
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

y)
•

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF INTELLIGENT SYSTEMS

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

HARDWARE ACCELERATED DIGITAL IMAGE
STABILIZATION IN A VIDEO STREAM
STABILIZACE OBRAZU POMOCÍ HARDWAROVÉ AKCELERACE

SEMESTER THESIS
SEMESTRÁLNÍ PRÁCE

AUTHOR Be. DAVID PACURA
AUTOR PRÄCE

SUPERVISOR doc. Ing., Dipl.-Ing. MARTIN DRAHANSKY,
Ph.D.

VEDOUCI PRÄCE

BRNO 2016

Masler Thesis Specification/18562/2015/xpacurOO

B r n o U n i v e r s i t y o f T e c h n o l o g y - F a c u l t y o f I n f o r m a t i o n T e c h n o l o g y

D e p a r t m e n t o f I n t e l l i g e n t S y s t e m s A c a d e m i c y e a r 2 0 1 5 / 2 0 1 6

M a s t e r T h e s i s S p e c i f i c a t i o n
Fo r : P a c u r a D a v i d , B e .
B r a n c h o f s t u d y : B i o i n f o r m a t i c s a n d b i o c o m p u t i n g
T i t l e : H a r d w a r e A c c e l e r a t e d D i g i t a l I m a g e S t a b i l i z a t i o n i n a V i d e o S t r e a m
C a t e g o r y : I m a g e P r o c e s s i n g

I n s t r u c t i o n s f o r p r o j e c t w o r k :
1. S t u d y t h e a v a i l a b l e l i t e r a t u r e c o n c e r n i n g d i g i t a l i m a g e s t a b i l i z a t i o n in a v i d e o s t r e a m . A l s o

f a m i l i a r i z e y o u r s e l f w i t h t h e a v a i l a b l e G P G P U a r c h i t e c t u r e in t h e w o r k p l a c e .
2. D e s i g n s u i t a b l e p a r a l l e l a l g o r i t h m f o r G P G P U d ig i t a l i m a g e s t a b i l i z a t i o n in a v i d e o s t r e a m .
3. I m p l e m e n t t h e p r o p o s e d a l g o r i t h m .
4 . C r e a t e s u i t a b l e v i d e o s e q u e n c e s in o r d e r t o t e s t t h e i m p l e m e n t e d a l g o r i t h m . A l s o p r e p a r e t h e

s y s t e m f o r r ea l t i m e t e s t i n g .
5. P e r f o r m e x p e r i m e n t s w i t h d a t a in a r e a l t i m e . S u m m a r i z e a n d d i s c u s s a c h i e v e d r e s u l t s .

B a s i c r e f e r e n c e s :
• K I R B u r c u , K U R T M e l t e m , U R H A N O u z h a n . Loca l B i n a r y P a t t e r n B a s e d F a s t D i g i t a l I m a g e

S t a b i l i z a t i o n . Signal Processing Letters, IEEE, 2 0 1 5 , 2 2 . 3 : 3 4 1 - 3 4 5 .
• LI G a n g . F P G A i m p l e m e n t a t i o n o f r e a l - t i m e d i g i t a l i m a g e s t a b i l i z a t i o n . I n : Selected Proceedings

of the Photoelectronic Technology Committee Conferences held July-December 2013.
I n t e r n a t i o n a l S o c i e t y f o r O p t i c s a n d P h o t o n i c s , 2 0 1 4 . p. 9 1 4 2 1 U - 9 1 4 2 1 U - 7 .

• D R A H A N S K Ý M a r t i n , O R S Á G F i l ip a H A N Á Č E K Pet r . A c c e l e r o m e t e r B a s e d D i g i t a l V i d e o
S t a b i l i z a t i o n f o r G e n e r a l S e c u r i t y S u r v e i l l a n c e S y s t e m s . International Journal of Security and
Its Applications. D a e j e o n : S t řed isko p r o p o d p o r u v ě d y a techn ického v ý z k u m u , 2 0 1 0 ,
V o l . 2 0 1 0 , N o . 1, p. 1 0 . I S S N 1 7 3 8 - 9 9 7 6 .

R e q u i r e m e n t s f o r t h e s e m e s t r a l d e f e n s e :
I t e m s 1 a n d 2.

D e t a i l e d f o r m a l s p e c i f i c a t i o n s c a n be f o u n d a t h t t p : / / w w w . f i t . v u t b r . c z / i n f o / s z z /

The Master Thesis must define its purpose, describe a current state of the art, introduce the theoretical and technical
background relevant to the problems solved, and specify what parts have been used from earlier projects or have been taken
over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of the
complete program documentation, program source files, and a functional hardware prototype sample if desired. The
information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R, etc.) in formats common at
the FIT. In order to allow regular handling, the medium will be securely attached to the printed report.

S u p e r v i s o r : D r a h a n s k ý M a r t i n , d o c . I n g . , D i p l . - I n g . , P h . D . , D I T S F IT B U T
B e g i n n i n g o f w o r k : N o v e m b e r 1, 2 0 1 5
D a t e o f d e l i v e r y : M a y 2 5 , 2 0 1 6

P e t r Hanáček
Associate Professor and Head of Department

http://www.fit.vutbr.cz/info/szz/

Abstract

The aim of this thesis is to propose a new method for digital image stabilization in video stream
by exploiting computing power of G P G P U . This unit enables a real time stabilization of high
resolution digital video sequences, which is important for further post-processing in computer
vision and/or military applications. In order to compare available architectures for G P G P U
programming, the proposed algorithm is implemented in three major frameworks. Results are
then compared and discussed.

Abstrakt

Cílem této práce je návrh nové techniky pro stabilizaci obrazu za pomoci hardwarové
akcelerace prostřednictvím G P G P U . Využití této techniky umožňuje stabilizaci videosekvencí
v reálném čase i pro video ve vysokém rozlišení. Toho je zapotřebí pro ulehčení dalšího
zpracování v počítačovém vidění nebo v armádních aplikacích. Z důvodu existence vícerých
programovacích modelů pro G P G P U je navrhnutý stabilizační algoritmus implementován ve
třech nej používanějších z nich. Jejich výkon a výsledky jsou následně porovnány a
diskutovány.

Keywords

Digital image stabilization, hardware acceleration, GPGPU, GPU, C U D A, OpenCL, C++ A M P ,
kernel, parallelization

Klíčová slova

Digitální stabilizace obrazu, hardwarová akcelerace, GPGPU, GPU, CUDA, OPENCL, C++ A M P ,
kernel, paralelizace

Citace

P A C U R A , Dávid: Hardware Accelerated Digital Image Stabilization, Master's thesis, Brno, 2016,
Vysoké učení technické v Brně, Fakulta Informačních technologií. Vedoucí práce Drahanský Martin.

Hardware Accelerated Digital Image Stabilization in a
Video Stream

Prohlášení

„Prohlašuji, že jsem svou diplomovou práci na téma Stabilizace obrazu pomocí hardwarové
akcelerace vypracoval samostatně pod vedením vedoucího diplomové práce a s použitím
odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a
uvedeny v seznamu literatury na konci práce.
Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením této
diplomové práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl
nedovoleným způsobem do cizích autorských práv osobnostních, a jsem si plně vědom
následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně
možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI . díl 4
Trestního zákoníku č. 40/2009 Sb."

Dávid Pacura
24.5.2016

©Dávid Pacura, 2016
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě informačních
technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění autorem je
nezákonné, s výjimkou zákonem definovaných případů.

Table of Contents
1 Introduction 7

2 Terms and Taxonomy 8

2.1 Causes of image blur 8

2.2 Physiological tremor 8

2.3 Effects of stabilization on resulting video 9

2.4 Video stabilization quality evaluation 10

2.4.1 Visual evaluation 10

2.4.2 Inter-frame Transform Fidelity 10

2.4.3 Camera path monitoring 11

3 Image stabilization systems classification 12

3.1 Mechanical image stabilizer 12

3.2 Optical image stabilizer 13

3.3 Electronic image stabilizer 14

3.4 Digital image stabilizer 14

3.4.1 Motion estimation 15

3.4.2 Motion filtering 16

3.4.3 Motion compensation 16

3.4.4 Enhanced motion compensation 19

3.5 Chapter summary 20

4 GPGPU acceleration platforms 21

4.1 OpenCL 22

4.2 C U D A 24

4.3 C++ A M P 26

4.4 Chapter summary 26

5 Algorithm design 28

5.1 Preprocessing 28

5.1.1 Areas of concern selection 28

5.2 Local motion estimation 30

5.3 Global motion estimation and filtering 31

5.4 Motion compensation 31

6 implementation 32

6.1 C P U implementation 33

6.2 C U D A implementation 33

1

6.3 OpenCL implementation 35

6.4 C++AMP 36

7 Testing video sequences 38

8 Results 40

8.1 Performance comparison 41

8.1.1 Profiling of GPGPU implementations 42

8.1.2 Measured results 49

8.2 Video stabilization quality evaluation 58

8.2.1 ITF 58

8.2.2 Camera path evaluation 58

8.2.3 Subjective quality evaluation 61

8.3 Comparison of real and estimated SSW size 61

9 Conclusion and future work 64

APPENDIX A: OpenCL, C U D A and C++ A M P in comparison with C++ OpenMP 73

OpenCL code sample 73

C U D A code sample 74

C++ A M P code sample 75

C++ OpenMP code sample 75

APPENDIX B: GPGPU speedup over C P U 77

APPENDIX C: Camera paths before and after video stabilization 80

APPENDIX D: Frequency analysis of camera paths before and after video stabilization86

2

List of Figures
Figure 2.1: Mean (blue) and +3o (green) bound on hand tremor spectra: a) angular rates

measured on x and y axis; b) angles measured on x and y axis [8] 9

Figure 3.1: Principle of Steadicam [15] 12
Figure 3.2: Schematics of Barrel shift sensor with Hall sensor (a) and Camera Tilt with Photo

sensor (b) [8] 14

Figure 3.3: Processing flow of DIS [2] 15

Figure 3.4: Digital stabilization principle 17

Figure 3.5: A schema of relationship between A O V , F and sensor dimension 18

Figure 3.6: Relationship between angle of view and unsafe chip area with focal length of

horizontal part of 35 mm film equivalent 19

Figure 4.1: Development and prediction of C P U and G P U computing power 21

Figure 4.2: Vector addition in OpenCL 24

Figure 4.3: Vector addition in C U D A 25

Figure 4.4: Vector addition in C++ A M P 26

Figure 5.1: Areas of concern selection 29

Figure 5.2: Different local binary patterns configurations, a) LBP(4,i) b) LBP<4,3) c) LBP(8,4) 30

Figure 8.1: Timeline view from NVIDIA C U D A profiler on kernels execution for SSW of size

128x128 px and FTW configuration 2 showing the execution order and timing of kernels for two

stabilization cycles 43

Figure 8.2: Detail of timeline view from Figure 8.1 showing the concurrent execution of

kernels: red - rgb2gray kernel, brown - L B P kernel, green - N N M P kernel, blue and purple - sort

kernels 43

Figure 8.3: Timeline view from NVIDIA OpenCL profiler on kernels execution for SSW of size

128x 128 px and FTW configuration 2 showing the execution order and timing of kernels for two

stabilization cycles 44

Figure 8.4: Detail of timeline view from Figure 8.3 showing the execution order of kernels: red

- rgb2gray kernel, brown - L B P kernel, green - N N M P kernel, gray - GPU utilization, blue and

purple - sort kernels 44

Figure 8.5: Timeline view from Visual Studio Concurrency profiler on kernels execution for

SSW of size 128x 128 px and FIW configuration 2 showing the concurrent execution of kernels:

blue - data copy and kernels execution, gray - grouped data copies and kernels, that are too

small to distinguish 45

3

Figure 8.6: Timeline view from NVIDIA C U D A profiler on kernels execution for SSW of size

384x256 px and H W configuration 2 showing the execution order and timing of kernels for two

stabilization cycles 46
Figure 8.7: Detail of timeline view from Figure 8.6 showing the concurrent execution of

kernels: red - rgb2gray kernel, brown - L B P kernel, green - N N M P kernel, other - sort kernels.

The N N M P kernel was trimmed for better visualization 47
Figure 8.8: Timeline view from NVIDIA OpenCL profiler on kernels execution for SSW of size

384x256 px and H W configuration 2 showing the execution order and timing of kernels for two

stabilization cycles 47
Figure 8.9 Detail of Timeline view from Figure 8.8 showing the execution order of kernels: red

- rgb2gray kernel, brown - L B P kernel, green - N N M P kernel, gray - GPU utilization, other -

sort kernels. The N N M P kernel was trimmed for better visualization 48
Figure 8.10: Timeline view from Visual Studio Concurrency profiler on kernels execution for

SSW of size 384x256 px and H W configuration 2 showing the concurrent execution of kernels:

blue - data copy and kernels execution, gray - grouped data copies and kernels, that are too

small to distinguish 49
Figure 8.11: The relative speedup of the OpenCL implementation on the all used GPUs

normalized to the 1 TFLOPS of performance and 100 % of utilization for all measured SSW

sizes over the CPUs normalized to the 100 GFLOPS and 100 % utilization 56
Figure 8.12: The speedup comparison for C U D A and C++ A M P over OpenCL: a) HW

configuration 1, b) HW configuration 2, c) HW configuration 3, d) HW configuration 4, e) H W

configuration 5, f) HW configuration 6, g) HW configuration 7 57
Figure 8.13: The frequency analysis of the walking-2 video sequence: a) x axis before

stabilization, b) x axis after stabilization, c) y axis before stabilization, d) y axis after

stabilization 59
Figure 8.14: Camera path in walking-2 video before and after video stabilization: a) x axis, b) y

axis 60
Figure 8.15: Distribution of displacement values in the x axis of the car-ride video sequence...61
Figure 9.1: OpenCL device code for vector addition 73
Figure 9.2: OpenCL host code for vector addition 74
Figure 9.3: C U D A code for vector addition 75
Figure 9.4: C++ A M P code for vector addition 75
Figure 9.5: C++ OpenMP code for vector addition 76
Figure 9.6: The speedup of GPU processing for different sizes of SSW over: a) single threaded

C P U processing, b) OpenMP parallelized C P U processing for hardware configuration 1 77

4

Figure 9.7: The speedup of GPU processing for different sizes of SSW over: a) single threaded

C P U processing, b) OpenMP parallelized C P U processing for hardware configuration 2 77

Figure 9.8: The speedup of GPU processing for different sizes of SSW over: a) single threaded

C P U processing, b) OpenMP parallelized C P U processing for hardware configuration 3 77

Figure 9.9: The speedup of GPU processing for different sizes of SSW over: a) single threaded

C P U processing, b) OpenMP parallelized C P U processing for hardware configuration 4 78

Figure 9.10: The speedup of GPU processing for different sizes of SSW over: a) single threaded

C P U processing, b) OpenMP parallelized C P U processing for hardware configuration 5 78

Figure 9.11: The speedup of GPU processing for different sizes of SSW over: a) single threaded

C P U processing, b) OpenMP parallelized C P U processing for hardware configuration 6 78

Figure 9.12: The speedup of GPU processing for different sizes of SSW over: a) single threaded

C P U processing, b) OpenMP parallelized C P U processing for hardware configuration 7 79

Figure 9.13: Camera path in car-ride video before and after video stabilization: a) x axis, b) y

axis 80

Figure 9.14: Camera path in car-ride-2 video before and after video stabilization: a) x axis, b) y

axis 80

Figure 9.15: Camera path in car-ride-3 video before and after video stabilization: a) x axis, b) y

axis 81

Figure 9.16: Camera path in car-ride-3 video before and after video stabilization: a) x axis, b) y

axis 81

Figure 9.17: Camera path in jitter video before and after video stabilization: a) x axis, b) y axis.

82

Figure 9.18: Camera path in jitter-2 video before and after video stabilization: a) x axis, b) y

axis 82

Figure 9.19: Camera path in pan-zoom video before and after video stabilization: a) x axis, b) y

axis 83

Figure 9.20: : Camera path in pan-zoom-2 video before and after video stabilization: a) x axis,

b) y axis 83

Figure 9.21: Camera path in tracking video before and after video stabilization: a) x axis, b) y

axis 84

Figure 9.22: Camera path in walking video before and after video stabilization: a) x axis, b) y

axis 84

Figure 9.23: Camera path in walking-2 video before and after video stabilization: a) x axis, b) y

axis 85

5

Figure 9.24: Frequency analysis of camera path in car-ride video: a) x axis before stabilization,

b) x axis after stabilization, c) y axis before stabilization, d) y axis after stabilization 86

Figure 9.25: Frequency analysis of camera path in car-ride-2 video: a) x axis before

stabilization, b) x axis after stabilization, c) y axis before stabilization, d) y axis after

stabilization 87

Figure 9.26: Frequency analysis of camera path in car-ride-3 video: a) x axis before

stabilization, b) x axis after stabilization, c) y axis before stabilization, d) y axis after

stabilization 88

Figure 9.27: Frequency analysis of camera path in car-ride-4 video: a) x axis before

stabilization, b) x axis after stabilization, c) y axis before stabilization, d) y axis after

stabilization 89

Figure 9.28: Frequency analysis of camera path in jitter video: a) x axis before stabilization, b) x

axis after stabilization, c) y axis before stabilization, d) y axis after stabilization 90

Figure 9.29: Frequency analysis of camera path in jitter-2 video: a) x axis before stabilization,

b) x axis after stabilization, c) y axis before stabilization, d) y axis after stabilization 91

Figure 9.30: Frequency analysis of camera path in pan-zoom video: a) x axis before

stabilization, b) x axis after stabilization, c) y axis before stabilization, d) y axis after

stabilization 92

Figure 9.31: Frequency analysis of camera path in pan-zoom-2 video: a) x axis before

stabilization, b) x axis after stabilization, c) y axis before stabilization, d) y axis after

stabilization 93

Figure 9.32: Frequency analysis of camera path in tracking video: a) x axis before stabilization,

b) x axis after stabilization, c) y axis before stabilization, d) y axis after stabilization 94

Figure 9.33: Frequency analysis of camera path in walking video: a) x axis before stabilization,

b) x axis after stabilization, c) y axis before stabilization, d) y axis after stabilization 95

Figure 9.34: Frequency analysis of camera path in walking-2 video: a) x axis before

stabilization, b) x axis after stabilization, c) y axis before stabilization, d) y axis after

stabilization 96

6

1 INTRODUCTION
Over the past two decades, a rapid development in a field of electronic technology
brought, among other things, an increase of use of digital video cameras. This was
allowed by high miniaturization followed by low prices, and as result, usage of analog
video cameras was edged out. Nowadays, as a consequence, a wide variety of use cases
where digital video camera is used exists (e.g. movies production, home video recording,
video surveillance, reconnaissance, motion detection, target tracing, automatic
recognition, evaluation and verification). However, in many cases, camera device is hand
held or mounted on moving objects (e.g. ships, vehicles) or on high poles and towers,
where object movement or gusting wind causes camera shaking. In a lot of these cases,
high resolution, high frames count per second and steady image without parasitic effects
like shake, jitter and blur is required. This is due to requirements for successful post
processing like target tracking or movement detection [1]. Another important aspect is
video compression ratio - a better compression can be achieved with stable image with
low changes than with shaky video with lots of changes between subsequent frames [2].

However, there is often limited space, resources or both to fulfill these requirements
- usage of hardware stabilization is in many cases highly restricted or even impossible.
In this case, a digital image stabilization can be used. This enables a use of smaller video
cameras, but it requires high computing power for post-processing. Often, real time
processing of data is also required, which increases requirements for computing power
even more, because of not only video stabilization, but also additional required steps in
process must be resolved almost intermediately. This can be achieved by specialized
hardware like F P G A (field programmable gate array) or using G P G P U (general purpose
graphics processing unit). Both approaches have their application and even that the
energy efficiency of F P G A is generally better, their performance is comparable or even
worse than of G P U [3]. However this thesis w i l l focus only on G P G P U because of its
easy availability and relatively low price. This is a result of the development of CPUs in
the last years, where Intel's versions all integrate relatively powerful graphic processor
on the same printed circuit board (PCB) [4] and A M D offers A P U s - C P U s fused with
GPUs [5].

7

2 TERMS AND TAXONOMY
In order to fully understand principles and algorithms used in digital image stabilization,
used terms and taxonomy are introduced first.

2.1 Causes of image blur

One of the biggest problems of image capture is blur. It can originate from two
phenomena - shaking of the capture device, wrong focal distance of lenses, or both.
However, while focal distance can be fixed relatively easily, shake compensation is much
harder - generally, it is a slight random movement of camera in some direction. Its causes
are various - from hand shaking through movable platform shaking (moving vehicles) to
fixed platform shaking (high towers and gusting wind).

A special category are telephoto shots, where only narrow field of view is used -
high zoom magnifies even the slightest jitter and captured sequence becomes unstable. In
case of photographs, this can be compensated by high shutter speed and bigger aperture.
However, this is not always possible due to combination of various reasons (limited
resources or space, distance of object to capture, or light conditions).

In case of video capture, even usage of this countermeasures does still produce a
resulting video sequence, where although object of interest is not blurred, it is also not
still. Lucki ly, a way to compensate these parasitic effects exists and it is called image
stabilization. A multiple approaches to this problem exist, each based on different
principle, but with one ultimate objective - to produce shake-free video sequence [6].

2.2 Physiological tremor

Tremor is an involuntary oscillatory movement of body parts directly generated by
muscles during their activities when they contract and relax repeatedly. It is common
physiological phenomenon present in all human beings [7]. It is independent of age and
not clearly visible to the naked eye. However, it depends on the muscles capability to
maintain certain position against the force of gravity (standing up and holding camera
with outstretched arms produces higher physiological tremor in arm muscles than holding
camera with arms supported by a stable object). The consequences of this phenomena are
shaking image in video sequence captured by handheld devices and/or blurring effect of
objects.

In order to bring adequate countermeasures for tremor introduced to the video by
user hand-holding the camera, statistical modeling of its effects is required. A n
acquisition campaign [8] identified these vibrations as an oscillating signal with normal
distribution and amplitude less than 0.5 degrees and typical frequency between 0 H z and
20 H z (see Figure 2.1). Another study [9] shows, that 99% of shake motion is below 10
H z and amplitude less than 0.75 degrees. Both studies agree, that translation itself can be

8

neglected, as it would require movement of 10 cm in each of axes to significantly affect
the viewing pose. This is rather unlikely in case of handshake.

Handshake Spectra: Average Angular Rate - X Handshake Spectra: Average Angular Rate - Y

Frequency (Hz) Frequency (Hz)

(b)

Figure 2.1: Mean (blue) and +3a (green) bound on hand tremor spectra: a) angular rates measured on x andy axis;
b) angles measured on x and y axis [8].

As can be seen from Figure 2.1, the amplitude of 0.5 degrees is computed with
standard deviation of 3, which means that the 99.7 % of values lies within this interval.

2.3 Effects of stabilization on resulting video

Stabilized video has one more advantage beside those discussed before - smaller resulting
size. This is a result of compression algorithms used in video codecs, because of huge
space requirements of uncompressed video signal: uncompressed color (8-bit R G B)
F u l l H D video (1,920 X 1,080 pixels) with 30 frames per second would require 625
gigabytes of space to store one hour of recording. Therefore, various standards for video
compression exist, which reduces space requirements by various techniques of removing
duplicate information - e.g. X v i d [10], M P E G - 4 [11] or H.264 [12].

Among other techniques, a commonly used one is inter-frame prediction. It is used
to reduce amount of duplicate information between frames by recycling data - frames are
divided into macroblocks and future frames can refer to these. A relation exists between
number of macroblock reuse and resulting video output size - the more similar subsequent
frames are, the more prediction can be used and less space is needed to store the
information. Therefore, video stabilization can significantly reduce resulting video size
by making subsequent frames more similar [13].

9

2.4 Video stabilization quality evaluation

The important part of video stabilization is the evaluation of its quality. For this reason,
multiple approaches exists. Yet, all of them have some issues. In this section, the ones
that w i l l be used in this work during testing are presented.

2.4.1 Visual evaluation

The visual comparison is one of the most common quality evaluation types, as it enables
direct assessment by the visual comparison. However, it is not objective and does not
enable the absolute evaluation of video quality, but only relative comparison (e.g. better,
worse) between different video sequences. Also, the different people may have different
preferences, which yields another uncertainty to the evaluation process.

2.4.2 Inter-frame Transform Fidelity

Another option is the use of commonly used metrics - the Inter-frame Transform Fidelity
(ITF) [14] - it is the modification of the Peak Signal to Noise Ratio (PSNR) metrics used
to compare the similarity of two images. It is defined as follows:

Nf-i

ITF = - - ^ PSNR(k) [dB] (2.1)
f k=l

where Nf is the number of frames in video sequence and

PSNR{k) = m o g 1 Q ^ ^ [dB] (2.2)

is the peak signal to noise ratio between two consecutive frames, where
M-lN-l

MSEQc) = £ £ | | F f e a ;) - F^iUm2 (2.3)
t=0 ;'=0

is the mean square error between monochromatic images with dimensions of M X JV,
Ipmax is the maximum possible pixel intensity in the frame and Fk is the k-th frame from
sequence.

Yet, even this quality evaluation metrics is not optimal, as it does not respond well to
zoom changes or presence of multiple moving objects in image. Therefore, while it
responds very well to the videos with mostly static objects present in scene, it w i l l yield
very similar results for both original and stabilized videos containing rapid zoom changes
or captured with moving camera (e.g. car mounted). For this case, another evaluation is
required.

10

2.4.3 Camera path monitoring

The next possibility for evaluation is the comparison of the camera path before and after
video stabilization. In its basic form, where the assessment of smooth camera motion is
evaluated visually only by humans, the same problem as with visual evaluation itself
(section 2.4.1) - inability to specify the exact quality value - exist. However, the
smoothness can be evaluated also by algorithmic approaches.

For fully objective evaluation, it is required, that for the same video sequence, the
global motion vectors are created for both original and stabilized video sequence, ideally
by some commonly used algorithm for video stabilization with good displacement of
frames evaluation.

One of possibilities for this evaluation is the use of the frequency analysis - the
sequence of global motion vectors is transformed using discrete Fourier transform (DFT)
for both original and stabilized video. Then, the presence of different frequencies and
their magnitude is evaluated. In the ideal case, the stabilized video should contain only
low frequencies up to several Hertz (Hz), as the intended camera motion is slow and
smooth (composed from low frequencies) while the jitter causes rapid changes of camera
pose, therefore higher frequencies are present in signal.

However, this approach has, similarly to the previous two, issues: only the
frequencies up to the half of the sampling video frequency can be detected. This is the
rule of the sampling theorem. Therefore, for the input video with 24 frames per second
(FPS), only frequencies up to the 12 Hz can be detected.

11

3 IMAGE STABILIZATION SYSTEMS
CLASSIFICATION

The purpose of video stabilization is to remove unwanted motion in video feed. To
achieve this, a multiple principles can be used. In literature, a total of four types of
stabilization is recognized. They are all discussed in this chapter. However, in real
scenarios, their combination is often used resulting into a hybrid methods empowering
best of used principles.

3.1 Mechanical image stabilizer

A mechanical principle of image stabilization (MIS) is the oldest method. Unlike other
methods, this one does require additional equipment besides camera. The simplest
example is tripod - a portable tree-legged frame or monopod - also a portable, but one-
legged frame, both used as a platform to maintain camera in stable position. However, it
was not invented with analog video itself. Disadvantage of this approach is impossibility
to stabilize image on a moving platform. Besides these solutions, a more advanced option
is Steadicam [15]. It was invented in 1973 by commercial director Garrett Brown. It
consists of three major elements:

• A n articulated, iso-elastic arm.

• A specialized sled for camera equipment holding.

• A supportive vest.

Body mounted type Hand held type
Betacam

(Coulter weigh*}
Figure 3.1: Principle of Steadicam [16].

Handycam

12

Also, a slightly modified hand-held version exists. It is used for lighter cameras and
consists only of two parts - the supportive vest is no longer required.

Steadicam utilizes only a simple dynamic characteristics of balanced object and
does not have any active control mechanism. The main part - the sled for a camera is
divided into two parts. On one end, a platform for the camera is placed, on the other end,
a counter weight is required. Based on the camera type and other requirements, another
equipment can be mounted (e.g. additional battery or monitor) instead.

Iso-elastic arm is connected to sled in its center of mass with 3-axis gimbal. The
iso-elastic arm is composed of spring and two links that enables smooth movement. A r m
then acts as a shock absorber - with movement of operator, a part of arm attached to west
moves, however spring system in arm responds and effectively cancels sharp jolts. This
enables cancelation of any rotations of pitch, yaw and rol l that results in shaking video
and at the same time enables operator smooth positioning [15] [16].

3.2 Optical image stabilizer

Optical image stabilization (OIS), also called lens-shift stabilization, controls the optical
path between the target and the image sensor by moving mechanical parts of the camera
itself. For this, actuators for path correction and sensors for position following are needed.
This raises the complexity, thus increasing dimensions and cost of the camera module.
However, this principle can be still more space-efficient than electronic stabilization
methods. Especially in case of small image sensors, like adaptive Liquid Lens (LL) or
Shape Memory Al loy (S M A) , where small lenses are required. However, other principles
are also applicable - piezo-electric motor or Voice C o i l Motor (V C M) [8], therefore it
can be used also in bigger electronics like compact cameras and Digital Single-Lens
Reflex cameras (DSLRs).

Practically, two principles exist [8]:

• Barrel Shift - image sensor is in fixed position and lenses move with translation
movement.

• Camera Tilt - image sensor is integrated with lenses and their movement is
angular.

In case of position sensors for detection of lens movements, also two principles exist:
• Ha l l sensors - appropriate for barrel shift.
• Photo sensors - appropriate for camera tilt.

A n electronic circuit implementing OIS is therefore composed of four parts:
• M E M S gyroscope - for detection of movements and vibrations inflicted on the

system in the horizontal and vertical axes.
• Ha l l sensors - for detection of lens movements within camera module.
• Driver - for piloting the camera module into right position.

• Microcontroller - for executing the control algorithm.

13

3.3 Electronic image stabilizer

Electronic image stabilizer (EIS), also called sensor-shift stabilization or in-camera
stabilization, controls position of the image sensor itself. In principle, it is the same as
OIS - actuators use M E M S gyroscope to detect movements and compensate it with
actuators by moving the image sensor into the center of lenses' optical path. However,
actuators are in this case actually stepper motors (because of size of part required to
move). As a result, this solution is bigger than OIS [17]. A performance comparison [18]
shows, that this solution is slightly worse, however, it has its application - OIS cannot be
used in all cases (movement of bigger and relatively heavy lens systems is rather
difficult).

3.4 Digital image stabilizer

Digital image stabilization (DIS) is in contrast to the previous methods, as it does not
require any special hardware and is implemented purely by software. Therefore, it is the
best solution in terms of size and resources, as it has no hardware requirements for image
sensor. However, this principle has relatively high computational demands, as number of
operations for a set of frames rises exponentially with their resolution (0 (n 2) or worse).

14

DIS methods have three implementation steps: motion estimation, motion filtering and
compensation

• M o t i o n
compensa t i on

(see

Figure 3.3). Their importance and function w i l l be discussed below.

V ideo inpu t
M o t i o n

compensa t i on

Local mot ion
e s t ima t i on

M o t i o n es t imat ion

G loba l m o t i o n
es t ima t ion

M o t i o n f i l ter ing

Figure 3.3: Processing flow of DIS [2].

3.4.1 Motion estimation

The first step of digital video stabilization is to determine how the camera is moving. This
can be done by comparison of subsequent video frames. Because of a possibility of
multiple movements in a scene (e.g. shaking and panning of the camera together with
multiple movements in the scene), a two-step motion estimation must be performed in
order to determine the movement of the camera itself. Firstly, the current frame is divided
into regular grid (in order to reduce computational cost), where each grid contains equal
number of pixels (typically 8 X 8 or 16 X 16 pixels). Then, local motion vectors (L V M)
are computed for each block by comparing blocks from current frame with corresponding
blocks in previous frame. Search for the corresponding blocks is done by searching
block's neighborhood in previous frame. The global motion vector (G M V) representing
the estimated movement of the camera between subsequent frames is then obtained as a
combination of local motion vectors [2]. Because of big search space and high number of
compare operations, motion estimation (ME) is the most computationally expensive part
of algorithm. It is also important to note that correct motion estimation is vital, as any
error introduced in this step may affect motion compensation step [19].

15

3.4.2 Motion filtering

Even though global motion estimation vector calculated in previous step represents only
overall camera motion, it still contains both wanted (movement of the camera that should
remain after stabilization; i.e. intended movements like panning, zooming and tilting) and
unwanted motion (shake and jitter). In order to effectively stabilize video, these two types
of movement must be separated and motion compensation must be based on the unwanted
motion.

To enable separation of these two types of motion, their characteristics must be
compared. The wanted motion is relatively slow and smooth, continuing over multiple
frames in similar directions, thus producing lower frequencies. B y contrast, unwanted
motion is represented by quicker and random changes between frames, therefore produces
higher frequencies. However, the specific border between these two types of movement
depends on the situation of the camera (e.g. parasitic shaking from handheld camera
during walking has different characteristic from jittering caused by a camera mounted on
high pole by gusting wind) [20].

3.4.3 Motion compensation

Standard motion compensation (MC) works by cropping an image from the sensor by
using a movable window with smaller resolution. This window is then moved between
images in order to minimize the difference between the current and the previous frame
[6]. Because of this, effective resolution of the stabilized video is lower than that of the
sensor. Therefore, a maximal resolution of window (effective output area) in each axis
can be calculated:

EOA = SA-UA [px] (3.1)

where E O A is effective output area, S A is sensor area and U A is unsafe area.

16

Maximum possible shift of effective area

UAh/2
Effective output area (EOA)

UAh/2

UAv/2

Figure 3.4: Digital stabilization principle.

The unsafe area (UA) for both horizontal and vertical axes is computed as:

res
U A = m t a

(3.2)

where UA [—] is unsafe area in pixels for one angular change of one degree, res [px] is

actual resolution in dimension (horizontal or vertical), AOV [°] is actual angle of view
and a is maximum absolute difference of angles.

In case of video camera held by a healthy human focused on holding camera still,
a typical angular change is 0.5 degrees in each direction (see Chapter 2.2 Physiological
tremor), therefore a = 1°.

A n actual angle of view (A O V) can be computed from the focal length of lenses
and size of the chip. Then, based on A O V , chip resolution and maximum possible angle
of change, a number of unsafe pixels can be computed. In case of rectilinear (no-spatially-
distorted) lenses, field of view is:

AOV = 2 arctan — [°] (3.3)

where AOV [°] is the actual angle of view, I [mm] is the length of sensor in dimension
(horizontal or vertical) we compute A O V and f[mm] is equivalent to F [mm] i f actual
focus is in infinity.

17

focal length (30mm)

sensor
dimension
(36 mm)

lens

Figure 3.5: A schema of relationship between AOV, F and sensor dimension.

Relationship between focal length and percentage of chip area considered as unsafe
is linear (see Figure 3.6). However, angle of view decreases exponentially with F. This
means that while with lower values of F, magnification rises rapidly, with high values of
F , changes in magnification become negligible (change in magnification of 35 m m film
equivalent between F = 600 m m and F = 700 m m is only 1.17 x , while the unsafe area
rises from 29 % to 34 %). As a result, with large magnification, a digital stabilization
becomes impossible, as it would require effective output area to be unusable in practical
applications (e.g. stabilization of F u l l H D video (1,920 x 1,080 px) video at F =
600 m m would produce only output video resolution of 1,361 X 609 px, which is less
than H D resolution (1,280 X 720 px)) .

18

Relation among F, AOV and unsafe chip area for horizontal
part of 35 mm film equivalent

90

80

70

60

50

40

30

20

10

0

angle ol view (AOV) [°1

unsafe chip area [%] ,

-

-

30

25

20

15

10

100 500 600

Figure 3.6,
equivalent.

200 300 400
F (focal length) [mm]

Relationship between angle of view and unsafe chip area with focal length of horizontal part of 35 mm film

With increase of resolution of sensor area, a need for higher computing power
arises. While exact requirements for number of computations depend solely on
implemented method, a search space rises with power of 2 (0 (n 2)) . Therefore various
heuristic methods exist in order to reduce required computational power while keeping
performance the same.

3.4.4 Enhanced motion compensation

Beside standard methods for motion compensation (MC) , enhanced versions also exist.
They do not crop video immediately by using moving window. Instead, they firstly
compute positions change for each frame and then compute window dimensions that are
capable of covering entire scene. Also, frames do not necessary have to be replaced
entirely - only overlapping part of new frame overwrites old frame and remaining data is
preserved. This approach is called mosaicking [21] and enables maximal utilization of
available visual information - after computation of shifts of individual frames, a final
effective resolution can be easily computed, enabling higher output than standard motion
compensation (even in case of entirely replaced frames, as final window is no longer
dependent on predicted statistics, but rather actual statistic of video). Advantage of this
method is resistance to occasional peak changes that would cause black frame or shifted
frame in standard M C . However, a problem with combining old and new frames arises,
when changes in perspective or focus are present, a change outside current camera's angle
of view occurs or stabilization is not perfect, as this phenomena produces disruptive
transitions which are disturbing for humans.

19

3.5 Chapter summary

With performance comparison between MIS , OIS and EIS [18], the best one is OIS, with
EIS right behind and the last one is MIS . As of digital image stabilization, it can be hardly
compared to the previous methods, because while they are used before image capture
(and therefore influencing image parameters like shutter speed and/or aperture), DIS is
used in post-processing (and cannot influence image parameters). However, it can be
assumed, that its performance depends on sharpness of the image - stable image can be
achieved, however blurry image cannot be fully restored to its sharp original.

Another limitation is resolution penalty of DIS when compared to other methods.
However, in case of video capture, this is not as big problem as in photography, because
of lower requirements on resolution. Because of this, DIS can be used as a secondary
stabilization method in order to compensate shake, which was not possible to filter out
through other methods. However, it is important to note that digital image stabilization
reduces output resolution, therefore its ability to stabilize input video sequence is limited
by amplitude of jitter. This problem is significant mostly in bigger magnification, where
low angle of view is present and even slight angle changes cause significant image shift.
Mosaicking is a solution to this problem, but this approach brings new problems, that can
outweigh its advantages. Therefore, a detailed analysis of the context must be performed
prior to actual video stabilization.

20

4 GPGPU ACCELERATION PLATFORMS
General purpose graphic processing unit (GPGPU) is phenomenon of the last decade. The
beginnings reach back to the 2000, when demonstration of abstraction of G P U as a S I M D
(single instruction, multiple data) processor through 3D graphics A P I OpenGL took
place. However, it was not competitive to C P U , because even as simple task as adding
two vectors required about 20 lines of code [22] and raw processing power of GPUs did
not exceed those of CPUs until year 2003 (Intel Pentium 4 North wood @ 2.4 G H z with
9.6 G F L O P S vs. N V I D I A top G P U GeForce F X 5800 with 12 G F L O P S) . After that,
programmers realized that graphics processors have much higher raw performance grow
through new generations than C P U s and are suitable for computations even though its
usage is limited. Therefore, their interest in general purpose computation through
specialized units in GPUs had risen significantly. As a consequence, in 2003, a research
group from Stanford created ISO C99-like language called B r o o k G P U that provided a
more convenient way for graphic cards programming. However it was still not possible
to overcome some hardware limitations, like no elements indexing and limited data types
- organized into triples (for R G B) and foursomes (for R G B A) [23]. A l l this changed with
the release of new DirectX A P I version 10 - two biggest G P U companies brought highly
programmable GPUs together with support for new APIs (A M D ' s FireStream [24] and
N V I D I A ' s C U D A [25]) for general purpose computing. However, G P U is still an
accelerator connected through peripheral component interconnect express bus (PCI
Express) and requires host processor (CPU) to schedule work.

Peak double precision GFLOPS
10000
9000

8000

7000

6000
Q-O _ l 5000
Ll_

4000

3000

2000

1000

•*
• —•—GPU • CPU •

/ •

h - - "~
- " • • • = <

2008 2009 2010 2011 2012 2013
Year

2014 2015 2016 2017 2018

Figure 4.1: Development and prediction of CPU and GPU computing power.

The reason behind high performance of G P U is high number of simple processing
units. However, because of its simplicity, GPUs do not outperform C P U in all tasks.
Generally, computer architectures can be classified by Flynn's taxonomy [26]:

• SISD - single instruction stream, single data stream.

• S I M D - single instruction stream, multiple data streams.

21

• M I S D - multiple instruction streams, single data stream.

• M I M D - multiple instruction streams, multiple data streams.
Based on this division, single core C P U is SISD architecture, multicore C P U is

M I M D architecture. However, G P U is both S I M D and M I M D - S I M D in case of data-
based parallelism on compute unit's level and M I M D in case of task based parallelism on
compute units group's level.

Use of G P G P U brings a huge advantage in comparison to traditional C P U
processing in terms of speed. This is due to use of specialized hardware designed for
massive parallelization. This makes G P G P U ideal for video processing, because it
enables parallelization of these operations, thus significantly speedup of processing time.
In case of video stabilization, a set of operations is performed repeatedly on all pixels of
each image. However, in some cases, especially on hardware of the first generation, there
is a problem with I E E E 754 compliance, where the precision of some operations is
slightly less than required by this standard [27]. Another issue is performance penalty of
double precision computations - while single precision is fast, double precision is
typically two to four times slower. Therefore, it is important have this in mind during
design and development of applications for G P U , as development costs could possibly
outweigh final speedup.

However, also other issues exist - beside slow access to G P U memory (about 700
clock cycles), due to current hardware design, branching sensitivity exists. This is a
hardware limitation (compromise between speed and universality). Threads are therefore
organized into groups of 32 in case of N V I D I A [27] and 64 in case of A M D [28]. As a
result, threads in the same groups should all take the same branch, otherwise performance
penalty w i l l occur - threads w i l l be required to compute all possible branches (serialize
different execution paths), but only results of valid ones w i l l be stored [27] [28].

Currently, there are three main programming frameworks for G P G P U available:
OpenCL, C U D A and C++ A M P . A l l of them have some pros and cons and wi l l be
discussed below.

4.1 OpenCL

OpenCL [28] is an open source framework currently developed by Khronos group (initial
creator of framework is Apple). Khronos group is a consortium created by the biggest
world technology companies (A M D , A R M , Intel, I B M , N V I D I A , Apple and others.) in
order to define standards. OpenCL is a standard for general purpose parallel programing
across CPUs , GPUs and other processors. Its creation was a reaction to proprietary C U D A
framework by N V I D I A . OpenCL framework utilizes a subset of ISO C99 and adds
additional extensions in order to support parallelization. It can be also used on handheld
and embedded devices. Efficient interoperation with other Khrono's products like
OpenGL is also an asset. Typical OpenCL device consists of multiple compute units.
Functions that are executed on OpenCL device are called kernels [28].

22

First version 1.0 was released in August 2009 [29]. However, it had a lot of
drawbacks. Therefore, shortly after that, next version 1.1 was released in June 2010 [30],
which added multiple features (e.g. new data types, operations on regions, advanced
events). In November 2011, version 1.2 was released [31]. It brought ability to compile
OpenCL code into external libraries and possibility to use specialized hardware features
in kernels. As of November 2013, the latest stable version is 2.0, which added support for
some of the ISO C++11 features and nested parallelism [32]. Version 2.1 is currently in
development [33], one of biggest changes is replacement of OpenCL C with ISO C++14
subset. However, only part of companies in Khronos group support the latest standard
version (e.g. N V I D I A supports OpenCL 1.2 as of Apr i l 2015 [34], with more than one
year delay, because of its primary focus on C U D A , whereas A M D already supports
version 2.0 from September 2014 [35]), which degrades its advantage in multiplatform
usage.

Standard defines APIs only for C and C++, but third-party APIs for Python, Java
and . N E T also exist. Also, commonly used libraries are freely available [36]:

• clBLAS - for basic linear algebra subroutines (implementation of B L A S
specification).

• clSparse - for matrix and vector operations.

• clRNG - for high performance random number generation.

• clFFT- for fast Fourier transformations.
Also, an extension for web - W e b C L exists from March 2014 [37]. It is a JavaScrip
binding to OpenCL and enables performing a complicated calculations on host device.
No plugins on host device are required, only a compatible browser.

Programming in OpenCL consists of two parts. First, one must use A P I functions
to initialize compute unit and schedule work. In the second part, a standalone file with
extension .cl must be created. This file contains all functions that w i l l be executed on
OpenCL device. These functions are called in actual source code of application through
OpenCL A P I , where actual function to be executed is send as a string in appropriate
function call [28].

23

1 . # p r a g m a O P E N C L E X T E N S I O N c l _ k h r _ b y t e _ a d d r e s s a b l e _ s t o r e : e n a b l e
2 . k e r n e l v o i d v e c t o r A d d (g l o b a l f l o a t * A , g l o b a l f l o a t * B , g l o b a l

f l o a t * S , c o n s t u n s i g n e d i n t n) {
3 . s i z e _ t i d = g e t _ g l o b a l _ i d (0) ;
4 . i f (i < n)
5 . S [i d] = A [i d] + B [i d] ;
6 . }
7 .
8 . k e r n e l . s e t A r g (0 , a) ;
9 . k e r n e l . s e t A r g (l , b) ;
1 0 . k e r n e l . s e t A r g (2 , s) ;
1 1 . k e r n e l . s e t A r g (3 , s i z e o f (s i z e _ t) , & n) ;
1 2 . q u e u e . e n q u e u e W r i t e B u f f e r (a , C L _ T R U E , 0, x\, A , 0, 0);
1 3 . q u e u e . e n q u e u e W r i t e B u f f e r (b , C L J T R U E , 0, x\, B, 0, 0) ;
1 4 . q u e u e . e n q u e u e N D R a n g e K e r n e l (k e r n e l , c l : : N u l l R a n g e , c l : : N D R a n g e (n) ,

c l : : N D R a n g e (l , 1) , N U L L , & e v e n t) ;
1 5 . q u e u e . e n q u e u e R e a d B u f f e r (s , C L _ T R U E , 0, n, S);

Figure 4.2: Vector addition in OpenCL.

4.2 CUDA

C U D A is a proprietary framework developed and supported by company N V I D I A which
specializes in gaming graphics cards development. It works only with N V I D I A GPUs .
This is both an advantage (faster development cycle is possible) and a disadvantage
(GPUs from other vendors are not supported). Because of this, N V I D I A focuses primarily
on C U D A support and OpenCL is secondary.

The development has begun together with a G P U generation called Tesla. This G P U
architecture was a revolutionary, as it implemented support for Direct3D 10, which
required a new type of computing units - geometry shader for complex geometry
generation on graphics hardware. With this, a total of three types of compute units was
required to be present on G P U (after vertex shader and pixel shader) [38]. However, the
problem with using these specialized units was that, depending on a rendered scene, some
of these units could be used heavily, while others could be used only partially or not at
all . This was a huge performance bottleneck. Also, adding new type of compute units
would not bring performance gain, but enlarge the area of the chip itself instead.
Therefore, N V I D I A ' s reacted with introduction of new universal units, which could be
used as each of these required units. Its allocation became automatic and the bottleneck
was removed. At the same time, engineers in N V I D I A realized that this programmability
of units can be further utilized, and brought an idea of general purpose computing on
GPUs [22]. C U D A was introduced together with these new graphic cards in November
2006. However, public availability was delayed until February 2007 [25], when also
graphic cards optimized for G P G P U computations were released.

From its initial release, multiple versions have been released, with support of new
features every time. Most of the releases took place shortly after introduction of new G P U
architectures, which also meant bigger changes. Ma in features added over time are:
shared memory, unified memory, libraries for G P U code, G P U code precompilation, new

24

work spawning from within G P U code or C++11 features like lambdas or auto type
specifiers. Currently, version 7.5 has been available since September 2015. A l l versions
are backward compatible. Forward compatibility is guaranteed on binary level. However,
the new features are often limited to new hardware [39] [40] [41] [42].

C U D A exists in two programing languages:

• C U D A C/C++ based on subset of ISO C I 1 and ISO C++11

• C U D A Fortran based on ISO Fortran
For each, a separate compiler is provided. Also, third-party wrappers for other languages
exist (e.g. Python, Perl, Java, Ruby, .NET, R, M A T L A B) [43].

A big advantage of C U D A over other G P G P U frameworks is the availability
infrastructure - a great collection of powerful tools and libraries exists [43]. One example
is an advanced IDE with a debugger and a profiler or a powerful set of plugins for Visual
Studio. Another example are official free libraries, which contain additional tools beside
OpenCL's equivalents. Examples of libraries available for C U D A over OpenCL are:

• NPP - a library focused on image and video processing. It contains hundreds of
signal processing primitives, therefore prevents unnecessary copying of results
from device memory to host memory. It is extensively used by C U D A version
of OpenCV.

• Thrust - library similar to C++ Standard Template Library (STL). It
automatically chooses between C P U and G P U code execution at compile time.

These libraries do not only simplify development of fast parallel code, but also reduce
some overhead that arises when users choose to implement this functionality manually.

C U D A , as opposed to OpenCL, does not require separate files for G P U execution.
C U D A is also ahead of OpenCL by supporting not only direct access to other C U D A
devices memory on local machine through PCI-e lanes, but also a remote access between
GPUs through network which makes it suitable for use in servers. The unified memory
model is also an advantage - it reduces complexity of code by viewing both P C ' s R A M
and G P U ' s R A M as a whole, thus using a single pointer in both C P U and G P U . Also, like
OpenCL, A R M platform is also supported. Dynamic allocation of memory and assembly-
level optimizations are a must [41] [42].

1 . g l o b a l v o i d v e c t o r A d d (f l o a t * A , f l o a t * B , f l o a t *C, i n t n) {
2 . i n t i = b l o c k D i m . x * b l o c k l d x . x + t h r e a d l d x . x ;
3 . i f (i < n)
4 . C [i] = A [i] + B [i] ;
5- }
6 .
7 . v e c t o r A d d <<< b l o c k s P e r G r i d , t h r e a d s P e r B l o c k > > > (A , B, S , n) ;
8 . c u d a D e v i c e S y n c h r o n i z e () ;

Figure 4.3: Vector addition in CUDA.

25

4.3 C++AMP

C++ A M P is a compiler and programming model extension to C++ that provides an easy
way to write programs that execute on data-parallel hardware, such as graphics cards [44].
It is developed and maintained by Microsoft, and its specification is open. First version
1.0 released in August 2012 was implemented on DirectX 11. However, this tight
coupling disallowed usage outside of Windows environment. Therefore, in December
2013, a new version 1.2 was released, which removed those dependencies and made the
library multiplatform. Due to its open specification, C++ A M P was developed with
comments and suggestion from A M D and N V I D I A . In some cases, it is used as a basis in
A M D ' s libraries for OpenCL. Also, a compiler from C++ A M P to OpenCL has been
available from November 2013 [45].

1. a r r a y _ v i e w < c o n s t f l o a t , 1> a (r i j a);
2 . a r r a y _ v i e w < c o n s t f l o a t , 1> b (b);
3 . a r r a y _ v i e w < f l o a t , 1> s u m (n , S) ;
4 .
C

s u m . d i s c a r d _ d a t a () ;

D .
6 . p a r a l l e l _ f o r _ e a c h (s u m . e x t e n t , [=] (i n d e x < l > i) r e s t r i c t (a m p) {
7 . s u m [i] = a [i] + b [i] j
8 . }) ;

Figure 4.4: Vector addition in C++ AMP.

C++ A M P adds new keyword restrict, whose purpose is to enable usage of certain
functions or types only on specific type of hardware (C P U or GPU) . Usage of restriction
for G P U enables static code checking against unsupported types (e.g. char, long long or
long double). This is due to limited type support on current G P U hardware. The group of
supported types is referred to as an amp-compatible). Also, an intermediate representation
of floating point expression shall not use higher precision than the operands demand (e.g.
sum of two floats cannot be performed using double precision and then converted back
to float). In case of compound types, pointers to pointers are not supported. Additionally,
local variables can be stored in registers or in memory shared by thread group, referred
as tile_static. Further, a math library is also a part of the specification [44]. Also, another
libraries, with the same functionality like those for OpenCL and C U D A are available:
STL-style algorithms, RNG, FFT, BIAS and Linear algebra.

The debugging and the profiling, the same tools that are available in Visual Studio
for C++ development are also available for C++ A M P .

4.4 Chapter summary

Choice of the right platform depends on many parameters. For real production use, C U D A
seems to outweigh OpenCL in these of criteria: simple integration into C++ projects,
advanced debugger and profiler, high range of optimized libraries, quicker feature
availability (in some instances two years before A M D in case of tools an libraries, or
before OpenCL in case of language features) and extensive support for developers.

26

Abil i ty to mix both device code and host code in the same source code file is also an
advantage. However, main disadvantage is limitation to N V I D I A graphic cards in case of
PCs and lower support for mobile devices. On the other hand, OpenCL provides a wider
range of platforms (all P C graphics cards, range of mobile and low power GPUs and C P U
architectures, including Intel's x86, I B M ' s Power and A R M) and standardized A P I .

The third and the youngest A P I - C++ A M P is somewhere in-between C U D A and
OpenCL. From one point of view, its look is closer to A N S I C++11 and both device and
host code are mixed. Also, static code checking and availability of debugging tools in
Visual Studio eases work for developers and does not require them to learn new, radically
different languages for G P G P U . On the other hand, there are only handful of libraries for
C++ A M P and developer community is significantly lower. Also, like C U D A , amount of
supported hardware is nowhere near OpenCL.

A code sample for the same operation (vector addition) was shown for all three
frameworks, in order to better illustrate differences between them. A full code for vector
addition and comparison to C P U parallel code can be found A P P E N D I X A : OpenCL,
C U D A and C++ A M P in comparison with C++ OpenMP.

27

5 ALGORITHM DESIGN
In order to implement a suitable stabilization algorithm, the worst case scenario of input

video and properties must be defined first:

• Shaking up to the frequency of 20 Hz
• Shaking up to 0.5° variation

• Focal length up to F = 200 m m

• F u l l H D input resolution

• Fast processing
The choice of F = 200 m m is the result of the focal length commonly available in

consumer compact cameras. While nowadays lot of ultra-zooms is available with focal
lengths up to F = 2000 m m , the video stabilization would not be possible at this focal
length due to the relation shown in Figure 3.6. Therefore, the more common value that
covers the most used focal lengths was chosen (besides the compact cameras also the
D L S R s where only smaller focal lengths are commonly available and mobile devices with
typical F = 28 m m .

5.1 Preprocessing

In order to lower computing power requirements, a preprocessing step is introduced. Its
goal is to retrieve areas of concern and prepare them for the motion estimation phase.

5.1.1 Areas of concern selection

We decided to split each frame into eight areas of concern (searching sub-windows)
around its edges. The center rectangle is not considered, as typically an object of interest
is present in the central part of each frame. This is optimization of both required
computational power and to improve estimation of local and global motion vectors, as
object of interest can perform movement independent of camera's movement. If not
considered, this would bring unwanted error to global motion vector. They have
rectangular shape proportional to the resolution of input frame and are equally distributed
(see Figure 5.1). Because of the nature of hand tremor (see section 2.2) and assuming that
the input video has at least 24 frames per second, the distance from the frame's edge can
be 5 % of resolution or less even for high focal lengths (e.g. F = 200mm).

Then, matching sub-windows (MSWs) sizes must be small enough to bring
significant savings in required power and big enough to have sufficient amount of details
for searching in searching sub-window (SSW) of the previous frame. This values can be
computed from the equations 3.1, 3.2 and 3.3: for the 0.5 degrees variation, the search
windows size should be 4.9 % of resolution for each axis. Because the change can be for
both directions, the double of this value is required (9.8 %). Therefore, a value of 10 %
of frame resolution was chosen for size of SSW. This together with 5 % distance from

28

the edges leaves 60 % of unused space (30 % of resolution for each space between SSWs).
However, because the proposed method is not developed exclusively for stabilization of
videos from hand-held devices, this dimensions can be adjusted based on different usage
scenarios in order to better fit required application. This adjustment results into smaller
error and/or to lower required computer power (e.g. in the video shot from fixed camera
inside car, the shaking occurs mostly in y-axis and therefore width of SSWs can be
reduced).

5% of frame
size

10% of frame
size

30% of frame
size

Figure 5.1: Areas of concern selection.

As for the matching sub-windows size, the same as for the distance from frame's
edge applies. This results in a half of dimensions of search sub-windows.

However, in order to speed up G P U computation, a coalesced access to G P U ' s
memory must be ensured and unnecessary branching prevented. Therefore, matching sub-
windows' dimensions must be rounded to the multiple of 32. This also applies to
searching sub-windows: their dimensions must be updated to the double of those of
matching sub-windows. The final values used for stabilization on G P U are in Table 5.1.

Table 5.1: Input video resolutions and resulting SSW and MSW sizes.

Input resolution [px] SSW size [px] MSW size [px]

1920x1080 192x128 96x64
1280x720 128x96 64x48

After the previous step, eight areas of concern exist. However, adjustments must
be made in order to further lower the computation requirements. For color images, the
first step is conversion to grayscale. Then binarization process follows: each area is
converted from full-bit frame into binary image by local binary pattern (LBP) , which
enables template matching by simple XOR operation. However, conversion to binary
image itself is tricky - a high level of detail must be preserved after binarization step
(traditional methods tend to convert similar colors into the same binary value and
therefore omit edges).

29

(a) (b) (c)
Figure 5.2: Different local binary patterns configurations, a) LBP(4,i) b) LBP(4,3> c) LBP(8,4)

Therefore, enhanced L B P binarization proposed by [19] is used: each pixel of input
image is compared against P equally spaced reference pixels (points) forming a circle of
a radius R. Output value for each pixel of the output image is then computed as:

B (p. { p - i
l i f ^ s i g n Q i p) -KUD)>[P/2\

p=0

0 otherwise

(5.1)

and

sign^x) = \ n

t-0 otherwise
(5.2)

where P is the count of reference points, R is their radius, (i,j) is the coordinate of
currently processed pixel, p is the coordinate of current reference point, / is the function
returning image's intensity value for given coordinate and |xj denotes the largest integer
not greater than x.

This approach reduces the maximum number of comparisons and additions to
obtain pixel value to P.

The proposed algorithm uses the LBP42 configuration, as it is significantly faster
than configurations with bigger number of reference pixels. Also, the empirical testing
has shown, that this configuration yields more accurate binary representation of edges
and therefore enables better local motion estimation.

5.2 Local motion estimation

After the preprocessing step, local motion estimation follows. Firstly, matching sub-
windows are extracted from the binarized areas. After that, comparison of all M S W s of
current frame with the corresponding SSWs of previous frame is performed by computing
number of non-matching points (N N M P) [19] criteria for each possible displacement:

N - l N - l

NNMP(dx,dy) = ^ ^ { B c (i , y) 0 5 t _ 1 (i + dx,j + dy)} (5.3)
t=0 ;'=0

30

and

- s < (dx, dy) < s (5.4)

where (dx,dy) is the candidate displacement of the matching sub-window in the
searching sub-window, N is the M S W ' s dimension (JV X JV), Bz is M S W of current frame,
B t _ 1 denotes S S W of previous frame, © represents Boolean operation XOR and s is half
of the difference of the matching sub-windows and searching sub-windows dimensions.

This results into eight matrices of N N M P values, where each value's index denotes
(dx, dy). From each list, the eight lowest values are taken and their coordinates become
the local motion vectors (L M V s) . This is an improvement suggested by [1] in order to
enable stabilization of frames without clear edges (e.g. desert, sea, snow). This gives in
total of 64 L M V s vectors.

5.3 Global motion estimation and filtering

Global motion vector (G M V) is computed for each frame as a median of all axes of 64
best L M V s :

GMVa = median(LMVsa), a = {x,y} (5.5)

where a denotes the axes of L M V , LMVs is set of selected local motion vectors and
median(x) is the function selecting median value

This filtration effectively removes L M V s , into which an error was introduced by object
of interest movement extended into the searching sub-windows. Also, it automatically
account for camera movement in z axis (e.g. camera mounted on moving vehicle) and no
additional filtering is needed.

5.4 Motion compensation

The last step in digital image stabilization is the movement of image frames into final
form of stabilized output. Because one of the requirements is possibility of real-time
usage, a standard form of DIS is chosen. Therefore, the final resolution of video output is
defined by the size of moving windows which is estimated according to equation 3.1.

Yet, this approach is able to achieve only stabilization in fixed position - it is unable
to track intended movement of the camera. Therefore, the filtration of intended motion
must be introduced. For this tasks, multiple possibilities exists: low pas filtering methods
(e.g. fuzzy filtering or Gaussian weighting). Another example is the Particle filter, which
is suitable for filtering of non-linear motion of camera, but relatively slow and not suitable
for real-time processing. Therefore, we choose to use the Kalman filter, which is optimal
filter in the minimum variance sense. Its advantage is the speed, which is suitable for real
time processing, but it is sensitive to parameter values.

31

6 IMPLEMENTATION
The designed algorithm was implemented using C++11 and OpenCV [46] library in
version 3.1 under Windows environment (compilation of code under other environments
is also possible). The project is created in Visual Studio 2013 [47]. The reason behind this
choice is the Visual Studio's support for C++ A M P and also the great integration of
Visual Studio and N V I D I A ' s profiler and debugger. The main application is created in
single project resulting into single executable and requires the O p e n C V s modules
(enclosed at the attachment D V D) . The application itself is command-line based and does
not contain graphical user interface. For the configuration, following arguments can be
specified:

• - o c l - enables the video stabilization using OpenCL.

• - cud a - enables the video stabilization using C U D A .

• -amp - enables the video stabilization using C++ A M P .

• - cpu - enables the video stabilization using C P U .

• - w r i t e - writes stabilized video into output file.

• - show - shows stabilized video during processing.

• - i n p u t f i l e n a m e - sets the input video file.

• - l i m i t n - sets the number of frames to process.

• - h - shows help.
However, due to the performance reasons, the specification of the S S W size is not

possible at runtime. This is due to the better optimization of code, when the S S W and
M S W sizes are known at runtime (performance penalty is about 10 %). Therefore,
windows sizes are set as a macros and after change, the recompilation is required. The
enclosed D V D contains all of the binaries used for testing (binary's name contains SSW
size).

The compliance of all implementations in terms of identical results for the same
input was ensured by creating reference version for execution on C P U . Then, each
G P G P U version results for transition of each frame were compared with this reference
implementation.

Also, all G P G P U versions were created with support for asynchronous data copy to
and from device. This (if supported), causes that data can be copied during kernel
execution, that further improves the execution speed, as G P U does not have to wait for
new data to arrive. Further, the each area of concern is processed on separate stream.
Similarly to data copy, this can speed up the execution process as hardware can launch
next scheduled kernels i f the current kernel is not demanding enough (if supported by
both hardware and software).

Because the part of this thesis's aim is to compare the suitability of available
G P G P U architectures for video stabilization, the following subsections w i l l contain both
the highlights and downs encountered during the application development and author's
opinions. It is important to note, that the author has previous experience with both C U D A

32

and OpenCL and therefore knows principles of programming massively parallel
processors.

6.1 CPU implementation

The C P U version was created in order to have reference point for comparison in terms of
both performance and identity of results. Therefore, this implementation was created first
and was used as a reference for G P U implementations. The performance was optimized
using preallocated data structures. This reduces the overhead created by repeated
allocation and deallocation of memory. Also, whenever possible, the OpenCV optimized
methods were used. However, no further optimizations on instruction level were
introduced.

Further, the parallelized version using OpenMP [48] was created. It enables work
splitting between both different cores and processors and therefore the maximal usage of
C P U resources. This can be considered as a good measure of the worth of G P U usage
against the fully utilized C P U .

6.2 CUDA implementation

The OpenCV contains support for C U D A execution in large portion of methods available
for C P U execution. However, C U D A is not used by default and requires programmer to
explicitly state calls for C U D A powered methods. This methods resides in separate
assemblies that are optional during build of O p e n C V s binaries.

For C U D A , a small framework in OpenCV exists. It is encapsulated in the
"GpuMat" class, very similar to the standard "Mat" class. However, it can be used only
on G P U and enables simple memory allocation and data copy from "Mat" data structure
allocated for C P U without any knowledge how to allocate memory and transfer data in
C U D A . The advantage of this framework is quick creation of subimage in the same
manner as in case of standard "Mat" class. Also, because the C U D A supports C++11,
similar wrapper inside kernels is available for data access. This enables to directly access
pixel of image specified by x and y positions and programmer does not have to worry
about the conversion from required points to indices of one dimensional array. Yet, the
pointer to the data is still available and can be used. The wrapper also provides the usable
size of image and the size of the row for manual indices computation.

In the implementation itself, the similar preallocation as in case of C P U
implementation was introduced. However, the memory had to be preallocated on both
C P U and G P U . For this case, the so-called " p i n n e d memory" available in the Thrust
library is used. This improves the transfer speeds between C P U ' s R A M and G P U ' s R A M
by a factor of 2 by preventing C P U allocated memory to be swapped out.

The L B P kernel was implemented in two versions: one using only global memory
acces and second one, where the used data were firstly copied into shared memory and
the the computation was made. This reduced the count of global memory reads from 5

33

down to 2. However, this approach requires synchronization using the memory barrier.
The perliminary tesing has shown, that the version with only global data acces is about
twice as fast as the version with data copy in shared memory. Therefore, the global data
access version w i l l be used in further tests.

Because of the perliminary performance testing of L B P kernel, the N N M P kernel
was implemented only with global data access. The shared memory was then used for
local storage of intermediate N N M P values and the reduction in order to get the final
N N M P values together with local motion vectors.

The sorting of resulting N N M P values is required prior to the selection of best local
motion vectors. The sorting of N N M P values for each area of concern was done also by
G P U , as the data transfer of only 48 bytes is required i f the data are sorted (data are stored
in triples of " s h o r t " data type - 16 bytes long, 8 best vectors is required), while C P U
sorting (even it is more effective) would require the transfer of six times more data that
is the size of single M S W , which would introduce further overhead. In this case, the
Thrust library's Radix-sort is used.

The Thrust library [49] is the parallel algorithms library for C U D A , which
resembles the C++ Standard Template Library (STL). It implements lot of functions
available in S T L equal in terms of functionality (sorting, reductions, transformations,
iterators). In lot of functions, the direct data copy from/to S T L ' s " v e c t o r " class is
available.

The kernels for R G B to grayscale conversions and L B P binarization are scheduled
in a way that each pixel is processed by single thread. Yet, they are organized into smaller
groups for more effective access into global memory in order to prevent bank conflicts
(multiple threads accessing single memory bank or alternating access to banks) within
warp (otherwise, the serialization of access would be introduced). The size this groups is
computed automatically by querying the hardware property returning max number of
threads that can be executed in single group (in most cases, the value is 1024) and by
using the N V I D I A ' s occupancy calculator, that is able to suggest the best work group size
based on the used hardware and the kernel itself (the number of used registers and size of
used shared memory).

The kernel computing the N N M P values uses similarly to other kernels maximal
possible count of work items in single group. For performance reasons, each thread
computes the small part of N N M P for the corresponding translation (the computation of
the whole N N M P on single thread would be enormously long and would result into big
number unused threads). Because the size of M S W exceeds the typical number of work
items in single group (1024) even for small sizes, the optimization is introduced, where
number of work items is reduced by factor of 32. Then, each thread computes the N N M P
values for 32 pixels of correlation. However, in order to get the resulting N N M P value,
parallel reduction is required. This results into small overhead, when only portion of
threads is used for computation. In order to improve performance, the reduction is
implemented in a way, that all threads in single warp performs the same instructions. Yet,

34

reduction itself requires the explicit synchronization of threads which results into another
delay in execution.

While the resulting code itself is pretty simple, the way to get to know how to create
optimized application from available libraries is pretty hard, as the available
documentation contains only basics of how to get the library running. This enables to
create working video stabilization, but the performance gain over C P U implementation
cannot be considered as good. The more advanced functions have only autogenerated
documentation that does not say anything about the provided methods. Therefore, the
experimentation and questions browsing on specialized sites like Stack Overflow [50] is
required. This apply for both the OpenCV and Thrust. On the contrary, the documentation
for the C U D A itself is great and covers all features available in the framework. Yet, the
problem with compiler was encountered, where the M A D instruction was not correctly
recognized, which resulted into degraded performance. Therefore, this instruction was
forced using the P T X assembly language [51]. This also apply for OpenCV wrapper to
access image pixel of specified position - for this reason, wrapper was not used and
conversion from points to indices was computed separately.

6.3 OpenCL implementation

The O p e n C V s support for OpenCL is from the version 3 implicit and only requires to
call function to enable it and to use the "UMat" class (universal "Mat"), which is similar
to standard "Mat". Then, all functions on "UMat" that have OpenCL version w i l l run on
G P U i f possible. No additional code changes are required. Unlike "GpuMat" for C U D A ,
the "UMat" can be processed on both C P U and G P U (the data copy is automatic).
Similarly to "GpuMat", most of the functionality of standard "Mat" class is available.

However, the O p e n C V s documentation does not state how to create and lunch
custom OpenCV kernels. While some methods can be found in documentation, the
OpenCV source code must be examined for thorough understanding. The OpenCV
contains wrappers to OpenCL A P I that greatly reduces the size of code required for
initialization. The most problematic parts were creation of unique command queue for
each area of concern and the kernel launch itself: the queues required creation in cycle
instead of simple list initialization and the kernel launch had to be called directly through
OpenCL A P I call "clEnqueueNDRangeKernel". However, the use of O p e n C V s
wrapper was still advantageous, as it enabled both the easy kernel compilation and
argument setting (memory allocation). Due to the compatibility reason with N V I D I A
(OpenCL support of version 1.2), the OpenCL version 2.0 with precompiled G P U code
was not used. The disadvantage of this solution is visibility of source code to the end user
in the plain text form. While this can be solved by means of encryption, the compilation
as in case of N V I D I A would be more suitable (however, this brings compatibility issues
between different device vendors).

Another problem is that the OpenCL 1.2 does not support C++11 features.
Therefore, i f the support of N V I D I A ' s cards is required, the C-like language must be

35

used. This means, that the kernels must be defined in separate file from the code, there is
no support for include directives in the G P U code and therefore no wrapper similar to the
C U D A version. From this point, the kernels definition requires to explicitly state all input
arguments (pointers, data sizes) manually. Therefore, conversion from data structures
used for kernel arguments setting on C P U side must be performed. The problem is, that
this behavior is nowhere described and can only be deducted from the OpenCV's source
code examination. This also means, that no wrapper functions are available for accessing
the image pixels by coordinates and their conversion to one dimensional array indices
must be computed manually.

The R G B to grayscale, L B P and N N M P algorithms itself are equal to the C U D A
implementations, the only difference is in the input parameters, that are not wrapped. This
is also true for the size of single work group. However, there is a difference between the
N V I D I A and A M D - the typical workgroup size in case of N V I D I A is the same as in for
the C U D A (1024), but the A M D has the limit of 256 threads. Therefore, in case of N N M P
kernel, the larger portion of computations must be made on single thread.

The next difference from C U D A is the usage of memory barrier for
synchronization. In C U D A , the barrier can be used inside divergent branches, the only
requirement is that threads inside warp all takes the same execution path. In case of
N V I D I A cards, this is also true for OpenCL, despite the fact, that the OpenCL
specification itself prohibits this behavior. In case of A M D , the standard is respected and
such code is rejected by compiler. The most interesting is, that on N V I D I A ' s cards, there
is measurable performance difference between these two variants.

Similarly to C U D A compiler, also the OpenCL compiler failed to correctly
recognize the M A D instruction and it has to be defined explicitly. However, the OpenCL
does not support the assembly language snippets insertion into kernels. Instead, some of
the instructions are available as an A P I functions.

The sorting of N N M P s is performed on G P U similarly do C U D A implementation.
However, no external library is used, but rather the Bitonic sort algorithm form N V I D I A
samples library.

6.4 C++AMP

In the case of C++ A M P , there is no support for this technology in OpenCV. Therefore,
the programmer must take care of all data conversions and copy implicitly. Yet, the
amount of required work is significantly smaller when compared with the amount of work
required when using both OpenCL and C U D A without OpenCV framework. Therefore,
the conversion of data from OpenCV's "Mat" structure into array is required. However,
there are significant issues - the C++ A M P does only support 32 integer numbers and
data needs to be either converted to this format or accessed on device using the bit
masking. The first approach brings the performance overhead during the data transfer, as
4 times more data needs to be copied. This can be slightly reduced by usage of texture
instead of standard data pointer (the GPUs contains the native support for textures). The

36

second approach brings the performance overhead when bit masking is performed. The
preliminary testing of both methods has shown, that the use of texture memory brings
slightly better results and therefore it w i l l be used for the thorough testing.

The next issue is only one command queue - all kernels are issued on single
execution queue, where also data copy occurs. Therefore, C++ A M P is unable to execute
multiple kernels at once as C U D A .

Yet, there are advantages over both C U D A and OpenCL - the kernels can be
launched as anonymous methods inlined into other code. Also, the direct data copy from
arrays and vectors to device is supported without the need to manually allocate memory.

The used kernels are basically the same as in case of C U D A and OpenCL version
- they are also partitioned into biggest possible groups and the N N M P s computation
requires one thread to compute multiple values. The difference comes again with sorting,
where the Bitonic sort implementation from Microsoft samples is used.

The C++ A M P has the same requirement for memory barrier as OpenCL - all
threads must hit the barrier and therefore it is not possible to use it in divergent code.

37

7 TESTING VIDEO SEQUENCES
For testing purposes, 11 testing video sequences was created using two cameras - the
compact Olympus S Z - 3 1 M R and D S L R Nikon D3100. The first one enables creation of
F u l l H D video sequences at the speed of 60 FPS. However, the video suffer from blurred
edges (even for H D video). The second one also enables creation of F u l l H D video, but
only at the speed of 24 FPS. The sequences does not suffer from blurred edges, however
the higher amount of noise is present. Both cameras use the C M O S chip susceptible to
the rolling shutter effect.

The shot video sequences contains different situations: from intentional shake of
handheld camera through natural shake to jitter caused by moving vehicle (camera was
mounted inside car). For each situation, typically two videos that differ by used camera,
focus, focal distance, resolution and FPS exits. Their brief overview is in Table 5.1. The
focal distance is recalculated from real focal distance of camera into its 35 mm equivalent.

Table 7.1: Brief overview of testing video sequences.

Name Resolution FPS Focal Held type Camera
distance

1 Car-ride 1280x720 30 50 mm mounted Olympus SZ-31MR

2 Car-ride-2 1920x1080 24 50 mm mounted Nikon D3100

3 Car-ride-3 1280x720 30 50 mm mounted Nikon D3100

4 Car-ride-4 1280x720 30 50 mm mounted Nikon D3100

5 Jitter 1920x1080 24 30 mm hand-held Nikon D3100

6 Jitter-2 1280x720 30 30 mm hand-held Nikon D3100

7 Pan-zoom 1920x1080 60 200 mm hand-held Olympus SZ-31MR

8 Pan-zoom-2 1920x1080 24 40 mm hand-held Nikon D3100

9 Tracking 1920x1080 60 150 mm hand-held Olympus SZ-31MR

10 Walking 1280x720 30 30 mm
walking

hand-held
Olympus SZ-31MR

11 Walking-2 1920x1080 24 30 mm
walking

hand-held
Nikon D3100

The first four video sequences, as the name suggest, are captured by the camera
mounted inside car. The first one, shot by the Olympus compact camera suffers from
blurred edges, changing focus (due to the autofocus) and rolling shutter effect. Two kinds
of image blur are present: the one caused by the bad focus and the one caused by the high
lossy compression of video. The video itself captures the driver's view on the road.
During the bigger part of video, the vehicle is moving at the speed of 50 kph with
occasional slowdown due to the obstacles present in the path. During the rest of the video,

38

the vehicle is moving at the speed of 100 kph. The road itself contains lot of potholes and
undulations causing the vehicle to swing.

The second video is captured by the Nikon D L S R and does not suffer from neither
changing focus nor image blur. However, the rolling shutter effect is more visible. The
video captures the in-town driving with big number of hairpin bends at the average speed
of 40 kph. Also, a few second scenes with the car in stationary position is present. During
this period, the doors are opened and closed multiple times as the driver gets off and back
on the vehicle. Therefore, there is slight movement in both axes.

The third video sequence is very similar to the second one, but has lower input
resolution, which results into smaller image disturbances.

The fourth video is captured on the cart-way with the average speed of 25 kph. The
road is unpaved and contains the high number of potholes which causes rapid shaking in
both axes. Further, the bottom part of the image covered with the car's dashboard, which
that moves in different way than the exterior. This causes that three SSWs are not usable
for image stabilization. Besides that, the car's windshield is dirty, which introduces the
fixed defects into the image.

The fifth video shows fixed scene and contains rapid jitter caused by hand tremor.
The hand tremor is intentionally amplified to provide bigger translation between frames.

The sixth video sequence is very similar to the previous one. However, this time
the jitter is caused by the turning of the ring that sets the shutter speed. Therefore, the
frames of the video have different shutter speeds and the presence of the rolling shutter
effect changes through the time.

The seventh video sequence contains the pan and zoom effects. It can be
characterized by slow intended changes of the camera pose and zooming. The rolling
shutter effect is present only during the zooming. The camera his hand-held, therefore
high amount of shake is present.

The eight video is very similar to the previous one. However, this time, the intended
movement of the camera is fast. Also, the rolling shutter effect is strong even when no
zooming is occurring.

The ninth video can be characterized as tracking of objects. The camera is hand
held and zoomed to the F = 200 m m . Similarly to the first video, the rolling shutter effect
and image blur are present.

The tenth video sequence captures the walking inside hall. It has bad light
conditions and contains high amount of noise. Also, there is only low count of non-
distinctive edges present.

The eleventh video captures similarly to the previous one walking from the first
person point of view. However, this time there are good light conditions and high amount
of edges, as the scene takes place in nature. Yet, high amount of image blur is present and
the edges are again not very distinctive. Also, the sake can be characterized as strong,
because the person holding the camera walks downhill.

39

8 RESULTS
The video sequences described in chapter 7 were tested using multiple hardware
configurations in order to evaluate the performance of proposed method on different G P U
architectures. Also, this enabled better comparison of used G P G P U frameworks, as
testing on single G P U could result into distorted results. However, not all of the hardware
supports all G P G P U frameworks - the C U D A framework is no available for A M D
graphic cards (see chapter 4.2). Therefore, C U D A performance could not be tested in all
cases. Next, on the N V I D I A cards, two versions of OpenCL implementation were tested
(as described in chapter 6.3). The tests were performed on different sizes of the searching
sub-windows and corresponding matching sub-windows (their ratio was preserved). The
SSW sizes were chosen that the requirement for fast G P G P U processing is preserved -
as the multiples of value 32 for both x and y axis. Further, also quality of proposed video
stabilization method was evaluated by both frequency analysis and visual comparison of
camera path.

For performance testing, the hardware specified in Table 8.1 and Table 8.2 was
used. It contains both fairly old hardware - Q6600 (2007) and new hardware - E5-2683
(2015). Also, the tested GPUs differ not only by their theoretical performance, but also
designation - compute (M6000, E5-2683), games (G T X 670, R9 Fury) or both (G T X
560Ti, G T X 980Ti). In case of CPUs , all of the used can be considered as a high-end.
Yet, due to the age gap, their performance differs radically. Therefore, their theoretical
performance (same for double, single and integer precision) is also given in Table 8.1.
The similar apply also to the used GPUs. However, the difference here is bigger, as some
used cards cannot be considered as high-end (Radeon 5750, G T X 760). Therefore, their
theoretical performance in single precision (the same as used integer precision) is also
given in Table 8.2. Yet, this value cannot be viewed as absolute measure of G P U ' s
performance between different G P U architectures, as they differ radically, and some of
them do not provide high compute power even though the theoretical performance value
is high. This is true for the G T X 670 and G T X 760 (Kepler architecture), which were
designed primary for high performance in computer games and the computing was put
aside. Therefore, based on the nature of computation, they can outperform the older G T X
560Ti (Fermi architecture) only in some applications.

The performance of individual GPUs depends also on the memory bandwidth
between the G P U itself and G P U ' s R A M , because it defines the speed of how fast the
G P U access the global memory data can. Therefore, this value is also given in Table 8.2.
The next thing is the speed of the bus, through which the GPUs are connected with the
C P U . This affects the data transfer rate between the C P U ' s R A M and G P U ' s R A M . In all
tested cases, the PCIe x l 6 v3.0 (Peripheral Component Interconnect Express of version
3.0 with 16 data transfer lanes) was used, providing the data transfer speed of 15.75 GB/s .

40

Table 8.1: The CPU specification of used hardware configurations.

Configuration CPU name Speed Cores / Performance RAM
number [GHz] Threads [GFLOPS] [GB]

1 Intel Core 2 Quad Q 6600 3.21 4/4 59 6

2 Intel Core 2 Quad Q 6600 3.21 4/4 59 6

3 Intel Core J5-4670K 3.40 4/8 117 16

4 Intel Core J5-3930K 3.20 6/12 165 64

5 Intel Core J5-3930K 3.20 6/12 165 64

6 2x Intel Xeon E5-2683 v3 2.00 28/56 480 512

7 Intel J5-3770K 4.40 4/8 150 32

Table 8.2: The GPU specification of used hardware configurations.

Config
uration

GPU name Speed
[GHz]

Cores Performance
[TFLOPS]

Bandwidth
[GB/s]

RAM
[GB]

1 A M D Radeon HD 5750 0.90 720 1.30 80 1.00

2 NVIDIA GTX 560TJ-448 0.95 448 1.70 216 1.28

3 NVIDIA GTX 760 1.10 1152 2.20 192 2.00

4 NVIDIA GTX 670 1.15 1344 2.46 192 4.00

5 A M D R9 Fury 1.00 3584 7.53 512 4.00

6 NVIDIA Quadro M6000 1.15 3072 6.07 317 12.00

7 NVIDIA GTX 980Ti 1.30 2816 5.63 384 6.00

In this chapter, both the performance of the proposed method (the execution speed)
and the quality of video stabilization wi l l be evaluated.

8.1 Performance comparison

In this section, the proposed algorithm w i l l be benchmarked on the computer
configurations described in Table 8.1 and Table 8.2. This test w i l l consist of processing
speed measurement of proposed video stabilization. It w i l l be tested with 8 different sizes
of SSW, as described in section 5.1.1, resulting into 8 tables with results. Each table
contains both the speed measured in frames per second (FPS) and the utilization of G P U .
The FPS is the absolute measure of processing speed and defines, whether the video can
be stabilized in real-time or not.

The testing was performed on 8 different S S W sizes (see Table 8.3) for two
reasons: firstly, the bigger S S W results into more compute operations and can hide the
delay introduced by data transfer. Also, in case of fast GPUs , it may still provide high
enough processing speeds. Secondly, the testing videos contains not only the hand video
sequences shot by hand-held video camera, but also sequences from camera mounted
inside moving vehicle and hand-held camera during walking. Therefore, the initial

41

consideration in section 5.1.1 does not apply for all and some videos may require bigger
SSW sizes, while other smaller S S W sizes.

Table 8.3: SSW sizes in pixels used for testing.

128x128 192x128 256x128 192x192 256x192 256x256 384x192 384x256

It is important to note, that the used correlation has the time complexity of 0 (n 2) ,
therefore doubling the size of S S W means four times more operations. For this reason, it
is expected to see slowdown by a factor of 4 for doubled S S W dimensions. Yet, the other
factors as the complexity of other subroutines, data transfers speeds and kernel execution
times also interferes and the resulting performance impact may be lower.

8.1.1 Profiling of GPGPU implementations

During the development, the preliminary testing has shown that the G P U usage varies for
different G P G P U implementations of the same algorithm on the same hardware
configuration. Therefore, the detailed analysis was performed: C U D A and standardized
OpenCL using N V I D I A N S I G H T profiler for Visual Studio and C++ A M P using
Concurrency Visualizer for Visual Studio. The profiling was due to its complexity
performed only on the H W configuration 2 and only for the smallest and the biggest S S W
(size of 128 X 128 px and 384 X 256 px respectively).

The Figure 8.1 shows, that the C U D A implementation executes all kernels of one
stabilization cycle in 11.718 ms, which is 85.3 FPS. This is about 3.3 % slower than
measured value, but the slowdown is caused by the profiler itself. The figure also shows,
that all the kernels are executed on average in 3.374 ms. This would result into the 296.4
FPS. However, there is also the data copy (1.414 ms). Despite that, the framerate of 208.8
FPS would still be possible. The problem is the white space in the timeline (6.930 ms).
This is due to the slow C P U processing. If we assume, that this card is used with the more
powerful C P U that is able to execute required work during the kernel execution, the
framerate of 208.8 FPS would be achieved with usage of 71.0 % (given the data copy
would take the same amount of time). However, the G P U is waiting for C P U even
between the data copy. If this was also eliminated (1.18 ms), the execution speed of 277.2
FPS and usage of 97.7 % would be achievable (given the 64 context switching operations
occurs and one takes 1.2 [is).

The Figure 8.1 also shows that the each area of concern has its own execution
stream (as expected). There is also clearly visible concurrent execution of small kernels
- L B P and R G B to grayscale partially overlaps (see Figure 8.2 for detailed view). Also,
the sorting kernels are overlapping the N N M P kernel.

The Figure 8.2 further shows, that the most time consuming kernel is the N N M P
kernel (352 [is), followed by the sorting (85 [is). The R G B to gray conversion (4 [is) and
L B P computation (3.5 [is) are almost negligible. It also shows, that even the kernels are
already scheduled, the context switching takes 1.2 [is.

42

&2B
i i i i 1 1 i i i i 1 1 i i i

Runtime API \ / • H I M W H I M
Nsight Nsight
Memory i n 1 T T T
Compute ^ 1 • i i i i i i i i | • i i i i i i i i

Streams
Stream 1
Stream 2 1 Hi II
Stream 3- i • 1 1
Stream 4 l l i • l l 1 1
Stream 5 V i . i • l l 1 •
Stream 6 M i • 1 1 1 •
Stream 7 M i • I I I •
Stream 8 ii • •
Stream 9 i i • 1 1 •

Counters

Device % 0

Host Devi... 4132
0

Device Ho,., :
Figure 8.1: Timeline view from NVIDIA CUDA profiler on kernels execution for SSW of size 128*128 px and HW
configuration 2 showing the execution order and timing of kernels for two stabilization cycles.

The last unmentioned G P U time consuming operation is data transfer: data copy to
the G P U takes 15 lxs for 51 k B of data (3 323.4 M B / s) and 1.15 lxs from G P U for 48 B of
data (39.7 MB/s) .

8,128 a.S2B1 a.S2B2 a.S2Bi a.S2S4
_i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i L

' ~
Figure 8.2: Detail of timeline view from Figure 8.1 showing the concurrent execution of kernels: red - rgb2gray kernel,
brown - LBP kernel, green - NNMP kernel, blue and purple - sort kernels.

The Figure 8.3 shows, that the OpenCL implementation executes all kernels of
one stabilization cycle in 13.805 ms, which is 72.4 FPS. This is about 12 % slower than
measured value, but the slowdown is caused by the profiler itself. The figure also shows,
that all the kernels are executed on average in 4.056 ms. This would result into the 246.6
FPS. However, there is also the data copy (4.119 ms). Despite that, the framerate of 122.3
FPS would still be possible. The problem is the white space in the timeline (5.630 ms).
This is due to the slow C P U processing. If we assume, similarly to C U D A
implementation, that this card is used with the more powerful C P U that is able to execute
required work during the kernel execution, the framerate of 122.3 FPS would be achieved
with usage of 49.7 % (given the data copy would take the same amount of time). However,
the G P U is waiting for C P U even between the data copy. If this was also eliminated (4.00

43

ms), the execution speed of 239.5 FPS and usage of 97.0 % would be achievable (given
the 88 context switching operations occurs and one takes 1.4 ps).

T - L 1,0SD18291s
l l n f l e Ft 1,10656452:

1,1 1.11
1 1 1 1 1

API H I m i Ml11Mb • H U H i H U H
• Queue [2][0...

Kernel Co... V 1 I
S Queue [3][0...

Kernel Co,., V I I 1
B Queue [4][0...

Kernel Co,., I I I I I
S Queue [5][0.„

Kernel Co,., v i I ^ ^ ^ ^ Z i I
• Queue [6][0.„

Kernel Co,., I 1 1 1
• Queue [7][0.„

Kernel Co,., V I I 1 |
S Queue [8][0.„

Kernel Co,., V l | l |
B Queue [9][0...

Kernel Co,., V l | 1 |
S Queue [10][...

Memory,,, i huh mini i in ii mi ii ii ii
Figure 8.3: Timeline view from NVIDIA OpenCL profiler on kernels execution for SSW of size 128x128px andHW
configuration 2 showing the execution order and timing of kernels for two stabilization cycles.

0,621 E
• i . •• . i • • •• I.. •• i — i •

3.622 0,622E

nnm p_s ha red_kernel nnrn p_s ha red_kernel

bitonicMergeGb...

Figure 8.4: Detail of timeline view from Figure 8.3 showing the execution order of kernels: red - rgb2gray kernel,
brown - LBP kernel, green - NNMP kernel, gray - GPU utilization, blue and purple - sort kernels.

The Figure 8.4 shows, that the most time consuming kernel is again the N N M P
kernel (406 ps), followed by the sorting (76 ps). The R G B to gray conversion (5.8 ps)
and L B P computation (5.6 ps) are again almost negligible, but almost twice as time
consuming as in case of C U D A . It also shows, that even the kernels are already scheduled,

44

the context switching takes 1.4 [is. Unlike the C U D A , there is no concurrent execution of
kernels present, as the OpenCL 1.2 specification does not support such behavior.

The last time consuming operation on G P U is data transfer: data copy to the G P U
takes 14 [is for 52 k B of data (3 627.2 M B / s) , which is slightly higher transfer speed than
in C U D A . While this difference may seem small, it is the average value of hundreds of
values and not the deviation within measure error. The data read using the OpenCV's
"UMat" rectangle for copying only 48 bytes does not work as expected, and the entire
matrix is copied instead. Therefore 24 k B of data is copied within the 7.2 [is (3 255.2
MB/s) . However, at this S S W size, it cannot be considered as problem, because the
removal of introduced delay would bring performance gain of only 2.8 FPS (to the
estimated 239.5 FPS).

Milliseconds
1 184 1 1E-6

Figure 8.5: Timeline view from Visual Studio Concurrency profiler on kernels execution for SSW of size 128x128 px
and HW configuration 2 showing the concurrent execution of kernels: blue - data copy and kernels execution, gray -
grouped data copies and kernels, that are too small to distinguish.

The C++ A M P implementation executes all kernels of one stabilization cycle in
31.740 ms, which is the speed of 31.5 FPS. This is about 26 % slower than measured
value, but the slowdown is similarly to previous implementations caused by the profiler
itself. Because the C++ A M P does not enable usage of multiple execution queues, both
data transfers and kernels executed in order without overlap. The problem of this solution
is, that the data are transferred synchronously. While the framework officially supports
asynchronous data copy, we were unable to create operational solution. However, despite
that, the data copy is almost four times slower than in case of both C U D A and OpenCL
- the transfer of 51 k B of data takes 51 p,s (976.6 MB/s) . Yet, the data copy from device
is faster than in case of OpenCL, despite the bigger amount of copied data: 16 k B is copied
within 2 [is (7 812.5 M B / s) . Further, the kernel execution is slower: the R G B to gray
conversion takes 37 [is and L B P kernel 32 [is. This is almost 10 times slower than in case
of C U D A . However, the execution speed of N N M P kernel is twice as fast - execution
lasts on average 180 [is. The reason behind this may be the usage of texture memory.
However, further development and investigation is required to confirm this theory. The
last group of kernels is used for sorting. Their execution lasts on average 250 [is, which
is again slower than in case of C U D A and OpenCL (3 times). The context switching
operation takes 2 [is. However, it occurs 480 times, which results into 960 [is delay
introduction. With this values alone, the execution of single stabilization cycle would
took 5.376 ms, resulting into theoretical speed of 186.0 FPS. However, there is another
problem with the unnecessary data copies - for each N N M P S kernel, 48 k B of data is
copied. This would not represent big problem, i f it would not take 2.1 ms. Therefore, 16.8

45

ms in each cycle is for unknown reason spend by data copy back to host. If this issue was
removed, the resulting performance would result in doubled execution speed.

However, the G P U waiting can be eliminated even for slower C P U by the bigger
SSW size - this would cause the longer execution N N M P kernel. Therefore, also the S S W
size of 384 x 256 px was profiled. As can be seen from Figure 8.6, the data copy
duration takes now only small fraction of whole cycle execution time (2.65 ms to be
precise). While this is twice the value of the time for S S W size of 128 x 128 px, a lot
bigger amount of data is being copied - 295 kB per stream, with duration of 60 ps (4 807
MB/s) . The transfer of results is the same - 1.15 ps for 48 B of data (39.7 MB/s) . This
results into G P U waiting of 2.14 ms in each cycle (the data copy takes 505.4 ps including
the context switching operations), which is still almost twice as long as in previous case.
Therefore, it can be assumed, that the C P U is still not powerful enough, because the G P U
is waiting even the data copying is asynchronous.

Time L 11,7ffi76E27;
R: 12.657BB117S

11.B 11.9 1
I I I I

Runtime API TI ajdaMenncpy2DAsyiic [113... TcudaMemcpyZDAsync [11332] Tend
Nsight Nsight
Memory | II III

a
E

Compute
Streams

Stream 1
Stream 2 V • • •
Stream 3- ll • -1 • 1 1
Stream 4 || • ||| • |||
Stream 5 || • ||| • |||
Stream 6 V ||| • ||| • ||
Stream 7 ||| • ||l • ||l
Stream 8 V H • ll • ll
Stream 9 »1 H i •

• Counters

Device %

Hos.t=* D... 4B2s
:

Device =*•,,, 42.07
0

Figure 8.6: Timeline view from NVIDIA CUDA profiler on kernels execution for SSW of size 384*256 px and HW
configuration 2 showing the execution order and timing of kernels for two stabilization cycles.

Therefore, the use of bigger S S W resulted into better utilization of G P U (the
waiting on C P U reduced from 8.11 ms to 2.14 ms. Yet, there is still some space left for
further improvements (e.g. better C P U work scheduling).

The detailed timeline view from Figure 8.7 shows, that the kernels execution is still
overlapping, but with significantly smaller part. This is caused by the number of
computations required for each kernel, which results into high utilization of G P U .

46

1Z19Ü3 122029
• •

12203
..I..

Figure 8.7: Detail of timeline view from Figure 8.6 showing the concurrent execution of kernels: red - rgblgray kernel,
brown - LBP kernel, green - NNMP kernel, other - sort kernels. The NNMP kernel was trimmed for better visualization.

Further, there is also visible bigger count of used sorting kernels - the result of
N N M P S is too big to fit into shared memory at once, therefore the sorting is partitioned.
The timing of kernels from the longest is as follows: 12.47 ms for N N M P kernel, 1.45 ms
for sorting, 13.7 ps for L B P kernel and 11.8 ps for R G B to gray conversion. The whole
cycle for this case takes 104.1 ms to execute (9.6 FPS), which is the slowdown of almost
5.9 %. The bigger slowdown is interesting, as we expected it to be smaller, because the
lower amount of events is logged by the profiler. Yet, as described before, there is still
some room left for improvements, and in theory, the execution speed of 9.8 FPS can be
achieved (102 ms per cycle and utilization of 99.8 %) by either faster C P U or different
algorithm structure. However, it would still not result into real-time execution and
therefore this possible modification can be discarded.

Time L 0,SEE7Ef71ds
FL 1.42B2D5s6s

3.5
• 1 1

3.7
1 1 I I I I

API II 1 1 I I I ! • 1 • 1 1 HI
• Queue [2][0...

Kernel Co... • 1
Queue [3][0...

Kernel Co... •
Queue [4][0„.

Kernel Co... •
• Queue [5][0„.

Kernel Co... •
0 Queue [6][0...

Kernel Co... •
B Queue [7][0„.

Kernel Co... •
0 Queue [8][0...

Kernel Co,,, •
0 Queue [9][0...

Kernel Co,,, • 1
0 Queue [10][„.

Memory,,, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Figure 8.8: Timeline view from NVIDIA OpenCL profiler on kernels execution for SSW of size 384*256 px and HW
configuration 2 showing the execution order and timing of kernels for two stabilization cycles.

The similar does apply also for OpenCL (see Figure 8.8) - the gap, where the G P U
remains unutilized is greatly reduced when compared to the previous case. Yet, the data
transfer takes 6.48 ms, from which the data transfer to device takes 62.2 ps (4 647.3 M B / s)
for 296 k B of data (the OpenCL transfers slightly bigger amount of data, as OpenCV adds
padding for faster access. For unknown reason, this is not done for C U D A) . The request
for result data again causes the copy of entire data block - 144 kB during 26.9 ps (5 200.2

47

MB/s) , not only 48 B . Yet, the data copy occurs during the execution of kernels and
therefore it is not a problem. However, we were unable to find out, why the data copy in
C U D A was not also executed during kernel execution (both implementations use the
same C P U algorithm and are designed for this behavior).

1513 15135 1514

111 I 1111

IIIIIIII
Figure 8.9 Detail of Timeline view from Figure 8.8 showing the execution order of kernels: red - rgblgray kernel,
brown - LBP kernel, green - NNMP kernel, gray - GPU utilization, other - sort kernels. The NNMP kernel was trimmed
for better visualization.

The detailed timeline view in Figure 8.9 shows, that similarly to the C U D A
version, more kernels is launched for sorting of results resulting into more context
switching operations (again 1.4 ps per one context switch). Also, there is still no overlap
of kernels which results into degraded performance over C U D A . The one execution cycle
takes 108.0 ms (9.25 FPS) which results into performance degradation of 4.1 % caused
by the profiler. Here, on the contrary of C U D A , the slowdown behaves as expected (the
slowdown is reduced with the lower amount of evets to log). The data copy operation
including the G P U waiting takes 9.3 ms, which is much bigger value than in case of
C U D A . If the G P U waiting was removed, the execution speed of 9.3 FPS would be
achievable, which is similarly to the C U D A implementation negligible. The order of the
kernels requiring most execution time is also the same: 12.04 ms for N N M P kernel, 418
ps for sorting, 12.6 ps for L B P kernel and 11.9 ps for R G B to gray conversion. The
N N M P kernel is slightly faster than its C U D A equivalent (by 3.5%). However, the sorting
kernels are faster by 71.2 %. Yet, further testing is required for final decision i f the Bitonic
sort used in OpenCL version is faster than Radix sort used in C U D A , as the time
consumption of Radix sort can be enlarged by the concurrent execution with N N M P
kernel. Also the L B P kernel is slightly faster than its C U D A equivalent. This can be
caused by the padding added to the data by OpenCV. Yet, the OpenCL version is still
slower by almost 4 % from its C U D A equivalent, due to the C U D A ' s ability to run
multiple kernels concurrently.

The C++ A M P implementation cycle for S S W of size 384 X 256 px is 417.9 ms
long, which is the speed of 2.4 FPS (slowdown of 4.3 %). The slowdown behaves as

48

expected (lower with longer execution times for kernels). The execution order is due to
the restrictions described before the same as for smallest tested S S W size. However, the
interesting thing is the length of kernel execution times - the profiler shows, that the
N N M P execution is even faster than for smaller SSW (112 [is). Yet, this is not possible,
as the kernel is executing 16 times more operations. However, the closer look at other
operations shows, that the data copy operation of 432 k B takes 48.67 ms, whether the
same data copy operation 48 k B in 2.1 ms, which is 23 times slower. Therefore, it can be
assumed, that the information shown in profiler are not the ones for entire kernel
execution, but rather its initialization (similarly to the C U D A ' s Runtime A P I line in
timeline (see Figure 8.6) and OpenCL's A P I line in timeline (see Figure 8.8). Therefore,
all theoretical speed computations based on this information are not valid. Yet, it might
be possible to measure the time more accurately, as the possibility to add custom markers
into code exists [44]. However, their usage would be out of the scope of this work.

M ill itecond e
2764 2766 2 768

i i I i i i i I i i i i I

Sync...

Figure 8.10: Timeline view from Visual Studio Concurrency profder on kernels execution for SSW of size 384*256px
and HW configuration 2 showing the concurrent execution of kernels: blue - data copy and kernels execution, gray -
grouped data copies and kernels, that are too small to distinguish.

These results has shown, that for the small sizes of SSWs, it is important to have
fast C P U (otherwise, the G P U must wait). The speed of G P U ' s access to the R A M is also
important (even more for fast GPUs) , as the N N M P kernel execution time is similar to
the other kernels and their execution time can negatively affect the total execution time,
because of the possibly slow access to the global memory. However, this does not apply
as much in case of bigger SSWs, as the N N M P computation uses local data copy.
Therefore, for optimal results, all these factors (C P U and G P U speed, G P U ' s memory
bandwidth and PCIe transfer rate, input video resolution and S S W size) must be in right
balance in order to fully utilize all available resources.

Also, there is the question, of how much accurate are used profilers, especially in
time measurement for small data transfers and kernels. Nonetheless, the there is a problem
with presented theoretical speeds: the profiler causes slowdown of execution (as has been
shown), but we were unable to determine, i f the slowdown is caused by the bigger breaks
between the executions, the kernel execution times stretching or both. Therefore, the
computed theoretical values would likely differ in real scenario and can be used only for
the illustration of the performance bottlenecks.

8.1.2 Measured results

The performance testing was done on video sequence "tracking" using average values
from the first 500 frames. This ensured, that there is enough samples (stabilization cycles)
and also it is fast enough, as the testing of whole video sequence would require great

49

amount of time. In order to remove influence of kernels compilation, the second run is
used in measurement.

The selection of this video does not have any specific reason. The testing on the
other video sequences would yield mostly the same results (the smaller resolution reduces
the C P U usage and therefore there might be some small performance gain on slower
CPUs like Intel Q6600, but both cameras produces the same bitrate when recomputed to
the same FPS). Further, the deviations from the average were not measured, as the
preliminary testing has shown, that they are smaller than 2 % (which does not matter,
because the change can be neglected). The same is also true for the repeatability.

For the rest of this thesis, the boundary for the real-time processing is set to the 24
FPS, as this value is lowest standardized framerate for both video acquisition devices and
cinemas. However, as mentioned before, the video stabilization is in computer vision
often the only one of the first steps in entire process. Therefore, it is preferable to achieve
high processing speed of video stabilization in order to enable further processing in real
time. Also, the standards defining the video in 60 FPS exists. For this reason, the second
boundary at the 60 FPS is chosen, that enables the real time processing of both most
available video format speeds and enough spare time for additional video processing in
real time. The measured values between these boundaries are distinguished using
different colors, as can be seen in Table 8.4.

Table 8.4: Visual division of FPS into color categories.

0 - 2 9 . 9 3 0 - 5 9 . 9 60 +

Table 8.5: Performance comparison ofproposed algorithm using different frameworks for SSW size of128* 128 px.

HW config uration 1 2 3 4 5 6 7

OpenCL
FPS 82.2 164.0 198.8 142.7 78.4 196.2

OpenCL
Usage 58% 25% 75% 60% 42% 38% 44%

OpenCL
NVIDIA

FPS - 84.1 164.0 198.8 - 61.0 200.4 OpenCL
NVIDIA Usage - 26% 75% 60% - 10% 44%

CUDA
FPS - 88.2 195.2 224.0 - 160.0 202.2

CUDA
Usage - 28% 84% 80% - 12% 44%

C++
AMP

FPS 21.0 42.5 84.4 109.7 61.2 81.8 114.9 C++
AMP Usage 49% 58% 65% 52% 44% 49% 44%

CPU
OpenMP

FPS 26.2 26.2 51.8 56.5 56.5 30.3 51.5 CPU
OpenMP Usage 96% 96% 95% 95% 98% 99% 98%

CPU
FPS 6.5 6.5 10.9 7.5 7.5 0.9 10.5

CPU
Usage 24% 24% 20% 13% 13% 3% 20%

As can be seen from Table 8.5, even for the smallest S S W size, the C P U does not
have enough compute power to stabilize video in real-time. However, when all the cores
are used, the processing speed can be considered to be real-time, and in case of H W
configurations 3, 4, 5 and 7 also with some space for further processing. In case of G P U ,

50

the processing speed is far beyond the real-time boundary, except the C++ A M P version,
in H W configuration 1, where the execution speed does not enable real-time video
stabilization. Further, only in two cases (OpenCL for configuration 1 and C++ A M P for
configuration 2) is below the second limit of 60 FPS. From other results, it can be seen,
that the C U D A implementation is fastest, closely followed with both OpenCL versions.
Then, the third is C++ A M P with performance slightly better than half of C U D A
performance. Yet, on the slowest G P U , it is even slower than C P U . Also , this
implementation is slower than best of current C P U ' s even on the more powerful G P U
used in H W configuration 2.

The next thing is the utilization of the GPUs. The slowest graphics card (Radeon
5750) is in OpenCL implementation used significantly more than card in configuration 2
(58 % vs 25 %). As the profiling has shown (see section 8.1.1), this is due to the both
small performance of G P U and the slow C P U , where the same kernel execution takes
much more time in case of C++ A M P and the OpenCL implementation must wait for the
C P U provide data. The same is also true for the other tested H W configurations.

Here is also visible the difference of between the standard OpenCL and N V J D I A ' s
modified version with memory barrier in divergent branch - yet, it is true only for the
H W configurations 2, 6 and 7 (Fermi and Maxwel l architectures designed for computing).

Table 8.6: Performance comparison of proposed algorithm using different frameworks for SSW size of 192*128 px.

HW configuration 1 2 3 4 5 6 7
OpenCL FPS 82.0 89.7 100.0 142.8 108.0 176.4 OpenCL

Usage 70% 60% 82% 79% 62% 39% 48%
OpenCL
NVIDIA

CUDA

FPS - 82.0 86.6 100.0 - 49.2 176.4 OpenCL
NVIDIA

CUDA
Usage - 60% 82% 80% - 19% 48%

OpenCL
NVIDIA

CUDA FPS - 89.1 95.1 114.0 - 153 192.0

OpenCL
NVIDIA

CUDA
Usage - 80% 84% 93% - 52% 52%

C++
AMP

FPS 13.5 26.5 48.1 58.0 34.9 63.3 78.1 C++
AMP Usage 65% 70% 73% 66% 70% 47% 56%
CPU
OpenMP

FPS 15.1 15.1 31.0 35.4 35.4 20.2 32.0 CPU
OpenMP Usage 96% 96% 97% 98% 98% 99% 98%
CPU FPS 3.8 3.8 6.4 4.7 4.7 0.6 6.5 CPU

Usage 24% 24% 20% 13% 13% 3% 20%

The Table 8.6 shows, that the C P U was indeed a limitation for all of used
configurations: the G P U utilization has risen rapidly when compared with previous S S W
size, but the FPS rate remains almost the same for some configurations (2, 5, 6 and 7).
Yet, the C P U speed declines roughly 66 %. Therefore, the only the more powerful CPUs
are able to stabilize video in real time (3, 4, 5 and 7) when all cores are employed and the
others are way below the required limit.

The interesting thing in results is the performance bottleneck of N V I D I A ' s OpenCL
against normal OpenCL for H W configurations 3 and 6. However, we were unable to

51

investigate this behavior deeply, as the tests were performed on these PCs using remote
desktop without ability to install profiler.

Table 8.7: Performance comparison of proposed algorithm using different frameworks for SSW size of'256*128 px.

HW configuration 1 2 3 4 5 6 7
OpenCL FPS 23.5 65.0 67.4 104.7 86.0 160.3 OpenCL

Usage 88% 75% 80% 86% 52% 29% 65%
OpenCL
NVIDIA

FPS - 70.0 56 . 4 67.8 - 86.0 162.3 OpenCL
NVIDIA Usage - 75% 82% 87% - 29% 65%
CUDA FPS - 81.0 62.2 75.1 - 158.0 230.8 CUDA

Usage - 89% 94% 95% - 58% 70%
C++
AMP

FPS 9.4 16.8 28.8 34.1 31.2 40.0 48.1 C++
AMP Usage 73% 77% 78% 74% 66% 55% 70%
CPU
OpenMP

FPS 9.4 9.4 21.1 21.7 21.7 13.2 21.3 CPU
OpenMP Usage 96% 96% 96% 98% 98% 99% 98%
CPU FPS 2.4 2.4 4.4 2.9 2.9 0.4 4.3 CPU

Usage 24% 24% 20% 13% 13% 3% 20%

The test results from Table 8.5 shows that even the S S W size has doubled, the
resulting speed remains approximately the same for the computation oriented GPUs (2,
5, 6 and 7) and in case of N V I D I A , their version of OpenCL has again better results. The
performance of the other GPUs is slowly declining and the utilization has risen for all
GPUs, approaching 95 % in some cases. Yet, all GPUs except Radeon 5750 are able to
stabilize the video in real-time and most of the even with enough power for other
computations. However, the C++ A M P version performance is still slow.

The CPUs speed has again declined (as expected) by roughly 40 % and none of the
CPUs is able to stabilize the resulting video in real-time even when all cores are used.

Table 8.8: Performance comparison of proposed algorithm using different frameworks for SSW size of 192*192 px.

HW configuration 1 2 3 4 5 6 7
OpenCL FPS 17.1 87.7 66.9 111.0 OpenCL

Usage 82% 75% 79% 83% 61% 59% 57%
OpenCL
NVIDIA

FPS - 38.9 48.2 - 67.1 111.0 OpenCL
NVIDIA Usage - 74% 78% 85% - 35% 57%
CUDA FPS - 64.7 4 5 2 54 5 - 115.5 175.3 CUDA

Usage - 93% 91% 96% - 67% 80%
C++
AMP

FPS 7.9 14.4 24 . 9 29.6 35.7 35.7 42.7 C++
AMP Usage 77% 82% 83% 75% 96% 55% 70%
CPU
OpenMP

FPS 7.2 7.2 17.1 17.1 17.1 11.5 18.0 CPU
OpenMP Usage 96% 96% 95% 98% 98% 99% 98%
CPU FPS 1.8 1.8 3.6 2.3 2.3 0.3 3.7 CPU

Usage 24% 24% 20% 13% 13% 3% 20%

52

The S S W size of 192 x 192 px is demanding enough (see Table 8.8) to fully utilize
all the G P U S and the performance drop is observable even for the most powerful ones.
Yet, the results are only slightly worse than in case of results in Table 8.5 (performance
drop of approximately 15 %). However, the C P U implementations have performance
drop of almost 25 %.

Table 8.9: Performance comparison of proposed algorithm using different frameworks for SSW size of256*192 px.

HW configuration 1 2 3 4 5 6 7
OpenCL FPS 10.9 90.1 60.0 95.4 OpenCL

Usage 90% 83% 89% 91% 65% 47% 62%
OpenCL
NVIDIA

FPS - 34.6 28.5 33.3 - 60.0 95.4 OpenCL
NVIDIA Usage - 83% 90% 91% - 47% 62%
CUDA FPS - 39.7 30.2 35.2 - 96.5 126.2 CUDA

Usage - 96% 97% 97% - 71% 84%
C++
AMP

FPS 1.9 8.9 17.2 19.2 21.6 25.1 28.1 C++
AMP Usage 83% 87% 88% 82% 61% 67% 72%
CPU
OpenMP

FPS 4.5 4.5 10.6 10.3 10.3 8.4 11.5 CPU
OpenMP Usage 96% 96% 96% 98% 98% 99% 99%
CPU FPS 1.1 1.1 2.2 1.4 1.4 0.3 2.3 CPU

Usage 24% 24% 20% 13% 13% 3% 20%

The further increase of the S S W size brings again performance drop for all tested
hardware configurations. The GPUs 2, 3 and 4 are still able to process video in the real
time, but there is not much room left for other computations. Also, the C++ A M P versions
are no longer usable, except for configurations 6 and 7. These GPUs are still not fully
utilized (the used CPUs are slow), yet they are suitable for another tasks except the video
stabilization. Also, the C U D A version is still faster than OpenCL.

Table 8.10: Performance comparison of proposed algorithm using different frameworks for SSW size of256*256px.

HW configuration 1 1 2 3 4 5 6 7
OpenCL FPS 6.9 21.2 16.3 19.6 92.7 OpenCL

Usage 95% 89% 97% 99% 65% 45% 99%
OpenCL
NVIDIA

FPS - 21.2 16.4 19.6 - 39.9 92.7 OpenCL
NVIDIA Usage - 89% 97% 99% - 52% 99%
CUDA FPS - 23.4 16.8 19.6 - 60.0 78.4 CUDA

Usage - 97% 97% 98% - 81% 89%
C++
AMP

FPS 3.0 5.4 10.4 12.0 15.0 16.7 19.0 C++
AMP Usage 90% 92% 90% 87% 85% 75% 73%
CPU
OpenMP

FPS 2.6 2.6 6.3 6.0 6.0 5.2 6.9 CPU
OpenMP Usage 96% 96% 98% 98% 98% 62% 99%
CPU FPS 0.7 0.7 1.3 0.8 0.8 0.2 1.4 CPU

Usage 24% 24% 20% 13% 13% 3% 20%

53

The S S W size four times bigger than the initial one is the challenge for all used
configurations (see Table 8.10). The CPUs are again slower than in previous cases.
However, also the GPUs from configurations 2, 3 and 4 are no longer usable for real-time
video stabilization using implemented method. The same apply for the C++ A M P across
all GPUs . However, the GPUs 5, 6 and 7 are still suitable for real-time processing, even
that the framerate of stabilization is relatively low, because their utilization is only slightly
higher than 50 % (C P U is the limitation). Therefore, additional, not C P U intense tasks
can be computed without the impact on the stabilization speed.

The interesting thing also visible from the table is the better performance of
OpenCL over C U D A for G P U 7 by almost 19 %. However, this behavior could not be
examined by profiler for the reasons mentioned before.

Table 8.11: Performance comparison of proposed algorithm using different frameworks for SSW size of384* 192 px.

HW configuration 1 2 3 4 5 6 7
OpenCL FPS 5.0 16.6 12.7 13.3 70.9 OpenCL

Usage 93% 91% 97% 99% 71% 62% 81%
OpenCL
NVIDIA

FPS - 16.6 12.8 13.3 - 39.2 70.9 OpenCL
NVIDIA Usage - 91% 97% 99% - 62% 81%
CUDA FPS - 17.9 13.1 13.3 - 5 8 . 0 63.4 CUDA

Usage - 98% 97% 99% - 81% 92%
C++
AMP

FPS 2.4 4.3 8.2 9.4 11.7 14.1 14.9 C++
AMP Usage 92% 92% 95% 91% 85% 65% 80%
CPU
OpenMP

FPS
Usage

2.1 2.1 6.3 5.3 5.3 4.6 6.0 CPU
OpenMP

FPS
Usage 96% 96% 97% 98% 98% 62% 99%

CPU FPS 0.5 0.5 1.3 0.7 0.7 0.2 1.2 CPU
Usage 24% 24% 20% 13% 13% 3% 20%

The S S W size increase to 384 x 192 px does basically make first four H W
configurations unusable for real-time stabilization (see Table 8.11). The remaining three
configurations are usable only with OpenCL and C U D A . However, the GPUs are still not
fully utilized, as the used CPUs does are not able to supply enough of data for processing.
Therefore, additional, non C P U intensive tasks can be computed on GPUs .

Also, this case also shows the same interesting behavior as in previous case, where
the OpenCL version is faster than C U D A .

The last tested S S W size (Table 8.12) brings another drop in speed of all GPUs .
The results are similar to the previous case, as only the last three GPUs are suitable for
real-time video stabilization for this S S W size. However, they are still not fully utilized
and therefore can be used for additional computations.

The impact of the C P U performance on the used G P U can be seen from the speedup
between the last two GPUs: both of them uses the same architecture and even the chip.
However, the later disabled two blocks of compute units and the high performance is
ensured by the higher working frequency. Yet, the later has significantly bigger

54

performance in video-stabilization. This is caused by the used CPUs , where their working
frequencies are 2.0 G H z and 4.4 G H z respectively. Because the implemented video
stabilization method uses only one thread to select the areas of concern and send them to
G P U , the frequency has linear impact to raw performance. Therefore, the G P U can be
also used by other unused threads for other computations.

Table 8.12: Performance comparison of proposed algorithm using different frameworks for SSW size of384 x 256px.

HW configuration 1 2 3 4 5 6 7
OpenCL FPS 3.9 9.7 6.7 7.8 23.5 OpenCL

Usage 94% 93% 90% 97% 79% 63% 82%
OpenCL
NVIDIA

FPS - 9.7 6.7 7.8 - 23.5 35.5 OpenCL
NVIDIA Usage - 93% 97% 97% - 63% 82%
CUDA FPS - 10.2 6.9 8.2 - 30.3 37.7 CUDA

Usage - 98% 99% 99% - 85% 95%
C++
AMP

FPS 0.6 2.5 5.1 5.9 8.2 7.5 9.8 C++
AMP Usage 88% 95% 95% 92% 85% 74% 85%
CPU
OpenMP

FPS 1.2 1.2 3.0 2.8 2.8 2.3 3.3 CPU
OpenMP Usage 96% 96% 98% 98% 98% 32% 99%
CPU FPS 0.3 0.3 0.6 0.4 0.4 0.1 0.7 CPU

Usage 24% 24% 20% 13% 13% 3% 20%

Besides the raw performance values, the actual speedup of G P G P U over C P U is
also important. For this reason, two summary charts were created for each configuration
(see A P P E N D I X B : G P G P U speedup over C P U) : the one showing the speedup against
the sequential C P U version and the one showing the speedup against the C P U parallelized
version. The speedup values are scaled to the real area of used S S W in order to better
visualize the possible speedup and its course.

The results show, that the speedup depends greatly on the ration of the speeds of
used C P U and G P U - i f the ratio is big (the C P U is slow), the G P U must wait for C P U to
deliver data required for computation. This behavior can be seen for H W configurations
2, 6 and 7 (Figure 9.7, Figure 9.11 and Figure 9.12). However, when the amount of
computation reaches the certain level, the G P U is no longer limited and the speedup
stabilizes at the approximately same value. The value itself depends on the used C P U ,
therefore, it vary greatly between used configurations. For this reason, the summary
figure with speedup normalized to 100 G F L O P S of C P U performance and 1 T F L O P S of
G P U performance was created in order to enable fair comparison of speedups achievable
on different GPUs (see Figure 8.11). This clearly shows, that the architectures designed
for compute (HW configurations 2, 5, 6 and 7) provides the best performance. In ideal
case (e.g. by direct measurement), the data series should have linear shape. However,
because the data of the figure are only estimated from other measured values, there are
deviations from this expected shape.

55

Relative speedup of GPUs normalized to 1TFLOPS and 100 %
utilization over the CPUs normalized to 100 GFLOPS and 100 %

utilization

9 2 m 2 • 4 • 5 • C

• •

- • •
•
•

= 1 ^ - • — •

10 20 30 40 50 60 70 80 90 100
SSW size [thousands px]

Figure 8.11: The relative speedup of the OpenCL implementation on the all used GPUs normalized to the 1 TFLOPS
of performance and 100% of utilization for all measured SSW sizes over the CPUs normalized to the 100 GFLOPS
and 100 % utilization.

The interesting thing is, that when the performance of both G P U and C P U is
normalized to the same value of 100 G F L O P S , none of the GPUs does provide better
performance per 1 F L O P S except the N V I D I A Quadro M6000 in some cases. Yet, three
advantages of GPUs exists: firstly, in lot of cases, they are already present in PC and it
would be pity not to use them. Secondly, they provide additional performance and when
used, the part of C P U dedicated to other tasks. Lastly, their performance is higher by at
least two orders of magnitude with the same power consumption and their price is
comparable.

Further, the performance of the tested G P G P U frameworks was also tested. The
results can be seen in Figure 8.12. Here, the OpenCL performance is considered to
represent 100 %. On all tested hardware configurations, the C++ A M P performance was
between 20 % and 60 % of the OpenCL performance. For this reason, the C++ A M P
implementation of algorithm is not competitive. The second solution - C U D A has better
results and outperforms the OpenCL in most cases. Its performance is mostly about 5 %
better, for smaller S S W sizes it is even more. In case of large S S W sizes, the difference
drops down to 5 %.

56

The speedup of CUDA and C++ A M P over OpenCL

20 40 60 80 100
SSW size [thousands px]

•OpenCL —•—CUDA —•—C++AMP
(C)

20 40 60 80 100
SSW size [thousands px]

•OpenCL —•—CUDA —•—C++ AMP
(d)

so

120
100
80
60
40
20
0

-• • •

250

200

150

100

50

0
•

20 40 60 80
SSW size [thousands px]

•OpenCL • C++AMP

(e)
200

150

100

50

0

100 20 40 60 80 100
SSW size [thousands px]

•OpenCL —•—CUDA —»—C++AMP

(f)

0 20 40 60 80 100
SSW size [thousands px]

—•—OpenCL —•—CUDA —«—C++AMP

(g)
Figure 8.12: The speedup comparison/or CUDA and C++ AMP over OpenCL: a) HW configuration 1, b) HW
configuration 2, c) FIW configuration 3, d) HW configuration 4, e) HW configuration 5,f) HW configuration 6, g)
HW configuration 7.

57

8.2 Video stabilization quality evaluation

For the real-time applications, the quality of video stabilization is equally important as its
speed. While multiple evaluation techniques of video stabilization quality exists, they all
have some issues (see chapter 2.4). Therefore, the presented real-time video stabilization
method was evaluated using multiple approaches.

8.2.1 ITF

The ITF testing was performed only on the central part of size 880 X 320 px. The reason
for choosing only the small part of input resolution is possibility of error introduction
caused by the black edges that are the result of image stabilization.

Table 8.13: Comparison of ITF values for original and stabilized video.

Video
number

1 2 3 4 5 6 7 8 9 10 11

Original
ITF [dB]

21.6 29.5 23.4 26.8 29.9 30.3 22.6 23.4 27.7 20.6 19.8

Stabilized
ITF [dB]

22.7 29.1 22.8 28.4 31.2 33.4 22.7 25.0 28.2 24.3 23.1

Difference
[dB]

1.1 -0.4 -0.6 1.6 1.3 3.1 0.1 1.6 0.5 3.7 3.3

As can be seen from the results of measurement in Table 8.13, the ITF values are
indeed very similar for video sequences containing rapid zoom changes. In two of four
video sequences capturing the car ride from the driver's viewpoint the ITF metrics get
worse with the image stabilization. However, the difference is not big even for the video
sequences with the minimum of the movement. This is caused by the strong footprint of
the rolling shutter effect in all of the videos and focus changes. Therefore, the quality of
video stabilization was evaluated also visually. The subjective opinion of multiple
persons is that this metrics does not show the real quality of the stabilization. For all those
reasons, the second evaluation using the frequency analysis was performed

8.2.2 Camera path evaluation

Because the ITF test results shows very similar values for videos with the zoom changes,
another technique employing frequency analysis to compare the presence of different
frequencies was used. While for the full objectivity, the use of some different stabilization
method for frame displacement computation would be suitable, we were unable to find
such a solution that is used enough and at the same time able to export the displacement
values for individual frame pairs. Therefore, the proposed algorithm was used. In order
to ensure the correctness of stabilization, the biggest tested S S W size (384 x 256 px)

58

was used. This size enables to use correction of up to 96 px for x axis and 64 px for y
axis in both directions (half of the M S W size, as the frames can be displaced in both
directions). Then, the displacement values were padded to the power of 2 and transformed
using D F T . The output of this process are the magnitudes of the frequency components
present in the data. The data itself were converted to the absolute values for better
visualization and shows only the real part of the transform. They can be found in
A P P E N D I X D : Frequency analysis of camera paths before and after video stabilization.

Frequency analysis of camera path in walking-2 video
8E+3
7E+3
6E+3
5E+3
4E+3
3E+3
2E+3
1E+3
OE+0

6 f[Hz] 8

(a)
10 12 14 16

8E+3
7E+3
6E+3
5E+3
4E+3

cu 3E+3
3 2E+3 TO > 1E+3

OE+0 '
f[Hz] 8

(b)
10 12 14 16

5E+3
4E+3
3E+3

— 2E+3
01
| 1E+3

OE+0

5E+3
4E+3
3E+3

= 2E+3
| 1E+3

OE+0

II

1
6 f[Hz] 8

(c)
10 12 14 16

10 12 14 16 0 2 4 6 f [Hz] 8
(d)

Figure 8.13: The frequency analysis of the walking-2 video sequence: a) x axis before stabilization, b) x axis after
stabilization, c) y axis before stabilization, d) y axis after stabilization.

As can be seen from the results, in all of the video sequences, the higher frequencies
are present. However, their amount is radically reduced by the stabilization. Also, prior
to the stabilization, in some case (e.g. "walking-2" video sequence, Figure 8.13) is the

59

prevailing frequency of about 1 H z in x axis and 2 H z in y axis. The proposed stabilization
method removes this prevailing frequencies and the most common frequencies becomes
the ones around zero.

Camera path in walking-2 video
200

0

-200

.1 -400

o
Q . •600

hi
X Jf

ngmai staoii izea

frame

(a)
500

g. -500
c
5-1000
CO o
CL

-1500

riginal stabi ized

350 400 450 500 50 100 150 200 250 300
frame [-]

(b)
Figure 8.14: Camera path in walking-2 video before and after video stabilization: a) x axis, b) y axis.

For better comparison, the figures containing the absolute position of camera pose
against the first frame for the first 500 frames was generated. They can be found in
A P P E N D I X C : Camera paths before and after video stabilization. The Figure 8.14 shows
the absolute camera pose before and after the video stabilization of the "walking-2" video
sequence. As can be seen, the proposed stabilization smoothens the camera path.
However, the used Kalman filtering has several issues: firstly, the response separation of
wanted and unwanted motion in first few frames is not perfect, as the camera movement
is followed closely. This is the expected behavior, as the Kalman filtering uses prediction
of the future state based on the previous states. However, the second and bigger issue is
the inability to recognize the sudden intended change in camera position and cannot be
resolved by the standard Kalman filter, as it is one of its properties. Therefore, based on
the preferences and nature of the video that needs to be stabilized, its parameters can be
modified to better suit its application (e. g. in case of walking, the used settings fails to
straighten the camera movement in x axis. This can be resolved by smaller sensitivity to
the difference of the actual and predicted position, but it w i l l result into bigger delay when
sudden intended change of camera position is introduced. From the Figure 8.14a it is
clear, that the delay is approximately 7 frames. This results to the threshold of 2.1 Hz.

60

The bigger frequencies are filtered out, as they are considered to by shake. The lower
frequencies are smoothen, but followed with delay. Therefore, the better filtering is
required to solve this issues.

8.2.3 Subjective quality evaluation

B y subjective visual evaluation, all of the testing video sequences are better than their
originals in terms of stability. However, the problem is the presence of rolling shutter
effect, where image defects like scaling in vertical axis or wriggle are present in the
images. This, when combined with blur, often causes that the resulting video seems
unstabilized and only the side by side comparison proves otherwise. Another common
problem is that for small focal lengths, the barrel effect is present in the frames and their
stabilization creates the weird and disturbing changes in images (e.g. "walking" video
sequences). Therefore, the high quality camera with good optics is required to eliminate
the presence of these image defects.

Beside these problems, it can be said, that the proposed method overcame our
expectations as it is able to deal not only with the image defects but also with the zoom
effect (camera movement in z axis) or with the partially covered image with different
objects (the "car-ride-4" video has the dashboard in the bottom quarter of the image).

8.3 Comparison of real and estimated SS W size

Based on the output of the stabilization of tested video sequences, the analysis of the
required compensation values was performed. The histogram shows, that the distribution
of values is not the normal distribution as in case of hand tremor (see section 2.2), but
rather peaked at the deviation of zero with the sharp decrease within deviation of few
pixels and then followed by slow descent to the extremes (see Figure 8.15).

H i s tog ram o f image d i s p l a c e m e n t s for x axis o f car - r ide

v i d e o s e q u e n c e
5000
4500
4000
3500

Z 3000
| 2500
° 2000

1500
1000
500

0
-e

5000
4500
4000
3500

Z 3000
| 2500
° 2000

1500
1000
500

0
-e

5000
4500
4000
3500

Z 3000
| 2500
° 2000

1500
1000
500

0
-e

5000
4500
4000
3500

Z 3000
| 2500
° 2000

1500
1000
500

0
-e

5000
4500
4000
3500

Z 3000
| 2500
° 2000

1500
1000
500

0
-e

5000
4500
4000
3500

Z 3000
| 2500
° 2000

1500
1000
500

0
-e

5000
4500
4000
3500

Z 3000
| 2500
° 2000

1500
1000
500

0
-e

5000
4500
4000
3500

Z 3000
| 2500
° 2000

1500
1000
500

0
-e

(
i i

5000
4500
4000
3500

Z 3000
| 2500
° 2000

1500
1000
500

0
-e

i i

5000
4500
4000
3500

Z 3000
| 2500
° 2000

1500
1000
500

0
-e

—

5000
4500
4000
3500

Z 3000
| 2500
° 2000

1500
1000
500

0
-e 0 -40 -20 0 20 40 6

Displacement [px]
Figure 8.15: Distribution of displacement values in the x axis of the car-ride video sequence.

61

For this reason, it may be suitable to lower the computation requirements by
defining the smaller window size. Because of the sharp descent of counts for bigger
displacements, even the reduction of requirements to correctly capture 99 % of translation
changes may bring significant speedup. Therefore, for all of tested video sequences, the
SSW sizes to capture 99 %, 95 % and 90 % of displacements between consecutive frames
were computed (see Table 8.14). The S S W sizes in table are distinguished by different
colors based on the ability of the hardware used for testing to stabilize the video with the
defined S S W sizes in real-time and perform other computations: green - all hardware,
yellow - only H W configurations 5, 6 and 7, red - none of the used hardware.

Table 8.14: Measured sizes of SSW required to compensate specific percentage of consecutive frames displacement.

Video
number

1 2 3 4 5 6 7 8 9 10 11

100 %[px] 204 304 180 168 68 40 376 304
X X X X X X X X X X X

236 212 72 88 108 52 140 192 180 196 232
99 % [px] 72 232 144 72 60 36 64 360 100 164 140

X X X X X X X X X X X
76 76 36 32 96 28 72 92 80 144 172

95 %[px] 36 128 88 44 44 28 44 164 48 108 108
X X X X X X X X X X X

48 36 20 20 40 16 40 44 32 48 124
90 %[px] 24 64 52 32 32 20 32 92 40 92 92

X X X X X X X X X X X
36 24 12 16 32 12 24 32 20 28 108

As can be seen from the results in Table 8.14, even the reduction to capture only 99
% of displacement values brings significant speedup. However, it is important to note,
that the S S W sizes shown in this table are not optimized for G P U processing and are
computed only for the used testing videos. Therefore, in real scenario, a more thorough
testing may be required to set the S S W size accordingly.

The table further shows that the required SSW sizes for the stabilization of the car-
ride videos depends greatly on the nature of the roads and the speed of vehicle. In the first
"car-ride" video, the changes in y axis are bigger than in x axis, this is due to the high
speed of vehicle, when even the small pothole causes the vehicle to swing. In other three
video sequences, this effect is not present, as the car is moving slowly, even that the
potholes are bigger (average speed of 25 kph over 70 kph in first video). Secondly, there
is the great influence of the distance of the objects - the near object changes their position
and size more rapidly between the consecutive frames and therefore bigger search
window size is required. Therefore, the design of the S S W size in case of vehicle mounted
camera must account for its focal distance, the environment (distance of the object from
camera) and the expected speed of vehicle. Yet, the "car-ride" video sequence shows, that
the proposed method is able to stabilize with the vehicle moving at the top speed of 100
kph without problems.

62

Next, the "jitter" videos are as expected within the expected tolerance, as described
in section 5.1.1. However, this does not apply for the "pan-zoom" video sequences. Yet,
this is not due to the shake, but rather the sudden and intended change of camera pose.
Therefore, during the making of the decision of how big the S S W should be, the maximal
speed of intended camera pose should be also accounted for. The same does apply for the
tracking video.

However, in the walking videos, the camera position change is caused by the nature
of walking, and therefore it cannot be affected in order to reduce the needed S S W size.

The results in Table 8.14 further shows, that the requirement to correctly
compensate 95 % (or 99 %) of consecutive frames displacements enables to greatly lower
the computation requirements. This also means, that with bigger S S W sizes, the
stabilization of video sequences captured with the big focal distance is also possible, i f
the actual translation differences are not too big.

63

9 CONCLUSION AND FUTURE WORK
The aim of this Master's thesis was to introduce reader into the problem of image
stabilization and available solutions. Firstly, problem description was presented together
with examples of situations, where image stabilization is needed.

In the first chapter, three phenomena related to shaky image were presented together
with explanation of their origin, relationship and possible countermeasures. Also the
methods used for evaluation of quality of video stabilization were presented.

Second chapter presented four approaches used to stabilize image: mechanical,
optical, electronics and digital with aim on DIS. Digital image stabilization was then
deeply explained and reader was guided through individual steps of this process. Also the
issues caused by changes of camera's angle of view and focal length were introduced
together with possible countermeasures. Enhanced version of DIS was also presented.
Finally, a brief summary comparing all four principles was provided.

The third chapter introduced the reader into G P G P U frameworks available in the
workplace. Three technologies were discussed: OpenCL, C U D A and C++ A M P . For
each, brief summary of pros and cons was presented, together with a short example of
code. Finally, all three technologies were compared in a brief summary.

The fourth chapter firstly presented requirements for the video stabilization
algorithm. Then, based on them, the algorithm for real-time stabilization using G P U was
designed. The possibility of real-time processing is achieved by selection of eight areas
of concern from the input frame. This both reduces the search space (less computationally
expensive) and brings the error correction mechanism, as the required translation of
consecutive frames is computed independently for each area. However, another level of
error correction is introduced by taking the 8 best motion vectors from each area. This
can improve the selection of the global motion vector in case of areas with non-distinctive
edges.

The next step in order to achieve fast processing is the reduction of the color space
for the correlation. Therefore, the special binarization technique called Local Binary
Patterns is used. Its modified version enables creation of truly binary images and unlike
in the case of the simple thresholding, the resulting image has edges present even for the
very similar areas of image (e.g. sand, snow or sky). Secondly, binary image enables fast
correlation using X O R . Then, for the each displacement of correlation template and the
search area, this operation returns the number of non-matching points (N N M P) , which
can be directly used as the criterion for the local motion vector. Therefore, best local
motion vectors are those, where N N M P value is lowest. The next step is the computation
of global motion vector. This is achieved by selection of median value of local motion
vectors for both of axes independently. Last step is the separation of the intended camera
motion from the shake itself. For this, the Kalman filtering is used.

The fifth chapter describes the implementation of the proposed algorithm. Besides
the specifics of implementation, also the author's subjective impression on the specific
technology is mentioned. The designed algorithm was implemented using all three

64

G P G P U solutions described in this work. Moreover, the reference C P U version was
created in both sequential and multithreaded version using OpenCL.

The sixth chapter contains the description of the 11 created testing videos. Besides
their detailed description, also table with common properties is presented. The videos
contains are captured using two different cameras and in various light conditions and
environments. They are divided into multiple categories based on the mounting type
(fixed, hand-held) and the resulting video type (walking, jitter, pan and zoom, car ride,
tracking).

The seventh chapter contains the test results of the all algorithm implementations
in the terms of execution speed and the assessment of the quality of the algorithm itself.

Firstly, the nine hardware configurations used for testing are presented. Their
description contains exact specification of the used hardware (working frequency,
available memory, theoretical performance). Then, all three G P U implementations are
profiled under the one of the used hardware configurations for two different sizes of areas
of concern (the smallest one and biggest one used during thorough testing of
performance). Here, the assumptions that were done during implementation are verified
and discussed. The most important is, that even the algorithms are designed to work
asynchronly, the used C P U is too slow to deliver data in time when the smallest areas of
concern are used and the G P U must wait. This results into different utilization of G P U
over different G P G P U implementations. The second finding is that the C U D A is able to
launch different kernels at the same time, i f the utilization of G P U is low. This overlap of
kernels brings advantage over the OpenCL, as even that the duration of the kernels is
slightly longer, the overlap reduces the total execution time. Next, the C++ A M P profiler,
on the contrary of the C U D A and OpenCL does not report the actual operations on G P U ,
but only their scheduling order. Therefore, it is not possible to compare actual execution
times and compute the maximal theoretically achievable execution speed. Also, it was
found out, that the OpenCL version does transfer all the resulting values of N N M P instead
of only required 8 (the C U D A does this correctly).

The second part of this chapter presents the performance results for 8 different sizes
of areas of concern for all hardware configurations. Besides the achieved speed measured
in frames per seconds (FPS), also the utilization of G P U is measured. The utilization is
also measured for both C P U versions.

The results shows that depending on the computing power of the used G P U , even
the fastest CPUs are not fast enough to fully utilize the most powerful GPUs . This can be
partially overcome by the use of bigger area of concern. The next thing is, that all of the
GPUs are able to achieve the real-time processing speed (24 FPS), even when limited by
the C P U . The performance of the different G P G P U implementations shows, that the C++
A M P can achieve only about half of the performance of OpenCL. The C U D A
implementation is faster than OpenCL by 10 % in for smaller areas of concern and 3 %
in case of bigger areas of concern.

Further, the resulting performance of all GPUs and CPUs was normalized to the
same theoretical computing power (1 T F L O P S and 100 G F L O P S respectively) and 100

65

% of utilization in order to compare the performance of the G P G P U architectures
themselves. In case of N V I D I A , the results are as expected, where the G P U architecture
designed for computing (Fermi and Maxwell) have much higher performance than Kepler
designated for computer games. The similar result is in case of A M D , where the new
C G N architecture of R9 Fury outperform the old Radeon 5750 by several times. Based
on this, it can be concluded, that the N V I D I A ' s GPUs dedicated for computing have better
performance in this algorithm to the unit of computing power than the A M D ' s . However,
this claim may not be valid for all G P U computations.

In the third part, the quality of the video stabilization itself was evaluated. Firstly
the Inter-frame Transform Fidelity criterion based on P S N R was used. However, because
this methodology is not suitable for the videos containing zoom changes, the resulting
values were very similar and in two cases of car-ride videos even worse. Yet, the
subjective visual evaluation has shown, that the stabilized video is better than original.
Therefore, second evaluation metrics empowering the discrete Fourier transform was
used to get the magnitude of the present frequencies. Here, the improvement is clearly
visible, as the higher frequencies are greatly reduced. This confirms the visual
assessment. Yet, another evaluation was performed by visual comparison of the camera
path before and after the video stabilization. This also confirmed that the performance of
the method can be considered to be great. However, the proposed method suffers from
the delayed reaction of the used Kalman filter for preserving of the intended motion.

The last part of this chapter perform statistical analysis of the displacements
measured between frames in all testing videos. It was found out, that the values are not
distributed according to the normal distribution, but rather peaked around the zero
displacement with rapid decrease within small deviation. Then, the further decrease is
slow towards the extremes. This means, that the lowering of requirements from correct
compensation of 100 % frames to only 95 % can save significant amount of computations
and therefore speedup the entire process.

To summarize, both the development and the testing shows, that the use of C U D A
should be preferred over the OpenCL i f suitable, because of the easier development and
slightly better performance. The C++ A M P cannot be recommended for the image
processing operations, as it lacks the support for 8-bit data type and data must be padded
to 32 bits. This brings the unnecessary overhead caused by the conversions. Next, the
achieved speeds of processing are far beyond the real-time threshold of 24 FPS, especially
for smaller areas of concern and therefore this algorithm may be suitable even for mobile
devices. It was also proven, than the most powerful GPUs currently available are too fast
for the best CPUs for this task and therefore can be used for other computations without
performance impact. Further, the proposed method showed great robustness against the
different image defects like blur or rolling shutter, but also against movement in z axis.
This is also true for the partially covered input frame with the foreign object. However,
the problematic part is the Kalman filtering, which has issues with reaction to the sudden,
but intended changes of camera pose. Lastly, the proposed algorithm enables the
adaptation to the real-life scenarios, as the size of the areas of concerns can be adapted to

66

match the expected shake in both axes. At the end, it can be concluded, that all of the
items in assignment were fulfilled.

In the future work, the designed algorithm can be further improved by replacing the
Kalman filtering by some hybrid method. Also, it may be worth to try different ratio of
the correlation template and the searching window. Lastly, the optimization of proposed
algorithms, especially for the used G P U architectures could bring another performance
boost.

67

R e f e r e n c e s

[I] M . Drahansky, F. Orsag and P. Hanacek, "Accelerometer Based Digital Video

Stabilization for General Security Surveillance Systems," International Journal of

Security and Its Applications, vol. 1, no. 1, p. 10, 2010.

[2] G. L i , "FPGA implementation of real-time digital image stabilization," Selected

Proceedings of the Photoelectronic Technology Committee Conferences held July-

December 2013, 2014.

[3] S. Mittal and J. S. Vetter, " A survey of methods for analyzing and improving G P U

energy efficiency," ACM Comput. Surv. 47, vol. 2, no. Article 19, p. 23, July 2014.

[4] Intel, "Why OpenCL™?," [Online]. Available: https://software.intel.com/en-us/intel-

opencl. [Accessed 2 December 2015].

[5] A M D , " A M D Accelerated Processing Units (APUs)," [Online]. Available:

http://www.amd.com/en-us/innovations/software-technologies/apu. [Accessed 1

December 2015].

[6] J.-F. Chen and C.-S. Fuh, " IMAGE STABILIZATION WITH BEST SHOT SELECTOR

A N D SUPER RESOLUTION RECONSTRUCTION," 18th IPPR Conference on

Computer Vision, Graphics and Image Processing, pp. 1215-1222, August 2005.

[7] K. T. Wyne, "A comprehensive review of tremor," Journal of the American Academy of

Physician Assistants, vol. 18, no. 12, pp. 43-50, December 2005.

[8] F. L. Rosa, M . C. Virzi , F. Bonaccorso and M . Branciforte, "Optical Image

Stabilization".

[9] E. M . Or and D. Pundik, "Hand Motion and Image Stabilization in Hand-held Devices,"

IEEE Transactions on Consumer Electronics, vol. 53, no. 4, pp. 1508-1512, November

2007.

[10] Xvid, "Questions and Answers," [Online]. Available: https://www.xvid.com/faq/.

[Accessed 8 March 2016].

[II] The Moving Picture Experts Group, "MPEG-4," [Online]. Available:

http://mpeg.chiariglione.org/standards/mpeg-4. [Accessed 8 March 2016].

[12] ITU, "Joint Video Team," [Online]. Available: http://www.itu.int/en/ITU-

T/studygroups/coml6/video/Pages/jvt.aspx. [Accessed 8 March 2016].

68

https://software.intel.com/en-us/intel-
http://www.amd.com/en-us/innovations/software-technologies/apu
https://www.xvid.com/faq/
http://mpeg.chiariglione.org/standards/mpeg-4
http://www.itu.int/en/ITU-

[13] Q. Cai, L . Song, G. L i and N . Ling, "Lossy and Lossless Intra Coding Performance

Evaluation: H E V C , H.264/AVC, JPEG 2000 and JPEG LS," Signal & Information

Processing Association Annual Summit and Conference, pp. 1-9, December 2012.

[14] J. Xu, H. W. Chang, S. Yang and M . Wang, "Fast feature-based video stabilization

without accumulative global motion estimation," IEEE Transactions on Consumer

Electronics, vol. 3, no. 58, pp. 993-999, 2012.

[15] T. Harris and J. Perrtano, "How Steadicams Work," [Online]. Available:

http://entertainment.howstuffworks.com/steadicam.htm. [Accessed 7 November 2015].

[16] E L M ChaN, "Home built Steadicam," October 2007. [Online]. Available: http://elm-

chan.org/docs/photo/hhsc_e.html. [Accessed 5 November 2015].

[17] R. Wotiz, June 2012. [Online]. Available: http://circuitcellar.com/wp-

content/uploads/2012/06/CC2012050461.pdf. [Accessed 24 November 2015].

[18] F. Mee, "Image Stabilisers: Optical or Mechanical?," October 2012. [Online]. Available:

http ://ww w. digitalversus. com/digital-camera/image- stabilisers -optical-mechanical-

al608.html. [Accessed 17 November 2015].

[19] B. Kir, M . Kurt and O. Urhan, "Local Binary Pattern Based Fast Digital Image

Stabilization," Signal Processing Letters, no. 22.3, pp. 341-345, 2015.

[20] W. J. Freeman, Digital Video Stabilization with Inertial Fusion, Blacksburg, V A :

Virginia Polytechnic Institute and State University, 2013, p. 74.

[21] R. B. Inampudi, "Image Mosaicing," Geoscience and Remote Sensing Symposium

Proceedings, vol. 5, pp. 2363-2365, July 1998.

[22] NVIDIA, "From Brook to CUDA," 2009. [Online]. Available:

http://www.nvidia.com/content/GTC/documents/1001_GTC09.pdf. [Accessed 11

November 2015].

[23] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M . Houston and P. Hanrahan,

"Brook for GPUs: stream computing on graphics hardware," ACM Transactions on

Graphics (TOG), vol. 23, no. 3, pp. 777-786, August 2004.

[24] A M D , " A M D Delivers First Stream Processor with Double Precision Floating Point

Technology," November 2007. [Online]. Available:

http://ir.amd.com/phoenix.zhtml?c=74093&p=irol-newsArticle&ID=1074516.

[Accessed 10 November 2015].

69

http://entertainment.howstuffworks.com/steadicam.htm
http://elm-
http://chan.org/docs/photo/hhsc_e.html
http://circuitcellar.com/wp-
http://www.nvidia.com/content/GTC/documents/1001_GTC09.pdf
http://ir.amd.com/phoenix.zhtml?c=74093&p=irol-newsArticle&ID=1074516

[25] NVIDIA, "NVIDIA® CUDA™ Unleashes Power of G P U Computing," February 2007.

[Online]. Available: http://www.nvidia.com/object/IO_39918.html. [Accessed 12

November 2015].

[26] M . J. Flynn, "Some Computer Organizations and Their Effectiveness," IEEE

Transactions on computers, Vols. C-21, no. 9, pp. 948-960, September 1972.

[27] NVIDIA, " C U D A C Best Practices Guide," September 2015. [Online]. Available:

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide. [Accessed 13 November 2015].

[28] A M D , " A M D Accelerated Parallel Processing - OpenCL Programming Guide,"

November 2013. [Online]. Available:

http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Proces

sing_OpenCL_Programming_Guide-rev-2.7.pdf. [Accessed 2 November 2015].

[29] Apple, "Apple Previews Mac OS X Snow Leopard to Developers," June 2008. [Online].

Available: http://www.apple.com/pr/library/2008/06/09Apple-Previews-Mac-OS-X-

Snow-Leopard-to-Developers.html. [Accessed 5 November 2015].

[30] Khronos group, "Khronos Drives Momentum of Parallel Computing Standard with

Release of OpenCL 1.1 Specification," June 2010. [Online]. Available:

https://www.khronos.org/news/press/lchronos-group-releases-opencl-1 -1 -parallel-

computing-standard. [Accessed 11 November 2015].

[31] Khronos group, "Khronos Releases OpenCL 1.2 Specification," November 2011.

[Online]. Available: https ://www.khronos.org/news/press/khronos-releases-opencl-1.2-

specification. [Accessed 11 November 2015].

[32] Khronos group, "Khronos Releases OpenCL 2.0," July 2013. [Online]. Available:

https://www.khronos.Org/news/press/khronos-releases-opencl-2.0. [Accessed 11

November 2015].

[33] Khronos group, "Khronos Releases OpenCL 2.1 Provisional Specification for Public

Review," March 2015. [Online]. Available:

https://www.khronos.org/news/press/khronos-releases-opencl-2.l-provisional-

specification-for-public-review. [Accessed 11 November 2015].

[34] NVIDIA, "Release 349 Graphics Drivers for Windows, Version 350.12," April 2015.

[Online]. Available: http://us.download.nvidia.com/Windows/350.12/350.12-win8-win7-

winvista-desktop-release-notes.pdf. [Accessed 14 November 2015].

70

http://www.nvidia.com/object/IO_39918.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide
http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Proces
http://www.apple.com/pr/library/2008/06/09Apple-Previews-Mac-OS-X-
https://www.khronos.org/news/press/lchronos-group-releases-opencl-
http://www.khronos.org/news/press/khronos-releases-opencl-1.2-
https://www.khronos.Org/news/press/khronos-releases-opencl-2.0
https://www.khronos.org/news/press/khronos-releases-opencl-2.l-provisional-
http://us.download.nvidia.com/Windows/350.12/350.12-win8-win7-

[35] A M D , "Catalyst 14.41 RC1," September 2014. [Online]. Available:

http://support.amd.com/en-us/kb-articles/Pages/OpenCL2-Driver.aspx. [Accessed 14

November 2015].

[36] A M D , " A C L - A M D Compute Libraries," [Online]. Available:

http://developer.amd.com/tools-and-sdks/opencl-zone/acl-amd-compute-libraries/.

[Accessed 1 November 2015].

[37] Khronos group, "JavaScript bindings to OpenCL brings heterogeneous parallel

computing to Web browsers," March 2014. [Online]. Available:

https://www.khronos.org/news/press/khronos-releases-webcl-l.0-specification.

[Accessed 11 November 2015].

[38] Microsoft, "Pipeline Stages (Direct3D 10)," [Online]. Available:

https://msdn.microsoft.com/en-us/library/bb205123(VS.85).aspx. [Accessed 10

November 2015].

[39] NVIDIA, " C U D A 4.0," 2011. [Online]. Available:

http://developer.download.nvidia.com/compute/cuda/4_0/CUDA_Toolkit_4.0_Overview

.pdf. [Accessed 12 November 2015].

[40] NVIDIA, " C U D A 5.0," 2012. [Online]. Available: http://on-

demand.gputechconf.com/gtc/2012/presentations/SS104-CUD A-5-What's-New.pdf.

[Accessed 12 November 2015].

[41] NVIDIA, " C U D A 6.0," April 2014. [Online]. Available:

http://devblogs.nvidia.com/parallelforall/powerful-new-features-cuda-6/. [Accessed 12

November 2015].

[42] NVIDIA, " C U D A 7.0," January 2015. [Online]. Available:

http://devblogs.nvidia.com/parallelforall/cuda-7-release-candidate-feature-overview/.

[Accessed 12 November 2015].

[43] NVIDIA, "Tools & Ecosystem," [Online]. Available: https://developer.nvidia.com/cuda-

tools-ecosystem. [Accessed 17 November 2015].

[44] Microsoft, "C++ A M P : Language and Programming Model," December 2013. [Online].

Available: http://download.microsoft.com/download/2/2/9/22972859-15C2-4D96-97AE-

9334424lD56C/CppAMPOpenSpecificationV 12.pdf. [Accessed 18 November 2015].

[45] HSA foundation, "Bringing C++AMP Beyond Windows via C L A N G and L L V M , "

November 2013. [Online]. Available: http://www.hsafoundation.com/bringing-camp-

beyond-windows-via-clang-llvm/. [Accessed 8 November 2015].

71

http://support.amd.com/en-us/kb-articles/Pages/OpenCL2-Driver.aspx
http://developer.amd.com/tools-and-sdks/opencl-zone/acl-amd-compute-libraries/
https://www.khronos.org/news/press/khronos-releases-webcl-l.0-specification
https://msdn.microsoft.com/en-us/library/bb205
http://developer.download.nvidia.com/compute/cuda/4_0/CUDA_Toolkit_4.0_Overview
http://on-
http://demand.gputechconf.com/gtc/2012/presentations/SS104-CUD
http://devblogs.nvidia.com/parallelforall/powerful-new-features-cuda-6/
http://devblogs.nvidia.com/parallelforall/cuda-7-release-candidate-feature-overview/
https://developer.nvidia.com/cuda-
http://download.microsoft.com/download/2/2/9/22972859-15C2-4D96-97AE-
http://www.hsafoundation.com/bringing-camp-

[46] itseez, "OpenCV," [Online]. Available: http://opencv.org/. [Accessed 28 April 2016].

[47] Microsoft, "Visual Studio," [Online]. Available: https://www.visualstudio.com/en-

us/downloads/download-visual-studio-vs.aspx. [Accessed 11 May 2016].

[48] OpenMP.org, "The OpenMP® API specification for parallel programming," [Online],

Available: http://openmp.org/wp/. [Accessed 14 May 2016].

[49] J. Hoberock and N . Bell, "What is Thrust?," [Online]. Available: https://thrust.github.io/.

[Accessed 14 May 2016].

[50] Stack Exchange, "Stack Overflow," [Online]. Available: http://stackoverflow.com/.

[Accessed 14 May 2016].

[51] NVIDIA, "PTX ISA," 1 September 2015. [Online]. Available:

http://docs.nvidia.com/cuda/parallel-thread-execution. [Accessed 14 May 2016].

[52] T. Tamasi, "The evolution of computer graphics," NVIDIA, San Jose, 2008.

72

http://opencv.org/
https://www.visualstudio.com/en-
http://OpenMP.org
http://openmp.org/wp/
https://thrust.github.io/
http://stackoverflow.com/
http://docs.nvidia.com/cuda/parallel-thread-execution

APPENDIX A: OpenCL, CUDA and C++
AMP in comparison with C++ OpenMP

OpenCL code sample

1 . # p r a g m a OPENCL EXTENS ION c l _ k h r _ b y t e _ a d d r e s s a b l e _ s t o r e : e n a b l e
2 . k e r n e l v o i d v e c t o r A d d (g l o b a l f l o a t * A , g l o b a l f l o a t * B , g l o b a l

f l o a t * S , c o n s t u n s i g n e d i n t n) {
3 . s i z e _ t i d = g e t _ g l o b a l _ i d (0) ;
4 . i f (i < n)
5 . S [i d] = A [i d] + B [i d] ;
6- }

Figure 9.1: OpenCL device code for vector addition.

1 . # i n c l u d e < u t i l i t y >
2 . # d e f i n e NO_STD_VECTOR / / U s e c l : : v e c t o r i n s t e a d o f STL v e r s i o n
3 . # i n c l u d e < C L / c l . h p p >
4 . # i n c l u d e < c s t d i o >
5. # i n c l u d e < c s t d l i b >
6 . # i n c l u d e < f s t r e a m >
7 . # i n c l u d e < i o s t r e a m >
8 . # i n c l u d e < s t r i n g >
9 . # i n c l u d e < i t e r a t o r >
1 0 .
1 1 . i n t m a i n () {
1 2 . c o n s t s i z e _ t n = 5 0 0 0 0 ;
1 3 . f l o a t * A = (f l o a t *) m a l l o c (n * s i z e o f (f l o a t)) ;
1 4 . f l o a t *B = (f l o a t *) m a l l o c (n * s i z e o f (f l o a t)) ;
1 5 . f l o a t *S = (f l o a t *) m a l l o c (n * s i z e o f (f l o a t)) ;
1 6 .
1 7 . f o r (i n t i = 0 ; i < n ; + + i) {
1 8 . A [i] = r a n d () / (f l o a t) R A N D _ M A X ;
1 9 . B [i] = r a n d Q / (f l o a t) R A N D _ M A X ;
2 0 . }
2 1 .
2 2 . c l _ i n t e r r ;
2 3 .
2 4 . c l : : v e c t o r < c l : : P l a t f o r m > p l a t f o r m L i s t ;
2 5 . c l : : P l a t f o r m : : g e t (& p l a t f o r m L i s t) ;
2 6 . s t d : : s t r i n g p l a t f o r m V e n d o r ;
2 7 . p l a t f o r m L i s t [0] . g e t I n f o ((c l _ p l a t f o r m _ i n f o) C L _ P L A T F O R M _ V E N D O R J

2 8 . & p l a t f o r m V e n d o r) ;
2 9 . c l _ c o n t e x t _ p r o p e r t i e s c p r o p s [3] = { C L _ C O N T E X T _ P L A T F O R M ,
3 0 . (c l _ c o n t e x t _ p r o p e r t i e s) (p l a t f o r m L i s t [0]) () , 0 };
3 1 . c l : : C o n t e x t c o n t e x t (C L _ D E V I C E _ T Y P E _ C P U , c p r o p s , N U L L , N U L L , & e r r) ;
3 2 . c l : : B u f f e r a (c o n t e x t , C L _ M E M _ R E A D _ O N L Y | C L _ M E M _ C O P Y _ H O S T _ P T R J n J A J & e r r) ;
3 3 . c l : : B u f f e r b (c o n t e x t , C L _ M E M _ R E A D _ O N L Y | C L _ M E M _ C O P Y _ H O S T _ P T R J n J B J & e r r) ;
3 4 . c l : : B u f f e r s (c o n t e x t , C L _ M E M _ W R I T E _ O N L Y J n , N U L L , & e r r) ;
3 5 .
3 6 . c l : : v e c t o r < c l : : D e v i c e > d e v i c e s ;
3 7 . d e v i c e s = c o n t e x t . g e t I n f o < C L _ C O N T E X T _ D E V I C E S > () ;
3 8 .

73

3 9 . s t d : : i f s t r e a m f i l e (" h e l l o _ w o r l d . c l ") ;
4 0 . s t d : : s t r i n g p r o g (s t d : : i s t r e a m b u f _ i t e r a t o r < c h a r > (f i l e) ,
4 1 . (s t d : : i s t r e a m b u f _ i t e r a t o r < c h a r > ())) ;
4 2 . c l : : P r o g r a m : : S o u r c e s s o u r c e (l , s t d : : m a k e _ p a i r (p r o g . c _ s t r () ,
4 3 . p r o g . l e n g t h () + 1)) ;
4 4 . c l : : P r o g r a m p r o g r a m (c o n t e x t , s o u r c e) ;
4 5 . p r o g r a m . b u i l d (d e v i c e s , " ") ;
4 6 .
4 7 . c l : : K e r n e l k e r n e l (p r o g r a m , " v e c t o r A d d " , & e r r) ;
4 8 .
4 9 . c l : : C o m m a n d Q u e u e q u e u e (c o n t e x t , d e v i c e s [0] , 0, & e r r) ;
5 0 . c l : : E v e n t e v e n t ;
5 1 . k e r n e l . s e t A r g (0 , a) ;
5 2 . k e r n e l . s e t A r g (l , b) ;
5 3 . k e r n e l . s e t A r g (2 , s) ;
5 4 . k e r n e l . s e t A r g (3 , s i z e o f (s i z e _ t) , & n) ;
5 5 . q u e u e . e n q u e u e W r i t e B u f f e r (a , C L _ T R U E , 0, n, A, 0, 0) ;
5 6 . q u e u e . e n q u e u e W r i t e B u f f e r (b , C L _ T R U E , 0, n, B, 0, 0);
5 7 . q u e u e . e n q u e u e N D R a n g e K e r n e l (k e r n e l , c l : : N u l l R a n g e , c l : : N D R a n g e (n) ,
5 8 . c l : : N D R a n g e (l , 1) , N U L L , & e v e n t) ;
5 9 . q u e u e . e n q u e u e R e a d B u f f e r (s , C L _ T R U E j 0, n , S) ;
6 0 .
6 1 . f o r (u n s i g n e d i n t 1=0; i < n ; i + +)
6 2 . s t d : : c o u t << s t a t i c _ c a s t < f l o a t > (S [i]) ;
6 3 .
6 4 . f r e e (A) ; f r e e (B) ; f r e e (S) ;
6 5 . r e t u r n 0;
6 6 . }

Figure 9.2: OpenCL host code for vector addition.

CUDA code sample

1 . # i n c l u d e < c u d a _ r u n t i m e . h >
2 .
3 . g l o b a l v o i d v e c t o r A d d (f l o a t * A , f l o a t * B , f l o a t * C , i n t n) {
4 . i n t i = b l o c k D i m . x * b l o c k l d x . x + t h r e a d l d x . x ;
5 . i f (i < n)
6 . C [i] = A [i] + B [i] ;
7- }
8 .
9 . i n t m a i n (v o i d) {
1 0 . s i z e _ t n = 5 0 0 0 0 ;
1 1 . f l o a t * A , * B , * S ;
1 2 . c u d a M a l l o c M a n a g e d (& A , n) ; c u d a M a l l o c M a n a g e d (& B , n) ;
1 3 . c u d a M a l l o c M a n a g e d (& S , n) ;
1 4 .
1 5 . f o r (i n t 1=0; i < n ; + + i) {
1 6 . A [i] = r a n d () / (f l o a t) R A N D _ M A X ;
1 7 . B [i] = r a n d Q / (f l o a t) R A N D _ M A X ;
1 8 . }
1 9 .
2 0 . i n t t h r e a d s P e r B l o c k = 2 5 6 ;
2 1 . i n t b l o c k s P e r G r i d = (n + t h r e a d s P e r B l o c k - 1) / t h r e a d s P e r B l o c k ;
2 2 . v e c t o r A d d <<< b l o c k s P e r G r i d , t h r e a d s P e r B l o c k >>>(A, B, S , n) ;
2 3 . c u d a D e v i c e S y n c h r o n i z e Q ;
2 4 .

74

2 5 . f o r (u n s i g n e d i n t i = 0 ; i < n ; i + +)
2 6 . s t d : : c o u t << s t a t i c _ c a s t < f l o a t > (S [i]) ;
2 7 .
2 8 . c u d a F r e e (A) ; c u d a F r e e (B) ; c u d a F r e e (S) ;
2 9 . r e t u r n 0 ;
3 0 . }
3 1 .

Figure 9.3: CUDA code for vector addition.

C++ AMP code sample

1 . # i n c l u d e < i o s t r e a m >
2 .
3

i n c l u d e <amp.h>
D ,
4 . i n t m a i n () {
5 . s i z e _ t n = 5 0 0 0 0 ;
6 . f l o a t * A = (f l o a t *) m a l l o c (n * s i z e o f (f l o a t)) ;
7 . f l o a t *B = (f l o a t *) m a l l o c (n * s i z e o f (f l o a t)) ;
8 .
q

f l o a t *S = (f l o a t *) m a l l o c (n * s i z e o f (f l o a t)) ;

17 •
1 0 . f o r (i n t i = 0 ; i < n ; + + i) {
1 1 . A [i] = r a n d Q / (f l o a t) R A N D _ M A X ;
1 2 . B [i] = r a n d Q / (f l o a t) R A N D M A X ;
1 3 . }
1 4 .
1 5 . c o n c u r r e n c y : : a r r a y _ v i e w < c o n s t f l o a t , 1> a (n , A) ;
1 6 . c o n c u r r e n c y : : a r r a y _ v i e w < c o n s t f l o a t , 1> b (n , B) ;
1 7 . c o n c u r r e n c y : : a r r a y _ v i e w < f l o a t , 1> s u m (n , S) ;
1 8 . s u m . d i s c a r d _ d a t a () ;
1 9 .
2 0 . c o n c u r r e n c y : : p a r a l l e l _ f o r _ e a c h (s u m . e x t e n t , [=] (c o n c u r r e n c y : : i n d e x < l > i)
2 1 . r e s t r i c t (a m p) {
2 2 . s u m [i] = a [i] + b [i] ;
2 3 . }) ;
2 4 .
2 5 . f o r (u n s i g n e d i n t i = 0 ; i < n ; i + +)
2 6 . s t d : : c o u t << s t a t i c _ c a s t < f l o a t > (s u m [i]) ;
2 7 .
2 8 . f r e e (A) ; f r e e (B) ; f r e e (S) ;
2 9 . r e t u r n 0 ;
3 0 . }

Figure 9.4: C++ AMP code for vector addition.

C++ OpenMP code sample

1 . # i n c l u d e < i o s t r e a m >
2 .
3 . i n t m a i n () {
4 . s i z e _ t n = 5 0 0 0 0 ;
5 . f l o a t * A = (f l o a t *) m a l l o c (n * s i z e o f (f l o a t)) ;
6 . f l o a t *B = (f l o a t *) m a l l o c (n * s i z e o f (f l o a t)) ;
7 .
8 .

f l o a t *S = (f l o a t *) m a l l o c (n * s i z e o f (f l o a t)) ;

75

1 . f o r (i n t i = 0; i < n ; + + i) {
2 . A [i] = r a n d Q / (f l o a t) R A N D _ M A X ;
3 . B [i] = r a n d Q / (f l o a t) R A N D M A X ;
4 . }
5.
6 . # p r a g m a omp p a r a l l e l
7 . f o r (i n t i = 0; i < n ; i + +)
8 .
q

S [i] = A [i] + B [i] j

? •
1 0 . f o r (u n s i g n e d i n t i = 0; i < n ; i + +)
1 1 . s t d : : c o u t << s t a t i c _ c a s t < f l o a t > (S [i]) ;
1 2 .
1 3 . f r e e (A) ; f r e e (B) ; f r e e (S) ;
1 4 . r e t u r n 0 ;
1 5 . }

Figure 9.5: C++ OpenMP code for vector addition.

76

APPENDIX B: GPGPU speedup over CPU

The speedup of GPU over CPU for hardware configuration 1
14,0
12,0
10,0
8,0
6,0 Q. 3

oj 4,0
01 Q.

U1 2,0
0,0

Q. 3 "O 0> dJ Q.

4,0

3,0

2,0

1,0

0,0 L
10 20 30 40 50 60 70 80 90 100

SSW size [thousands px]
—•—OpenCL • C++AMP

(a)

10 20 30 40 50 60 70 80 90 100
SSW size [thousands px]

• OpenCL • C++AMP

(b)
Figure 9.6: The speedup of GPU processing for different sizes ofSSWover: a) single threaded CPU processing, h)
OpenMP parallelized CPU processing for hardware configuration 1.

The speedup of GPU over CPU for hardware configuration 2
40,0
35,0
30,0

„ 25,0
^ 2 0 , 0
•D 15,0
01
S. 10,0
" 5,0

0,0

Q. 3 "O O) O) Q.
l / l

10,0

8,0

6,0

4,0

2,0

0,0

6 5 = H 6 — « Y 5 = H
J r

10 20 30 40 50 60 70 80 90 100
SSW size [thousands px]

-•—OpenCL —•—OpenCL-NVIDIA
(a)

10 20 30 40 50 60 70 80 90 100
SSW size [thousands px]

-•—OpenCL —•—OpenCL-NVIDIA
(b)

Figure 9.7: The speedup of GPU processing for different sizes ofSSWover: a) single threaded CPU processing, h)
OpenMP parallelized CPU processing for hardware configuration 2.

The speedup of GPU over CPU for hardware configuration 3
20,0 4,0

10 20 30 40 50 60 70 80 90 100
SSW size [thousands px]

-•—OpenCL —•—OpenCL-NVIDIA
(a)

10 20 30 40 50 60 70 80 90 100
SSW size [thousands px]

-•—OpenCL —•—OpenCL-NVIDIA
(b)

Figure 9.8: The speedup of GPU processing for different sizes ofSSWover: a) single threaded CPU processing, h)
OpenMP parallelized CPU processing for hardware configuration 3.

11

The speedup of GPU over CPU for hardware configuration 4
35,0
30,0
25,0

: 20,0

§" 15,0
1 10,0
Q.
"> 5,0

0,0

Q. 3 "O 0) tu Q. to

5,0

4,0

3,0

2,0

1,0

0,0
10 20 30 40 50 60 70 80 90 100

SSW size [thousands px]
-•— OpenCL —•—OpenCL-NVIDIA

(a)

10 20 30 40 50 60 70 80 90 100
SSW size [thousands px]

-•—OpenCL —•—OpenCL-NVIDIA
(b)

Figure 9.9: The speedup of GPU processing for different sizes ofSSWover: a) single threaded CPU processing, h)
OpenMP parallelized CPU processing for hardware configuration 4.

The speedup of GPU over CPU for hardware configuration 5
12,0

10,0

8,0

6,0

4,0

2,0

0,0

Q. 3 "O 0) 0) Q.
to

20 30 40 50 60 70 80 90 100
SSW size [thousands px]

-OpenCL • C++AMP

(a)

10 20 30 40 50 60 70 80 90 100
SSW size [thousands px]

• OpenCL • C++AMP

(b)
Figure 9.10: The speedup of GPU processing for different sizes of SSW over: a) single threaded CPU processing, b)
OpenMP parallelized CPU processing for hardware configuration 5.

The speedup of GPU over CPU for hardware configuration 6
14,0
12,0
10,0
8,0
6,0
4,0
2,0
0,0

450,0
400,0
350,0
300,0

^ 250,0
§" 200,0
a 150,0
Ol Q- 100,0 to

50,0
0,0

/
• w • w i

1 1 i

Q. 3 "O 0) tu Q. to

_ 0

J A

10 20 30 40 50 60 70 80 90 100
SSW size [thousands px]

•—OpenCL —•—OpenCL-NVIDIA
(a)

10 20 30 40 50 60 70 80 90 100
SSW size [thousands px]

-•—OpenCL —•—OpenCL-NVIDIA
(b)

Figure 9.11: The speedup of GPU processing for different sizes ofSSWover: a) single threaded CPU processing, b)
OpenMP parallelized CPU processing for hardware configuration 6.

78

The speedup of GPU over CPU for hardware configuration 7

(a) (b)
Figure 9.12: The speedup of GPU processing for different sizes of SSW over: a) single threaded CPU processing, b)
OpenMP parallelized CPU processing for hardware configuration 7.

79

APPENDIX C: Camera paths before and
after video stabilization

Camera path in car-ride video
100

0

-100

X
a.

-200
c
o -300
4-» sod -400

c riginal stabilized

0 50 100 150 200 250
frame [-]

300 350 400 450 500

(a)

c
o

o
Q.

500

300

100

-100

0 "iginal stabil zed

500

0

X -500
Q.
C
o

1000

'<r> O 1500
Q. 50 100 150 200 250 300 350

frame [-]

(a)

c
o

500

300

100

d -100
0 50 100 150 200 250 300 350 400 450

frame [-]

(b)
Figure 9.14: Camera path in car-ride-2 video before and after video stabilization: a) x axis, b) y axis.

0 50 100 150 200 250 300 350 400 450 500
frame [-]

(b)
Figure 9.13: Camera path in car-ride video before and after video stabilization: a) x axis, b) y axis.

Camera path in car-ride-2 video

riginal ~ stabil zed

400 450 500

0 'iginal — ̂ —stabil zed A 0 'iginal —

500

80

81

300

200

Camera path in jitter video
•original stabilized

-100
50 100 150 200 250 300 350 400

frame [-]
450 500

-150
0 50 100 150 200 250 300 350 400

frame [-]
(b)

Figure 9.17: Camera path in jitter video before and after video stabilization: a) x axis, b) y axis.

Camera path in jitter-2 video
•original stabilized

450 500

40

20

x- 0

.2 -20

original stabilized

-40
0 50 100 150 200 250 300 350 400 450 500

frame [-]
(a)

30

20

10

— 0

-io

-20

• original stabilized

50 100 150 200 250 300 350 400 450 500
frame [-]

(b)
Figure 9.18: Camera path in jitter-2 video before and after video stabilization: a) x axis, b) y axis.

82

Camera path in pan-zoom video
200

0

X1 -200
Q.

.1 -400

o
Q . •600

0 riginal stabil zed

50 100 150 200 250 300 350 400 450 500
frame [-]

(a)
400

300

200

S 100
c
o
5 0
in
O
°- -100

riginal stabi ized

-

0 50 100 150 200 250 300 350 400 450 500
frame [-]

(b)
Figure 9.19: Camera path in pan-zoom video before and after video stabilization: a) x axis, b) y axis.

Camera path in pan-zoom-2 video
500

0

x1 -500

Q.

C

•R -looo o
Q . -1500

200

0

-200

^ -400
c
o
5 -600
CO
O
^-800

0 riginal stabil ized

50 100 150 200 250
frame f-1

300 350 400 450 500

(a)

^—original stabilized

0 50 100 150 200 250 300 350 400 450
frame [-]

(b)
Figure 9.20:: Camera path in pan-zoom-2 video before and after video stabilization: a) x axis, b)y axis.

500

83

400

.2 -200
IS)
O
a -400

400

300

x" 200
Q.

C

•R loo o
Q .

•original stabilized ized

50 100 150 200 250
frame [-]

300 350 400 450 500

(a)

0 riginal stabilized

300 350 400 450 0 50 100 150 200 250
frame [-]

(b)
Figure 9.21: Camera path in tracking video before and after video stabilization: a) x axis, b)y axis.

Camera path in walking video
200

100

0

500

>ü -100 c: o
5 -200
to
o
°- -300

400

300

200

Ä 100

I o
in
O
°- -100

a J A V w vr ¥

0 riginal stabil zed

50 100 150 200 250
frame f-1

300 350 400 450 500

(a)

0 'iginal stabH zed—^—^

0 50 100 150 200 250 300 350 400 450
frame [-]

(b)
Figure 9.22: Camera path in walking video before and after video stabilization: a) x axis, b)y axis.

500

84

Camera path in walking-2 video

85

APPENDIX D: Frequency analysis of
camera paths before and after video
stabilization

Frequency analysis of camera path in car-ride video
5E+3

4E+3

3E+3

^ 2E+3

S 1E+3

OE+0

5E+3

4E+3

3E+3

ai 2E+3

S 1E+3

OE+0

1E+4

8E+3

6E+3

QJ 4E+3

5 2E+3

OE+0

1E+4

8E+3

6E+3

QJ 4E+3

5 2E+3

OE+0

f [H2]

(a)

1 0

f [*] 1 0

(b)

f [H $

(c)

1 0

f [B z] 1 0

(d)

1 2

1 2

1 2

12

14

14

14

14

1 6

L
1 6

1 6

1 6

Figure 9.24: Frequency analysis of camera path in car-ride video: a) x axis before stabilization, b) x axis after
stabilization, c) y axis before stabilization, d) y axis after stabilization.

86

Frequency analysis of camera path in car-ride-2 video
2E+4

1E+4

1E+4

1E+4

Z 8E+3
01
3 6E+3
to

> 4E+3

2E+3

OE+0

2E+4

2E+4

1E+4

5E+3

OE+0

6E+3

5E+3

4E+3

Z 3E+3

i 2E+3
>

1E+3

OE+0

J

TO >

6E+3

5E+3

4E+3

Z 3E+3

i 2E+3
>

1E+3

OE+0

f[Hz]
(a)

f[Hz]
(b)

f[Hz]
(c)

f [Hz]
(d)

10 12 14

1 0 12 14

1 0 12 14

10 12 14

Figure 9.25: Frequency analysis of camera path in car-ride-2 video: a) x axis before stabilization, b) x axis after
stabilization, c) y axis before stabilization, d) y axis after stabilization.

87

Frequency analysis of camera path in car-ride-3 video

TO >

1E+4

1E+4

1E+4

8E+3

6E+3

4E+3

2E+3

OE+0

4E+3

3E+3

3E+3

„ 2E+3
I

QJ 2E+3

g 1E+3

5E+2

OE+0

4E+3

3E+3

3E+3

_ 2E+3
I

QJ 2E+3

g 1E+3

5E+2

OE+0

L
f [A] 1 0 1 2 14 1 6

(b)

f[Hz.
(c)

1 0 1 2 14 1 6

1
t

1 0 12 14 1 6

(d)
Figure 9.26: Frequency analysis of camera path in car-ride-3 video: a) x axis before stabilization, b) x axis after
stabilization, c) y axis before stabilization, d) y axis after stabilization.

88

Frequency analysis of camera path in car-ride-4 video

OE+0

3E+3

2E+3

• i 1E+3

OE+0

f [Hz
(c)

10 14

10 14

(d)

16

16

Figure 9.27: Frequency analysis of camera path in car-ride-4 video: a) x axis before stabilization, b) x axis after
stabilization, c) y axis before stabilization, d) y axis after stabilization.

89

Frequency analysis of camera path in jitter video
5E+2

4E+2

3E+2

5 2E+2

1E+2

OE+0

5E+2

4E+2

3E+2
I

J 2E+2
TO >

1E+2

OE+0

4E+2

OE+0

4E+2

3E+2

Z 2E+2
01

_d
to

> 1E+2

OE+0

J l i l l J l i l l J l i l l
1 1 # i

f[Hz]
(a)

10

f[Hz] 10

(b)

f[Hz]
(c)

10

f[Hz] 10

(d)

1 1 1 Yn ••<y-i<V>r~> mm Ac

Ik
14

Figure 9.28: Frequency analysis of camera path in jitter video: a) x axis before stabilization, b) x axis after
stabilization, c) y axis before stabilization, d) y axis after stabilization.

90

II'
a

"I
a s

© a
5 a
I s

- 3

a~ ^
a ••
a. a

§

value value [-] value [-] value

+
o

Ln
m
+ + + +

o

Ln
m
+ + + +

o
+ + + +

o
+ +

1 0 0 Jioo 5» M 5 0

+

Frequency analysis of camera path in pan-zoom video
4E+3

3E+3

Z 2E+3
01

to
> 1E+3

OE+0

4E+3

3E+3

2E+3

1E+3

OE+0

2E+3

1E+3

•la . • ^ .a. .

0)

TO >

OE+0

2E+3

1E+3

01
• i 5E+2

OE+0

flHz8]

(a)

10

f[A] 10

(b)

f[Hz.

(c)

10

10

(d)

12

12

12

14

14

14

12 14

1

16

Figure 9.30: Frequency analysis of camera path in pan-zoom video: a) x axis before stabilization, b) x axis after
stabilization, c) y axis before stabilization, d) y axis after stabilization.

92

Frequency analysis of camera path in pan-zoom-2 video
4E+3

3E+3

Z 2E+3
01

__
to
> 1E+3

OE+0

4E+3

3E+3

2E+3

1E+3

OE+0

1E+3

5E+2

OE+0

1E+3

Z 5E+2
__
TO >

__
TO
>

OE+0

III

k
f [H?|

(a)

10

f[A] 10

(b)

f [Hz

(c)

10

14

14

14

10 14

(d)

16

16

16

1

16

Figure 9.31: Frequency analysis of camera path in pan-zoom-2 video: a) x axis before stabilization, b) x axis after
stabilization, c) y axis before stabilization, d) y axis after stabilization.

93

Frequency analysis of camera path in tracking video
4E+3

3E+3

2E+3

_d
to

> 1E+3

OE+0

4E+3

3E+3

Z 2E+3

1E+3

OE+0

01

TO >

2E+3

OE+0

2E+3

1E+3

01
• i 5E+2

OE+0

f [H?|

(a)

10

f[A] 10

(b)

f[Hz.

(c)

10

12

12

12

10 12

(d)

14

14

14

14 16

Figure 9.32: Frequency analysis of camera path in tracking video: a) x axis before stabilization, b) x axis after
stabilization, c) y axis before stabilization, d) y axis after stabilization.

94

Frequency analysis of camera path in walking video
3E+3

2E+3

1E+3

OE+0

3E+3

2E+3

i iLiUi/ i iLiUi/ UmWA

f [H?|

(a)

10 12 14 16

TO > 1E+3

OE+0

1E+3

5E+2

OE+0

1E+3

Z 5E+2
01
TO >

OE+0

4 6 ^ 10 12 14 16

(b)

WW
f [Hz

(c)

10 12 14 16

10 12 14 16

(d)
Figure 9.33: Frequency analysis of camera path in walking video: a) x axis before stabilization, b) x axis after
stabilization, c) y axis before stabilization, d) y axis after stabilization.

95

Frequency analysis of camera path in walking-2 video
8E+3

7E+3

6E+3

5E+3

Z 4E+3
01

_ ! 3E+3
to

> 2E+3

1E+3

OE+0

8E+3

7E+3

6E+3

5E+3

Z 4E+3
01
= 3E+3
ro

> 2E+3

1E+3

OE+0

5E+3

4E+3

3E+3

2E+3

1E+3

OE+0

5E+3

4E+3

3E+3

^ 2E+3

Ly|^, wMK#BJ*hlMlrlill 1 III

f [H?|

(a)

10 12 14 16

6 flrfz]
(b)

10 12 14 16

II

_ l

f[Hz.

(c)

10 12 14 16

1E+3

OE+0
lL̂ »*>*vJW* _ i , r _.

10 12 14 16

(d)
Figure 9.34: Frequency analysis of camera path in walking-2 video: a) x axis before stabilization, b) x axis after
stabilization, c) y axis before stabilization, d) y axis after stabilization.

96

