusion situations on at least one LIDAR is of type b) or c) – we are able

to detect that there is a second “shadowed” vehicle; the speed measurement

is not reliable and the second vehicle is omitted from the dataset and evalua-

tion.

3. Occlusion situations on both LIDARs are c) – the second “shadowed” vehicle

cannot even be detected. This situation is very unlikely, as the vehicle in the

fast lane would have to be smaller, precisely aligned, and maintain the same

speed as the closer vehicle.

In summary, we either measure the speed accurately, or we know that the speed

measurement is not precise and we ignore such a measurement. Therefore, besides

the 20 865 vehicles with precise ground truth speed, the dataset contains 2 779 in-

stances of vehicles which are marked as invalid for speed measurement evaluation.

We also performed manual verification of the matched timestamps t11 and t21

by checking that they correspond to the same vehicle in the video.

6.3.1 Accuracy of the Acquired Dataset

The distance D between LIDARs is 28 meters (21 meters in one case), and the LI-

DARs have 1 kHz sampling rate. The actual value of D for every recording session

was measured by handheld laser distance meter, and we assume that upper bound

of the distance measurement error is ed = 0.05m. Time measurement error caused
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Figure 6.7: top: Histograms of density of vehicles for each session; one minute granularity

in x-axis. middle: Ground truth speeds measured by the LIDAR setup (Section

6.3); speed in km/h on x-axis. bottom: Ground truth accelerations; m/s2 on the

x-axis.

by improper synchronization of LIDARs is at most et = 1ms. Both, ed and et are

exaggerated and in reality they are lower. The upper bound of speed measurement

error Er (relative) and Ea (absolute) for the given speed v can be computed as:

Er =
ed + et · v

D

Ea = Er · v

v [km/h]

60 80 100 120

E
a
 [
k
m

/h
]

0

0.2

0.4

0.6

D = 21m

D = 28m

For a vehicle going v = 20m/s (72 km/h), the resulting maximum possible errors

are Er = 0.25% and Ea = 0.05m/s (0.18 km/h). We consider these errors to be

small enough as the errors of the methods presented in Section 6.5 are much higher

than this error of measurement.

6.4 dataset statistics and evaluation protocol

The dataset consists of 18 videos (6 sessions on different locations, 3 videos from

different angles for each location) and there is totally 20 865 vehicles with known

ground truth speed.

To provide statistics about the dataset we report the total number of cars with

ground truth speed for each video in Table 6.3. We also report histograms of speeds,

accelerations, and traffic density in Figure 6.7.

The dataset is (to our knowledge) by far larger than other datasets serving simi-

lar purpose reported in the literature. It covers views typical for traffic surveillance

from arbitrary cameras. It provides high quality videos with various traffic condi-

tions (low traffic in Session 3, high traffic in Sessions 5 and 6). However, it is quite

limited in lighting and weather conditions. Almost all videos were taken in cloudy
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Table 6.3: Numbers of vehicle passes with known ground truth for each video.

left center right

session1 854 848 849

session2 1 163 1 258 1 583

session3 193 193 193

session4 1 188 1 192 1 177

session5 2 021 2 027 2 030

session6 1 358 1 353 1 358

TOTAL 20 865

weather (except some parts of Session 3) with no distracting phenomena (fog, rain,

etc.).

6.4.1 Evaluation Protocol

For future comparison of methods, we provide an evaluation script2 which auto-

matically evaluates all the used metrics. It requires two vanishing points of the

road plane, principal point of the camera and scale of the scene as the calibration

parameters. Then, the systems are supposed to report for each observed vehicle a

track of one arbitrary reference point on the road plane (frame numbers + image

coordinates). In our case, the point is obtained by the constructed 3D bounding

boxes (see Figure 6.3). The point must be on the road plane for proper projection;

however it can be any point on the road plane which the authors are able to localize

– it is not necessary to use the 3D bounding boxes.

To compare vehicles with the ground truth, we match the time when a vehicle

passed the measurement line to the time reported by LIDAR and the lane in which

the vehicle is. As the vehicles are sometimes not tracked correctly and the tracking

can be lost, we extrapolate the vehicle trajectory in order to get the correct time.

For each vehicle, we calculate tentative speeds between the positions K frames

apart (approximately 0.1 s, K = 5 for 50 fps video) by projecting the image point

coordinates to the road plane using the provided calibration. The resulting speed

is then median of the tentative speeds. We found out that this method is more

robust than measuring the full section speed due to possible tracking errors.

The computation of distance between two points p1 and p2 is schematically

shown in Figure 6.2 with general model for traffic surveillance camera and it is

described in detail in Appendix B.

2 The evaluation code is available together with the dataset at https://medusa.fit.vutbr.cz/traffic

https://medusa.fit.vutbr.cz/traffic


6.5 experiments 91

As methods may require different training sets we define three train/test splits.

Split A uses all videos for testing, split B has Session 1 and Session 2 reserved for

training, and finally, split C has Session 1, Session 2, and Session 3 for training.

Whenever it is possible, the results should be reported on the splitting with the

lowest number of training sessions.

6.5 experiments

On the above described dataset we evaluate recent method [DSH14] described in

Section 6.2.5; we use this method for the evaluation because it works fully auto-

matically (contrary to [104, 110, 145, 103]) and it is not limited to some viewpoints

(contrary to [28, 56, 110, 83, 32]). The method is able to automatically recover cam-

era calibration and scene scale. However, our dataset provides data in the form

of measured distances on the road plane usable for computing camera calibration

(vanishing points and scene scale). Therefore, we also report the performance of

the semi-automatic variants of the method.

We defined labels for different camera calibrations (the vehicle detection and

tracking stays the same for all of the methods):

FullACC [DSH14] – unmodified system from [DSH14], as it is Fully Automatic

Camera Calibration.

OptScale,OptScaleVP2 – Keep calibration (vanishing points) from FullACC and

calculate optimal scale using lengths in direction to VP1 (OptScale) or VP2

(OptScaleVP2). The scale is computed as a mean of scale values obtained from

the distance measurements on the road.

OptCalib,OptCalibVP2 – The first vanishing point is kept from the FullACC. And

as the second vanishing point is selected a point which minimizes the calibration

error (see Section 6.5.1). The minimization is done by a grid search in space of

feasible vanishing points. The scale is computed the same way as for OptScale and

OptScaleVP2.

On these five variants we report the calibration error, distance measurement er-

ror, and speed measurement error. The speed error is additionally compared to the

GPS speed. The evaluation in this chapter is done on split A, as the method does

not require any training so we can use all the videos for evaluation. Evaluation

for each video separately can be done directly from the published dataset as we

included also the results.

As the camera calibration algorithm is the most sensitive part of a speed mea-

surement system, we provide also an evaluation of the calibration itself based on

two detected vanishing points and evaluation of distance measurement accuracy
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Table 6.4: Errors for distance ratios (see text for details). The first row for each calibration

method contains absolute errors and the relative errors in percents are in the

second row.

system mean median 95 %

FullACC [DSH14], OptScale, OptScaleVP2
0.15 0.04 0.56

10.89 4.52 40.24

OptCalib, OptCalibVP2
0.03 0.01 0.09

2.62 1.58 8.79

on the road plane. These two metrics are also important as they compare directly

the camera calibrations without any influence of vehicle detection and tracking.

For each presented evaluation metric we propose to report mean, median and

95 percentile and where it is possible (speed measurement error), we also report

absolute and relative cumulative histograms of errors. These statics correspond to

used evaluation metrics and methods shown in Table 6.2.

6.5.1 Calibration Error

The first evaluation experiment is focused on the calibration itself (detected two

vanishing points) excluding the scale. We measure the ratio between every pair of

distances measured on the road plane (see Figure 6.4) and compare it with the ratio

of the dimensions measured using the calibration. The scale is therefore omitted

from this evaluation and the results depend only on the two vanishing points.

For each system, we measure mean, median and 95 percentile error for both

absolute units (err = |rgt − rm|) and relative units (err = |rgt − rm|/rgt · 100%),

where rgt denotes the ground truth ratio, and rm represents the measured ratio.

This computation of absolute and relative error is used also in Sections 6.5.2 and

6.5.3. The results can be found in Table 6.4. As there are two groups of methods

(FullACC+OptScale+OptScaleVP2 and OptCalib+OptCalibVP2) which share the

calibration (vanishing points) and are differentiated only in the scale which is not

used in this experiment, the results are the same for methods within each group.

The results show that the camera calibration automatically obtained by [DSH14]

is far from perfect. The biggest error is caused by inaccurate localization of the

second vanishing point (VP2). Thus the lengths in the direction to VP2 (i.e. widths

of vehicles) are unreliable for scale computation.
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Table 6.5: Errors for distance measurement towards the first vanishing point (see text for

details). The first row for each calibration method contains absolute errors in

meters and the relative errors in percents are in the second row.

system mean median 95 %

FullACC [DSH14]
1.41 1.06 4.45

12.32 12.00 25.13

OptScale
0.23 0.13 1.18

1.94 1.45 5.05

OptScaleVP2
2.61 1.60 8.53

21.86 20.21 57.62

OptCalib
0.14 0.09 0.41

1.43 0.92 3.56

OptCalibVP2
0.34 0.14 1.74

2.46 1.54 8.05

6.5.2 Distance Measurement Error

To evaluate the distance measurement including the scale, we carried out the next

experiment where we compared ground truth distances on the road plane (see Fig-

ure 6.4) and distances obtained using the camera calibration converted to meters

using the scale.

We divided the experiment into two parts. The first one is focused only on dis-

tances towards the first vanishing point, as these are the most important for the

speed measurement. The results can be found in Table 6.5. In the second part of

the experiment, we evaluated all the distances measured on the road plane and

the results can be found in Table 6.6.

The results in Table 6.5 show many different interesting aspects of the algorithm.

The first one is that if we use the original calibration and use scale computed

from distances towards the first vanishing point (OptScale) it improves the results

significantly. However, when we use the same calibration and scale computed from

distances towards the second vanishing point (OptScaleVP2), then the results are

even worse than the original ones. This implies that the error is in the localization

of the second vanishing point. The table also shows that in a situation when we use

the correctly localized second vanishing point, the results significantly improve for

both OptCalib and OptCalibVP2 relative to OptScale and OptScaleVP2.
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Table 6.6: Errors for all distance measurements (see text for details). The first row for each

calibration method contains absolute errors in meters and the relative errors in

percents are in the second row.

system mean median 95 %

FullACC [DSH14]
1.30 0.85 4.47

12.11 10.91 25.64

OptScale
0.62 0.17 2.47

6.83 2.05 32.04

OptScaleVP2
1.98 1.21 6.41

16.84 12.94 49.98

OptCalib
0.14 0.07 0.60

1.58 0.68 5.24

OptCalibVP2
0.30 0.12 1.12

2.37 1.44 8.47

Results in Table 6.6 support the hypothesis that the second vanishing point is

incorrectly detected by the method [DSH14] in some cases, as the distance mea-

surement performance significantly drops for OptScale when distances towards

the second vanishing point are added to the evaluation (Table 6.5 vs Table 6.6).

Also, it shows that OptCalib and OptCalibVP2 are not affected by this. Also,

as we expected, the performance of OptScaleVP2 increases when the dimensions

towards the second vanishing point are added to the evaluation. The original sys-

tem FullACC does not have this significant drop in performance as the scale is

determined either from widths, lengths, or heights; so it can be matched to the

the correct scale for measurements of the distances towards the second vanishing

point.

6.5.3 Speed Measurement Error

For the speed measurement task itself, we evaluate mainly the error between the

ground truth speed and the measured one. This metric does not include statistics

about incorrectly detected and tracked vehicles.

The results on the evaluation videos can be found in Table 6.7 and cumula-

tive histograms of errors are shown in Figure 6.8. To compare the results with

another non-visual speed measurement method, we also drove a car with GPS
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Table 6.7: Errors for speed measurements (see text for details). The first row for each cali-

bration method contains absolute errors in km/h and the relative errors in per-

cents are in the second row.

system mean median 95 %

GPS
1.64 1.19 —

2.18 1.42 —

RADAR
1.07 0.89 2.69

1.33 1.14 3.23

FullACC [DSH14]
8.59 8.45 17.14

10.89 11.41 19.84

OptScale
1.71 1.17 4.69

2.13 1.51 5.56

OptScaleVP2
15.66 13.09 47.86

19.83 17.51 59.25

OptCalib
1.43 0.83 3.89

1.81 1.05 5.07

OptCalibVP2
2.43 1.40 6.66

3.08 1.76 8.00

system with enabled raw logging to be seen in the recordings multiple times and

computed the speed of these observations from the GPS logs by averaging over a

longer period. We used nVidia Shield tablets as our GPS loggers in “Device only”

mode (GPS localization ON, Wi-Fi and GSM localization OFF) and logged the GPS

data in NMEA format using a standard logging application available in the ap-

plication store. We process offline RMC messages, distance and velocity between

each two following points are computed using Haversine formula described by

Robusto [126]. For each evaluation video we have approximately 20 passes with

the GPS speed measured.

The results in Table 6.7 and Figure 6.8 show that the systems OptCalib, OptScale

and OptCalibVP2 work relatively well (with OptCalib being the best). Also, the

results show that the FullACC has lower errors than OptScaleVP2 implying that

the biggest problem is in bad localization of the second vanishing point as was

described in Section 6.5.2. The results also show that when the original vanishing

points from FullACC are used and the scale is computed to optimize the error
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Figure 6.8: Cumulative histograms of distribution of errors. The dashed vertical line rep-

resents 3 km/h (or 3 %) threshold. See text for details. (Line markers represent

every 1500th data sample.)

in distance measurement towards the first vanishing point (OptScale), the perfor-

mance increase significantly. Also, when the second vanishing point is correctly

localized (OptCalib and OptCalibVP2) the results improves furthermore.

Table 6.7 also shows that the optimal system OptCalib outperforms the results

obtained from the GPS speed measurements. The 95 percentile is not reported

for the GPS as there is a much smaller number of measurements for the GPS

than in the other cases; thus the numbers are not comparable. Also, we evaluated

the speed measurement done by RADARs (2D microwave FM-CW radar module

RFbeam K-MC4 operating in K-band) and we used one RADAR for each lane for

each evaluation session in order to compare them with results obtained from the

methods using video; see Table 6.7.

We also evaluated the number of false positives per minute of video (9.745) and

recall (0.872) for all the videos. In the case of vehicle counting, false positives rep-

resent reported vehicle tracks which are not present in the dataset; recall denotes

the fraction of correctly matched ground truth vehicle tracks with reported vehicle
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tracks. The results are the same for all the systems as they share the vehicle detec-

tion and tracking part and they are only different in the camera calibration. The

false positives are caused mainly by lost tracking and re-initialization. Another im-

portant drawback of the current method is that the motion is not detected correctly

in some cases and the motion mask is divided into several contours.

Although the systems with some manual calibration (OptScale and OptCalib)

have relatively low speed measurement errors in comparison with GPS and

RADAR, the fully automatic system still has too large errors and the automatic

traffic surveillance camera calibration methods need improvement.

6.6 conclusions

We collected and processed a dataset for evaluation of purely visual speed mea-

surement by a single monocular camera. Cameras are becoming ubiquitous and a

considerable portion of them observe traffic. By providing this dataset we intend

to encourage research of fully automatic traffic camera calibration methods, which

could be used for mining valuable automatic traffic surveillance data from existing

and new camera infrastructure.

On the collected data, we evaluated an approach which is both fully automatic

and can process virtually arbitrary views. The evaluation shows its weaknesses

(localization of the VP2 and scale inference), which can encourage further research

in this area, which we will focus on. The measurements also established a first

baseline to be outperformed by future works.
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abstract In this paper, we focus on fully automatic traffic surveillance cam-

era calibration which we use for speed measurement of passing vehicles. We im-

prove over a recent state-of-the-art camera calibration method for traffic surveil-

lance based on two detected vanishing points. More importantly, we propose a

novel automatic scene scale inference based on matching bounding boxes of ren-

dered 3D models of vehicles with detected bounding boxes in the image. The

proposed method can be used from an arbitrary viewpoint, and thus it has no con-

straints on camera placement. We evaluate our method on the recent comprehen-

sive dataset for speed measurement BrnoCompSpeed. Experiments show that our

automatic camera calibration method by detecting two vanishing points reduces

the error by 50 % compared to the previous state-of-the-art method. We also show

that our scene scale inference method is more precise (mean speed measurement

error 1.10 km/h) outperforming both state-of-the-art automatic calibration method

(error reduction by 86 % – mean error 7.98 km/h) and manual calibration (error re-

duction by 19 % – mean error 1.35 km/h). We also present qualitative results of the

proposed automatic camera calibration method on video sequences obtained from

real surveillance cameras on various places and under different lighting conditions

(night, dawn, day).

7.1 introduction

Surveillance systems pose specific requirements on camera calibration. Their cam-

eras are typically placed in hardly accessible locations and the optics is focused to

larger distances, making the common pattern-based calibration approaches (such

as classical [185]) unusable. That is why many solutions place markers to the ob-

served scene and/or measure existing geometric features [145, 32, 172, 102]. These

99
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Figure 7.1: Example of detected vehicles and 3D model bounding box aligned to the vehi-

cle detection bounding box. top: detected vehicle and corresponding 3D model

(edges only), bottom: examples of aligned bounding boxes with shown 3D

model edges (green), its bounding box (yellow) and vehicle detection (blue).

approaches are laborious and inconvenient both in terms of camera setup (man-

ually clicking on the measured features in the image) and in terms of physically

visiting the scene and measuring the distances.

In our paper, we focus on precise and at the same time fully automatic traffic

surveillance camera calibration including scene scale for speed measurement. The

proposed speed measurement method needs to be able to deal with significant

viewpoint variation, different zoom factors, various roads and densities of traffic.

If the method should be applicable for large-scale deployment, it needs to run fully

automatically without the necessity to stop the traffic on the road for its installation

or for performing calibration measurements.

Our solution uses camera calibration obtained from two detected vanishing

points and it is built on our previous work [DSH14, DHJS15]. However, this cali-

bration procedure only allows to reconstruct the rotation matrix and intrinsic pa-

rameters from the vanishing points, and it is still necessary to obtain the scene

scale. We propose to detect vehicles on the road by Faster-RCNN [124], classify

them into a few common fine-grained types by a CNN [82] and use bounding

boxes of 3D models for the known classes to align the detected vehicles. The va-

nishing point-based calibration allows for full reconstruction of the viewpoint on



7.2 related work 101

the vehicle and the only free parameter in the alignment is therefore the scene

scale. Figure 7.1 shows an example of the 3D model and the aligned images. Our

experiments show that our method (mean speed measurement error 1.10 km/h)

significantly outperforms existing automatic camera calibration method by Dub-

ská et al. [DSH14] (error reduction by 86 % – mean error 7.98 km/h) and also cali-

bration obtained from manual measurements on the road (error reduction by 19 %

– mean error 1.35 km/h). This is important because in the previous approaches,

the automation always compromised the accuracy, forcing the system developer to

trade off between them. Our work shows that manual calibration (though labori-

ous, thorough, and carried out according to state-of-the-art approaches) is inferior

to the fully automatic approach based on computer vision methods.

Existing solutions for traffic surveillance camera calibration [28, 135, 17, 56, 63,

104, 145, 110, DSH14, 83, 103, DHJS15, 32, 102, 172] (see Section 7.2 for detailed

analysis) usually have limitations for real world applications. They are either lim-

ited to some viewpoints (zero pan, second vanishing point at infinity), or they

require some per-installed-camera manual work. To our knowledge, there is only

one work [DSH14] which does not have these limitations and therefore we compare

our results with this solution. For a brief description of the method, see Section 7.2;

a more comprehensive review can be found in a recent dataset paper BrnoComp-

Speed by Sochor et al. [SJŠ+18].

The key contributions of this paper are:

• Improved camera calibration method by detection of two vanishing points –

camera calibration error reduced by 50 %.

• Novel method for scene scale inference significantly outperforming auto-

matic traffic camera calibration methods (error reduced by 86 % – 7.98 km/h

to 1.10 km/h) and also manual calibration method (error reduced by 19 % –

1.35 km/h to 1.10 km/h) in automatic speed measurement from a monocular

camera.

• The results show that when used for the speed measurement task, the au-

tomatic (zero human input) method can perform better than the laborious

manual calibration, which is generally considered accurate and treated as

the ground truth. This finding can be important also in other fields than only

in traffic surveillance.

7.2 related work

The camera calibration algorithm (obtaining intrinsic and extrinsic parameters of

the surveillance camera) is critical for the accuracy of vehicle speed measurement
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by a single monocular camera, as it directly influences the speed measurement

accuracy. There is a very recent comprehensive review of the traffic surveillance

calibration methods [SJŠ+18], so for detailed information we refer to the review

and we include only a brief description of the methods.

Several methods [63, 17, 56] are based on detection of vanishing points as an in-

tersection of road markings (lane dividing lines). Other methods [DSH14, DHJS15,

135, 28] use vehicle motion to calibrate the camera. Then there is also a set of meth-

ods which use some form of manually measured dimensions on the road plane

[104, 110, 145, 103, 102, 32, 83].

An important attribute of the calibration methods is whether they are able to

work automatically without any manual per-camera calibration input. Only two

methods [28, DSH14] are fully automatic and both of them use mean vehicles’

dimensions for the camera calibration. Another attribute that is important for real-

world deployment is whether the camera can be placed at an arbitrary position

above the road, which is not true for some methods as they assume to have zero

pan or other constraints.

Regarding fine-grained vehicle classification, there are several approaches. The

first one is based on detected parts of vehicles [81, 142, 38], another approach is

based on bilinear pooling [92, 47]. There is also an approach based on Convolu-

tional Neural Networks (CNN) and input modification [SHH16]. For object detec-

tion, it is possible to use boosted cascades [33], HOG detectors [29], or Deformable

Parts Models (DPMs) [40]. Also, there was a recent advancement in object detection

based on CNNs [52, 124, 96].

Several authors dealt with alignment of 3D models and vehicles and used this

technique for gathering data in the context of traffic surveillance. [93] propose to

jointly optimize 3D model fitting and fine-grained classification, [67] align edges

formulated as Active Shape Model [25, 88]. [80] and propose to use synthetic data

to train geometry and viewpoint classifiers for 3D model and 2D image alignment.

[121] use detected SIFT features [101] to align 3D vehicle models and the vehicle’s

observation. They use the alignment mainly to overcome vehicle appearance vari-

ation under different viewpoints. However, in our case, as the precise viewpoint

on the vehicle is known (Section 7.4.3), such alignment does not have to be done.

Thus we adopt much simpler and more efficient method based on 2D bounding

boxes – simplifying the procedure considerably without sacrificing the accuracy.

When it comes to camera calibration in general, various approaches exist. The

widely used method by Zhang [185] uses a calibration checkerboard to obtain

intrinsic and extrinsic (relative to the checkerboard) camera parameters; [95] use

controlled panning or tilting with stereo matching to calibrate the camera. Corre-

spondences of lines and points are used by Chaperon et al. [21]. Yu et al. [173]
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focus on automatic camera calibration for tennis videos from detected lines on the

tennis court.

7.3 traffic camera model

The main goal of camera calibration in the application of speed measurement is

to be able to measure distances on the road plane between two arbitrary points

in meters (or different length units), therefore we only focus on a camera model

which enables to measure distance between two points on the road plane.

For convenience and better comparison of the methods, we adopt the traffic

camera model and notation proposed in previous papers [DSH14, DHJS15]; how-

ever, to make the paper self-contained, we briefly describe the model and notation.

For intrinsic parameters of our camera model, we assume to have zero pixel skew

and principal point c in the center of the image. The method also assumes the

road section to be flat and straight; the experiments reported in the previous work

and our experiments as well show that this requirement is not very strict, because

most roads that are not sharply curved locally meet this assumption for practical

purposes.

Homogeneous 2D image coordinates are referenced by bold small letters p =

[px,py, 1]T , points on the image plane p = [px,py, f]T in 3D, where f is the focal

length, are denoted by small bold letters with overline. Finally, other 3D points (on

the road plane) are denoted by bold capital letters P = [Px,Py,Pz]T .

Figure 7.2 shows the camera model and its notation. For convenience, we as-

sume that the origin of the image coordinate system is at the center of the image;

therefore, the principal point c has 2D homogeneous coordinates [0, 0, 1]T (3D co-

ordinates of the center of camera projection are [0, 0, 0]T ). As it is shown, the road

plane is denoted by ρ. We encode vanishing points in the following way. The first

one (in the direction of vehicles’ flow) is referenced as u; the second vanishing

point (whose direction is perpendicular to the first one and which is parallel to the

road plane) is denoted by v; and the third one (direction perpendicular to the road

plane) is w.

Using the first two vanishing points u, v and the principal point c, it is possible

to compute focal length f, the third vanishing point w, the road plane normalized

normal vector n, and the road plane ρ. However, the road plane is computed only

up to scale (as it is not possible to recover the distance to the road plane only from
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Figure 7.2: Camera model and coordinates. Points denoted by small letters represent

points in image space while points in the world space on the road plane ρ

are represented by capital letters. The representation stays the same for both

finite and ideal points.

the vanishing points) and therefore, we add arbitrary value δ = 1 as the constant

term in Equation (7.6).

f =
√

−uT · v (7.1)

u = [ux,uy, f]T (7.2)

v = [vx, vy, f]T (7.3)

w = u× v (7.4)

n =
w

‖w‖
(7.5)

ρ =
[

nT , δ
]T

(7.6)

With known road plane ρ, it is possible to compute 3D coordinates P =

[Px,Py,Pz]T of an arbitrary point p = [px,py, 1]T by projecting it to the road

plane using the following equations:

p = [px,py, f]T (7.7)

P = −
δ

[

pT , 0
]

· ρ
p (7.8)

It is possible to measure distances on the road plane directly with 3D coordinates

P; however, as the road plane is shifted to a predefined distance by the constant

term, the distance ‖P1 − P2‖ between points P1 and P2 is not directly expressed in

meters (or other real-world units of distance). Therefore, it is necessary to introduce

another calibration parameter referenced as the scene scale λ, which converts the

distance ‖P1 − P2‖ from pseudo-units on the road plane to meters by scaling the

distance to λ‖P1 − P2‖.

Using the assumption of the principal point in the center of the image and zero

pixel skew, it is necessary for the calibration method to compute two vanishing

points (u and v in our case) together with the scene scale λ, yielding 5 degrees
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of freedom. Methods to convert these camera parameters to the standard intrinsic

and extrinsic camera model K [R T] were discussed before in several papers [186,

44, 187], therefore we refer to them.

7.4 camera calibration and vehicle tracking

We adopted the calibration method by [DSH14], which gives the image coordinates

of the vanishing points and scene scale information. We improved the method with

a more precise detection of the vanishing points, and we infer the scene scale by

using 3D models of frequently passing cars.

Our method measures the speed of passing cars detected by Faster-RCNN [124]

and tracked by a combination of background subtraction and Kalman filter [75] as-

sisted by the detector. This method, more sophisticated than the previous method

[DSH14], gives less false positives and a comparable recall rate. In the case of very

dense flow when vehicles overlap each other in the camera image (which does

occur rarely even in real conditions), our method would miss some of the cars

as we target free-flow conditions. In the following text, we describe in detail the

components of the method and evaluate it in Section 7.5.

7.4.1 Vanishing Point Estimation from Edgelets

We adopted the algorithm proposed by [DHJS15] (based on detection of two or-

thogonal vanishing points) for the detection of the first vanishing point and pro-

pose to use a similar algorithm for detecting the second vanishing point. However,

we improved the detection of the second vanishing point by using edgelets instead

of image gradients used in the previous paper [DHJS15]. This change, although

subtle, improves the calibration and speed measurement considerably, as the re-

sults in Section 7.5.3 show.

We start with the detection of vanishing points from which the camera rota-

tion with respect to the road can be estimated. The first vanishing point u is esti-

mated from the movement of the vehicles by a form of cascaded Hough Transform

[DHJS15] of lines formed by tracking points of interest on the moving vehicles. This

is a more stable approach than finding closest point to the lines in an algebraic way,

because it is more robust to tracking noise and it is not influenced by vehicles that

change lane (and therefore vanishing point of their movement is different from

the rest of the vehicles). Similarly to [DHJS15], we use the Min-eigenvalue point

detector [140] and the KLT tracker [154].

For detecting the second vanishing point v, we use edges on passing vehicles as

many lines formed by the edges coincide with v. This step heavily relies on correct
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Figure 7.3: Visualization of edgelet detection. From left to right – Seed points si as local

maxima of image gradient (foreground mask was used to filter interesting ar-

eas); Patches gatherded around the seed points from which is computed the

edge orientation; Detail of an edgelet and its orientation superimposed on the

gradient image; Top 25 % of edgelets detected in the image.

estimation of the orientation of the edges. The angle can be easily computed from

gradients, but angles close to kπ/2 are almost impossible to accurately recover on

small neighborhoods. We estimate edge orientation from a larger neighborhood

by analysis of the shape of image gradient magnitude (edgelets). The detection

process is shown in Figure 7.3.

Edgelets are detected by the following algorithm. Given an image I, first, we

find seed points si as local maxima of gradient magnitude of the image E = ‖∇I‖,

keeping only the strong ones with magnitudes above a threshold. From 9× 9 neigh-

borhood of each seed point si = [xi,yi, 1]T , matrix Xi is formed:

Xi =



















w1(m1 − xi) w1(n1 − yi)

w2(m2 − xi) w2(n2 − yi)

...
...

wk(mk − xi) wk(nk − yi)



















(7.9)

where [mk,nk, 1]T are coordinates of the neighboring pixels (k = 1 . . . 81) and wk

is their gradient magnitude from E, i.e. for 9× 9 neighborhood, the size of Xi is

81× 2. Then, from (7.10), singular vectors and values of Xi can be computed as:

WiΣ
2
i WT

i = SVD
(

XT
i Xi

)

, (7.10)

where

Wi = [a1, a2] (7.11)

Σi =





λ1 0

0 λ2



 . (7.12)

Vectors a1 and a2 represent the eigenvectors of Xi, while λ1 and λ2 denote the cor-

responding eigenvalues. Edge orientation is then the first singular column vector

di = a1 from (7.11) and the edge quality is the ratio of singular values qi = λ1

λ2

from (7.12). Each edgelet is then represented as a triplet Ei = (si, di,qi).
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Figure 7.4: Visualization of edges gathered from a video – (red) edges that pass close to

the first vanishing point, (blue and green) edges accumulated to the Diamond

Space, and (green) edges supporting the detected second vanishing point. The

corresponding Diamond Space is shown in bottom-right corner.

We gather the edgelets from the input video (see Figure 7.4), keeping only the

strong ones which do not coincide with already estimated u, and accumulate them

to the Diamond Space accumulator [35]. The position of the global maximum in the

accumulator is taken as the second vanishing point v. It should be noted that in this

step, additional filtering can be applied – e.g. mask the Diamond Space to find only

plausible solutions (i.e. avoid imaginary focal length from Equation (7.1)), or to

find solutions within a certain range of focal lengths or horizon inclinations (when

known in advance). This may improve the robustness of the second vanishing

point estimation.

7.4.2 Vehicle Detection and Tracking

During the speed measurement, passing cars are detected in each frame by the

Faster-RCNN (FRCN) detector [124] but any detector can be used as well (e.g.

ACF, LDCF [33]). We trained the detector on COD20K dataset [74] containing ap-

proximately 20 k car instances for training from views of surveillance nature. The

detection rate of the detector is 96 % with 0.02 false positive detections per image

on the test part of COD20K dataset. The detector yields a coarse information about

locations of cars in the image (bounding boxes are not precisely aligned). We use

a simple heuristic to remove detections that would lead to imprecise tracking and

ultimately to wrong speed estimation – those that are slightly occluded by other
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Figure 7.5: Car detection and tracking. From left to right: Car detected by FRCN (blue),

its foreground mask and convex hull (green); 3D bounding box constructed

around the convex hull and tracking point on the bottom front edge; Car bound-

ing box (from the convex hull) tracked by Kalman filter.

detections and that are farther from the camera. Therefore we track only cars that

are fully visible.

For the tracking, we use a simple background model that builds a background

reference image by moving average. In the foreground image, compact blobs are

detected and the FRCN detections are used to group those blobs that correspond

to one car. From each group of blobs, the convex hull and its 2D bounding box are

extracted. Finally, we track the 2D bounding box of the convex hull using Kalman

filter to get the movement of the car. For an example, see Figure 7.5.

For each tracked car, we extract a reference point for speed measurement. The

convex hull is used to construct the 3D bounding box [DSH14] and we take the

center of the bottom-front edge – the reference point located in the ground/road

plane. Each track is represented by a sequence of bounding boxes and reference

points both constructed from the convex hull. Our method inherits all the advan-

tages and limitations of the similar approaches based on extraction of the vehicle’s

foreground mask. We rely on the extractor to do its job properly, and we can take

advantage of works dealing with different issues related to for example lighting

and weather (for example contour extractors such as [168], or semantic segmenta-

tion methods such as [100]). In Section 7.5.6, we are showing a number of examples

of real-world surveillance cameras under bad conditions, where the calibration al-

gorithm works well.

7.4.3 Scale Inference using 3D Model Bounding Box Alignment

The previous state-of-the-art automatic method for scale inference in traffic surveil-

lance by [DSH14] used three-dimensional bounding boxes built around the vehicle

and mean dimensions of vehicles to compute the scale. However, this approach

has two main drawbacks. The obvious one is in the usage of mean dimensions
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of vehicles. However, the more important one is not that much obvious: the con-

structed bounding box is too tight around the vehicle and the tightness is largely

influenced by the particular viewpoint direction. This causes systematic errors in

the calibration depending on the camera location with respect to the road, leading

to high sensitivity to viewpoint change.

We propose to use a different approach to the scale inference, overcoming the

mentioned imprecisions. We use fine-grained types of the vehicles (i.e. make,

model, variant, model year) and for a few (two in our experiments) common types

we obtained 3D models which are rendered to the image and we align them to the

real observed vehicles in order to obtain the proper scale.

As it is necessary to know the precise vehicle classes (up to model year) for

our scale inference method, we used BoxCars dataset with such images [SHH16]

and we also collected some other training data from videos related to papers by

[DSH14, DHJS15]. The classification of vehicles is done only into a few most com-

mon fine-grained vehicle types on roads in the area plus one class for all the others

vehicles. The full training dataset contained ∼23 k tracks and ∼92 k images of ve-

hicles. We used a CNN [82] for the classification itself. The classification accuracy

on the validation set (∼7 k of images) was 0.97. As only single instances of vehi-

cles are classified by the CNN, we use mean probability over all of the detections

belonging to one vehicle track to improve the recognition rates.

For each vehicle, we also build a 3D bounding box around it [DSH14] to obtain

the center b of the vehicle’s base in image coordinates. To obtain the viewpoint

vector φ, we first compute the rotation matrix R which has columns equal to

normalized u, v, and w and then it is possible to compute the 3D viewpoint vector

as φ = −RTb. The minus sign is necessary as we need the viewpoint vector going

from the vehicle to the camera, not the opposite one.

Once the viewpoint vector to the vehicle, the vehicle’s class, and its position

on the screen are determined, we render the appropriate 3D model given the pa-

rameters. The only open variable is the scale of the vehicle to be rendered (i.e.

the distance between the vehicle and the camera). Examples of the two used 3D

models are shown in Figure 7.6. Therefore, we render images of the vehicle in

multiple different scales and match the bounding boxes of the rendered vehicles

with the bounding box detected in the video by using the Intersection-over-Union

(IoU) metric. Examples of such matches can be found in Figure 7.7. The figure also

shows in red two interesting points related to the vehicle: points on the base of

the 3D models representing front f and rear r of the vehicle. Finally, for all vehicle

instances i and scales j, these points are projected on the road plane, yielding Fij

and Rij and they are used to compute the scale λij (Eq. (7.13), where lti is the real
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Figure 7.6: Examples of used 3D models (showing only edges) render under the same

viewpoint as the corresponding real vehicle on the road. The left image show

model which we will refer as Combi and the other two images show 3D model

Sedan. Both the models are for Skoda Octavia mk1 which is common on the

observed streets.

world length of the type ti). For all considered combinations of i and j, the IoU

matching metric mij is computed.

λij =
lti

‖Fij − Rij‖
(7.13)

To obtain the final camera’s scale λ∗, all the scales λij are taken into account to-

gether with metrics mij. We consider only cases with mij larger then a predefined

threshold (we used 0.85 in our experiments) to eliminate poor matches. Finally,

we compute λ∗ according to Equation (7.14). The probability p
(

λ | (λij,mij)
)

is

computed by kernel density estimation with a discretized space.

λ∗ = arg maxλ p
(

λ | (λij,mij)
)

(7.14)

In order to further improve the scale inference, we use several training videos

from BrnoCompSpeed dataset [SJŠ+18]. We train the scale-correcting linear regres-

sion λ∗reg = αλ∗ +β, using the manually obtained scales as the ground truth. Even

though this step is not necessary, it improves the scale acquisition furthermore by

correcting the imprecise geometry of the obtained 3D models.

We also experimented with an alignment metric based on matching of edges

on the rendered and detected vehicles (based on distance transform). However,
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0.56 0.74 0.93 0.74 0.60

0.57 0.77 0.94 0.80 0.65

0.56 0.78 0.96 0.78 0.63

Figure 7.7: Development of IoU (yellow boxes) metric for different scales (left to right),

vehicle types and viewpoints (top to bottom). The left two images show larger

rendered vehicle, the middle one show the best match, and the right two images

show smaller rendered vehicle. The rendered vehicle is shown only in a form of

edges with yellow rectangle as bounding box of the rendered model and blue

rectangle denotes the detected vehicle bounding box.

the speed measurement did not improve further. The biggest problem with this

method is that most of the edges on the vehicles are blurry and therefore not

detected at all. However, the vehicle detector [124] is able to detect the vehicles

properly and in most cases accurately. Also, the proposed algorithm using just the

bounding boxes is much more efficient in terms of storage (it is possible to store

just the bounding boxes, not the images) and computation.

7.4.4 Speed Measurement of Tracked Cars

The speed measurement itself is done by following the methodology proposed by

[SJŠ+18]. Given a tracked car with reference points pi and timestamps ti for each of

the reference point, where i = 1 . . .N, the speed v is calculated from Equation (7.15)

by projecting the reference points pi to the ground plane Pi (see Equation (7.8)).

v = median
i=1...N−τ

(

λ∗reg‖Pi+τ − Pi‖
ti+τ − ti

)

(7.15)

The speed is computed as the median value of speeds between consecutive time

positions. However, for stability of the measurement, it is better not to use the

next frame, but the time position several video frames apart. This is controlled by

constant τ and for all our experiments, we use τ = 5 (the time difference is usually

0.2 s).
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Figure 7.8: An example of manually measured distances between markers on the road

plane. Other examples can be found in the original BrnoCompSpeed publica-

tion [SJŠ+18]. Blue lines denote the lane dividing lines, lines perpendicular to

the vehicles direction are shown in yellow. Finally, measured distances between

two points towards the first (second) vanishing point are shown by red (green)

color.

7.5 experiments and results

To evaluate our proposed methods for camera calibration and scene scale inference,

we use a very recent dataset BrnoCompSpeed [SJŠ+18] which contains over 20 k

vehicles with precise ground truth speed from multiple locations. The dataset also

contains markers on the road with known dimensions between them. For an exam-

ple of such road markers, see Figure 7.8. The ground truth distances can be used

for either calibration or evaluation of distance measurement on the road plane. It

is also possible to evaluate the accuracy of vanishing points estimation by using

the markings [SJŠ+18]. In the following text we will refer to various methods for

camera calibration which are defined as:

• ITS15 – Automatic camera calibration method as described by Dub-

ská et al. [DHJS15]. Brief outline of the method is in Sections 7.2 and 7.4.1.

• Edgelets – Camera calibration method proposed in this paper, Section 7.4.1.

• ManualCalib – We use known distances (Figure 7.8) on the road for manual

calibration of the camera. In agreement with the previous papers [17, 56, 64]

we use intersection lanes dividing lines (blue dashed lines in Figure 7.8) for

estimation of the first vanishing point u. As there are usually more than

just two lane dividing lines, we use least squares minimization to obtain
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the intersection of multiple lines. Formally, given lines li with normalized

normal vectors, we compute vanishing point u by solving Au = −b in a least

squares manner, where rows of A contain transposed normal vectors of the

lines and rows of b contain constant terms of the lines.

The second vanishing point v can be obtained in the same manner (as the

intersection of yellow dashed lines in Figure 7.8, since they are perpendicu-

lar to the vehicle flow on the road). However, we found out that it is more

accurate and robust to use the intersection only as a first guess and then

use measured distances on the road to optimize the vanishing point position

using Equation (7.16).

v∗ = arg min
v





∑

(p1,p2,d)∈D2

|λ‖P1 − P2‖− d|



 , (7.16)

where set D2 contains image endpoints and distances measured on the road

towards the second vanishing point (green line segments in Figure 7.8) and

scale λ is computed for the given vanishing points u, v by Equation (7.17). It

should be noted that the computation of 3D coordinates Pi of image point

pi depends on the vanishing points (see Equation (7.8) for details). The op-

timization itself is done by grid search (we loop over discretized feasible

positions of v corresponding to reasonable focal lengths and evaluate the

optimization objective (7.16)).

The usage of standard manual methods based on calibration patterns (e.g

checkerboards) proposed by [185] is impractical as it would require a large

checkerboard (more than 10m2) placed on the road.

We also define method names for different approaches for scale inference:

• BMVC14 – Scale inference method proposed by [DSH14]. Brief outline of the

method is in Section 7.2.

• BBScale + reg – Our method for scale calibration using bounding box match-

ing (Section 7.4.3) with scale correction regression.

• ManualScale – Scale computed from manually measured distances between

markers towards the first vanishing point on the road. The scale is computed

as the mean value of Equation (7.17) from a set of endpoints and distances

(pi,1, pi,2,di) towards the first vanishing point (red line segments in Fig-

ure 7.8).

λ = E

[

di

‖Pi,1 − Pi,2‖

]

(7.17)

• SpeedScale – Scale is computed from the ground truth speed measurements

and it minimizes the speed measurement error for given camera calibration.
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It can be understood as the lower error bound for the given camera calibra-

tion method. The scale is computed as the mean value of Equation (7.18)

where set M contains pairs of ground truth speed v̂i and measured speed vi.

It is assumed that scale λ = 1 was used for computation of speeds vi.

λ = E

[

v̂i

vi

]

(7.18)

If not stated otherwise, the evaluation was done on BrnoCompSpeed – Split

C (contains more than 10 k of vehicle tracks for evaluation), because our method

requires parameter tuning for the scale correction regression and split C provides

sufficient amount of data for training and testing. For each metric, we report mean,

median, and 99 percentile error for both absolute units (err = |r̂− r|) and relative

units (err = |r̂− r|/r̂ · 100%), where r̂ denotes the ground truth measurement, and

r represents the measured value.

7.5.1 Evaluation of VP Estimation – Camera Calibration Error

To evaluate the camera calibration itself (the obtained vanishing points), we follow

the evaluation metric proposed with the BrnoCompSpeed dataset [SJŠ+18]. The

evaluation measures the difference between ratios of distances between markings

towards the first vanishing point (red lines in Figure 7.8) and the distances between

markers towards the second vanishing point (green lines in Figure 7.8). As the ratio

does not depend on scale, this metric considers only the camera calibration in the

form of two detected vanishing points.

Since we do not require any parameter tuning for the camera calibration method,

we report the results on all videos in the BrnoCompSpeed dataset (including extra

session0). The results (reported in Table 7.1) show that our automatic calibration

method Edgelets outperforms calibration method ITS15 almost twice in mean error.

It should be noted that the same distances that were used to obtain the manual

calibration were evaluated by the calibration error metric based on distance ratios;

this gives the manual calibration an unfair advantage in the comparison.

The significant improvement of our method is caused by more precise acquisi-

tion of v; position of u stays the same for our method as for the ITS15 calibration

method. The important role of vanishing points is given by two reasons. The first

one is that the vanishing points are directly used for estimating the focal length;

the second one is that they are used for computation of the viewpoint on the ve-

hicle for scale estimation. Therefore, if the viewpoint is computed imprecisely, the

alignment of the rendered 3D model is also imprecise.
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Table 7.1: Errors of distance measurement ratios (see Section 7.5.1 for details). The first

row for each calibration method contains absolute errors; the relative errors in

percents are in the second row.

system mean median 99 %

Edgelets (ours)
0.09 0.04 0.49

6.45 3.38 39.08

ITS15
0.18 0.05 1.36

11.74 5.25 61.03

ManualCalib
0.02 0.01 0.15

1.80 1.26 10.98

Table 7.2: Distance measurement errors on the road plane for different calibrations. Only

distances towards the first vanishing point (red in Figure 7.8) were used for this

evaluation. The first row for each calibration method contains absolute errors in

meters; the relative errors in percents are in the second row.

system mean median 99 %

Edgelets + BBScale + reg (ours)
0.26 0.17 1.08

2.33 2.06 5.49

ITS15 + BMVC14
1.23 0.81 5.40

9.62 10.65 21.07

Edgelets + ManualScale (ours)
0.10 0.06 0.57

0.98 0.62 4.46

ITS15 + ManualScale
0.25 0.14 1.54

2.11 1.66 8.07

ManualCalib + ManualScale
0.10 0.08 0.32

1.08 0.65 3.59

7.5.2 Evaluation of Distance Measurement in the Road Plane

The next step is to evaluate the camera calibration together with the obtained scale.

We use manual annotations of distances on the road plane which are going towards

the first or the second vanishing point, respectively (red and green in Figure 7.8).
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Table 7.3: Distance measurement errors on the road plane for different calibrations. Each

segment of the table represents a different level of supervision in the calibration.

The first row for each calibration method contains absolute errors in meters and

the relative errors in percents are in the second row.

system mean median 99 %

Edgelets + BBScale + reg (ours)
0.34 0.18 2.29

3.47 2.28 30.49

ITS15 + BMVC14
1.17 0.72 5.82

9.79 9.00 55.89

Edgelets + ManualScale (ours)
0.24 0.10 2.60

2.66 1.00 34.75

ITS15 + ManualScale
0.57 0.20 5.43

5.84 2.07 52.19

ManualCalib + ManualScale
0.07 0.04 0.30

0.84 0.50 3.47

First, we evaluated the distance measurement only towards the first vanishing

point as it is the direction in which the vehicles are going and it is more important

for speed measurement. The results are shown in Table 7.2 for different combina-

tions of calibrations and scale estimations. The table shows several things. First,

our fully automatic method for camera calibration (Edgelets) and scale inference

(BBScale + reg) significantly outperforms the previous automatic method ITS15 +

BMVC14. Second, when we use our automatically computed calibration and scale

obtained with manual annotations, we achieve almost the same results as Manual-

Calib + ManualScale, which required much more manual effort than our automatic

system.

When we evaluated the same metric with all the distances, the results are sim-

ilar (see Table 7.3). Again, our method significantly outperforms the previous au-

tomatic method. Considering the calibrations with manually obtained scale, our

system has a slightly higher error then the manual calibration. However, this is

caused by the fact that the manual calibration is optimized directly to the evalua-

tion metric by Equation (7.16) and thus gets an unfair and unrealistic advantage.

To summarize the distance measurement results: our method significantly out-

performs previous automatic state-of-the-art for speed measurement – the mean
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Table 7.4: Evaluation of speed measurement errors; all the systems are different only in the

calibration and scale inference, with the same tracking of vehicles. Each segment

represents one level of supervision in the calibration (automatic, known ground

truth distances on road, known ground truth speeds). The first row for each cal-

ibration method contains absolute errors in km/h; the relative errors in percents

are in the second row.

system mean median 99 %

Edgelets + BBScale + reg (ours)
1.10 0.97 3.05

1.39 1.22 4.13

ITS15 + BMVC14
7.98 8.18 18.58

10.15 11.45 19.22

Edgelets + ManualScale (ours)
1.04 0.83 3.48

1.31 1.04 4.61

ITS15 + ManualScale
1.44 1.17 5.43

1.76 1.50 6.16

ManualCalib + ManualScale
1.35 0.95 4.84

1.64 1.18 5.40

Edgelets + SpeedScale (ours)
0.52 0.35 2.57

0.66 0.44 3.71

ITS15 + SpeedScale
0.80 0.57 3.70

0.99 0.72 4.68

ManualCalib + SpeedScale
0.56 0.38 2.73

0.71 0.48 3.63

error for distance measurement in the direction of vehicles’ flow (which is impor-

tant for speed measurement) was reduced by 79% (1.23 m to 0.26 m).

7.5.3 Evaluation of Speed Measurement

The most important part of the evaluation is the speed measurement itself. We used

the same vehicle detection and tracking system (see Section 7.5) in all experiments

so that the results for different calibrations and scales are directly comparable.
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Figure 7.9: Evaluation of speed measurement – cumulative histograms of errors. The gray

dashed vertical lines represent 3 km/h error. top left: comparison of automatic

methods and a manual method for camera calibration, top right: calibrations

obtained with known ground truth distances on the road plane, bottom left:

calibrations with scale obtained by minimizing the speed measurement error,

thus forming a lower bound error for speed measurement with given camera

calibration and tracking algorithm, bottom right: analysis of influence of dif-

ferent aspects of used 3D car models evaluated on speed measurement, see

Section 7.5.4. The cumulative histogram is suitable for directly obtaining the

“success rate” for a given error tolerance.

We show both quantitative results in the form of Table 7.4 and plots with cu-

mulative error histograms in Figure 7.9. The table and the figures are divided into

several parts where we compare similar levels of supervision.

The first level of supervision is fully automatic; in the second level, known

ground truth dimensions on the road plane are used. In the third and final level

of supervision, we use known ground truth speeds to form the lower error bound

for different calibration methods.

Regarding the first level of supervision, our system Edgelets + BBScale + reg sig-

nificantly outperforms the previous automatic method ITS15 + BMVC14 and we

reduce the mean speed measurement error by 86% (7.98 km/h to 1.10 km/h) . An-

other important fact is that our fully automatic method for camera calibration and

scale inference also outperforms manual calibration and scale inference (1.35 km/h

mean error) while the error is reduced by 19% (1.35 km/h to 1.10 km/h). This
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improvement is important as in the previous approaches, the automation always

compromised the accuracy, forcing the system developer to trade off between them.

Our work shows that our proposed fully automatic method based on computer vi-

sion is superior to manual calibration.

When it comes to the second and the third level of supervision, the results fol-

low the same trend with our calibration outperforming all of them (manual and

automatic). The fact that manual calibration is better on the calibration metric

(Section 7.5.1) and distance measurement (Section 7.5.2), while our method outper-

forms the manual calibration at the speed measurement task, is caused by the fact

that the manual calibration uses the same data which are then used for the evalu-

ation of the calibration metric and distance measurement. The achieved accuracy

is very close to meeting the standards for speed measurements accuracy required

for enforcement (typically 3% in many European countries). The accuracy is def-

initely comparable to measurements achievable by radars [SJŠ+18], while being

considerably cheaper, more flexible, and passive.

7.5.4 Sensitivity to Selection of the 3D Model

We also evaluated how using different 3D models of vehicles influences the speed

measurement results. The results are shown in Table 7.5 and Figure 7.9 (bottom

right). We tested several combinations of used vehicles: use of only one of the

models (Combi, Sedan) or both of them together (Combi + Sedan), forming the first

segment of the table. It shows that using both the models significantly improves

the results, as the errors in geometry of the 3D models cancel out. We consider

using only a few (as few as two) fine-grained models as beneficial because it is not

necessary to obtain more 3D models and training data for fine-grained recognition.

The experiments show that having two models is sufficient for obtaining usable

results; using more than two models in practice would follow the same principles

and could increase the robustness further.

The second segment of the table shows the performance of the system with scale

correction regression to overcome the inaccuracies of the 3D models. The results

show that for model Combi, the error significantly decreases. However, for the

Sedan model, the results stay more or less the same. This paradox is caused by the

smaller number of training data for Sedan version as for some training videos, no

Sedan vehicle was detected. The results also show that if we use both models, the

performance drop is not that significant (1.10 km/h to 1.38 km/h) and therefore, it

is possible to use the scale inference without the scale correction regression.
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Table 7.5: Analysis of influence of different aspects of used 3D car models. It shows that it

is best to use both models. The second segment of the table also shows that it

is useful to use scale correction regression as described in Section 7.4.3. The first

row for each 3D model combination method contains absolute errors in km/h;

the relative errors in percents are in the second row.

system mean median 99 %

Sedan
2.39 1.74 8.67

2.82 2.14 7.74

Combi
2.03 1.72 6.51

2.48 2.14 5.94

Combi + Sedan
1.38 0.99 5.18

1.70 1.23 4.94

Sedan + reg
2.43 2.49 7.26

2.97 3.17 6.56

Combi + reg
1.03 0.82 3.29

1.33 1.04 4.49

Combi + Sedan + reg
1.10 0.97 3.05

1.39 1.22 4.13

7.5.5 Vehicle Detection and Tracking Evaluation

Since we use a different vehicle detection and tracking method than [DSH14], we

evaluate also this part of the solution. We compare the methods on all videos of

BrnoCompSpeed (including extra session0) with exactly the same calibration (Man-

ualCalib + ManualScale) to isolate the influence of vehicle detection and tracking.

We report the number of False Positives Per Minute and mean recall in vehicles

counting. The results can be found in Table 7.6 and as the table shows, our method

considerably reduces the number of false positives with essentially the same recall.

A tracked vehicle is matched to the ground truth if it passes through the correct

lane and the time difference of pass through the measurement line (yellow line in

Figure 7.8 which is closest to the camera) compared to the ground truth is less than

0.2 s. This threshold is used by [SJŠ+18] to safely match the vehicles as a higher

threshold could lead to mismatches between the detected track and ground truth.

As we use the same calibration, we can also compare directly the speed measure-

ment error which is influenced (with the same calibration) only by the tracking. As
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Table 7.6: Evaluation of differences between vehicle detection and tracking proposed by

[DSH14] and our detection and tracking method. FPPM denotes the number of

False Positives Per Minute, recall was computed as mean recall across all videos

and speed error denotes mean speed measurement error.

method FPPM recall speed error [km/h]

[DSH14] 9.77 0.885 1.46

ours 1.91 0.863 1.21

the table shows, our tracking method yields slightly reduced speed measurement

error for the same scale and camera calibration.

For the tracking and speed measurement, we use the point at the front of the

vehicle on the road plane (using 3D bounding box), which is geometrically correct,

as the point is on the road plane. We evaluated how the choice of the tracking point

influences the measurement error, comparing to a naive solution which takes the

center of the bottom edge of the 2D bounding box for the tracking, and we found

out that the difference to the correct solution was negligible.

7.5.6 Camera Calibration on Real Surveillance Cameras

The automatic calibration from vehicle movement can be justifiably suspected of

requiring idealized conditions and to be sensitive to bad lighting, etc. In order to

verify the usability of our camera calibration method in real-world conditions, we

obtained data from surveillance cameras in production use at 9 different locations.

The videos were captured both at day and night conditions. The data are rather of

a poor quality (704× 576px or 704× 288px) with 6 frames per second and mean

length of 40s. As the ground truth calibration is not available for the data, we report

only qualitative results in the form of equilateral grid projected on the road plane.

Despite the challenging character of the sequences (poor video quality and lighting

conditions), we were able to correctly detect the vanishing points, as can be seen

in Figure 7.10 on a few examples, and thus find the camera parameters and its

orientation, which is important in many real-world surveillance applications (e.g

estimation of vehicle viewpoints or image rectification).

7.6 conclusions

We propose a fully automatic method for traffic surveillance camera calibration.

It does not have any constraints on camera placement and does not require any

manual input whatsoever. The results show that our system decreases the mean
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Figure 7.10: Example of camera calibration (two vanishing points) for real world surveil-

lance cameras. The first row shows different locations, while the second one

show the same locations at night, dawn, and daylight. The yellow line de-

notes the detected horizon (if present inside the frames) and red-green grid

is formed by lines going to the first vanishing point (red) and to the second

one (green). In an ideal case the grid is perpendicular in the real world and

the lines are parallel to the features which define the vanishing points on the

ground (e.g. line marking). Also, it should be noted that the method is able to

work even on an intersection (top center).

speed measurement error by 86% (7.98 km/h to 1.10 km/h) compared to previous

automatic state-of-the-art method and by 19% (1.35 km/h to 1.10 km/h) compared

to manual calibration method. This improvement is important as in the previous

approaches, the automation always compromised the accuracy, forcing the sys-

tem developer to trade off between them. Our work shows that our proposed

fully automatic method based on computer vision algorithms is superior to the

manual calibration. This result can be important beyond the field of traffic surveil-

lance, since different forms of manual camera calibration are often considered the

“ground truth”, but our work shows that automatic calibration from statistics of

repeated inaccurate measurements can be more precise, despite requiring no user

input. Our method removes the necessity of per-camera setting or calibration, but

it still requires some human annotations per coarse geographic region (e.g. Eu-

ropean Union or the USA) and per time period when the car models get vastly

replaced (e.g. per decade).
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In the experiments, we also showed that our method is able to calibrate real

world traffic surveillance cameras and our proposed method for vehicle detection

and tracking significantly reduces the number of false positives compared to the

previous method. In future work, we would like to simplify the system and remove

the necessity to render the vehicles by approximation of the bounding box size by

a function parametrized by viewpoint and image location.
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C O N C L U S I O N S

This thesis presents contributions to the state of the art in Intelligent Transporta-

tion Systems and Computer Vision. Specifically, the work is focused on two tasks

– automatic speed measurement of vehicles from videos and fine-grained recogni-

tion of vehicles from images and videos. The papers with core contributions of the

thesis were published at top conferences and journals (CVPR, CVIU, IEEE T-ITS).

The first addressed problem is fine-grained recognition of vehicles. In the first

paper [SHH16], an image normalization method exploiting automatically extracted

3D bounding boxes around vehicles is proposed. The results show that the method

significantly improves classification and verification accuracy. The biggest improve-

ments are for images of vehicles taken from viewpoints unseen during training,

therefore the results show that the proposed images normalization improves gen-

eralization to unseen viewpoints. Further improvements and analysis of the ap-

proach were published in my second paper [SŠH18] dealing with the problem. The

improved approach eliminates the necessity to know the vanishing points a priori

– it is possible to construct the 3D bounding boxes of the vehicles from a single

image. The results show that the proposed method consistently improves classifi-

cation accuracy by up to 12 percentage points with different CNNs [82, 143, 62, 47].

The classification error was also reduced by up to 50 %.

Currently, we are exploring using the 3D bounding boxes for vehicle re-

identification and as the results show [SŠJH18], normalization of vehicles by the

proposed “unpacking” of vehicles by their 3D bounding box improve even the re-

identification performance. Therefore, the applicability of the image normalization

by the 3D bounding boxes goes beyond fine-grained classification of vehicles.

The other addressed problem is automatic speed measurement of vehicles. First,

we had to collect a large dataset with precise ground truth speed measurements

[SJŠ+18] as there was no dataset with large number of vehicles with precise ground

truth speeds. The dataset contains over 20 000 vehicles with ground truth speed

measurements acquired from two synchronized LIDAR optical gates. Furthermore,

we proposed a method for fully automatic traffic surveillance camera calibration

enabling precise speed measurement of vehicles. The approach is based on vani-

shing point estimation and 3D model alignment of several common fine-grained

models. Thus, instead of using artificial calibration patterns or measurements on

the road plane, we use the recognized vehicles with known 3D models as “calibra-

tion objects”. The experimental results show that the method achieves 1.10 km/h

127
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mean speed measurement error while outperforming both state-of-the-art methods

and manual calibration in the speed measurement task. This is important because

in the previous approaches, the automation always compromised the accuracy,

forcing the system developer to trade off between them.

Currently, we are working on fully automatic camera calibration method ap-

plicable outside the scope of road surveillance. For example, the method targets

calibration of a camera on a parking lot or a square. The approach is based on

detected keypoints on fine-grained recognized vehicles and a priori known 3D

position of the keypoints within the vehicles’ 3D models.
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A
B O X C A R S : I M P R O V I N G F I N E - G R A I N E D R E C O G N I T I O N O F

V E H I C L E S U S I N G 3 D B O U N D I N G B O X E S I N T R A F F I C

S U RV E I L L A N C E – S U P P L E M E N TA RY M AT E R I A L

a.1 additional boxcars116k dataset statistics

Table A.1: Top: Statistics of our new BoxCars116k dataset. Bottom: Statistics about splits

with different difficulty (hard and medium).

# tracks 27 496

# samples 116 286

# cameras 137

# make 45

# make & model 341

# make & model & submodel 421

# make & model & submodel & model year 693

hard medium

# classes 107 79

# train+val cameras 81 81

# test cameras 56 56

# training tracks 11 653 12 084

# training samples 51 691 54 653

# validation tracks 637 611

# validation samples 2 763 2 802

# test tracks 11 125 11 456

# test samples 39 149 40 842

131
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Figure A.1: Viewpoints to dataset samples (horizontal flips are not included). Red dot on

the unit circle denotes the frontal viewpoint. Top: all samples with elevation

color coding (in degrees), middle: training samples for hard split with color

coded by 2D BB area (in thousands of pixels), bottom: test samples for hard

split color coded by angle to the nearest training viewpoint sample (in de-

grees).
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Table A.2: Comparison of accuracy with all types and 8 merged types into supertypes.

accuracy [%]

net all types merged types

AlexNet + ALL 77.79/88.60 79.08/89.70

VGG16 + ALL 84.13/92.27 85.42/93.28

VGG16+CBL + ALL 75.06/83.42 76.82/85.07

VGG19 + ALL 84.12/92.00 85.51/92.97

VGG19+CBL + ALL 75.62/83.76 78.56/86.62

ResNet50 + IMAGE 82.27/90.79 83.51/91.79

ResNet101 + IMAGE 83.41/91.59 84.65/92.55

ResNet152 + IMAGE 83.74/91.71 85.10/92.84

Figure A.2: Example of vehicle types merged into one supertype. Left: Renault Traffic,

right: Opel Vivaro.

a.2 additional experimental data

a.2.1 Vehicle Types Resisting to Fine-Grained Recognition

As possible applications of the fine-grained recognition may vary, we merged pairs

of fine-grained classes during testing into one supertype. The merge was done for

vehicles which are made by the same concern, have the same dimensions and

shape, and which are only differentiated by subtle branding details on the mask.

This merge can be beneficial if the task is for example determining the dimensions

of the vehicle.

We merged 8 pairs of vehicle types (see Figure A.2 for an example) affecting 1 034

tracks and 5 567 image samples. We show the results in Table A.2; the accuracy

improves only slightly – by ∼ 1 percent point.
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Figure A.3: All results for Figure 5.10 of the main document. Correlation of improvement

relative to CNNs without modification with respect to train-test viewpoint dif-

ference. The x-axis contains bins viewpoint difference bins (in degrees), and

the y-axis denotes improvement compared to base net in percent points. The

graphs show that with increasing viewpoint difference, the accuracy improve-

ment of our method increases.
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Table A.3: Raw data for Table 5.4 of the main document. Improvements for different nets

and modifications computed as [base net + modification] − [base net], where [. . .]

stands for the accuracy of the classifier described by its contents.

AlexNet VGG16+CBL VGG19+CBL VGG16 VGG19 mean best

Unpack +3.47/+4.37 +0.69/+1.06 +1.02/+1.31 +2.07/+2.51 +3.29/+3.48 +2.11/+2.55 +3.47/+4.37

View −0.96/−1.20 −0.19/−0.19 +0.19/+0.31 −0.46/−0.93 −0.19/+0.26 −0.32/−0.35 +0.19/+0.31

Rast −0.80/−1.18 +0.30/+0.27 +0.28/+0.72 −0.20/−0.08 +0.28/+0.09 −0.03/−0.04 +0.30/+0.72

Color +4.80/+3.60 +2.08/+0.97 +2.47/+1.65 +2.72/+1.38 +3.79/+2.55 +3.17/+2.03 +4.80/+3.60

ImageDrop +0.05/−0.47 +0.29/−0.43 +1.53/+0.96 +0.63/+0.07 +1.00/+0.84 +0.70/+0.20 +1.53/+0.96

Table A.4: Raw data for Table 5.5 of the main document. Improvements for different

nets and modifications computed as [base net+ all] − [base net+ all−modification],

where [. . .] stands for the accuracy of the classifier described by its contents.

AlexNet VGG16+CBL VGG19+CBL VGG16 VGG19 mean best

Unpack +6.93/+7.60 +2.18/+2.22 +2.06/+2.32 +2.82/+2.46 +3.07/+2.82 +3.41/+3.48 +6.93/+7.60

View +0.09/+0.18 −0.41/−0.19 −0.78/−0.64 +0.36/+0.15 +0.05/−0.27 −0.14/−0.15 +0.36/+0.18

Rast +0.22/+0.17 +0.11/−0.08 −0.76/−0.58 +0.30/+0.20 −0.01/−0.11 −0.03/−0.08 +0.30/+0.20

Color +6.34/+6.18 +2.54/+1.28 +2.21/+1.31 +3.08/+1.73 +2.92/+1.67 +3.42/+2.43 +6.34/+6.18

ImageDrop +1.07/+0.79 +4.24/+3.54 −0.79/−1.21 +0.89/+0.05 +1.19/+0.68 +1.32/+0.77 +4.24/+3.54
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Figure A.4: All results for Figure 5.12 of the main document. Precision-Recall curves

for verification of fine-grained types. Black dots represent the human perfor-

mance.
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Table A.5: Raw data for Table 5.1 of the main document. Improvements of our proposed modifications for different CNNs. The accuracy is reported as single

sample accuracy/track accuracy. We also present improvement in percentage points and classification error reduction in the same format.

SPLIT: MEDIUM accuracy [%] improvement [pp] error reduction [%]

AlexNet + IMAGE 77.77/88.16 +12.09/+11.64 35.21/49.57

AlexNet + ALL 77.52/87.52 +11.84/+10.99 34.49/46.82

AlexNet + CVPR16 70.90/82.18 +5.23/+5.65 15.22/24.06

AlexNet 65.68/76.53 — —

VGG16 + ALL 83.89/91.75 +7.93/+6.36 32.99/43.55

VGG16 + IMAGE 83.93/91.69 +7.96/+6.30 33.13/43.13

VGG16 + CVPR16 79.50/88.58 +3.54/+3.19 14.71/21.86

VGG16 75.96/85.39 — —

VGG16+CBL + IMAGE 75.67/83.49 +4.93/+3.27 16.84/16.55

VGG16+CBL + ALL 75.47/83.23 +4.73/+3.01 16.15/15.23

VGG16+CBL + CVPR16 71.07/81.02 +0.33/+0.80 1.12/4.06

VGG16+CBL 70.74/80.22 — —

VGG19 + ALL 84.43/92.22 +9.03/+7.88 36.70/50.33

VGG19 + IMAGE 83.98/91.71 +8.58/+7.37 34.88/47.05

VGG19 + CVPR16 80.26/89.39 +4.87/+5.05 19.78/32.27

VGG19 75.40/84.34 — —

VGG19+CBL + IMAGE 76.88/84.63 +5.34/+3.95 18.75/20.46

VGG19+CBL + ALL 75.47/83.88 +3.92/+3.20 13.79/16.58

VGG19+CBL + CVPR16 72.53/81.90 +0.98/+1.22 3.46/6.32

VGG19+CBL 71.54/80.67 — —

ResNet50 + IMAGE 82.28/90.63 +7.21/+7.09 28.90/43.08

ResNet50 75.07/83.55 — —

ResNet101 + IMAGE 83.10/90.80 +6.05/+5.19 26.37/36.08

ResNet101 77.05/85.61 — —

ResNet152 + IMAGE 83.80/91.38 +5.36/+4.40 24.85/33.78

ResNet152 78.44/86.98 — —

SPLIT: HARD accuracy [%] improvement [pp] error reduction [%]

AlexNet + ALL 77.79/88.60 +11.15/+10.85 33.42/48.77

AlexNet + IMAGE 77.67/88.28 +11.02/+10.53 33.04/47.31

AlexNet + CVPR16 70.21/81.67 +3.56/+3.92 10.68/17.62

AlexNet 66.65/77.75 — —

VGG16 + ALL 84.13/92.27 +6.88/+5.56 30.24/41.85

VGG16 + IMAGE 83.79/92.23 +6.53/+5.53 28.71/41.58

VGG16 + CVPR16 79.58/89.27 +2.32/+2.56 10.22/19.27

VGG16 77.26/86.71 — —

VGG16+CBL + ALL 75.06/83.42 +4.67/+3.31 15.78/16.63

VGG16+CBL + IMAGE 75.04/83.16 +4.66/+3.05 15.73/15.32

VGG16+CBL + CVPR16 70.94/81.08 +0.56/+0.97 1.88/4.88

VGG16+CBL 70.38/80.11 — —

VGG19 + IMAGE 83.91/92.17 +7.17/+6.11 30.83/43.84

VGG19 + ALL 84.12/92.00 +7.38/+5.94 31.74/42.62

VGG19 + CVPR16 79.69/89.42 +2.95/+3.36 12.69/24.11

VGG19 76.74/86.06 — —

VGG19+CBL + ALL 75.62/83.76 +4.93/+3.50 16.82/17.71

VGG19+CBL + IMAGE 75.47/83.56 +4.78/+3.30 16.31/16.71

VGG19+CBL + CVPR16 71.92/81.64 +1.23/+1.38 4.20/6.97

VGG19+CBL 70.69/80.26 — —

ResNet50 + IMAGE 82.27/90.79 +6.79/+6.18 27.69/40.13

ResNet50 75.48/84.61 — —

ResNet101 + IMAGE 83.41/91.59 +6.95/+6.27 29.52/42.72

ResNet101 76.46/85.31 — —

ResNet152 + IMAGE 83.74/91.71 +6.06/+5.51 27.16/39.93

ResNet152 77.68/86.20 — —





B
C O M P R E H E N S I V E D ATA S E T F O R A U T O M AT I C S I N G L E

C A M E R A V I S U A L S P E E D M E A S U R E M E N T –

S U P P L E M E N TA RY M AT E R I A L

Algorithm B.1: Computation of distance of two points (p1,p2) on the road

plane for given calibration (u, v, c, λ). The focal length is represented f, cap-

ital variables denote coordinates of points on the sensor in 3D world and

Pi represent coordinates of points pi on the road plane.

Input: Points p1 = [px1,py1 , 1],p2 = [px2,py2 , 1]

Input: Vanishing points u = [ux,uy, 1], v = [vx, vy, 1]

Input: Principal point c = [cx, cy, 1], scene scale λ

Output: Distance d between p1 and p2 in meters

f =
√

−(u− c) · (v− c)

U = [ux,uy, f],V = [vx, vy, f],C = [cx, cy, 0]

W = [Wx,Wy,Wz] = (U−C)× (V −C)

w =





Wx

Wz
· f+ cx,

Wy

Wz
· f+ cy, 1



 = [wx,wy, 1]

ρ = [wx,wy, f] −C

ρ = ρ/||ρ|| = [a,b, c]

ρ = [a,b, c, 10]

for all i ∈ 1, 2 do

Pi = [pxi ,pyi , f]

gi = Pi −C

ti = −
ρ · [cx, cy, 0, 1]

[a,b, c] · gi
Pi = C+ ti · gi

end for

d = λ · ||P1 − P2||
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GPS RADAR

mean med. mean med. 95 %

Session 1
1.94 1.11 1.05 0.86 2.62

2.67 1.44 1.37 1.14 3.37

Session 2
2.11 1.63 1.14 0.94 2.80

2.35 2.06 1.33 1.12 3.22

Session 3
1.75 1.15 0.78 0.66 1.94

4.94 2.43 1.31 1.19 3.26

Session 4
1.43 1.03 1.22 1.01 3.17

1.68 1.10 1.28 1.15 3.34

Session 5
1.30 1.19 1.04 0.87 2.63

1.71 1.40 1.33 1.15 3.34

Session 6
1.52 0.76 0.96 0.83 2.29

2.43 1.35 1.33 1.13 3.23

TOTAL
1.64 1.19 1.07 0.89 2.67

2.18 1.42 1.33 1.14 3.23

Table B.1: Results of GPS and RADAR speed measurement errors for every session sep-

arately. The first row for each session contains absolute errors in km/h and

the relative errors in percents are in the second row. We do not report the 95

percentile for the GPS measurement as there is low number of measurements

(maximally twenty).
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Figure B.1: Top to bottom: Session 1 – Session 6, left to right: cameras from left to right for

given session
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