BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INFORMATION SYSTEMS
USTAV INFORMACNICH SYSTEMU

MODELING OF OSPFV3 LINK-STATE ROUTING
PROTOCOL

MODELOVANI LINK-STATE SMEROVACIHO PROTOKOLU OSPFV3

MASTER’'S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. MICHAL RUPRICH
AUTOR PRACE
SUPERVISOR Ing. VLADIMIR VESELY, Ph.D.

VEDOUCI PRACE

BRNO 2017

Zadani diplomové prace/19348/2016/xrupri00
Vysoké uéeni technické v Brné - Fakulta informacénich technologii
Ustav informaénich systémd Akademicky rok 2016/2017
Zadani diplomové prace

Resitel: Ruprich Michal, Bc.

Obor: Pocitacové sité a komunikace

Téma: Modelovani link-state smérovaciho protokolu OSPFv3
Modelling of OSPFv3 Link-State Routing Protocol

Kategorie: Pocitacové sité

Pokyny:

1. Analyzujte smérovaci protokoly pracujici na principu link-state, konkrétné protokoly
OSPFv2 a OSPFv3.

2. Zjistéte stav implementace link-state protokold v OMNeT++.

3. Prostudujte dostupnost a chovani OSPFv3 na Cisco zafizenich.

4. Podle doporuceni vedouciho implementujte podporu OSPFv3 protokolu v prostfedi
OMNeT++ a na prikladech demonstrujte ¢innost.

5. Ovéfte chovani modelu vii&i rediné topologii a analyzujte vysledky.

Literatura:

A. Varga, "OMNeT++ Discrete Event Simulation System", User Manual, 2004.
J. Moy, "RFC 2328 - OSPF Version 2", IETF, 1998.

R. Coltun, "RFC 5340 - OSPF for IPv6", IETF, 2008.

J. Moy, "RFC 1584 - Multicast Extensions to OSPF", IETF, 1994.

Podrobné zavazné pokyny pro vypracovani diplomové prace naleznete na adrese
http://www.fit.vutbr.cz/info/szz/

Technicka zprava diplomové prace musi obsahovat formulaci cile, charakteristiku sou¢asného stavu, teoreticka a
odborna vychodiska feSenych problémi a specifikaci etap, které byly vyfeSeny v ramci dFivé)Sich projektd (30 aZ 40%
celkového rozsahu technické zpravy).

Student odevzdd v jednom vytisku technickou zpravu a v elektronické podobé zdrojovy text technické zpravy,
Uplnou programovou dokumentaci a zdrojové texty programd. Informace v elektronické podobé budou uloZeny na
standardnim neprepisovatelném pamétovém médiu (CD-R, DVD-R, apod.), které bude vloZeno do pisemné zpravy tak,
aby nemohlo dojit k jeho ztraté pfi b&zné manipulaci.

Vedouci: Vesely Vladimir, Ing., Ph.D., UIFS FIT VUT
Datum zadani: 1. listopadu 2016
Datum odevzdani: 24. kvétna 2017

VYSOKE UCEN(TECHNICKE V BRNE
Fakulta Informadnich Iechnologi(
Ustav informaénich systérii

612 66 Blnﬁft“hj%_’/ —
A

doc. Dr. Ing. Dusan Kolar
vedouci Ustavu

http://www.fit.vutbr.cz/info/szz/

Abstract

The thesis deals with simulation of routing protocols. The aim is to create a functioning
model of OSPF link-state protocol in the simulation framework OMNET++. OMNET++
is a discrete simulation environment which was created to provide means to build models
of various network protocols and technologies. Chapters in the first part of the thesis focus
on the theoretical foundation of OSPFv2 and OSPFv3 and their differences. Important
data structures, finite state automata and communication techniques are described and
the information is later used to implement the model itself. The chapters in the second
part deal with the implementation of the model in C++. The created model reflects the
functionality of OSPF on Cisco devices.

Abstrakt

Tato prace se zabyva tvorbou simulaci smérovacich protokolid. Cilem prace je vytvorit
fungujici model smérovaciho protokolu OSPF v simula¢nim prostfedi OMNET++. OM-
NET++ je diskrétni simulac¢ni prostfedi, které bylo vytvoreno za tcelem tvorby modela
ruznych sifovych protokoli a technologii. Kapitoly prvni ¢asti prace se zabyvaji teoret-
ickym zakladem fungovani protokoli OSPFv2 a OSPFv3 a jejich rozdily. Jsou zde detailné
rozebrany dulezité datové struktury, koneéné automaty a komunikac¢ni prostiedky, na je-
jichz zakladé je pak implementovan samotny model. V kapitolach druhé ¢asti je popsan
postup pfi implementaci modelu v programovacim jazyce C+4. Vytvoreny model odpovida
funkcionalité protokolu OSPF na zafizenich spolecnosti Cisco.

Keywords
OSPF, OSPFv3, network modeling, OMNET+-+

Klicova slova
OSPF, OSPFv3, modelovani siti, OMNET++

Reference

RUPRICH, Michal. Modeling of OSPFv8 Link-State Routing
Protocol. Brno, 2017. Master’s thesis. Brno University of Technology, Faculty of Informa-
tion Technology. Supervisor Ing. Vladimir Vesely, Ph.D.

Modeling of OSPFv3 Link-State Routing
Protocol

Declaration

Hereby I declare that this master’s thesis was prepared as an original author’s work under
the supervision of Ing. Vladimir Vesely, Ph.D

Michal Ruprich
May 23, 2017

Acknowledgements

I would like to thank my supervisor Ing. Vladimir Vesely, Ph.D for his very helpful notes
and suggestions.

As a thank you I would like to share a recipe for my favorite Japanese dish. It is called
Oyakodon. It is simply a bowl of rice with chicken and eggs on top. Oyako means parents
and children, here symolized by chicken and egg, and don(donburi) means a bowl. This
recipe is for one serving.

We need % cup of Dashi(or at least a chicken broth since Dashi is sometimes hard to
get), % tablespoon(tbsp) of sugar, % thsp of Sake, % tbsp of Mirin, 1 tbsp of soy sauce, % of
onion, thinly sliced, 1 chicken thigh, cut into bite size pieces, 1 egg, % green onion, thinly
sliced, steamed rice.

Put Dashi, sugar, Sake, soy sauce and Mirin in a pan. Heat until it is boiling. Add
onion and cook for a couple of minutes on medium heat. Add chicken pieces to the pan
and cook until the meat is cooked through. Beat the egg in a small bowl and pour over the
chicken. Cover and cook for 30 seconds to a minute.

Put the steamed rice in a bowl. Carefully slide the egg with the chicken and sauce onto
the rice. Sprinkle with the green onion and serve.

Contents

1 Introduction
1.1 Introduction e e e e e e e e e

2 Dynamic Routing
2.1 IGP . . . e

3 Basic Principles of OSPF
3.1 OSPF Process . . . v v v v v e i e e e e e e e e
3.2 OSPF Packets. o
3.3 Multiple Areas inan AS Lo
3.3.1 Router Classification
3.3.2 Backbone Area o
3.4 Neighbor Discovery e
3.4.1 Hello Protocol
3.42 DeadlInterval
3.4.3 Network Type
3.4.4 Designated Router and Backup Designated Router
3.45 DR and BDRelection
3.4.6 Neighbor Data Structure
3.5 Topology exchange
35.1 LSATypes o i i e
35.2 Area Types v oo
3.5.3 Link State Database
3.5.4 Database Description 0oL
3.5.5 Link State Packetso
3.6 Route Computation
3.6.1 Directed Graph oo
3.6.2 Shortest Path Treeo
3.6.3 Next Hop Calculation

4 OSPF for IPv6
4.1 Packet Format Changes
4.2 Protocol Structures Changes oo
4.3 Flooding Scope e
4.4 New LSA Types o o o o i ittt e e

5 Support of OSPF on Cisco Devices

20
20
22
22
23

25

5.1 Basic Configuration
5.2 Interface Configuration Mode
5.3 Troubleshooting L

6 Descrete Event Simulator OMNeT++
6.1 OMNETH4 . . o o o e e e e e e
6.2 INET e e
6.3 ANSAINET e

7 Design and Implementation
7.1 OSPFEFv3 Module it e
7.2 OSPEV3 Classes . . . v v v v v oo e e e e e e e e e e e
7.3 Configuration Lo

8 Testing

8.1 Hello Protocol e

8.1.1 The Hello Packet Format

8.1.2 The Hello Packet Exchange
8.2 Neighborship Establishment
8.3 Database Exchange oo
8.4 CONVEIZENCE . . « « « ¢ v v e e e et e e e e e e
8.5 Failover State e

9 Conclusion
Bibliography

Appendices

A Enclosed CD Content

B Neighbor State Machine
C Interface State Machine
D

OSPFv3 Commands

D.1 Global Configuration Mode
D.2 Router Configuration Mode
D.3 Address-Family Configuration
D.4 Interface Configuration Mode

28
28
28
28

29
29
30
30

32
33
33
34
35
37
38
44

45

46

47

48

49

52

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9
3.10

4.1
4.2
4.3
4.4
4.5

7.1
7.2

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13

Al
B.1

C.1

OSPF Packet Header 8
OSPF Hello Packet Structure 11
Standard LSA types e 14
Non-standard LSA Types 14
Common LSA header structure 15
Database Description packet header 16
Example of network for LSDB structure visualization 17
Example network transformed to a directed graph represented by a table

structure Lo 18
The SPF Tree constructed from example network in 3.6 19
The routing table on RT6 router from the example network 19
The structure of OSPFv3 common packet header 20
The structure of Hello Packet in OSPFv3 21
The structure of DD Packet in OSPFv3 21
The second and third bits in the LS Type field of every LSA 23
Comparison of LSA Types in OSPFv2 and OSPFv3 23
The OSPFv3 Module Inside ANSA Router 29
Sample OSPFv3 Configuration file 31
Testing Topology with Multiple Areas 32
Comparison of the Hello Packet Content 33
Hello Packet Exchange in OMNeT++ on Router R1 34
Hello Packet Exchange in EVE-NG on Router R1 35
Neighbors’ Relationship Comparison on Router R1 36
Interfaces Setting Output on Router R1 in EVE-NG 36
Interfaces Setting Output on Router R1 in OMNeT++. 37
Database Exchange on Interface Ethernet 0/0 on R1 in EVE-NG 38
Database Exchange on Interface Ethernet 0/0 on R1 in OMNeT++ 39
Initial State of LSA Database on R1 in OMNeT++ 40
Initial State of LSA Database on R1in EVE-NG 41
A Complete LSA Database on R1 in OMNeT++ 42
A Complete LSA Database on R1 in EVE-NG 43
Content of the Enclosed CD 48
Neghbor State Machine 49
Interface State Machine 52

Chapter 1

Introduction

1.1 Introduction

Computer simulation plays a very important part in the process of building any system. It
is a very powerful tool which allows us to analyze complex systems, to evaluate new ideas
and concepts and to identify major problems in any design before spending huge amounts
of money on implementation. Every larger company uses a network to interconnect its
employees, departments and even distant branches together to improve communication
and cooperation between them. To design any such network without creating a model first
would be a very challenging task and in case of any misconduct, it could lead to unnecessary
expenditures to fix the problem.

OMNET++ is a C++ library and framework primarily used for creating network sim-
ulations. It provides a component-based architecture. Each component can be created in
C++ and then put together to form more complex models. This approach allows users to
create a model or a simulation of almost anything they could think of. This thesis aims
at creating an authentic model of OSPF routing protocol. The protocol will be repre-
sented as a separate module which can be used by a router to simulate OSPF processes
and communication.

The first part of this thesis consists of four chapters. Chapters two and three focus on
describing in detail how OSPF works. Chapter four specifies differences and new capabilities
in OSPF for IPv6. Even though the core of the protocol stays basically the same, there
are some differences due to the use of IPv6. The fifth chapter shortly describes OSPFv3
capabilities on Cisco routers.

The main focus of the second part is the implementation and testing. Chapter six is a
brief insight into the developmnet environment. Last two chapters describe implementation
and testing details.

Chapter 2

Dynamic Routing

This chapter briefly describes dynamic routing and places the topic of this thesis in a wider
context. Open Shortest Path First (OSPF) is a dynamic routing protocol. For the purpose
of the future analysis, it is convenient to be aware of its categorization, as it will later
be used for comparison with other routing protocols. Later we will use this knowledge to
compare it to other routing protocols.

Dynamic routing is a process that plays an essential role in every network. Its role is
to exchange and distribute routing information in a network. In contrast to static routing,
where the administrator needs to specify all the routes in a network manually, dynamic
routing offers much greater network sustainability and scalability. The main tasks of every
dynamic routing protocol are as follows:

e discovering remote networks

e maintaining up-to-date routing information in the routing table
e choosing the best paths to destination networks

e reacting to any changes in the network

Routing protocols can be divided into two main categories: Interior Gateway Protocols(IGP)
and Exterior Gateway Protocols(EGP).

2.1 IGP

An IGP works within the bounds of an autonomous system (AS). An AS is a collection of
routers under a common administration. An IGP could be further divided into two groups
based on methods the protocols use to determine the best paths: distance-vector protocols
and link-state protocols.

Distance vector protocols advertise known routes to their neighbors as vectors of distance
and direction. Distance is defined in terms of a metric and direction is simply the next hop
router on the way to the destination network. The core of these protocols is usually built
around Bellman-Ford algorithm, which is used to calculate the best path route. As this
algorithm only knows the routing information received from its neighbors, it cannot build
its own topology of the whole network. This is the main reason distance-vector protocols
are used in small and flat networks. The most widely used distance-vector protocols are
RIP, RIPv2, IGRP and EIGRP.

Link-state protocols are more sophisticated and more difficult for an administrator to
maintain, but provide much better control over the routing process. Each router running
a link-state protocol builds its topology of the whole network. The main aspect, which
enables a router to ,see“ the structure of the network, is the fact that every router works
with information not only from its neighbor but also from each and every router in the
network. Such knowledge of the network allows every router to calculate best paths to
distant networks rather, than using only information provided by its neighbors. The two
best-known protocols - OSPF and IS-IS - use the same algorithm for best path calculation,
i.e. the Dijkstra algorithm also known as the shortest path algorithm.

2.2 EGP

EGP are protocols that exchange routing information between autonomous systems. The
best-known protocol and basically the only one which is widely used is Border Gateway
Protocol (BGP). Most internet service providers (ISPs) use BGP to exchange information
about areas they administer. The way BGP works may be demonstrated on a system of
multiple autonomous areas, each using OSPF to provide routing information within its
borders. Such system is on the whole too big to be scalable with OSPF itself, BGP would
be used to link these areas into one huge network.

Chapter 3

Basic Principles of OSPF

This chapter focuses on describing the OSPF protocol and all of its functions and capabil-
ities. It is crucial to understand these procedures in order to be able to create a working
simulation of this protocol.

The OSPF has two versions - version 2 (OSPFv2), which was created to be used with
network protocol IPv4, and version 3 (OSPFv3), which was created as an extension of
OSPFEv2, so that it could support newer version of IP network protocol IPv6. OSPFv2
is defined in RFC 2328[8] and OSPFv3 in RFC 5340[6]. However, the basic principles
described in this chapter apply to both versions. The main differences, which are mostly
connected with IPv6 and were introduced in OSPFv3, are described in chapter 4.

3.1 OSPF Process

As was mentioned in 2.1, OSPF is a link-state IGP based on the Shortest Path First (SPF)
technology. It was designed to work with TCP/IP internet environment and is inherently
classless. Routing packets can be secured with a variety of authentication methods, there-
fore only trusted routers can exchange routing information. OSPF uses only a small amount
of network traffic and is designed to have very short convergence times when a change in the
topology occurs. Routing information received from other routers is stored in a link-state
database, which is later used by SPF to calculate the best paths to destination networks.
OSPF also supports Variable Length Subnet Masks (VLSM) and route summarization, uses
areas for scalability and possesses many more features that will be described in this chapter.

Every router running the OSPF process must go through the following three basic
stages:

1. Neighbor discovery
2. Topology exchange
3. Route computation

After these three stages, every router should have established the best paths to distant
networks in the routing table. Provided the OSPF is set correctly, the network should be
converged. Fach of these stages will be described in detail below.

3.2 OSPF Packets

OSPF runs directly above the IP and uses the number 89 in the protocol field in the
IP packet header. Every OSPF packet starts with a 24 byte header. The information
included in the header is important for determining, whether the router should even consider
processing this packet. The structure of the packet is shown in the picture 3.1.

_ 32 bits _
8 bits 8 bits 8 bits | 8 bits
Version Packet Type Packet Length
Router ID
Area ID
Checksum Authentication Type
Authentication
Authentication

Figure 3.1: OSPF Packet Header

Version — determines whether OSPFv2 or OSPFv3.

Type — determines one of five different packet types.

Packet Length — the length of the packet in bytes, including the header.
Router ID — a unique ID of the router, which originated the packet.
Area ID - a 32-bit number identifying the area the router belongs to.

Checksum - standard IP checksum. The authentication field is excluded from the calcu-
lation.

AuType — the type of authentication procedure used for the packet.

Authentication — a 64-bit authentication field.

There are five different types of OSPF packets, each with a specific function:
1. Hello
2. Database Description
3. Link State Request

4. Link State Update

5. Link State Acknowledgment

Hello packets are described in 3.4.1. These packets are used to exchange initial infor-
mation about routers in the routing domain. The remaining four types, which are used to
exchange topology information, will be described in 3.5.

3.3 Multiple Areas in an AS

As mentioned in 3.1, OSPF enables the AS to be split into multiple areas. With the use
of multiple areas, it does no longer apply that every router in an AS has the same link-
state database. Each router holds a separate copy of a link state database for each area
it is connected to. Routers inside an area are unaware of other areas’ topologies, merely
possessing information about the collection of routes reaching these areas. This results in a
significant reduction in routing traffic. The amount of routing information that each router
has to process is decreased.

3.3.1 Router Classification

OSPF uses a number of terms to describe routers regarding their location and function in
a multiple area AS:

Internal Router — a router only belonging to one area.

Area Border Router (ABR) — a router connected to multiple areas. It is responsible
for creating and distributing routes reaching other areas; any other information from
these areas is filtered.

Autonomous System Border Router (ASBR) — a router connected to multiple ASs.
These ASs may run other routing protocols, and the ASBR is responsible for redis-
tributing routing information among multiple protocols.

Backbone Router — a router that has at least one interface in the backbone area (3.3.2).

Various types of routers may overlap. For example, an ABR might also be an ASBR
and a backbone router. Furthermore, a backbone router does not necessarily need to be an
ABR or an ASBR, but only an internal router. Each router generates specific types of link
state advertisements. These will be described in 3.5.1

3.3.2 Backbone Area

When linking multiple areas together, there always needs to be a special area called the
backbone area. The backbone area ID is always set to 0 (or 0.0.0.0). Routers in this area are
responsible for distributing routing information between other areas (non-backbone areas).
All ABRs have interfaces in the backbone area. This does not necessarily mean that all
areas need to be physically contiguous. To establish connectivity to the backbone area,
OSPF uses virtual links.

This does not mean that the backbone area must be used every time. For instance, we
can create a OSPF topology containing a single area. This area’s ID does not need to be
the backbone ID.

Virtual link is created in a situation, when a direct connectivity between a non-backbone
area and the backbone area is physically difficult or impossible. Virtual link may be also

used in a situation, when the backbone area itself is partitioned. The virtual link is created
between two or more ABRs in a transit area. The transit area must have full routing
information and it cannot be a stub area (definition of stub area is in 3.5.2). When a
virtual link is created, OSPF treats a pair of routers as if they were connected through the
backbone area.

3.4 Neighbor Discovery

Before any data exchange takes place, every router must establish adjacencies with neigh-
boring routers. The discovery of neighbors is either dynamic, using the Hello Protocol, or
static, where every neighbor is manually configured.

3.4.1 Hello Protocol

The Hello Protocol is responsible for establishing neighbor relationships. Hello packets are
generated periodically every 10 seconds by default and work as a keep-alive mechanism. The
structure of the Hello packet is shown in the picture 3.2. The router starts the discovery
process by sending Hello packets out all interfaces that participate in the OSPF process.
In order for two routers to establish an adjacency, they need to agree on multiple values:

Subnet — both routers must be connected to the same subnet.

Hello and dead intervals — the values of hello and dead timers must be identical.
Area ID - both routers must share a common area.

Type of area — the type of the area (a stub area or a normal area) must correspond.
Authentication — if authentication is used, both the type and the password must match.

MTU - both routers must have the same MTU on the link, a mismatch might result in
improper operation of topology exchange.

Router ID - the router ID must be unique in the routing domain.

If all the values described above match on both sides, routers would become neighbors and
an exchange of topology data may begin.

The router ID is a 32-bit number that uniquely identifies a router within a routing
domain. If two neighboring routers have the same ID, they will not establish an adjacency.

3.4.2 Dead Interval

Dead interval states the time during which at least one Hello packet must be received from
the neighbor. If no packet is received during this period, all neighboring routers on this
link are perceived as unavailable. A dead interval is set to four times the value of a hello
interval by default. Dead timer values influence the time of convergence after a link failure.

3.4.3 Network Type

There are three types of networks, each type behaving differently in relation to Hello mes-
sages and neighbor discovery:

10

32 bits

8 bits [8 bits [8 bits [8 bits

A
\/

Common OSPF Header (192 bits)

Network Mask
Hello Interval Options Router Priority
Router Dead Interval

Designated Router

Backup Designated Router

Neighbor

Neighbor

Figure 3.2: OSPF Hello Packet Structure

Broadcast network — a network joining multiple routers together with the capability to
send a message to all attached routers (broadcast).

Non-broadcast network — a network joining multiple routers together but lacking the
broadcast capability.

Point-to-Point network — a network with a single pair of routers.

In a Broadcast network, every router periodically sends Hello packets to a multicast
address 224.0.0.5. Every router running the OSPF process should receive packets on this
address, thus allowing a dynamic discovery of neighbors in the network. Bidirectional
communication is established when a router sees itself in the neighbor field of the Hello
packet received from a neighbor.

In a Point-to-Point network, Hello packets are used to exchange the information de-
scribed in 3.4.1, but the neighbors must be discovered by other means, such as the Inverse
ARP; they may also be configured manually.

In a non-,broadcast network, the Hello packet cannot be multicasted. Therefore, other
mechanisms need to be exploited to overcome this issue. There are two modes that are used
with non-broadcast networks when running the OSPF. In the first mode, called multiple-
access non-broadcast, or NBMA, Hello packets are sent to each of the neighbors one at
a time, rather than be multicasted. In the second mode, called Point-to-Multipoint, the
non-broadcast network is perceived as a collection of Point-to-Point links.

3.4.4 Designated Router and Backup Designated Router

The concept of a Designated Router (DR) is used to decrease the amount of traffic during
topology exchange in Broadcast and NBMA networks. Whenever there are at least two
routers in a network, they elect a DR. The election process is described in 3.4.5. Every DR
has two main objectives:

11

e It becomes adjacent to every router in the subnet. Each router in the subnet only
exchanges routing information with the DR. The DR distributes topology information
to every router in the subnet. This results in a decrease of traffic generated during
the topology exchange and the link-state database of each router is therefore much
smaller.

e It generates a network-LSA. This LSA lists all routers that are attached to the subnet.

The Backup Designated Router (BDR) becomes adjacent with every router in the sub-
net, just like the DR; however, it does not generate any LSAs. The primary function of
the DBR is to become the new DR, when the current DR fails. Since the BDR is already
adjacent with all of the routers, in the event of DR failure, the new DR merely needs to
send out LSAs announcing the new DR, rather than exchange the whole topology.

3.4.5 DR and BDR election

The DR and BDR are elected during the Neighbor Discovery phase; the election is based
on the information included in the Hello packet. The values used for the election are router
ID and router priority. Router priority is an 8-bit unsigned integer. When the priority is
set to 0, the router is ineligible to become the DR.

The election process goes through the following steps:

1. Choosing the router with the highest priority to become the DR.

2. In the event of there being two or more routers with the same priority, choosing the
one with the highest router ID.

3. Choosing the BDR as the router with the second highest priority or the second highest
router ID.

If the router with the highest priority is connected to the network and DR and BDR
are already elected, it will not enforce any new election until the DR or BDR fails. If the
DR is down, the BDR will become the new DR, even should a router with higher priority
be added to the network within the time frame between the last election and the failure. If
the BDR becomes the new DR or fails, a new BDR is elected.

3.4.6 Neighbor Data Structure

For each neighbor, the router stores a neighbor data structure, which is used to describe
the conversation between routers.

State — one of 8 states that serve as indicators of the adjacency conversation progress.
Inactivity Timer — a timer activated every time the Dead Interval expires.

Master/Slave — only the master can send a Database Description packet (DD), the slave
can only respond.

DD Sequence Number - the sequence number of the DD packet which was last sent to
the neighbor.

Last Received DD packet — used to determine, whether a received DD packet is a du-
plicate or not.

12

Neighbor ID — the ID of a neighboring router learned from the Hello packet.
Neighbor Priority — neighboring router priority learned from the Hello packet.
Neighbor IP Address — the IP address of the neighboring router’s interface.
Neighbor Options — optional OSPF capabilities supported by a neighbor.

Neighbor’s DR — the RID of the router, which is identified as a DR by the neighbor.
Neighbor’s BDR — the RID of the router, which is identified as a BDR by the neighbor.

The information in the structure reflects the progress of adjacency establishment. The
state information is directly connected to the finite state automata which is described in
appendix B.

3.5 Topology exchange

After the initial neighbor establishment, every router starts to generate link state advertise-
ments (LSAs), in order to distribute local routing topology to all the other routers in the
OSPF domain. Each router floods the LSAs it creates, as well as the LSAs it has received
from its neighbors. The flooding process is reliable, ensuring that all routers in an OSPF
area have the same data. Each LSA received is stored in a link-state database (LSDB).
When all routers have the same topology data, the information stored in the LSDB is then
used to calculate the best route for each reachable subnet.

This section will begin with description of each LSA type. The second part focuses on
giving a detailed explanation of the packet types used in topology exchange and the process
of LSDB data exchange.

3.5.1 LSA Types

There are up to five different types of LSAs generated in the OSPF process. Each type has
its specific function in the SPF calculation. The LSA types are described in table 3.5.1.
There are six more types of LSAs. These types are not covered in the implementation part
of this thesis but are mentioned for completeness in figure 3.5.1.

Each LSA has a common header shown in figure 3.5.1. Every LSA is identified by a
32-bit link state identifier (LSID), which is used to determine the source of the LSA.

13

LSA Type Name Description

1 Router Type 1 of LSA contains the states and costs of the
router’s links to its neighbors and the neighbors’ RIDs.
2 Network Generated for each broadcast and NBMA network by

the DR. It describes all routers attached to the net-
work, including the DR itself.

3 Summary Created by ABRs to represent subnets from other ar-
eas.

4 ASBR Summary Advertises routes to reach the ASBR.

5 AS external Created by the ASBR to distribute routing information

injected into the OSPF by other routing protocols.

Figure 3.3: Standard LSA types

LSA Type Name Description

6 Group Membership Defined for MOSPF - multicast extension of OSPF.

7 NSSA External Similar to LSA type 5 but used in NSSA (3.5.2).

8 External Attributes Used for BGP and OSPF interoperation.

9-11 Opaque Created for future upgrades of OSPF. For example,
LSA type 10 has been adapted for MPLS traffic
engineering.

Figure 3.4: Non-standard LSA Types

3.5.2 Area Types

Area types are used in OSPF to control the amount of external routing information dis-
tributed through areas. By configuring the ABR’s interface to the area as a stub interface,
we suppress LSA types 4 and 5 from being passed through the ABR. Every LSA type 5
is converted to type 3. An area is usually configured as a stub when there is a single exit
point from the area. In such case it would be unnecessary to flood all external routing
information to all routers in the area. Instead, the ABR advertises itself as the default
gateway for these LSAs.

The RFC 2328]8] defines only the stub area type as was described above. However,
Cisco devices support three other area types as an extension of the stub area:

Totally Stubby Area - rejects LSA types 3,4 and 5. Every LSA type 3 and 5 is converted
as default route and flooded as LSA type 3.

Not-So-Stubby Area (NSSA) - it has similar functionality as the stub area but it al-
lows certain external routes to be transited through the area. Any external routing
information is carried as LSA type 7. When the LSA leaves the NSSA, it is converted
to LSA type 5. The NSSA is defined in [9].

Totally NSSA - it rejects LSA types 3,4 and 5 (similar to the Totally Stubby Area) but it
converts the LSA type 5 to type 7 (similar to NSSA). Therefore, the external routing
information is able to transit through the area.

14

32 bits

8 bits | 8 bits 8 bits 8 bits
LS Age Options LS Type

A
A\

Link State ID

Advertising

LS Sequence Number

LS Checksum Length

Figure 3.5: Common LSA header structure

3.5.3 Link State Database

LSDB is simply a collection of all LSAs the router has received from other routers in the
domain. Each router has a separate instance of LSDB for each area it belongs to. All routers
in a domain have the same LSDB after the exchange is completed. As was mentioned in
section 3.2, there are four types of packets used to exchange topology data among adjacent
routers.

3.5.4 Database Description

Database Description packet (DD) describes a set of LSAs belonging to the routers database.
DD packets are sent on master/slave basis; one of the routers in an adjacency is the master,
the other is the slave. The master sends DD packets to the slave (polling) and the slave
acknowledges them by sending its own DD packets. Multiple DD packets may be sent
to describe one LSDB. The responses are linked via the DD sequence field in the header.
Structure of DD packet header is in figure 3.5.4. There are a few header fields which may
need an explanation:

0 — these fields are reserved and must always be set to 0.

Options — The optional capabilities supported by routers. Some of these options are
mandatory and some are optional. However, if there is a capability mismatch between
two neighboring routers, they are usually unable to form a neighborship or a router
performing SPF calculation will not include the router with different capabilities in
the SPF Tree.

I-bit — the Init bit indicates that this packet is the first DD packet.
M-bit — the More bit indicates that more DD packets will follow.

MS-bit — the Master/Slave bit expresses which router is the master and which is the slave.
Setting this bit to 1 indicates that the router is the master.

15

32 bits
8 bits [8 bits [8 bits [8 bits
Common OSPF Header (192 bits)

A
v

Interface MTU Options 0|0|0(0|0]|I [MMs

DD Sequence Number

LSA Header (160 bits)

Figure 3.6: Database Description packet header

3.5.5 Link State Packets

OSPF packet type 3 is a Link State Request (LSR). After receiving a DD packet from
a neighbor, router sends LSRs to request LSAs which are more up-to-date than LSAs in
his own LSDB. The requested LSA is specified by LS Type, LS ID and the Advertising
Router. This unique specification of a particular LSA is understood as a request for its
latest instance. The LSA received from the neighbor after a request may be already newer
than the LSA describer in the DD packet.

Link State Update packet (LSU) is OSPF packet type 4. It is used by the flooding
process to distribute LSAs to the other routers. LSU packets are multicasted on those
networks that have multicast capabilities. Each LSU carries a collection of LSAs one hop
further from their origin.

Link State Acknowledgement packet is OSPF packet type 5. Each LSA received by
the router is acknowledged by including its header in the Link State Acknowledgement
header. Acknowledgements may be sent either as a multicast to AlISPFRouter address or
AllDRouters, or they may be sent as unicast. Multiple LSAs may be acknowledged in one
packet.

3.6 Route Computation

This section will describe the shortest path tree construction on an example LSDB. The
SPF Tree is constructed using the Dijkstra’s Algorithm which is beyond the scope of this
thesis. What follows is a very brief description of the basic mechanisms used by the router
to populate the routing table. An example network is introduced in figure 3.6. On this
network we will demonstrate how the SPF algorithm works and how it populates the routing
table with the information gathered from other routers in the area.

3.6.1 Directed Graph

The information stored in LSDB is used to calculate paths to distant networks. The LSDB
in an AS describes a directed graph with vertices consisting of routers and networks.

16

Figure 3.7: Example of network for LSDB structure visualization

A graph edge connecting two routers indicates that they are connected by a physical
point-to-point interface. If there is an edge between a router and a network, it demonstrates
that the router has an interface in this network. If a network has only one router’s interface
connected, it is a stub network. If there are more than one routers connected to a network,
it is a NBMA or a broadcast network. Each interface is evaluated with an integer value
representing its cost. This cost is either configured by an administrator on a per-interface
basis or it is calculated from interface bandwidth value. The lower the cost, the more likely
the interface is chosen to forward data traffic.

The figure 3.8 depicts a directed graph created from gathered LSAs represented by a
table. Each intersection evaluated by a number is the cost on a connection from a router or
a network in the corresponding column to a router or a network in the corresponding row.
If there is no value in the intersection, it means that there is no direct connection between
the two elements. A cost from each network is zero because they only represent network
segments but not any existing interface which could be associated with a cost.

3.6.2 Shortest Path Tree

When the directed graph is constructed, it is used to create a Shortest Path Tree (SPF Tree)
using the Dijkstra’s algorithm. The tree represents every possible path to any destination
network or host. Each router calculates its own SPF Tree with itself as a root. The tree is
used to populate the routing table with next-hop addresses to distant networks. There is a
separate SPF Tree for each area. SPF Tree, with the RT6 router as the root, constructed
from example network is shown in figure 3.9.

17

RT1 RT2 | RT3 | RT4 | RT5 RT6 | RT7 | RT8 | RT9 | RT10| RT11l| RT12| N3 N6 N7 N8

RT1

RT2

RT3 6

(en) New]l Hen) Nen]

RT4 8

RT5 8 6 6

RT6 8 7 5

RT7 6 0

RTS8 O

RT9 O

RT10 7 0 0

RT11 0 0

RT12 O

Z
-
N
oo

N14 9

Figure 3.8: Example network transformed to a directed graph represented by a table struc-
ture

3.6.3 Next Hop Calculation

The next hop calculation is invoked each time a shorter path is found to reach the desti-
nation. It can happen in any stage during the SPF Tree construction or when a change
occurs in the topology and the tree needs to be recalculated. The resulting routing table
will contain next hops to destinations reflecting the absolute shortest paths in the tree. The
candidate next hop is either the destination itself or the parent node between the destina-
tion and the root. If there is at least one router between the root and the destination, the
destination inherits the set of next hops from the parent. If the parent is the root it means
that the destination is a router or a network directly connected to the root. The next hop
in this case is simply the OSPF interface connecting the root to the router or the network.
The routing table of RT6 router from the example above is shown in figure 3.6.3

18

Figure 3.9: The SPF Tree constructed from example network in 3.6

Destination Next Hop Cost
N1 RT3 10
N2 RT3 10
N3 RT3 7
N4 RT3 8
N5 RT10 8
N6 RT10 12
N7 RT10 10
N8 RT10 11
N9 RT10 13
N10 RT10 14
N11 RT10 10
N12 RT5 14
N13 RT5 14
N14 RT10 17
RT5 RT5 6
RT7 RT10 8

Figure 3.10: The routing table on RT6 router from the example network

19

Chapter 4

OSPF for IPv6

The OSPF Process running over IPv4 and IPv6 is, in most parts, the same. Slight changes
have been introduced in OSPFv3 due to different semantics of IPv4 and IPv6 protocols and
because of the increased size of IPv6 packet header. This chapter describes main differences
which are essential for correct implementation of OSPFv3.

IPv6 described in [7] introduces the term ,link* which indicates ,a communication
facility or medium over which nodes can communicate at the link layer.“ This means the
terms ,,subnet“ and ,network“ used in OSPFv2 should be replaced by the term link. With
IPv6 there may be multiple subnets assigned to a single link and two nodes can communicate
over a link, even if they do not share the same subnet. OSPFv3 thus runs per-link instead
of per-IP-subnet.

IPv6 as it is implemented in OMNeT++ is described in [11].

4.1 Packet Format Changes

This section illustrates main differences introduced in packet structures in OSPFv3. Fields
which are new, changed or were left out in the new version of OSPF will be described
in detail. Fields which are the same as in the previous version were already described in
chapter and will not be mentioned here.

Figure 4.1 shows changes of the common OSPFv3 Packet header. The authentication
fields were left out because OSPFv3 relies on IP Authentication Header and the IP Encap-
sulating Security Payload.

{ 32 bit »
8 bit 8 bit 8 bit | 8 bit
Version Packet Type Packet Length
Router ID
Area D
Checksum Instance ID 0

Figure 4.1: The structure of OSPFv3 common packet header

20

Because OSPFv3 may run multiple instances on a single link, each instance needs its
own ID. The Instance ID is a new 8-bit field and it holds a value assigned to a single instance
of OSPF. The value has only link-local significance.

The figure 4.2 shows the structure of Hello Packet used in OSPFv3. Because multiple
IPv6 subnets may be assigned to a single link, even if they share a common subnet, the
Network Mask field is no longer needed and it has been removed. Any information about
the address has been removed; rather the new Hello Packet contains Interface ID field. The
Interface ID is a 32-bit number which uniquely identifies router’s interface connected to a
particular link. This value is also used as network-LSA’s Link State ID in a situation when
the router becomes the DR.

The Router Dead Interval field’s size has been reduced from 32 bits to 16 bits. Also the
Options field’s size has been increased from 8 bits to 24 bits and it is described below.

32 bit

A
Y

8 bit 8 bit | 8 bit 8 hit
Common OSPFv3 Header(128 bits)

Interface ID

Router Priority ‘ Options

Hello Interval Dead Interval

Designated Router ID

Backup Designated Router ID

Meighbar ID

Figure 4.2: The structure of Hello Packet in OSPFv3

The figure 4.3 shows the structure of the new DD packet. Except for new OSPF Header
and new 24-bit Options field, it is almost the same as it was in previous version.

< 32 bit >
8 bit 8 bit | 8 bit 8 bit
Common O5PFv3 Header (156 bits)
0 Options
Interface MTU 0 0|0(0|O[O[O|]|Mpms

DD Sequence Number

LSA Header (160 hits)

Figure 4.3: The structure of DD Packet in OSPFv3

21

The new longer Options field is described below. This field enables OSPF routers to
indicate whether they are able to support additional capabilities. If two adjacent routers
support different capabilities, it may result in variety of behaviours, depending on the
particular option mismatch. Seven bits of the Options field have been assigned and each
unrecognized bit should be reset by the router. The meaning of each bit is described below:

V6-bit — clearing this bit indicates that the router or link should be excluded from the
route computation.

E-bit — this bit influences the way the AS-external-LSAs are processed.

x-bit — this bit was previously used with MOSPF but this capability is deprecated with
the OSPFv3 and this bit should be set to 0.

N-bit — this bit indicates whether the router is attached to an NSSA area.

R-bit — this bit indicates whether the originating router is an active router. Clearing this
bit is useful for multi-homed hosts which want to participate in routing, but they do
not want to forward packets which are not addressed in local scope.

DC-bit — this bit describes handling of the demand circuits.

*_bit — these bits are reserved for migration of OSPFv2 capabilities.

4.2 Protocol Structures Changes

This section describes changes in main data structures such as Interface, Neighbor and
Protocol data structures. Most parts remain the same except for a few adjustments due to
new capabilities of OSPFv3.

The Interface data structure described in C has been modified so that it supports
Interface ID and Instance ID information appearing in OSPFv3 Packet header or the Hello
Packet header.

The Neighbor data structure described in 3.4.6 has been modified to contain information
about neighbors in the form of IDs instead of IP addresses. The Neighbor’s ID thus becomes
the Neighbor’s Interface ID and IP addresses are no longer used to identify the DR and
BDR. To identify the DR and BDR we need to use the Routers’ IDs instead. The Neighbor’s
IP address of the neighboring router’s interface will now be the IPv6 link-local address of
the neighbor.

4.3 Flooding Scope

The flooding scope was changed and now it is coded into LSA’s LS Type field. How the
flooding scope affects the processing of LSAs is described in 4.4. We recognize three new
flooding scopes:

Link-local scope — as the name indicates, these LSAs are used only on a link-local scope.
Area scope — these LSAs are flooded only through a single area and no further.

AS scope — LSAs are flooded through the routing domain. They are originated from
ASBRs.

22

4.4 New LSA Types

The structure of the remaining LSA packets remains almost the same except of course for
the new OSPF Header. In the LSR packet, the LS Type field size has been reduced from
32 bit to 16 bit. In the LSA header the LS Type field size has been increased to 16 bits
and it has replaced the original Options field. The upper three bits of the LS Type field
now specify the flooding scope.

The first bit of the LS Type field is the U-bit and it specifies how the router should
handle unknown LSAs. If the bit is set to 0, unknown LSAs will be treated as if they have
only link-local flooding scope. If the bit is set to 1, any unknown LSA is stored and then
flooded. The other two bits have the following meaning:

S1 S2 Description
Link-local flooding
Area scope flooding

AS scope flooding

== OO
=l =l =)

Reserved

Figure 4.4: The second and third bits in the LS Type field of every LSA

OSPFv3 uses the same 7 types of LSAs as the OSPFv2. However some of them have
been repurposed and also two new types have been introduced. The following table shows
all 9 types of LSAs used in OSPFv3 with appropriate LS Type according to flooding scope
described above:

OSPFv2 OSPFv3

1 Router LSA 0x2001 Router LSA

2 Network LSA 0x2002 Network LSA

3 Network Summary LSA 0x2003 Inter-area Prefix LSA

4 ASBR Summary LSA 0x2004 Inter-area Router LSA

5 AS-External LSA 0x4005 AS-External LSA

6 Group Membership LSA 0x2006 Group Membership LSA
7 NSSA External LSA 0x2007 Type-7 LSA

0x0008 Link LSA
0x2009 Intra-area Prefix LSA

Figure 4.5: Comparison of LSA Types in OSPFv2 and OSPFv3

The Inter-area Prefix LSA is the equivalent of OSPFv2 type 3 LSA. It is originated by
ABRs and it describes routes to address prefixes belonging to other areas. The prefix is
described by the Prefix Length, Prefix Options and Address Prefix in the LSA body. As was
mentioned at the beginning of this chapter, the network mask is no longer used. Link-local
addresses should never appear in Inter-area Prefix LSA.

The Intra-area Router LSA is an equivalent of the OSPFv2 type 4 LSA. It advertises a
route to an ASBR (a router which might be external to the area but it is internal to the
AS). Each such LSA describes route to a single ASBR.

Link-LSA describes router’s attached physical links; there is one LSA for each. These
LSAs are never flooded beyond the associated link. Link-LSAs have three main purposes:

1. They provide link-local addresses to all other routers which are attached to this link.

23

2. They provide other routers with the information about all IPv6 prefixes which are
associated with this link.

3. They allow the router to distribute a collection of Option bits in the network-LSA
originated by the DR on a broadcast or NBMA network.

Intra-area Prefix LSA is used to advertise one or more IPv6 address prefixes that are
associated with the router. The prefixes associated with a local router address and an
attached stub network were previously advertised by using router-LSA. Attached transit
network has been advertised via network-LSA. Since all the addressing semantics have been
removed from all LSAs in OSPFv3, the Intra-area Prefix LSA is used for these purposes.

24

Chapter 5

Support of OSPF on Cisco Devices

This chapter describes OSPF capabilities supported on Cisco devices. It is important to
see the difference between the standard defined in RFC and a real implementation used on
routing devices. When implementing OSPFv3, I was following the RFC as well as a Cisco
configuration guide [3].

5.1 Basic Configuration

Before configuring OSPFv3, IPv6 routing has to be enabled in the configuration mode:

| Router(config)# ipv6 unicast-routing

Configuring OSPFv3 itself comes in two steps. The first step is to define the OSPFv3
process:

Router(config)# router ospfv3 process-id

This opens up the router configuration mode. In the router mode it is possible to define
address family for the process:

Router(config-router)# address-family [<pv4 | %pv6]

And for each address family, the router ID may be defined here. The router ID may be
specified either for the whole process or each address family separately:

‘ Router (config-router)# router-id ip-address ‘

‘ Router (config-router-af)# router-id ip-address ‘

The second step is to configure an interface that belongs to the process. In OSPFv2 this is
done in the router configuration by specifying network address range that should be included
in the process. Any interface that belongs to the range and is running is automatically
included in the routing process.

In OSPFv3 each interface is configured separately in the interface configuration. First
and foremost IPv6 protocol needs to be enabled on the interface:

Router(config-if)# ipv6 enable

25

After assigning an IPv6 address to the interface, the OSPFv3 itself may be configured as
follows:

Router(config-if)# ospfv3 process-id address-family
area area-id instance instance-id

It is important to note that the process-id has lost the global meaning that it had
with OSPFv3. Instead, the instance-id is used to separate OSPFv3 processes among other
routers. If the instance-id is not explicitly given, it is assigned based on the address-family.

5.2 Interface Configuration Mode

Besides from basic configuration described in 5.1, the interface configuration mode may be
used to configure other important aspects of the process. Following list describes the most
important commands:

ospfv3 cost - Set a fixed cost of sending packets on an interface.
ospfv3 dead-interval - Sets the value of the dead interval on an interface.
ospfv3 hello-interval - Sets the value of the hello interval on an interface.

ospfv3 network - Allows user to configure OSPF network type(broadcast, NBMA, etc.)
on an interface.

ospfv3 neighbor - When the interface is in NBMA network, this command allows user
to explicitly define the neighbors on this interface.

ospfv3 priority - Sets the priority value on an interface. This value is used in the DR
and BDR election.

ip ospf retransmit-interval - Allows user to specify the time between LSA retransmis-
sions on an interface.

5.3 Troubleshooting

Troubleshooting commands are used in privileged exec mode. These are used mainly for
testing purposes described in 8. They are either debug or show commands.
The debug commands are used as follows:

Router# debug ospfv3 process-id command

There are lots of commands that can be used for debugging but only a couple of them are
used in this thesis for testing:

hello - Allows watching how Hello Packets are being received and sent. It shows the source
and destination of the packet along with area and router ID that originated it. This
is particularly useful in 8.1.

adj - All adjacency events are shown. This is mostly used to see when and if routers
become neighbors and what are the changes in the neighbor state machine.

26

events - Other OSPFv3 related events are shown.

The show commands serve to troubleshoot general OSPFv3 settings. These commands
are mostly used in the testing chapter 8 specifically in sections 8.2 and 8.4. Every show
command may be used simply as:

Router# show ospfv3 process-id command

For the testing purposes, these commands are used in this thesis:
database - Shows complete OSPFv3 database for this router.

interface - Used to troubleshoot interface settings. This includes timers and priority
settings.

neighbor - Shows all neighbors of this router along with their states.

More OSPFv3 commands are described in appendix D.

27

Chapter 6

Descrete Event Simulator
OMNeT-++

This chapter briefly describes development and simulation environment OMNeT++[10],
INET[4] and the ANSAINET|2] frameworks.

6.1 OMNeT+H+

OMNeT++ is a modular, component-based C++ simulation library and framework. It is
used to create discrete network simulation models. OMNeT++ is directly embedded into
Eclipse and it uses its IDE.

Each simulation module’s behaviour is implemented in C++. OMNeT++ uses its own
language NED to describe the module’s structure. Using NED language, it is possible
to interconnect multiple simple modules and create more complex modules or networks.
Modules can communicate with each other by sending messages.

Each simulation is described by another NED file, a configuration file (omnetpp.ini) and
other XML files setting parameters to modules in the network.

6.2 INET

The INET project aims to provide a basic set of modules that may be used in OMNeT++
to create TCP/IP simulations quickly. It includes implementations of basic protocols like
UDP, TCP, RTP, IP, ARP, Ethernet, PPP and more.

6.3 ANSAINET

ANSA (The Automated Network Simulation and Analysis) project is an extension of INET
framework. It is being developed at the Faculty of Informatics at Brno University of
Technology. The aim of this project is to provide tools for formal analysis of real networks.

28

Chapter 7

Design and Implementation

This chapter focuses on design and implementation details. I am describing the main
OSPFv3 module, C++ classes hierarchy and what each class represents. Differences be-
tween the RFC standard and an actual Cisco implementation of the protocol are an impor-
tant part of this chapter as well.

7.1 OSPFv3 Module

0SPFv3Routing is a compound module consisting of simple modules 0SPFv3Splitter and
0SPFv3Process. It is a part of ANSA_Router, and it is connected directly to ANSA_Multi-
NetworkLayer since it operates at the network layer.

The 0SPFv3Splitter module is responsible for parsing configuration files and creating
necessary data structures and objects. It examines every packet from the network layer and
passes it to the right 0SPFv3Process based on the incoming interface.

@

status

=N=]=]

ess101
EnergyStorage

hergyGenerator

@

mobility

it

routingTable

interface Table

L5

der[numPcapRecorders]

vrrp

E TP

N
N/

i

process102

OSPFv34

4________-"

process103
plitter

lo[numLoopbacksivlan[nu Rad|09}h[5|ze f(eth@ﬂp[smef(pppg'ﬂxt[numErtlnte ifa ctamImumTumInte rfac

0.88x

Figure 7.1: The OSPFv3 Module Inside ANSA_ Router

29

The top-level structure providing OSPFv3 routing capabilities on a Cisco router is a
process. A simple 0SPFv3Process module represents each process. There may be up to 32
processes running on a Cisco router, and they are created dynamically by 0SPFv3Splitter
based on configuration specifications.

7.2 OSPFv3 Classes

A top-level class is the 0SPFv3Process as it reflects the top-level structure on Cisco routers.
There may be up to two processes for each interface as long as each of them is for a different
address family. RFC 5340 states that there may be multiple instances on a single link. Cisco,
on the other hand, allows only a single instance per process and address family. This model
meets somewhere in the middle. It allows a maximum of two processes per interface, but
each process may have multiple instances.

Each instance is represented by 0SPFv3Instance class and has an integer ID. This ID
appears in each OSPFv3 packet, and it is used to determine whether this packet should
be processed or not. Since there is no information about the process in any packet, the
0SPFv3Splitter duplicates every packet on arrival in case there are two processes config-
ured for a single interface. The process itself then determines whether there is an instance
with ID set in the packet. The scope of process loses its global importance as it used to
have in OSPFv2 and has only local significance.

An instance may be further separated into multiple areas. 0SPFv3Area class represents
each area. Because the SPF tree is calculated for each area separately, each area has a
separate database for LSAs generated by routers belonging to the area. One area is usually
spread accross multiple interfaces on a single router.

Every interface that belongs to an area is implemented as an 0SPFv3Interface class.
Fach interface may have multiple neighbors represented by 0SPFv3Neighbor.

7.3 Configuration

The configuration file format is based on how the OSPFv3 protocol is configured on a Cisco
router([3], [1]). Usual configuration of OSPFv3 routing takes two steps:

1. Setting OSPFv3 process along with address families and router ID for each family in
the global configuration mode.

2. Separating OSPFv3 configuration on each interface. This involves area, address family
and instance configuration.

The parameters in config.xml file used for each simulation have a very similar format. The
router process is set in the <Routing6> section. This section may include a configuration
for other routing protocols as well.

Each interface is set in the <Interfaces> section. A process, instance with address
family and area, this interface belongs to, have to be specified.

30

<Router id="R1">
<Routing6>
<0SPFv3>
<Process id="1">
<RouterID>10.10.10.1</RouterID>
</Process>
</0SPFv3>
</Routing6>

<Interfaces>
<Interface name="eth0">
<Process id="1">
<Instance AF="IPv6">
<InterfaceType>Broadcast</InterfaceType>
<Area>0.0.0.0</Area>
</Instance>
</Process>
<IPvbAddress>fe80::a8bb:ccff:feb0:100/64</IPv6Address>
<IPv6Address>2001:db8:a::1/64</IPvbAddress>
</Interface>
<Interface name="ethl">
<Process id="1">
<Instance AF="IPv6">
<InterfaceType>Broadcast</InterfaceType>
<Area type="stub">0.0.0.1</Area>
<RouterPriority>10</RouterPriority>
</Instance>
</Process>
<IPv6Address>fe80: :a8bb:ccff:feb00:110/64</IPv6Address>
<IPv6Address>2001:db8:1::1/64</IPv6Address>
</Interface>
</Interfaces>
</Router>

Figure 7.2: Sample OSPFv3 Configuration file

31

Chapter 8

Testing

This chapter focuses on testing the OSPFv3 module and comparing it with a L3 Cisco de-
vices. As a testing environment, I am using EVE-NG Virtual Environment[5]. Each Router
is using I86BI-LINUX-L3-ADVENTERPRISEK9-M, version 15.4(2)T4, DEVELOPMENT
TEST SOFTWARE.

The chapter is divided into five sections. Each section describes the particular phase of
OSPFv3 operation.

— N —
[Aread " Area3
(2001:db8:4::/64 (2001:db8:3::/64
~— K 10.10.10.4 10.10.10.3 ~—_—
s1/0
e0/1
e0/0
10.10.10.6
/ - N
e [Area0
e0/1 |, 2001:db8:a::/64
€0/0 ~
€0/0 go/o
ardiAR
I Areal L eO/l@ 0/1
(" 2001.db8:1:1/64 ‘/—u
\4\)
T 10.10.10.1 10.10.10.2
e N Vx“\
A Area2
(_ 2001:db8:2::/64
€0/0 .)

e0/1

G

10.10.10.5

Figure 8.1: Testing Topology with Multiple Areas

32

The first phase focuses on the Hello Packet exchange and format. The second phase
shows how neighbors are established and how the DR and BDR are elected. In the third
phase, a database exchange takes place. The fourth phase shows the exchanged database
after the routing processes are converged. In the final phase, I briefly describe what happens
when a router or an interface fails in the topology.

Figure 8.1 shows a topology chosen for the actual testing. It consists of six routers and
five different areas. Area 0 is the Backbone area used for LSA exchange. Area 1 is a stub
area, other areas are normal.

In most demonstrations, I am using router R1 as a reference router. R1 is an ABR on
the edge of a backbone and a stub area. It is responsible for originating a default prefix
LSA for the stub area and for Inter- Area-Prefix LSA redistribution between different areas.
The R1 is set to be the DR in Area 1 and DROTHER in Area 0. This makes the R1 router
a perfect reference point for each of the testing phases.

8.1 Hello Protocol

8.1.1 The Hello Packet Format

&e (OSPFv3HelloPacket) ~ Internet Protocol Version 6, Src: fe80::a8bb:ccff:fe@0:100, Dst: ffe2::5
. 0110 = Version: 6
& controlinfo = (IPvéControlinfo) (cObject) P oe.. 1100 0000l een cenn ... = Traffic class: 0xcO (DSCP: CS6, ECN: Not-ECT)
protocol = 89 (IP_PROT_OSPF) [...] (short) | 0000 0000 0000 0000 0000 = Flow label: 8x00000
~destAddr = ff02::5 (IPv6Address) Payload length: 36
srcAddr = fe80::a8bb:ccff:fe00:100 (IPv6Address) :z:tl'l'::‘:erl OSPF IGP (89)
trafficClass = 0 [...] (unsigned char) Source: fe8o::agbb:ccff:fe00:100
~diffServCodePoint = 0 [...] (int) Destination: ff@2::5
explicitCongestionNotification = 0 [...] (int) [Source GeoIP: Unknown]
hopLimit = 1 [...] (short) [Destination GeoIP: Unknown]
P =1L ~ Open Shortest Path First
interfaceld = 101 [...] (int) ~ OSPF Header
~multicastLoop = false [...] (bool) Version: 3
extensionHeader[0] (IPv6ExtensionHeaderPtr) Message Type: Hello Packet (1)
Packet Length: 36
B-base
Source OSPF Router: 10.10.10.1
~encapsulatedPacket = NULL (cPacket) Area ID: 0.0.0.0 (Backbone)
—version = 3 [...] (uint8_t) Checksum: ©x74c5 [correct]
_ : - Instance ID: IPv6 unicast AF (0)
type = 1 [...] (uint8_t)) Reserved: 00
packetLength =36[...] (uint16_t) ~ 0SPF Hello Packet
“routerID = 10.10.10.1 (IPv4Address) Interface ID: 3
arealD = <unspec> (IPv4Address) Router Priority: 1

checksum = 0 [...] (uint16_t) 7 Options: 0x000013 (R, €. V6)

. 0., = AT: Not set

CinstancelD=0[..] (uint8 ty | = L: Not set
CinterfacelD =0 [...] (uint32_.t) | e 0 ... = AF: Not set
FrouterPriority = 1 [...] (uint8_t) | e e e s+e+ = DC: Mot set

& options (OSPFv3Options)
TreservedOne = false [...] (bool)
‘*reservedTwo = false [...] (bool)
[~dcBit = false [...] (bool)

MC: Not set
= E: Set
..1 = V6: Set

Hello Interval [sec]: 10

rBit = true [...] (bool) Router Dead Interval [sec]: 40
rnBit = false [...] (bool) Designated Router: 0.0.0.0
‘*xBit = false [...] (bool) Backup Designated Router: 0.6.6.0

‘*eBit = true [...] (bool)
Vv6Bit = true [...] (bool)
~helloInterval = 10 [...] (uintl6_t)
deadinterval = 40 [...] (uintl6_t)
designatedRouterID = <unspec> (IPv4Address)
backupDesignatedRouterID = <unspec> (IPv4Address;

Figure 8.2: Comparison of the Hello Packet Content

The figure 8.2 shows a comparison of an OMNeT++ message on the left and a packet
captured using Wireshark on the right. The important parts are highlighted in yellow color.
Both the message and the packet are captured on Ethernet 0/0 interface on router R1.

Link-local address is used as the source address, and the hop limit is set to 1. This
ensures that neighbors will be discovered on the local network only. The destination address

33

in the Hello Packet is always ff02::5 and all OSPFv3 capable routers have to be prepared
to receive them.

The <unspec> value in OMNeT++ message means 0.0.0.0 IPv4 address. In the example,
the <unspec> value is set in area ID field, meaning that this area is the backbone, and in
the DR and BDR fields, meaning that this is a beginning of communication and the DR
and BDR are not yet elected.

The options field and the hello and dead intervals need to be the same among different
neighbors for them to even become adjacent in the first place. The checksum is set to
0 in the OMNeT++ message. In a real network, the checksum has an important role in
identifying correct contents of the packet. In OMNeT++ this is not the case since the
channel between devices is not prone to create any errors.

8.1.2 The Hello Packet Exchange

Figure 8.3 shows a message traffic in OMNeT++. The output is restricted to R1 commu-
nication only. The SO and S1 in the output are switches connecting the routers in the Area
0 and Area 1 respectively.

The figure 8.4 shows a result of debug ospfv3 1 hello command from Rl in EVE-
NG. Each Cisco router sends an immediate message to any new neighbor discovered on the
network for the first time. This is not described anywhere in RFC 2328 nor RFC 5340.
The RFCs only state that two routers become neighbors when they see themselves in the
Hello Packet from the neighbor. This ensures that the communication is bidirectional. I
have implemented an immediate response in the model, so that is corresponds to the Cisco
implementation.

0.00000000 R1 --> SO 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:100 > ff02::5
0.00000000 R1 --> S1 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:110 > ff02::5
0.00000922 SO --> R1 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:200 > ff02::5
0.00000922 S1 --> Rl 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe@0:500 > ff02::5
0.00001748 R1 --> SO 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:100 > fe80::a8bb:ccff:fe00:200
0.00001748 R1 --> S1 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:110 > feB80::a8bb:ccff:fe00:500
0.00001834 SO --> R1 O0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:300 > ff02::5
0.00001834 S1 --> R1 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:600 > ff02::5
0.00002660 Rl --> SO 0SPFv3HelloPacket --- IPvb6Datagram: fe80::a8bb:ccff:fe00:100 > feB80::a8bb:ccff:fe00:300
0.00002660 Rl --> S1 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:110 > feB80::a8bb:ccff:fed0:600
0.00002746 SO --> R1 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:400 > ff02::5
0.00002746 S1 --> Rl 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe@0:500 > fe80::a8bb:ccff:fe00:110
0.00003604 Rl --> SO O0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:100 > fe80::a8bb:ccff:fe00:400
0.00003658 SO --> Rl 0SPFv3HelloPacket --- IPvb6Datagram: fe80::a8bb:ccff:fe00:200 > feB80::a8bb:ccff:fe00:100
0.00003658 S1 --> Rl 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:600 > feB80::a8bb:ccff:fe00:110
0.00004570 SO --> R1 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:300 > fe80::a8bb:ccff:fe00:100
0.00005482 SO --> Rl 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:400 > feB80::a8bb:ccff:fe00:100
10.0000000 R1 --> SO 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe@0:100 > ff02::5
10.0000000 R1 --> S1 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:110 > ff02::5
10.0000098 S1 --> R1 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:500 > ff02::5
10.0000101 SO --> R1 O0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:200 > ff02::5
10.0000196 S1 --> R1 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:600 > ff02::5
10.0000202 SO --> R1 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:300 > ff02::5
10.0000303 SO --> R1 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe@0:400 > ff02::5
20.0000000 R1 --> SO 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:100 > ff02::5
20.0000000 R1 --> S1 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:110 > ff02::5
20.0000098 S1 --> R1 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fef0:500 > ff02::5
20.0000101 SO --> Rl 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:200 > ff02::5
20.0000196 S1 --> Rl 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe@0:600 > ff02::5
20.0000202 SO --> R1 0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:300 > ff02::5
20.0000303 SO --> Rl O0SPFv3HelloPacket --- IPv6Datagram: fe80::a8bb:ccff:fe00:400 > ff02::5

Figure 8.3: Hello Packet Exchange in OMNeT++ on Router R1

The timestamps between the two figures are different because each OMNeT++ simula-
tion starts simply in a time zero. The time in the virtual environment on the other hand is

34

IPv6 HELLO Et0/0: Send hello to FF02::5 area © from FE80::A8BB:CCFF:FE00:100 interface ID 3

IPv6 HELLO Et6/0: Rcv hello from 10.10.10.3 area © from FE80::A8BB:CCFF:FE00:300 interface ID 3

IPv6 HELLO Et0/0: Send Immediate hello to nbr 10.10.10.3, src address FE80::A8BB:CCFF:FE00:300

IPv6 HELLO Et0/0: Send hello to FE80::A8BB:CCFF:FE00:300 area © from FE80::A8BB:CCFF:FE00:100 interface ID 3
IPv6 HELLO Et0/0: Rcv hello from 10.10.10.4 area 0 from FE80::A8BB:CCFF:FE00:400 interface ID 3

IPv6 HELLO Et0/0: Send Immediate hello to nbr 10.10.10.4, src address FE80::A8BB:CCFF:FE00:400

IPv6 HELLO Et6/0: Send hello to FE80::A8BB:CCFF:FE00:400 area © from FE80::A8BB:CCFF:FE00:100 interface ID 3
IPv6 HELLO Et0/0: Rcv hello from 10.10.10.3 area © from FE80::A8BB:CCFF:FE00:300 interface ID 3

IPv6 HELLO Et0/0: Rcv hello from 10.10.10.4 area © from FE80::A8BB:CCFF:FE00:400 interface ID 3

IPv6 HELLO Et0/1: Send hello to FF02::5 area 1 from FE80::A8BB:CCFF:FE00:110 interface ID 4

IPv6 HELLO Et0/1: Rcv hello from 10.10.10.6 area 1 from FE80::A8BB:CCFF:FE00:600 interface ID 3

IPv6 HELLO Et0/1: Send Immediate hello to nbr 10.10.10.6, src address FE80::A8BB:CCFF:FE00:600

IPv6 HELLO Et0/1: Send hello to FE80::A8BB:CCFF:FE00:600 area 1 from FE80::A8BB:CCFF:FE00:110 interface ID 4
-IPv6 HELLO Et0/1: Rcv hello from 10.10.10.5 area 1 from FE80::A8BB:CCFF:FE00:500 interface ID 3

-IPv6 HELLO Et0/1: Send Immediate hello to nbr 10.10.10.5, src address FE80::A8BB:CCFF:FE00:500

-IPv6 HELLO Et0/1: Send hello to FE80::A8BB:CCFF:FE00:500 area 1 from FE80::A8BB:CCFF:FE00:110 interface ID 4
-IPv6 HELLO Et0/6: Rcv hello from 10.10.10.2 area © from FE80::A8BB:CCFF:FE00:200 interface ID 3

HELLO Et0/0: Send Immediate hello to nbr 10.10.10.2, src address FE80::A8BB:CCFF:FE00:200

-IPv6 HELLO Et0/0: Send hello to FE80::A8BB:CCFF:FE00:200 area © from FE80::A8BB:CCFF:FE00:100 interface ID 3
-IPv6 HELLO Et0/0: Rcv hello from 10.10.10.2 area © from FE80::A8BB:CCFF:FE00:200 interface ID
-IPv6 HELLO Et0/0: Rcv hello from 10.10.10.3 area © from FE80::A8BB:CCFF:FE00:300 interface ID
-IPv6 HELLO Et0/0: Send hello to FF02::5 area © from FE80::A8BB:CCFF:FE00:100 interface ID 3
-IPv6 HELLO Et0/1: Rcv hello from 10.10.10.5 area 1 from FE80::A8BB:CCFF:FE00:500 interface ID
-IPv6 HELLO Et0/1: Rcv hello from 10.10.10.6 area 1 from FE80::A8BB:CCFF:FE00:600 interface ID
-IPv6 HELLO Et0/0: Rcv hello from 10.10.10.2 area © from FE80::A8BB:CCFF:FE00:200 interface ID
-IPv6 HELLO Et0/0: Rcv hello from 10.10.10.4 area 0 from FE80::A8BB:CCFF:FE00:400 interface ID
-IPv6 HELLO Et0/1: Send hello to FF02::5 area 1 from FE80::A8BB:CCFF:FE00:110 interface ID 4
-IPv6 HELLO Et0/0: Rcv hello from 10.10.10.3 area © from FE80::A8BB:CCFF:FE00:300 interface ID
-IPv6 HELLO Et0/0: Rcv hello from 10.10.10.2 area © from FE80::A8BB:CCFF:FE00:200 interface ID
-IPv6 HELLO Et6/0: Send hello to FF2::5 area 0 from FE80::A8BB:CCFF:FE00:100 interface ID 3
-IPv6 HELLO Et6/0: Rcv hello from 10.10.10.4 area O from FE80::A8BB:CCFF:FE00:400 interface ID
-IPv6 HELLO Et0/1: Rcv hello from 10.10.10.5 area 1 from FE80::A8BB:CCFF:FE00:500 interface ID
-IPv6 HELLO Et0/1: Rcv hello from 10.10.10.6 area 1 from FE80::A8BB:CCFF:FE00:600 interface ID
-IPv6 HELLO Et0/1: Send hello to FF02::5 area 1 from FE80::A8BB:CCFF:FE00:110 interface ID 4

12:52:04.419: 0SPFv3-
12:52:04.421: 0SPFv3-
12:52:04.421: 0SPFv3-
12:52:04.421: 0SPFv3-
12:52:04.423: 0SPFv3-
12:52:04.423: 0SPFv3-
12:52:04.423: 0SPFv3-
12:52:04.423: 0SPFv3-
12:52:04.429: 0SPFv3-
12:52:04.658: 0SPFv3-
12:52:04.671: 0SPFv3-
12:52:04.671: OSPFv3-
12:52:04.671: OSPFv3-
12:52:04.672: OSPFv3-
12:52:04.672: OSPFv3-
12:52:04.672: OSPFv3-
12:52:04.803: OSPFv3-
12:52:04.803: OSPFv3-
12:52:04.803: OSPFv3-
12:52:04.854: OSPFv3-
12:52:13.523: OSPFv3-
12:52:13.573: OSPFv3-
12:52:13.585: 0SPFv3-
12:52:13.690: OSPFv3-
12:52:13.754: OSPFv3-
12:52:13.908: OSPFv3-
12:52:14.495: OSPFv3-
12:52:22.802: OSPFv3-
12:52:22.803: OSPFv3-
12:52:22.879: 0SPFv3-
12:52:23.304: OSPFv3-
12:52:23.511: OSPFv3-
12:52:23.573: 0SPFv3-
12:52:24.178: 0SPFv3-

ww

wWw wwww

e e e b b e e e e e b e e e b
-
o
<
o
www

Figure 8.4: Hello Packet Exchange in EVE-NG on Router R1

based on the system time of the device. But the most important is that the initial exchange
of the first series of Hello Packets takes place at the same time. Other Hello Packets are
sent or received every 10 seconds which is the time of the Hello Interval. These packets
serve as a keepalive for the neighbors.

Inspecting the IP addresses in both figures, we are able to see that truly only routers on
the local network are able to communicate. For instance, there is no packet from router R6
to the router R4. Only routers from Area 0 communicate with R1 on interface Eth 0/0(link-
local address fe80::a8bb:ccff:fe00:100) and only routers from Area 1 are able to contact R1
on Eth 0/1(link-local address fe80::a8bb:ccff:fe00:110).

8.2 Neighborship Establishment

The next phase in the OSPFv3 process is directly connected to the Hello Packet exchange.
It is the neighborship establishment and DR and BDR election.

Figure 8.5 shows the state of neighbors on router R1. The top part shows the output
from OMNeT++. The bottom part is the output from EVE-NG after issuing the sh ospfv3
1 neighbors command.

The output is actually from a period after the database exchange. But I am using it
in this section to show which router becomes DR and BDR for different areas. During the
exchange, the state of the neighbors is either 2WAY or LOADING so there is no information
about the election.

The router R1 has a default priority for Area 0 (default priority is 1) and priority set
to 10 for Area 1. This results in R1 being a DROTHER for Area 0 because the DR election is
based on the highest router-id value. For Area 0 the DR is router R4, and BDR is router
R3. The relationship with router R2 stays in 2WAY because R1 and R2 do not exchange
any LSAs directly.

35

R1 is the DR in Area 1. Router R6 is the BDR because it has higher router ID than
R5.

OSPFv3 1 address-family IPv6 (router-id 10.10.10.1)

Neighbor ID P State Dead Time Interface ID Interface
10.10.10.2 1 2WAY/DROTHER 35 0 eth0
10.10.10.3 1 FULL/BDR 35 0 ethO
10.10.10.4 1 FULL/DR 35 0 eth0
10.10.10.5 1 FULL/DROTHER 35 0 ethl
10.10.10.6 1 FULL/BDR 35 0 ethl

OSPFv3 1 address-family ipv6 (router-id 10.10.10.1)

Neighbor ID Pri State Dead Time Interface ID Interface

10.10.10.2 1 2WAY/DROTHER 00:00:35 3 Ethernet0/0
10.10.10.3 1 FULL/BDR 00:00:38 3 Ethernet6/0
10.10.10.4 1 FULL/DR 00:00:37 3 Ethernet0/0
10.10.10.5 1 FULL/DROTHER 00:00:39 3 Ethernet6/1
10.10.10.6 1 FULL/BDR 00:00:39 3 Ethernet6/1

Figure 8.5: Neighbors’ Relationship Comparison on Router R1

Ethernet0/0 is up, line protocol is up
Link Local Address FE80::A8BB:CCFF: FEGO 100, Interface ID 3
Area 0, Process ID 1, Instance ID 0, Router ID 10.10.10.1
Network Type BROADCAST, Cost: 10
Transmit Delay is 1 sec, State DROTHER, Priority 1
Designated Router (ID) 10.10.10.4, local address FE80::A8BB:CCFF:FE00:400
Backup Designated router (ID) 10.10.10.3, local address FE80::A8BB:CCFF:FE00:300
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:06
Graceful restart helper support enabled
Index 1/1/1, flood queue length 0
Next 0x0(0)/0x0(0)/0x0(0)
Last flood scan length is @, maximum is 3
Last flood scan time is © msec, maximum is @ msec
Neighbor Count is 3, Adjacent neighbor count is 2
Adjacent with neighbor 10.10.10.3 (Backup Designated Router)
Adjacent with neighbor 10.10.10.4 (Designated Router)
Suppress hello for 0 neighbor(s)
Ethernet0/1 is up, line protocol is up
Link Local Address FE80::A8BB:CCFF:FE00:110, Interface ID 4
Area 1, Process ID 1, Instance ID 0, Router ID 10.10.10.1
Network Type BROADCAST, Cost: 10
Transmit Delay is 1 sec, State DR, Priority 10
Designated Router (ID) 10.10.10.1, local address FE80::A8BB:CCFF:FEGO:110
Backup Designated router (ID) 10.10.10.6, local address FE80::A8BB:CCFF:FE00:600
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:05
Graceful restart helper support enabled
Index 1/1/2, flood queue length 0
Next 0x0(0)/0x0(0)/0x0(0)
Last flood scan length is 2, maximum is 9
Last flood scan time is 0 msec, maximum is © msec
Neighbor Count is 2, Adjacent neighbor count is 2
Adjacent with neighbor 10.10.10.5
Adjacent with neighbor 10.10.10.6 (Backup Designated Router)
Suppress hello for © neighbor(s)

Figure 8.6: Interfaces Setting Output on Router R1 in EVE-NG

36

Figures 8.6 and 8.7 show a comparison of detailed information about each interface which
is turned on for OSPFv3. The first figure shows sh ospfv3 1 interfaces command output
on R1 from EVE-NG. In the second, there is a detailed output from each 0SPFv3Interface
in OMNeT++. Except for a few extra lines in EVE-NG output the results are identical.

We can see that R1 is adjacent with both routers R5 and R6 in Area 1. The DR is
always fully adjacent with all other routers in an area. In Area0, on the other hand, R1 is
adjacent with R3 and R4 only. R2 is DROTHER and as such does not create a full relationship
with R1.

Interface ethO

Link Local Address fe80::a8bb:ccff:fe00:100, Interface ID 101

Area 0, Process ID 1, Instance ID 0, Router ID 10.10.10.1

Network Type BROADCAST, Cost: 0

Transmit Delay is 1 sec, State DROther, Priority 1

Designated Router (ID) 10.10.10.4, local address fe80::a8bb:ccff:fe00:400

Backup Designated router (ID) 10.10.10.3, local address fe80::a8bb:ccff:fe00:300

Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 5

Neighbor Count is 3, Adjacent neighbor count is 2

Adjacent with neighbor 10.10.10.3(Backup Designated Router)

Adjacent with neighbor 10.10.10.4(Designated Router)

Suppress Hello for 0 neighbor(s)

Interface ethl

Link Local Address fe80::a8bb:ccff:fe00:110, Interface ID 102

Area 1, Process ID 1, Instance ID 0, Router ID 10.10.10.1

Network Type BROADCAST, Cost: 0

Transmit Delay is 1 sec, State DR, Priority 10

Designated Router (ID) 10.10.10.1, local address fe80::a8bb:ccff:fe00:110

Backup Designated router (ID) 10.10.10.6, local address fe80::a8bb:ccff:fe00:600

Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 5

Neighbor Count is 2, Adjacent neighbor count is 2

Adjacent with neighbor 10.10.10.6(Backup Designated Router)

Suppress Hello for 0 neighbor(s)

Figure 8.7: Interfaces Setting Output on Router R1 in OMNeT++

8.3 Database Exchange

After adjacencies between neighbors are established, and DR and BDR are elected, the
databases are exchanged. The figures 8.8 and 8.9 show how the exchange is carried out in
EVE-NG and OMNeT++ respectively. Both figures show exchange in Area 0 on ethernet
0/0 interface on router R1. The EVE-NG figure is a sequence of packets captured using
Wireshark.

The most distinct difference between both figures is the number of packets. There are
more LS Update packets in EVE-NG and much less LS Acknowledge packets in OMNeT++.

37

In OMNeT++ there is one LS Update packet sent as a response to LS Request packet. But
when a DR is flooding received updates, it sends one LS Update per received LSA. This does
not violate any process described in the standard. The LS Acknowledgement packets in
OMNeT++ are sent with a delay of one second. The standard clearly states that there may
be multiple LSAs acknowledged in a single LS Acknowledgement packet. The one second
is chosen so that all of the LSAs are already exchanged and the RxmtlInterval defined in
RFC 2328 does not expire in that time.

More important than the number of packets exchanged are the source and destination
addresses being used. All DB Description and LS Request packets are exchanged between
R1 and R4 or R3. LS Update and LS Acknowledgement packets are sent either directly
between routers or to an appropriate multicast address. The R1 as a DROther is using
ff02::6 as an address used by DR and BDR only. R4 and R3, on the other hand, use ff02::5
to deliver updates. This multicast address should be used by every OSPFv3 capable router
in the area.

No. Time Source Destination Protocol Length Info
60 34.256044 fe80::a8bb:ccff:feb0:400 fe80::a8bb:ccff:feb0:100 OSPF 82 DB Description
65 37.551654 fe80::a8bb:ccff:fe00:100 fe80::a8bb:ccff:fe00:400 OSPF 82 DB Description
67 38.772360 fe80::a8bb:ccff:fe00:400 fe80::a8bb:ccff:feb0:100 OSPF 82 DB Description
68 38.772577 fe80::a8bb:ccff:fe00:100 fe80::a8bb:ccff:fe00:400 OSPF 162 DB Description
69 38.772950 fe80::a8bb:ccff:fe00:400 fe80::a8bb:ccff:fe00:100 OSPF 162 DB Description
70 38.773104 fe80::a8bb:ccff:fed0:100 fe80::a8bb:ccff:feb0:400 OSPF 118 LS Request
71 38.773119 fe80::a8bb:ccff:fe00:100 fe80::a8bb:ccff:feb0:400 OSPF 82 DB Description
72 38.773443 fe80::a8bb:ccff:feb0:400 fe80::a8bb:ccff:feb0:100 OSPF 234 LS Update
73 38.773458 fe80::a8bb:ccff:fe00:400 fe80::a8bb:ccff:feb0:100 OSPF 118 LS Request
74 38.773664 fe80::a8bb:ccff:fedb:100 fe80::a8bb:ccff:fe00:400 OSPF 234 LS Update
75 38.898317 fe80::a8bb:ccff:fe00:400 ffe2::5 0SPF 234 LS Update
76 39.115795 fe80::a8bb:ccff:fe00:400 ffe2::5 OSPF 234 LS Update
78 39.320888 fe80::a8bb:ccff:fe00:400 ffe2::5 OSPF 302 LS Update
80 39.439178 fe80::a8bb:ccff:fe00:400 ffe2::5 OSPF 146 LS Update
82 39.655982 fe80::a8bb:ccff:feb0:400 ffe2::5 OSPF 146 LS Update
84 41.278187 fe80::a8bb:ccff:fe00:100 ffe2::6 OSPF 390 LS Acknowledge
87 41.581686 fe80::a8bb:ccff:fefb:400 ffe2::5 OSPF 190 LS Acknowledge
90 42.568541 fe80::a8bb:ccff:fe00:100 fe80::a8bb:ccff:fe00:300 OSPF 82 DB Description
91 42.568700 fe80::a8bb:ccff:fe00:300 fe80::a8bb:ccff:fe00:100 OSPF 82 DB Description
92 42.568872 fe80::a8bb:ccff:fe00:100 fe80::a8bb:ccff:fe00:300 OSPF 402 DB Description
94 42.569434 fe80::a8bb:ccff:febd0:300 fe80::a8bb:ccff:feb0:100 OSPF 362 DB Description
95 42.569564 fe80::a8bb:ccff:fed0:100 fe80::a8bb:ccff:feb0:300 OSPF 94 LS Request
96 42.569600 fe80::a8bb:ccff:fe00:100 fe80::a8bb:ccff:fed0:300 OSPF 82 DB Description
97 42.570083 fe80::a8bb:ccff:fedB:300 fe80::a8bb:ccff:feb0:100 OSPF 154 LS Update
99 42.603246 fe80::a8bb:ccff:fe00:100 ffo2::6 OSPF 154 LS Update
101 42.603825 fe80::a8bb:ccff:fe00:300 fe80::a8bb:ccff:fe00:100 OSPF 110 LS Acknowledge
115 45.074123 fe80::a8bb:ccff:fe00:100 ffe2::6 OSPF 150 LS Acknowledge
122 47.210468 fe80::a8bb:ccff:fed0:100 fe80::a8bb:ccff:feb0:400 OSPF 154 LS Update
123 47.211008 fe80::a8bb:ccff:fe00:400 fe80::a8bb:ccff:feb0:100 OSPF 110 LS Acknowledge
140 51.182283 fe80::a8bb:ccff:feb0:100 ffo2::6 OSPF 110 LS Acknowledge

Figure 8.8: Database Exchange on Interface Ethernet 0/0 on R1 in EVE-NG

The exchange of packets in a real network will hardly ever be the same as in OMNeT++.
Any delay in the network may change the order of packets. For instance, the DR may have
a different database in the real network when it received LS Request from R1 because it
has already received LS Update from R2. Much more important is whether the database is
complete at the end of this process. This is described in section 8.4

8.4 Convergence

The convergence indicates a state when all the databases of all routers in an area are the
same. This is a starting point for Dijkstra algorithm and route calculation.

38

40.
40.
40.
40.
40.
40.
40.
40.
40.
40.

0000000
0000385
00005044
00011924
0001201
0002097
00022964
0002305
00024244
0002433

R1

R1
R1
SO
SO
R1
SO
R1
SO

-->
-->
-->
-->
-->
-->
-->
-->
-->
-->

40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
41.
41.
41.

00025908
00027828
00032906
00037034
00038516
00041802
0005905
00060842
00062442
00064276
00064362
00065556
0006657
00068052
00068138
00073258
0007873
0007926
00082634
00085706
00087306
00089514
00091146
00092938
00094538
00096746
00098378
00107978
00109172
00109258
00128202
00131636
00132916
00135786
0013794
0015985
00171594
00182346
001845
00192042
00204266
00210186
0021873
00040178
0004562
00054686

R1
R1
SO
SO
R1
SO
SO
SO
SO
R1
SO
R1
SO
R1
SO
SO
SO
R1
SO
SO
SO
SO
SO
SO
SO
SO
SO
SO
R1
SO
SO
R1
R1
SO
R1
SO
SO
SO
R1
SO
SO
SO
SO
SO
R1
SO

-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->
-->

Figure

fe80:
fe80:
fe80:
fe80:
fe80:
fe80:
fe80:
fe80:
fe80:
fe80:

:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:

fe80::
::IPv6Datagram: fe80::a8bb:ccff:fe00:100 > ffO2:

a8bb:

ccff:
ccff:
ccff:
ccff:
ccff:
ccff:
ccff:
ccff:
ccff:
ccff:

ccff:

fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:

100
400
100
100
400
400
100
300
100
400

100

inet::IPv6Datagram: fe80::a8bb:ccff:fe00:300
inet::IPv6Datagram: fe80::a8bb:ccff:fe00:400
:IPvbDatagram: fe80::a8bb:ccff:fe00:100 > ff02:

Pv6Datagram: fe80::a8bb:ccff:fe00:400 > ff02:
Pv6Datagram: fe80::a8bb:ccff:fe00:400 > ff02:
::IPv6Datagram: fe80::a8bb:ccff:fe00:400 > ff02:

inet::IPv6Datagram: fe80::a8bb:ccff:fe00:300
inet::IPv6Datagram: fe80::a8bb:ccff:fe00:100
inet::IPv6Datagram: fe80::a8bb:ccff:fe00:400 > ff02:
inet::IPv6Datagram: fe80::a8bb:ccff:fe00:100

IPv6Datagram: fe80::a8bb:ccff:fe00:300

inet::IPv6Datagram: fe80::a8bb:ccff:fe00:100

:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
fe80:
fe80:
fe80:
fe80:
fe80:
fe80:
fe80:

ccff:
ccff:
ccff:
ccff:
ccff:
ccff:
ccff:
ccff:
ccff:
ccff:
ccff:
ccff:
ccff:

fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:

400
400
400
100
400
400
400
400
400
400
400
400
400

ccff:
ccff:
ccff:
ccff:
ccff:
ccff:
ccff:

>

VVVVVVVVVVYV

>

fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:

102:
102:
102:
102:
102:
102:
102:
102:
102:
102:
102:
102:
102:
300
100
300
300
100
100
300

:IPvbDatagram: fe80::a8bb:ccff:fe00:100 > ff02:

Pv6Datagram: fe80::a8bb:ccff:fe00:400 > ff02:
::IPv6Datagram: fe80::a8bb:ccff:fe00:400 > ff02:

inet::IPv6Datagram: fe80::a8bb:ccff:fe00:300

a8bb:ccff:fe00:
a8bb:ccff:fe00:
a8bb:ccff:fe00:
a8bb:ccff:fe00:
a8bb:ccff:fe00:

8bb:ccff:fe00:100

SO : :0SPFv3DatabaseDescription:82 bytes inet::IPv6Datagram:
R1 O0SPFv3DatabaseDescription:82 bytes inet::IPv6Datagram:
S0 OSPFv3DatabaseDescription:162 bytes inet::IPv6Datagram:
SO O0SPFv3DatabaseDescription:82 bytes inet::IPv6Datagram:
R1 O0SPFv3DatabaseDescription:82 bytes inet::IPv6Datagram:
R1 OSPFv3DatabaseDescription:182 bytes inet::IPv6Datagram:
SO O0SPFv3DatabaseDescription:82 bytes inet::IPv6Datagram:
R1 O0SPFv3DatabaseDescription:82 bytes inet::IPv6Datagram:
SO O0SPFv3LinkStateRequest:130 bytes inet::IPv6Datagram:
R1 O0SPFv3LinkStateRequest:118 bytes inet::IPv6Datagram:
S0 OSPFv3DatabaseDescription:162 bytes inet::IPv6Datagram:
SO O0SPFv3LSUpdate:370 bytes inet

R1 OSPFv3DatabaseDescription:82 bytes

R1 O0SPFv3LinkStateRequest:118 bytes

SO O0SPFv3LSUpdate:370 bytes inet:

R1 O0SPFv3LSUpdate:410 bytes inet

R1 O0SPFv3LSUpdate:146 bytes inet

R1 O0SPFv3LSUpdate:122 bytes inet

R1 O0SPFv3DatabaseDescription:162 bytes

SO O0SPFv3DatabaseDescription:82 bytes

R1 O0SPFv3LSUpdate:198 bytes

SO O0SPFv3LinkStateRequest:118 bytes

R1 O0SPFv3LinkStateRequest:118 bytes ine

SO O0SPFv3DatabaseDescription:82 bytes

R1 OSPFv3LSUpdate:126 bytes inet::IPv6Datagram: fe80:
R1 O0SPFv3LSUpdate:410 bytes inet::IPv6Datagram: fe80:
R1 O0SPFv3LSUpdate:410 bytes inet::IPv6Datagram: fe80:
SO O0SPFv3LSUpdate:122 bytes inet::IPv6Datagram: fe80:
R1 O0SPFv3LSUpdate:146 bytes inet::IPv6Datagram: fe80:
R1 O0SPFv3LSUpdate:122 bytes inet::IPv6Datagram: fe80:
R1 O0SPFv3LSUpdate:198 bytes inet::IPv6Datagram: fe80:
R1 OSPFv3LSUpdate:126 bytes inet::IPv6Datagram: fe80:
R1 O0SPFv3LSUpdate:146 bytes inet::IPv6Datagram: fe80:
R1 O0SPFv3LSUpdate:122 bytes inet::IPv6Datagram: fe80:
R1 O0SPFv3LSUpdate:198 bytes inet::IPv6Datagram: fe80:
R1 OSPFv3LSUpdate:126 bytes inet::IPv6Datagram: fe80:
R1 OSPFv3LSUpdate:126 bytes inet::IPv6Datagram: fe80:
R1 O0SPFv3DatabaseDescription:82 bytes inet::IPv6Datagram:
SO OSPFv3DatabaseDescription:382 bytes inet::IPv6Datagram:
R1 O0SPFv3DatabaseDescription:82 bytes inet::IPv6Datagram:
R1 OSPFv3DatabaseDescription:362 bytes inet::IPv6Datagram:
S0 OSPFv3DatabaseDescription:82 bytes inet::IPv6Datagram:
SO O0SPFv3LinkStateRequest:190 bytes inet::IPv6Datagram:
R1 0SPFv3LinkStateRequest:202 bytes inet::IPv6Datagram:
SO O0SPFv3LSUpdate:962 bytes inet:

R1 O0SPFv3LSUpdate:854 bytes inet

R1 OSPFv3LSUpdate:126 bytes inet

R1 0SPFv3LinkStateRequest:202 bytes

SO O0SPFv3LSUpdate:902 bytes inet::IPv6Datagram: fe80::
R1 O0SPFv3LSUpdate:998 bytes inet::IPv6Datagram: fe80::
R1 OSPFv3LSUpdate:126 bytes inet::IPv6Datagram: fe80::
R1 O0SPFv3LSUpdate:122 bytes inet::IPv6Datagram: fe80::
R1 OSPFv3LSUpdate:126 bytes inet::IPv6Datagram: fe80::
R1 OSPFv3LSAck:410 bytes inet::IPv6Datagram: fe80::a8bb:ccff:fe00:400
SO OSPFv3LSAck:470 bytes inet::IPv6Datagram: fe80

R1 : :0SPFv3LSAck:490 bytes inet::IPv6Datagram: fe80::a8bb:ccff:fe00:300

8.9: Database Exchange

100 > ff02:
400 > ffO2:
400 > ffO2:
400 > ffO2:
400 > ffO2:
> f102::5
> 1102::6
> ff02::5

VUV LUV VV VYV VVUOUUUOUUOUOUuOUuuy VVOVVOouuoV VeV VVVVVVVVVYVY

fe80:
fe80:
fe80:
fe80:
fe80:
fe80:
fe80:
fe80:
fe80:
fe80:
fe80:

fe80:
fe80:

fe80:
fe80:

fe80:
fe80:
fe80:

fe80:
fe80:
fe80:
fe80:
fe80:
fe80:
fe80:

fe80:

:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:

:a8bb:
:a8bb:

:a8bb:
:a8bb:

:a8bb:
:a8bb:
:a8bb:

:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:
:a8bb:

:a8bb:

ccff:
ccff:
ccff:
ccff:
ccff:
ccff:
ccff:
ccff:
ccff:
ccff:
ccff:

ccff:
ccff:

ccff:
ccff:

ccff:
ccff:
ccff:

ccff:
ccff:
ccff:
ccff:
ccff:
ccff:
ccff:

ccff:

fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:

fe00:
fe00:

fe00:
fe00:

fe00:
fe00:
fe00:

fe00:
fe00:
fe00:
fe00:
fe00:
fe00:
fe00:

fe00:

on Interface Ethernet 0/0 on R1 in OMNeT++

400
100
400
300
100
100
400
100
400
100
300

100
100

100
300

300
100
300

100
300
100
100
300
300
100

Figures 8.10 and 8.11 show the state of the database on router R1 after it starts up.
This is the state before any DR or BDR are elected. The router has only information about
its surroundings. Only the Router LSA, Link LSA and Intra-Area-Prefix LSA are present.

Since the R1 is an ABR, it has to create Inter-Area-Prefix LSAs and distribute them be-
tween different areas. It creates Intra-Area-Prefix LSA for address prefix 2001:db8:1::/64
from Area 1 and places the LSA in Area 0 database.
2001:db8:a::/64 from Area 0. Rl is also responsible for creating a LSA with a default
route for any stub area. Area 1 is a stub area, R1 creates Intra-Area-Prefix LSA with a

default prefix :

on DR after the election.

Figures 8.12 and 8.13 show a state of the database on router R1 after the databases
between routers have been exchanged. Each area has only the Router LSAs of routers
belonging to the area. There is one Network LSA for each area originated by the DR.
The prefix from Area 1 is distributed in Area 0 and all the prefixes from Areas 2-4 are
redistributed into Area 1. In this state, the router is ready to start the Dijkstra algorithm.

39

The same happens for prefix

:/0. There are no Network LSAs in the database, because these are created

OSPFv3 1 address-family ipv6 (router-id 10.10.10.1)

Router Link States (Area 0.0.0.0)

ADV Router Age Seq# Fragment ID Link count
10.10.10.1 0 0x80000001 O 0

Inter Area Prefix Link States (Area 0.0.0.0)

ADV Router Age Seq# Prefix

10.10.10.1 0 0x80000001 2001:db8:1::/64

Link (Type-8) Link States (Area 0.0.0.0)

ADV Router Age Seq# Link State ID Interface
10.10.10.1 0 0x80000001 0.0.0.0 ethO0

Intra Area Prefix Link States (Area0.0.0.0)

ADV Router Age Seq# Link ID Ref-Istype
10.10.10.1 0 0x80000001 0.0.0.0 0x2001

OSPFv3 1 address-family ipv6 (router-id 10.10.10.1)

Router Link States (Area 0.0.0.1)

ADV Router Age Seq# Fragment ID Link count
10.10.10.1 0 0x80000001 O 0

Inter Area Prefix Link States (Area 0.0.0.1)

ADV Router Age Seq# Prefix

10.10.10.1 0 0x80000001 2001:db8:a::/64
10.10.10.1 0 0x80000002 ::/0

Link (Type-8) Link States (Area 0.0.0.1)

ADV Router Age Seq# Link State ID Interface
10.10.10.1 0 0x80000001 0.0.0.1 ethl

Intra Area Prefix Link States (Area0.0.0.1)

ADV Router Age Seq# Link ID Ref-Istype
10.10.10.1 0 0x80000001 0.0.0.0 0x2001

Figure 8.10: Initial State of LSA Database on R1 in OMNeT++

40

Bits

Ref-LSID
0.0.0.0

Bits

Ref-LSID
0.0.0.0

ADV

10.

ADV

10.

ADV

10.

ADV

10.

ADV

10.

ADV
10

0SPFv3 1 address-family ipv6 (router-id 10.10.10.1)

Router
10.10.1

Router
10.10.1

Router
10.10.1

Router
10.10.1

Router
10.10.1

Router
.10.10.1
.10.10.1

Router
.10.10.1

Router
.10.10.1

Router Link States (Area 0)

Age Seq# Fragment ID Link count Bits
21 0x80000001 © 0 B

Inter Area Prefix Link States (Area 0)

Age Seq# Prefix
12 0x80000001 2001:DB8:1::/64

Link (Type-8) Link States (Area 0)

Age Seq# Link ID Interface
17 0x80000002 3 Et0/0

Intra Area Prefix Link States (Area 0)

Age Seq# Link ID Ref-1stype Ref-LSID
17 0x80000001 © 0x2001 0

Router Link States (Area 1)

Age Seq# Fragment ID Link count Bits
21 0x80000001 © 0 B

Inter Area Prefix Link States (Area 1)

Age Seq# Prefix
22 0x80000001 ::/0
12 0x80000001 2001:DB8:A::/64

Link (Type-8) Link States (Area 1)

Age Seq# Link ID Interface
17 0x80000002 4 Et0/1

Intra Area Prefix Link States (Area 1)

Age Seq# Link ID Ref-1stype Ref-LSID
17 0x80000001 © 0x2001 0

Figure 8.11: Initial State of LSA Database on R1 in EVE-NG

41

OSPFv3 1 address-family ipv6 (router-id 10.10.10.1)
Router Link States (Area 0.0.0.0)

ADV Router Age Seq# Fragment ID
10.10.10.1 5 0x80000002 O

10.10.10.4 5 0x80000002 O

10.10.10.2 5 0x80000002 O

10.10.10.3 5 0x80000002 O

Net Link States (Area 0.0.0.0)

ADV Router Age Seq# Link State ID
10.10.10.4 5 0x80000001 0.0.0.0

Inter Area Prefix Link States (Area 0.0.0.0)

ADV Router Age Seq# Prefix

10.10.10.1 45 0x80000001 2001:db8:1:/64
10.10.10.4 45 0x80000001 2001:db8:4::/64
10.10.10.2 45 0x80000001 2001:db8:2::/64
10.10.10.3 45 0x80000001 2001:db8:3::/64

Link (Type-8) Link States (Area 0.0.0.0)

ADV Router Age Seq# Link State ID
10.10.10.1 45 0x80000001 0.0.0.0
10.10.10.4 45 0x80000001 0.0.0.0
10.10.10.2 45 0x80000001 0.0.0.0
10.10.10.3 45 0x80000001 0.0.0.0

Intra Area Prefix Link States (Area0.0.0.0)

ADV Router Age Seq# Link ID
10.10.10.4 5 0x80000001 0.0.0.0
OSPFv3 1 address-family ipv6 (router-id 10.10.10.1)
Router Link States (Area 0.0.0.1)

ADV Router Age Seq# Fragment ID
10.10.10.1 5 0x80000002 0

10.10.10.5 5 0x80000002 0

10.10.10.6 5 0x80000002 0

Net Link States (Area 0.0.0.1)

ADV Router Age Seq# Link State ID
10.10.10.1 5 0x80000001 0.0.0.1

Inter Area Prefix Link States (Area 0.0.0.1)

ADV Router Age Seq# Prefix
10.10.10.1 45 0x80000001 2001:db8:a::/64
10.10.10.1 45 0x80000002 ::/0

10.10.10.1 45 0x80000003 2001:db8:4::/64
10.10.10.1 45 0x80000004 2001:db8:2::/64
10.10.10.1 45 0x80000005 2001:db8:3::/64

Link (Type-8) Link States (Area 0.0.0.1)

ADV Router Age Seq# Link State ID
10.10.10.1 45 0x80000001 0.0.0.1
10.10.10.5 45 0x80000001 0.0.0.0
10.10.10.6 45 0x80000001 0.0.0.0

Intra Area Prefix Link States (Area0.0.0.1)
ADV Router Age Seq# Link ID
10.10.10.1 5 0x80000001 0.0.0.0

Figure 8.12: A Complete LSA Database on R1 in OMNeT++

42

Link count

= N

tr count

& 0

Interface
ethO
ethO
ethO
ethO

Ref-Istype
0x2002

Link count
0
0
0

Rtr count
3

Interface
ethl
ethl
ethl

Ref-Istype
0x2002

Bits

eviieviieviiov}

Ref-LSID
0.0.0.0

Bits
B
None
None

Ref-LSID
0.0.0.1

0SPFv3 1 address-family ipv6 (router-id 10.10.10.1)
Router Link States (Area 0)

Router
.10.10.1
.10.10.2
.10.10.3
.10.10.4

Router

.10.10.4

Router
.10.10.1
.10.10.2
.10.10.3
.10.10.4

Router
.10.10.1
.10.10.2

.10.10.3
.10.10.4

Router
.10.10.4

Router
.10.10.1
.10.10.5
.10.10.6

Router

.10.10.1

Router
.10.10.1
.10.10.5
.10.10.6

Router
.10.10.1

Age Seq# Fragment ID Link count Bits
401 0x80000002 © 1 B
403 0x80000002 © 1 B
403 0x80000002 © 1 B
402 0x80000002 0 1 B
Net Link States (Area 0)

Age Seq# Link ID Rtr count

402 0x80000001 3 4

Inter Area Prefix Link States (Area 0)

Age Seq# Prefix

433 0x80000001 2001:DB8:1::/64

435 0x80000001 2001:DB8:2::/64

436 0x80000001 2001:DB8:3::/64

436 0x80000001 2001:DB8:4::/64

Link (Type-8) Link States (Area 0)

Age Seq# Link ID Interface

438 0x80000002 3 Et0/0

440 0x80000002 3 Et0/0

441 0x80000002 3 Et0/0

441 0x80000002 3 Et0/0

Intra Area Prefix Link States (Area 0)

Age Seq# Link ID Ref-lstype Ref-LSID
402 0x80000001 3072 0x2002 3

Router Link States (Area 1)

Age Seq# Fragment ID Link count Bits
402 0x80000002 0 1 B
403 0x80000002 © 1 None
399 0x80000002 0 1 None
Net Link States (Area 1)

Age Seq# Link ID Rtr count

397 0x80000002 4 3

Inter Area Prefix Link States (Area 1)

Age Seq# Prefix

443 0x80000001 ::/0

433 0x80000001 2001:DB8:A::/64

398 0x80000001 2001:DB8:4::/64

398 0x80000001 2001:DB8:3::/64

398 0x80000001 2001:DB8:2::/64
Link (Type-8) Link States (Area 1)

Age Seq# Link ID Interface

438 0x80000002 4 Et0/1

443 0x80000002 3 Et0/1

444 0x80000002 3 Et0/1

Intra Area Prefix Link States (Area 1)

Age Seq# Link ID Ref-1stype Ref-LSID
402 0x80000001 4096 0x2002 4

43

Figure 8.13: A Complete LSA Database on R1 in EVE-NG

8.5 Failover State

The failover state is simulated by disconnecting interface ethernetO on R4. The
ScenarioManager module is used to conduct this experiment. This module parses the
scenario.xml file present in the example directory. Based on parameters it is capable of
dynamically changing certain aspects of the simulation(like disconnecting an interface).

At time t=80 the ethernet 0/0 interface on R4 and ethernet 0/3 on switch connecting
routers in Area 0 are disconnected. The result is not obvious immediately because there is
a Dead Interval Timer running for each neighbor. After 40 seconds, when the Dead Timer
expires, each of the routers in Area 0 removes the router R4 from its neighbors. Since R4
was the DR for this area, the new DR and BDR need to be elected.

R3 as the BDR for Area 0 is immediately elected as the new DR. R2 has the highest
router ID after R3 so this is the new BDR.

R3 as the newly elected DR now creates new Network LSA and Inter-Area-Prefix LSA
with the Area 0 network prefix and floods them throughout the area. Since all the routers
in the area share the same database, there is no need to exchange the whole databases now.
Only the neighbors’ relationships are changed. R1 and R2 now become fully adjacent.

44

Chapter 9

Conclusion

During my work on this thesis, my aim was to create a model of widely used link-state
routing protocol OSPFv3. Since the protocol is quite complicated and comprehensive my
task was to create the model without the SPF Tree calculation. Even without the tree
a huge amount of work went into this project. But of course a routing protocol which is
incapable of routing is not complete. Hence, my journey does not end here.

There are three main sources of information that form the foundation blocks of this
project. The first source is, of course, the standard. Both RFC 2328 and RFC 5340 describe
the protocol in a very detailed way. Even though every real implementation of the protocol
should follow the standard as much as possible, the real life usage might differ.

This is when the second source comes into play. It is the vendor specification and
behaviour of the protocol as it is used in routing devices. Capturing traffic or watching
protocol events on a router give more insight into what is actually happening on the network.

The last source is the implementation of older OSPFv2 protocol present in INET frame-
work. A large number of parts are similar in the new version of the protocol but with the
new features and changes basically the whole model had to be changed. All the three
sources combined gave a great foundation for this work.

I would assess my effort as a success. As was shown in the chapter 8, the model’s
behaviour is truly comparable to a real routing device.

There is one last step ahead of me. I have consulted future development of this project
with my supervisor, and I will add the SPF tree calculation to make this module com-
plete. We will present the project at one of the official OMNeT++ Community summits
afterwards. The project should become a permanent part of INET one day.

45

Bibliography

1]

2]

[3]

OSPFv3 Commands. [Online]. Accessed: 2016-03-02.

Retrieved from: http://www.cisco.com/c/en/us/td/docs/routers/xr12000/
software/xr12k_r4-2/routing/command/reference/b_routing cr42xri2k/
b_routing_cré42xri12k_chapter_0101.pdf

Automated Network Simulation and Analysis. [Online]. 2012. Accessed: 2015-09-20.
Retrieved from: https://ansa.omnetpp.org/

Configuring OSPFv3. [Online]. 2015. Accessed: 2016-02-10.
Retrieved from: http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/
iproute_ospf/configuration/156-mt/iro-15-mt-book.html

INET Framework. [Online]. 2016. Accessed: 2015-09-20.
Retrieved from: https://inet.omnetpp.org/

The Emulated Virtual Environment - Next Generation. [Online].. 2017. Accessed:
2017-03-25.
Retrieved from: http://www.eve-ng.net/index.php/documentation

Coltrun, R.; Fergusson, D.; Moy, J.; et al.: OSPF for IPv6. RFC. July 2008. updated
by RFCs 6845, 6860, 7503.
Retrieved from: https://tools.ietf.org/html/rfc5340

Deering, S. E.; Hinden, R. M.: Internet Protocol, Version 6 (IPv6) Specification.
RFC 2460. December 1998. updated by RFCs 5095, 5722, 5871, 6437, 6564, 6935,
6946, 7045, 7112.

Retrieved from: https://tools.ietf.org/html/rfc2460

Moy, J.: OSPF Version 2. RFC 2328. April 1998. updated by RFCs 5709, 6549, 6845,
6860, 7474.
Retrieved from: https://tools.ietf.org/html/rfc2328

Murphy, P.: The OSPF Not-So-Stubby Area (NSSA) Option. RFC 3101. January
2003.
Retrieved from: https://tools.ietf.org/html/rfc3101

Varga, A.: OMNeT++ Simulation Manual. [Online]. 2015. Accessed: 2015-09-20.
Retrieved from: https://omnetpp.org/doc/omnetpp/manual/

Cerny, B. M.: Modelovini IPv6 v prostredi OMNeT++. Master’s Thesis. 2011.
Accessed: 2016-02-10.

46

http://www.cisco.com/c/en/us/td/docs/routers/xr
https://ansa.omnetpp.org/
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/
https://inet.omnetpp.org/
http://www.eve-ng.net/index.php/documentation
https://tools.ietf.org/html/rfc5340
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2328
https://tools.ietf.org/html/rfc3101
https://omnetpp.org/doc/omnetpp/manual/

Appendices

47

Appendix A

Enclosed CD Content

/xrupri00.pdf | Electronic version of the master’s thesis in PDF.

/readme.txt Manual describing how to get this project running.

/install /* Files needed to install OMNeT++.
/tex/* Source text of the master’s thesis in .tex format.
/src/* Source files of this project.

Figure A.1: Content of the Enclosed CD

48

Appendix B

Neighbor State Machine

Hello 2-“"63“

Received N received

2-way 1-way

Start received received

Hello
Received

NegotiationDone

ExchangeDone

Loading

LoadingDone

Figure B.1: Neghbor State Machine

Neighbor states reflect the adjacency progress with a neighbor on an interface. States
Down, Attempt, Init, 2-way and ExStart are established on the basis of receiving and
sending Hello packets. The other states represent the LSDB exchange process. The first
part describes each state, the second part describes some of the transitions between states.

Down - initial neighbor state. No information about any neighbor has been received on
this interface yet.

Attempt - the interface is sending Hello packets on this interface. This state is only valid
on NBMA networks.

49

Init - Hello packet has recently been received on this interface. All neighbors in this state
are listed in the Hello packet originated on the router but the router has not seen itself
in Hello packets from neighbors. No bidirectional communication has been established
yet.

2-way - bidirectional communication has been established. The DR and BDR are elected
in this state or greater.

ExStart - adjacency is beeing created and negotiated in this state. The master and initial
DD sequence number are chosen to start the database exchange process.

Exchange - routers exchange their LSDBs in this state. The process is described in detail
in section 3.5.

Loading - LSR packets are sent to neighbor because more recent LSAs have been discov-
ered during the exchange process.

Full - in this state, two neighbors are fully adjacent. Their LSDBs are synchronised and
Hello packet is used to indicate that they are up and running.

Transitions between states in figure B.1 have names that reflect events causing state
changes. Lines between states indicate direct transition between states. Dashed lines
indicate events that may happen in more than one states but the result is a transition to a
lower state. This usually indicates some error between neighbors has occured.

Start - Hello packets should be sent to the neighbor. It has significance only for NBMA
networks.

Hello Received - a Hello packet has been received.

2-way Received - router is aware of its neighbor, because it has seen itself in Hello packet.
Bidirectional communication can be establihed.

1-way Received - router received Hello packet but cannot see itself in it.
AdjOK - a decision has to be made wheter to establish an adhjacency with the neighbor.

Negotiation Done - initial exchange information has been established. This indicates
that the exchange of databases may begin.

Exchange Done - LSDB has been successfully exchanged. Router is now aware of any
LSAs which are out-of-date and may ask for them by sending LSRs.

Loading Done - all out-of-date LSAs have been updated. Both routers now have the
same LSAs.

Inactivity Timer - no Hello packets have been received from the neighbor recently. Firing
this timer always causes transition from any state to Down state.

KillNbr - all communication with the neighbor is impossible. This causes the transition
from any state to the Down state.

LLDown - lower layer protocol indicates that the neighbor is unreachable. This causes
the transition from any state to the Down state.

50

SeqNumberMismatch - wrong DD sequence number or some options mismatch in a DD
packet is received. This causes the transition from Exchange state or greater to the
ExStart state.

BadLSReq - LSR has been received for an LSA not present in the LSDB. This causes the
transition from Exchange state or greater to the ExStart state.

51

Appendix C

Interface State Machine

nterfaceDown Loopind
Point-lo-point)«—eracetp //D:;n\f- Unloopind o

InterfaceUp

WaitTimer

BackupSeen

S = QT —
MeighborChange MeighborChange
MeighborChange

Figure C.1: Interface State Machine

Interface data structure holds information about an interface participating in OSPF
process. It contains information about authentication, timers, IP address and mask, DR
and BDR, cost and some others. The state of interface reflect the functional level of an
interface. The state machine in figure C.1 demonstrates transitions between states caused
by OSPF or other configuration changes. The states are described as follows:

Loopback - the interface is configured as loopback interface.

Down - initial interface state. No traffic is sent or received, no adjacencies are established.

52

Waiting - the router monitors Hello packets and it is trying to determine the DR and
BDR. No ellection is held until the router leaves the Waiting state.

Point-to-point - the interface is connected to either physical point-to-point interface or
a virtual link. An attempt to establish neighborship will be made by sending Hello
packets.

Calculate - only auxiliary state to determine whether the router becomes DR, BDR or a
DROther.

DROther - the interface is on a network segment, where the DR and BDR are elected,
but this router is neither.

Backup - this state indicates, that the router is the BDR on this network segment. It will
be promoted to DR in case the DR is down.

DR - this state indicates, that the router has been elected as the DR.

The transitions between states indicate events that cause a change in interface status.
Lines between states indicate direct transition between states. Dashed lines indicate events
usually caused by lower level protocols or by issuing some administration command.

InterfaceUp - network interface is operational. Transition to another state depends on
the type of network in which the interface operates.

WaitTimer - the wait timer has expired. This indicates, that the DR should be elected.

BackupSeen - a Hello packet is received, indicating the existence or non-existence of BDR.
This event signals the router, that the Waiting state is over.

NeighborChange - a change occured in the network and the DR or BDR needs to be
recalculated.

Looplnd - interface has changed to a loopback interface. This event causes the interface
to transit from any state to Loopback state.

UnLooplInd - interface is no longer a loopback interface.

InterfaceDown - indication from lower level protocols, that the interface is not working.
This event causes the interface to transit from any state to Down state.

53

Appendix D

OSPFv3 Commands

D.1 Global Configuration Mode

ip ospf name-lookup - Routers’ IDs are in the form of IP addresses. This command en-
ables the DNS lookup, therefore routers are displayed by names rather than their IDs.

router ospf - This command allows user to enter the Router Configuration Mode(D.2).
In this mode it is possible to configure the OSPF process. The process needs to be
identified by its pid.

D.2 Router Configuration Mode

area authentication - Allows user to enable authentication on a per-area basis. Two
authentication methods are available. The first is a simple password, the second is
MD?5 authentication.

area default-cost - Allows user to define a cost for default summary route sent into a
stub or NSSA areas.

area nssa - Allows user to configure an area as NSSA.

area range - Allows user to configure a summarize route for a range of IP addresses. This
command is used on ABR.

area stub - Allows user to configure an area as a stub area or a totally stubby area.
area virtual-link - Command is used to configure a virtual link.

auto-cost - Allows user to modify the reference bandwidth value used for cost calculation
on OSPF interfaces.

compatible rfc1583 - Summary route cost calculation method that was introduced in
obsolete RFC 1583 will be used.

54

D.3 Address-Family Configuration

default-information originate - The router will advertise a default route into the OSPF
domain.

default-metric - Sets a default-metric value for redistributed routes.

discard-route - Sets a discard route entry in the routing table of the ABR or ASBR. The
discard route is used to prevent routing loops.

distance ospf - Modify the administrative distance of intra-area, inter-area and external
routes. The domain tag is usually used in route maps for policy decisions or to prevent
loops when redistributing routes.

log-adjacency-changes - Allows user to send syslog messages informing about a neigh-
bour going up or down.

router-id - Set a fixed router ID.

neighbor database-filter - Allows user to filter outgoing LSAs to an OSPF neighbor. It
has similar function as the ip ospf database-filter all out command in D.4.

network area - Used to define interfaces on which OSPF runs and in which area it belongs.
If not used, the lowest loopback or interface IP address is used instead.

summary-prefix - Creates a IPv6 summary prefix for a range of IP addresses learned
from other routing protocols.

D.4 Interface Configuration Mode

ospfv3 authentication - Allows user to specify authentication method for an interface.

ospfv3 authentication-key - Sets a password used by neghboring routers to authenticate
the OSPF traffic. This option works only for simple password authentication method.

ospfv3 cost - Set a fixed cost of sending packets on an interface.

ospfv3 database-filter all out - Allows user to filter LSA on an interface. It has similar
function as the neighbor database-filter command in D.2.

ospfv3 dead-interval - Sets the value of the dead interval on an interface.

ospfv3 demand-circuit - Suppresses hello messages and LSA refresh functions on an
interface.

ospfv3 flood-reduction - LSAs will not be flooded in stable topology.
ospfv3 hello-interval - Sets the value of the hello interval on an interface.
ospfv3 mtu-ignore - Disables the MTU mismatch detection on an interface.

ospfv3 network - Allows user to configure OSPF network type(broadcast, NBMA, etc.)
on an interface.

55

ospfv3 neighbor - Static configuration of neighbors in networks without broadcast capa-
bilities.

ospfv3 priority - Sets the priority value on an interface. This value is used in the DR
and BDR election.

ospfv3 retransmit-interval - Allows user to specify the time between LSA retransmis-
sions on an interface.

ospfv3 transmit-delay - Sets an estimated time required to send a LSU on an interface.
This command is used on very low-speed links.

56

