BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
USTAV POCITACOVE GRAFIKY A MULTIMEDIi

TOOL FOR SIMULTANEOUS EDITING OF MULTIPLE
FILES WITH SUBTITLES

NASTROJ PRO SOUCASNOU EDITACI ViCE SOUBORU S TITULKY

BACHELOR'’S THESIS
BAKALARSKA PRACE

AUTHOR LUKAS CHMELO
AUTOR PRACE
SUPERVISOR Ing. TOMAS MILET, Ph.D.

VEDOUCI PRACE

BRNO 2024

BRNO | FACULTY
UNIVERSITY | OF INFORMATION
OF TECHNOLOGY | TECHNOLOGY

r

Bachelor's Thesis Assignment I

Institut: Department of Computer Graphics and Multimedia (DCGM) 156822
Student: Chmelo Lukas

Programme: Information Technology

Title: Tool for Simultaneous Editing of Multiple Subtitle Files

Category: Computer Graphics

Academic year: 2023/24

Assignment:

1. Study subtitle formats and cross-platform user interface application development. Study video
formats and ways to visualize an audio track. Explore existing subtitle editors.

2. Design an application that allows simultaneous editing of subtitles for multiple variants of the same
video (containing cuts and inserted scenes). The goal is a tool that clearly displays aligned video
tracks and subtitles and allows user to edit all subtitle files at the same time.

3. Implement the designed application so that it can be easily run on all common operating systems
(Linux, Windows, ...). The application will allow user to check spelling and to edit the timing of the

subtitles.
4. Continuously test the app and modify the design based on user feedback.

5. Review the final application, suggest future additions, publish the app and source codes and create
a demonstration video.

Literature:
» Alan V. Oppenheim, Ronald W. Schafer. Discrete-Time Signal Processing. Prentice Hall. p. 1. ISBN
0-13-216771-9. 1989.
» Diaz-Cintas, Jorge. Subtitling: theory, practice and research. The Routledge Handbook of
Translation Studies (pp.285-299). RoutledgeEditors: Carmen Millan, Francesca Bartrina. January
2012.

Requirements for the semestral defence:
A prototype able to edit multiple subtitle files with visualization of audio tracks and subititle timing. Thirty
pages of technical report.

Detailed formal requirements can be found at https://www fit.vut.cz/study/theses/

Supervisor: Milet Tomas, Ing., Ph.D.
Head of Department: ~ Cernocky Jan, prof. Dr. Ing.
Beginning of work: 1.11.2023

Submission deadline: 9.5.2024

Approval date: 15.5.2024

Faculty of Information Technology, Brno University of Technology / Bozetéchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract

The aim of this work is to create a multi-platform tool designed for simultaneous editing of
subtitle files in several video versions. The application enables simultaneous creation and
editing of subtitles for different variations of one video, which contains different cuts and
inserted scenes, thus solving a significant challenge in editing subtitles. Key features of the
app include spell checking and speech timing editing features. Another important focus of
this project is user-friendliness and cross-platform compatibility, which ensures ease of use
across common operating systems.

Abstrakt

Cielom tejto prace je vytvorit multiplatformovy nastroj uréeny na sticasni tpravu suborov
titulkov vo viacerych verzidch videa. Aplikdcia umoziuje sticasni tvorbu a tpravu titulkov
pre rézne variacie jedného videa, ktoré obsahuje rozne strihy a vlozené scény, ¢im riesi vyz-
namnu vyzvu pri uprave titulkov. Medzi kIuc¢ové funkcie aplikacie patri kontrola pravopisu
a funkcie tpravy ¢asovania re¢i. Dalsim délezitym zameranim tohto projektu je uzivatelska
privetivost a kompatibilita medzi platformami, ¢o zaistuje jednoduché pouzivanie naprie¢
beznymi opera¢nymi systémami.

Keywords

cross-platform, audio, signal, video, subtitle, subtitle editing, subtitle formats, video for-
mats, audio conversion, codec, waveform, correlation, DTW, MFCC, FFT, Javascript, ffm-
peg, Electron

Klicova slova

cross-platform, audio, signdl, video, titulky, uprava titulkov, forméty titulkov, formaty
videa, konverzia zvuku, kodek, vinova forma, korelicia, DTW, MFCC, FFT, Javascript,
ffmpeg, Electron

Reference

CHMELOQO, Lukas. Tool for simultaneous editing of multiple files with subtitles. Brno,
2024. Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Ing. Tom4as Milet, Ph.D.

Tool for simultaneous editing of multiple files with
subtitles

Declaration
I declare that I have written this bachelor’s thesis independently, under the supervision of
Mr. Tomas Milet. I have listed all the literary sources, publications, and other references
used in this thesis.

Lukas Chmelo
May 16, 2024

Acknowledgements

I would like to express my gratitude to my supervisor, Mr. Tomas Milet, who provided me
with professional assistance and guidance throughout the project.

Contents

1 Introduction 2
1.1 Overview of the application 3
1.2 State of similar solutions oo 4
2 Theory 7
2.1 Cross-platform desktop application development 7
2.2 Subtitle Formats 12
2.3 Audio Visualisation and Processing 14
2.4 Media Conversion i e 17
2.5 Speech detection in audio L Lo oL 21
2.6 Subtitle alignment L oL 22
3 Solution Design 25
3.1 Objectiveso 25
3.2 USeCases v v i i e e e e 26
3.3 Userinterface design o L 27
3.4 Tech Stack Selection 30
3.5 Application architecture design, 33
4 Implementation 35
4.1 Frontend 35
4.2 Backend e 49
4.3 Production vs development L Lo Lo 56
5 Testing 58
5.1 Test Data e 58
5.2 Compatibility testing 59
5.3 Performance Testing 61
6 Conclusion 64
6.1 Summary of Achievements 64
6.2 Challenges and Limitations 65
6.3 Future Work 65
6.4 Summaryo e 65
Bibliography 66

Chapter 1

Introduction

In today’s digital age, audiovisual content plays a crucial role in various fields such as en-
tertainment, education, and information dissemination. Subtitles serve as a key component
in making videos accessible to a wide range of audiences. However, the manual process
of aligning subtitles with the corresponding audio or video can be time-consuming and te-
dious. Addressing this problem involves developing a robust and efficient tool for automatic
subtitle alignment. The concept of automatic subtitling is relatively new, enabled by the
rise of artificial intelligence (AI). Instead of relying on AI, the implementation of this tool
leverages algorithms such as MFCC and Cross Correlation to handle the required subtitle
alignments effectively. This approach simplifies the process while still providing accurate
results.

The main motivation of this work is to simplify the editing of subtitles for videos that are
different versions of each other, meaning at least one of them contains extra scenes that the
other doesn’t. The videos contain many common parts, which implies that they will have
common subtitles. It would be very useful if these subtitles could be edited concurrently,
which is precisely what this tool does. The input video files remain unchanged, but changes
in the input subtitle files are primarily outputs of this tool. This tool explicitly allows for
creating new subtitles from scratch as well.

Simply put, the goal is to single-handedly edit multiple subtitles in one go. It may seem
straightforward, but this is no easy task as it needs to be broken down into several steps.
Firstly, the tool needs to determine what scenes one video contains that the other doesn’t,
which is done by comparing audio signals from the videos by converting video files to audio
files (.wav, wavfile), extracting MFCC (Mel-frequency cepstral coefficients), and subsequent
mutual comparison with cross-correlation of audio signals from the mentioned audio files.
Secondly, it is important to visualize these alignments for the user, which is ensured in the
user interface of this tool. Lastly, the user can concurrently edit aligned subtitles inside
this tool with the help of keyboard shortcuts designed to enhance productivity.

The theoretical foundation of this work involves various technologies and methods. For
instance, 2.1.4 and 2.1.4 explore cross-platform desktop application development frame-
works, essential for creating a user-friendly interface. The discussion of subtitle formats
such as SRT, WebVTT, and SubStation Alpha is integral, with specifics illustrated by 2.2.
Audio-visual signal processing techniques, including waveform analysis (2.3.2) and the us-
age of Wavesurfer.js (2.3.2), are crucial for the accurate synchronization of subtitles. In
addition, the application leverages powerful tools like FFmpeg for various functionalities.
This includes transcoding (2.4.4), as depicted in 2.2, and subtitle extraction (2.4.4). Au-
dio processing techniques, such as Dynamic Time Warping (DTW), Mel-frequency cepstral

coefficients (MFCC), and Fast Fourier Transform (FFT), are essential for speech-to-text
conversion (2.5.2) and are discussed in 2.6.2. The solution design chapter outlines the ap-
plication’s objectives and user interface design (3.1), supported by use cases (3.2). The
technical stack and overall architecture are detailed, as seen in 3.5 and 3.6. The implemen-
tation chapter dives into the specifics of the application’s components and modules (4.1.2),
including the video player (4.3), subtitle table (4.4), and waveform handling (4.1.7). Back-
end functionalities such as conversion and alignment (4.2.2, 4.2.3) are crucial for maintaining

subtitle synchronization across different video versions.

1.1 Overview of the application

The result of this work is an application called Subtitle Sync Editor, designed for syn-
chronizing subtitles with video content.

Subtitle Sync Editor is implemented using Electron, Vue3, JavaScript, and SCSS.
This choice ensures compatibility across multiple platforms (Windows, Linux, Mac-OS) and
provides a user-friendly graphical interface (Figure 1.1), allowing creators and translators
to easily use the tool for subtitle alignment. The alignment process utilizes two main
algorithms: cross-correlation and MFCCs, as detailed in 2.6.2.

Maids.EO1.e-subs.540p-ZASK.mkv. a
00:01:09,114 --> 00:01:1
Do you uant to be drags

Do you want to be dragged there?
> 1:09/1:06:16 R » 000/1:09:47

Duration Aligned Duration S Subtitle text

eifa human being?

Time zoom

Wave zoom

Walk 0n your own two feet. 64

Figure 1.1: Subtitle Sync Editor

The main window of the application shown in figure 1.1 is structured to enhance usabil-
ity. The video players are positioned at the top, enabling users to view the video content
and make precise adjustments to subtitle timing. Below the video players are the subtitle
tables, which provide an organized layout for managing and editing subtitle text. At the
bottom of the window, the audio waveform is displayed, facilitating accurate alignment of
subtitles with the audio track.

Further details about the user interface can be found in sections 3.3 and 4.1.4.

1.2 State of similar solutions

This section describes applications or tools that served as inspiration or competition for
the development. Research has shown that an application that directly allows simultaneous
editing of multiple subtitle files does not yet exist. Therefore, it is appropriate to discuss
applications that address the basic issues of subtitle editing in a single video file, not the
simultaneous solutions to this particular problem. The aim of the survey was also to identify
the shortcomings of similar solutions, which the final application seeks to avoid.

1.2.1 Subtitle Editor

The Subtitle Editor tool, designed for Linux, was the main inspiration for the target func-
tions and design of the final application. This tool allows the creation, editing, and position-
ing of subtitles, including setting their text, time, and length. All changes to the subtitles
are visible in the waveform window (rectangular area for speech) and are automatically dis-
played during video playback. An illustration of the Subtitle Editor application interface
can be found in figure 1.2.

0:01:14 0:01:16 0:01:18

(howling w Emo.
e Thig Wy,

0:0113493

“elephantsdream-en.sub 3¢

Num Start End Duration Text

7 0:00:52.708 0:0054.708 0:00:02.000 | don't think so. 7
You?

8 0:00.55.875 0:0057.750 0:00:01.875 I'm Ok.

9 0:00:57.875 0:01:01.875 0:00:04.000 Getup
Ermo. it's not safe here. 24

10 0:01:02750 0:01:03916 0:00:01166 Let's go 9
11 0:01:03916 0:01:05916 0:00:02.000 What's next? 12
12 0:01:05916 0:01:09.916 0:00:04.000 You'll see! 1
13 0:01:12750 0:01:14.750 0:00:02.000 (howling wind) 14

14 0:01:16791 0:01:18.791 0:00:02.000 Emo. 4
This way. 9

15 0:01:35.041 0:01:36.291 0:00:01.250 Follow me! 10
16 0:01:39.750 0:01:42750 0:00:03.000 (buzzing wires and chattery conversations) 42
17 0:0211816 0:.02:13333 0:00:01.416 Hurry Emo! 10
18 0:02:21125 0:02:23.625 0:00:02.500 (louder telephone voices) 5
19 0:02:32833 002:35333 0:00:02500 (phone ringing) 15
20 0:02:48516 0:02:50833 0:00:01.916 You're not paying attention! 28
21 0:02:51.000 0:02:54.958 0:00:03.958 |just wantto answerthe. 28

22 0:0255833 0.02:58 875 0:00:03.041 Emo, look, 10
I'mean listen 14

23 0:03:00000 00302915 0:00:02.916 You have to lear to lsten 2
24 0:03:04.000 0:03:05.875 0:00:01.875 Thisis notsome game. 2
25 00305916 00310251 0:00:04.375 You, I mean ve, 15

Figure 1.2: Subtitle Editor

Moreover, the application is not supported on newer operating systems, such as versions
of Ubuntu higher than 20.04 or other Linux distributions, which significantly limits its
availability and usability on newer hardware or updated environments. This limitation
can be a significant obstacle for users who prefer or need to use the latest technological
solutions.

1.2.2 Kapwing

Kapwing is a web tool that offers a wide range of subtitle editing features, including the
ability to customize fonts, styles, and subtitle positions. Additionally, it provides space for
collaboration and video editing tools. It’s user interface while editing subtitles is captured
in figure 1.3.

& Upload @ subtitles (EIGEMD O Comments % Settings |
<

Tansiate BB

v > M

King Viserys 1

0:02.990/ 1:00.084.

Figure 1.3: Editing subtitles in Kapwing

Despite its versatility, the tool has several limitations: it only supports the SRT format,
the free version has various restrictions, users have reported issues with video processing
and technical errors, and the video quality in the free version is low. A unique feature of
Kapwing is its focus on simultaneous editing of multiple files, which sets it apart from other
similar tools.

To use the simultaneous editing feature in Kapwing, you can simply add multiple video
and subtitle files by clicking the ,,Upload*“ button or dragging files directly into the tool’s
interface. Each file can be opened in a separate tab or window within the project. You can
switch between files and make necessary edits, such as trimming videos, adding or editing
subtitles. While working on individual files, Kapwing automatically synchronizes changes
between them, meaning that edits in one file can immediately reflect in other files if the
project’s context requires it.

Kapwing’s simultaneous editing feature allows users to work on different aspects of the
project within individual files simultaneously, but it is important to understand that this
tool does not support simultaneous creation of subtitles for multiple videos at once. In-
stead, it allows for simultaneous saving and synchronization of changes across multiple files,
meaning that once a user makes an edit in one file, these changes can automatically apply
or be reflected in other open files. This feature is very useful for efficient coordination and
updating of projects where consistency needs to be maintained across multiple documents
or media files, but unlike the final application, Kapwing does not allow direct simultaneous
editing of subtitles for multiple videos at the same time.

1.2.3 Subtitle Workshop

Subtitle Workshop is a subtitle tool that stands out for its ease of installation on Windows,
Linux, and OS X operating systems. It allows quick adjustment of subtitle duration, line
editing, and spell checking, providing users with the basic tools needed for efficient subtitle
work.

However, some users have reported that 64-bit versions of the program tend to crash
frequently, and overall the software is considered slow and prone to errors. Another sig-
nificant limitation is that Subtitle Workshop does not support the MKV format, which is
often used for high-quality video files for which subtitles are created.

In terms of subtitle editing, Subtitle Workshop’s features are similar to other tools on
the market, but this tool also lacks the ability to simultaneously edit multiple files or direct
simultaneous editing of subtitles for multiple videos at the same time.

1.2.4 Aegisub

Aegisub is a cross-platform subtitle tool that provides a wide range of features for synchro-
nizing subtitles with audio. It allows users to see real playback time, includes text styling
tools, a translation assistant, and displays a waveform, making it easier to accurately place
subtitles according to the audio recording.

However, Aegisub can be complex for users without experience, as its interface and
functionalities require a certain level of technical knowledge. Additionally, this tool does
not support direct saving in the SRT format when certain features are used, which can be
limiting for users who need this standard subtitle format.

Furthermore, Aegisub does not natively process multiple video files or subtitle files
simultaneously within the same project.

Chapter 2

Theory

2.1 Cross-platform desktop application development

The development of desktop applications that operate across multiple operating systems
presents unique challenges and opportunities for software engineers. This section aims to
provide a foundational understanding of desktop applications, some of the key consider-
ations in their cross-platform development, various frameworks and tools that enable the
creation of robust, efficient, and versatile desktop applications that are compatible with
Windows, macOS, Linux, and other platforms. The approaches and methodologies dis-
cussed here are inspired by insights from Paresh Kapuriya’s article about desktop applica-
tion development [6].

2.1.1 Desktop application and cross-platform application

Based on definition in the article by V2 Cloud [16], a desktop application is a dedicated
software program designed to run on a standalone computer, enabling end-users to exe-
cute specific tasks. This application uses hardware resources of a computer to perform its
functionality and is specifically designed to operate on a particular operating system.

On the other hand a cross-platform or multiplatform software is a type of application
that works on various operating systems or devices, which are often called platforms as
mentioned in article [17].

Common examples of desktop applications include Microsoft Office, Slack, VLC Media
Player, Adobe Reader, WhatsApp, and WPS Office. To use these applications, downloading
and installing them from their official website is required.

2.1.2 Desktop application development basics

The process known as desktop application development refers to the creation of software
intended for use on desktop or laptop computers. Key considerations in this process include:

e Intended functionality of the application
o Target operating system

o Technology stack used

What is the intended functionality of the application

Desktop applications differ widely in terms of features, functionalities, and complexities.
For instance, a gaming application requires a specific set of features designed for interactive
entertainment. On the other hand, business-oriented applications might require custom
features that fulfill organizational needs, such as the diverse functionalities provided by the
Microsoft Office suite.

What is the target operating system

The development of desktop applications can vary significantly based on the operating
system. Different operating systems like Linux, Windows, and macOS may require distinct
technology stacks and coding structures. Additionally, compatibility with various libraries
that may be essential for the application’s functionality also needs to be ensured across
these platforms. The development framework chosen is crucial as it should allow for easy
adaptation to meet safety, security, and user experience needs across all intended platforms.

Use of programming languages

A variety of programming languages are available for the development of desktop appli-
cations. Common choices include HTML/CSS, Java, Python, C#, C++, Ruby, PHP,
JavaScript, and TypeScript. The selection of programming languages typically depends
on the specific requirements of the project and the developer’s familiarity with the tech-
nologies. Moreover, modern frameworks like Xamarin and Qt offer extensive libraries and
tools that support a broad range of languages and simplify the cross-platform development
process.

2.1.3 Types of desktop software

Desktop software can be broadly categorized into several types, each serving distinct pur-
poses and user needs. Understanding these categories is crucial for developers as it helps
in choosing the right tools and approaches for development. Below are the primary types
of desktop software commonly encountered.

Conventional application

Conventional desktop application software is developed to assist users in carrying out spe-
cific, diverse tasks effectively. Examples of application software include photo editing tools,
accounting programs, workflow management applications, and multimedia players. These
applications are designed to facilitate day-to-day tasks by providing functional solutions
tailored to the user’s needs.

Programming software

Programming software serves as a fundamental tool for developers, enabling them to create,
test, debug, and maintain various software applications. This category includes integrated
development environments (IDEs) like Visual Studio, IntelliJ] IDEA, and Eclipse, which
support various programming languages including Swift, C+-+, and PHP.

System software

System software is essential for managing computer hardware and provides a base for ap-
plication software to function. It includes operating systems such as Linux, macOS, and
Windows, which act as the intermediary layers between computer hardware and user ap-
plications, enabling the smooth execution of programs.

Browsers

Desktop browsers are applications used to navigate the internet. Common examples include
Safari, Chrome, and Firefox, which allow users to access and interact with web content
seamlessly. Although primarily associated with web development, desktop browsers also
play a significant role in desktop application development, which is particularly evident in
frameworks like Electron, as discussed in 2.1.4, where web technologies are utilized to build
desktop applications.

2.1.4 Top development frameworks

The following frameworks provide a range of options for developers looking to build robust
desktop applications tailored to specific operating environments and user needs. Each has
its strengths and is chosen based on the requirements of the development project and the
target audience.

Electron

Electron' is a leading framework for creating cross-platform desktop applications using
web technologies like HTML, CSS, and JavaScript. It is renowned for its ability to inte-
grate seamlessly across different operating systems and provides features such as automated
updates, crash reporting, and a robust distribution system.

Technical advantages of using electron.js:

1. Process Model - Electron’s process model, derived from Chromium?, adopts a multi-
process architecture where the main process functions similar to a backend in web
development, managing core app functions and lifecycle. Renderer processes, on the
other hand, acts like frontend, managing the user interface and user interactions,
similar to web pages in a browser, each window in Electron runs its content in an
isolated renderer process, managed by a central main process.

2. Context Isolation — Context isolation in Electron is a security feature that pre-
vents scripts running in the renderer process from accessing Electron’s internal APIs
directly. This is similar to keeping users in their own secure, private space online,
where they can’t accidentally stumble into areas where they could cause damage. For
example, without context isolation, a script on a web page could potentially access
and manipulate the Electron APIs, leading to security vulnerabilities. With con-
text isolation enabled, the webpage scripts and Electron’s internal scripts operate
in separate environments, communicating only through controlled channels like the
contextBridge, which safely exposes specific functionalities to the web page.

ntroduction to electron - https://www.electronjs.org/docs/latest/
2Chromium - https://www.chromium.org/chromium-projects/

https://www.electronjs.org/docs/latest/
https://www.chromium.org/chromium-projects/

3. Inter-Process Communication (IPC) — In Electron, IPC is the mechanism that
allows the render processes (frontend) and the main process (backend) to communi-
cate, similar to how a client-side script (frontend) in a web application communicates
with a server (backend). This is essential for actions that require access to deeper
system functionalities from the render process, which are restricted for security rea-
sons. For instance, if a render process needs to access files from the system, it sends a
message to the main process using IPC, which then performs the action and returns
the result.

Tauri

Tauri stands out as a versatile framework suitable for developing secure and efficient ap-
plications across major operating systems. It is a highly composable toolkit designed for
creating desktop applications by using both Rust tools and web technologies like HTML,
rendered in a Webview’. Unlike traditional frameworks that may include heavy runtimes,
Tauri builds compile directly from Rust, as mentioned in Tauri’s documentation®. This
significantly reduces the app size because it uses the system’s native Webview instead of
creating a separate runtime. This approach enhances performance and reduces the binary
size, making the reverse engineering of Tauri apps a non-trivial task due to the compilation
to native code.

Core Architecture of Tauri:

e Core Components — The Tauri crate is at the heart of Tauri’s architecture, inte-
grating runtimes, utilities, and APIs. It manages the application’s configuration via
tauri.conf. json, and handles system interactions and updates.

e Runtimes and Utilities — Tauri-runtime serves as the intermediary layer between
Tauri and various webview libraries, ensuring seamless integration and communica-
tion. Additionally, Tauri-macros and Tauri-utils provide essential tools for creat-
ing macros and parsing configuration files, ensuring efficient asset management and
setup.

¢ Bundling and Tooling — Tauri includes a robust bundler that automatically detects
and builds applications for the targeted platform. Its command-line tools, available
in both Rust and JavaScript, streamline the development process and easily integrate
into existing workflows.

Comparison of Tauri with Electron:

1. Process Model — Similar to Electron, described in 2.1.4, Tauri uses a multi-process
architecture, but is optimized for efficiency by using the system’s native Webview and
not including a heavy runtime. This design significantly reduces resource consumption
and application size.

2. Security — Tauri enhances security by minimizing the surface area for attacks through
its architectural design and by leveraging Rust’s inherent safety features. On the other

$Webview - https://tauri.app/v1/references/webview-versions/
4Tauri Architecture - https://tauri.app/vi/references/architecture/

10

https://tauri.app/v1/references/webview-versions/
https://tauri.app/v1/references/architecture/

hand, Electron relies on Node. js and Chromium, which may increase vulnerability due
to their broader codebases.

3. Inter-Process Communication (IPC) — Tauri also supports IPC, described in 3,
which enables secure and structured communication between the Webview (frontend)
and the Rust-based backend. This setup ensures that system interactions are handled
securely, respecting the application’s integrity and security constraints.

Tauri’s approach to application development, focusing on security, efficiency, and in-
tegration, offers a compelling alternative to Electron, especially for projects where binary
size, performance, and security are of greatest importance.

Qt

Qt is a comprehensive framework designed for developing multi-platform desktop appli-
cations. It provides a broad range of tools and libraries that allow developers to deploy
applications across various operating systems and embedded systems. Built primarily on
C++, Qt offers both user interface (UI) and non-UI components.

As mentioned in Qt documentation [13], it supports the development of Ul-driven appli-
cations through its extensive set of widgets and QML, a declarative language that enables
sophisticated user interface layout with smooth animations and dynamic properties. It ab-
stracts many platform-specific details, allowing code to be written once and deployed on
multiple operating systems.

Challenges in Multi-platform Desktop Development with Qt:

1. Complexity of Deployment — Configuring and managing dependencies for different
operating systems can be complex, with each platform having its unique requirements
and limitations.

2. UI Consistency — Ensuring that the user interface appears and functions identically
on all platforms can be challenging due to differences in native Ul components and
aesthetics.

3. Learning Curve — Qt uses C++, which may present a steeper learning curve com-
pared to other high-level languages. The extensive nature of the Qt framework also
demands a significant investment in learning its diverse functionalities.

4. License Constraints — Qt offers both open-source and commercial licenses. For
commercial usage, licensing fees might be a consideration, particularly for startups
and smaller companies.

Qt remains a popular choice for developers and aims to create robust cross-platform
desktop applications, thanks to its comprehensive set of development tools and extensive
library support. However, the challenges associated with multi-platform development, such
as deployment complexity and ensuring UI consistency, require careful planning and exper-
tise.

11

2.2 Subtitle Formats

This section, inspired by Emil Nikkhah’s article on Subtitle file formats: The most used
and when to choose each one [8], introduces various subtitle formats used in video applica-
tions, providing a technical overview and discussing their relevance in modern multimedia
environments.

2.2.1 SubRip (SRT) Format

The most well-known and widely used subtitle format is the SubRip File Format (SRT).
This format does not provide any styling or positioning adjustments inherently; however,
various multimedia players such as VLC allow simple styling or formatting of .srt files
using HTML tags like bold (), italics (), underline, and color. It is supported by most
media players and several social platforms like Facebook and YouTube.

1
00:00:00,160 --> 00:00:06,200
Hello there!

2
00:00:06,600 --> 00:00:07,100
General Grievous.

Listing 2.2.1: Example of WebVTT subtitle format

In SRT format, subtitles have a straightforward structure, where each block contains:
e A serial number.

e Timecode, which marks start and end times in the format hh:mm:ss,ms.

e Text of the subtitle.

e Empty line between following dialogue blocks.

This format was chosen for its prevalence and simplicity, making it ideal for widespread
use and accessibility across various platforms. Further discussion on SRT files is provided
by authors Dick C.A. Bulterman, Jack Jansen, among others [3].

2.2.2 WebVTT Format (.vtt)

WebVTT (Web Video Text Tracks) is a modern subtitle format designed for the web,
introduced with HTML5 to work alongside audio and video elements. This format offers
comprehensive styling and positioning capabilities, which enhances the display of captions
or subtitles to create more accessible and engaging multimedia experiences. Unlike the
simpler SRT format, WebVTT allows for detailed formatting such as text color, font, and
size adjustments directly in the captions as can be seen on listing 2.2.2.

12

WEBVTT

1
00:00:01.000 --> 00:00:04.000

<v Roger style="color:#ebebeb; font-size:16px;">Welcome to our presentation!</v>

00:00:05.000 --> 00:00:10.000
<v Amy style="color:#00ff00; font-size:14px; font-style:italic;">Thank you for joining us today.</v>

3

00:00:11.000 --> 00:00:16.000

<v Sam style="color:#ff0000; font-size:20px; font-weight:bold;">Let's dive into the details.</v>
General Grievous.

Listing 2.2.2: Example of WebVTT subtitle format

WebVTT is widely supported across all major web browsers, including Google Chrome,
Morzilla Firefox, and Safari. It is especially used by online video platforms like YouTube
and Vimeo, becasue it is able to handle complex interactions and styles. Its robust features
also make multimedia content better for viewers who are deaf or hard of hearing.

2.2.3 EBU-STL

EBU-STL is extensively used among broadcast channels and Video On Demand (VOD)
services. This format allows encoding of subtitles, but it also imposes many rules on the
customization of character numbers, colors, and positions. It is adaptable across various
video formats, and is employed by the BBC and other major TV channels, making it ideal
for broadcast companies and professionals due to its versatility beyond the limitations of
the SRT format.

2.2.4 SubStation Alpha (SSA)

SubStation Alpha, or SSA, is an advanced subtitle format that offers extensive control
over text parameters including font formatting, color, height, transparency, and placement.
It is particularly popular within the anime community for its ability to create detailed,
animated subtitles and lyrics for karaoke videos. Its more advanced version, ASS (Advanced
SubStation Alpha), includes additional graphic and text features.

2.2.5 Timed Text Markup Language (TTML)

Timed Text Markup Language (TTML) is widely used by the television, broadcast, and
VOD industry. Known for its high customizability, TTML excels in encoding and transpos-
ing text data into live video and audio streams, making it a prime choice for professional
media environments that demand precise synchronization and detailed text formatting.

2.2.6 SUB

The SUB format is commonly utilized due to its straightforward approach, linking subtitles
by frame number rather than time. This can lead to synchronization issues if the frame rate
of the subtitle does not match the video. Unlike SRT, SUB offers no additional configuration
options or support for advanced text effects, making it less reliable but very simple to use
for basic subtitle needs.

13

2.3 Audio Visualisation and Processing

Audio visualization and processing involve the techniques and technologies used to visually
represent and manipulate audio signals. This section explores key aspects of audio visualiza-
tion, including waveform representation, and introduces algorithms, tools, and frameworks
that facilitate audio processing. Most of the following information is based on the book
Continuous and Discrete Time Signals and Systems [11].

2.3.1 Audio signal

Signals are crucial detectable quantities used to convey information about time-varying
physical phenomena [11]. Mathematically, signals are modeled as functions of one or more
independent variables, such as time, frequency, or spatial coordinates. This mathematical
representation is fundamental in various fields of engineering, where signals play a pivotal
role in system functionality.

In audio technology, signals represent sound waves captured over time, with time acting
as the primary independent variable. Audio recording systems convert sound waves into
electrical waveforms 2.3.2 which can be stored on various media such as magnetic tapes or
digital discs, for example, by the waveform y(¢), which might be sinusoidal.

Signals can be classified based on how they are defined over time. A continuous-time
(CT) signal is defined for all values of the independent variable, typically time (¢). On the
other hand, discrete-time (DT) signals are defined only at discrete points in time. These
signals are sampled at specific intervals, which means they only provide signal values at
those distinct time points. Audio signals are typically CT signals because they represent
sound waves that vary continuously over time and have known magnitudes at every instant.
DT signals are still essential in audio signal processing where continuous signals must be
converted into a form that computers can handle.

2.3.2 Waveform Visualization

A waveform is a visual representation of an audio or electrical signal that charts the am-
plitude, or strength of a signal, over time, as defined in [15]. This type of visualization is
crucial for understanding the dynamics and structure of an audio track.

The WAV file format 2.4.3, known for its uncompressed and high-quality audio output,
is often used for waveform analysis because it preserves the original sound without any loss,
providing a true representation of the audio’s amplitude variations [4].

WaveSurfer.js

WaveSurfer.js® is a versatile tool for creating interactive waveforms directly in the web
browser. It is particularly useful in applications developed with web technologies, such
as projects using Electron as mentioned in 2.1.4, where it can be integrated to provide
real-time audio waveform visualization.

WaveSurfer.js works by creating a canvas element and drawing the waveform on it.
The waveform is generated by the Web Audio API®, which is a high-level JavaScript API
for processing and synthesizing audio in web applications. The API is built around the
concept of an audio context, which represents a set of audio modules that are connected

SWaveSurfer - https://wavesurfer.xyz/
5Web Audio API - https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API

14

https://wavesurfer.xyz/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API

together to process and generate sound. The audio context is created by instantiating the
AudioContext object, which is the main entry point to the API. The audio context is used
to create audio nodes, which are objects that represent audio sources, audio destinations,
and audio processing modules. The audio nodes are connected together to form an audio
graph, which represents the flow of audio data through the system. The audio graph is
then processed by the audio context to generate sound.

Web Audio API uses some audio processing algorithms to analyze audio data such as
FFT to analyze audio data and DFT to convert it to frequency domain, which will be
described in the next section.

One of the key features of WaveSurfer.js is its high customizability. It allows developers
to overlay HTML elements over the waveform at specific playback times, enhancing the
interactivity and visual appeal of the waveform display. This makes it possible to implement
custom controls, markers, and other interactive elements that improve user engagement and
provide additional context to the audio being played.

2.3.3 Audio Signal Processing

Audio signal processing is a critical domain in digital signal processing that primarily deals
with the manipulation and analysis of audio signals through digital methods. As discussed
earlier, signals can be continuous or discrete in nature, and the transformations used in
audio processing take these characteristics into account to perform various operations.

Discrete-Time Fourier Transform (DTFT)

The DTFT offers a means to represent discrete-time signals in the frequency domain. For a
discrete-time sequence x[k], the DTFT, denoted as X (w), maps it into a continuous function

in the frequency domain:
[0.9]

X(w) = Z x[n]e=74m (2.1)

n=—oo

Breakdown of variables of equation 2.1:
o X(w) is the DTFT of the sequence z[n].
o w is the frequency variable (radians per sample).
e 1 is the time index, ranging over all integers.
e j is the imaginary unit (/—1).

The transformation is particularly useful in analyzing the spectral components of a signal
but poses computational challenges due to its continuous nature, making it less suitable for
direct implementation on digital systems.

Discrete Fourier Transform (DFT)

The DFT addresses some of the computational challenges of the DTFT by discretizing the
frequency domain. It transforms a sequence of N complex numbers into another sequence
of N complex numbers, ideal for digital computations. The frequencies in DFT are given

15

by Q =2nr/M for r =0,1,..., M — 1, where M is typically the length of the time-limited
sequence z[k] in following equation 2.2.

X[k = Y aln)e I K hn (2.2)

The problem with this algorithm is its speed, which is not ideal, especially when the
length of the input signal is longer. Time complexity of the algorithm is quadratic O(n?),
which is considered a relatively slow algorithm.

Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) addresses performance concerns inherent in the Discrete
Fourier Transform (DFT). Essentially, the FFT is a more efficient version of the DFT that
significantly increases the speed of the algorithm, even for shorter signals.

Comparative Computational Complexity of DFT and FFT

106} —®— DFT-O(N"2)
—— FFT - O(N log N)

=
o
O

=
o
r

103 L

Computational Complexity

102}

0 200 400 600 800 1000
Number of Data Points (N)

Figure 2.1: DFT vs FFT

The FFT is an algorithm that efficiently computes the DFT of a sequence, reducing the
computational complexity to logarithmic O(M log M) as shown in 2.1. This significant re-
duction makes the FFT invaluable in digital signal processing for tasks such as convolution,
correlation, and spectral analysis. The FF'T is particularly advantageous in audio signal
processing where large data sets are common, and timely processing is crucial.

The formula for the FFT is the same as for DFT, however, the process of the FFT
involves breaking down the DFT into smaller DFTs of subsequences, typically exploiting
symmetries and periodicities in the calculation process. The Cooley-Tukey algorithm is the
most common FFT algorithm, which recursively divides the DFT into smaller DFTs. The
elements of the input signal are divided into smaller parts, specifically by the parity of the
index. This means the input array of elements is split into two arrays of size N/2 (where
N is the size of the input signal). These arrays are then further divided into smaller arrays
based on the same criteria, continuing until arrays of size 1 are achieved. Ultimately, the
DFT of each smaller array is recursively computed up to the final result of the Fourier

16

transformation of the input signal. This method utilizes the periodicity and symmetry of
the complex exponential function, further discussed in Discrete-time Signal Processing [10].

2.4 Media Conversion

The process of media conversion is fundamental to managing and distributing digital content
efficiently. It involves transforming multimedia files from one format to another, ensuring
compatibility with various devices and platforms while maintaining quality. This section
explores the essential components of media conversion, including codecs, video and audio
formats, and the powerful functionalities offered by FFMPEG. Understanding these elements is
crucial for optimizing the performance and usability of multimedia applications, particularly
in scenarios involving large volumes of data and diverse user requirements.

2.4.1 Codecs and Encoding

Codecs are media compression technologies used for shrinking media files to sizes suitable
for streaming and storage. This process is essential for content distributors handling large
files. The term codec is an abbreviation for coder-decoder or compressor-decompressor,
which applies algorithms to condense media into smaller versions, ensuring both delivery
and storage.

The most commonly used media codec for video is H.264 or Advanced Video Coding
(AVC) and for audio Advanced Audio Coding (AAC). These codecs, such as H.264/AVC and
H.265/HEVC, often have dual names because they were standardized by both the Moving
Picture Experts Group (MPEG) and the International Telecommunication Union (ITU).
Streaming codec expert Jan Ozer clarifies in his webinar [12] that this naming convention is
typical for codecs recognized by multiple standards organizations, and it similarly applies
to the Versatile Video Coding (VVC), also known as H.266.

2.4.2 Video Formats

A video file format is a type of file format for storing digital video data on a computer
system. Video is almost always stored in compressed form to reduce the file size. A video
file normally consists of a container (e.g. in the Matroska format) containing video data in a
video coding format (e.g. VP9) alongside audio data in an audio coding format (e.g. Opus).
The container can also contain synchronization information, subtitles, and metadata such
as title etc. A video format specifies how to store the video and audio streams, metadata,
and other, often optional, elements [5].

Several video formats are widely used today, each with its own advantages depending
on the use case. In artice [2] Adobe highlights some of the most popular video formats that
are commonly used in professional and consumer environments:

« MP4 (MPEG-4 Part 14) — Widely used for streaming over the internet due to its
high compression and quality ratio.

e MOV — Developed by Apple, preferred for high-quality video editing due to its flex-
ibility in encoding options.

e AVI (Audio Video Interleave) — Introduced by Microsoft, known for less com-
pression, resulting in larger file sizes but higher quality.

17

e WMV (Windows Media Video) — Often used for streaming applications within
the Windows ecosystem.

o FLV (Flash Video) - Primarily used for embedded video on the web, although less
common since the decline of Adobe Flash.

e AVCHD (Advanced Video Coding High Definition) — Utilized primarily for
digital recording and playback of high-definition video.

Each format serves distinct purposes and is chosen based on criteria such as compati-
bility, quality requirements, and distribution needs.

2.4.3 Audio Formats

An audio file format is a file format for storing digital audio data on a computer system.
The format may be containerized, where each file holds multiple different types of data
streams, or non-containerized, consisting of a single data stream in a format like WAV or
MP3. Audio formats can be uncompressed, lossless, or compressed with lossy compression
[4].

Several audio formats are widely recognized for their effectiveness in various applica-
tions, particularly in professional and consumer audio environments:

e WAYV — Known for its uncompressed high-quality audio output, ideal for professional
recording and editing.

« MP3 — Highly popular for its balance of quality and file size, making it a standard
choice for digital music distribution.

e AAC — Superior in compression and quality to MP3, commonly used for streaming
and in devices like smartphones.

e FLAC — A lossless audio format that provides high-quality sound without any loss,
perfect for audiophiles who require pristine audio.

e ALAC - Apple’s version of FLAC, used primarily within its ecosystem to deliver
lossless audio.

These formats are selected based on their specific attributes such as sound quality, file
size, and compatibility with playback devices [1].

24.4 FFMPEG

FFMPEG is a versatile tool used widely in the multimedia field for its powerful media
processing capabilities. Its functionality spans various aspects of media handling, including
reading from numerous input sources, filtering, and transcoding to multiple output formats.
Below is a structured explanation adapted from the official FFMPEG documentation”.

FFMPEG functions as a universal media converter, capable of handling a wide array of
media types, from regular files to live input sources such as network streams or recording
devices. This robust tool reads input through the -i option and outputs via a straightfor-
ward URL format. Any command-line input not recognized as an option is treated as an
output URL.

"FFMPEG - https://ffmpeg.org/ffmpeg.html

18

https://ffmpeg.org/ffmpeg.html

The software can process multiple input and output files simultaneously, supporting
various stream types within each file, such as video, audio, subtitles, and data. The format
of the container may limit the number of streams or types it can handle. Stream selection
for the outputs can be automatic or manually controlled through the -map option. File and
stream indices are used to reference inputs in command-line options, which are zero-based
(e.g., the first file is indexed as 0).

Ordering of options is crucial, as they apply sequentially to the next specified file. Global
options, like verbosity settings, are exceptions and should be specified at the beginning.

Transcoding Process

|
| input | demuxer | encoded data | decoder
| file | --------- > | packets | ----- +
|| | |
v
| |
| decoded |
| frames |
|
- - |
\ | | | |
| output | <-------- | encoded data | <----+
| file | muxer | packets | encoder

Figure 2.2: FFMPEG Transcoding process

The transcoding workflow as shown in Figure 2.2 involves several key steps, each using
different components of the FFMPEG architecture:

e Demuxing — Initially, FFMPEG invokes the libavformat library to demux input files
and extract packets of encoded data. This step is critical when handling multiple input
files to maintain synchronization, which is achieved by tracking the lowest timestamp
across active streams.

e Decoding — Encoded packets are then sent to the decoder. Depending on the user’s
selection, the stream may either be decoded or passed through via stream copying.
The decoder’s output is uncompressed frames (video, PCM audio, etc.).

o Filtering — Post-decoding, frames can be further processed through various filters,
which modify or enhance the content before encoding.

e Encoding — The processed frames are re-encoded into the desired output format,
creating new packets of encoded data.

e Muxing — Finally, these packets are sent to the muxer, which writes them to the
output file, completing the transcoding process.

19

Example usages of FFMPEG

FFMPEG offers a multitude of command-line options for various media processing tasks.
Here are some fundamental examples, including video format conversion, audio extraction,
audio embedding, and frame rate modification.

[ffmpeg -i input.avi -codec:v 1ibx264 -codec:a aac output.mp4]

Listing 2.4.1: Convert a video from one format to another(AVI to MP4)

Command shown in listing 2.4.1 reads the AVI file (input.avi), re-encodes the video
using the H.264 video codec (1ibx264) and the audio using the AAC audio codec, and then
writes the output to an MP4 file (output.mp4).

[ffmpeg -i input.mp4 -vn -codec:a libmp3lame output.mp3]

Listing 2.4.2: Extract audio stream from a video file and save as MP3

Command shown in listing 2.4.2 extracts the audio stream from a video file (input .mp4)
and saves it as an MP3 file (output.mp3). The -vn option is used to skip the video
processing, and libmp3lame specifies the MP3 encoder.

ffmpeg -i video.mp4 -i audio.mp3 -codec:v copy -codec:a aac -strict experimental output.mp4d]

Listing 2.4.3: Embed an audio file into a video file

Command shown in listing 2.4.3 embeds (or muxes) an audio file into a video file,
replacing any existing audio. This command takes a video file (video.mp4) and an audio
file (audio.mp3) and combines them into one output file (output.mp4), encoding the audio
to AAC. The video stream is copied directly without re-encoding (-codec:v copy).

[ffmpeg -i input.mp4 -filter:v fps=fps=30 output.mp4]

Listing 2.4.4: Change the frame rate of a video file

Command shown in listing 2.4.4 changes the frame rate of a video file. This example
sets the frame rate of the output video (output.mp4) to 30 frames per second using the
fps filter.

Embedding subtitles to video

FFMPEG also provides a command that combines video and subtitle files into a single
output with the subtitles encoded in a format compatible with most media players. After
creating or editing subtitles, this functionality allows for the seamless integration of the
subtitles with the video, ensuring that they can be displayed correctly across a wide range
of devices and media players.

20

ffmpeg -i inputFilePath -i subtitleFilePath -c copy -c:s mov_text -map O -map 1 outputFilePath]

Listing 2.4.5: Embedding subtitles to video using ffmpeg

Here is a breakdown of parameters used in listing command 2.4.5:

e -i inputFilePath specifies the path to the input video file.
e -i subtitleFilePath specifies the path to the subtitle file.

o -c copy instructs FFMPEG to copy all the streams (video, audio, etc.) from the
input files without re-encoding them.

e -c:s mov_text sets the codec for the subtitle stream. Here, mov_text is used, which
is a common format for MP4 files.

o -map O and -map 1 are used to map all streams from the first input file (video and
possibly audio) and the subtitle stream from the second input file to the output file.

e outputFilePath is the path where the output file will be saved.

Extracting subtitles from video

Extracting subtitles from a video is a straightforward task efficiently managed by FFMPEG.
This process is essential, particularly when compared to embedding subtitles, as it allows
for further editing or modification of the subtitles separately from the video content.

ffmpeg -i inputFilePath -map 0:s:0 -c:s srt outputFilePath]

Listing 2.4.6: Extracting subtitles from video using ffmpeg

Here is a breakdown of parameters used in listing command 2.4.6:

e -i inputFilePath specifies the video file from which to extract the subtitles.

e -map 0:s:0 selects the first subtitle stream from the first file. Here, 0:s:0 indicates
the first (0th) input file, subtitles streams (s), and the first subtitle stream in the list

(0).

e -c:s srt specifies the codec for the subtitle, which in this case is srt or SubRip
subtitle format.

e outputFilePath is the path where the extracted subtitle file will be saved, typically
with an .srt extension.

2.5 Speech detection in audio

This section, inspired by article [9], explores techniques for speech detection by detecting
loud sections and converting speech to text in audio, so that creation of subtitles becomes
simpler. By identifying loud sections it can be estimated where some potential conversations
might occur, which helps to pinpoint where subtitles might be needed. Meanwhile, speech-
to-text technology can nearly automate subtitle generation by transcribing spoken words
into text.

21

2.5.1 Loud Section Detection

Detecting loud sections in audio involves identifying parts of an audio signal where the
volume exceeds a predefined threshold. This technique is crucial for applications like
broadcasting and audio mixing, where maintaining audio levels within certain limits is
necessary for quality control and regulatory compliance. Machine learning models, such as
those reviewed in the Detection and Classification of Acoustic Scenes and Events (DCASE)
competitions, often utilize features like Mel-Frequency Cepstral Coefficients (MFCC) and
spectrograms to classify and analyze different sound events, including loudness anomalies.

2.5.2 Speech to Text

Speech-to-text technology converts spoken language into written text using advanced al-
gorithms, primarily deep learning models like Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs). This technology is integral to services such as
real-time captioning, voice-driven search, and virtual assistants. The effectiveness of these
systems often depends on the quality and diversity of the training data, which helps the
model understand various phonetics, accents, and dialects.

2.6 Subtitle alignment

When working with multiple video files that are variations of each other (they include extra
scenes or cutouts), aligning their audio waveforms for accurate subtitle creation is essential.
This section suggests methods on how this can be done.

2.6.1 Text-based alignment

Using previously mentioned speech-to-text technology in 2.5.2, it can simplify the process
of aligning subtitles across two or more video files. This method involves converting the
speech from each video into text and then using algorithms to compare and synchronize
the text based on similarities and timing.

Even without speech-to-text technology, this approach can still be effective if an editor
has already begun creating subtitles manually. In such cases, the existing subtitles can be
used as a base for further alignment and synchronization.

2.6.2 Signal-based alignment

Apart from using speech-to-text technology, there are other methods for aligning subtitles
without relying on transcription. Signal-based alignment involves analyzing the audio sig-
nals of the videos to synchronize subtitles. This method can be particularly useful when
speech-to-text technology is not viable due to language barriers, audio quality, or the com-
plexity of implementing such technology. Signal-based approaches might include techniques
like cross-correlation of audio waveforms or DTW, which will be discussed in further.

Cross Correlation

Cross correlation is a method used to measure the similarity between two signals by cal-
culating the similarity of two series as a function of the displacement of one relative to
the other. It involves comparing one signal to another to detect the presence of similar

22

features or patterns. This technique is often referred to as sliding dot product or sliding
inner-product.

Given two finite-length sequences z[n| and y[n|, where n ranges from 0 to N — 1 (as-
suming both sequences are of equal length for simplicity), the cross-correlation rs,[m] at
lag m is defined as follows:

N—-1-m
- Yomeo xn+m]-yn] form >0 (2.3)
Teylm] = :
w SN gn] - yln —m] for m < 0

Breakdown of variables of equation 2.3:

e ryy[m] represents the cross-correlation of sequences x and y at shift m.

o x[n + m] is the (n + m)-th element of sequence x, and y[n] is the n-th element of
sequence y for m > 0.

e For m < 0, the roles of z and y are effectively reversed with an adjustment to the
indices to maintain alignment.

e The sums are adjusted depending on the lag to ensure that the indices do not exceed
the bounds of the sequences.

Cross-correlation, as implemented by the MATLAB function xcorr(x, y), computes
the similarity between two discrete-time sequences, x and y. This function calculates the
degree of overlap between x and various shifted (lagged) versions of y, producing a series
of values that measure the similarity at each shift. This is crucial for identifying the time
delay between the signals, helping to determine how one sequence is displaced or shifts
behind the other.

DTW

Dynamic Time Warping (DTW) is a non-linear algorithm crucial for aligning sequences that
vary in time or speed. Originally developed for speech recognition, DTW has expanded into
fields like robotics and meteorology due to its robustness in time series classification (TSC).
Its adaptability across different domains underscores its significance and versatility as one
of the most competitive algorithms in TSC.

Given two time series, @) and C, with lengths n and m respectively shown here 2.4:

Q={q,q0,. ...} C={ci,c2,...,cm} (2.4)

DTW aligns these series by constructing a matrix D(n,m), where each element D(%, j)
denotes the Euclidean distance squared between ¢; and c;:

ED (gi,c;) = (¢i — ¢)° (2.5)

The algorithm seeks a warping path W that minimizes the total distance across the matrix
while adhering to boundary, continuity, and monotonicity constraints. This path begins at
D(1,1) and ends at D(n,m), ensuring that the sequences are aligned from start to finish
without reducing the path’s length. The optimal path is the one that minimizes the sum
of these squared distances, calculated using dynamic programming:

D(i,j5) =d(gi,cj) + min(D(: — 1,5 —1),D(i — 1,5),D(4,j — 1)) (2.6)

23

MFCC

Mel-frequency cepstral coefficients (MFCC) capture the frequency spectrum of sound using
various algorithms and adjustments to best simulate the functioning of the human ear and
the subsequent processing of the signal by the brain. This method allows for efficiently
capturing important aspects of sound in a smaller number of values (coefficients), ideally
carrying the same amount of information as the original signal, which aids in various speech
recognition applications. One step in extracting MFCC coefficients involves converting the
frequency scale to the so-called Mel scale, which better reflects how humans can distinguish
differences in various frequencies (the human ear has higher resolution at lower frequencies
than at higher ones). The formula for converting hertz to mels is:

+ 700

In equation 2.7 the Mel frequency scale takes on a logarithmic form, with the formula
taken from the work of authors K. Sreenivasa Rao and Manjunath K.E. [14]. Originally
created for automatic speaker recognition, today they are also used in music information
retrieval, as noted by the author M. Miiller in ,,Information Retrieval for Music and Motion“
[7]-

fuer = 2595 logy <1 f) (2.7)

24

Chapter 3

Solution Design

This chapter includes set objectives and all tasks necessary to achieve these objectives. It
explains how to apply the algorithms, technologies and other resources outlined in Chapter
2 to address the problem introduced in the thesis’ introduction.

3.1 Objectives

In order to establish objectives, it is essential to consider the user’s needs. Primarily, the
user wants to comfortably input data (videos and subtitles), be able to edit the inputted
data, have displayed immediate outputs with changes in multiple files at once after editing
and be able to save these outputs, while also ensuring that all background and foreground
processes are completed as quickly as possible.

e Cross-platform Compatibility — Utilize the cross-platform development tools out-
lined in Section 2.1 to ensure the application functions seamlessly across different
operating systems.

e Rich Features — Design the application to enable users to efficiently edit multiple
subtitle files concurrently across various video versions, enhancing productivity and
streamlining the editing process.

e Open Source — Develop an engaging project that encourages contributions from the
community. This involves writing readable code and integrating popular frameworks
to foster collaboration.

o User Experience — Design a user interface that is attractive and responsive, drawing
on the best features of existing popular applications. The interface should be intuitive,
enhanced with tool-tips, icons, and animations to facilitate user interaction.

e Performance — The application should ensure high efficiency and responsiveness
even when handling complex tasks, allowing users to execute multiple operations
simultaneously without noticeable delays.

e Tech Support — Develop comprehensive educational materials, including technical
documentation and video tutorials, to support developers and end-users in using and
understanding the software effectively.

From the objectives above, the following tasks can be extracted to achieve them:

25

1. Define use cases — The project requires defining use cases to prioritize the develop-
ment of the mentioned rich features.

2. Design user interface — In order to achieve the best user experience a user interface
must be designed and implemented.

3. Technology stack selection — Choosing the appropriate technology stack is critical
for ensuring cross-platform compatibility.

4. Design application architecture — Designing the application architecture is essen-
tial to maintain high performance in processing complex tasks.

5. Implementation — Implement designed user interface and implement the application
following the designed architecture.

6. Create tutorials — Finally, creating support and educational materials is a crucial
task to help both developers and end-users understand and effectively use the software.

These tasks collectively lay the groundwork for a robust and user-friendly software
application that aligns with the outlined objectives. The following sections focus on the
design tasks(1-4) from these tasks.

3.2 Use cases

This section is dedicated to identifying key features that are critical for the user to effectively
manage input data, ensuring a smooth workflow. These features will enable users to make
the necessary changes easily, leading to the desired output data. The focus on these essential
functionalities is aiming to enhance the user’s overall experience and efficiency.

QOpen video)
w- Extract subtitles
Open subtitles

Editfadd/delete
e | Concurrent edit

subtitles

(>
video

Figure 3.1: Use Case Diagram

26

Figure 3.1 shows use cases for the central actor, user, who engages in various actions
related to subtitle management in video files:

e Open video — Opens a file dialog from which the user can select video file. Supported
video formats include MP4 and MKYV.

o Open subtitles — Also opens a file dialog from which the user can select subtitle file.
Supported subtitle formats include SRT and VTT.

o Extract subtitles — Alternative to opening subtitles, when a video is opened and
there are embedded subtitles within the video file. This allows for direct manipulation
of existing subtitles without the need for separate subtitle files.

o Edit/add/delete subtitles — After gaining access to the subtitles, users have the
flexibility to directly alter the text in the subtitle files, including the ability to add
new subtitles or remove existing ones as needed. Editing will also include spell-check,
which will work by highlighting any

e Re-time subtitles — The process of re-timing subtitles is essential for synchronizing
the text with the corresponding video, ensuring that the subtitles appear at appro-
priate moments in alignment with the audio and visual elements.

o Align subtitles — Works by using advanced algorithms to locate segments of audio
from one video file (beneath the subtitles) and match them with audio from another
video file. This capability facilitates precise synchronization between two different
video sources, each with their own subtitles.

e Concurrent edit — Following the alignment of subtitles and their corresponding
audio tracks, this feature enables simultaneous editing of both subtitle files. This ap-
proach allows for cohesive updates and modifications across the two videos, enhancing
efficiency and accuracy in subtitle editing

¢ Save subtitles — Allows users to save their edited subtitles in formats SRT and VIT
for subsequent use or distribution.

« Ebmed subtitles to video — The opposite of extracting; this function embeds the
edited subtitles back into the video, merging them permanently without the need for
separate subtitle files.

The features above are aiming to cater to the user’s primary tasks, such as inputting
data, editing content, and managing outputs efficiently.

3.3 User interface design

This section focuses on the design of the user interface, which is crucial for achieving
efficient interaction between the user and the software. The user interface needs to be able
to support all features mentioned in section 3.2. Also, as mentioned in 3.1, the ultimate goal
is to create an environment where users can achieve their objectives effortlessly, enhancing
their overall experience with the software.

27

3.3.1 Loaded state

Figure 3.2 illustrates the initial design of the application’s user interface in a scenario where
two video files and their corresponding subtitle files are open. The design prominently
features video players at the top, with subtitle tables below each and audio waveforms
further down, providing a comprehensive view of both the visual and textual content. The
central video player, along with its accompanying subtitle table and waveform, serves a
critical role in highlighting differences between the subtitles and audio signals. This central
component was intended to make it evident which subtitles were absent or additional in
either of the files.

» —e

00:03:20 00:04:54 Hello Tom! 00:03:20 00:04:54 Hello Tom! 00:03:20 00:04:54 Hello Tom!
00:06:05 00:07:39 Hey Adam. 00:06:05 00:07:39 Hey Adam 00:06:05 00:07:39 Hey Adam.
00:08:30 00:10:55 How was your day? 00:08:30 00:10:55 How was your day? 00:08:30 00:10:55 How was your day?
00:11:25 00:1239 It was good, yours? 00:1125 00:12:39 It was good, yours? 00:11:25 00:12:39 It was good, yours?
00:1304 0015:09 Itwas ok.
00:15:24 00:17:31 Actually, It was horrible. 00:13:04 00:14:11 Actually, It was horrible. 00:13:04 00:14:11 Actually, It was horrible.
00:19:04 00:21:19 Oh, I am sorry to hear that. 00:15:34 00:17:19 Oh, | am sorry to hear that 00:15:34 00:17:19 Oh, | am sorry to hear that.
00:22:11 00:23:59 That's fine.
00:24:28 00:26:07 Lets play video games. Lets play video games. 00:24:28 00:26:07 Lets play video games.
00:27:41 00:29:38 Thatis an awesome idea. 0 2 jea 00:27:41 00:29:38 That is an awesome idea.
00:27:41 : What do you want to play? ou want to play? 00:27:41 00:29:38 What do you want to play?
Lets play minecraft. 0 Lets play minecraft. 00:30:11 0031:58 Lets play minecraft.
Let me think...
Sure, ok lets play that. 00:35:41 Sure, ok lets play that 00:35:41 00:37:38 Sure, ok lets play that.

Actually it was horrible. Oh, 1 am sorry to hear that

T -

Actually it was horrible. Oh, 1 am sorry to hear that

m Actually it was horrible. Oh, 1 am sorry to hear that

Figure 3.2: UI design - loaded state

This layout also proposed an innovative feature for merging the two videos and their
subtitles into a single file, which could be done by buttons with double arrows located
on the waveform and at the edges of the subtitle tables. However, as detailed in section
4.1, the final user interface design underwent significant changes. The central comparison
component was removed to simplify the interface and avoid potential confusion among
users, as merging subtitles was not a primary function. This adjustment led to a more
straightforward method of displaying comparisons, which aligned better with the user’s
needs and simplified the front-end implementation.

Despite these changes, the foundational structure of the user interface remained largely
intact. The revised design still incorporates the core components initially planned—video
players, subtitle tables, and waveforms—maintaining the essence of the original layout while
enhancing usability and clarity for the end users.

28

3.3.2 Opening states

Figure 3.3 shows the same application layout but in scenarios where not all necessary files
for aligning subtitles are opened.

Open subtitles Create subtitles

Figure 3.3: Ul design - opening states

In the first scenario, shown on the left, only one video file is open. Users can open an
existing subtitle file by clicking on the Open subtitles button, or they can start creating
subtitles from scratch by selecting the Create subtitles button on the left panel of the
application. Additionally, another video file can be opened by using the Open video button
on the right panel.

The second scenario, depicted on the right, demonstrates what occurs when a subtitle
file is loaded under its corresponding video. In this setup, the subtitles appear within the
waveform display as editable regions. These regions can be moved around, allowing users
to adjust the timing of the subtitles directly on the waveform. This visual representation
helps in easily seeing and modifying the timing of subtitles to ensure they match the video’s
audio track.

3.3.3 Components

This subsection will break it down the user interface into components in order to fully
address all functionalities of the user interface, which are supposed to support all features
mentioned in section 3.2.

Video player

File
manager

< Content __’9

container

Subtitle table

Waveform

controls

Figure 3.4: Ul design - components

29

Figure 3.4 provides a detailed breakdown of the user interface, where each component is
clearly identified using arrows and labels in green. Below is an overview of these components
and their specific roles within the application:

e Video player — This component is essential for video playback. If no video is loaded,
it displays a button that prompts the user to open a video via the file manager
component. This ensures that users can easily load and play videos directly from the
interface.

« Subtitle table — Displays all loaded subtitles and allows for comprehensive editing
actions such as adding, deleting, splitting, merging, and duplicating subtitles. It
also facilitates setting playback to match the selected subtitle. When no subtitle
file is loaded, it too displays a button that directs users to open subtitles using the
file manager component, mirroring the functionality of the video player. Keyboard
shortcuts, detailed in 4.1.6, enhance usability by speeding up common tasks.

e« Content container — Acts as a wrapper for the subtitle table and video player,
integrating both components to synchronize video playback with the active subtitles,
enhancing the viewing and editing experience.

o File manager — Features a button with a popup menu that lists recently opened
files for quick access or allows the opening of new files. This component is crucial for
managing file input and provides a streamlined way to access and load content.

e Waveform — Visualizes audio tracks from videos as waveforms and overlays subtitles
as interactive regions within these waveforms. These regions update reactively based
on changes in the subtitle table and can be manipulated directly for aligning or
deleting subtitles. Additionally, users can re-time subtitles by adjusting the edges of
these regions. Clicking on the waveform itself brings up a menu that offers options
to add a subtitle at the clicked time or to reload the waveform, facilitating precise
adjustments.

e« Waveform Controls — Includes tools to zoom in and out of the waveform timeline
and adjust the vertical scale of the waveforms. These controls are vital for detailed
editing and navigating within the audio track, allowing users to fine-tune how they
view and interact with audio and subtitle data.

This structured breakdown ensures that each component’s function is clearly under-
stood, promoting efficient interaction with the software and supporting the complex task
of video and subtitle editing.

3.4 Tech Stack Selection

This section justifies the selected technologies and their suitability for developing a compre-
hensive tool for subtitle editing and video management, ensuring optimal performance and
user experience across various platforms. The technologies chosen are shown in figure 3.5
below.

30

Frontend

Wavesurfer Vite Vue 3 SASS
Backend
ﬁ/ d
+ 4+ nede
@®
FFmpeg Electron Node js

Development

O+@+:—_-—‘ +@

GitHub Eslint Prettier WebStorm

Figure 3.5: Technology stack

3.4.1 Frontend

e Electron — Electron 2.1.4 provides a framework for creating native applications using

web technologies, which is ideal for this project as it allows the development of cross-
platform desktop applications from a single codebase. This capability ensures that
our application can operate seamlessly on Windows, macOS, and Linux, thereby
broadening user accessibility and simplifying deployment.

Vue.js and Vite — Vue.js is a progressive JavaScript framework designed for building
user interfaces, and when combined with Vite, a modern front-end build tool, it
enhances the application’s responsiveness. This setup is particularly effective for
managing dynamic Ul elements like live subtitle editing and video playback controls,
enabling quick updates and smooth interactions.

Wavesurfer.js — As mentioned in 2.3.2, this customizable waveform audio visualiza-
tion library allows for the visual representation of sound, essential for editing subtitles
in sync with audio cues. Its ability to integrate directly with the user interface ensures
a practical tool for precise audio track manipulations.

SASS — As a powerful CSS preprocessor, SASS simplifies the management of complex
stylesheets with features like variables, nested rules, and mixins, making the Ul styling
more maintainable and easier to develop.

3.4.2 Backend

¢ Node.js — Node.js serves as the backend framework, providing a robust environment

for executing JavaScript code outside of a browser. This choice supports efficient

31

handling of file operations and processing tasks which are crucial for video and subtitle
manipulation.

e FFmpeg — FFmpeg 2.4.4 is indispensable for any video processing tool, offering
comprehensive capabilities to record, convert, and stream audio and video. It plays
a critical role in the application for processing videos and extracting audio tracks
necessary for subtitle synchronization.

e Subtitle — A dedicated library for managing subtitle files, facilitating easy parsing,
modifying, and writing of subtitles across various formats. This tool simplifies the
core functionality of editing and aligning subtitles within the application.

3.4.3 Development

e GitHub — GitHub hosts the central repository for source code management and ver-
sion control. It provides collaborative features essential for open-source development,
allowing multiple developers to contribute effectively.

o ESLint — This tool aids in identifying and reporting on patterns found in ECMAScrip-
t/JavaScript code, making it possible to fix problems before they affect the applica-
tion’s functionality or cause developer conflicts.

e Prettier — Prettier is an opinionated code formatter that enforces a consistent style
by parsing code and re-printing it with its own rules, thus enhancing the readability
and maintainability of the source code.

3.4.4 Connecting frontend with backend

Communication between the frontend and backend is facilitated through Electron’s TPC
(Inter-Process Communication) mechanism as mentioned in 3. The ipcMain module in
Electron’s main process is used to handle incoming messages and commands from the
renderer process (the frontend), which operates within the application’s windows. Tasks
that require more intensive processing or access to Node.js capabilities, such as file system
operations or external command execution (e.g., using FFmpeg for video processing), are
managed by the ipcMain.

On the frontend side, the ipcRenderer module is used within the Vue.js application to
send messages and requests to the ipcMain. This allows the frontend to remain responsive
and offload heavier tasks to the backend without freezing the user interface. It’s an effective
way to keep the user experience smooth, especially during resource-intensive operations.

3.4.5 Building and deployment

The building and deployment process of the application is meticulously structured to ensure
an efficient and reliable setup. The process revolves around several key components that
interact to create a robust system capable of handling both the user interface and the
application’s backend logic.

Firstly, the build process initiates with Vite, which compiles the Vue. js application.
Vite’s role is crucial as it bundles all the frontend assets efficiently, resulting in a highly
optimized build. This build is output to the dist folder, which serves as the root for all
compiled assets. The contents of this folder include the HTML, CSS, and JavaScript files
that have been optimized and minified for production.

32

Electron’s main script, typically named index.js or main. js, plays a pivotal role in
bootstrapping the application. This script is responsible for creating and managing applica-
tion windows and handling system-level interactions. It loads the contents of the dist folder
to display the user interface, effectively turning the web application built with Vue. js into
a native desktop application.

The final deployment of the application involves packaging the Electron application
with all its dependencies into an executable file for Windows, macOS, or Linux. Tools
such as Electron Builder or Electron Packager are typically used for this purpose, allowing
developers to create a standalone application that users can install and run on their devices.

3.5 Application architecture design
This section sketches the foundational design of the application’s architecture, illustrating
the integration and functionality of individual processes within the application. This ex-

planation includes the flow of data, the responsibilities of each component, and how they
interact to maintain application state and functionality.

3.5.1 Application Processes Schema

User Interface

4
Ac Subfitles
[File Manager }—{ Video Player]: ”m:[Subtitle Table “ WaveForm }

Updates

l — Decode audio

Save Session Get Session

Align Sublitle]

Get Files Save File l
Wa

Correlate signals Subtities.

Find
algined subtities

Files Cache E\

Session

Figure 3.6: Application Schema

Figure 3.6 showcases the roles and interactions of application processes across three
primary layers — User Interface, Backend, and Application Data Layer.

The application uses a session. json file to persistently store all data required by both
the backend and the user interface. This JSON file is central to the application’s ability
to maintain its state across sessions. Data within this file is updated with each session

33

change and is reloaded every time the application is launched. This mechanism not only
preserves the state after the application is closed but also enables functionalities such as
undo (Ctrl+Z) and redo (Ctrl+Y) by keeping track of historical states. Moreover, the user
interface is designed to be dynamically updated by the backend via notifications to reload
the session data when significant updates are made and stored in session. json .

The FileManagement component of the application leverages a files. json file to effi-
ciently manage and cache data regarding all loaded video and subtitle files. This caching
mechanism significantly speeds up the reopening of files by providing quick access through
the recent files list within the FileManager component.

For handling audio, the application utilizes a dedicated cache directory to store wav files,
which are generated from the video files using ffmpeg when a video is first opened in the
VideoPlayer component. These audio files are then accessed by the WaveForm component,
which relies on wavesurfer. js for rendering the audio waveforms visually.

The subtitle alignment process is initiated when the user selects a subtitle that acts
as the reference for synchronization. The selected subtitle’s corresponding audio segment,
defined by its start and end times, is fetched from the cached wav file. This segment is
then used by the backend to correlate with other audio signals to determine the optimal
alignment. Lastly, the process compares all parsed audio segments from all of the subtitles
to verify their alignment relative to the reference subtitle. Once alignment is confirmed, the
adjusted subtitles are saved back into the session. json file. The frontend is subsequently
notified to reload the session data to reflect these updates.

3.5.2 Application data synchronisation

In the frontend, several pieces of data need to be shared and updated globally among
components to ensure proper reactivity and synchronization:

e Video file — This is used to reference the current video file across the FileManager
and VideoPlayer components, enabling seamless file management and playback in-
teraction.

e Subtitle file — Shared between the FileManager and SubtitleTable, this ensures
that the currently loaded subtitles are accessible and can be displayed or edited as
needed.

o Playback time — This critical piece of data is shared among VideoPlayer, SubtitleTable,

and WaveForm to accurately align the video playback with the displayed subtitles and
waveform visualization.

e Subtitles — The full list of subtitles is shared between the SubtitleTable and
WaveForm to facilitate the display of subtitles on the waveform for easier editing
and synchronization.

e Active subtitle — Shared between SubtitleTable and VideoPlayer, this data helps
in highlighting the currently active subtitle within the video playback, enhancing the
user’s editing and viewing experience.

34

Chapter 4

Implementation

This chapter focuses on key and most challenging parts of implementation of the frontend
and backend. Lastly it provides a analysis of project directory where files of frontend and
backend are differentiated.

4.1 Frontend

This section breaks down key components and other modules of the user interface involving
challenging parts of implementation. The final version of the user interface is slightly
different than the designed version due to several factors. Throughout the development
process, new ideas and feedback from initial user testing influenced modifications to the
original design. Additionally, practical considerations such as improved usability, better
workflow integration, and technical constraints led to further refinements. These changes
were implemented to enhance the overall user experience, ensuring the application is both
functional and intuitive.

4.1.1 Components and modules

The diagram shown in Figure 4.1 provides a comprehensive visualization of the various
components and their dependencies within a the project, which was built using Vue.js.
This graph was generated using Vue Developer Tools, a popular tool for inspecting and
debugging Vue applications. Here’s a detailed breakdown of the graph’s elements and their
interactions:

e« Vue Components — Represented by green nodes, these are the primary building
blocks of the Vue application. Each component defines its template, logic, and styling,
encapsulating functionality in a modular way.

e Javascript modules — Shown in dark blue nodes, these files are probably used for
utility functions, event handling, or service logic.

e Styling Files — Yellow and pink nodes represent styling files which define the visual
aspect of the application. The SCSS files (colors.scss, common.scss) allow for use
of variables, nested rules, and other features not available in plain CSS (style.css).

o Utility and Framework Scripts — Nodes like vuetify. js show the use of Vuetify,
a Vue Ul library with a collection of pre-made components that adhere to Material

35

~—_

_ActionMenuue

FleMahager.vue
) / Vigéoridyerue ‘.

| SubtitigPreview.vue

ActighBtn.vue
AN

|
,,,c‘omentg ntainef.vue
) /

/
MenuPgpup Ve
| N
[

‘ . pd

T~ [
‘ colors.scss
clientjs,
/ //
// O
WaveFormyue / ol

// style.css
/ AN /
N \ /

N » //
Menu.vye AN a4
\ .‘ /|
T < mainjs
\ WaveContainer.vue S N

\ App.Jue

/
Y / vuetifyjs
/ \

float js

v
o

‘ i‘ common.scss

LoaderSpinner.vue
ErrorBox.vue

Figure 4.1: Modules’s Graph

Design principles. This is indicated by a light blue node, which is linked to other
components to provide consistent Ul elements across the application.

e Data and Session Management — Shown with orange nodes, these are crucial for
handling configuration and maintaining session state (session.json), essential for
data persistence across user sessions.

The lines connecting these nodes illustrate the dependencies and data flow between com-
ponents and scripts, indicating a well-structured frontend architecture where components
are modular but interconnected, where main. js functions as the entry point initializing
the Vue instance and other global settings and App.vue acts as the root component from
which other components are derived. The arrows depict dependencies, starting from the
parent node (where the arrow originates) and pointing to the child node (where it ends).
This shows how components like ContentContainer.vue and LoaderSpinner.vue are in-
tegrated into App.vue. The widespread use of helpers.js across various components is
indicated by multiple incoming arrows, which highlights its role in providing utility func-
tions throughout most of the application.

4.1.2 Central Module Integration

The file main. js serves as the entry point for a Vue.js application, playing a crucial role in
the initial setup and configuration of the entire application. This central script is responsible
for several foundational tasks crucial for the robust functioning of the application.

36

The primary function of main. js is to create the root Vue instance. This involves
importing the Vue library and other essential libraries that enhance Vue’s capabilities, such
as Vuex for state management or Vue Router for seamless navigation between views. It
also binds the root component, App.vue, to an element in the HTML. This root component
acts as the container for the entire application, with all other components nested within it.

Integrating various plugins and libraries into the application is also done in main. js. For
instance, Ul libraries like Vuetify are initialized here to ensure they are available throughout
the application. This file is where global components are registered, making them accessible
in any part of the application without the need for individual imports in each component.

a)

import { createApp, reactive } from 'vue'

import './style.css'

import App from './App.vue'

import apiService from '@/utilities/client.js'
import vuetify from './plugins/vuetify'

import { PerfectScrollbarPlugin } from 'vue3-perfect-scrollbar'
import 'vue3-perfect-scrollbar/style.css'

import 'vuetify/dist/vuetify.min.css'

import '@mdi/font/css/materialdesignicons.min.css'
import './css/colors.scss'

import './css/common.scss'

const app = createApp(App)

const globalError = reactive({ message: '' })

const globalload = reactive({ message: '' })

const globalUpdate = reactive({ targets: [1, stuck: false })

// Use Vuetify instance here
app.use(vuetify)
app.use (PerfectScrollbarPlugin)

app.config.globalProperties.$apiService = apiService
app.config.globalProperties.$error = globalError
app.config.globalProperties.$loading = globalLoad
app.config.globalProperties.$update = globalUpdate

app.mount ('#app')

Listing 4.1.1: Central module - main. js

The script shown in listing 4.1.1 begins by importing the necessary modules and CSS
for the Vue application. The code sets up global reactive states globalError, globalLoad,
and globalUpdate, which are used for managing errors, loading states, and updates that
cannot use the usual reactivity system due to performance concerns. These states are then
assigned to Vue’s global properties to be accessible throughout the application. Variable
globalError is watched to display error pop-ups across the application, which helps in
centralizing error management and displaying messages whenever an error occurs in any
part of the application. Variable globalLoad is monitored to show loading overlays with
progress circles. It is particularly useful in user interface feedback for operations that take
a significant amount of time. Last global variable globalUpdate is a stack-like structure
for updating parts of the application that cannot utilize Vue’s reactivity system directly
due to performance reasons. Instead, specific functions within certain components watch
this state and make updates accordingly. Last line app.mount (’#app’) ensures that the
application is mounted to the DOM element with the ID ’app’.

37

4.1.3 Session module

This module serves as a comprehensive session management system within the application,
particularly designed to handle dynamic user interactions that frequently modify session
data. This module ensures the persistence and reversible modification of session data, which
is crucial due to editing and real-time content manipulation.

Module Operation

The module initializes by setting up a reactive session object using Vue’s ref, which holds
the session’s current state including identifiers, timestamps, media file details, and historical
data for undo and redo actions. This initial setup is populated with blank data which will
later be replaced upon loading actual session data from the backend.

Session Loading and Saving

Upon component mounting, indicated by the onMounted hook, the module calls the load
function to fetch existing session data from the backend. This function attempts to retrieve
a session JSON file and populates the session state with its contents. If no existing data is
found, a new session with a unique ID and timestamp is initialized and immediately saved
using $apiService.sendMessage(’save-session’) to ensure that a valid session state is
always present.

Monitoring Changes and Saving Session Data

The module uses Vue’s watch to monitor changes to session.value. Whenever a change
occurs, the module compares the new session data against the last session snapshot stored in
lastSession. If differences are found, and they are not due to keys listed in keyBlacklist
(which are ignored to prevent excessive saves), the new state is serialized and pushed into the
appropriate history stack (undo or redo) and saved back to the backend. This mechanism
ensures that every significant change is captured and can be reversed if necessary.

Undo and Redo Functionality

The undo and redo mechanisms are fundamental features of this module. They allow
the user to navigate through their change history, either reverting to a previous state or
reapplying changes they have rolled back. When an undo or redo operation is executed, it
triggers a notification to update specific parts of the application by pushing 'undo-redo’ into
$update.targets. This informs other components that a major data change has occurred,
allowing the application to react and update accordingly.

38

Session data

r

}

"data": [
{
llidll . nn .
"sync": true,
"videoFile": "C:/Users/user/example.mkv",
"subtitleFile": "C:/Users/user/example.srt",

1,

{3

1,

"history": {
"undoList": [J,
"redoList": []

}

"subtitleRows": [],
"offset": 43264.000000000124,
"offsetMs": 43264.000000000124

Listing 4.1.2: Session data structure

Breaking down the session data structure in listing 4.1.2 can provide insight into the data
that the application uses and what application logic is build for it:

1. Data — This array holds objects each representing a media content container. Each
container includes:

id — A unique identifier for each content set, useful for tracking and managing
multiple files.

sync — A boolean indicating whether the subtitle has been successfully synchro-
nized with the video.

videoFile and subtitleFile — Paths to the video and subtitle files, respec-
tively.

subtitleRows — An array of subtitle entries, each containing timing and text
data.

offset and offsetMs — The amount of time (in milliseconds) by which subtitles
have been shifted to achieve synchronization.

2. History — Manages the undo and redo functionalities:

e undoList and redoList — Arrays that store historical states of the application

data, enabling users to revert or reapply changes made during the editing process.

It is important to note that not all data used by the application is saved in this structure
due to too many frequent updates like for example the current playback time of the video.

4.1.4 App

The App component serves as the main hub of the application, acting as the parent for
all other components. It is essential for integrating various parts of the system, such as
ContentContainers and WaveContainer, creating a cohesive user interface. This layout is
effectively illustrated in figure 4.2 which showcases how the App component organizes the
view into distinct sections for content management and waveform display.

39

Figure 4.2: Application base layout

Handling Updates

Within the App component, there is a sophisticated mechanism for handling updates across
the application, particularly those related to subtitle management. These updates are intri-
cately linked with session management functionalities like undo, redo, and load operations
managed by session.js. Subtitle updates, due to their complexity, are often batched and
pushed to $update.targets. This system allows for handling multiple updates at once,
ensuring that all components remain in sync. Detailed handling of these updates can be
referenced in 4.1.7. If concurrent editing features are enabled, the component ensures that
updates affecting one subtitle are also applied to other synchronized subtitles, maintaining
consistency across the platform.

4.1.5 Video Player

This component is designed to manage and display video content along with its associated
subtitles. It renders the video on the right side of the interface and features a scrollbar for
previewing subtitles in SRT format, showing how they will appear once saved as can be
seen in figure 4.3. The video player inherits standard controls from the HTML <video>
element, which include play, pause, seek, and volume control, allowing users to interact
with the video directly within the UI.

Maids.E01.e-subs.540p-ZASK. mkv a
A 0:01:09,114 —> 00:01:10,883

Do you want to be dragged there?

2
80:01:15,933 --> 00:01:18,132
Unless you want to betreated like a bag...

You people... 3

> 2:37/1:06:16 X &3 H 00:01:18,132 --> 00:01:20,315

walk on your own two feet.

Figure 4.3: Video Player
In addition to video playback, the component supports file management operations

through embedded controls. Users can open a new video file, embed subtitles directly
into the video, or close the current video file. These functions are facilitated through an

40

ActionMenu component that dynamically updates its items based on the state of the video
file and the presence of subtitles. For instance, the save action becomes available only
when both a video file and subtitles are loaded and the subtitles are ready to be embedded.
This ensures that users only see relevant options, streamlining the interface and preventing
errors. Additionally, the edit action allows users to change the current video file if one is
already loaded, or open a new file if none is present. Similarly, the close action is enabled
when a video file is open, providing a quick way to clear the current session.

Upon video play, the component emits an update event update:time to synchronize
the current time across all components within the application that require this data. This
ensures that all related components are aware of the current video time.

Currently playing subtitle

The currently playing subtitle is displayed in an overlay style directly on the video, which
dynamically adjusts based on user interaction and video playback status. The styling and
animation are carefully designed to enhance readability and user experience. Listing 4.1.3
contains the CSS and the conditions under which the style changes.

e D
<style scoped>
.subtitle-overlay {
position: absolute;
bottom: 4rem;
z-index: 99;
width: 100%;
transition: transform ease 0.2s;
}
.subtitle-overlay-content {
color: white;
background: rgba(50, 50, 50, 0.9);
margin: auto;
padding: O.lrem O.5rem;
border-radius: 0.b5rem;
font-size: 0.85rem;
}
</style>

Listing 4.1.3: Subtitle overlay styling

The .subtitle-overlay class in listing 4.1.3 defines the positioning and basic appear-
ance of the subtitle overlay, ensuring it is placed at a consistent location above the video
controls. The overlay content is styled to ensure the text is legible against potentially vary-
ing video backgrounds. The transition for the transform property is defined to smooth out
the movement of the subtitle text, which translates vertically based on whether the video
controls are being interacted with.

4.1.6 Subtitle Table

The SubtitleTable component, as visualized, provides a user-friendly layout designed for
managing subtitle files effectively. It features a structured table format that displays various
attributes of subtitle entries, enabling easy editing and manipulation of subtitle data. It is
perhaps the most important component, because user will be editing subtitles here.

Figure 4.4 showcases how the SubtitleTable component looks like inside the applica-
tion.

41

| Maids.E01.e-subs.540p-ZASKsrt ||+

Aligned Duration CPS Subtitle text
240s 17.51 Can you still call yourselfa human being?
1.93s 7.27 You are right.
403s 497 We... are not human.
1365 Get your head on straight.
4725 You too are no longer a human,but a servant.
330s No... no.
218s - You're wrong!- No, you're wrong!
549s You, too, are a servant now.
455s You are no longer a human being.
232s 7 [Episode 1]
1.69s Today, it is hydrangea flowers.
595s 9.25 I don't know how he finds a differentflower every day.
1.21s Did you look into it?

Figure 4.4: Subtitle Table

Component Layout

The header of the table is laid out horizontally and includes columns such as Aligned,
Duration, CPS (Characters Per Second), and Subtitle text. FEach header column is
dynamically set to display a title unless it’s reserved for action buttons, offering a clear
indicator of the data below it. Below the headers, the body of the table is wrapped in
a perfect-scrollbar component, ensuring smooth scrolling even with a large number
of subtitle entries. This scrollable area contains rows, each corresponding to a subtitle
segment.

Fach row presents individual subtitle data, aligning with the headers above. Special
icons are used to indicate whether a subtitle is properly aligned (green check for yes, red
cross for no). Duration and CPS are calculated and displayed dynamically, with CPS values
colorized based on certain criteria to provide visual feedback about subtitle pacing. The
Subtitle text field in each row is editable, allowing for direct modifications. This input
is styled to take up the full width of its column when the header is Subtitle text.

Active Subtitle

The active subtitle is highlighted in blue, making it visually distinct in the interface. It is
automatically selected when a user interacts with a corresponding section on the Waveform
component, as detailed in 4.1.7. When aligned and concurrent editing is enabled, this active
status is synchronized across other subtitle tables.

For the active subtitle, specific action buttons are presented under the actions header.
These buttons facilitate operations such as splitting the subtitle, merging it with others,
inserting a new subtitle immediately after, and deleting it. Equipped with tooltips, each
button provides clear guidance and is designed to perform its respective action upon being
clicked. This setup is essential for efficient subtitle editing, allowing direct manipulation of
subtitles through the table interface, as further supported by keyboard shortcuts described
in 4.1.6.

Keyboard Shortcuts

The component also supports various keyboard shortcuts to enhance productivity and ease
of use. The handleMultipleKeyCombinations function is designed to respond to specific

42

Figure 4.5: Wave Container

keyboard inputs, providing shortcuts for common actions. For instance, arrow keys are
used to navigate between subtitles, with additional functionality when combined with the
Ctrl key to jump to the beginning or end of the list. Other shortcuts include the Q key to
play from the active subtitle, Enter to select a subtitle, and D along with Shift to duplicate
a subtitle. Splitting a subtitle can be achieved by pressing S with Shift, and pressing Insert
adds a new subtitle after the active one.

4.1.7 Wave Form

The WaveForm component is a crucial display tool for managing audio and subtitle synchro-
nization within this video editing software. It utilizes the wavesurfer. js library, as intro-
duced in 2.3.2, to display audio waveforms from video files. This component also employs
the regions plugin from wavesurfer.js to visualize subtitles, enabling users to interact
directly with the audio timeline to re-time, add, or delete subtitle entries. The waveforms
of multiple videos are shown simultaneously, providing a comprehensive overview of the
audio and subtitle synchronization, as illustrated in figure 4.5. They are all wrapped in a
component called WaveContainer, which handles concurrent scrolling, time zoom and wave
zoom. Concurrent scrolling is later broken down in 4.1.7.

Rendering and performance

When it comes to rendering, the WaveForm displays a progress circle during processing to
indicate that data is being loaded or adjusted. The waves of the waveform are generated
into the wavesurfer. js’s canvas from audio data extracted using ffmpeg on the backend
and are stored in a cache directory. This cached data is accessed via a URL path, allowing
for efficient loading and rendering of the waveforms in the user interface.

As mentioned in 4.1.2, there is a globalUpdate variable, which is used for parts of the
application that cannot utilize Vue’s reactivity system directly due to performance reasons.
One of these parts is rendering of the subtitles on the WaveForm, so this variable is watched
as shown in listing 4.1.4.

43

const handleSubtitleUpdates = () => {
const { name, target, idx } = $update.targets[$update.targets.length - 1]

if (idx !== props.idx) return
let region = null
if (target && target.id && target.id !== -1)
region = wsRegions.value.regions.find(region => region && region.subld === target.id)

switch (name) {
case 'subtitles':
updateRegionsFromSubtitles()
break
case 'subtitle-update':
updateRegion(target, region)
break
case 'subtitle-delete':
if (region) {
region.remove ()
delete wsRegions.value.regions[wsRegions.value.regions.index0f (region)]
}
break
case 'subtitle-add':
addRegion(target)
break
default:
break
}
$update.targets.pop()
}
watch (
() => $update.targets,
O ={
if (!$update.targets.length) return
if ($update.targets[$update.targets.length - 1] === 'undo-redo') {
updateRegionsFromSubtitles ()
if (props.idx === Array.from(document.getElementsByClassName('waveform')).length - 1)
$update.targets = []
} else {
handleSubtitleUpdates ()
}
},
{ deep: true },
)

Listing 4.1.4: Handling subtitle updates

The handleSubtitleUpdates function in listing 4.1.4 is triggered by a watcher on the
$update.targets array, which stores details about which subtitles need updating. This
function specifically checks the last item in the $update.targets array to determine the
nature of the update required:

o Update single subtitle — If a single subtitle’s details have changed, method updateRegion
is called to update just that specific region (or subtitle segment) on the waveform.
This is more efficient than redrawing all subtitles because it only addresses the changed
element.

o Update all Subtitles - Method updateRegionsFromSubtitles re-renders all subti-
tle regions on the waveform. It’s used when a more comprehensive update is necessary,
such as after undoing or redoing changes, which might affect multiple subtitles.

e Delete subtitle — If a subtitle is to be removed, the corresponding region is identified
and deleted from the waveform display. This also involves cleaning up the internal

44

array that tracks these regions, ensuring that the application’s state remains accurate
and up-to-date.

e Add new subtitle — When a new subtitle is added, this function creates a new
region on the waveform to represent it visually.

Interactions with subtitles

Interactivity within the WaveForm includes a variety of menu options that enhance user
experience. Clicking on a subtitle within the waveform opens a popup menu that allows
the user to align or clear alignment and delete the subtitle. If a click occurs on the waveform
where no subtitle exists, it opens a popup menu that to add a subtitle, reload the waveform,
and clear any existing alignments are presented. These features facilitate precise control
over subtitle timing and placement directly from the waveform interface.

Alignment

The alignment process within the WaveForms is designed to ensure accurate synchronization
of audio tracks with subtitles. When a user aligns a subtitle, the start and end times of
the referenced subtitle(which was clicked on) are sent to the backend, which then updates
the session data with the aligned subtitles and calculates any necessary offsets. This offset
is applied as a left margin to the start of one of the WaveForms, helping to visually align
the audio signals beneath the subtitles.

Before Alignment

Figure 4.6: Subtitle alignment

This alignment is key to ensuring that the audio and subtitles are in sync, which can
be visually confirmed as from figure 4.6.

Re-timing

The re-timing of subtitles within the WaveForm component allows users to interactively
adjust the timing of subtitles directly through the waveform interface. This interaction is
done in two primary ways:

1. Moving subtitle on the timeline — Users can click, hold, and drag a subtitle region
left or right to shift its start and end times simultaneously. This method maintains
the duration of the subtitle but changes its positioning within the timeline, allowing
for quick adjustments in sync with audio cues.

45

2. Modifying duration by adjusting edges — By holding and dragging the right
or left edge of a subtitle region, users can change either the start time or end time,
respectively. This action affects the duration of the subtitle, making it longer or
shorter depending on the direction of the drag.

To ensure subtitles do not overlap, which can confuse viewers and disrupt the viewing ex-
perience, the WaveForm component includes specialized listeners within the wavesurfer. js
framework. The provided code snippet in listing 4.1.5 is crucial for managing these inter-
actions.

wsRegions.value.on('region-created', region => {
region.content.style.margin = 'auto'
region.listeners.update.add(() => handleRegionDrag(region))

b

Listing 4.1.5: Region listeners

When a region (subtitle) is created, a margin is automatically set, and an update listener
is added. This listener invokes handleRegionDrag as shown in listing 4.1.6 whenever the
region is manipulated.

const handleRegionDrag = region => {
const regions = wsRegions.value.getRegions().sort((a, b) => a.start - b.start)
const regionIndex = regions.indexOf (region)
const regionStart = region.start
const regionEnd = region.end

// check if region is overlapping with his left neighbor
const nearestLeftRegion = regions

.filter((r, i) => i < regionIndex)

.reduce((acc, r) => (r.end > acc.end 7?7 r : acc), { end: 0 })
if (nearestLeftRegion.end > regionStart) {

region.start = nearestLeftRegion.end

region.end = regionEnd + (nearestLeftRegion.end - regionStart)

}

// check if region is overlapping with his rTight neighbor
const nearestRightRegion = regions
.filter((r, i) => i > regionIndex)
.reduce((acc, r) => (r.start < acc.start ? r : acc), { start: 1000000 })
if (nearestRightRegion.start < regionEnd) {
region.end = nearestRightRegion.start
region.start = regionStart - (regionEnd - nearestRightRegion.start)
}
}

Listing 4.1.6: Handling region updates

Function shown in listing 4.1.6 retrieves all existing subtitle regions and sorts them by
their start times. Each region is then indexed to identify its position relative to others.
Handling drag operations for each moved region is done by checking if there is overlap
with the subtitle directly to the left. If the current region’s start time intrudes into the
left neighbor’s end time, both the start and end times of the current region are adjusted
forward to eliminate the overlap. Similarly, if the current region’s end time extends into
the start time of the right neighbor, it’s pulled back to prevent overlap.

46

Scrolling into playback

This application behaviour is important in order to ensure that the WaveContainer display
scrolls synchronised with video playback, providing a smooth auto-scrolling experience as
the video progresses. It is done by dynamically calculating the appropriate scroll position
within the waveform container based on the current playback time of the video as can be
seen in listing 4.1.7.

')

const handleTimeUpdate = () => {
if (ws.value) {
ws.value.setTime (time.value)
}
const container = document.getElementById('waveform-container')
const currentContainerWidth = ws.value.renderer.container.getBoundingClientRect () .width
const maxWidth = Math.max(
...Array.from(document .getElementsByClassName ('waveform')) .map(
x => x.children[0] .shadowRoot.querySelector('.scroll').getBoundingClientRect().width,
),
)
const containerRatio = currentContainerWidth / maxWidth
const cursorPosPercent = ws.value.getCurrentTime() / ws.value.getDuration()
const scrollPos = container.scrollWidth * cursorPosPercent * containerRatio - 100
container.scrollTo ({
left: scrollPos,
1))

Listing 4.1.7: Handling time updates

The method handleTimeUpdate in listing 4.1.7 then computes the ratio of the con-
tainer’s width to this maximum width (containerRatio), ensuring that the scroll position
scales correctly relative to the size of the waveform displayed. The position of the play-
back cursor within the WaveContainer’s (cursorPosPercent) is calculated by dividing the
current playback time by the total duration of the video, resulting in a percentage that
represents how far along the video has played.

The desired scroll position (scrollPos) is then calculated by multiplying the total
scrollable width of the container by both the cursor’s percentage position and the container
ratio. A fixed offset of 100 pixels is subtracted to align the scroll position accurately with
the cursor within the WaveContainer’s display, ensuring the cursor is ideally positioned
within the viewport.

Finally, the WaveContainer is instructed to scroll to this calculated position using the
scrollTo method, with smooth scrolling enabled.

Concurrent Editing

The concurrent editing functionality enhances the flexibility of subtitle editing. A central
button within the App toggles a popup menu that offers several options depending on
whether a subtitle is currently aligned. If no subtitle is aligned, the first action is to align
the active subtitle from the SubtitleTable. From this menu, users can choose to re-time
subtitles, edit their text concurrently, delete aligned subtitles, or add new subtitles within
aligned sections.

Re-timing is performed directly on the WaveForm, similar to the process described in
4.1.7, but it also adjusts the timing of any subtitles that are aligned with the currently
active one. Concurrent text editing occurs within the SubtitleTable (as detailed in 4.1.6),

47

allowing for simultaneous modifications to the text of aligned subtitles if this feature is
enabled.

Popups

Within the application, the management of user notifications and loading states is handled
through specialized popups. These include the ErrorBox for displaying error messages and
the LoaderSpinner for indicating loading states, enhancing user feedback and application
responsiveness.

a D

watch(errorMessage, value => {
if (value) {
setTimeout (() => {
$error.message =
errorMessage.value =
}, 5000)
}
1))

Listing 4.1.8: Handling error message display

Command shown in listing 4.1.8 attaches a watch function to the errorMessage reactive
property. When an error message is detected (i.e., value becomes true), a timer is initiated
using setTimeout. This timer clears the error message stored in both errorMessage and
the global $error.message after 5 seconds, ensuring that error notifications are visible just
long enough to inform the user without lingering on the screen.

watch($error, value => {
if (value) {
errorMessage.value = value.message
}
b

Listing 4.1.9: Updating error message from global error state
Command shown in listing 4.1.9 listens for changes in the $error reactive object. If there is
a change, the errorMessage reactive property is updated to reflect the new message. This
ensures that any errors affecting the application are quickly displayed in the ErrorBox,
providing timely feedback to the user.

watch(

$loading,

value => {
if (value) {

loadinglMessage.value = value

}

})

{ immediate: true },

)

Listing 4.1.10: Handling loading state display
Command shown in listing 4.1.10 watches the $1loading reactive state with the immediate:

true option, which triggers the function as soon as the component is initialized. This watch
captures and updates the loadingMessage reactive property whenever $loading changes,

48

signaling the start or end of a loading process. The LoaderSpinner is thus controlled
to show or hide based on the current loading status, keeping the user informed about
the application’s activity. These reactive watch functions effectively manage the dynamic
display of errors and loading states within the application, providing critical feedback to
users in a controlled and timely manner. This setup ensures that the user interface remains
clear, informative, and responsive to the ongoing activities within the application.

4.2 Backend

This section delves into the backend processes essential for handling various multimedia
tasks such as parsing subtitle files, converting audio formats, aligning audio signals, and
synchronizing subtitles with audio. These functions are critical for ensuring that the media
content is properly processed and synchronized as fast as possible for an optimal user
experience.

4.2.1 Processing Subtitles

The handling of subtitle files in this application involves specific functions that utilize the
FFmpeg tool and subtitle library to manage subtitles directly from video files. These
functions are tailored to extract subtitles, merge them back into video files, save subtitles
in different formats, and parse subtitle data effectively.

49

Extracting subtitles from video

const extractSubtitles = inputFilePath => {
return new Promise((resolve, reject) => {
inputFilePath = inputFilePath
.replace(/\\/g, '/')
.replace(/\//g, '"\\')
.replace(/file:\\\\\\/g, '")
.replace(/\r\n/, '')
if (!fs.existsSync(inputFilePath)) {

console.error('The input file does not exist:', inputFilePath)
reject(new Error('Input file not found'))
return

}
const outputFilePath = ~${process.cwd()}\\videos\\
${path.basename (inputFilePath, path.extname(inputFilePath))}.srt"
ffmpeg(inputFilePath)
.outputOptions ([
'-map 0:s5:0', // Assumes the first subtitle stream; adjust if needed
'-c:s srt', // Specifies copying the subtitle stream as-is, assuming it's in SRT format
D
.save (outputFilePath)
.on('end',) =>{
console.log(Subtitles have been extracted to: ${outputFilePath})
// Read and parse the subtitle file
fs.readFile(outputFilePath, 'utf8', (err, data) => {
if (err) {
console.error('Error reading the subtitle file: ' + err.message)
reject(err)
} else {
try {
const subtitlesObj = parseSync(data)
resolve(subtitlesObj)
} catch (parseError) {

console.error('Error parsing the subtitle file: ' + parseError.message)
reject(parseError)
}
}
b
b
.on('error', err => {
console.error('An error occurred: ' + err.message)
reject (err)
b
b
}

Listing 4.2.1: Extract subtitles from video

Function shown in listing 4.2.1 uses FFmpeg to extract SRT subtitle streams from video files.
It targets the embedded subtitle tracks within the video file, extracting them into standalone
SRT files. This capability is particularly useful for workflows that require subtitles to be
edited or processed separately from their corresponding video. The function modifies the
path to accommodate file system differences, checks the file’s existence, and then executes
the extraction, saving the subtitles to a specified output path.

50

Embedding subtitles to video

const mergeSubtitles = (inputFilePath, subtitles, outputFilePath) => {
return new Promise((resolve, reject) => {
ffmpeg(inputFilePath)
.input (subtitles)
.outputOptions(['-c copy', '-c:s mov_text'])
.save (outputFilePath)
.on('end',) => {
console.log(Subtitles have been merged to: ${outputFilePath})
resolve (outputFilePath)
b
.on('error', err => {
console.error('An error occurred: ' + err.message)
reject(err)
b
b
}

Listing 4.2.2: Embed subtitles into video
Function shown in listing 4.2.2 integrates the SRT files back into the original video using
FFmpeg. After subtitles have been modified or created, they need to be embedded back into
the video. This function allows for the inclusion of new or edited subtitle tracks without
altering the original audio and video streams, ensuring that the final product is ready for
playback with the updated subtitles seamlessly integrated.

Loading and saving subtitle files

e "

const loadSubtitles = subtitles => {
return parseSync(subtitles)

}

const saveSubtitles = (subtitles, outputFilePath, preview = false) => {
const format = outputFilePath.endsWith('.vtt') ? 'WebVTIT' : 'SRT'
const srtString = stringifySync(subtitles, { format })
if (preview) return srtString
fs.writeFileSync(outputFilePath, srtString)

}

Listing 4.2.3: Load and save subtitles
Function shown in listing 4.2.3 uses the subtitle library to load and save subtitle files. The
loadSubtitles function is crucial for loading subtitles from files and converting them into a
structured format that can be easily accessed and manipulated within the application. The
saveSubtitles function converts subtitle data into a textual format like SRT or WebVTT
and writes it to a file. The subtitle library provides functions to serialize subtitle objects
according to the specifications of different subtitle formats.

4.2.2 Audio Conversion

Audio conversion is a critical step in preparing media for efficient processing and visualiza-
tion within this application, particularly when dealing with complex and long audio-visual
content. Therefore, a decision to convert videos into WAV files was made, due to relatively
long waveform loading from video into waveform using the wavesurfer. js library. Cur-
rently wavesurfer. js uses a local path to fetch the decoded audio data from cached WAV
file. These cached files are also useful when aligning audio signals, which is the subject of
section 4.2.3.

51

const convertToWave = (videoFilePath, wavFilePath, sampleRate) => {
return new Promise((resolve, reject) => {
ffmpeg(videoFilePath)
.audioCodec('pcm_si6le') // Set the audio codec
.audioFrequency(sampleRate) // Set the sample rate
.audioChannels(1) // Set to mono audio
.format('wav') // Set the output format
.on('end',) => {
console.log(Audio extracted to: ${wavFilePath})
resolve(wavFilePath)
B
.on('error', err => {
console.error('An error occurred: ' + err.message)
reject(err)
b
.save(wavFilePath) // Output file path
1))
}

Listing 4.2.4: Convert video audio to WAV file

Function shown in listing 4.2.4 sets the audio codec to pcm_s16le, which is a format for
raw audio that strikes a balance between file size and audio quality, ideal for processing
and quick loading. The audio is converted to a mono track to reduce complexity and size,
and the sample rate is explicitly set to 8000 Hz. This lower sample rate is sufficient for
visual waveform analysis while significantly reducing the data load, which accelerates the
waveform rendering on the frontend. The output WAV file is saved into a cache directory,
ensuring that it is readily accessible for subsequent operations or multiple accesses, which
enhances the application’s responsiveness and user experience.

4.2.3 Audio signal correlation

Audio signal correlation is a critical technique used in audio processing to determine how
closely one audio signal matches a segment of another audio signal.

The objective is to compute a correlation score that quantifies the similarity between
two audio signals. This involves analyzing the audio data to extract meaningful features and
then comparing these features to find the best alignment or match. One common approach
is to use Mel-Frequency Cepstral Coefficients (MFCCs), which are capable of capturing the
key characteristics of an audio signal. The correlation between these coefficients can then
be used to determine how similar two audio segments are.

4.2.4 Extraction of MFCCs

const extractMFCCs
Meyda.sampleRate =
Meyda.bufferSize
const mfccs = []

for (let i = 0; i <
let buffer audi
if (buffer.length

(audioData, sampleRate, bufferSize) => {
sampleRate
bufferSize // A common bufferSize for MFCC

audioData.length; i += Meyda.bufferSize) {
oData.slice(i, i + Meyda.bufferSize)
Meyda.bufferSize) {

const mfcc = Meyda.extract('mfcc', buffer)
mfccs.push(mfcc)
}
}

return mfccs

52

Listing 4.2.5: Extraction of MFCCs

The function extractMFCCs in lising 4.2.5 processes audio data to compute a series of
MFCCs by using the Meyda. js library, where sampleRate of 8000 Hz is used just like in
audio conversion 4.2.2, because it uses the same audio data or segments from it as are saved
in the WAV file. Below is a mathematical overview of how exactly are the MFCCs computed:

Let s/n] be the input audio signal, where n is the sample index. The MFCC extraction
process involves dividing the audio signal into overlapping frames and applying a window
function. For each frame, the Fourier transform is calculated, followed by the Mel filter
bank processing, and finally the discrete cosine transform to obtain the MFCCs:

MFCC = DCT (log (MelFilter (|FFT (window(s[n]))|?))) (4.1)
In equation 4.1:
e DCT denotes the Discrete Cosine Transform
e MelFilter represents the Mel scale filter bank application
e FFT is the Fast Fourier Transform

e window refers to the applied window function

4.2.5 Cross-Correlation of MFCCs

const crossCorrelateMFCC = (mfccSegment, mfccSignal) => {
let maxCorr = -Infinity // Start with a very low correlation score.
let bestOffset = 0

for (let offset = 0; offset <= mfccSignal.length - mfccSegment.length; offset++) {
let sum = O

for (let i = 0; i < mfccSegment.length; i++) {
let diffSum = O
for (let j = 0; j < mfccSegment[i].length; j++) {
// Calculate squared difference for each MFCC coefficient
let diff = mfccSegment[i] [j] - mfccSignalli + offset][j]
diffSum += diff * diff
}
sum -= diffSum // Subtract to simulate correlation (minimizing distance)

}

// We look for the mazimum since sum is negative (mazimally less negative %is better)
if (sum > maxCorr) {
maxCorr = sum
bestOffset = offset
}
}

return { bestOffset, maxCorr: -maxCorr }

}

Listing 4.2.6: Cross-Correlation of MFCCs
The function crossCorrelateMFCC shown in listing 4.2.6 is used to find the best align-

ment between two sets of MFCCs. The cross-correlation is performed by shifting the seg-
ment MFCC array over the signal MFCC array and calculating the sum of squared differ-

53

ences for each potential alignment. The alignment with the minimum squared difference
(maximally negative sum in this implementation) indicates the best match:

N—-1M

1
Corr(m, s) = max | — > Y (mlilj] - sli + K][5))° (4.2)
—~

1= Jj=

In equation 4.2:
e m is the MFCC array of the segment,
e sis the MFCC array of the signal,
e N is the number of frames in the segment,
e M is the number of coefficients per frame,
e k is the offset in the signal where the segment is being compared.

The resulting offset from function crossCorrelateMFCC is later used for positioning the
subtitle in the correct part of the audio signal or checking if the subtitle is aligned, which
is the objective of next subsection.

4.2.6 Subtitle Alignment

This section outlines the methodology for aligning subtitles based on the correlation of their
audio signals, focusing primarily on backend processes. The alignment procedure begins
by identifying and synchronizing a specific subtitle from the frontend interface, where the
start and end times of the subtitle are relayed to the backend.

A complete process is showcased in figure 4.7, which consits of aligning segment to all
audio and aligning rest of the subtitles.

Initial alignment

The first step in the alignment process involves positioning a selected subtitle’s audio seg-
ment within the complete audio track of the video to which the subtitle is being aligned.
The backend performs the following operations:

e Audio files pertinent to the alignment are loaded into memory to facilitate rapid access
and processing.

o Mel-Frequency Cepstral Coefficients (MFCCs) are extracted from both the subtitle’s
segment and the entire audio track.

e The extracted MFCCs are then cross-correlated to determine the best offset, ensuring
that the subtitle’s audio segment aligns accurately with the video’s audio track. The
determined offset is stored in session. json for subsequent processing and reference.

Aligning all subtitles

Upon successfully aligning the initial subtitle segment, the process extends to other subtitles
within the video. The steps involved are:

54

Before alignment

Subtifle start & end time

Align segment to all audio

-Audio file path:

Align rest of subtities

Read Wav files

All audio & audio segment

A
Exiract MFCCs

All MFCCs and segment MFCCs

Audio arrays

Cross correlate

MFCCs

for each
subtitle pair

Extract MFCCs
from subtitle
segments

Cross corelate
MFCCs subtitle
segments

Subtitles, off

58 D

session json

Ra\oad—'
fiset

ubtifles with aligned flag—

cache

Do you want to be

After alignment

Figure 4.7: Alignment process in the backend

Evaluation of audio signals from other subtitles to ascertain if they match using a

similarity threshold established through preliminary experiments.

Identification of subtitle pairs that are temporally proximate, enhancing the likelihood

of alignment.

Extraction and cross-correlation of MFCCs from these subtitle segments. Successful
alignment is indicated by an offset equal to zero and maximum correlation within the

experimentally determined range.

Subtitles that are aligned are flagged and adjusted in timing to ensure precise syn-

chronization.

The updated subtitles are saved into session. json.

55

Data

o A notification is sent to the frontend, prompting it to refresh and display the aligned
subtitles.

4.3 Production vs development

This section presents a comparative analysis between the operational environments of back-
end and frontend technologies in Production and Development contexts.

Frontend

Development ?

@

Expréss E\ecltron

Backend

Figure 4.8: Production vs development frameworks

The overview of the frameworks used for production and development is showcased in
figure 4.8. In the production setting, the system utilizes a built Vue3 application com-
bined with Electron. This setup ensures a stable and efficient application deployment
suitable for end-users. During development, the system operates using a preview Vue3 ap-
plication that features hot module reload, facilitating immediate updates and debugging.
An Express server is used as the backend, supporting dynamic development needs with
increased flexibility.

The file client.js plays a crucial role in determining the interaction between the
frontend and the backend services, either through the Express server or Electron’s IPC
(Inter-Process Communication). Below is the code snippet showcasing how the application
determines the environment and communicates accordingly:

56

import axios from 'axios'

const isElectron = typeof window.electron !== 'undefined'
const apiService = {
async sendMessage(channel, data, config) {
if (!isElectron) {
if (config?.method === 'GET') {
return await axios.get(“http://localhost:3000/${channel}")

}

return await axios.post(http://localhost:3000/${channel} ", data, config)
}
console.log('API request:', channel, data)

const response = {
data: await window.electron.ipcRenderer.invoke(channel, data),
}
console.log('API response:', response)
return response
Do
}

export default apiService)

Listing 4.3.1: Endpoint for frontend - client. js

The client. js script shown in listing 4.3.1 checks if the application is running in an
Electron environment (indicative of production) by verifying the presence of window.electron.
Depending on the environment, it chooses between making HTTP requests via axios (for
development) or using Electron’s IPC features (for production) to communicate with the
backend.

Axios is a promise-based HT'TP client for making requests to external servers. In the
development environment, axios is used to perform GET or POST requests to an Express
server running locally. This is essential for rapid development and testing, allowing for
real-time feedback and updates via hot module reloading.

In an Electron application, the ipcRenderer module as mentioned in 3 of Electron
facilitates communication between renderer processes (web pages) and the main process.
In this code, electron.ipcRenderer is accessed via the window object. This integra-
tion is achieved by modifying the window object in the Electron environment to include
ipcRenderer, thus making it available as window.electron.ipcRenderer. This allows
the frontend to send messages and receive responses from the main process, enabling seam-
less backend-frontend integration in a desktop application context.

57

Chapter 5

Testing

This chapter delves into the various testing methodologies employed to ensure the reliability,
performance, and user experience of the application across different platforms and opera-
tional scenarios. It outlines the structure and purpose of compatibility and performance
tests.

5.1 Test Data

This section introduces the various datasets utilized for testing the application, catego-
rized into small and large data sets to accommodate different testing scenarios such as
compatibility and performance testing.

Small datasets are crucial for compatibility testing to ensure that the application func-
tions correctly across multiple environments. These datasets include:

e examplel.mkv: A short video file containing speeches.
e examplel_extended.mkv: An extended version of examplel.mkv.
e examplel.srt: Subtitles corresponding to examplel.mkv.

o examplel_extended.srt: Subtitles for the extended video examplel_extended.mkv.

These files are designed to be lightweight and easily downloadable to various testing envi-
ronments, with the download facilitated by a script provided in README.md.

To evaluate the application’s performance, particularly the speed of alignment, larger
datasets are used:

e Maids.EOl.e-subs.540p-ZASK.mkv: A larger video file used to test the application’s
processing capabilities.

e Maids.EO1l.e-subs.540p-ZASK.srt: Subtitles for the aforementioned video.

e Maids.SO1E01.1080p.WEB-DL.H264.AAC-AppleTor.mp4: An extended high-definition
version of Maids.EO1.e-subs.540p-ZASK.mkv.

e Maids.SO01E01.1080p.WEB-DL.H264.AAC-AppleTor.srt: Subtitles for the extended
HD video.

These files are significantly larger and contain private content, making them unsuitable
for public download. They are used internally to assess how well the application handles
large-scale data inputs and aligns long subtitle tracks efficiently.

58

5.2 Compatibility testing

Compatibility testing assesses whether the application functions as intended across various
operating systems such as Linux, Windows, and Mac. This testing is facilitated by the
automated testing framework Playwright, which allows for the simulation of user inter-
actions with the application in different environments'. The utilization of Playwright is
particularly effective due to the application’s development in JavaScript, enabling full func-
tionality within a web browser. This compatibility with web standards allows for a seamless
integration of Playwright, enhancing the testing process across different platforms.

The primary goal of these tests is to ensure that the application behaves consistently
and reliably regardless of the operating system or hardware configuration. This involves
checking that all functionalities are accessible and perform as expected across all supported
platforms.

"C:\Program Files\nodejs\npm.cmd" test
> my-electron-app@0.0.0 test

> playwright test --workers=1

Running 13 tests using 1 worker
Slow test file: [Google Chrome] > example.spec.js (31.4s)
Consider splitting slow test files to speed up parallel execution
13 passed (32.6s)

To open last HTML report run:

npx playwright show-report

Process finished with exit code 0O

Listing 5.2.1: Running automated tests

These tests were conducted on Linux, Windows, and Mac environments, successfully
passing all the predefined test scenarios. The results from these tests are compiled into an
HTML report, which is included in the Playwright test packages. An example of such a
report is depicted in figure 5.1

The tests described utilize Playwright to automate interaction sequences in a develop-
ment environment mimicking the functionality of the production build. Each test operates
within a fresh instance of a Chrome browser, akin to opening and closing the application
in Electron, with state persistence managed through session. json. This setup ensures
that each feature can be tested in isolation, providing a reliable and consistent testing
environment.

Here’s a brief description of what each test accomplishes:

e Open application — Verifies that the application loads properly and displays the
expected title, ensuring the initial launch is successful.

¢ Open videos — Tests the functionality of loading video files by interacting with the
UI to select and verify the visibility of specific video files.

!For more details on Playwright, see the official documentation: https://playwright.dev

59

https://playwright.dev

Q All 13 Passed 13 Failed @ Flaky 0 Skipped @

© example specjs

+ Open application 14s
v Open videos 20s
~ Open subtitles 165
v Modify subtitle 1.0s
v Close subtitles 15s

v Detect speeches 11s

~ Align subtitles 265
+ Clear alignment 17s
v Concurrent editing 34s
v Concurrent timing 34s
v Embed subtitles 3.55
v Export subtitles 34s
v Keyboard shortcuts 4.8s

Figure 5.1: Automated tests - results

Open subtitles — Ensures that subtitle files can be loaded and displayed correctly
by selecting them through the UI and checking their presence on the screen.

Modify subtitle — Confirms the ability to edit subtitles and verify that the changes
are reflected within the application’s interface.

Close subtitles — Tests the capability to close subtitle files and ensures that they
are removed from the display, verifying the close functionality.

Detect speeches — Automates the detection of speech within video content and
checks for the appropriate generation and display of subtitles.

Align subtitles — Verifies that subtitles can be accurately aligned with the video’s
audio through UI interactions and evaluates the alignment by checking specific Ul
elements.

Clear alignment — Tests the ability to remove existing alignments of subtitles, en-
suring that the Ul updates to reflect these changes correctly.

Concurrent editing — Simulates the scenario of multiple users editing subtitles at
the same time to test the application’s handling of concurrent edits.

Concurrent timing — Examines the application’s capacity to manage simultaneous
adjustments to subtitle timings by multiple users.

Embed subtitles — Checks the embedding functionality by integrating subtitles into
the video and ensuring no error messages appear during the process.

60

o Export subtitles — Validates the functionality to export subtitles successfully and
checks for the presence and accuracy of exported files.

¢« Keyboard shortcuts — Assesses the responsiveness of the application to keyboard
shortcuts for various subtitle editing tasks, enhancing user interface interaction.

5.3 Performance Testing

Performance testing involves custom manual testing by measuring the speed of subtitle
alignment and the loading time of waveforms. These tests are essential for evaluating the
efficiency and responsiveness of the application under different data loads and conditions.
Test results in this section were created by measuring execution time of related functions.

5.3.1 Loading of Waveform

When a new video is opened, the application converts the audio track to a WAV file, a
process that can be time-consuming, as shown in listing 5.3.1.

Audio extracted to: backend/cache/videos_Maids.EO1.e-subs.540p-ZASK.wav
Converted \videos\Maids.EO1.e-subs.540p-ZASK.mkv to Wav in: 12.6314983s
Audio extracted to: backend/cache/videos_Maids.S01EO1.1080p.WEB-DL.H264.AAC-AppleTor.wav
Converted \videos\Maids.S01EO1.1080p.WEB-DL.H264.AAC-AppleTor.mp4 to Wav in: 22.4528153s

Listing 5.3.1: Converting audio to WAV file

However, upon subsequent loads, the application utilizes the cached WAV files, signifi-
cantly reducing loading times, as shown in listing 5.3.2.

Loaded cached WAV file: backend/cache/videos_Maids.EO1.e-subs.540p-ZASK.wav

Converted \videos\Maids.EO1.e-subs.540p-ZASK.mkv to Wav in: 0.0010645s

Loaded cached WAV file: backend/cache/videos_Maids.S01E01.1080p.WEB-DL.H264.AAC-AppleTor.wav
Converted \videos\Maids.SO01EO01.1080p.WEB-DL.H264.AAC-AppleTor.mp4 to Wav in: 0.0012184s

Listing 5.3.2: Loading of cached WAV files

The waveform for the video is then generated from the decoded audio using the wavesurfer. js
library, as shown in listing 5.3.3.

Wavesurfer is ready. Loading took 2138 milliseconds.
Wavesurfer is ready. Loading took 2064 milliseconds.

Listing 5.3.3: Wavesurfer.js rendering speed

Although the overall performance is satisfactory, reliability is a concern. Approximately
5% of the time, the waveform is not visible due to issues with the wavesurfer. js library.
While efforts have been made to address this bug, a complete fix has not been achieved. A
simple workaround is to adjust the wave zoom to a lower value and then back to a higher
value, which restores the waveform visibility. This bug is displayed in figure 5.2.

61

\tests\data\example1.mkv

YTV (1 W'Y NYTR TG NV Y Y WY T

\tests\data\example1_extended.mkv

Figure 5.2: Waveform loading error

5.3.2 Alignment of Subtitles

The speed of subtitle alignment varies with the signal values of the reference subtitle, as
shown in listings 5.3.4 and 5.3.5.

Segment length: 17592

Audio length: 33503915

MFCC segment length: 34

MFCC signal length: 65437

Best offset: 81.34400000000001

Signals aligned in: 11.509625400000001s
MaxCorr 69293.09164471625

All subtitles aligned in: 0.2602723s

Listing 5.3.4: Aligning a 2.2-second subtitle
Command shown in listing 5.3.4 aligns a reference subtitle of 2.2 seconds.

-
Segment length: 25888

Audio length: 33503915

MFCC segment length: 50

MFCC signal length: 65437

Best offset: 176.576

Signals aligned in: 10.664324s
MaxCorr 154863.00279628698

All subtitles aligned in: 0.2302391s

Listing 5.3.5: Aligning a 3.2-second subtitle
Command shown in listing 5.3.5 aligns a reference subtitle of 3.2 seconds.

The alignment process is highly accurate when the subtitle segment is part of the audio,
which it is aligning to. However, if it is not, the resulting best correlation can produce
inaccurate alignments. Most subtitles are aligned correctly, but occasionally, the high
correlation of signal pairs results in subtitles not being marked as aligned. This issue is
illustrated in figure 5.3.

Figure 5.3: Alignment inaccuracy

62

In summary, while performance testing indicates good speed and efficiency in loading
and alignment processes, certain reliability issues with waveform visibility and subtitle
alignment accuracy need to be addressed to enhance the overall performance and user
experience.

63

Chapter 6

Conclusion

This thesis has outlined the design, development, and testing of a multi-platform tool aimed
at simplifying the process of editing subtitles for videos that have different versions. By
addressing the unique challenge of synchronizing subtitles across various cuts and inserted
scenes, this tool offers a significant advancement in the realm of subtitle editing.

6.1 Summary of Achievements

The primary objective of this work was to create a tool that allows for the simultane-
ous editing of multiple subtitle files, which is particularly useful for videos with different
versions. This objective has been successfully met through several key achievements:

o Cross-Platform compatibility: By leveraging frameworks such as Electron (2.1.4)
and Tauri (2.1.4), the tool ensures a consistent user experience across major operating
systems, including Linux, Windows, and Mac.

e Subtitle and video format support: The tool supports multiple subtitle formats,
including SRT and WebVTT as discussed in (2.2). Supported video formats are MP4
and MKYV. This flexibility ensures broad applicability for various user needs.

e Advanced signal processing: Incorporating audio-visual signal processing tech-
niques such as waveform analysis (2.3.2), Dynamic Time Warping (DTW), Mel-
frequency cepstral coefficients (MFCC), and Fast Fourier Transform (FFT) allows for
accurate synchronization of subtitles. The usage of FFmpeg for transcoding (2.4.4)
and subtitle extraction (2.4.4) further enhances the tool’s capabilities.

e User-Friendly interface: The design and implementation of a user-friendly inter-
face, as detailed in (3.1) and (3.5), ensure that both novice and experienced users can
efficiently use the tool for subtitle editing.

e Robust testing framework: Extensive compatibility and performance testing, fa-
cilitated by tools like Playwright, have validated the tool’s reliability across different
environments. The detailed testing results, including performance metrics for subtitle
alignment and waveform loading, demonstrate the tool’s efficiency and effectiveness.

64

6.2 Challenges and Limitations

While the tool has achieved its primary goals, several challenges and limitations were en-
countered:

e Waveform Loading Reliability: Despite overall satisfactory performance, the
waveform loading process occasionally fails due to issues with the wavesurfer.js
library (5.2). Although a workaround exists, further refinement is needed for a per-
manent fix.

e Alignment Accuracy: While the subtitle alignment process is generally accurate,
there are instances where high correlation of signal pairs leads to misalignment (5.3).
Continuous improvement of the alignment algorithms is necessary to enhance relia-
bility.

6.3 Future Work

Looking ahead, several areas for future development and improvement have been identified:

e« Enhanced Bug Fixing: Addressing the reliability issues with waveform visibility
and alignment accuracy will be a priority. This involves further development and
testing of the wavesurfer. js library and the alignment algorithms.

o Community Feedback and A /B Testing: As the tool is released as an open-source
project, gathering feedback from the community will be invaluable. Implementing
A/B testing will help refine the user interface and functionality based on real-world
usage data.

« Expanded Feature Set: Adding new features such as advanced spell checking, more
robust speech recognition capabilities, and additional subtitle formats will further
increase the tool’s utility and appeal.

¢ Performance Optimization: Continued efforts to optimize the tool’s performance,
particularly for large datasets, will ensure that it remains responsive and efficient even
under heavy usage conditions.

6.4 Summary

In conclusion, this thesis has successfully demonstrated the development of a comprehen-
sive, user-friendly tool for simultaneous subtitle editing across different video versions. By
addressing the specific challenges of subtitle synchronization and leveraging advanced signal
processing techniques, the tool provides a powerful solution for video editors and content
creators. The ongoing development and community engagement will further enhance its
capabilities, ensuring it remains a valuable resource in the field of multimedia editing.

65

Bibliography

1]

[10]

ADOBE. Choosing the Best Audio Format. [online]. 2024. Accessed: April 30, 2024.
Available at:

https://www.adobe.com/creativecloud/video/discover/best-audio-format.html.

ADOBE. Choosing the Best Video Format. [online]. 2024. Accessed: April 30, 2024.
Available at:

https://www.adobe.com/creativecloud/video/discover/best-video-format.html.

C. A. BULTERMAN, D., JANSEN, J., CESAR, P. and CrRUZ LARA, S. An Efficient,
Streamable Text Format for Multimedia Captions and Subtitles. In: ACM
Symposium on Document Engineering - DocEng 2007. [b.n.], August 2007. Available
at: https://inriahal.science/inria-00192467.

CONTRIBUTORS, W. Audio file format [online]. Wikipedia, The Free Encyclopedia,
2024. Date of last revision: 15 May 2024 09:02 UTC. Accessed: April 30, 2024. Date
retrieved: 16 May 2024 06:07 UTC. Available at:
https://en.wikipedia.org/w/index.php?title=Audio_file_format&oldid=1223942973.

CONTRIBUTORS, W. Video file format [online]. Wikipedia, The Free Encyclopedia,
2024. Date of last revision: 10 May 2024 19:28 UTC. Accessed: May 16, 2024. Date
retrieved: 16 May 2024 06:08 UTC. Available at:
https://en.wikipedia.org/w/index.php?title=Video_file_format&oldid=1223237686.

KAPURIYA, P. Desktop Application Development: A Complete Guide. Codz Garage.
2023. [Last edited: 4/15/2024]. Available at:
https://www.codzgarage.com/blog/desktop-app-development-guide/.

MULLER, M. Information Retrieval for Music and Motion. 1st ed. Springer, 2007.
69-84 p. ISBN 978-3-540-74048-3.

NIKKHAH, E. Subtitles file formats: The most used and when to choose each one.
[online]. 2023. Accessed: May 3, 2023. Available at:
https://scriptme.io/subtitle-file-formats/.

NuUNES, E. C. Anomalous Sound Detection with Machine Learning: A Systematic
Review. Ardiv. 2021. Accessed: May 1, 2024. Available at:
https://arbiv.labs.arxiv.org/html/2102.07820.

OPPENHEIM, A. V. and SCHAFER, R. W. Discrete-time Signal Processing. 2nd ed.
Upper Saddle River, NJ: Pearson, dec 1998. ISBN 0-13-754920-2.

66

https://www.adobe.com/creativecloud/video/discover/best-audio-format.html
https://www.adobe.com/creativecloud/video/discover/best-video-format.html
https://inria.hal.science/inria-00192467
https://en.wikipedia.org/w/index.php?title=Audio_file_format&oldid=1223942973
https://en.wikipedia.org/w/index.php?title=Video_file_format&oldid=1223237686
https://www.codzgarage.com/blog/desktop-app-development-guide/
https://scriptme.io/subtitle-file-formats/
https://ar5iv.labs.arxiv.org/html/2102.07820

[11]

[12]

OPPENHEIM, A. V. and WILLSKY, A. S. Continuous-time and Discrete-time Signals.
In: HORTON, M., ed. Signals and Systems. 2nd ed. Upper Saddle River, NJ: Pearson,
Aug 1996, chap. 1.1. ISBN 0-13-814757-4.

OZER, J. Video Codecs in 2021 and Beyond [Streaming Learning Center Webinar].
2021. Accessed: May 1, 2024. Available at: https://streaminglearningcenter.com/
learning/webinar-video-codecs-in-2021-and-beyond-with-jan-ozer.html.

CoMPANY, Q. Introduction to Qt. Qt. 2024. [Accessed on: 1/5/2024]. Available at:
https://doc.qt.io/qt-6/qt-intro.html.

SINGH, P. P. and R., P. An Approach to Extract Feature using MFCC. IOSR
Journal of Engineering. IOSR Journals. august 2014, vol. 4, no. 8, p. 21-25. DOI:
10.9790/3021-04812125. Available at: https://doi.org/10.9790/3021-04812125.

TECHTERMS. Waveform Definition [online]. 2015. Retrieved: December 9, 2015.
Available at: https://techterms.com/definition/waveform.

Croup, V. What is a Desktop App? V2 Cloud. 2024. [Accessed on: 1/4/2024].
Available at: https://v2cloud.com/glossary/what-is-a-desktop-app/.

Roca, J. What is Cross Platform Software? Triangle. 2022. [Accessed on: 1/5/2024].
Available at: https://wwu.triangle.es/en/what-is-cross-platform-software/.

67

https://streaminglearningcenter.com/learning/webinar-video-codecs-in-2021-and-beyond-with-jan-ozer.html
https://streaminglearningcenter.com/learning/webinar-video-codecs-in-2021-and-beyond-with-jan-ozer.html
https://doc.qt.io/qt-6/qt-intro.html
https://doi.org/10.9790/3021-04812125
https://techterms.com/definition/waveform
https://v2cloud.com/glossary/what-is-a-desktop-app/
https://www.triangle.es/en/what-is-cross-platform-software/

	a4f4bc2d41970812a2149f1fe51613701654557fdb4baf44995a6713af839ce7.pdf
	44d97ab2f1905dace5d3dd1b36aa69dd216c0168966835bd4291f1859fa45573.pdf
	a4f4bc2d41970812a2149f1fe51613701654557fdb4baf44995a6713af839ce7.pdf
	Introduction
	Overview of the application
	State of similar solutions

	Theory
	Cross-platform desktop application development
	Subtitle Formats
	Audio Visualisation and Processing
	Media Conversion
	Speech detection in audio
	Subtitle alignment

	Solution Design
	Objectives
	Use cases
	User interface design
	Tech Stack Selection
	Application architecture design

	Implementation
	Frontend
	Backend
	Production vs development

	Testing
	Test Data
	Compatibility testing
	Performance Testing

	Conclusion
	Summary of Achievements
	Challenges and Limitations
	Future Work
	Summary

	Bibliography

