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Abstract 

The aim of this thesis is to propose a new method for digital image stabilization in video stream 

by exploiting computing power of GPGPU. This unit enables a real time stabilization of high 

resolution digital video sequences, which is important for further post-processing in computer 

vision and/or military applications. In order to compare available architectures for GPGPU 

programming, the proposed algorithm is implemented in three major frameworks. Results are 

then compared and discussed. 

 

 

 

Abstrakt 

Cílem této práce je návrh nové techniky pro stabilizaci obrazu za pomoci hardwarové 

akcelerace prostřednictvím GPGPU. Využití této techniky umožnuje stabilizaci videosekvencí 

v reálném čase i pro video ve vysokém rozlišení. Toho je zapotřebí pro ulehčení dalšího 

zpracování v počítačovém vidění nebo v armádních aplikacích. Z důvodu existence vícerých 

programovacích modelů pro GPGPU je navrhnutý stabilizační algoritmus implementován ve 

třech nejpoužívanějších z nich. Jejich výkon a výsledky jsou následně porovnány a 

diskutovány. 

 

 

 

 

 

Keywords 

Digital image stabilization, hardware acceleration, GPGPU, GPU, CUDA, OpenCL, C++ AMP, 

kernel, parallelization 

 

 

Klíčová slova 

Digitální stabilizace obrazu, hardwarová akcelerace, GPGPU, GPU, CUDA, OPENCL, C++ AMP, 

kernel, paralelizace 

 

 

 

 

Citace 

PACURA, Dávid: Hardware Accelerated Digital Image Stabilization, Master’s thesis, Brno, 2016, 

Vysoké učení technické v Brně, Fakulta Informačních technologií. Vedoucí práce Drahanský Martin. 



Hardware Accelerated Digital Image Stabilization in a 

Video Stream 
 

 

Prohlášení 

„Prohlašuji, že jsem svou diplomovou práci na téma Stabilizace obrazu pomocí hardwarové 

akcelerace vypracoval samostatně pod vedením vedoucího diplomové práce a s použitím 

odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a 

uvedeny v seznamu literatury na konci práce.  

Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením této 

diplomové práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl 

nedovoleným způsobem do cizích autorských práv osobnostních, a jsem si plně vědom 

následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně 

možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 

Trestního zákoníku č. 40/2009 Sb.“ 

 

 

…………………… 

Dávid Pacura 

24.5.2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Dávid Pacura, 2016 

Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě informačních 

technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění autorem je 

nezákonné, s výjimkou zákonem definovaných případů. 

  



1 

 

Table of Contents 

1 Introduction ......................................................................................................................... 7 

2 Terms and Taxonomy .......................................................................................................... 8 

2.1 Causes of image blur .................................................................................................... 8 

2.2 Physiological tremor..................................................................................................... 8 

2.3 Effects of stabilization on resulting video .................................................................... 9 

2.4 Video stabilization quality evaluation ........................................................................ 10 

2.4.1 Visual evaluation ................................................................................................ 10 

2.4.2 Inter-frame Transform Fidelity ........................................................................... 10 

2.4.3 Camera path monitoring ..................................................................................... 11 

3 Image stabilization systems classification ......................................................................... 12 

3.1 Mechanical image stabilizer ....................................................................................... 12 

3.2 Optical image stabilizer .............................................................................................. 13 

3.3 Electronic image stabilizer ......................................................................................... 14 

3.4 Digital image stabilizer............................................................................................... 14 

3.4.1 Motion estimation ............................................................................................... 15 

3.4.2 Motion filtering .................................................................................................. 16 

3.4.3 Motion compensation ......................................................................................... 16 

3.4.4 Enhanced motion compensation ......................................................................... 19 

3.5 Chapter summary ....................................................................................................... 20 

4 GPGPU acceleration platforms .......................................................................................... 21 

4.1 OpenCL ...................................................................................................................... 22 

4.2 CUDA ........................................................................................................................ 24 

4.3 C++ AMP ................................................................................................................... 26 

4.4 Chapter summary ....................................................................................................... 26 

5 Algorithm design ............................................................................................................... 28 

5.1 Preprocessing ............................................................................................................. 28 

5.1.1 Areas of concern selection .................................................................................. 28 

5.2 Local motion estimation ............................................................................................. 30 

5.3 Global motion estimation and filtering ....................................................................... 31 

5.4 Motion compensation ................................................................................................. 31 

6 implementation .................................................................................................................. 32 

6.1 CPU implementation .................................................................................................. 33 

6.2 CUDA implementation ............................................................................................... 33 



2 

 

6.3 OpenCL implementation ............................................................................................ 35 

6.4 C++ AMP ................................................................................................................... 36 

7 Testing video sequences .................................................................................................... 38 

8 Results ............................................................................................................................... 40 

8.1 Performance comparison ............................................................................................ 41 

8.1.1 Profiling of GPGPU implementations ................................................................ 42 

8.1.2 Measured results ................................................................................................. 49 

8.2 Video stabilization quality evaluation ........................................................................ 58 

8.2.1 ITF ...................................................................................................................... 58 

8.2.2 Camera path evaluation ...................................................................................... 58 

8.2.3 Subjective quality evaluation .............................................................................. 61 

8.3 Comparison of real and estimated SSW size .............................................................. 61 

9 Conclusion and future work............................................................................................... 64 

APPENDIX A: OpenCL, CUDA and C++ AMP in comparison with C++ OpenMP .......... 73 

OpenCL code sample ............................................................................................................. 73 

CUDA code sample ............................................................................................................... 74 

C++ AMP code sample .......................................................................................................... 75 

C++ OpenMP code sample .................................................................................................... 75 

APPENDIX B: GPGPU speedup over CPU ........................................................................ 77 

APPENDIX C: Camera paths before and after video stabilization ...................................... 80 

APPENDIX D: Frequency analysis of camera paths before and after video stabilization .... 86 

 

  



3 

 

List of Figures 

Figure 2.1: Mean (blue) and +3σ (green) bound on hand tremor spectra: a) angular rates 

measured on x and y axis; b) angles measured on x and y axis [8]. .............................................. 9 

Figure 3.1: Principle of Steadicam [15]. ..................................................................................... 12 

Figure 3.2: Schematics of Barrel shift sensor with Hall sensor (a) and Camera Tilt with Photo 

sensor (b) [8]. ............................................................................................................................. 14 

Figure 3.3: Processing flow of DIS [2]....................................................................................... 15 

Figure 3.4: Digital stabilization principle. .................................................................................. 17 

Figure 3.5: A schema of relationship between AOV, F and sensor dimension. .......................... 18 

Figure 3.6: Relationship between angle of view and unsafe chip area with focal length of 

horizontal part of 35 mm film equivalent. .................................................................................. 19 

Figure 4.1: Development and prediction of CPU and GPU computing power. .......................... 21 

Figure 4.2: Vector addition in OpenCL. ..................................................................................... 24 

Figure 4.3: Vector addition in CUDA. ....................................................................................... 25 

Figure 4.4: Vector addition in C++ AMP. .................................................................................. 26 

Figure 5.1: Areas of concern selection. ...................................................................................... 29 

Figure 5.2: Different local binary patterns configurations. a) LBP(4,1) b) LBP(4,3) c) LBP(8,4) ..... 30 

Figure 8.1: Timeline view from NVIDIA CUDA profiler on kernels execution for SSW of size 

128×128 px and HW configuration 2 showing the execution order and timing of kernels for two 

stabilization cycles. .................................................................................................................... 43 

Figure 8.2: Detail of timeline view from Figure 8.1 showing the concurrent execution of 

kernels: red - rgb2gray kernel, brown - LBP kernel, green - NNMP kernel, blue and purple - sort 

kernels. ....................................................................................................................................... 43 

Figure 8.3: Timeline view from NVIDIA OpenCL profiler on kernels execution for SSW of size 

128×128 px and HW configuration 2 showing the execution order and timing of kernels for two 

stabilization cycles. .................................................................................................................... 44 

Figure 8.4: Detail of timeline view from Figure 8.3 showing the execution order of kernels: red 

- rgb2gray kernel, brown - LBP kernel, green - NNMP kernel, gray – GPU utilization, blue and 

purple - sort kernels. ................................................................................................................... 44 

Figure 8.5: Timeline view from Visual Studio Concurrency profiler on kernels execution for 

SSW of size 128×128 px and HW configuration 2 showing the concurrent execution of kernels: 

blue – data copy and kernels execution, gray – grouped data copies and kernels, that are too 

small to distinguish. ................................................................................................................... 45 



4 

 

Figure 8.6: Timeline view from NVIDIA CUDA profiler on kernels execution for SSW of size 

384×256 px and HW configuration 2 showing the execution order and timing of kernels for two 

stabilization cycles. .................................................................................................................... 46 

Figure 8.7: Detail of timeline view from Figure 8.6 showing the concurrent execution of 

kernels: red - rgb2gray kernel, brown - LBP kernel, green - NNMP kernel, other - sort kernels. 

The NNMP kernel was trimmed for better visualization. ........................................................... 47 

Figure 8.8: Timeline view from NVIDIA OpenCL profiler on kernels execution for SSW of size 

384×256 px and HW configuration 2 showing the execution order and timing of kernels for two 

stabilization cycles. .................................................................................................................... 47 

Figure 8.9 Detail of Timeline view from Figure 8.8 showing the execution order of kernels: red 

- rgb2gray kernel, brown - LBP kernel, green - NNMP kernel, gray – GPU utilization, other - 

sort kernels. The NNMP kernel was trimmed for better visualization. ....................................... 48 

Figure 8.10: Timeline view from Visual Studio Concurrency profiler on kernels execution for 

SSW of size 384×256 px and HW configuration 2 showing the concurrent execution of kernels: 

blue – data copy and kernels execution, gray – grouped data copies and kernels, that are too 

small to distinguish. ................................................................................................................... 49 

Figure 8.11: The relative speedup of the OpenCL implementation on the all used GPUs 

normalized to the 1 TFLOPS of performance and 100 % of utilization for all measured SSW 

sizes over the CPUs normalized to the 100 GFLOPS and 100 % utilization. ............................. 56 

Figure 8.12: The speedup comparison for CUDA and C++ AMP over OpenCL: a) HW 

configuration 1, b) HW configuration 2, c) HW configuration 3, d) HW configuration 4, e) HW 

configuration 5, f) HW configuration 6, g) HW configuration 7. ............................................... 57 

Figure 8.13: The frequency analysis of the walking-2 video sequence: a) x axis before 

stabilization, b) x axis after stabilization, c) y axis before stabilization, d) y axis after 

stabilization. ............................................................................................................................... 59 

Figure 8.14: Camera path in walking-2 video before and after video stabilization: a) x axis, b) y 

axis. ............................................................................................................................................ 60 

Figure 8.15: Distribution of displacement values in the x axis of the car-ride video sequence. .. 61 

Figure 9.1: OpenCL device code for vector addition.................................................................. 73 

Figure 9.2: OpenCL host code for vector addition. .................................................................... 74 

Figure 9.3: CUDA code for vector addition. .............................................................................. 75 

Figure 9.4: C++ AMP code for vector addition. ......................................................................... 75 

Figure 9.5: C++ OpenMP code for vector addition. ................................................................... 76 

Figure 9.6: The speedup of GPU processing for different sizes of SSW over: a) single threaded 

CPU processing, b) OpenMP parallelized CPU processing for hardware configuration 1. ........ 77 



5 

 

Figure 9.7: The speedup of GPU processing for different sizes of SSW over: a) single threaded 

CPU processing, b) OpenMP parallelized CPU processing for hardware configuration 2. ........ 77 

Figure 9.8: The speedup of GPU processing for different sizes of SSW over: a) single threaded 

CPU processing, b) OpenMP parallelized CPU processing for hardware configuration 3. ........ 77 

Figure 9.9: The speedup of GPU processing for different sizes of SSW over: a) single threaded 

CPU processing, b) OpenMP parallelized CPU processing for hardware configuration 4. ........ 78 

Figure 9.10: The speedup of GPU processing for different sizes of SSW over: a) single threaded 

CPU processing, b) OpenMP parallelized CPU processing for hardware configuration 5. ........ 78 

Figure 9.11: The speedup of GPU processing for different sizes of SSW over: a) single threaded 

CPU processing, b) OpenMP parallelized CPU processing for hardware configuration 6. ........ 78 

Figure 9.12: The speedup of GPU processing for different sizes of SSW over: a) single threaded 

CPU processing, b) OpenMP parallelized CPU processing for hardware configuration 7. ........ 79 

Figure 9.13: Camera path in car-ride video before and after video stabilization: a) x axis, b) y 

axis. ............................................................................................................................................ 80 

Figure 9.14: Camera path in car-ride-2 video before and after video stabilization: a) x axis, b) y 

axis. ............................................................................................................................................ 80 

Figure 9.15: Camera path in car-ride-3 video before and after video stabilization: a) x axis, b) y 

axis. ............................................................................................................................................ 81 

Figure 9.16: Camera path in car-ride-3 video before and after video stabilization: a) x axis, b) y 

axis. ............................................................................................................................................ 81 

Figure 9.17: Camera path in jitter video before and after video stabilization: a) x axis, b) y axis.

 ................................................................................................................................................... 82 

Figure 9.18: Camera path in jitter-2 video before and after video stabilization: a) x axis, b) y 

axis. ............................................................................................................................................ 82 

Figure 9.19: Camera path in pan-zoom video before and after video stabilization: a) x axis, b) y 

axis. ............................................................................................................................................ 83 

Figure 9.20: : Camera path in pan-zoom-2 video before and after video stabilization: a) x axis, 

b) y axis. ..................................................................................................................................... 83 

Figure 9.21: Camera path in tracking video before and after video stabilization: a) x axis, b) y 

axis. ............................................................................................................................................ 84 

Figure 9.22: Camera path in walking video before and after video stabilization: a) x axis, b) y 

axis. ............................................................................................................................................ 84 

Figure 9.23: Camera path in walking-2 video before and after video stabilization: a) x axis, b) y 

axis. ............................................................................................................................................ 85 



6 

 

Figure 9.24: Frequency analysis of camera path in car-ride video: a) x axis before stabilization, 

b) x axis after stabilization, c) y axis before stabilization, d) y axis after stabilization. .............. 86 

Figure 9.25: Frequency analysis of camera path in car-ride-2 video: a) x axis before 

stabilization, b) x axis after stabilization, c) y axis before stabilization, d) y axis after 

stabilization. ............................................................................................................................... 87 

Figure 9.26: Frequency analysis of camera path in car-ride-3 video: a) x axis before 

stabilization, b) x axis after stabilization, c) y axis before stabilization, d) y axis after 

stabilization. ............................................................................................................................... 88 

Figure 9.27: Frequency analysis of camera path in car-ride-4 video: a) x axis before 

stabilization, b) x axis after stabilization, c) y axis before stabilization, d) y axis after 

stabilization. ............................................................................................................................... 89 

Figure 9.28: Frequency analysis of camera path in jitter video: a) x axis before stabilization, b) x 

axis after stabilization, c) y axis before stabilization, d) y axis after stabilization. ..................... 90 

Figure 9.29: Frequency analysis of camera path in jitter-2 video: a) x axis before stabilization, 

b) x axis after stabilization, c) y axis before stabilization, d) y axis after stabilization. .............. 91 

Figure 9.30: Frequency analysis of camera path in pan-zoom video: a) x axis before 

stabilization, b) x axis after stabilization, c) y axis before stabilization, d) y axis after 

stabilization. ............................................................................................................................... 92 

Figure 9.31: Frequency analysis of camera path in pan-zoom-2 video: a) x axis before 

stabilization, b) x axis after stabilization, c) y axis before stabilization, d) y axis after 

stabilization. ............................................................................................................................... 93 

Figure 9.32: Frequency analysis of camera path in tracking video: a) x axis before stabilization, 

b) x axis after stabilization, c) y axis before stabilization, d) y axis after stabilization. .............. 94 

Figure 9.33: Frequency analysis of camera path in walking video: a) x axis before stabilization, 

b) x axis after stabilization, c) y axis before stabilization, d) y axis after stabilization. .............. 95 

Figure 9.34: Frequency analysis of camera path in walking-2 video: a) x axis before 

stabilization, b) x axis after stabilization, c) y axis before stabilization, d) y axis after 

stabilization. ............................................................................................................................... 96 

  



7 

 

1 INTRODUCTION 

Over the past two decades, a rapid development in a field of electronic technology 

brought, among other things, an increase of use of digital video cameras. This was 

allowed by high miniaturization followed by low prices, and as result, usage of analog 

video cameras was edged out. Nowadays, as a consequence, a wide variety of use cases 

where digital video camera is used exists (e.g. movies production, home video recording, 

video surveillance, reconnaissance, motion detection, target tracing, automatic 

recognition, evaluation and verification). However, in many cases, camera device is hand 

held or mounted on moving objects (e.g. ships, vehicles) or on high poles and towers, 

where object movement or gusting wind causes camera shaking. In a lot of these cases, 

high resolution, high frames count per second and steady image without parasitic effects 

like shake, jitter and blur is required. This is due to requirements for successful post-

processing like target tracking or movement detection [1]. Another important aspect is 

video compression ratio – a better compression can be achieved with stable image with 

low changes than with shaky video with lots of changes between subsequent frames [2].  

However, there is often limited space, resources or both to fulfill these requirements 

– usage of hardware stabilization is in many cases highly restricted or even impossible. 

In this case, a digital image stabilization can be used. This enables a use of smaller video 

cameras, but it requires high computing power for post-processing. Often, real time 

processing of data is also required, which increases requirements for computing power 

even more, because of not only video stabilization, but also additional required steps in 

process must be resolved almost intermediately. This can be achieved by specialized 

hardware like FPGA (field programmable gate array) or using GPGPU (general purpose 

graphics processing unit). Both approaches have their application and even that the 

energy efficiency of FPGA is generally better, their performance is comparable or even 

worse than of GPU [3]. However this thesis will focus only on GPGPU because of its 

easy availability and relatively low price. This is a result of the development of CPUs in 

the last years, where Intel’s versions all integrate relatively powerful graphic processor 

on the same printed circuit board (PCB) [4] and AMD offers APUs – CPUs fused with 

GPUs [5]. 
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2 TERMS AND TAXONOMY 

In order to fully understand principles and algorithms used in digital image stabilization, 

used terms and taxonomy are introduced first.  

2.1 Causes of image blur 

One of the biggest problems of image capture is blur. It can originate from two 

phenomena – shaking of the capture device, wrong focal distance of lenses, or both. 

However, while focal distance can be fixed relatively easily, shake compensation is much 

harder – generally, it is a slight random movement of camera in some direction. Its causes 

are various – from hand shaking through movable platform shaking (moving vehicles) to 

fixed platform shaking (high towers and gusting wind).  

A special category are telephoto shots, where only narrow field of view is used – 

high zoom magnifies even the slightest jitter and captured sequence becomes unstable. In 

case of photographs, this can be compensated by high shutter speed and bigger aperture. 

However, this is not always possible due to combination of various reasons (limited 

resources or space, distance of object to capture, or light conditions). 

In case of video capture, even usage of this countermeasures does still produce a 

resulting video sequence, where although object of interest is not blurred, it is also not 

still. Luckily, a way to compensate these parasitic effects exists and it is called image 

stabilization. A multiple approaches to this problem exist, each based on different 

principle, but with one ultimate objective – to produce shake-free video sequence [6]. 

2.2 Physiological tremor 

Tremor is an involuntary oscillatory movement of body parts directly generated by 

muscles during their activities when they contract and relax repeatedly. It is common 

physiological phenomenon present in all human beings [7]. It is independent of age and 

not clearly visible to the naked eye. However, it depends on the muscles capability to 

maintain certain position against the force of gravity (standing up and holding camera 

with outstretched arms produces higher physiological tremor in arm muscles than holding 

camera with arms supported by a stable object). The consequences of this phenomena are 

shaking image in video sequence captured by handheld devices and/or blurring effect of 

objects.  

In order to bring adequate countermeasures for tremor introduced to the video by 

user hand-holding the camera, statistical modeling of its effects is required. An 

acquisition campaign [8] identified these vibrations as an oscillating signal with normal 

distribution and amplitude less than 0.5 degrees and typical frequency between 0 Hz and 

20 Hz (see Figure 2.1). Another study [9] shows, that 99% of shake motion is below 10 

Hz and amplitude less than 0.75 degrees. Both studies agree, that translation itself can be 
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neglected, as it would require movement of 10 cm in each of axes to significantly affect 

the viewing pose. This is rather unlikely in case of handshake. 

 

 
Figure 2.1: Mean (blue) and +3σ (green) bound on hand tremor spectra: a) angular rates measured on x and y axis; 

b) angles measured on x and y axis [8]. 

As can be seen from Figure 2.1, the amplitude of 0.5 degrees is computed with 

standard deviation of 3, which means that the 99.7 % of values lies within this interval. 

2.3 Effects of stabilization on resulting video 

Stabilized video has one more advantage beside those discussed before – smaller resulting 

size. This is a result of compression algorithms used in video codecs, because of huge 

space requirements of uncompressed video signal: uncompressed color (8-bit RGB) 

FullHD video (1,920 ×  1,080 pixels) with 30 frames per second would require 625 

gigabytes of space to store one hour of recording. Therefore, various standards for video 

compression exist, which reduces space requirements by various techniques of removing 

duplicate information – e.g.  Xvid [10], MPEG-4 [11] or H.264 [12]. 

Among other techniques, a commonly used one is inter-frame prediction. It is used 

to reduce amount of duplicate information between frames by recycling data – frames are 

divided into macroblocks and future frames can refer to these. A relation exists between 

number of macroblock reuse and resulting video output size – the more similar subsequent 

frames are, the more prediction can be used and less space is needed to store the 

information. Therefore, video stabilization can significantly reduce resulting video size 

by making subsequent frames more similar [13]. 
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2.4 Video stabilization quality evaluation 

The important part of video stabilization is the evaluation of its quality. For this reason, 

multiple approaches exists. Yet, all of them have some issues. In this section, the ones 

that will be used in this work during testing are presented. 

2.4.1 Visual evaluation 

The visual comparison is one of the most common quality evaluation types, as it enables 

direct assessment by the visual comparison. However, it is not objective and does not 

enable the absolute evaluation of video quality, but only relative comparison (e.g. better, 

worse) between different video sequences. Also, the different people may have different 

preferences, which yields another uncertainty to the evaluation process.  

2.4.2 Inter-frame Transform Fidelity 

Another option is the use of commonly used metrics – the Inter-frame Transform Fidelity 

(ITF) [14] – it is the modification of the Peak Signal to Noise Ratio (PSNR) metrics used 

to compare the similarity of two images. It is defined as follows: 

 𝐼𝑇𝐹 =  
1

𝑁𝑓 − 1
∑ 𝑃𝑆𝑁𝑅(𝑘)

𝑁𝑓−1

𝑘=1

 [dB] (2.1) 

where 𝑁𝑓 is the number of frames in video sequence and 

 𝑃𝑆𝑁𝑅(𝑘) = 10𝑙𝑜𝑔10

𝐼𝑝𝑚𝑎𝑥

𝑀𝑆𝐸(𝑘)
 [dB] (2.2) 

is the peak signal to noise ratio between two consecutive frames, where 

 𝑀𝑆𝐸(𝑘) =
1

𝑀 × 𝑁
∑ ∑‖𝐹𝑘(𝑖, 𝑗) − 𝐹𝑘−1(𝑖, 𝑗)‖2

𝑁−1

𝑗=0

𝑀−1

𝑖=0

  (2.3) 

is the mean square error between monochromatic images with dimensions of 𝑀 × 𝑁, 

𝐼𝑝𝑚𝑎𝑥 is the maximum possible pixel intensity in the frame and 𝐹𝑘 is the k-th frame from 

sequence. 

  

Yet, even this quality evaluation metrics is not optimal, as it does not respond well to 

zoom changes or presence of multiple moving objects in image. Therefore, while it 

responds very well to the videos with mostly static objects present in scene, it will yield 

very similar results for both original and stabilized videos containing rapid zoom changes 

or captured with moving camera (e.g. car mounted). For this case, another evaluation is 

required. 
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2.4.3 Camera path monitoring 

The next possibility for evaluation is the comparison of the camera path before and after 

video stabilization. In its basic form, where the assessment of smooth camera motion is 

evaluated visually only by humans, the same problem as with visual evaluation itself 

(section 2.4.1) – inability to specify the exact quality value – exist. However, the 

smoothness can be evaluated also by algorithmic approaches.  

For fully objective evaluation, it is required, that for the same video sequence, the 

global motion vectors are created for both original and stabilized video sequence, ideally 

by some commonly used algorithm for video stabilization with good displacement of 

frames evaluation. 

One of possibilities for this evaluation is the use of the frequency analysis – the 

sequence of global motion vectors is transformed using discrete Fourier transform (DFT) 

for both original and stabilized video. Then, the presence of different frequencies and 

their magnitude is evaluated. In the ideal case, the stabilized video should contain only 

low frequencies up to several Hertz (Hz), as the intended camera motion is slow and 

smooth (composed from low frequencies) while the jitter causes rapid changes of camera 

pose, therefore higher frequencies are present in signal.  

However, this approach has, similarly to the previous two, issues: only the 

frequencies up to the half of the sampling video frequency can be detected. This is the 

rule of the sampling theorem. Therefore, for the input video with 24 frames per second 

(FPS), only frequencies up to the 12 Hz can be detected. 
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3 IMAGE STABILIZATION SYSTEMS 

CLASSIFICATION 

The purpose of video stabilization is to remove unwanted motion in video feed. To 

achieve this, a multiple principles can be used. In literature, a total of four types of 

stabilization is recognized. They are all discussed in this chapter. However, in real 

scenarios, their combination is often used resulting into a hybrid methods empowering 

best of used principles. 

3.1 Mechanical image stabilizer 

A mechanical principle of image stabilization (MIS) is the oldest method. Unlike other 

methods, this one does require additional equipment besides camera. The simplest 

example is tripod – a portable tree-legged frame or monopod – also a portable, but one-

legged frame, both used as a platform to maintain camera in stable position. However, it 

was not invented with analog video itself. Disadvantage of this approach is impossibility 

to stabilize image on a moving platform. Besides these solutions, a more advanced option 

is Steadicam [15]. It was invented in 1973 by commercial director Garrett Brown. It 

consists of three major elements: 

 An articulated, iso-elastic arm. 

 A specialized sled for camera equipment holding. 

 A supportive vest. 

 

 
Figure 3.1: Principle of Steadicam [16]. 
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Also, a slightly modified hand-held version exists. It is used for lighter cameras and 

consists only of two parts – the supportive vest is no longer required. 

Steadicam utilizes only a simple dynamic characteristics of balanced object and 

does not have any active control mechanism. The main part – the sled for a camera is 

divided into two parts. On one end, a platform for the camera is placed, on the other end, 

a counter weight is required. Based on the camera type and other requirements, another 

equipment can be mounted (e.g. additional battery or monitor) instead. 

Iso-elastic arm is connected to sled in its center of mass with 3-axis gimbal. The 

iso-elastic arm is composed of spring and two links that enables smooth movement. Arm 

then acts as a shock absorber – with movement of operator, a part of arm attached to west 

moves, however spring system in arm responds and effectively cancels sharp jolts. This 

enables cancelation of any rotations of pitch, yaw and roll that results in shaking video 

and at the same time enables operator smooth positioning [15] [16]. 

3.2 Optical image stabilizer 

Optical image stabilization (OIS), also called lens-shift stabilization, controls the optical 

path between the target and the image sensor by moving mechanical parts of the camera 

itself. For this, actuators for path correction and sensors for position following are needed. 

This raises the complexity, thus increasing dimensions and cost of the camera module. 

However, this principle can be still more space-efficient than electronic stabilization 

methods. Especially in case of small image sensors, like adaptive Liquid Lens (LL) or 

Shape Memory Alloy (SMA), where small lenses are required. However, other principles 

are also applicable – piezo-electric motor or Voice Coil Motor (VCM) [8], therefore it 

can be used also in bigger electronics like compact cameras and Digital Single-Lens 

Reflex cameras (DSLRs). 

Practically, two principles exist [8]: 

 Barrel Shift – image sensor is in fixed position and lenses move with translation 

movement. 

 Camera Tilt – image sensor is integrated with lenses and their movement is 

angular. 

In case of position sensors for detection of lens movements, also two principles exist: 

 Hall sensors – appropriate for barrel shift. 

 Photo sensors – appropriate for camera tilt. 

An electronic circuit implementing OIS is therefore composed of four parts: 

 MEMS gyroscope – for detection of movements and vibrations inflicted on the 

system in the horizontal and vertical axes. 

 Hall sensors – for detection of lens movements within camera module. 

 Driver – for piloting the camera module into right position. 

 Microcontroller – for executing the control algorithm. 
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Figure 3.2: Schematics of Barrel shift sensor with Hall sensor (a) and Camera Tilt with Photo sensor (b) [8]. 

3.3 Electronic image stabilizer 

Electronic image stabilizer (EIS), also called sensor-shift stabilization or in-camera 

stabilization, controls position of the image sensor itself. In principle, it is the same as 

OIS – actuators use MEMS gyroscope to detect movements and compensate it with 

actuators by moving the image sensor into the center of lenses’ optical path. However, 

actuators are in this case actually stepper motors (because of size of part required to 

move). As a result, this solution is bigger than OIS [17]. A performance comparison [18] 

shows, that this solution is slightly worse, however, it has its application – OIS cannot be 

used in all cases (movement of bigger and relatively heavy lens systems is rather 

difficult). 

3.4 Digital image stabilizer 

Digital image stabilization (DIS) is in contrast to the previous methods, as it does not 

require any special hardware and is implemented purely by software. Therefore, it is the 

best solution in terms of size and resources, as it has no hardware requirements for image 

sensor. However, this principle has relatively high computational demands, as number of 

operations for a set of frames rises exponentially with their resolution (𝚶(𝑛2) or worse).  
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DIS methods have three implementation steps: motion estimation, motion filtering and 

motion compensation (see

Motion estimation
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Video input
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output

 

Figure 3.3). Their importance and function will be discussed below. 
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Figure 3.3: Processing flow of DIS [2]. 

3.4.1 Motion estimation 

The first step of digital video stabilization is to determine how the camera is moving. This 

can be done by comparison of subsequent video frames. Because of a possibility of 

multiple movements in a scene (e.g. shaking and panning of the camera together with 

multiple movements in the scene), a two-step motion estimation must be performed in 

order to determine the movement of the camera itself. Firstly, the current frame is divided 

into regular grid (in order to reduce computational cost), where each grid contains equal 

number of pixels (typically 8 × 8 or 16 × 16 pixels). Then, local motion vectors (LVM) 

are computed for each block by comparing blocks from current frame with corresponding 

blocks in previous frame. Search for the corresponding blocks is done by searching 

block’s neighborhood in previous frame. The global motion vector (GMV) representing 

the estimated movement of the camera between subsequent frames is then obtained as a 

combination of local motion vectors [2]. Because of big search space and high number of 

compare operations, motion estimation (ME) is the most computationally expensive part 

of algorithm. It is also important to note that correct motion estimation is vital, as any 

error introduced in this step may affect motion compensation step [19]. 
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3.4.2 Motion filtering 

Even though global motion estimation vector calculated in previous step represents only 

overall camera motion, it still contains both wanted (movement of the camera that should 

remain after stabilization; i.e. intended movements like panning, zooming and tilting) and 

unwanted motion (shake and jitter). In order to effectively stabilize video, these two types 

of movement must be separated and motion compensation must be based on the unwanted 

motion. 

To enable separation of these two types of motion, their characteristics must be 

compared. The wanted motion is relatively slow and smooth, continuing over multiple 

frames in similar directions, thus producing lower frequencies. By contrast, unwanted 

motion is represented by quicker and random changes between frames, therefore produces 

higher frequencies. However, the specific border between these two types of movement 

depends on the situation of the camera (e.g. parasitic shaking from handheld camera 

during walking has different characteristic from jittering caused by a camera mounted on 

high pole by gusting wind) [20]. 

3.4.3 Motion compensation 

Standard motion compensation (MC) works by cropping an image from the sensor by 

using a movable window with smaller resolution. This window is then moved between 

images in order to minimize the difference between the current and the previous frame 

[6]. Because of this, effective resolution of the stabilized video is lower than that of the 

sensor. Therefore, a maximal resolution of window (effective output area) in each axis 

can be calculated: 

 𝐸𝑂𝐴 = 𝑆𝐴 − 𝑈𝐴 [𝑝𝑥] (3.1) 

where EOA is effective output area, SA is sensor area and UA is unsafe area. 
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Figure 3.4: Digital stabilization principle. 

The unsafe area (UA) for both horizontal and vertical axes is computed as: 

 𝑈𝐴 =
𝑟𝑒𝑠

𝐴𝑂𝑉
∗ 𝛼 [

𝑝𝑥

°
] (3.2) 

where 𝑈𝐴 [
𝑝𝑥

°
] is unsafe area in pixels for one angular change of one degree, 𝑟𝑒𝑠 [𝑝𝑥] is 

actual resolution in dimension (horizontal or vertical), 𝐴𝑂𝑉 [°] is actual angle of view 

and 𝛼 is maximum absolute difference of angles. 

In case of video camera held by a healthy human focused on holding camera still, 

a typical angular change is 0.5 degrees in each direction (see Chapter 2.2 Physiological 

tremor), therefore 𝛼 = 1°. 

An actual angle of view (AOV) can be computed from the focal length of lenses 

and size of the chip. Then, based on AOV, chip resolution and maximum possible angle 

of change, a number of unsafe pixels can be computed. In case of rectilinear (no-spatially-

distorted) lenses, field of view is: 

 𝐴𝑂𝑉 = 2 𝑎𝑟𝑐𝑡𝑎𝑛
𝑙

2𝑓
 [°] (3.3) 

where 𝐴𝑂𝑉 [°] is the actual angle of view, 𝑙 [𝑚𝑚] is the length of sensor in dimension 

(horizontal or vertical) we compute AOV and 𝑓[𝑚𝑚] is equivalent to 𝐹 [𝑚𝑚] if actual 

focus is in infinity.  
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Figure 3.5: A schema of relationship between AOV, F and sensor dimension. 

Relationship between focal length and percentage of chip area considered as unsafe 

is linear (see Figure 3.6). However, angle of view decreases exponentially with 𝐹. This 

means that while with lower values of 𝐹, magnification rises rapidly, with high values of 

𝐹, changes in magnification become negligible (change in magnification of 35 𝑚𝑚 film 

equivalent between 𝐹 = 600 𝑚𝑚 and 𝐹 = 700 𝑚𝑚 is only 1.17 ×, while the unsafe area 

rises from 29 % to 34 %). As a result, with large magnification, a digital stabilization 

becomes impossible, as it would require effective output area to be unusable in practical 

applications (e.g. stabilization of FullHD video (1,920 × 1,080 𝑝𝑥) video at 𝐹 =

600 𝑚𝑚 would produce only output video resolution of 1,361 × 609 𝑝𝑥, which is less 

than HD resolution (1,280 × 720 𝑝𝑥)). 
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Figure 3.6: Relationship between angle of view and unsafe chip area with focal length of horizontal part of 35 mm film 
equivalent. 

With increase of resolution of sensor area, a need for higher computing power 

arises. While exact requirements for number of computations depend solely on 

implemented method, a search space rises with power of 2 (𝚶(𝑛2)). Therefore various 

heuristic methods exist in order to reduce required computational power while keeping 

performance the same. 

3.4.4 Enhanced motion compensation 

Beside standard methods for motion compensation (MC), enhanced versions also exist. 

They do not crop video immediately by using moving window. Instead, they firstly 

compute positions change for each frame and then compute window dimensions that are 

capable of covering entire scene. Also, frames do not necessary have to be replaced 

entirely – only overlapping part of new frame overwrites old frame and remaining data is 

preserved. This approach is called mosaicking [21] and enables maximal utilization of 

available visual information – after computation of shifts of individual frames, a final 

effective resolution can be easily computed, enabling higher output than standard motion 

compensation (even in case of entirely replaced frames, as final window is no longer 

dependent on predicted statistics, but rather actual statistic of video). Advantage of this 

method is resistance to occasional peak changes that would cause black frame or shifted 

frame in standard MC. However, a problem with combining old and new frames arises, 

when changes in perspective or focus are present, a change outside current camera’s angle 

of view occurs or stabilization is not perfect, as this phenomena produces disruptive 

transitions which are disturbing for humans. 
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3.5 Chapter summary 

With performance comparison between MIS, OIS and EIS [18], the best one is OIS, with 

EIS right behind and the last one is MIS. As of digital image stabilization, it can be hardly 

compared to the previous methods, because while they are used before image capture 

(and therefore influencing image parameters like shutter speed and/or aperture), DIS is 

used in post-processing (and cannot influence image parameters). However, it can be 

assumed, that its performance depends on sharpness of the image – stable image can be 

achieved, however blurry image cannot be fully restored to its sharp original.  

Another limitation is resolution penalty of DIS when compared to other methods. 

However, in case of video capture, this is not as big problem as in photography, because 

of lower requirements on resolution. Because of this, DIS can be used as a secondary 

stabilization method in order to compensate shake, which was not possible to filter out 

through other methods. However, it is important to note that digital image stabilization 

reduces output resolution, therefore its ability to stabilize input video sequence is limited 

by amplitude of jitter. This problem is significant mostly in bigger magnification, where 

low angle of view is present and even slight angle changes cause significant image shift. 

Mosaicking is a solution to this problem, but this approach brings new problems, that can 

outweigh its advantages. Therefore, a detailed analysis of the context must be performed 

prior to actual video stabilization. 
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4 GPGPU ACCELERATION PLATFORMS 

General purpose graphic processing unit (GPGPU) is phenomenon of the last decade. The 

beginnings reach back to the 2000, when demonstration of abstraction of GPU as a SIMD 

(single instruction, multiple data) processor through 3D graphics API OpenGL took 

place. However, it was not competitive to CPU, because even as simple task as adding 

two vectors required about 20 lines of code [22] and raw processing power of GPUs did 

not exceed those of CPUs until year 2003 (Intel Pentium 4 Northwood @ 2.4 GHz with 

9.6 GFLOPS vs. NVIDIA top GPU GeForce FX 5800 with 12 GFLOPS). After that, 

programmers realized that graphics processors have much higher raw performance grow 

through new generations than CPUs and are suitable for computations even though its 

usage is limited. Therefore, their interest in general purpose computation through 

specialized units in GPUs had risen significantly. As a consequence, in 2003, a research 

group from Stanford created ISO C99-like language called BrookGPU that provided a 

more convenient way for graphic cards programming. However it was still not possible 

to overcome some hardware limitations, like no elements indexing and limited data types 

– organized into triples (for RGB) and foursomes (for RGBA) [23]. All this changed with 

the release of new DirectX API version 10 – two biggest GPU companies brought highly 

programmable GPUs together with support for new APIs (AMD’s FireStream [24] and 

NVIDIA’s CUDA [25]) for general purpose computing. However, GPU is still an 

accelerator connected through peripheral component interconnect express bus (PCI 

Express) and requires host processor (CPU) to schedule work. 

  
Figure 4.1: Development and prediction of CPU and GPU computing power. 

The reason behind high performance of GPU is high number of simple processing 

units. However, because of its simplicity, GPUs do not outperform CPU in all tasks. 

Generally, computer architectures can be classified by Flynn’s taxonomy [26]:  

 SISD – single instruction stream, single data stream. 

 SIMD – single instruction stream, multiple data streams. 
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 MISD – multiple instruction streams, single data stream. 

 MIMD – multiple instruction streams, multiple data streams. 

Based on this division, single core CPU is SISD architecture, multicore CPU is 

MIMD architecture. However, GPU is both SIMD and MIMD – SIMD in case of data-

based parallelism on compute unit’s level and MIMD in case of task based parallelism on 

compute units group’s level. 

Use of GPGPU brings a huge advantage in comparison to traditional CPU 

processing in terms of speed. This is due to use of specialized hardware designed for 

massive parallelization. This makes GPGPU ideal for video processing, because it 

enables parallelization of these operations, thus significantly speedup of processing time. 

In case of video stabilization, a set of operations is performed repeatedly on all pixels of 

each image. However, in some cases, especially on hardware of the first generation, there 

is a problem with IEEE 754 compliance, where the precision of some operations is 

slightly less than required by this standard [27]. Another issue is performance penalty of 

double precision computations – while single precision is fast, double precision is 

typically two to four times slower. Therefore, it is important have this in mind during 

design and development of applications for GPU, as development costs could possibly 

outweigh final speedup. 

However, also other issues exist – beside slow access to GPU memory (about 700 

clock cycles), due to current hardware design, branching sensitivity exists. This is a 

hardware limitation (compromise between speed and universality). Threads are therefore 

organized into groups of 32 in case of NVIDIA [27] and 64 in case of AMD [28]. As a 

result, threads in the same groups should all take the same branch, otherwise performance 

penalty will occur – threads will be required to compute all possible branches (serialize 

different execution paths), but only results of valid ones will be stored [27] [28]. 

Currently, there are three main programming frameworks for GPGPU available: 

OpenCL, CUDA and C++ AMP. All of them have some pros and cons and will be 

discussed below.  

4.1 OpenCL 

OpenCL [28] is an open source framework currently developed by Khronos group (initial 

creator of framework is Apple). Khronos group is a consortium created by the biggest 

world technology companies (AMD, ARM, Intel, IBM, NVIDIA, Apple and others.) in 

order to define standards. OpenCL is a standard for general purpose parallel programing 

across CPUs, GPUs and other processors. Its creation was a reaction to proprietary CUDA 

framework by NVIDIA. OpenCL framework utilizes a subset of ISO C99 and adds 

additional extensions in order to support parallelization. It can be also used on handheld 

and embedded devices. Efficient interoperation with other Khrono’s products like 

OpenGL is also an asset. Typical OpenCL device consists of multiple compute units. 

Functions that are executed on OpenCL device are called kernels [28]. 
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First version 1.0 was released in August 2009 [29]. However, it had a lot of 

drawbacks. Therefore, shortly after that, next version 1.1 was released in June 2010 [30], 

which added multiple features (e.g. new data types, operations on regions, advanced 

events). In November 2011, version 1.2 was released [31]. It brought ability to compile 

OpenCL code into external libraries and possibility to use specialized hardware features 

in kernels. As of November 2013, the latest stable version is 2.0, which added support for 

some of the ISO C++11 features and nested parallelism [32]. Version 2.1 is currently in 

development [33], one of biggest changes is replacement of OpenCL C with ISO C++14 

subset. However, only part of companies in Khronos group support the latest standard 

version (e.g. NVIDIA supports OpenCL 1.2 as of April 2015 [34], with more than one 

year delay, because of its primary focus on CUDA, whereas AMD already supports 

version 2.0 from September 2014 [35]), which degrades its advantage in multiplatform 

usage. 

Standard defines APIs only for C and C++, but third-party APIs for Python, Java 

and .NET also exist. Also, commonly used libraries are freely available [36]:  

 clBLAS – for basic linear algebra subroutines (implementation of BLAS 

specification). 

 clSparse – for matrix and vector operations. 

 clRNG – for high performance random number generation. 

 clFFT –  for fast Fourier transformations. 

Also, an extension for web – WebCL exists from March 2014 [37]. It is a JavaScrip 

binding to OpenCL and enables performing a complicated calculations on host device. 

No plugins on host device are required, only a compatible browser. 

Programming in OpenCL consists of two parts. First, one must use API functions 

to initialize compute unit and schedule work. In the second part, a standalone file with 

extension .cl must be created. This file contains all functions that will be executed on 

OpenCL device. These functions are called in actual source code of application through 

OpenCL API, where actual function to be executed is send as a string in appropriate 

function call [28]. 
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Figure 4.2: Vector addition in OpenCL. 

4.2 CUDA 

CUDA is a proprietary framework developed and supported by company NVIDIA which 

specializes in gaming graphics cards development. It works only with NVIDIA GPUs. 

This is both an advantage (faster development cycle is possible) and a disadvantage 

(GPUs from other vendors are not supported). Because of this, NVIDIA focuses primarily 

on CUDA support and OpenCL is secondary.  

The development has begun together with a GPU generation called Tesla. This GPU 

architecture was a revolutionary, as it implemented support for Direct3D 10, which 

required a new type of computing units – geometry shader for complex geometry 

generation on graphics hardware. With this, a total of three types of compute units was 

required to be present on GPU (after vertex shader and pixel shader) [38]. However, the 

problem with using these specialized units was that, depending on a rendered scene, some 

of these units could be used heavily, while others could be used only partially or not at 

all. This was a huge performance bottleneck. Also, adding new type of compute units 

would not bring performance gain, but enlarge the area of the chip itself instead. 

Therefore, NVIDIA’s reacted with introduction of new universal units, which could be 

used as each of these required units. Its allocation became automatic and the bottleneck 

was removed. At the same time, engineers in NVIDIA realized that this programmability 

of units can be further utilized, and brought an idea of general purpose computing on 

GPUs [22]. CUDA was introduced together with these new graphic cards in November 

2006. However, public availability was delayed until February 2007 [25], when also 

graphic cards optimized for GPGPU computations were released.  

From its initial release, multiple versions have been released, with support of new 

features every time. Most of the releases took place shortly after introduction of new GPU 

architectures, which also meant bigger changes. Main features added over time are: 

shared memory, unified memory, libraries for GPU code, GPU code precompilation, new 

1. #pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable 
2. __kernel void vectorAdd(__global float *A, __global float *B, __global 

float *S, __const unsigned int n) { 
3.     size_t id = get_global_id(0); 
4.     if (i < n) 
5.         S[id] = A[id] + B[id]; 
6. } 
7.  
8. kernel.setArg(0, a); 
9. kernel.setArg(1, b); 
10. kernel.setArg(2, s); 
11. kernel.setArg(3, sizeof(size_t), &n); 
12. queue.enqueueWriteBuffer(a, CL_TRUE, 0, n, A, 0, 0); 
13. queue.enqueueWriteBuffer(b, CL_TRUE, 0, n, B, 0, 0); 
14. queue.enqueueNDRangeKernel(kernel, cl::NullRange, cl::NDRange(n), 

cl::NDRange(1, 1), NULL, &event); 
15. queue.enqueueReadBuffer(s, CL_TRUE, 0, n, S); 
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work spawning from within GPU code or C++11 features like lambdas or auto type 

specifiers. Currently, version 7.5 has been available since September 2015. All versions 

are backward compatible. Forward compatibility is guaranteed on binary level. However, 

the new features are often limited to new hardware [39] [40] [41] [42]. 

CUDA exists in two programing languages:  

 CUDA C/C++ based on subset of ISO C11 and ISO C++11  

 CUDA Fortran based on ISO Fortran 

For each, a separate compiler is provided. Also, third-party wrappers for other languages 

exist (e.g. Python, Perl, Java, Ruby, .NET, R, MATLAB) [43].  

A big advantage of CUDA over other GPGPU frameworks is the availability 

infrastructure – a great collection of powerful tools and libraries exists [43]. One example 

is an advanced IDE with a debugger and a profiler or a powerful set of plugins for Visual 

Studio. Another example are official free libraries, which contain additional tools beside 

OpenCL’s equivalents. Examples of libraries available for CUDA over OpenCL are: 

 NPP – a library focused on image and video processing. It contains hundreds of 

signal processing primitives, therefore prevents unnecessary copying of results 

from device memory to host memory. It is extensively used by CUDA version 

of OpenCV. 

 Thrust – library similar to C++ Standard Template Library (STL). It 

automatically chooses between CPU and GPU code execution at compile time. 

These libraries do not only simplify development of fast parallel code, but also reduce 

some overhead that arises when users choose to implement this functionality manually. 

CUDA, as opposed to OpenCL, does not require separate files for GPU execution. 

CUDA is also ahead of OpenCL by supporting not only direct access to other CUDA 

devices memory on local machine through PCI-e lanes, but also a remote access between 

GPUs through network which makes it suitable for use in servers. The unified memory 

model is also an advantage – it reduces complexity of code by viewing both PC’s RAM 

and GPU’s RAM as a whole, thus using a single pointer in both CPU and GPU. Also, like 

OpenCL, ARM platform is also supported. Dynamic allocation of memory and assembly-

level optimizations are a must [41] [42]. 

 
Figure 4.3: Vector addition in CUDA. 

1. __global__ void vectorAdd(float *A, float *B, float *C, int n) { 
2.     int i = blockDim.x * blockIdx.x + threadIdx.x; 
3.     if (i < n) 
4.         C[i] = A[i] + B[i]; 
5. } 
6.  
7. vectorAdd <<< blocksPerGrid, threadsPerBlock >>>(A, B, S, n); 
8. cudaDeviceSynchronize(); 
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4.3 C++ AMP 

C++ AMP is a compiler and programming model extension to C++ that provides an easy 

way to write programs that execute on data-parallel hardware, such as graphics cards [44]. 

It is developed and maintained by Microsoft, and its specification is open. First version 

1.0 released in August 2012 was implemented on DirectX 11. However, this tight 

coupling disallowed usage outside of Windows environment. Therefore, in December 

2013, a new version 1.2 was released, which removed those dependencies and made the 

library multiplatform. Due to its open specification, C++ AMP was developed with 

comments and suggestion from AMD and NVIDIA. In some cases, it is used as a basis in 

AMD’s libraries for OpenCL. Also, a compiler from C++ AMP to OpenCL has been 

available from November 2013 [45]. 

 
Figure 4.4: Vector addition in C++ AMP. 

C++ AMP adds new keyword restrict, whose purpose is to enable usage of certain 

functions or types only on specific type of hardware (CPU or GPU). Usage of restriction 

for GPU enables static code checking against unsupported types (e.g. char, long long or 

long double). This is due to limited type support on current GPU hardware. The group of 

supported types is referred to as an amp-compatible). Also, an intermediate representation 

of floating point expression shall not use higher precision than the operands demand (e.g. 

sum of two floats cannot be performed using double precision and then converted back 

to float). In case of compound types, pointers to pointers are not supported. Additionally, 

local variables can be stored in registers or in memory shared by thread group, referred 

as tile_static. Further, a math library is also a part of the specification [44]. Also, another 

libraries, with the same functionality like those for OpenCL and CUDA are available: 

STL-style algorithms, RNG, FFT, BLAS and Linear algebra. 

The debugging and the profiling, the same tools that are available in Visual Studio 

for C++ development are also available for C++ AMP. 

4.4 Chapter summary 

Choice of the right platform depends on many parameters. For real production use, CUDA 

seems to outweigh OpenCL in these of criteria: simple integration into C++ projects, 

advanced debugger and profiler, high range of optimized libraries, quicker feature 

availability (in some instances two years before AMD in case of tools an libraries, or 

before OpenCL in case of language features) and extensive support for developers. 

1. array_view<const float, 1> a(n, A); 
2. array_view<const float, 1> b(n, B); 
3. array_view<float, 1> sum(n, S); 
4. sum.discard_data(); 
5.  
6. parallel_for_each(sum.extent, [=](index<1> i) restrict(amp) { 
7.     sum[i] = a[i] + b[i]; 
8. }); 



27 

 

Ability to mix both device code and host code in the same source code file is also an 

advantage. However, main disadvantage is limitation to NVIDIA graphic cards in case of 

PCs and lower support for mobile devices. On the other hand, OpenCL provides a wider 

range of platforms (all PC graphics cards, range of mobile and low power GPUs and CPU 

architectures, including Intel’s x86, IBM’s Power and ARM) and standardized API.  

The third and the youngest API – C++ AMP is somewhere in-between CUDA and 

OpenCL. From one point of view, its look is closer to ANSI C++11 and both device and 

host code are mixed. Also, static code checking and availability of debugging tools in 

Visual Studio eases work for developers and does not require them to learn new, radically 

different languages for GPGPU. On the other hand, there are only handful of libraries for 

C++ AMP and developer community is significantly lower. Also, like CUDA, amount of 

supported hardware is nowhere near OpenCL. 

A code sample for the same operation (vector addition) was shown for all three 

frameworks, in order to better illustrate differences between them. A full code for vector 

addition and comparison to CPU parallel code can be found APPENDIX A: OpenCL, 

CUDA and C++ AMP in comparison with C++ OpenMP.  
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5 ALGORITHM DESIGN 

In order to implement a suitable stabilization algorithm, the worst case scenario of input 

video and properties must be defined first: 

 Shaking up to the frequency of 20 𝐻𝑧 

 Shaking up to 0.5° variation 

 Focal length up to 𝐹 = 200 𝑚𝑚 

 FullHD input resolution 

 Fast processing 

The choice of 𝐹 = 200 𝑚𝑚 is the result of the focal length commonly available in 

consumer compact cameras. While nowadays lot of ultra-zooms is available with focal 

lengths up to 𝐹 = 2000 𝑚𝑚, the video stabilization would not be possible at this focal 

length due to the relation shown in Figure 3.6. Therefore, the more common value that 

covers the most used focal lengths was chosen (besides the compact cameras also the 

DLSRs where only smaller focal lengths are commonly available and mobile devices with 

typical 𝐹 = 28 𝑚𝑚. 

5.1 Preprocessing 

In order to lower computing power requirements, a preprocessing step is introduced. Its 

goal is to retrieve areas of concern and prepare them for the motion estimation phase. 

5.1.1 Areas of concern selection 

We decided to split each frame into eight areas of concern (searching sub-windows) 

around its edges. The center rectangle is not considered, as typically an object of interest 

is present in the central part of each frame. This is optimization of both required 

computational power and to improve estimation of local and global motion vectors, as 

object of interest can perform movement independent of camera’s movement. If not 

considered, this would bring unwanted error to global motion vector. They have 

rectangular shape proportional to the resolution of input frame and are equally distributed 

(see Figure 5.1). Because of the nature of hand tremor (see section 2.2) and assuming that 

the input video has at least 24 frames per second, the distance from the frame’s edge can 

be 5 % of resolution or less even for high focal lengths (e.g. 𝐹 = 200𝑚𝑚).  

Then, matching sub-windows (MSWs) sizes must be small enough to bring 

significant savings in required power and big enough to have sufficient amount of details 

for searching in searching sub-window (SSW) of the previous frame. This values can be 

computed from the equations 3.1, 3.2 and 3.3: for the 0.5 degrees variation, the search 

windows size should be 4.9 % of resolution for each axis. Because the change can be for 

both directions, the double of this value is required (9.8 %). Therefore, a value of 10 % 

of frame resolution was chosen for size of SSW. This together with 5 % distance from 
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the edges leaves 60 % of unused space (30 % of resolution for each space between SSWs). 

However, because the proposed method is not developed exclusively for stabilization of 

videos from hand-held devices, this dimensions can be adjusted based on different usage 

scenarios in order to better fit required application. This adjustment results into smaller 

error and/or to lower required computer power (e.g. in the video shot from fixed camera 

inside car, the shaking occurs mostly in y-axis and therefore width of SSWs can be 

reduced). 

W3
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sub-window 
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sub-window
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Input 
frame
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Figure 5.1: Areas of concern selection. 

As for the matching sub-windows size, the same as for the distance from frame’s 

edge applies. This results in a half of dimensions of search sub-windows. 

However, in order to speed up GPU computation, a coalesced access to GPU’s 

memory must be ensured and unnecessary branching prevented. Therefore, matching sub-

windows’ dimensions must be rounded to the multiple of 32. This also applies to 

searching sub-windows: their dimensions must be updated to the double of those of 

matching sub-windows. The final values used for stabilization on GPU are in Table 5.1. 

 
Table 5.1: Input video resolutions and resulting SSW and MSW sizes. 

Input resolution [px] SSW size [px] MSW size [px] 

1920×1080 192×128 96×64 

1280×720 128×96 64×48 
 

After the previous step, eight areas of concern exist. However, adjustments must 

be made in order to further lower the computation requirements. For color images, the 

first step is conversion to grayscale. Then binarization process follows: each area is 

converted from full-bit frame into binary image by local binary pattern (LBP), which 

enables template matching by simple 𝑋𝑂𝑅 operation. However, conversion to binary 

image itself is tricky – a high level of detail must be preserved after binarization step 

(traditional methods tend to convert similar colors into the same binary value and 

therefore omit edges).  
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(a) (b) (c) 
Figure 5.2: Different local binary patterns configurations. a) LBP(4,1) b) LBP(4,3) c) LBP(8,4) 

Therefore, enhanced LBP binarization proposed by [19] is used: each pixel of input 

image is compared against 𝑃 equally spaced reference pixels (points) forming a circle of 

a radius 𝑅. Output value for each pixel of the output image is then computed as: 

 𝐵(𝑃,𝑅)(𝑖, 𝑗) = {
1 𝑖𝑓 ∑ 𝑠𝑖𝑔𝑛(𝐼(𝑝) − 𝐼(𝑖, 𝑗)) ≥ ⌊𝑃/2⌋

𝑃−1

𝑝=0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                             

 (5.1) 

and 

 𝑠𝑖𝑔𝑛(𝑥) = {
1 𝑥 ≥ 0         
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.2) 

where 𝑃 is the count of reference points, 𝑅 is their radius, (𝑖, 𝑗) is the coordinate of 

currently processed pixel, 𝑝 is the coordinate of current reference point, 𝐼 is the function 

returning image’s intensity value for given coordinate and ⌊𝑥⌋ denotes the largest integer 

not greater than 𝑥. 

This approach reduces the maximum number of comparisons and additions to 

obtain pixel value to 𝑃.  

The proposed algorithm uses the 𝐿𝐵𝑃4,2 configuration, as it is significantly faster 

than configurations with bigger number of reference pixels. Also, the empirical testing 

has shown, that this configuration yields more accurate binary representation of edges 

and therefore enables better local motion estimation. 

5.2 Local motion estimation 

After the preprocessing step, local motion estimation follows. Firstly, matching sub-

windows are extracted from the binarized areas. After that, comparison of all MSWs of 

current frame with the corresponding SSWs of previous frame is performed by computing 

number of non-matching points (NNMP)  [19] criteria for each possible displacement: 

 𝑁𝑁𝑀𝑃(𝑑𝑥, 𝑑𝑦) = ∑ ∑{𝐵𝑡(𝑖, 𝑗) ⨁ 𝐵𝑡−1(𝑖 + 𝑑𝑥, 𝑗 + 𝑑𝑦)}

𝑁−1

𝑗=0

𝑁−1

𝑖=0

 (5.3) 



31 

 

and 

 −𝑠 ≤ (𝑑𝑥, 𝑑𝑦) ≤ 𝑠 (5.4) 

where (𝑑𝑥, 𝑑𝑦) is the candidate displacement of the matching sub-window in the 

searching sub-window, 𝑁 is the MSW’s dimension (𝑁 × 𝑁), 𝐵𝑡 is MSW of current frame, 

𝐵𝑡−1 denotes SSW of previous frame, ⨁ represents Boolean operation 𝑋𝑂𝑅 and 𝑠 is half 

of the difference of the matching sub-windows and searching sub-windows dimensions. 

This results into eight matrices of NNMP values, where each value’s index denotes 

(𝑑𝑥, 𝑑𝑦). From each list, the eight lowest values are taken and their coordinates become 

the local motion vectors (LMVs). This is an improvement suggested by [1] in order to 

enable stabilization of frames without clear edges (e.g. desert, sea, snow). This gives in 

total of 64 LMVs vectors. 

5.3 Global motion estimation and filtering 

Global motion vector (GMV) is computed for each frame as a median of all axes of 64 

best LMVs: 

 𝐺𝑀𝑉𝑎 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐿𝑀𝑉𝑠𝑎), 𝑎 = {𝑥, 𝑦} (5.5) 

where 𝑎 denotes the axes of LMV, 𝐿𝑀𝑉𝑠 is set of selected local motion vectors and 

𝑚𝑒𝑑𝑖𝑎𝑛(𝑥) is the function selecting median value 

 

This filtration effectively removes LMVs, into which an error was introduced by object 

of interest movement extended into the searching sub-windows. Also, it automatically 

account for camera movement in z axis (e.g. camera mounted on moving vehicle) and no 

additional filtering is needed. 

5.4 Motion compensation 

The last step in digital image stabilization is the movement of image frames into final 

form of stabilized output. Because one of the requirements is possibility of real-time 

usage, a standard form of DIS is chosen. Therefore, the final resolution of video output is 

defined by the size of moving windows which is estimated according to equation 3.1. 

Yet, this approach is able to achieve only stabilization in fixed position – it is unable 

to track intended movement of the camera. Therefore, the filtration of intended motion 

must be introduced. For this tasks, multiple possibilities exists: low pas filtering methods 

(e.g. fuzzy filtering or Gaussian weighting). Another example is the Particle filter, which 

is suitable for filtering of non-linear motion of camera, but relatively slow and not suitable 

for real-time processing. Therefore, we choose to use the Kalman filter, which is optimal 

filter in the minimum variance sense. Its advantage is the speed, which is suitable for real-

time processing, but it is sensitive to parameter values. 
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6 IMPLEMENTATION 

The designed algorithm was implemented using C++11 and OpenCV [46] library in 

version 3.1 under Windows environment (compilation of code under other environments 

is also possible). The project is created in Visual Studio 2013 [47]. The reason behind this 

choice is the Visual Studio’s support for C++ AMP and also the great integration of 

Visual Studio and NVIDIA’s profiler and debugger. The main application is created in 

single project resulting into single executable and requires the OpenCV’s modules 

(enclosed at the attachment DVD). The application itself is command-line based and does 

not contain graphical user interface. For the configuration, following arguments can be 

specified: 

 -ocl – enables the video stabilization using OpenCL. 

 -cuda – enables the video stabilization using CUDA. 

 -amp – enables the video stabilization using C++ AMP. 

 -cpu – enables the video stabilization using CPU. 

 -write – writes stabilized video into output file. 

 -show – shows stabilized video during processing. 

 -input filename – sets the input video file. 

 -limit n – sets the number of frames to process. 

 -h – shows help. 

However, due to the performance reasons, the specification of the SSW size is not 

possible at runtime. This is due to the better optimization of code, when the SSW and 

MSW sizes are known at runtime (performance penalty is about 10 %). Therefore, 

windows sizes are set as a macros and after change, the recompilation is required. The 

enclosed DVD contains all of the binaries used for testing (binary’s name contains SSW 

size). 

The compliance of all implementations in terms of identical results for the same 

input was ensured by creating reference version for execution on CPU. Then, each 

GPGPU version results for transition of each frame were compared with this reference 

implementation. 

Also, all GPGPU versions were created with support for asynchronous data copy to 

and from device. This (if supported), causes that data can be copied during kernel 

execution, that further improves the execution speed, as GPU does not have to wait for 

new data to arrive. Further, the each area of concern is processed on separate stream. 

Similarly to data copy, this can speed up the execution process as hardware can launch 

next scheduled kernels if the current kernel is not demanding enough (if supported by 

both hardware and software). 

Because the part of this thesis’s aim is to compare the suitability of available 

GPGPU architectures for video stabilization, the following subsections will contain both 

the highlights and downs encountered during the application development and author’s 

opinions. It is important to note, that the author has previous experience with both CUDA 
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and OpenCL and therefore knows principles of programming massively parallel 

processors. 

6.1 CPU implementation 

The CPU version was created in order to have reference point for comparison in terms of 

both performance and identity of results. Therefore, this implementation was created first 

and was used as a reference for GPU implementations. The performance was optimized 

using preallocated data structures. This reduces the overhead created by repeated 

allocation and deallocation of memory. Also, whenever possible, the OpenCV optimized 

methods were used. However, no further optimizations on instruction level were 

introduced.  

Further, the parallelized version using OpenMP [48] was created. It enables work 

splitting between both different cores and processors and therefore the maximal usage of 

CPU resources. This can be considered as a good measure of the worth of GPU usage 

against the fully utilized CPU. 

6.2 CUDA implementation 

The OpenCV contains support for CUDA execution in large portion of methods available 

for CPU execution. However, CUDA is not used by default and requires programmer to 

explicitly state calls for CUDA powered methods. This methods resides in separate 

assemblies that are optional during build of OpenCV’s binaries. 

For CUDA, a small framework in OpenCV exists. It is encapsulated in the 

“GpuMat” class, very similar to the standard “Mat” class. However, it can be used only 

on GPU and enables simple memory allocation and data copy from “Mat” data structure 

allocated for CPU without any knowledge how to allocate memory and transfer data in 

CUDA. The advantage of this framework is quick creation of subimage in the same 

manner as in case of standard “Mat” class. Also, because the CUDA supports C++11, 

similar wrapper inside kernels is available for data access. This enables to directly access 

pixel of image specified by x and y positions and programmer does not have to worry 

about the conversion from required points to indices of one dimensional array. Yet, the 

pointer to the data is still available and can be used. The wrapper also provides the usable 

size of image and the size of the row for manual indices computation. 

In the implementation itself, the similar preallocation as in case of CPU 

implementation was introduced. However, the memory had to be preallocated on both 

CPU and GPU. For this case, the so-called “pinned memory” available in the Thrust 

library is used. This improves the transfer speeds between CPU’s RAM and GPU’s RAM 

by a factor of 2 by preventing CPU allocated memory to be swapped out. 

The LBP kernel was implemented in two versions: one using only global memory 

acces and second one, where the used data were firstly copied into shared memory and 

the the computation was made. This reduced the count of global memory reads from 5 
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down to 2. However, this approach requires synchronization using the memory barrier. 

The perliminary tesing has shown, that the version with only global data acces is about 

twice as fast as the version with data copy in shared memory. Therefore, the global data 

access version will be used in further tests. 

Because of the perliminary performance testing of LBP kernel, the NNMP kernel 

was implemented only with global data access. The shared memory was then used for 

local storage of intermediate NNMP values and the reduction in order to get the final 

NNMP values together with local motion vectors.  

The sorting of resulting NNMP values is required prior to the selection of best local 

motion vectors. The sorting of NNMP values for each area of concern was done also by 

GPU, as the data transfer of only 48 bytes is required if the data are sorted (data are stored 

in triples of “short” data type – 16 bytes long, 8 best vectors is required), while CPU 

sorting (even it is more effective) would require the transfer of six times more data that 

is the size of single MSW, which would introduce further overhead. In this case, the 

Thrust library’s Radix-sort is used.  

The Thrust library [49] is the parallel algorithms library for CUDA, which 

resembles the C++ Standard Template Library (STL). It implements lot of functions 

available in STL equal in terms of functionality (sorting, reductions, transformations, 

iterators). In lot of functions, the direct data copy from/to STL’s “vector” class is 

available. 

The kernels for RGB to grayscale conversions and LBP binarization are scheduled 

in a way that each pixel is processed by single thread. Yet, they are organized into smaller 

groups for more effective access into global memory in order to prevent bank conflicts 

(multiple threads accessing single memory bank or alternating access to banks) within 

warp (otherwise, the serialization of access would be introduced). The size this groups is 

computed automatically by querying the hardware property returning max number of 

threads that can be executed in single group (in most cases, the value is 1024) and by 

using the NVIDIA’s occupancy calculator, that is able to suggest the best work group size 

based on the used hardware and the kernel itself (the number of used registers and size of 

used shared memory). 

The kernel computing the NNMP values uses similarly to other kernels maximal 

possible count of work items in single group. For performance reasons, each thread 

computes the small part of NNMP for the corresponding translation (the computation of 

the whole NNMP on single thread would be enormously long and would result into big 

number unused threads). Because the size of MSW exceeds the typical number of work 

items in single group (1024) even for small sizes, the optimization is introduced, where 

number of work items is reduced by factor of 32. Then, each thread computes the NNMP 

values for 32 pixels of correlation. However, in order to get the resulting NNMP value, 

parallel reduction is required. This results into small overhead, when only portion of 

threads is used for computation. In order to improve performance, the reduction is 

implemented in a way, that all threads in single warp performs the same instructions. Yet, 
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reduction itself requires the explicit synchronization of threads which results into another 

delay in execution. 

While the resulting code itself is pretty simple, the way to get to know how to create 

optimized application from available libraries is pretty hard, as the available 

documentation contains only basics of how to get the library running. This enables to 

create working video stabilization, but the performance gain over CPU implementation 

cannot be considered as good. The more advanced functions have only autogenerated 

documentation that does not say anything about the provided methods. Therefore, the 

experimentation and questions browsing on specialized sites like Stack Overflow [50] is 

required. This apply for both the OpenCV and Thrust. On the contrary, the documentation 

for the CUDA itself is great and covers all features available in the framework. Yet, the 

problem with compiler was encountered, where the MAD instruction was not correctly 

recognized, which resulted into degraded performance. Therefore, this instruction was 

forced using the PTX assembly language [51]. This also apply for OpenCV wrapper to 

access image pixel of specified position – for this reason, wrapper was not used and 

conversion from points to indices was computed separately. 

6.3 OpenCL implementation 

The OpenCV’s support for OpenCL is from the version 3 implicit and only requires to 

call function to enable it and to use the “UMat” class (universal “Mat”), which is similar 

to standard “Mat”. Then, all functions on “UMat” that have OpenCL version will run on 

GPU if possible. No additional code changes are required. Unlike “GpuMat” for CUDA, 

the “UMat” can be processed on both CPU and GPU (the data copy is automatic). 

Similarly to “GpuMat”, most of the functionality of standard “Mat” class is available. 

However, the OpenCV’s documentation does not state how to create and lunch 

custom OpenCV kernels. While some methods can be found in documentation, the 

OpenCV source code must be examined for thorough understanding. The OpenCV 

contains wrappers to OpenCL API that greatly reduces the size of code required for 

initialization. The most problematic parts were creation of unique command queue for 

each area of concern and the kernel launch itself: the queues required creation in cycle 

instead of simple list initialization and the kernel launch had to be called directly through 

OpenCL API call “clEnqueueNDRangeKernel”. However, the use of OpenCV’s 

wrapper was still advantageous, as it enabled both the easy kernel compilation and 

argument setting (memory allocation). Due to the compatibility reason with NVIDIA 

(OpenCL support of version 1.2), the OpenCL version 2.0 with precompiled GPU code 

was not used. The disadvantage of this solution is visibility of source code to the end user 

in the plain text form. While this can be solved by means of encryption, the compilation 

as in case of NVIDIA would be more suitable (however, this brings compatibility issues 

between different device vendors).  

Another problem is that the OpenCL 1.2 does not support C++11 features. 

Therefore, if the support of NVIDIA’s cards is required, the C-like language must be 
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used. This means, that the kernels must be defined in separate file from the code, there is 

no support for include directives in the GPU code and therefore no wrapper similar to the 

CUDA version. From this point, the kernels definition requires to explicitly state all input 

arguments (pointers, data sizes) manually. Therefore, conversion from data structures 

used for kernel arguments setting on CPU side must be performed. The problem is, that 

this behavior is nowhere described and can only be deducted from the OpenCV’s source 

code examination. This also means, that no wrapper functions are available for accessing 

the image pixels by coordinates and their conversion to one dimensional array indices 

must be computed manually. 

The RGB to grayscale, LBP and NNMP algorithms itself are equal to the CUDA 

implementations, the only difference is in the input parameters, that are not wrapped. This 

is also true for the size of single work group. However, there is a difference between the 

NVIDIA and AMD – the typical workgroup size in case of NVIDIA is the same as in for 

the CUDA (1024), but the AMD has the limit of 256 threads. Therefore, in case of NNMP 

kernel, the larger portion of computations must be made on single thread. 

The next difference from CUDA is the usage of memory barrier for 

synchronization. In CUDA, the barrier can be used inside divergent branches, the only 

requirement is that threads inside warp all takes the same execution path. In case of 

NVIDIA cards, this is also true for OpenCL, despite the fact, that the OpenCL 

specification itself prohibits this behavior. In case of AMD, the standard is respected and 

such code is rejected by compiler. The most interesting is, that on NVIDIA’s cards, there 

is measurable performance difference between these two variants. 

Similarly to CUDA compiler, also the OpenCL compiler failed to correctly 

recognize the MAD instruction and it has to be defined explicitly. However, the OpenCL 

does not support the assembly language snippets insertion into kernels. Instead, some of 

the instructions are available as an API functions.  

The sorting of NNMPs is performed on GPU similarly do CUDA implementation. 

However, no external library is used, but rather the Bitonic sort algorithm form NVIDIA 

samples library. 

6.4 C++ AMP 

In the case of C++ AMP, there is no support for this technology in OpenCV. Therefore, 

the programmer must take care of all data conversions and copy implicitly. Yet, the 

amount of required work is significantly smaller when compared with the amount of work 

required when using both OpenCL and CUDA without OpenCV framework. Therefore, 

the conversion of data from OpenCV’s “Mat” structure into array is required. However, 

there are significant issues – the C++ AMP does only support 32 integer numbers and 

data needs to be either converted to this format or accessed on device using the bit 

masking. The first approach brings the performance overhead during the data transfer, as 

4 times more data needs to be copied. This can be slightly reduced by usage of texture 

instead of standard data pointer (the GPUs contains the native support for textures). The 
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second approach brings the performance overhead when bit masking is performed. The 

preliminary testing of both methods has shown, that the use of texture memory brings 

slightly better results and therefore it will be used for the thorough testing. 

The next issue is only one command queue – all kernels are issued on single 

execution queue, where also data copy occurs. Therefore, C++ AMP is unable to execute 

multiple kernels at once as CUDA. 

Yet, there are advantages over both CUDA and OpenCL – the kernels can be 

launched as anonymous methods inlined into other code. Also, the direct data copy from 

arrays and vectors to device is supported without the need to manually allocate memory.  

The used kernels are basically the same as in case of CUDA and OpenCL version 

– they are also partitioned into biggest possible groups and the NNMPs computation 

requires one thread to compute multiple values. The difference comes again with sorting, 

where the Bitonic sort implementation from Microsoft samples is used. 

The C++ AMP has the same requirement for memory barrier as OpenCL – all 

threads must hit the barrier and therefore it is not possible to use it in divergent code.  

 

 

  



38 

 

7 TESTING VIDEO SEQUENCES 

For testing purposes, 11 testing video sequences was created using two cameras – the 

compact Olympus SZ-31MR and DSLR Nikon D3100. The first one enables creation of 

FullHD video sequences at the speed of 60 FPS. However, the video suffer from blurred 

edges (even for HD video). The second one also enables creation of FullHD video, but 

only at the speed of 24 FPS. The sequences does not suffer from blurred edges, however 

the higher amount of noise is present. Both cameras use the CMOS chip susceptible to 

the rolling shutter effect. 

 The shot video sequences contains different situations: from intentional shake of 

handheld camera through natural shake to jitter caused by moving vehicle (camera was 

mounted inside car). For each situation, typically two videos that differ by used camera, 

focus, focal distance, resolution and FPS exits. Their brief overview is in Table 5.1. The 

focal distance is recalculated from real focal distance of camera into its 35 mm equivalent. 

 
Table 7.1: Brief overview of testing video sequences. 

 Name Resolution FPS Focal 

distance 

Held type Camera 

1 Car-ride 1280×720 30 50 mm mounted Olympus SZ-31MR 

2 Car-ride-2 1920×1080 24 50 mm mounted Nikon D3100 

3 Car-ride-3 1280×720 30 50 mm mounted Nikon D3100 

4 Car-ride-4 1280×720 30 50 mm mounted Nikon D3100 

5 Jitter 1920×1080 24 30 mm hand-held Nikon D3100 

6 Jitter-2 1280×720 30 30 mm hand-held Nikon D3100 

7 Pan-zoom 1920×1080 60 200 mm hand-held Olympus SZ-31MR 

8 Pan-zoom-2 1920×1080 24 40 mm hand-held Nikon D3100 

9 Tracking 1920×1080 60 150 mm hand-held Olympus SZ-31MR 

10 Walking 1280×720 30 30 mm 
walking 

hand-held 
Olympus SZ-31MR 

11 Walking-2 1920×1080 24 30 mm 
walking 

hand-held 
Nikon D3100 

 

 The first four video sequences, as the name suggest, are captured by the camera 

mounted inside car. The first one, shot by the Olympus compact camera suffers from 

blurred edges, changing focus (due to the autofocus) and rolling shutter effect. Two kinds 

of image blur are present: the one caused by the bad focus and the one caused by the high 

lossy compression of video. The video itself captures the driver’s view on the road. 

During the bigger part of video, the vehicle is moving at the speed of 50 kph with 

occasional slowdown due to the obstacles present in the path. During the rest of the video, 
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the vehicle is moving at the speed of 100 kph. The road itself contains lot of potholes and 

undulations causing the vehicle to swing.   

The second video is captured by the Nikon DLSR and does not suffer from neither 

changing focus nor image blur. However, the rolling shutter effect is more visible. The 

video captures the in-town driving with big number of hairpin bends at the average speed 

of 40 kph. Also, a few second scenes with the car in stationary position is present. During 

this period, the doors are opened and closed multiple times as the driver gets off and back 

on the vehicle. Therefore, there is slight movement in both axes. 

The third video sequence is very similar to the second one, but has lower input 

resolution, which results into smaller image disturbances. 

The fourth video is captured on the cart-way with the average speed of 25 kph. The 

road is unpaved and contains the high number of potholes which causes rapid shaking in 

both axes. Further, the bottom part of the image covered with the car’s dashboard, which 

that moves in different way than the exterior. This causes that three SSWs are not usable 

for image stabilization. Besides that, the car’s windshield is dirty, which introduces the 

fixed defects into the image. 

The fifth video shows fixed scene and contains rapid jitter caused by hand tremor. 

The hand tremor is intentionally amplified to provide bigger translation between frames. 

The sixth video sequence is very similar to the previous one. However, this time 

the jitter is caused by the turning of the ring that sets the shutter speed. Therefore, the 

frames of the video have different shutter speeds and the presence of the rolling shutter 

effect changes through the time. 

The seventh video sequence contains the pan and zoom effects. It can be 

characterized by slow intended changes of the camera pose and zooming. The rolling 

shutter effect is present only during the zooming. The camera his hand-held, therefore 

high amount of shake is present. 

The eight video is very similar to the previous one. However, this time, the intended 

movement of the camera is fast. Also, the rolling shutter effect is strong even when no 

zooming is occurring.  

The ninth video can be characterized as tracking of objects. The camera is hand-

held and zoomed to the 𝐹 = 200 𝑚𝑚. Similarly to the first video, the rolling shutter effect 

and image blur are present.  

The tenth video sequence captures the walking inside hall. It has bad light 

conditions and contains high amount of noise. Also, there is only low count of non-

distinctive edges present. 

The eleventh video captures similarly to the previous one walking from the first 

person point of view. However, this time there are good light conditions and high amount 

of edges, as the scene takes place in nature. Yet, high amount of image blur is present and 

the edges are again not very distinctive. Also, the sake can be characterized as strong, 

because the person holding the camera walks downhill.  
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8 RESULTS 

The video sequences described in chapter 7 were tested using multiple hardware 

configurations in order to evaluate the performance of proposed method on different GPU 

architectures. Also, this enabled better comparison of used GPGPU frameworks, as 

testing on single GPU could result into distorted results. However, not all of the hardware 

supports all GPGPU frameworks – the CUDA framework is no available for AMD 

graphic cards (see chapter 4.2). Therefore, CUDA performance could not be tested in all 

cases. Next, on the NVIDIA cards, two versions of OpenCL implementation were tested 

(as described in chapter 6.3). The tests were performed on different sizes of the searching 

sub-windows and corresponding matching sub-windows (their ratio was preserved). The 

SSW sizes were chosen that the requirement for fast GPGPU processing is preserved – 

as the multiples of value 32 for both x and y axis. Further, also quality of proposed video 

stabilization method was evaluated by both frequency analysis and visual comparison of 

camera path. 

 For performance testing, the hardware specified in Table 8.1 and Table 8.2 was 

used. It contains both fairly old hardware – Q6600 (2007) and new hardware – E5-2683 

(2015). Also, the tested GPUs differ not only by their theoretical performance, but also 

designation – compute (M6000, E5-2683), games (GTX 670, R9 Fury) or both (GTX 

560Ti, GTX 980Ti). In case of CPUs, all of the used can be considered as a high-end. 

Yet, due to the age gap, their performance differs radically. Therefore, their theoretical 

performance (same for double, single and integer precision) is also given in Table 8.1. 

The similar apply also to the used GPUs. However, the difference here is bigger, as some 

used cards cannot be considered as high-end (Radeon 5750, GTX 760). Therefore, their 

theoretical performance in single precision (the same as used integer precision) is also 

given in Table 8.2. Yet, this value cannot be viewed as absolute measure of GPU’s 

performance between different GPU architectures, as they differ radically, and some of 

them do not provide high compute power even though the theoretical performance value 

is high. This is true for the GTX 670 and GTX 760 (Kepler architecture), which were 

designed primary for high performance in computer games and the computing was put 

aside. Therefore, based on the nature of computation, they can outperform the older GTX 

560Ti (Fermi architecture) only in some applications. 

The performance of individual GPUs depends also on the memory bandwidth 

between the GPU itself and GPU’s RAM, because it defines the speed of how fast the 

GPU access the global memory data can. Therefore, this value is also given in Table 8.2. 

The next thing is the speed of the bus, through which the GPUs are connected with the 

CPU. This affects the data transfer rate between the CPU’s RAM and GPU’s RAM. In all 

tested cases, the PCIe x16 v3.0 (Peripheral Component Interconnect Express of version 

3.0 with 16 data transfer lanes) was used, providing the data transfer speed of 15.75 GB/s.  
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Table 8.1: The CPU specification of used hardware configurations. 

Configuration 

number 

CPU name Speed 

[GHz] 

Cores / 

Threads 

Performance 

[GFLOPS] 

RAM 

[GB] 

1 Intel Core 2 Quad Q 6600 3.21 4/4 59 6 

2 Intel Core 2 Quad Q 6600 3.21 4/4 59 6 

3 Intel Core i5-4670K 3.40 4/8 117 16 

4 Intel Core i5-3930K 3.20 6/12 165 64 

5 Intel Core i5-3930K 3.20 6/12 165 64 

6 2x Intel Xeon E5-2683 v3 2.00 28/56 480 512 

7 Intel i5-3770K 4.40 4/8 150 32 

 
Table 8.2: The GPU specification of used hardware configurations. 

Config 

uration  

GPU name Speed 

[GHz] 

Cores Performance 

[TFLOPS] 

Bandwidth 

[GB/s] 

RAM 

[GB] 

1 AMD Radeon HD 5750 0.90 720 1.30 80 1.00 

2 NVIDIA GTX 560Ti-448 0.95 448 1.70 216 1.28 

3 NVIDIA GTX 760 1.10 1152 2.20 192 2.00 

4 NVIDIA GTX 670 1.15 1344 2.46 192 4.00 

5 AMD R9 Fury 1.00 3584 7.53 512 4.00 

6 NVIDIA Quadro M6000 1.15 3072 6.07 317 12.00 

7 NVIDIA GTX 980Ti 1.30 2816 5.63 384 6.00 

 

In this chapter, both the performance of the proposed method (the execution speed) 

and the quality of video stabilization will be evaluated. 

8.1 Performance comparison 

In this section, the proposed algorithm will be benchmarked on the computer 

configurations described in Table 8.1 and Table 8.2. This test will consist of processing 

speed measurement of proposed video stabilization. It will be tested with 8 different sizes 

of SSW, as described in section 5.1.1, resulting into 8 tables with results. Each table 

contains both the speed measured in frames per second (FPS) and the utilization of GPU. 

The FPS is the absolute measure of processing speed and defines, whether the video can 

be stabilized in real-time or not. 

The testing was performed on 8 different SSW sizes (see Table 8.3) for two 

reasons: firstly, the bigger SSW results into more compute operations and can hide the 

delay introduced by data transfer. Also, in case of fast GPUs, it may still provide high 

enough processing speeds. Secondly, the testing videos contains not only the hand video 

sequences shot by hand-held video camera, but also sequences from camera mounted 

inside moving vehicle and hand-held camera during walking. Therefore, the initial 
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consideration in section 5.1.1 does not apply for all and some videos may require bigger 

SSW sizes, while other smaller SSW sizes. 

 
Table 8.3: SSW sizes in pixels used for testing. 

128×128 192×128 256×128 192×192 256×192 256×256 384×192 384×256 

 

It is important to note, that the used correlation has the time complexity of 𝛰(𝑛2), 

therefore doubling the size of SSW means four times more operations. For this reason, it 

is expected to see slowdown by a factor of 4 for doubled SSW dimensions. Yet, the other 

factors as the complexity of other subroutines, data transfers speeds and kernel execution 

times also interferes and the resulting performance impact may be lower. 

8.1.1 Profiling of GPGPU implementations 

During the development, the preliminary testing has shown that the GPU usage varies for 

different GPGPU implementations of the same algorithm on the same hardware 

configuration. Therefore, the detailed analysis was performed: CUDA and standardized 

OpenCL using NVIDIA NSIGHT profiler for Visual Studio and C++ AMP using 

Concurrency Visualizer for Visual Studio. The profiling was due to its complexity 

performed only on the HW configuration 2 and only for the smallest and the biggest SSW 

(size of 128 × 128 𝑝𝑥 and 384 × 256 𝑝𝑥 respectively). 

The Figure 8.1 shows, that the CUDA implementation executes all kernels of one 

stabilization cycle in 11.718 ms, which is 85.3 FPS. This is about 3.3 % slower than 

measured value, but the slowdown is caused by the profiler itself. The figure also shows, 

that all the kernels are executed on average in 3.374 ms. This would result into the 296.4 

FPS. However, there is also the data copy (1.414 ms). Despite that, the framerate of 208.8 

FPS would still be possible. The problem is the white space in the timeline (6.930 ms). 

This is due to the slow CPU processing. If we assume, that this card is used with the more 

powerful CPU that is able to execute required work during the kernel execution, the 

framerate of 208.8 FPS would be achieved with usage of 71.0 % (given the data copy 

would take the same amount of time). However, the GPU is waiting for CPU even 

between the data copy. If this was also eliminated (1.18 ms), the execution speed of 277.2 

FPS and usage of 97.7 % would be achievable (given the 64 context switching operations 

occurs and one takes 1.2 μs). 

The Figure 8.1 also shows that the each area of concern has its own execution 

stream (as expected). There is also clearly visible concurrent execution of small kernels 

– LBP and RGB to grayscale partially overlaps (see Figure 8.2 for detailed view). Also, 

the sorting kernels are overlapping the NNMP kernel. 

The Figure 8.2 further shows, that the most time consuming kernel is the NNMP 

kernel (352 μs), followed by the sorting (85 μs). The RGB to gray conversion (4 μs) and 

LBP computation (3.5 μs) are almost negligible. It also shows, that even the kernels are 

already scheduled, the context switching takes 1.2 μs.  
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Figure 8.1: Timeline view from NVIDIA CUDA profiler on kernels execution for SSW of size 128×128 px and HW 

configuration 2 showing the execution order and timing of kernels for two stabilization cycles. 

The last unmentioned GPU time consuming operation is data transfer: data copy to 

the GPU takes 15 μs for 51 kB of data (3 323.4 MB/s) and 1.15 μs from GPU for 48 B of 

data (39.7 MB/s).  

 

 
Figure 8.2: Detail of timeline view from Figure 8.1 showing the concurrent execution of kernels: red - rgb2gray kernel, 

brown - LBP kernel, green - NNMP kernel, blue and purple - sort kernels. 

The Figure 8.3 shows, that the OpenCL implementation executes all kernels of 

one stabilization cycle in 13.805 ms, which is 72.4 FPS. This is about 12 % slower than 

measured value, but the slowdown is caused by the profiler itself. The figure also shows, 

that all the kernels are executed on average in 4.056 ms. This would result into the 246.6 

FPS. However, there is also the data copy (4.119 ms). Despite that, the framerate of 122.3 

FPS would still be possible. The problem is the white space in the timeline (5.630 ms). 

This is due to the slow CPU processing. If we assume, similarly to CUDA 

implementation, that this card is used with the more powerful CPU that is able to execute 

required work during the kernel execution, the framerate of 122.3 FPS would be achieved 

with usage of 49.7 % (given the data copy would take the same amount of time). However, 

the GPU is waiting for CPU even between the data copy. If this was also eliminated (4.00 
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ms), the execution speed of 239.5 FPS and usage of 97.0 % would be achievable (given 

the 88 context switching operations occurs and one takes 1.4 μs). 

 

 
Figure 8.3: Timeline view from NVIDIA OpenCL profiler on kernels execution for SSW of size 128×128 px and HW 

configuration 2 showing the execution order and timing of kernels for two stabilization cycles. 

 

 
Figure 8.4: Detail of timeline view from Figure 8.3 showing the execution order of kernels: red - rgb2gray kernel, 

brown - LBP kernel, green - NNMP kernel, gray – GPU utilization, blue and purple - sort kernels. 

The Figure 8.4 shows, that the most time consuming kernel is again the NNMP 

kernel (406 μs), followed by the sorting (76 μs). The RGB to gray conversion (5.8 μs) 

and LBP computation (5.6 μs) are again almost negligible, but almost twice as time 

consuming as in case of CUDA. It also shows, that even the kernels are already scheduled, 
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the context switching takes 1.4 μs. Unlike the CUDA, there is no concurrent execution of 

kernels present, as the OpenCL 1.2 specification does not support such behavior. 

The last time consuming operation on GPU is data transfer: data copy to the GPU 

takes 14 μs for 52 kB of data (3 627.2 MB/s), which is slightly higher transfer speed than 

in CUDA. While this difference may seem small, it is the average value of hundreds of 

values and not the deviation within measure error. The data read using the OpenCV’s 

“UMat” rectangle for copying only 48 bytes does not work as expected, and the entire 

matrix is copied instead. Therefore 24 kB of data is copied within the 7.2 μs (3 255.2 

MB/s). However, at this SSW size, it cannot be considered as problem, because the 

removal of introduced delay would bring performance gain of only 2.8 FPS (to the 

estimated 239.5 FPS).  

 

 
Figure 8.5: Timeline view from Visual Studio Concurrency profiler on kernels execution for SSW of size 128×128 px 

and HW configuration 2 showing the concurrent execution of kernels: blue – data copy and kernels execution, gray – 
grouped data copies and kernels, that are too small to distinguish. 

The C++ AMP implementation executes all kernels of one stabilization cycle in 

31.740 ms, which is the speed of 31.5 FPS. This is about 26 % slower than measured 

value, but the slowdown is similarly to previous implementations caused by the profiler 

itself. Because the C++ AMP does not enable usage of multiple execution queues, both 

data transfers and kernels executed in order without overlap. The problem of this solution 

is, that the data are transferred synchronously. While the framework officially supports 

asynchronous data copy, we were unable to create operational solution. However, despite 

that, the data copy is almost four times slower than in case of both CUDA and OpenCL 

– the transfer of 51 kB of data takes 51 μs (976.6 MB/s). Yet, the data copy from device 

is faster than in case of OpenCL, despite the bigger amount of copied data: 16 kB is copied 

within 2 μs (7 812.5 MB/s). Further, the kernel execution is slower: the RGB to gray 

conversion takes 37 μs and LBP kernel 32 μs. This is almost 10 times slower than in case 

of CUDA. However, the execution speed of NNMP kernel is twice as fast – execution 

lasts on average 180 μs. The reason behind this may be the usage of texture memory. 

However, further development and investigation is required to confirm this theory. The 

last group of kernels is used for sorting. Their execution lasts on average 250 μs, which 

is again slower than in case of CUDA and OpenCL (3 times). The context switching 

operation takes 2 μs. However, it occurs 480 times, which results into 960 μs delay 

introduction. With this values alone, the execution of single stabilization cycle would 

took 5.376 ms, resulting into theoretical speed of 186.0 FPS. However, there is another 

problem with the unnecessary data copies – for each NNMPS kernel, 48 kB of data is 

copied. This would not represent big problem, if it would not take 2.1 ms. Therefore, 16.8 
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ms in each cycle is for unknown reason spend by data copy back to host. If this issue was 

removed, the resulting performance would result in doubled execution speed. 

However, the GPU waiting can be eliminated even for slower CPU by the bigger 

SSW size – this would cause the longer execution NNMP kernel. Therefore, also the SSW 

size of 384 × 256 𝑝𝑥 was profiled. As can be seen from Figure 8.6, the data copy 

duration takes now only small fraction of whole cycle execution time (2.65 ms to be 

precise). While this is twice the value of the time for SSW size of 128 × 128 𝑝𝑥, a lot 

bigger amount of data is being copied – 295 kB per stream, with duration of 60 μs (4 807 

MB/s). The transfer of results is the same – 1.15 μs for 48 B of data (39.7 MB/s). This 

results into GPU waiting of 2.14 ms in each cycle (the data copy takes 505.4 μs including 

the context switching operations), which is still almost twice as long as in previous case. 

Therefore, it can be assumed, that the CPU is still not powerful enough, because the GPU 

is waiting even the data copying is asynchronous.  

 

 
Figure 8.6: Timeline view from NVIDIA CUDA profiler on kernels execution for SSW of size 384×256 px and HW 
configuration 2 showing the execution order and timing of kernels for two stabilization cycles. 

 Therefore, the use of bigger SSW resulted into better utilization of GPU (the 

waiting on CPU reduced from 8.11 ms to 2.14 ms. Yet, there is still some space left for 

further improvements (e.g. better CPU work scheduling). 

The detailed timeline view from Figure 8.7 shows, that the kernels execution is still 

overlapping, but with significantly smaller part. This is caused by the number of 

computations required for each kernel, which results into high utilization of GPU. 
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Figure 8.7: Detail of timeline view from Figure 8.6 showing the concurrent execution of kernels: red - rgb2gray kernel, 

brown - LBP kernel, green - NNMP kernel, other - sort kernels. The NNMP kernel was trimmed for better visualization. 

Further, there is also visible bigger count of used sorting kernels – the result of 

NNMPS is too big to fit into shared memory at once, therefore the sorting is partitioned. 

The timing of kernels from the longest is as follows: 12.47 ms for NNMP kernel, 1.45 ms 

for sorting, 13.7 μs for LBP kernel and 11.8 μs for RGB to gray conversion.  The whole 

cycle for this case takes 104.1 ms to execute (9.6 FPS), which is the slowdown of almost 

5.9 %. The bigger slowdown is interesting, as we expected it to be smaller, because the 

lower amount of events is logged by the profiler. Yet, as described before, there is still 

some room left for improvements, and in theory, the execution speed of 9.8 FPS can be 

achieved (102 ms per cycle and utilization of 99.8 %) by either faster CPU or different 

algorithm structure. However, it would still not result into real-time execution and 

therefore this possible modification can be discarded. 

 

 
Figure 8.8: Timeline view from NVIDIA OpenCL profiler on kernels execution for SSW of size 384×256 px and HW 

configuration 2 showing the execution order and timing of kernels for two stabilization cycles. 

The similar does apply also for OpenCL (see Figure 8.8) – the gap, where the GPU 

remains unutilized is greatly reduced when compared to the previous case. Yet, the data 

transfer takes 6.48 ms, from which the data transfer to device takes 62.2 μs (4 647.3 MB/s) 

for 296 kB of data (the OpenCL transfers slightly bigger amount of data, as OpenCV adds 

padding for faster access. For unknown reason, this is not done for CUDA).  The request 

for result data again causes the copy of entire data block – 144 kB during 26.9 μs (5 200.2 
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MB/s), not only 48 B. Yet, the data copy occurs during the execution of kernels and 

therefore it is not a problem. However, we were unable to find out, why the data copy in 

CUDA was not also executed during kernel execution (both implementations use the 

same CPU algorithm and are designed for this behavior). 

 

 
Figure 8.9 Detail of Timeline view from Figure 8.8 showing the execution order of kernels: red - rgb2gray kernel, 

brown - LBP kernel, green - NNMP kernel, gray – GPU utilization, other - sort kernels. The NNMP kernel was trimmed 

for better visualization. 

The detailed timeline view in Figure 8.9 shows, that similarly to the CUDA 

version, more kernels is launched for sorting of results resulting into more context 

switching operations (again 1.4 μs per one context switch). Also, there is still no overlap 

of kernels which results into degraded performance over CUDA. The one execution cycle 

takes 108.0 ms (9.25 FPS) which results into performance degradation of 4.1 % caused 

by the profiler. Here, on the contrary of CUDA, the slowdown behaves as expected (the 

slowdown is reduced with the lower amount of evets to log). The data copy operation 

including the GPU waiting takes 9.3 ms, which is much bigger value than in case of 

CUDA. If the GPU waiting was removed, the execution speed of 9.3 FPS would be 

achievable, which is similarly to the CUDA implementation negligible. The order of the 

kernels requiring most execution time is also the same: 12.04 ms for NNMP kernel, 418 

μs for sorting, 12.6 μs for LBP kernel and 11.9 μs for RGB to gray conversion. The 

NNMP kernel is slightly faster than its CUDA equivalent (by 3.5%). However, the sorting 

kernels are faster by 71.2 %. Yet, further testing is required for final decision if the Bitonic 

sort used in OpenCL version is faster than Radix sort used in CUDA, as the time 

consumption of Radix sort can be enlarged by the concurrent execution with NNMP 

kernel. Also the LBP kernel is slightly faster than its CUDA equivalent. This can be 

caused by the padding added to the data by OpenCV. Yet, the OpenCL version is still 

slower by almost 4 % from its CUDA equivalent, due to the CUDA’s ability to run 

multiple kernels concurrently. 

The C++ AMP implementation cycle for SSW of size 384 × 256 𝑝𝑥 is 417.9 ms 

long, which is the speed of 2.4 FPS (slowdown of 4.3 %). The slowdown behaves as 
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expected (lower with longer execution times for kernels). The execution order is due to 

the restrictions described before the same as for smallest tested SSW size. However, the 

interesting thing is the length of kernel execution times – the profiler shows, that the 

NNMP execution is even faster than for smaller SSW (112 μs). Yet, this is not possible, 

as the kernel is executing 16 times more operations. However, the closer look at other 

operations shows, that the data copy operation of 432 kB takes 48.67 ms, whether the 

same data copy operation 48 kB in 2.1 ms, which is 23 times slower. Therefore, it can be 

assumed, that the information shown in profiler are not the ones for entire kernel 

execution, but rather its initialization (similarly to the CUDA’s Runtime API line in 

timeline (see Figure 8.6) and OpenCL’s API line in timeline (see Figure 8.8). Therefore, 

all theoretical speed computations based on this information are not valid. Yet, it might 

be possible to measure the time more accurately, as the possibility to add custom markers 

into code exists [44]. However, their usage would be out of the scope of this work. 

 

 
Figure 8.10: Timeline view from Visual Studio Concurrency profiler on kernels execution for SSW of size 384×256 px 

and HW configuration 2 showing the concurrent execution of kernels: blue – data copy and kernels execution, gray – 

grouped data copies and kernels, that are too small to distinguish. 

These results has shown, that for the small sizes of SSWs, it is important to have 

fast CPU (otherwise, the GPU must wait). The speed of GPU’s access to the RAM is also 

important (even more for fast GPUs), as the NNMP kernel execution time is similar to 

the other kernels and their execution time can negatively affect the total execution time, 

because of the possibly slow access to the global memory. However, this does not apply 

as much in case of bigger SSWs, as the NNMP computation uses local data copy. 

Therefore, for optimal results, all these factors (CPU and GPU speed, GPU’s memory 

bandwidth and PCIe transfer rate, input video resolution and SSW size) must be in right 

balance in order to fully utilize all available resources. 

Also, there is the question, of how much accurate are used profilers, especially in 

time measurement for small data transfers and kernels. Nonetheless, the there is a problem 

with presented theoretical speeds: the profiler causes slowdown of execution (as has been 

shown), but we were unable to determine, if the slowdown is caused by the bigger breaks 

between the executions, the kernel execution times stretching or both. Therefore, the 

computed theoretical values would likely differ in real scenario and can be used only for 

the illustration of the performance bottlenecks. 

8.1.2 Measured results 

The performance testing was done on video sequence “tracking” using average values 

from the first 500 frames. This ensured, that there is enough samples (stabilization cycles) 

and also it is fast enough, as the testing of whole video sequence would require great 
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amount of time. In order to remove influence of kernels compilation, the second run is 

used in measurement.  

The selection of this video does not have any specific reason. The testing on the 

other video sequences would yield mostly the same results (the smaller resolution reduces 

the CPU usage and therefore there might be some small performance gain on slower 

CPUs like Intel Q6600, but both cameras produces the same bitrate when recomputed to 

the same FPS). Further, the deviations from the average were not measured, as the 

preliminary testing has shown, that they are smaller than 2 % (which does not matter, 

because the change can be neglected). The same is also true for the repeatability. 

For the rest of this thesis, the boundary for the real-time processing is set to the 24 

FPS, as this value is lowest standardized framerate for both video acquisition devices and 

cinemas. However, as mentioned before, the video stabilization is in computer vision 

often the only one of the first steps in entire process. Therefore, it is preferable to achieve 

high processing speed of video stabilization in order to enable further processing in real 

time. Also, the standards defining the video in 60 FPS exists. For this reason, the second 

boundary at the 60 FPS is chosen, that enables the real time processing of both most 

available video format speeds and enough spare time for additional video processing in 

real time. The measured values between these boundaries are distinguished using 

different colors, as can be seen in Table 8.4. 

 
Table 8.4: Visual division of FPS into color categories. 

0 – 29.9 30 – 59.9 60 + 

 
Table 8.5: Performance comparison of proposed algorithm using different frameworks for SSW size of 128×128 px. 

HW configuration 1 2 3 4 5 6 7 

OpenCL 
FPS 55.0 82.2 164.0 198.8 142.7 78.4 196.2 

Usage 58 % 25 % 75 % 60 % 42 % 38 % 44 % 

OpenCL 

NVIDIA 

FPS - 84.1 164.0 198.8 - 61.0 200.4 

Usage - 26 % 75 % 60 % - 10 % 44 % 

CUDA 
FPS - 88.2 195.2 224.0 - 160.0 202.2 

Usage - 28 % 84 % 80 % - 12 % 44 % 

C++ 

AMP 

FPS 21.0 42.5 84.4 109.7 61.2 81.8 114.9 

Usage 49 % 58 % 65 % 52 % 44 % 49 % 44 % 

CPU 

OpenMP 

FPS 26.2 26.2 51.8 56.5 56.5 30.3 51.5 

Usage 96 % 96 % 95 % 95 % 98 % 99 % 98 % 

CPU 
FPS 6.5 6.5 10.9 7.5 7.5 0.9 10.5 

Usage 24 % 24 % 20 % 13 % 13 % 3 % 20 % 
 

As can be seen from Table 8.5, even for the smallest SSW size, the CPU does not 

have enough compute power to stabilize video in real-time. However, when all the cores 

are used, the processing speed can be considered to be real-time, and in case of HW 

configurations 3, 4, 5 and 7 also with some space for further processing. In case of GPU, 
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the processing speed is far beyond the real-time boundary, except the C++ AMP version, 

in HW configuration 1, where the execution speed does not enable real-time video 

stabilization. Further, only in two cases (OpenCL for configuration 1 and C++ AMP for 

configuration 2) is below the second limit of 60 FPS. From other results, it can be seen, 

that the CUDA implementation is fastest, closely followed with both OpenCL versions. 

Then, the third is C++ AMP with performance slightly better than half of CUDA 

performance. Yet, on the slowest GPU, it is even slower than CPU. Also, this 

implementation is slower than best of current CPU’s even on the more powerful GPU 

used in HW configuration 2. 

The next thing is the utilization of the GPUs. The slowest graphics card (Radeon 

5750) is in OpenCL implementation used significantly more than card in configuration 2 

(58 % vs 25 %). As the profiling has shown (see section 8.1.1), this is due to the both 

small performance of GPU and the slow CPU, where the same kernel execution takes 

much more time in case of C++ AMP and the OpenCL implementation must wait for the 

CPU provide data. The same is also true for the other tested HW configurations. 

Here is also visible the difference of between the standard OpenCL and NVIDIA’s 

modified version with memory barrier in divergent branch – yet, it is true only for the 

HW configurations 2, 6 and 7 (Fermi and Maxwell architectures designed for computing). 

 
Table 8.6: Performance comparison of proposed algorithm using different frameworks for SSW size of 192×128 px. 

HW configuration 1 2 3 4 5 6 7 

OpenCL FPS 31.0 82.0 89.7 100.0 142.8 108.0 176.4 

Usage 70 % 60 % 82 % 79 % 62 % 39 % 48 % 

OpenCL 

NVIDIA 

FPS - 82.0 86.6 100.0 - 49.2 176.4 

Usage - 60 % 82 % 80 % - 19 % 48 % 

CUDA FPS - 89.1 95.1 114.0 - 153 192.0 

Usage - 80 % 84 % 93 % - 52 % 52 % 

C++ 

AMP 

FPS 13.5 26.5 48.1 58.0 34.9 63.3 78.1 

Usage 65 % 70 % 73 % 66 % 70 % 47 % 56 % 

CPU 

OpenMP 

FPS 15.1 15.1 31.0 35.4 35.4 20.2 32.0 

Usage 96 % 96 % 97 % 98 % 98 % 99 % 98 % 

CPU FPS 3.8 3.8 6.4 4.7 4.7 0.6 6.5 

Usage 24 % 24 % 20 % 13 % 13 % 3 % 20 % 
 

The Table 8.6 shows, that the CPU was indeed a limitation for all of used 

configurations: the GPU utilization has risen rapidly when compared with previous SSW 

size, but the FPS rate remains almost the same for some configurations (2, 5, 6 and 7). 

Yet, the CPU speed declines roughly 66 %. Therefore, the only the more powerful CPUs 

are able to stabilize video in real time (3, 4, 5 and 7) when all cores are employed and the 

others are way below the required limit. 

The interesting thing in results is the performance bottleneck of NVIDIA’s OpenCL 

against normal OpenCL for HW configurations 3 and 6. However, we were unable to 
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investigate this behavior deeply, as the tests were performed on these PCs using remote 

desktop without ability to install profiler. 

 
Table 8.7: Performance comparison of proposed algorithm using different frameworks for SSW size of 256×128 px. 

HW configuration 1 2 3 4 5 6 7 

OpenCL FPS 23.5 65.0 54.3 67.4 104.7 86.0 160.3 

Usage 88 % 75 % 80 % 86 % 52 % 29 % 65 % 

OpenCL 

NVIDIA 

FPS - 70.0 56.4 67.8 - 86.0 162.3 

Usage - 75 % 82 % 87 % - 29 % 65 % 

CUDA FPS - 81.0 62.2 75.1 - 158.0 230.8 

Usage - 89 % 94 % 95 % - 58 % 70 % 

C++ 

AMP 

FPS 9.4 16.8 28.8 34.1 31.2 40.0 48.1 

Usage 73 % 77 % 78 % 74 % 66 % 55 % 70 % 

CPU 

OpenMP 

FPS 9.4 9.4 21.1 21.7 21.7 13.2 21.3 

Usage 96 % 96 % 96 % 98 % 98 % 99 % 98 % 

CPU FPS 2.4 2.4 4.4 2.9 2.9 0.4 4.3 

Usage 24 % 24 % 20 % 13 % 13 % 3 % 20 % 
 

The test results from Table 8.5 shows that even the SSW size has doubled, the 

resulting speed remains approximately the same for the computation oriented GPUs (2, 

5, 6 and 7) and in case of NVIDIA, their version of OpenCL has again better results. The 

performance of the other GPUs is slowly declining and the utilization has risen for all 

GPUs, approaching 95 % in some cases. Yet, all GPUs except Radeon 5750 are able to 

stabilize the video in real-time and most of the even with enough power for other 

computations. However, the C++ AMP version performance is still slow. 

The CPUs speed has again declined (as expected) by roughly 40 % and none of the 

CPUs is able to stabilize the resulting video in real-time even when all cores are used. 

 
Table 8.8: Performance comparison of proposed algorithm using different frameworks for SSW size of 192×192 px. 

HW configuration 1 2 3 4 5 6 7 

OpenCL FPS 17.1 53.0 39.6 47.6 87.7 66.9 111.0 

Usage 82 % 75 % 79 % 83 % 61 % 59 % 57 % 

OpenCL 

NVIDIA 

FPS - 53.0 38.9 48.2 - 67.1 111.0 

Usage - 74 % 78 % 85 % - 35 % 57 % 

CUDA FPS - 64.7 45.2 54.5 - 115.5 175.3 

Usage - 93 % 91 % 96 % - 67 % 80 % 

C++ 

AMP 

FPS 7.9 14.4 24.9 29.6 35.7 35.7 42.7 

Usage 77 % 82 % 83 % 75 % 96 % 55 % 70 % 

CPU 

OpenMP 

FPS 7.2 7.2 17.1 17.1 17.1 11.5 18.0 

Usage 96 % 96 % 95 % 98 % 98 % 99 % 98 % 

CPU FPS 1.8 1.8 3.6 2.3 2.3 0.3 3.7 

Usage 24 % 24 % 20 % 13 % 13 % 3 % 20 % 
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The SSW size of 192 × 192 𝑝𝑥 is demanding enough (see Table 8.8) to fully utilize 

all the GPUS and the performance drop is observable even for the most powerful ones. 

Yet, the results are only slightly worse than in case of results in Table 8.5 (performance 

drop of approximately 15 %). However, the CPU implementations have performance 

drop of almost 25 %. 

 
Table 8.9: Performance comparison of proposed algorithm using different frameworks for SSW size of 256×192 px. 

HW configuration 1 2 3 4 5 6 7 

OpenCL FPS 10.9 34.6 27.9 33.3 90.1 60.0 95.4 

Usage 90 % 83 % 89 % 91 % 65 % 47 % 62 % 

OpenCL 

NVIDIA 

FPS - 34.6 28.5 33.3 - 60.0 95.4 

Usage - 83 % 90 % 91 % - 47 % 62 % 

CUDA FPS - 39.7 30.2 35.2 - 96.5 126.2 

Usage - 96 % 97 % 97 % - 71 % 84 % 

C++ 

AMP 

FPS 1.9 8.9 17.2 19.2 21.6 25.1 28.1 

Usage 83 % 87 % 88 % 82 % 61 % 67 % 72 % 

CPU 

OpenMP 

FPS 4.5 4.5 10.6 10.3 10.3 8.4 11.5 

Usage 96 % 96 % 96 % 98 % 98 % 99 % 99 % 

CPU FPS 1.1 1.1 2.2 1.4 1.4 0.3 2.3 

Usage 24 % 24 % 20 % 13 % 13 % 3 % 20 % 
 

The further increase of the SSW size brings again performance drop for all tested 

hardware configurations. The GPUs 2, 3 and 4 are still able to process video in the real-

time, but there is not much room left for other computations. Also, the C++ AMP versions 

are no longer usable, except for configurations 6 and 7. These GPUs are still not fully 

utilized (the used CPUs are slow), yet they are suitable for another tasks except the video 

stabilization. Also, the CUDA version is still faster than OpenCL. 

 
Table 8.10: Performance comparison of proposed algorithm using different frameworks for SSW size of 256×256 px. 

HW configuration 1 2 3 4 5 6 7 

OpenCL FPS 6.9 21.2 16.3 19.6 59.2 40.1 92.7 

Usage 95 % 89 % 97 % 99 % 65 % 45 % 99 % 

OpenCL 

NVIDIA 

FPS - 21.2 16.4 19.6 - 39.9 92.7 

Usage - 89 % 97 % 99 % - 52 % 99 % 

CUDA FPS - 23.4 16.8 19.6 - 60.0 78.4 

Usage - 97 % 97 % 98 % - 81 % 89 % 

C++ 

AMP 

FPS 3.0 5.4 10.4 12.0 15.0 16.7 19.0 

Usage 90 % 92 % 90 % 87 % 85 % 75 % 73 % 

CPU 

OpenMP 

FPS 2.6 2.6 6.3 6.0 6.0 5.2 6.9 

Usage 96 % 96 % 98 % 98 % 98 % 62 % 99 % 

CPU FPS 0.7 0.7 1.3 0.8 0.8 0.2 1.4 

Usage 24 % 24 % 20 % 13 % 13 % 3 % 20 % 
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The SSW size four times bigger than the initial one is the challenge for all used 

configurations (see Table 8.10). The CPUs are again slower than in previous cases. 

However, also the GPUs from configurations 2, 3 and 4 are no longer usable for real-time 

video stabilization using implemented method. The same apply for the C++ AMP across 

all GPUs. However, the GPUs 5, 6 and 7 are still suitable for real-time processing, even 

that the framerate of stabilization is relatively low, because their utilization is only slightly 

higher than 50 % (CPU is the limitation). Therefore, additional, not CPU intense tasks 

can be computed without the impact on the stabilization speed.  

The interesting thing also visible from the table is the better performance of 

OpenCL over CUDA for GPU 7 by almost 19 %. However, this behavior could not be 

examined by profiler for the reasons mentioned before. 

 
Table 8.11: Performance comparison of proposed algorithm using different frameworks for SSW size of 384×192 px. 

HW configuration 1 2 3 4 5 6 7 

OpenCL FPS 5.0 16.6 12.7 13.3 44.2 39.2 70.9 

Usage 93 % 91 % 97 % 99 % 71 % 62 % 81 % 

OpenCL 

NVIDIA 

FPS - 16.6 12.8 13.3 - 39.2 70.9 

Usage - 91 % 97 % 99 % - 62 % 81 % 

CUDA FPS - 17.9 13.1 13.3 - 58.0 63.4 

Usage - 98 % 97 % 99 % - 81 % 92 % 

C++ 

AMP 

FPS 2.4 4.3 8.2 9.4 11.7 14.1 14.9 

Usage 92 % 92 % 95 % 91 % 85 % 65 % 80 % 

CPU 

OpenMP 

FPS 2.1 2.1 6.3 5.3 5.3 4.6 6.0 

Usage 96 % 96 % 97 % 98 % 98 % 62 % 99 % 

CPU FPS 0.5 0.5 1.3 0.7 0.7 0.2 1.2 

Usage 24 % 24 % 20 % 13 % 13 % 3 % 20 % 
 

The SSW size increase to 384 × 192 𝑝𝑥 does basically make first four HW 

configurations unusable for real-time stabilization (see Table 8.11). The remaining three 

configurations are usable only with OpenCL and CUDA. However, the GPUs are still not 

fully utilized, as the used CPUs does are not able to supply enough of data for processing. 

Therefore, additional, non CPU intensive tasks can be computed on GPUs.  

Also, this case also shows the same interesting behavior as in previous case, where 

the OpenCL version is faster than CUDA. 

The last tested SSW size (Table 8.12) brings another drop in speed of all GPUs. 

The results are similar to the previous case, as only the last three GPUs are suitable for 

real-time video stabilization for this SSW size. However, they are still not fully utilized 

and therefore can be used for additional computations.  

The impact of the CPU performance on the used GPU can be seen from the speedup 

between the last two GPUs: both of them uses the same architecture and even the chip. 

However, the later disabled two blocks of compute units and the high performance is 

ensured by the higher working frequency. Yet, the later has significantly bigger 
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performance in video-stabilization. This is caused by the used CPUs, where their working 

frequencies are 2.0 GHz and 4.4 GHz respectively. Because the implemented video 

stabilization method uses only one thread to select the areas of concern and send them to 

GPU, the frequency has linear impact to raw performance. Therefore, the GPU can be 

also used by other unused threads for other computations. 

 
Table 8.12: Performance comparison of proposed algorithm using different frameworks for SSW size of 384×256 px. 

HW configuration 1 2 3 4 5 6 7 

OpenCL FPS 3.9 9.7 6.7 7.8 30.5 23.5 35.5 

Usage 94 % 93 % 90 % 97 % 79 % 63 % 82 % 

OpenCL 

NVIDIA 

FPS - 9.7 6.7 7.8 - 23.5 35.5 

Usage - 93 % 97 % 97 % - 63 % 82 % 

CUDA FPS - 10.2 6.9 8.2 - 30.3 37.7 

Usage - 98 % 99 % 99 % - 85 % 95 % 

C++ 

AMP 

FPS 0.6 2.5 5.1 5.9 8.2 7.5 9.8 

Usage 88 % 95 % 95 % 92 % 85 % 74 % 85 % 

CPU 

OpenMP 

FPS 1.2 1.2 3.0 2.8 2.8 2.3 3.3 

Usage 96 % 96 % 98 % 98 % 98 % 32 % 99 % 

CPU FPS 0.3 0.3 0.6 0.4 0.4 0.1 0.7 

Usage 24 % 24 % 20 % 13 % 13 % 3 % 20 % 
 

Besides the raw performance values, the actual speedup of GPGPU over CPU is 

also important. For this reason, two summary charts were created for each configuration 

(see APPENDIX B: GPGPU speedup over CPU): the one showing the speedup against 

the sequential CPU version and the one showing the speedup against the CPU parallelized 

version. The speedup values are scaled to the real area of used SSW in order to better 

visualize the possible speedup and its course. 

The results show, that the speedup depends greatly on the ration of the speeds of 

used CPU and GPU – if the ratio is big (the CPU is slow), the GPU must wait for CPU to 

deliver data required for computation. This behavior can be seen for HW configurations 

2, 6 and 7 (Figure 9.7, Figure 9.11 and Figure 9.12). However, when the amount of 

computation reaches the certain level, the GPU is no longer limited and the speedup 

stabilizes at the approximately same value. The value itself depends on the used CPU, 

therefore, it vary greatly between used configurations. For this reason, the summary 

figure with speedup normalized to 100 GFLOPS of CPU performance and 1 TFLOPS of 

GPU performance was created in order to enable fair comparison of speedups achievable 

on different GPUs (see Figure 8.11). This clearly shows, that the architectures designed 

for compute (HW configurations 2, 5, 6 and 7) provides the best performance. In ideal 

case (e.g. by direct measurement), the data series should have linear shape. However, 

because the data of the figure are only estimated from other measured values, there are 

deviations from this expected shape.  
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Figure 8.11: The relative speedup of the OpenCL implementation on the all used GPUs normalized to the 1 TFLOPS 
of performance and 100 % of utilization for all measured SSW sizes over the CPUs normalized to the 100 GFLOPS 

and 100 % utilization. 

The interesting thing is, that when the performance of both GPU and CPU is 

normalized to the same value of 100 GFLOPS, none of the GPUs does provide better 

performance per 1 FLOPS except the NVIDIA Quadro M6000 in some cases. Yet, three 

advantages of GPUs exists: firstly, in lot of cases, they are already present in PC and it 

would be pity not to use them. Secondly, they provide additional performance and when 

used, the part of CPU dedicated to other tasks. Lastly, their performance is higher by at 

least two orders of magnitude with the same power consumption and their price is 

comparable.   

Further, the performance of the tested GPGPU frameworks was also tested. The 

results can be seen in Figure 8.12. Here, the OpenCL performance is considered to 

represent 100 %. On all tested hardware configurations, the C++ AMP performance was 

between 20 % and 60 % of the OpenCL performance. For this reason, the C++ AMP 

implementation of algorithm is not competitive. The second solution – CUDA has better 

results and outperforms the OpenCL in most cases. Its performance is mostly about 5 % 

better, for smaller SSW sizes it is even more. In case of large SSW sizes, the difference 

drops down to 5 %. 
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The speedup of CUDA and C++ AMP over OpenCL 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) 

Figure 8.12: The speedup comparison for CUDA and C++ AMP over OpenCL: a) HW configuration 1, b) HW 

configuration 2, c) HW configuration 3, d) HW configuration 4, e) HW configuration 5, f) HW configuration 6, g) 
HW configuration 7. 
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8.2 Video stabilization quality evaluation 

For the real-time applications, the quality of video stabilization is equally important as its 

speed. While multiple evaluation techniques of video stabilization quality exists, they all 

have some issues (see chapter 2.4). Therefore, the presented real-time video stabilization 

method was evaluated using multiple approaches.  

8.2.1 ITF 

The ITF testing was performed only on the central part of size 880 × 320 𝑝𝑥. The reason 

for choosing only the small part of input resolution is possibility of error introduction 

caused by the black edges that are the result of image stabilization. 

 
Table 8.13: Comparison of ITF values for original and stabilized video. 

Video 

number 
1 2 3 4 5 6 7 8 9 10 11 

Original 

ITF [dB] 
21.6 29.5 23.4 26.8 29.9 30.3 22.6 23.4 27.7 20.6 19.8 

Stabilized 

ITF [dB] 
22.7 29.1 22.8 28.4 31.2 33.4 22.7 25.0 28.2 24.3 23.1 

Difference 

[dB] 
1.1 -0.4 -0.6 1.6 1.3 3.1 0.1 1.6 0.5 3.7 3.3 

 

As can be seen from the results of measurement in Table 8.13, the ITF values are 

indeed very similar for video sequences containing rapid zoom changes. In two of four 

video sequences capturing the car ride from the driver’s viewpoint the ITF metrics get 

worse with the image stabilization. However, the difference is not big even for the video 

sequences with the minimum of the movement. This is caused by the strong footprint of 

the rolling shutter effect in all of the videos and focus changes. Therefore, the quality of 

video stabilization was evaluated also visually. The subjective opinion of multiple 

persons is that this metrics does not show the real quality of the stabilization. For all those 

reasons, the second evaluation using the frequency analysis was performed 

8.2.2 Camera path evaluation 

Because the ITF test results shows very similar values for videos with the zoom changes, 

another technique employing frequency analysis to compare the presence of different 

frequencies was used. While for the full objectivity, the use of some different stabilization 

method for frame displacement computation would be suitable, we were unable to find 

such a solution that is used enough and at the same time able to export the displacement 

values for individual frame pairs. Therefore, the proposed algorithm was used. In order 

to ensure the correctness of stabilization, the biggest tested SSW size (384 × 256 𝑝𝑥) 
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was used. This size enables to use correction of up to 96 𝑝𝑥 for x axis and 64 𝑝𝑥 for y 

axis in both directions (half of the MSW size, as the frames can be displaced in both 

directions). Then, the displacement values were padded to the power of 2 and transformed 

using DFT. The output of this process are the magnitudes of the frequency components 

present in the data. The data itself were converted to the absolute values for better 

visualization and shows only the real part of the transform. They can be found in 

APPENDIX D: Frequency analysis of camera paths before and after video stabilization. 

 

Frequency analysis of camera path in walking-2 video 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8.13: The frequency analysis of the walking-2 video sequence: a) x axis before stabilization, b) x axis after 
stabilization, c) y axis before stabilization, d) y axis after stabilization. 

As can be seen from the results, in all of the video sequences, the higher frequencies 

are present. However, their amount is radically reduced by the stabilization. Also, prior 

to the stabilization, in some case (e.g. “walking-2” video sequence, Figure 8.13) is the 

0E+0
1E+3
2E+3
3E+3
4E+3
5E+3
6E+3
7E+3
8E+3

0 2 4 6 8 10 12 14 16

va
lu

e 
[-

]

f [Hz]

0E+0
1E+3
2E+3
3E+3
4E+3
5E+3
6E+3
7E+3
8E+3

0 2 4 6 8 10 12 14 16

va
lu

e 
[-

]

f [Hz]

0E+0

1E+3

2E+3

3E+3

4E+3

5E+3

0 2 4 6 8 10 12 14 16

va
lu

e 
[-

]

f [Hz]

0E+0

1E+3

2E+3

3E+3

4E+3

5E+3

0 2 4 6 8 10 12 14 16

va
lu

e 
[-

]

f [Hz]



60 

 

prevailing frequency of about 1 Hz in x axis and 2 Hz in y axis. The proposed stabilization 

method removes this prevailing frequencies and the most common frequencies becomes 

the ones around zero. 

 

Camera path in walking-2 video 

 
(a) 

 
(b) 

Figure 8.14: Camera path in walking-2 video before and after video stabilization: a) x axis, b) y axis. 

For better comparison, the figures containing the absolute position of camera pose 

against the first frame for the first 500 frames was generated. They can be found in 

APPENDIX C: Camera paths before and after video stabilization. The Figure 8.14 shows 

the absolute camera pose before and after the video stabilization of the “walking-2” video 

sequence. As can be seen, the proposed stabilization smoothens the camera path. 

However, the used Kalman filtering has several issues: firstly, the response separation of 

wanted and unwanted motion in first few frames is not perfect, as the camera movement 

is followed closely. This is the expected behavior, as the Kalman filtering uses prediction 

of the future state based on the previous states. However, the second and bigger issue is 

the inability to recognize the sudden intended change in camera position and cannot be 

resolved by the standard Kalman filter, as it is one of its properties. Therefore, based on 

the preferences and nature of the video that needs to be stabilized, its parameters can be 

modified to better suit its application (e. g. in case of walking, the used settings fails to 

straighten the camera movement in x axis. This can be resolved by smaller sensitivity to 

the difference of the actual and predicted position, but it will result into bigger delay when 

sudden intended change of camera position is introduced. From the Figure 8.14a it is 

clear, that the delay is approximately 7 frames. This results to the threshold of 2.1 Hz. 
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The bigger frequencies are filtered out, as they are considered to by shake. The lower 

frequencies are smoothen, but followed with delay. Therefore, the better filtering is 

required to solve this issues. 

8.2.3 Subjective quality evaluation 

By subjective visual evaluation, all of the testing video sequences are better than their 

originals in terms of stability. However, the problem is the presence of rolling shutter 

effect, where image defects like scaling in vertical axis or wriggle are present in the 

images. This, when combined with blur, often causes that the resulting video seems 

unstabilized and only the side by side comparison proves otherwise. Another common 

problem is that for small focal lengths, the barrel effect is present in the frames and their 

stabilization creates the weird and disturbing changes in images (e.g. “walking” video 

sequences). Therefore, the high quality camera with good optics is required to eliminate 

the presence of these image defects. 

Beside these problems, it can be said, that the proposed method overcame our 

expectations as it is able to deal not only with the image defects but also with the zoom 

effect (camera movement in z axis) or with the partially covered image with different 

objects (the “car-ride-4” video has the dashboard in the bottom quarter of the image). 

8.3 Comparison of real and estimated SSW size 

Based on the output of the stabilization of tested video sequences, the analysis of the 

required compensation values was performed. The histogram shows, that the distribution 

of values is not the normal distribution as in case of hand tremor (see section 2.2), but 

rather peaked at the deviation of zero with the sharp decrease within deviation of few 

pixels and then followed by slow descent to the extremes (see Figure 8.15). 

 

 
Figure 8.15: Distribution of displacement values in the x axis of the car-ride video sequence. 
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For this reason, it may be suitable to lower the computation requirements by 

defining the smaller window size. Because of the sharp descent of counts for bigger 

displacements, even the reduction of requirements to correctly capture 99 % of translation 

changes may bring significant speedup. Therefore, for all of tested video sequences, the 

SSW sizes to capture 99 %, 95 % and 90 % of displacements between consecutive frames 

were computed (see Table 8.14). The SSW sizes in table are distinguished by different 

colors based on the ability of the hardware used for testing to stabilize the video with the 

defined SSW sizes in real-time and perform other computations: green – all hardware, 

yellow – only HW configurations 5, 6 and 7, red – none of the used hardware. 

 
Table 8.14: Measured sizes of SSW required to compensate specific percentage of consecutive frames displacement. 

Video 

number 
1 2 3 4 5 6 7 8 9 10 11 

100 % [px] 204 
× 

236 

304 
× 

212 

180 
× 

72 

168 
× 

88 

68 
× 

108 

40 
× 

52 

156 
× 

140 

376 
× 

192 

192 
× 

180 

232 
× 

196 

304 
× 

232 

99 % [px] 72 
× 

76 

232 
X 

76 

144 
× 

36 

72 
× 

32 

60 
× 

96 

36 
× 

28 

64 
× 

72 

360 
× 

92 

100 
× 

80 

164 
× 

144 

140 
× 

172 

95 % [px] 36 
× 

48 

128 
× 

36 

88 
× 

20 

44 
× 

20 

44 
× 

40 

28 
× 

16 

44 
× 

40 

164 
× 

44 

48 
× 

32 

108 
× 

48 

108 
× 

124 

90 % [px] 24 
× 

36 

64 
× 

24 

52 
× 

12 

32 
× 

16 

32 
× 

32 

20 
× 

12 

32 
× 

24 

92 
× 

32 

40 
× 

20 

92 
× 

28 

92 
× 

108 
 

As can be seen from the results in Table 8.14, even the reduction to capture only 99 

% of displacement values brings significant speedup. However, it is important to note, 

that the SSW sizes shown in this table are not optimized for GPU processing and are 

computed only for the used testing videos. Therefore, in real scenario, a more thorough 

testing may be required to set the SSW size accordingly. 

The table further shows that the required SSW sizes for the stabilization of the car-

ride videos depends greatly on the nature of the roads and the speed of vehicle. In the first 

“car-ride” video, the changes in y axis are bigger than in x axis, this is due to the high 

speed of vehicle, when even the small pothole causes the vehicle to swing. In other three 

video sequences, this effect is not present, as the car is moving slowly, even that the 

potholes are bigger (average speed of 25 kph over 70 kph in first video). Secondly, there 

is the great influence of the distance of the objects – the near object changes their position 

and size more rapidly between the consecutive frames and therefore bigger search 

window size is required. Therefore, the design of the SSW size in case of vehicle mounted 

camera must account for its focal distance, the environment (distance of the object from 

camera) and the expected speed of vehicle. Yet, the “car-ride” video sequence shows, that 

the proposed method is able to stabilize with the vehicle moving at the top speed of 100 

kph without problems. 
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Next, the “jitter” videos are as expected within the expected tolerance, as described 

in section 5.1.1. However, this does not apply for the “pan-zoom” video sequences. Yet, 

this is not due to the shake, but rather the sudden and intended change of camera pose. 

Therefore, during the making of the decision of how big the SSW should be, the maximal 

speed of intended camera pose should be also accounted for. The same does apply for the 

tracking video. 

However, in the walking videos, the camera position change is caused by the nature 

of walking, and therefore it cannot be affected in order to reduce the needed SSW size. 

The results in Table 8.14 further shows, that the requirement to correctly 

compensate 95 % (or 99 %) of consecutive frames displacements enables to greatly lower 

the computation requirements. This also means, that with bigger SSW sizes, the 

stabilization of video sequences captured with the big focal distance is also possible, if 

the actual translation differences are not too big. 
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9 CONCLUSION AND FUTURE WORK 

The aim of this Master’s thesis was to introduce reader into the problem of image 

stabilization and available solutions. Firstly, problem description was presented together 

with examples of situations, where image stabilization is needed.  

In the first chapter, three phenomena related to shaky image were presented together 

with explanation of their origin, relationship and possible countermeasures. Also the 

methods used for evaluation of quality of video stabilization were presented.  

Second chapter presented four approaches used to stabilize image: mechanical, 

optical, electronics and digital with aim on DIS. Digital image stabilization was then 

deeply explained and reader was guided through individual steps of this process. Also the 

issues caused by changes of camera’s angle of view and focal length were introduced 

together with possible countermeasures. Enhanced version of DIS was also presented. 

Finally, a brief summary comparing all four principles was provided. 

The third chapter introduced the reader into GPGPU frameworks available in the 

workplace. Three technologies were discussed: OpenCL, CUDA and C++ AMP. For 

each, brief summary of pros and cons was presented, together with a short example of 

code. Finally, all three technologies were compared in a brief summary. 

The fourth chapter firstly presented requirements for the video stabilization 

algorithm. Then, based on them, the algorithm for real-time stabilization using GPU was 

designed. The possibility of real-time processing is achieved by selection of eight areas 

of concern from the input frame. This both reduces the search space (less computationally 

expensive) and brings the error correction mechanism, as the required translation of 

consecutive frames is computed independently for each area. However, another level of 

error correction is introduced by taking the 8 best motion vectors from each area. This 

can improve the selection of the global motion vector in case of areas with non-distinctive 

edges. 

The next step in order to achieve fast processing is the reduction of the color space 

for the correlation. Therefore, the special binarization technique called Local Binary 

Patterns is used. Its modified version enables creation of truly binary images and unlike 

in the case of the simple thresholding, the resulting image has edges present even for the 

very similar areas of image (e.g. sand, snow or sky). Secondly, binary image enables fast 

correlation using XOR. Then, for the each displacement of correlation template and the 

search area, this operation returns the number of non-matching points (NNMP), which 

can be directly used as the criterion for the local motion vector. Therefore, best local 

motion vectors are those, where NNMP value is lowest. The next step is the computation 

of global motion vector. This is achieved by selection of median value of local motion 

vectors for both of axes independently. Last step is the separation of the intended camera 

motion from the shake itself. For this, the Kalman filtering is used. 

The fifth chapter describes the implementation of the proposed algorithm. Besides 

the specifics of implementation, also the author’s subjective impression on the specific 

technology is mentioned. The designed algorithm was implemented using all three 
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GPGPU solutions described in this work. Moreover, the reference CPU version was 

created in both sequential and multithreaded version using OpenCL.  

The sixth chapter contains the description of the 11 created testing videos. Besides 

their detailed description, also table with common properties is presented. The videos 

contains are captured using two different cameras and in various light conditions and 

environments. They are divided into multiple categories based on the mounting type 

(fixed, hand-held) and the resulting video type (walking, jitter, pan and zoom, car ride, 

tracking). 

The seventh chapter contains the test results of the all algorithm implementations 

in the terms of execution speed and the assessment of the quality of the algorithm itself.  

Firstly, the nine hardware configurations used for testing are presented. Their 

description contains exact specification of the used hardware (working frequency, 

available memory, theoretical performance). Then, all three GPU implementations are 

profiled under the one of the used hardware configurations for two different sizes of areas 

of concern (the smallest one and biggest one used during thorough testing of 

performance). Here, the assumptions that were done during implementation are verified 

and discussed. The most important is, that even the algorithms are designed to work 

asynchronly, the used CPU is too slow to deliver data in time when the smallest areas of 

concern are used and the GPU must wait. This results into different utilization of GPU 

over different GPGPU implementations. The second finding is that the CUDA is able to 

launch different kernels at the same time, if the utilization of GPU is low. This overlap of 

kernels brings advantage over the OpenCL, as even that the duration of the kernels is 

slightly longer, the overlap reduces the total execution time. Next, the C++ AMP profiler, 

on the contrary of the CUDA and OpenCL does not report the actual operations on GPU, 

but only their scheduling order. Therefore, it is not possible to compare actual execution 

times and compute the maximal theoretically achievable execution speed. Also, it was 

found out, that the OpenCL version does transfer all the resulting values of NNMP instead 

of only required 8 (the CUDA does this correctly). 

The second part of this chapter presents the performance results for 8 different sizes 

of areas of concern for all hardware configurations. Besides the achieved speed measured 

in frames per seconds (FPS), also the utilization of GPU is measured. The utilization is 

also measured for both CPU versions. 

The results shows that depending on the computing power of the used GPU, even 

the fastest CPUs are not fast enough to fully utilize the most powerful GPUs. This can be 

partially overcome by the use of bigger area of concern. The next thing is, that all of the 

GPUs are able to achieve the real-time processing speed (24 FPS), even when limited by 

the CPU. The performance of the different GPGPU implementations shows, that the C++ 

AMP can achieve only about half of the performance of OpenCL. The CUDA 

implementation is faster than OpenCL by 10 % in for smaller areas of concern and 3 % 

in case of bigger areas of concern. 

Further, the resulting performance of all GPUs and CPUs was normalized to the 

same theoretical computing power (1 TFLOPS and 100 GFLOPS respectively) and 100 
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% of utilization in order to compare the performance of the GPGPU architectures 

themselves. In case of NVIDIA, the results are as expected, where the GPU architecture 

designed for computing (Fermi and Maxwell) have much higher performance than Kepler 

designated for computer games. The similar result is in case of AMD, where the new 

CGN architecture of R9 Fury outperform the old Radeon 5750 by several times. Based 

on this, it can be concluded, that the NVIDIA’s GPUs dedicated for computing have better 

performance in this algorithm to the unit of computing power than the AMD’s. However, 

this claim may not be valid for all GPU computations. 

In the third part, the quality of the video stabilization itself was evaluated. Firstly 

the Inter-frame Transform Fidelity criterion based on PSNR was used. However, because 

this methodology is not suitable for the videos containing zoom changes, the resulting 

values were very similar and in two cases of car-ride videos even worse. Yet, the 

subjective visual evaluation has shown, that the stabilized video is better than original. 

Therefore, second evaluation metrics empowering the discrete Fourier transform was 

used to get the magnitude of the present frequencies. Here, the improvement is clearly 

visible, as the higher frequencies are greatly reduced. This confirms the visual 

assessment. Yet, another evaluation was performed by visual comparison of the camera 

path before and after the video stabilization. This also confirmed that the performance of 

the method can be considered to be great. However, the proposed method suffers from 

the delayed reaction of the used Kalman filter for preserving of the intended motion. 

The last part of this chapter perform statistical analysis of the displacements 

measured between frames in all testing videos. It was found out, that the values are not 

distributed according to the normal distribution, but rather peaked around the zero 

displacement with rapid decrease within small deviation. Then, the further decrease is 

slow towards the extremes. This means, that the lowering of requirements from correct 

compensation of 100 % frames to only 95 % can save significant amount of computations 

and therefore speedup the entire process. 

To summarize, both the development and the testing shows, that the use of CUDA 

should be preferred over the OpenCL if suitable, because of the easier development and 

slightly better performance. The C++ AMP cannot be recommended for the image 

processing operations, as it lacks the support for 8-bit data type and data must be padded 

to 32 bits. This brings the unnecessary overhead caused by the conversions. Next, the 

achieved speeds of processing are far beyond the real-time threshold of 24 FPS, especially 

for smaller areas of concern and therefore this algorithm may be suitable even for mobile 

devices. It was also proven, than the most powerful GPUs currently available are too fast 

for the best CPUs for this task and therefore can be used for other computations without 

performance impact. Further, the proposed method showed great robustness against the 

different image defects like blur or rolling shutter, but also against movement in z axis. 

This is also true for the partially covered input frame with the foreign object. However, 

the problematic part is the Kalman filtering, which has issues with reaction to the sudden, 

but intended changes of camera pose. Lastly, the proposed algorithm enables the 

adaptation to the real-life scenarios, as the size of the areas of concerns can be adapted to 
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match the expected shake in both axes. At the end, it can be concluded, that all of the 

items in assignment were fulfilled. 

In the future work, the designed algorithm can be further improved by replacing the 

Kalman filtering by some hybrid method. Also, it may be worth to try different ratio of 

the correlation template and the searching window. Lastly, the optimization of proposed 

algorithms, especially for the used GPU architectures could bring another performance 

boost.  
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APPENDIX A: OpenCL, CUDA and C++ 

AMP in comparison with C++ OpenMP 

OpenCL code sample 

 
Figure 9.1: OpenCL device code for vector addition. 

 
 

1. #pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable 
2. __kernel void vectorAdd(__global float *A, __global float *B, __global 

float *S, __const unsigned int n) { 
3.     size_t id = get_global_id(0); 
4.     if (i < n) 
5.         S[id] = A[id] + B[id]; 
6. } 

1. #include <utility> 
2. #define __NO_STD_VECTOR // Use cl::vector instead of STL version 
3. #include <CL/cl.hpp> 
4. #include <cstdio> 
5. #include <cstdlib> 
6. #include <fstream> 
7. #include <iostream> 
8. #include <string> 
9. #include <iterator> 
10.  
11. int main() { 
12.     const size_t n = 50000; 
13.     float *A = (float *)malloc(n * sizeof(float)); 
14.     float *B = (float *)malloc(n * sizeof(float)); 
15.     float *S = (float *)malloc(n * sizeof(float)); 
16.  
17.     for (int i = 0; i < n; ++i) { 
18.         A[i] = rand() / (float)RAND_MAX; 
19.         B[i] = rand() / (float)RAND_MAX; 
20.     } 
21.  
22.     cl_int err;    
23.  
24.     cl::vector< cl::Platform > platformList; 
25.     cl::Platform::get(&platformList); 
26.     std::string platformVendor; 
27.     platformList[0].getInfo((cl_platform_info)CL_PLATFORM_VENDOR,  
28.         &platformVendor); 
29.     cl_context_properties cprops[3] = { CL_CONTEXT_PLATFORM,  
30.         (cl_context_properties)(platformList[0])(), 0 }; 
31.     cl::Context context(CL_DEVICE_TYPE_CPU, cprops, NULL, NULL, &err); 
32.     cl::Buffer a(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,n,A, &err); 
33.     cl::Buffer b(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,n,B, &err); 
34.     cl::Buffer s(context, CL_MEM_WRITE_ONLY, n, NULL, &err); 
35.  
36.     cl::vector<cl::Device> devices; 
37.     devices = context.getInfo<CL_CONTEXT_DEVICES>(); 
38.  
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Figure 9.2: OpenCL host code for vector addition. 

CUDA code sample 

 

39.     std::ifstream file("hello_world.cl"); 
40.     std::string prog(std::istreambuf_iterator<char>(file),  
41.         (std::istreambuf_iterator<char>())); 
42.     cl::Program::Sources source(1, std::make_pair(prog.c_str(),  
43.         prog.length() + 1)); 
44.     cl::Program program(context, source); 
45.     program.build(devices, ""); 
46.  
47.     cl::Kernel kernel(program, "vectorAdd", &err); 
48.      
49.     cl::CommandQueue queue(context, devices[0], 0, &err); 
50.     cl::Event event; 
51.     kernel.setArg(0, a); 
52.     kernel.setArg(1, b); 
53.     kernel.setArg(2, s); 
54.     kernel.setArg(3, sizeof(size_t), &n); 
55.     queue.enqueueWriteBuffer(a, CL_TRUE, 0, n, A, 0, 0); 
56.     queue.enqueueWriteBuffer(b, CL_TRUE, 0, n, B, 0, 0); 
57.     queue.enqueueNDRangeKernel(kernel, cl::NullRange, cl::NDRange(n),  
58.         cl::NDRange(1, 1), NULL, &event); 
59.     queue.enqueueReadBuffer(s, CL_TRUE, 0, n, S); 
60.  
61.     for (unsigned int i = 0; i < n; i++) 
62.         std::cout << static_cast<float>(S[i]); 
63.  
64.     free(A); free(B); free(S); 
65.     return 0;  
66. } 

1. #include <cuda_runtime.h> 
2.  
3. __global__ void vectorAdd(float *A, float *B, float *C, int n) { 
4.     int i = blockDim.x * blockIdx.x + threadIdx.x; 
5.     if (i < n) 
6.         C[i] = A[i] + B[i]; 
7. } 
8.  
9. int main(void) { 
10.     size_t n = 50000; 
11.     float *A, *B, *S; 
12.     cudaMallocManaged(&A, n); cudaMallocManaged(&B, n);  
13.     cudaMallocManaged(&S, n); 
14.  
15.     for (int i = 0; i < n; ++i) { 
16.         A[i] = rand() / (float)RAND_MAX; 
17.         B[i] = rand() / (float)RAND_MAX; 
18.     } 
19.  
20.     int threadsPerBlock = 256; 
21.     int blocksPerGrid = (n + threadsPerBlock - 1) / threadsPerBlock; 
22.     vectorAdd <<< blocksPerGrid, threadsPerBlock >>>(A, B, S, n); 
23.     cudaDeviceSynchronize(); 
24.  
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Figure 9.3: CUDA code for vector addition. 

C++ AMP code sample 

 
Figure 9.4: C++ AMP code for vector addition. 

C++ OpenMP code sample 

 

25.     for (unsigned int i = 0; i < n; i++) 
26.         std::cout << static_cast<float>(S[i]); 
27.  
28.     cudaFree(A); cudaFree(B); cudaFree(S); 
29.     return 0; 
30. } 
31.  

1. #include <iostream>  
2. #include <amp.h>  
3.  
4. int main() { 
5.     size_t n = 50000; 
6.     float *A = (float *)malloc(n * sizeof(float)); 
7.     float *B = (float *)malloc(n * sizeof(float)); 
8.     float *S = (float *)malloc(n * sizeof(float)); 
9.  
10.     for (int i = 0; i < n; ++i) { 
11.         A[i] = rand() / (float)RAND_MAX; 
12.         B[i] = rand() / (float)RAND_MAX; 
13.     } 
14.  
15.     concurrency::array_view<const float, 1> a(n, A); 
16.     concurrency::array_view<const float, 1> b(n, B); 
17.     concurrency::array_view<float, 1> sum(n, S); 
18.     sum.discard_data(); 
19.  
20.     concurrency::parallel_for_each(sum.extent, [=](concurrency::index<1> i)  
21.         restrict(amp) { 
22.         sum[i] = a[i] + b[i]; 
23.     }); 
24.  
25.     for (unsigned int i = 0; i < n; i++) 
26.         std::cout << static_cast<float>(sum[i]); 
27.  
28.     free(A); free(B); free(S); 
29.     return 0; 
30. } 

1. #include <iostream>  
2.  
3. int main() { 
4.  size_t n = 50000; 
5.  float *A = (float *)malloc(n * sizeof(float)); 
6.  float *B = (float *)malloc(n * sizeof(float)); 
7.  float *S = (float *)malloc(n * sizeof(float)); 
8.  
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Figure 9.5: C++ OpenMP code for vector addition. 

  

1.     for (int i = 0; i < n; ++i) { 
2.         A[i] = rand() / (float)RAND_MAX; 
3.         B[i] = rand() / (float)RAND_MAX; 
4.     } 
5.  
6.     #pragma omp parallel 
7.     for (int i = 0; i < n; i++) 
8.         S[i] = A[i] + B[i]; 
9.  
10.     for (unsigned int i = 0; i < n; i++) 
11.         std::cout << static_cast<float>(S[i]); 
12.  
13.     free(A); free(B); free(S); 
14.     return 0; 
15. } 
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APPENDIX B: GPGPU speedup over CPU 

The speedup of GPU over CPU for hardware configuration 1 

  
(a) (b) 

Figure 9.6: The speedup of GPU processing for different sizes of SSW over: a) single threaded CPU processing, b) 

OpenMP parallelized CPU processing for hardware configuration 1. 

The speedup of GPU over CPU for hardware configuration 2 

  
(a) (b) 

Figure 9.7: The speedup of GPU processing for different sizes of SSW over: a) single threaded CPU processing, b) 

OpenMP parallelized CPU processing for hardware configuration 2. 

The speedup of GPU over CPU for hardware configuration 3 

  
(a) (b) 

Figure 9.8: The speedup of GPU processing for different sizes of SSW over: a) single threaded CPU processing, b) 
OpenMP parallelized CPU processing for hardware configuration 3. 
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The speedup of GPU over CPU for hardware configuration 4 

  
(a) (b) 

Figure 9.9: The speedup of GPU processing for different sizes of SSW over: a) single threaded CPU processing, b) 
OpenMP parallelized CPU processing for hardware configuration 4. 

The speedup of GPU over CPU for hardware configuration 5 

  
(a) (b) 

Figure 9.10: The speedup of GPU processing for different sizes of SSW over: a) single threaded CPU processing, b) 
OpenMP parallelized CPU processing for hardware configuration 5. 

The speedup of GPU over CPU for hardware configuration 6 

  
(a) (b) 

Figure 9.11: The speedup of GPU processing for different sizes of SSW over: a) single threaded CPU processing, b) 
OpenMP parallelized CPU processing for hardware configuration 6. 
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The speedup of GPU over CPU for hardware configuration 7 

  
(a) (b) 

Figure 9.12: The speedup of GPU processing for different sizes of SSW over: a) single threaded CPU processing, b) 
OpenMP parallelized CPU processing for hardware configuration 7. 
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APPENDIX C: Camera paths before and 

after video stabilization 

Camera path in car-ride video 

 
(a) 

 
(b) 

Figure 9.13: Camera path in car-ride video before and after video stabilization: a) x axis, b) y axis. 

Camera path in car-ride-2 video 

 
(a) 

 
(b) 

Figure 9.14: Camera path in car-ride-2 video before and after video stabilization: a) x axis, b) y axis. 
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Camera path in car-ride-3 video 

 
(a) 

 
(b) 

Figure 9.15: Camera path in car-ride-3 video before and after video stabilization: a) x axis, b) y axis. 

Camera path in car-ride-3 video 

 
(a) 

 
(b) 

Figure 9.16: Camera path in car-ride-3 video before and after video stabilization: a) x axis, b) y axis. 
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Camera path in jitter video 

 
(a) 

 
(b) 

Figure 9.17: Camera path in jitter video before and after video stabilization: a) x axis, b) y axis. 

Camera path in jitter-2 video 

 
(a) 

 
(b) 

Figure 9.18: Camera path in jitter-2 video before and after video stabilization: a) x axis, b) y axis. 
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Camera path in pan-zoom video 

 
(a) 

 
(b) 

Figure 9.19: Camera path in pan-zoom video before and after video stabilization: a) x axis, b) y axis. 

Camera path in pan-zoom-2 video 

 
(a) 

 
(b) 

Figure 9.20: : Camera path in pan-zoom-2 video before and after video stabilization: a) x axis, b) y axis. 
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Camera path in tracking video 

 
(a) 

 
(b) 

Figure 9.21: Camera path in tracking video before and after video stabilization: a) x axis, b) y axis. 

Camera path in walking video 

 
(a) 

 
(b) 

Figure 9.22: Camera path in walking video before and after video stabilization: a) x axis, b) y axis. 
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Camera path in walking-2 video 

 
(a) 

 
(b) 

Figure 9.23: Camera path in walking-2 video before and after video stabilization: a) x axis, b) y axis. 
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APPENDIX D: Frequency analysis of 

camera paths before and after video 

stabilization 

Frequency analysis of camera path in car-ride video 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9.24: Frequency analysis of camera path in car-ride video: a) x axis before stabilization, b) x axis after 

stabilization, c) y axis before stabilization, d) y axis after stabilization. 
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Frequency analysis of camera path in car-ride-2 video 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9.25: Frequency analysis of camera path in car-ride-2 video: a) x axis before stabilization, b) x axis after 

stabilization, c) y axis before stabilization, d) y axis after stabilization. 
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Frequency analysis of camera path in car-ride-3 video 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9.26: Frequency analysis of camera path in car-ride-3 video: a) x axis before stabilization, b) x axis after 

stabilization, c) y axis before stabilization, d) y axis after stabilization. 
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Frequency analysis of camera path in car-ride-4 video 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9.27: Frequency analysis of camera path in car-ride-4 video: a) x axis before stabilization, b) x axis after 

stabilization, c) y axis before stabilization, d) y axis after stabilization.  
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Frequency analysis of camera path in jitter video 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9.28: Frequency analysis of camera path in jitter video: a) x axis before stabilization, b) x axis after 

stabilization, c) y axis before stabilization, d) y axis after stabilization. 
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Frequency analysis of camera path in jitter-2 video 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9.29: Frequency analysis of camera path in jitter-2 video: a) x axis before stabilization, b) x axis after 

stabilization, c) y axis before stabilization, d) y axis after stabilization.  
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Frequency analysis of camera path in pan-zoom video 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9.30: Frequency analysis of camera path in pan-zoom video: a) x axis before stabilization, b) x axis after 

stabilization, c) y axis before stabilization, d) y axis after stabilization. 
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Frequency analysis of camera path in pan-zoom-2 video 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9.31: Frequency analysis of camera path in pan-zoom-2 video: a) x axis before stabilization, b) x axis after 

stabilization, c) y axis before stabilization, d) y axis after stabilization.  
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Frequency analysis of camera path in tracking video 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9.32: Frequency analysis of camera path in tracking video: a) x axis before stabilization, b) x axis after 

stabilization, c) y axis before stabilization, d) y axis after stabilization. 
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Frequency analysis of camera path in walking video 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9.33: Frequency analysis of camera path in walking video: a) x axis before stabilization, b) x axis after 

stabilization, c) y axis before stabilization, d) y axis after stabilization.  
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Frequency analysis of camera path in walking-2 video 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9.34: Frequency analysis of camera path in walking-2 video: a) x axis before stabilization, b) x axis after 

stabilization, c) y axis before stabilization, d) y axis after stabilization. 
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