
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

TOOL FOR SIMULTANEOUS EDITING OF MULTIPLE
FILES WITH SUBTITLES
NÁSTROJ PRO SOUČASNOU EDITACI VÍCE SOUBORŮ S TITULKY

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

LUKAS CHMELO

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. TOMAS MILET, Ph.D.

BRNO 2024

T BRNO FACULTY
UNIVERSITY OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

Bachelor's Thesis Assignment III II III III III III I
Institut: Depar tment of Compute r Graph ics and Mul t imedia (DCGM) 156822

Student : C h m e l o L u k a s

Programme: Informat ion Techno logy

Tit le: T o o l f o r S i m u l t a n e o u s E d i t i n g o f M u l t i p l e S u b t i t l e F i les
Category: Compute r Graph ics
Academic year: 2023 /24

Ass ignment :

1. S tudy subti t le formats and cross-p lat form user interface appl icat ion deve lopment . Study v ideo
formats and ways to v isual ize an aud io track. Explore exist ing subti t le edi tors.

2. Des ign an appl icat ion that a l lows s imu l taneous edi t ing of subt i t les for mult ip le var iants of the same
v ideo (contain ing cuts and inserted scenes) . The goa l is a tool that c lear ly d isplays a l igned v ideo
t racks and subt i t les and a l lows user to edi t all subt i t le fi les at the s a m e t ime.

3. Implement the des igned appl icat ion so that it can be easi ly run on all c o m m o n operat ing sys tems
(Linux, W indows , . . .) . The appl icat ion wil l a l low user to check spel l ing and to edi t the t iming of the
subt i t les.

4. Cont inuous ly test the app and modi fy the des ign based on user feedback.

5. Rev iew the f inal appl icat ion, sugges t future addi t ions, publ ish the app and source codes and create
a demonst ra t ion v ideo.

Li terature:

• A lan V. Oppenhe im , Ronald W. Schafer . D iscrete-T ime Signal Process ing. Prent ice Hal l . p. 1. ISBN
0-13-216771-9. 1989.

• Diaz-Cintas, Jorge. Subt i t l ing: theory, pract ice and research. The Rout ledge Handbook of
Trans lat ion Studies (pp.285-299) . Rout ledgeEdi tors : Ca rmen Mi l lan, Francesca Bartr ina. January
2012 .

Requ i rements for the semest ra l de fence:

A prototype ab le to edit mult iple subti t le fi les wi th v isual izat ion of aud io t racks and subt i t le t iming. Thir ty
pages of technical report.

Detai led formal requi rements can be found at ht tps: / /www.f i t .vut .cz/study/ theses/

Superv isor :

Head of Depar tment :

Beginning of work :

Submiss ion deadl ine:

Approva l date:

M i le t T o m á š , I ng . , Ph .D .

Č e r n o c k ý J a n , prof. Dr. Ing.

1.11.2023

9.5.2024

15.5.2024

Faculty of Informat ion Techno logy , Brno Universi ty of Techno logy / Bože těchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract
The a im of this work is to create a mult i -platform tool designed for simultaneous edit ing of
subtitle files in several video versions. The applicat ion enables simultaneous creation and
editing of subtitles for different variations of one video, which contains different cuts and
inserted scenes, thus solving a significant challenge i n editing subtitles. K e y features of the
app include spell checking and speech t iming edit ing features. Another important focus of
this project is user-friendliness and cross-platform compatibil i ty, which ensures ease of use
across common operating systems.

Abstrakt
Cieľom tejto p r á c e je vytvor iť m u l t i p l a t f o r m o v ý n á s t r o j u rčený na súčasnú ú p r a v u súbo rov
t i tulkov vo v iacerých verz iách videa. Apl ikác ia umožňu je súčasnú tvorbu a ú p r a v u t i tulkov
pre rôzne var iác ie j e d n é h o videa, k t o r é obsahuje rôzne strihy a v ložené scény, č ím rieši výz­
n a m n ú výzvu pr i ú p r a v e t i tulkov. M e d z i kľúčové funkcie ap l ikác ie p a t r í kontrola pravopisu
a funkcie ú p r a v y časovania reči . Ď a l š í m dô lež i tým z a m e r a n í m tohto projektu je užívateľská
prívet ivosť a kompat ib i l i ta medzi platformami, čo zaisťuje j e d n o d u c h é použ ívan ie nap r i eč
b e ž n ý m i o p e r a č n ý m i s y s t é m a m i .

Keywords
cross-platform, audio, signal, video, subtitle, subtitle editing, subtitle formats, video for­
mats, audio conversion, codec, waveform, correlation, D T W , M F C C , F F T , Javascript, ffm-
peg, Elec t ron

Klíčová slova
cross-platform, audio, s ignál , video, t i tulky, ú p r a v a t i tulkov, fo rmá ty t i tulkov, fo rmá ty
videa, konverzia zvuku , kodek, vlnová forma, korelácia , D T W , M F C C , F F T , Javascript,
ffmpeg, Elec t ron

Reference
C H M E L O , Lukas . Tool for simultaneous editing of multiple files with subtitles. Brno ,
2024. Bachelor's thesis. B rno Univers i ty of Technology, Facul ty of Information Technology.
Supervisor Ing. Tomas Mi le t , P h . D .

Tool for simultaneous editing of multiple files wi th
subtitles

Declaration
I declare that I have wri t ten this bachelor's thesis independently, under the supervision of
M r . Tomas Mi le t . I have listed a l l the l i terary sources, publications, and other references
used in this thesis.

L u k á š Chrnělo
M a y 16, 2024

Acknowledgements
I would like to express my gratitude to my supervisor, M r . Tomas Mi le t , who provided me
wi th professional assistance and guidance throughout the project.

Contents

1 Introduction 2
1.1 Overview of the appl icat ion 3
1.2 State of similar solutions 4

2 Theory 7
2.1 Cross-platform desktop applicat ion development 7
2.2 Subti t le Formats 12
2.3 A u d i o Visual isa t ion and Processing 14
2.4 M e d i a Conversion 17
2.5 Speech detection i n audio 21
2.6 Subti t le alignment 22

3 Solution Design 25
3.1 Objectives 25
3.2 Use cases 26
3.3 User interface design 27
3.4 Tech Stack Selection 30
3.5 App l i ca t ion architecture design 33

4 Implementation 35
4.1 Frontend 35
4.2 Backend 49
4.3 Produc t ion vs development 56

5 Testing 58
5.1 Test D a t a 58
5.2 Compat ib i l i ty testing 59
5.3 Performance Testing 61

6 Conclusion 64
6.1 Summary of Achievements 64
6.2 Challenges and Limi ta t ions 65
6.3 Future Work 65
6.4 Summary 65

Bibl iography 66

1

Chapter 1

Introduction

In today's digi ta l age, audiovisual content plays a crucial role i n various fields such as en­
tertainment, education, and information dissemination. Subtitles serve as a key component
i n making videos accessible to a wide range of audiences. However, the manual process
of al igning subtitles w i th the corresponding audio or video can be time-consuming and te­
dious. Addressing this problem involves developing a robust and efficient tool for automatic
subtitle alignment. The concept of automatic subt i t l ing is relatively new, enabled by the
rise of art if icial intelligence (AI) . Instead of relying on A I , the implementat ion of this tool
leverages algorithms such as M F C C and Cross Correlat ion to handle the required subtitle
alignments effectively. This approach simplifies the process while s t i l l providing accurate
results.

The main motivat ion of this work is to simplify the edit ing of subtitles for videos that are
different versions of each other, meaning at least one of them contains extra scenes that the
other doesn't. The videos contain many common parts, which implies that they w i l l have
common subtitles. It would be very useful i f these subtitles could be edited concurrently,
which is precisely what this tool does. The input video files remain unchanged, but changes
in the input subtitle files are pr imar i ly outputs of this tool . Th is tool expl ic i t ly allows for
creating new subtitles from scratch as well.

S imply put, the goal is to single-handedly edit mult iple subtitles in one go. It may seem
straightforward, but this is no easy task as it needs to be broken down into several steps.
Firs t ly , the tool needs to determine what scenes one video contains that the other doesn't,
which is done by comparing audio signals from the videos by converting video files to audio
files (.wav, wavfile), extracting M F C C (Mel-frequency cepstral coefficients), and subsequent
mutual comparison wi th cross-correlation of audio signals from the mentioned audio files.
Secondly, it is important to visualize these alignments for the user, which is ensured i n the
user interface of this tool . Lastly, the user can concurrently edit aligned subtitles inside
this tool w i th the help of keyboard shortcuts designed to enhance productivi ty.

The theoretical foundation of this work involves various technologies and methods. For
instance, 2.1.4 and 2.1.4 explore cross-platform desktop applicat ion development frame­
works, essential for creating a user-friendly interface. The discussion of subtitle formats
such as S R T , W e b V T T , and SubStat ion A l p h a is integral, w i th specifics i l lustrated by 2.2.
Audio-v isua l signal processing techniques, including waveform analysis (2.3.2) and the us­
age of Wavesurfer.js (2.3.2), are crucial for the accurate synchronization of subtitles. In
addit ion, the applicat ion leverages powerful tools like F F m p e g for various functionalities.
Th is includes transcoding (2.4.4), as depicted i n 2.2, and subtitle extraction (2.4.4). A u ­
dio processing techniques, such as Dynamic T ime Warp ing (D T W) , Mel-frequency cepstral

2

coefficients (M F C C) , and Fast Fourier Transform (F F T) , are essentiai for speech-to-text
conversion (2.5.2) and are discussed i n 2.6.2. The solution design chapter outlines the ap­
plication's objectives and user interface design (3.1), supported by use cases (3.2). The
technical stack and overall architecture are detailed, as seen in 3.5 and 3.6. The implemen­
tat ion chapter dives into the specifics of the application's components and modules (4.1.2),
including the video player (4.3), subtitle table (4.4), and waveform handling (4.1.7). Back­
end functionalities such as conversion and alignment (4.2.2, 4.2.3) are crucial for maintaining
subtitle synchronization across different video versions.

1.1 Overview of the application
The result of this work is an applicat ion called Subtitle Sync Editor , designed for syn­
chronizing subtitles w i th video content.

Subtitle Sync Edi tor is implemented using Electron, Vue3, JavaScript, and S C S S .
Th is choice ensures compat ibi l i ty across mult iple platforms (Windows, L i n u x , Mac -OS) and
provides a user-friendly graphical interface (Figure 1.1), al lowing creators and translators
to easily use the tool for subtitle alignment. The alignment process utilizes two main
algorithms: cross-correlation and M F C C s , as detailed i n 2.6.2.

Figure 1.1: Subti t le Sync Ed i to r

The main window of the applicat ion shown i n figure 1.1 is structured to enhance usabil­
ity. The video players are positioned at the top, enabling users to view the video content
and make precise adjustments to subtitle t iming. Below the video players are the subtitle
tables, which provide an organized layout for managing and edit ing subtitle text. A t the
bot tom of the window, the audio waveform is displayed, facil i tat ing accurate alignment of
subtitles w i th the audio track.

Further details about the user interface can be found i n sections 3.3 and 4.1.4.

3

1.2 State of similar solutions
This section describes applications or tools that served as inspirat ion or competi t ion for
the development. Research has shown that an applicat ion that direct ly allows simultaneous
editing of mult iple subtitle files does not yet exist. Therefore, it is appropriate to discuss
applications that address the basic issues of subtitle edit ing i n a single video file, not the
simultaneous solutions to this part icular problem. The a im of the survey was also to identify
the shortcomings of similar solutions, which the final applicat ion seeks to avoid.

1.2.1 Subt i t l e E d i t o r

The Subti t le Ed i to r tool , designed for L inux , was the main inspirat ion for the target func­
tions and design of the final applicat ion. Th is tool allows the creation, editing, and position­
ing of subtitles, including setting their text, time, and length. A l l changes to the subtitles
are visible in the waveform window (rectangular area for speech) and are automatical ly dis­
played during video playback. A n i l lustrat ion of the Subti t le E d i t o r appl icat ion interface
can be found in figure 1.2.

(hoi rling w ima. • mm

• • • 1 m

7 0:00:52.708 0:00:54.708 0:00:0 2. ü'ju I

25 0:03:05.916 0:03:10.291 0:00:04.375 You, i mean

Figure 1.2: Subti t le Ed i to r

Moreover, the applicat ion is not supported on newer operating systems, such as versions
of U b u n t u higher than 20.04 or other L i n u x distributions, which significantly l imits its
availabil i ty and usabil i ty on newer hardware or updated environments. This l imi ta t ion
can be a significant obstacle for users who prefer or need to use the latest technological
solutions.

1.2.2 K a p w i n g

K a p w i n g is a web tool that offers a wide range of subtitle edit ing features, including the
abil i ty to customize fonts, styles, and subtitle positions. Addi t ional ly , it provides space for
collaboration and video edit ing tools. It's user interface while editing subtitles is captured
in figure 1.3.

4

Figure 1.3: E d i t i n g subtitles i n K a p w i n g

Despite its versatility, the tool has several l imitat ions: it only supports the S R T format,
the free version has various restrictions, users have reported issues w i t h video processing
and technical errors, and the video quali ty i n the free version is low. A unique feature of
K a p w i n g is its focus on simultaneous editing of mult iple files, which sets it apart from other
similar tools.

To use the simultaneous editing feature i n Kapwing , you can s imply add mult iple video
and subtitle files by cl icking the „Upload" but ton or dragging files directly into the tool 's
interface. Each file can be opened in a separate tab or window wi th in the project. Y o u can
switch between files and make necessary edits, such as t r imming videos, adding or editing
subtitles. W h i l e working on ind iv idua l files, K a p w i n g automatical ly synchronizes changes
between them, meaning that edits i n one file can immediately reflect in other files if the
project's context requires it.

Kapwing ' s simultaneous editing feature allows users to work on different aspects of the
project wi th in ind iv idua l files simultaneously, but it is important to understand that this
tool does not support simultaneous creation of subtitles for mult iple videos at once. In­
stead, it allows for simultaneous saving and synchronization of changes across mult iple files,
meaning that once a user makes an edit i n one file, these changes can automatical ly apply
or be reflected i n other open files. Th is feature is very useful for efficient coordination and
updat ing of projects where consistency needs to be maintained across mult iple documents
or media files, but unlike the final applicat ion, K a p w i n g does not allow direct simultaneous
editing of subtitles for mult iple videos at the same time.

1.2.3 Subt i t l e W o r k s h o p

Subtit le Workshop is a subtitle tool that stands out for its ease of instal lat ion on Windows,
L inux , and O S X operating systems. It allows quick adjustment of subtitle durat ion, line
editing, and spell checking, providing users wi th the basic tools needed for efficient subtitle
work.

However, some users have reported that 64-bit versions of the program tend to crash
frequently, and overall the software is considered slow and prone to errors. Another sig­
nificant l imi ta t ion is that Subti t le Workshop does not support the M K V format, which is
often used for high-quality video files for which subtitles are created.

5

In terms of subtitle editing, Subti t le Workshop's features are similar to other tools on
the market, but this tool also lacks the abi l i ty to simultaneously edit mult iple files or direct
simultaneous edit ing of subtitles for mult iple videos at the same time.

1.2.4 A e g i s u b

Aegisub is a cross-platform subtitle too l that provides a wide range of features for synchro­
nizing subtitles w i th audio. It allows users to see real playback time, includes text styling
tools, a translat ion assistant, and displays a waveform, making it easier to accurately place
subtitles according to the audio recording.

However, Aegisub can be complex for users without experience, as its interface and
functionalities require a certain level of technical knowledge. Addi t ional ly , this tool does
not support direct saving in the S R T format when certain features are used, which can be
l imi t ing for users who need this standard subtitle format.

Furthermore, Aegisub does not natively process mult iple video files or subtitle files
simultaneously wi th in the same project.

G

Chapter 2

Theory

2.1 Cross-platform desktop application development
The development of desktop applications that operate across mult iple operating systems
presents unique challenges and opportunities for software engineers. This section aims to
provide a foundational understanding of desktop applications, some of the key consider­
ations i n their cross-platform development, various frameworks and tools that enable the
creation of robust, efficient, and versatile desktop applications that are compatible w i th
Windows, macOS, L inux , and other platforms. The approaches and methodologies dis­
cussed here are inspired by insights from Paresh Kapur iya ' s article about desktop applica­
t ion development [6].

2.1.1 D e s k t o p a p p l i c a t i o n a n d cross -p la t form app l i ca t ion

Based on definition i n the article by V 2 C l o u d [16], a desktop applicat ion is a dedicated
software program designed to run on a standalone computer, enabling end-users to exe­
cute specific tasks. This applicat ion uses hardware resources of a computer to perform its
functionality and is specifically designed to operate on a part icular operating system.

O n the other hand a cross-platform or mult ipla t form software is a type of applicat ion
that works on various operating systems or devices, which are often called platforms as
mentioned i n article [17].

C o m m o n examples of desktop applications include Microsoft Office, Slack, V L C M e d i a
Player, Adobe Reader, W h a t s A p p , and W P S Office. To use these applications, downloading
and instal l ing them from their official website is required.

2.1.2 D e s k t o p a p p l i c a t i o n deve lopment basics

The process known as desktop applicat ion development refers to the creation of software
intended for use on desktop or laptop computers. K e y considerations in this process include:

• Intended functionality of the appl icat ion

• Target operating system

• Technology stack used

7

W h a t is the intended functionality of the application

Desktop applications differ widely in terms of features, functionalities, and complexities.
For instance, a gaming applicat ion requires a specific set of features designed for interactive
entertainment. O n the other hand, business-oriented applications might require custom
features that fulfill organizational needs, such as the diverse functionalities provided by the
Microsoft Office suite.

W h a t is the target operating system

The development of desktop applications can vary significantly based on the operating
system. Different operating systems like L inux , Windows, and macOS may require distinct
technology stacks and coding structures. Addi t ional ly , compat ibi l i ty w i th various libraries
that may be essential for the application's functionality also needs to be ensured across
these platforms. The development framework chosen is crucial as it should allow for easy
adaptation to meet safety, security, and user experience needs across a l l intended platforms.

Use of programming languages

A variety of programming languages are available for the development of desktop appli­
cations. C o m m o n choices include H T M L / C S S , Java, Py thon , C # , C+-1-, Ruby, P H P ,
JavaScript , and TypeScr ip t . The selection of programming languages typical ly depends
on the specific requirements of the project and the developer's familiari ty w i t h the tech­
nologies. Moreover, modern frameworks like X a m a r i n and Qt offer extensive libraries and
tools that support a broad range of languages and simplify the cross-platform development
process.

2.1.3 T y p e s of desktop software

Desktop software can be broadly categorized into several types, each serving distinct pur­
poses and user needs. Understanding these categories is crucial for developers as it helps
in choosing the right tools and approaches for development. Below are the pr imary types
of desktop software commonly encountered.

Conventional application

Conventional desktop applicat ion software is developed to assist users i n carrying out spe­
cific, diverse tasks effectively. Examples of appl icat ion software include photo edit ing tools,
accounting programs, workflow management applications, and mul t imedia players. These
applications are designed to facilitate day-to-day tasks by providing functional solutions
tailored to the user's needs.

Programming software

Programming software serves as a fundamental tool for developers, enabling them to create,
test, debug, and mainta in various software applications. Th is category includes integrated
development environments (IDEs) like V i s u a l Studio, Inte l l iJ I D E A , and Eclipse, which
support various programming languages including Swift, C + + , and P H P .

8

System software

System software is essential for managing computer hardware and provides a base for ap­
plicat ion software to function. It includes operating systems such as L i n u x , macOS, and
Windows, which act as the intermediary layers between computer hardware and user ap­
plications, enabling the smooth execution of programs.

Browsers

Desktop browsers are applications used to navigate the internet. C o m m o n examples include
Safari, Chrome, and Firefox, which allow users to access and interact w i t h web content
seamlessly. A l though pr imar i ly associated w i t h web development, desktop browsers also
play a significant role in desktop applicat ion development, which is par t icular ly evident in
frameworks like Electron, as discussed i n 2.1.4, where web technologies are ut i l ized to bu i ld
desktop applications.

2.1.4 T o p deve lopment frameworks

The following frameworks provide a range of options for developers looking to bu i ld robust
desktop applications tailored to specific operating environments and user needs. E a c h has
its strengths and is chosen based on the requirements of the development project and the
target audience.

Electron

Elec t ron 1 is a leading framework for creating cross-platform desktop applications using
web technologies like H T M L , C S S , and JavaScript. It is renowned for its abi l i ty to inte­
grate seamlessly across different operating systems and provides features such as automated
updates, crash reporting, and a robust d is t r ibut ion system.

Technical advantages of using electron.js:

1. Process M o d e l - Electron's process model, derived from Chromium 2 , adopts a mul t i ­
process architecture where the main process functions similar to a backend i n web
development, managing core app functions and lifecycle. Renderer processes, on the
other hand, acts like frontend, managing the user interface and user interactions,
similar to web pages in a browser, each window i n Elec t ron runs its content in an
isolated renderer process, managed by a central main process.

2. Context Isolation - Context isolation i n Elec t ron is a security feature that pre­
vents scripts running i n the renderer process from accessing Electron's internal A P I s
directly. Th is is s imilar to keeping users in their own secure, private space online,
where they can't accidentally stumble into areas where they could cause damage. For
example, without context isolation, a script on a web page could potential ly access
and manipulate the Elec t ron A P I s , leading to security vulnerabilit ies. W i t h con­
text isolation enabled, the webpage scripts and Electron's internal scripts operate
in separate environments, communicat ing only through controlled channels like the
c o n t e x t B r i d g e , which safely exposes specific functionalities to the web page.

introduction to electron - https://www.electronjs.org/docs/latest/
2 Chromium - https://www.chromium.org/chromium-projects/

9

https://www.electronjs.org/docs/latest/
https://www.chromium.org/chromium-projects/

3. Inter-Process Communicat ion (IPC) - In Electron, I P C is the mechanism that
allows the render processes (frontend) and the ma in process (backend) to communi­
cate, similar to how a client-side script (frontend) i n a web applicat ion communicates
wi th a server (backend). This is essential for actions that require access to deeper
system functionalities from the render process, which are restricted for security rea­
sons. For instance, i f a render process needs to access files from the system, it sends a
message to the ma in process using I P C , which then performs the action and returns
the result.

Taur i

Taur i stands out as a versatile framework suitable for developing secure and efficient ap­
plications across major operating systems. It is a highly composable toolki t designed for
creating desktop applications by using both Rust tools and web technologies like H T M L ,
rendered in a Webview3. Un l ike t radi t ional frameworks that may include heavy runtimes,
Taur i builds compile direct ly from Rust , as mentioned in Tauri 's documenta t ion 1 . Th is
significantly reduces the app size because it uses the system's native Webview instead of
creating a separate runtime. This approach enhances performance and reduces the binary
size, making the reverse engineering of Taur i apps a non- t r iv ia l task due to the compilat ion
to native code.

Core Architecture of Tauri:

• Core Components - The Tauri crate is at the heart of Tauri 's architecture, inte­
grating runtimes, util i t ies, and A P I s . It manages the application's configuration v ia
t a u r i . conf . j son, and handles system interactions and updates.

• Runtimes and Utilities - Tauri-runtime serves as the intermediary layer between
Taur i and various webview libraries, ensuring seamless integration and communica­
t ion. Addi t ional ly , Tauri-macros and T a u r i - u t i l s provide essential tools for creat­
ing macros and parsing configuration files, ensuring efficient asset management and
setup.

• Bundl ing and Tool ing - Taur i includes a robust bundler that automatical ly detects
and builds applications for the targeted platform. Its command-line tools, available
in both Rust and JavaScript, streamline the development process and easily integrate
into existing workflows.

Comparison of Tauri with Electron:

1. Process M o d e l - S imi lar to Electron, described i n 2.1.4, Taur i uses a multi-process
architecture, but is opt imized for efficiency by using the system's native Webview and
not including a heavy runtime. This design significantly reduces resource consumption
and applicat ion size.

2. Security - Taur i enhances security by min imiz ing the surface area for attacks through
its architectural design and by leveraging Rust 's inherent safety features. O n the other

3Webview - https://tauri.app/vl/references/webview-versions/
4Tauri Architecture - https:// tauri.app/vl/references/architecture/

10

https://tauri.app/vl/references/webview-versions/
https://tauri.app/vl/references/architecture/

hand, Elec t ron relies on Node. j s and Chromium, which may increase vulnerabi l i ty due
to their broader codebases.

3. Inter-Process Communicat ion (IPC) - Tau r i also supports I P C , described i n 3,
which enables secure and structured communicat ion between the Webview (frontend)
and the Rust-based backend. This setup ensures that system interactions are handled
securely, respecting the application's integrity and security constraints.

Tauri 's approach to appl icat ion development, focusing on security, efficiency, and in­
tegration, offers a compell ing alternative to Electron, especially for projects where binary
size, performance, and security are of greatest importance.

Qt

Qt is a comprehensive framework designed for developing mult i -platform desktop appli­
cations. It provides a broad range of tools and libraries that allow developers to deploy
applications across various operating systems and embedded systems. Bu i l t p r imar i ly on
C + + , Q t offers both user interface (UI) and non-UI components.

A s mentioned i n Qt documentation [13], it supports the development of U l -d r iven appli­
cations through its extensive set of widgets and Q M L , a declarative language that enables
sophisticated user interface layout w i th smooth animations and dynamic properties. It ab­
stracts many platform-specific details, al lowing code to be wri t ten once and deployed on
mult iple operating systems.

Challenges in Mul t i -p la t form Desktop Development with Qt:

1. Complexity of Deployment - Configuring and managing dependencies for different
operating systems can be complex, w i t h each platform having its unique requirements
and l imitat ions.

2. U I Consistency - Ensur ing that the user interface appears and functions identically
on a l l platforms can be challenging due to differences i n native U I components and
aesthetics.

3. Learning Curve - Q t uses C + + , which may present a steeper learning curve com­
pared to other high-level languages. The extensive nature of the Qt framework also
demands a significant investment i n learning its diverse functionalities.

4. License Constraints - Q t offers both open-source and commercial licenses. For
commercial usage, licensing fees might be a consideration, par t icular ly for startups
and smaller companies.

Qt remains a popular choice for developers and aims to create robust cross-platform
desktop applications, thanks to its comprehensive set of development tools and extensive
l ibrary support. However, the challenges associated wi th mult i -platform development, such
as deployment complexity and ensuring U I consistency, require careful planning and exper­
tise.

11

2.2 Subtitle Formats

This section, inspired by E m i l Nikkhah ' s article on Subtitle file formats: The most used
and when to choose each one [8], introduces various subtitle formats used in video applica­
tions, providing a technical overview and discussing their relevance in modern mul t imedia
environments.

2.2.1 S u b R i p (S R T) F o r m a t

The most well-known and widely used subtitle format is the S u b R i p F i l e Format (SRT) .
Th is format does not provide any styling or posit ioning adjustments inherently; however,
various mul t imedia players such as V L C allow simple styling or formatting of .srt files
using H T M L tags like bo ld (), i talics (), underline, and color. It is supported by most
media players and several social platforms like Facebook and YouTube .

1
00:00:00,160 —> 00 00 06,200
Hello there!

2
00:00:06,600 —> 00 00 07,100
General Grievous

List ing 2.2.1: Example of W e b V T T subtitle format

In S R T format, subtitles have a straightforward structure, where each block contains:

• A serial number.

• Timecode, which marks start and end times i n the format hh:mm:ss,ms.

• Text of the subtitle.

• E m p t y line between following dialogue blocks.

This format was chosen for its prevalence and simplicity, making it ideal for widespread
use and accessibility across various platforms. Further discussion on S R T files is provided
by authors Dick C . A . Bul te rman, Jack Jansen, among others [3].

2.2.2 W e b V T T F o r m a t (.vtt)

W e b V T T (Web Video Text Tracks) is a modern subtitle format designed for the web,
introduced wi th H T M L 5 to work alongside audio and video elements. Th is format offers
comprehensive styl ing and posit ioning capabilities, which enhances the display of captions
or subtitles to create more accessible and engaging mul t imedia experiences. Unl ike the
simpler S R T format, W e b V T T allows for detailed formatting such as text color, font, and
size adjustments directly i n the captions as can be seen on l is t ing 2.2.2.

12

WEBVTT

1
00:00:01.000 —> 00:00:04.000
<v Roger style="color:#e5e5e5; font-size:16px;">Welcome to our presentation!</v>

2
00:00:05.000 —> 00:00:10.000
<v Amy style="color:#00ff00; font-size:14px; font-style:italic;">Thank you for joining us today.</1v>

3
00:00:11.000 —> 00:00:16.000
<v Sam style="color:#ff0000; font-size:20px; font-weight:bold;">Let's dive into the details.</v>
General Grievous.

List ing 2.2.2: Example of W e b V T T subtitle format

W e b V T T is widely supported across a l l major web browsers, including Google Chrome,
M o z i l l a Firefox, and Safari. It is especially used by online video platforms like YouTube
and Vimeo , becasue it is able to handle complex interactions and styles. Its robust features
also make mul t imedia content better for viewers who are deaf or hard of hearing.

2.2.3 E B U - S T L

E B U - S T L is extensively used among broadcast channels and Video O n Demand (V O D)
services. This format allows encoding of subtitles, but it also imposes many rules on the
customization of character numbers, colors, and positions. It is adaptable across various
video formats, and is employed by the B B C and other major T V channels, making it ideal
for broadcast companies and professionals due to its versatil i ty beyond the l imitat ions of
the S R T format.

2.2.4 S u b s t a t i o n A l p h a (S S A)

SubStat ion A l p h a , or S S A , is an advanced subtitle format that offers extensive control
over text parameters including font formatting, color, height, transparency, and placement.
It is par t icular ly popular wi th in the anime community for its abi l i ty to create detailed,
animated subtitles and lyrics for karaoke videos. Its more advanced version, A S S (Advanced
SubStat ion A lpha) , includes addi t ional graphic and text features.

2.2.5 T i m e d T e x t M a r k u p L a n g u a g e (T T M L)

T i m e d Text M a r k u p Language (T T M L) is widely used by the television, broadcast, and
V O D industry. K n o w n for its high customizabili ty, T T M L excels in encoding and transpos­
ing text data into live video and audio streams, making it a prime choice for professional
media environments that demand precise synchronization and detailed text formatting.

2.2.6 S U B

The S U B format is commonly ut i l ized due to its straightforward approach, l ink ing subtitles
by frame number rather than time. This can lead to synchronization issues if the frame rate
of the subtitle does not match the video. Unl ike S R T , S U B offers no addi t ional configuration
options or support for advanced text effects, making it less reliable but very simple to use
for basic subtitle needs.

13

2.3 Audio Visualisation and Processing

Audio visual izat ion and processing involve the techniques and technologies used to visually
represent and manipulate audio signals. This section explores key aspects of audio visualiza­
t ion, including waveform representation, and introduces algorithms, tools, and frameworks
that facilitate audio processing. Mos t of the following information is based on the book
Continuous and Discrete Time Signals and Systems [11].

2.3.1 A u d i o s ignal

Signals are crucial detectable quantities used to convey information about t ime-varying
physical phenomena [11]. Mathematical ly , signals are modeled as functions of one or more
independent variables, such as time, frequency, or spatial coordinates. This mathematical
representation is fundamental in various fields of engineering, where signals play a pivotal
role in system functionality.

In audio technology, signals represent sound waves captured over time, w i th t ime acting
as the pr imary independent variable. A u d i o recording systems convert sound waves into
electrical waveforms 2.3.2 which can be stored on various media such as magnetic tapes or
digi ta l discs, for example, by the waveform y(t), which might be sinusoidal.

Signals can be classified based on how they are defined over t ime. A continuous-time
(C T) signal is defined for a l l values of the independent variable, typical ly t ime (£). O n the
other hand, discrete-time (D T) signals are defined only at discrete points i n t ime. These
signals are sampled at specific intervals, which means they only provide signal values at
those distinct t ime points. A u d i o signals are typica l ly C T signals because they represent
sound waves that vary continuously over t ime and have known magnitudes at every instant.
D T signals are s t i l l essential in audio signal processing where continuous signals must be
converted into a form that computers can handle.

2.3.2 W a v e f o r m V i s u a l i z a t i o n

A waveform is a visual representation of an audio or electrical signal that charts the am­
plitude, or strength of a signal, over t ime, as defined i n [15]. T h i s type of visual izat ion is
crucial for understanding the dynamics and structure of an audio track.

The W A V file format 2.4.3, known for its uncompressed and high-quality audio output,
is often used for waveform analysis because it preserves the original sound without any loss,
providing a true representation of the audio's ampli tude variations [4].

WaveSurfer.js

WaveSurfer.js 0 is a versatile tool for creating interactive waveforms direct ly i n the web
browser. It is par t icular ly useful i n applications developed wi th web technologies, such
as projects using Elec t ron as mentioned i n 2.1.4, where it can be integrated to provide
real-time audio waveform visualizat ion.

WaveSurfer.js works by creating a canvas element and drawing the waveform on it .
The waveform is generated by the Web A u d i o A P I 6 , which is a high-level JavaScript A P I
for processing and synthesizing audio in web applications. The A P I is buil t around the
concept of an audio context, which represents a set of audio modules that are connected

5WaveSurfer - https://wavesurfer.xyz/
6Web Audio API - https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API

14

https://wavesurfer.xyz/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API

together to process and generate sound. The audio context is created by instantiat ing the
A u d i o C o n t e x t object, which is the main entry point to the A P I . The audio context is used
to create audio nodes, which are objects that represent audio sources, audio destinations,
and audio processing modules. The audio nodes are connected together to form an audio
graph, which represents the flow of audio data through the system. The audio graph is
then processed by the audio context to generate sound.

Web A u d i o A P I uses some audio processing algorithms to analyze audio data such as
F F T to analyze audio data and D F T to convert it to frequency domain, which w i l l be
described i n the next section.

One of the key features of WaveSurfer.js is its high customizabili ty. It allows developers
to overlay H T M L elements over the waveform at specific playback times, enhancing the
interactivi ty and visual appeal of the waveform display. This makes it possible to implement
custom controls, markers, and other interactive elements that improve user engagement and
provide addi t ional context to the audio being played.

2.3.3 A u d i o S igna l P r o c e s s i n g

Audio signal processing is a cr i t ica l domain in d igi ta l signal processing that pr imar i ly deals
w i th the manipulat ion and analysis of audio signals through digi ta l methods. A s discussed
earlier, signals can be continuous or discrete i n nature, and the transformations used in
audio processing take these characteristics into account to perform various operations.

Discrete-Time Fourier Transform (D T F T)

The D T F T offers a means to represent discrete-time signals i n the frequency domain. For a
discrete-time sequence x[k], the D T F T , denoted as X(u), maps it into a continuous function
i n the frequency domain:

oo
X{u)= x[n]e-jujn (2.1)

n=—oo

Breakdown of variables of equation 2.1:

• X(uj) is the D T F T of the sequence x[n].

• w is the frequency variable (radians per sample).

• n is the t ime index, ranging over a l l integers.

• j is the imaginary unit (\/—1).

The transformation is par t icular ly useful in analyzing the spectral components of a signal
but poses computat ional challenges due to its continuous nature, making it less suitable for
direct implementat ion on digi ta l systems.

Discrete Fourier Transform (D F T)

The D F T addresses some of the computat ional challenges of the D T F T by discretizing the
frequency domain. It transforms a sequence of iV complex numbers into another sequence
of iV complex numbers, ideal for d ig i ta l computations. The frequencies in D F T are given

15

by f2 = 2irr/M for r = 0,1,..., M — 1, where M is typical ly the length of the t ime-l imited
sequence x[k] in following equation 2.2.

N-l
X[k] = x[n]e-j%kn (2.2)

n=0

The problem wi th this a lgori thm is its speed, which is not ideal, especially when the
length of the input signal is longer. T ime complexity of the a lgori thm is quadratic 0 (n 2) ,
which is considered a relatively slow algori thm.

Fast Fourier Transform (F F T)

The Fast Fourier Transform (F F T) addresses performance concerns inherent i n the Discrete
Fourier Transform (D F T) . Essentially, the F F T is a more efficient version of the D F T that
significantly increases the speed of the algori thm, even for shorter signals.

Figure 2.1: D F T vs F F T

The F F T is an a lgor i thm that efficiently computes the D F T of a sequence, reducing the
computat ional complexity to logari thmic 0{M log M) as shown i n 2.1. This significant re­
duct ion makes the F F T invaluable i n digi ta l signal processing for tasks such as convolution,
correlation, and spectral analysis. The F F T is par t icular ly advantageous i n audio signal
processing where large data sets are common, and t imely processing is crucial .

The formula for the F F T is the same as for D F T , however, the process of the F F T
involves breaking down the D F T into smaller D F T s of subsequences, typical ly exploit ing
symmetries and periodicities i n the calculat ion process. The Cooley-Tukey algori thm is the
most common F F T algori thm, which recursively divides the D F T into smaller D F T s . The
elements of the input signal are divided into smaller parts, specifically by the pari ty of the
index. This means the input array of elements is split into two arrays of size N/2 (where
iV is the size of the input signal). These arrays are then further d ivided into smaller arrays
based on the same criteria, continuing unt i l arrays of size 1 are achieved. Ul t imately , the
D F T of each smaller array is recursively computed up to the final result of the Fourier

16

transformation of the input signal. Th is method utilizes the periodici ty and symmetry of
the complex exponential function, further discussed i n Discrete-time Signal Processing [10].

2.4 Media Conversion

The process of media conversion is fundamental to managing and dis t r ibut ing digi ta l content
efficiently. It involves transforming mul t imedia files from one format to another, ensuring
compat ibi l i ty w i th various devices and platforms while maintaining quality. Th is section
explores the essential components of media conversion, including codecs, video and audio
formats, and the powerful functionalities offered by FFMPEG. Understanding these elements is
crucial for opt imiz ing the performance and usabil i ty of mul t imedia applications, par t icular ly
i n scenarios involving large volumes of data and diverse user requirements.

2.4.1 C o d e c s a n d E n c o d i n g

Codecs are media compression technologies used for shr inking media files to sizes suitable
for streaming and storage. Th is process is essential for content distributors handling large
files. The term codec is an abbreviat ion for coder-decoder or compressor-decompressor,
which applies algorithms to condense media into smaller versions, ensuring both delivery
and storage.

The most commonly used media codec for video is H.264 or Advanced Video Cod ing
(A V C) and for audio Advanced A u d i o Cod ing (A A C) . These codecs, such as H.264/AVC and
H.265/HEVC, often have dual names because they were standardized by both the M o v i n g
Pic ture Exper ts Group (M P E G) and the International Telecommunication U n i o n (I T U) .
Streaming codec expert Jan Ozer clarifies i n his webinar [12] that this naming convention is
typica l for codecs recognized by mult iple standards organizations, and it s imilar ly applies
to the Versatile Video C o d i n g (V V C) , also known as H.266.

2.4.2 V i d e o F o r m a t s

A video file format is a type of file format for storing digi ta l video data on a computer
system. Video is almost always stored i n compressed form to reduce the file size. A video
file normally consists of a container (e.g. i n the Mat roska format) containing video data i n a
video coding format (e.g. V P 9) alongside audio data i n an audio coding format (e.g. Opus) .
The container can also contain synchronization information, subtitles, and metadata such
as t i t le etc. A video format specifies how to store the video and audio streams, metadata,
and other, often optional, elements [5].

Several video formats are widely used today, each w i t h its own advantages depending
on the use case. In artice [2] Adobe highlights some of the most popular video formats that
are commonly used i n professional and consumer environments:

• M P 4 (M P E G - 4 Part 14) - W i d e l y used for streaming over the internet due to its
high compression and quali ty ratio.

• M O V - Developed by App le , preferred for high-quality video edit ing due to its flex­
ib i l i ty i n encoding options.

• A V I (Audio V ideo Interleave) - Introduced by Microsoft , known for less com­
pression, resulting i n larger file sizes but higher quality.

17

W M V (Windows M e d i a Video) - Often used for streaming applications wi th in
the Windows ecosystem.

• F L V (Flash Video) - P r i m a r i l y used for embedded video on the web, al though less
common since the decline of Adobe Flash .

• A V C H D (Advanced Video C o d i n g H i g h Definition) - U t i l i zed pr imar i ly for
digi tal recording and playback of high-definition video.

Each format serves distinct purposes and is chosen based on criteria such as compati­
bility, quali ty requirements, and dis t r ibut ion needs.

2.4.3 A u d i o F o r m a t s

A n audio file format is a file format for storing digi ta l audio data on a computer system.
The format may be containerized, where each file holds mult iple different types of data
streams, or non-containerized, consisting of a single data stream i n a format like W A V or
M P 3 . A u d i o formats can be uncompressed, lossless, or compressed wi th lossy compression

[4]-
Several audio formats are widely recognized for their effectiveness i n various applica­

tions, par t icular ly i n professional and consumer audio environments:

• W A V - K n o w n for its uncompressed high-quality audio output, ideal for professional
recording and editing.

• M P 3 - H igh ly popular for its balance of quali ty and file size, making it a standard
choice for d ig i ta l music dis tr ibut ion.

• A A C - Superior in compression and quali ty to M P 3 , commonly used for streaming
and i n devices like smartphones.

• F L A C - A lossless audio format that provides high-quality sound without any loss,
perfect for audiophiles who require pristine audio.

• A L A C - Apple ' s version of F L A C , used pr imar i ly wi th in its ecosystem to deliver
lossless audio.

These formats are selected based on their specific attributes such as sound quality, file
size, and compat ibi l i ty w i th playback devices [1].

2.4.4 F F M P E G

F F M P E G is a versatile tool used widely in the mul t imedia field for its powerful media
processing capabilities. Its functionality spans various aspects of media handling, including
reading from numerous input sources, filtering, and transcoding to mult iple output formats.
Below is a structured explanation adapted from the official F F M P E G documenta t ion ' .

F F M P E G functions as a universal media converter, capable of handling a wide array of
media types, from regular files to live input sources such as network streams or recording
devices. Th is robust tool reads input through the - i opt ion and outputs v ia a straightfor­
ward U R L format. A n y command-line input not recognized as an option is treated as an
output U R L .

7 F F M P E G - https://ffmpeg.org/ffmpeg.html

18

https://ffmpeg.org/ffmpeg.html

The software can process mult iple input and output files simultaneously, supporting
various stream types wi th in each file, such as video, audio, subtitles, and data. The format
of the container may l imi t the number of streams or types it can handle. Stream selection
for the outputs can be automatic or manual ly controlled through the -map option. F i l e and
stream indices are used to reference inputs in command-line options, which are zero-based
(e.g., the first file is indexed as 0).

Ordering of options is crucial , as they apply sequentially to the next specified file. G loba l
options, like verbosity settings, are exceptions and should be specified at the beginning.

Transcoding Process

I I I I
| i n p u t | demuxer | encoded d a t a |
| f i l e | > | p a c k e t s |
I I I I

decoder

I I
I output I -<
I f i l e muxer
I. .1

I

l .

I

I
I encoded d a t a |
I p a c k e t s

.1

I
I decoded |
I frames
I. .1

I

encoder

Figure 2.2: F F M P E G Transcoding process

The transcoding workflow as shown i n Figure 2.2 involves several key steps, each using
different components of the F F M P E G architecture:

• Demuxing - Initially, F F M P E G invokes the libavformat l ibrary to demux input files
and extract packets of encoded data. Th is step is cr i t ica l when handling mult iple input
files to mainta in synchronization, which is achieved by tracking the lowest t imestamp
across active streams.

• Decoding - Encoded packets are then sent to the decoder. Depending on the user's
selection, the stream may either be decoded or passed through v i a stream copying.
The decoder's output is uncompressed frames (video, P C M audio, etc.).

• Fi l tering - Post-decoding, frames can be further processed through various filters,
which modify or enhance the content before encoding.

• Encoding - The processed frames are re-encoded into the desired output format,
creating new packets of encoded data.

• M u x i n g - F inal ly , these packets are sent to the muxer, which writes them to the
output file, completing the transcoding process.

19

Example usages of F F M P E G

F F M P E G offers a mult i tude of command-line options for various media processing tasks.
Here are some fundamental examples, including video format conversion, audio extraction,
audio embedding, and frame rate modification.

ffmpeg - i input.avi -codec:v libx264 -codec:a aac output.mp4

List ing 2.4.1: Convert a video from one format to another (AVI to M P 4)

C o m m a n d shown in l is t ing 2.4.1 reads the A V I file (input.avi), re-encodes the video
using the H.264 video codec (libx264) and the audio using the A A C audio codec, and then
writes the output to an M P 4 file (output .mp4).

ffmpeg - i input.mp4 -vn -codec:a libmp31ame output.mp3

List ing 2.4.2: Ex t rac t audio stream from a video file and save as M P 3

C o m m a n d shown i n l ist ing 2.4.2 extracts the audio stream from a video file (input .mp4)
and saves it as an M P 3 file (output .mp3). The -vn opt ion is used to skip the video
processing, and libmp31ame specifies the M P 3 encoder.

ffmpeg - i video.mp4 - i audio.mp3 -codec:v copy -codec:a aac - s t r i c t experimental output.mp4

List ing 2.4.3: E m b e d an audio file into a video file

C o m m a n d shown in l ist ing 2.4.3 embeds (or muxes) an audio file into a video file,
replacing any existing audio. T h i s command takes a video file (video.mp4) and an audio
file (audio.mp3) and combines them into one output file (output .mp4), encoding the audio
to A A C . The video stream is copied directly without re-encoding (-codec :v copy).

ffmpeg - i input.mp4 - f i l t e r : v fps=fps=30 output.mp4

List ing 2.4.4: Change the frame rate of a video file

C o m m a n d shown i n l is t ing 2.4.4 changes the frame rate of a video file. This example
sets the frame rate of the output video (output .mp4) to 30 frames per second using the
fps filter.

Embedd ing subtitles to video

F F M P E G also provides a command that combines video and subtitle files into a single
output w i th the subtitles encoded i n a format compatible w i th most media players. After
creating or edit ing subtitles, this functionality allows for the seamless integration of the
subtitles w i th the video, ensuring that they can be displayed correctly across a wide range
of devices and media players.

20

ffmpeg - i inputFilePath - i subtitleFilePath -c copy -c:s mov_text -map 0 -map 1 outputFilePath

List ing 2.4.5: Embedd ing subtitles to video using ffmpeg

Here is a breakdown of parameters used in l is t ing command 2.4.5:

• - i inputFilePath specifies the path to the input video file.

• - i subtitleFilePath specifies the path to the subtitle file.

• -c copy instructs F F M P E G to copy a l l the streams (video, audio, etc.) from the
input files without re-encoding them.

• -c:s mov_text sets the codec for the subtitle stream. Here, mov_text is used, which
is a common format for M P 4 files.

• -map 0 and -map 1 are used to map a l l streams from the first input file (video and
possibly audio) and the subtitle stream from the second input file to the output file.

• outputFilePath is the path where the output file w i l l be saved.

Extract ing subtitles from video

Ext rac t ing subtitles from a video is a straightforward task efficiently managed by F F M P E G .
Th is process is essential, par t icular ly when compared to embedding subtitles, as it allows
for further editing or modification of the subtitles separately from the video content.

ffmpeg - i inputFilePath -map 0:s:0 -c:s srt outputFilePath

List ing 2.4.6: Ex t r ac t ing subtitles from video using ffmpeg

Here is a breakdown of parameters used in l is t ing command 2.4.6:

• - i inputFilePath specifies the video file from which to extract the subtitles.

• -map 0:s : 0 selects the first subtitle stream from the first file. Here, 0:s : 0 indicates
the first (Oth) input file, subtitles streams (s), and the first subtitle stream in the list
(0).

• -c:s srt specifies the codec for the subtitle, which i n this case is srt or SubRip
subtitle format.

• outputFilePath is the path where the extracted subtitle file w i l l be saved, typical ly
w i th an . srt extension.

2.5 Speech detection in audio

This section, inspired by article [9], explores techniques for speech detection by detecting
loud sections and converting speech to text in audio, so that creation of subtitles becomes
simpler. B y identifying loud sections it can be estimated where some potential conversations
might occur, which helps to pinpoint where subtitles might be needed. Meanwhile, speech-
to-text technology can nearly automate subtitle generation by transcribing spoken words
into text.

21

2.5.1 L o u d Sect ion D e t e c t i o n

Detecting loud sections i n audio involves identifying parts of an audio signal where the
volume exceeds a predefined threshold. Th is technique is crucial for applications like
broadcasting and audio mixing , where maintaining audio levels wi th in certain l imits is
necessary for quali ty control and regulatory compliance. Machine learning models, such as
those reviewed in the Detect ion and Classification of Acoust ic Scenes and Events (D C A S E)
competitions, often util ize features like Mel-Frequency Cepst ra l Coefficients (M F C C) and
spectrograms to classify and analyze different sound events, including loudness anomalies.

2.5.2 Speech to T e x t

Speech-to-text technology converts spoken language into wri t ten text using advanced al­
gorithms, p r imar i ly deep learning models like Recurrent Neura l Networks (R N N s) and
Convolut ional Neura l Networks (C N N s) . This technology is integral to services such as
real-time captioning, voice-driven search, and v i r tua l assistants. The effectiveness of these
systems often depends on the quali ty and diversity of the t ra ining data, which helps the
model understand various phonetics, accents, and dialects.

2.6 Subtitle alignment

W h e n working wi th mult iple video files that are variations of each other (they include extra
scenes or cutouts), aligning their audio waveforms for accurate subtitle creation is essential.
Th is section suggests methods on how this can be done.

2.6.1 T e x t - b a s e d a l ignment

Using previously mentioned speech-to-text technology i n 2.5.2, it can simplify the process
of al igning subtitles across two or more video files. Th is method involves converting the
speech from each video into text and then using algorithms to compare and synchronize
the text based on similarities and t iming.

Even without speech-to-text technology, this approach can s t i l l be effective i f an editor
has already begun creating subtitles manually. In such cases, the existing subtitles can be
used as a base for further alignment and synchronization.

2.6.2 S ignal -based a l ignment

Apar t from using speech-to-text technology, there are other methods for al igning subtitles
without relying on transcript ion. Signal-based alignment involves analyzing the audio sig­
nals of the videos to synchronize subtitles. Th is method can be par t icular ly useful when
speech-to-text technology is not viable due to language barriers, audio quality, or the com­
plexity of implementing such technology. Signal-based approaches might include techniques
like cross-correlation of audio waveforms or D T W , which w i l l be discussed i n further.

Cross Correlat ion

Cross correlation is a method used to measure the s imilar i ty between two signals by cal­
culating the s imilar i ty of two series as a function of the displacement of one relative to
the other. It involves comparing one signal to another to detect the presence of similar

22

features or patterns. Th i s technique is often referred to as sl iding dot product or sl iding
inner-product.

Given two finite-length sequences x[n] and y[n], where n ranges from 0 to N — 1 (as­
suming both sequences are of equal length for s implic i ty) , the cross-correlation r ^ f m] at
lag m is defined as follows:

Yln=o m x \ . n + m \ ' y\n\ for m > 0

Yln=o+mxN • y \ . n ~ m \ for m < 0
(2.3)

Breakdown of variables of equation 2.3:

• rXy[m] represents the cross-correlation of sequences x and y at shift m.

• x[n + m] is the (n + m)- th element of sequence x, and y[n] is the n- th element of
sequence y for m > 0.

• For m < 0, the roles of x and y are effectively reversed wi th an adjustment to the
indices to mainta in alignment.

• The sums are adjusted depending on the lag to ensure that the indices do not exceed
the bounds of the sequences.

Cross-correlation, as implemented by the M A T L A B function xcorr (x, y) , computes
the s imilar i ty between two discrete-time sequences, x and y. Th is function calculates the
degree of overlap between x and various shifted (lagged) versions of y, producing a series
of values that measure the s imilar i ty at each shift. Th is is crucial for identifying the time
delay between the signals, helping to determine how one sequence is displaced or shifts
behind the other.

D T W

Dynamic T ime Warp ing (D T W) is a non-linear a lgori thm crucial for al igning sequences that
vary i n t ime or speed. Or ig ina l ly developed for speech recognition, D T W has expanded into
fields like robotics and meteorology due to its robustness i n t ime series classification (T S C) .
Its adaptabi l i ty across different domains underscores its significance and versatili ty as one
of the most competit ive algorithms i n T S C .

Given two time series, Q and C , w i th lengths n and m respectively shown here 2.4:

Q = ill, 12, • • •, Qn} C = { c i , c 2 , . . . , cm} (2.4)

D T W aligns these series by constructing a mat r ix D(n, m), where each element D(i,j)
denotes the Eucl idean distance squared between and Cj\

ED(qi,cJ) = (qi-c:i)2 (2.5)

The a lgori thm seeks a warping path W that minimizes the to ta l distance across the matr ix
while adhering to boundary, continuity, and monotonicity constraints. Th is path begins at
D(l, 1) and ends at D(n,m), ensuring that the sequences are aligned from start to finish
without reducing the path's length. The opt imal path is the one that minimizes the sum
of these squared distances, calculated using dynamic programming:

D(i,j) =d(qi,Cj)+mm(D(i l),D(i - D(i,j - 1)) (2.6)

23

M F C C

Mel-frequency cepstral coefficients (M F C C) capture the frequency spectrum of sound using
various algorithms and adjustments to best simulate the functioning of the human ear and
the subsequent processing of the signal by the brain. Th is method allows for efficiently
capturing important aspects of sound i n a smaller number of values (coefficients), ideally
carrying the same amount of information as the original signal, which aids in various speech
recognition applications. One step in extracting M F C C coefficients involves converting the
frequency scale to the so-called M e l scale, which better reflects how humans can distinguish
differences i n various frequencies (the human ear has higher resolution at lower frequencies
than at higher ones). The formula for converting hertz to mels is:

In equation 2.7 the M e l frequency scale takes on a logari thmic form, w i th the formula
taken from the work of authors K . Sreenivasa Rao and Manjuna th K . E . [14]. Or ig ina l ly
created for automatic speaker recognition, today they are also used i n music information
retrieval, as noted by the author M . M i i l l e r i n „ Informat ion Retr ieval for Mus i c and M o t i o n "

(2.7)

24

Chapter 3

Solution Design

This chapter includes set objectives and a l l tasks necessary to achieve these objectives. It
explains how to apply the algorithms, technologies and other resources outl ined i n Chapter
2 to address the problem introduced i n the thesis' introduction.

3.1 Objectives

In order to establish objectives, it is essential to consider the user's needs. Pr imar i ly , the
user wants to comfortably input data (videos and subtitles), be able to edit the inputted
data, have displayed immediate outputs w i t h changes i n mult iple files at once after editing
and be able to save these outputs, while also ensuring that a l l background and foreground
processes are completed as quickly as possible.

• Cross-platform Compat ibi l i ty - Ut i l i ze the cross-platform development tools out­
lined i n Section 2.1 to ensure the applicat ion functions seamlessly across different
operating systems.

• R i c h Features - Design the applicat ion to enable users to efficiently edit multiple
subtitle files concurrently across various video versions, enhancing product iv i ty and
streamlining the edit ing process.

• O p e n Source - Develop an engaging project that encourages contributions from the
community. This involves wr i t ing readable code and integrating popular frameworks
to foster collaboration.

• User Experience - Design a user interface that is attractive and responsive, drawing
on the best features of existing popular applications. The interface should be intuit ive,
enhanced wi th tool-tips, icons, and animations to facilitate user interaction.

• Performance - The applicat ion should ensure high efficiency and responsiveness
even when handling complex tasks, al lowing users to execute mult iple operations
simultaneously without noticeable delays.

• Tech Support - Develop comprehensive educational materials, including technical
documentation and video tutorials, to support developers and end-users i n using and
understanding the software effectively.

F rom the objectives above, the following tasks can be extracted to achieve them:

25

1. Define use cases - The project requires defining use cases to priorit ize the develop­
ment of the mentioned r ich features.

2. Design user interface - In order to achieve the best user experience a user interface
must be designed and implemented.

3. Technology stack selection - Choosing the appropriate technology stack is cr i t ical
for ensuring cross-platform compatibil i ty.

4. Design application architecture - Designing the applicat ion architecture is essen­
t i a l to mainta in high performance in processing complex tasks.

5. Implementation - Implement designed user interface and implement the applicat ion
following the designed architecture.

6. Create tutorials - F ina l ly , creating support and educational materials is a crucial
task to help both developers and end-users understand and effectively use the software.

These tasks collectively lay the groundwork for a robust and user-friendly software
application that aligns w i t h the outl ined objectives. The following sections focus on the
design tasks(l-4) from these tasks.

3.2 Use cases

This section is dedicated to identifying key features that are cr i t ica l for the user to effectively
manage input data, ensuring a smooth workflow. These features w i l l enable users to make
the necessary changes easily, leading to the desired output data. The focus on these essential
functionalities is a iming to enhance the user's overall experience and efficiency.

Figure 3.1: Use Case Diagram

26

Figure 3.1 shows use cases for the central actor, user, who engages in various actions
related to subtitle management in video files:

• O p e n video - Opens a file dialog from which the user can select video file. Supported
video formats include M P 4 and M K V .

• O p e n subtitles - Also opens a file dialog from which the user can select subtitle file.
Supported subtitle formats include S R T and V T T .

• Extract subtitles - Al ternat ive to opening subtitles, when a video is opened and
there are embedded subtitles wi th in the video file. Th is allows for direct manipulat ion
of existing subtitles without the need for separate subtitle files.

• Ed i t /add /de l e t e subtitles - After gaining access to the subtitles, users have the
flexibility to directly alter the text i n the subtitle files, including the abi l i ty to add
new subtitles or remove existing ones as needed. E d i t i n g w i l l also include spell-check,
which w i l l work by highlighting any

• Re-t ime subtitles - The process of re-t iming subtitles is essential for synchronizing
the text w i t h the corresponding video, ensuring that the subtitles appear at appro­
priate moments i n alignment w i th the audio and visual elements.

• A l i g n subtitles - Works by using advanced algorithms to locate segments of audio
from one video file (beneath the subtitles) and match them w i t h audio from another
video file. This capabil i ty facilitates precise synchronization between two different
video sources, each w i t h their own subtitles.

• Concurrent edit - Fol lowing the alignment of subtitles and their corresponding
audio tracks, this feature enables simultaneous edit ing of both subtitle files. This ap­
proach allows for cohesive updates and modifications across the two videos, enhancing
efficiency and accuracy i n subtitle editing

• Save subtitles - Al lows users to save their edited subtitles i n formats S R T and V T T
for subsequent use or dis t r ibut ion.

• E b m e d subtitles to video - The opposite of extracting; this function embeds the
edited subtitles back into the video, merging them permanently without the need for
separate subtitle files.

The features above are a iming to cater to the user's pr imary tasks, such as input t ing
data, edit ing content, and managing outputs efficiently

3.3 User interface design

This section focuses on the design of the user interface, which is crucial for achieving
efficient interaction between the user and the software. The user interface needs to be able
to support a l l features mentioned i n section 3.2. A l so , as mentioned in 3.1, the ul t imate goal
is to create an environment where users can achieve their objectives effortlessly, enhancing
their overall experience wi th the software.

27

3.3.1 L o a d e d state

Figure 3.2 illustrates the in i t i a l design of the application's user interface i n a scenario where
two video files and their corresponding subtitle files are open. The design prominently
features video players at the top, w i t h subtitle tables below each and audio waveforms
further down, providing a comprehensive view of both the visual and textual content. The
central video player, along wi th its accompanying subtitle table and waveform, serves a
cr i t ical role i n highlighting differences between the subtitles and audio signals. This central
component was intended to make it evident which subtitles were absent or addi t ional in
either of the files.

Figure 3.2: U I design - loaded state

This layout also proposed an innovative feature for merging the two videos and their
subtitles into a single file, which could be done by buttons w i t h double arrows located
on the waveform and at the edges of the subtitle tables. However, as detailed i n section
4.1, the final user interface design underwent significant changes. The central comparison
component was removed to simplify the interface and avoid potential confusion among
users, as merging subtitles was not a pr imary function. Th is adjustment led to a more
straightforward method of displaying comparisons, which aligned better w i th the user's
needs and simplified the front-end implementation.

Despite these changes, the foundational structure of the user interface remained largely
intact. The revised design s t i l l incorporates the core components in i t ia l ly planned—video
players, subtitle tables, and waveforms—maintaining the essence of the original layout while
enhancing usabil i ty and clar i ty for the end users.

28

3.3.2 O p e n i n g states

Figure 3.3 shows the same applicat ion layout but in scenarios where not a l l necessary files
for aligning subtitles are opened.

Figure 3.3: U I design - opening states

In the first scenario, shown on the left, only one video file is open. Users can open an
existing subtitle file by cl icking on the Open subtitles button, or they can start creating
subtitles from scratch by selecting the Create subtitles but ton on the left panel of the
applicat ion. Addi t ional ly , another video file can be opened by using the Open video but ton
on the right panel.

The second scenario, depicted on the right, demonstrates what occurs when a subtitle
file is loaded under its corresponding video. In this setup, the subtitles appear w i th in the
waveform display as editable regions. These regions can be moved around, al lowing users
to adjust the t iming of the subtitles direct ly on the waveform. This visual representation
helps in easily seeing and modifying the t iming of subtitles to ensure they match the video's
audio track.

3.3.3 C o m p o n e n t s

This subsection w i l l break it down the user interface into components i n order to fully
address a l l functionalities of the user interface, which are supposed to support a l l features
mentioned i n section 3.2.

Figure 3.4: U I design - components

29

Figure 3.4 provides a detailed breakdown of the user interface, where each component is
clearly identified using arrows and labels i n green. Below is an overview of these components
and their specific roles wi th in the application:

• V ideo player - This component is essential for video playback. If no video is loaded,
it displays a but ton that prompts the user to open a video v i a the file manager
component. Th is ensures that users can easily load and play videos directly from the
interface.

• Subtitle table - Displays a l l loaded subtitles and allows for comprehensive editing
actions such as adding, deleting, spl i t t ing, merging, and dupl icat ing subtitles. It
also facilitates setting playback to match the selected subtitle. W h e n no subtitle
file is loaded, it too displays a but ton that directs users to open subtitles using the
file manager component, mir ror ing the functionality of the video player. Keyboa rd
shortcuts, detailed i n 4.1.6, enhance usabil i ty by speeding up common tasks.

• Content container - Ac t s as a wrapper for the subtitle table and video player,
integrating both components to synchronize video playback wi th the active subtitles,
enhancing the viewing and edit ing experience.

• Fi le manager - Features a but ton w i t h a popup menu that lists recently opened
files for quick access or allows the opening of new files. Th i s component is crucial for
managing file input and provides a streamlined way to access and load content.

• Waveform - Visualizes audio tracks from videos as waveforms and overlays subtitles
as interactive regions wi th in these waveforms. These regions update reactively based
on changes i n the subtitle table and can be manipulated directly for al igning or
deleting subtitles. Addi t ional ly , users can re-time subtitles by adjusting the edges of
these regions. C l i ck ing on the waveform itself brings up a menu that offers options
to add a subtitle at the clicked t ime or to reload the waveform, facil i tating precise
adjustments.

• Waveform Controls - Includes tools to zoom i n and out of the waveform timeline
and adjust the vert ical scale of the waveforms. These controls are v i t a l for detailed
editing and navigating wi th in the audio track, al lowing users to fine-tune how they
view and interact w i th audio and subtitle data.

This structured breakdown ensures that each component's function is clearly under­
stood, promoting efficient interaction w i t h the software and support ing the complex task
of video and subtitle editing.

3.4 Tech Stack Selection

This section justifies the selected technologies and their sui tabi l i ty for developing a compre­
hensive tool for subtitle edit ing and video management, ensuring opt imal performance and
user experience across various platforms. The technologies chosen are shown i n figure 3.5
below.

30

Frontend

Wavesu r fe r V i te Vue 3 S A S S

Backend

F F m p e g E lectron Node j s

Development

Gi tHub Esl int Pret t ier W e b S t o r m

Figure 3.5: Technology stack

3.4.1 F r o n t e n d

• Electron - E lec t ron 2.1.4 provides a framework for creating native applications using
web technologies, which is ideal for this project as it allows the development of cross-
platform desktop applications from a single codebase. This capabil i ty ensures that
our applicat ion can operate seamlessly on Windows, macOS, and L inux , thereby
broadening user accessibility and simplifying deployment.

• Vue.js and V i t e - Vue.js is a progressive JavaScript framework designed for bui lding
user interfaces, and when combined wi th V i t e , a modern front-end bu i ld tool , it
enhances the application's responsiveness. Th is setup is par t icular ly effective for
managing dynamic U I elements like live subtitle edit ing and video playback controls,
enabling quick updates and smooth interactions.

• Wavesurfer .js - A s mentioned i n 2.3.2, this customizable waveform audio visualiza­
t ion l ibrary allows for the visual representation of sound, essential for edit ing subtitles
in sync wi th audio cues. Its abi l i ty to integrate directly w i th the user interface ensures
a pract ical tool for precise audio track manipulations.

• S A S S - A s a powerful C S S preprocessor, S A S S simplifies the management of complex
stylesheets w i th features like variables, nested rules, and mixins, making the U I styling
more maintainable and easier to develop.

3.4.2 B a c k e n d

• Node.js - Node.js serves as the backend framework, providing a robust environment
for executing JavaScript code outside of a browser. This choice supports efficient

31

handling of file operations and processing tasks which are crucial for video and subtitle
manipulat ion.

• F F m p e g - F F m p e g 2.4.4 is indispensable for any video processing tool , offering
comprehensive capabilities to record, convert, and stream audio and video. It plays
a cr i t ica l role i n the appl icat ion for processing videos and extracting audio tracks
necessary for subtitle synchronization.

• Subtitle - A dedicated l ibrary for managing subtitle files, facil i tat ing easy parsing,
modifying, and wr i t ing of subtitles across various formats. This tool simplifies the
core functionality of editing and aligning subtitles wi th in the applicat ion.

3.4.3 D e v e l o p m e n t

• G i t H u b - G i t H u b hosts the central repository for source code management and ver­
sion control. It provides collaborative features essential for open-source development,
allowing mult iple developers to contribute effectively.

• E S L i n t - Th is tool aids i n identifying and reporting on patterns found in E C M A S c r i p -
t / JavaScr ip t code, making it possible to fix problems before they affect the applica­
tion's functionality or cause developer conflicts.

• Prett ier - Pret t ier is an opinionated code formatter that enforces a consistent style
by parsing code and re-printing it w i t h its own rules, thus enhancing the readabili ty
and maintainabi l i ty of the source code.

3.4.4 C o n n e c t i n g frontend w i t h backend

Communica t ion between the frontend and backend is facilitated through Electron's I P C
(Inter-Process Communicat ion) mechanism as mentioned i n 3. The ipcMain module in
Electron's ma in process is used to handle incoming messages and commands from the
renderer process (the frontend), which operates wi th in the application's windows. Tasks
that require more intensive processing or access to Node.js capabilities, such as file system
operations or external command execution (e.g., using F F m p e g for video processing), are
managed by the ipcMain.

O n the frontend side, the ipcRenderer module is used wi th in the Vue.js appl icat ion to
send messages and requests to the ipcMain. Th is allows the frontend to remain responsive
and offload heavier tasks to the backend without freezing the user interface. It's an effective
way to keep the user experience smooth, especially during resource-intensive operations.

3.4.5 B u i l d i n g a n d dep loyment

The bui ld ing and deployment process of the applicat ion is meticulously structured to ensure
an efficient and reliable setup. The process revolves around several key components that
interact to create a robust system capable of handling both the user interface and the
application's backend logic.

Firs t ly , the bu i ld process initiates w i th Vite, which compiles the Vue.js applicat ion.
Vite's role is crucial as it bundles a l l the frontend assets efficiently, resulting i n a highly
optimized bu i ld . Th is bu i ld is output to the dist folder, which serves as the root for a l l
compiled assets. The contents of this folder include the H T M L , C S S , and JavaScript files
that have been opt imized and minified for production.

32

Electron's main script, typical ly named index, j s or main, js, plays a pivotal role in
bootstrapping the applicat ion. Th is script is responsible for creating and managing applica­
t ion windows and handling system-level interactions. It loads the contents of the dist folder
to display the user interface, effectively turning the web applicat ion buil t w i t h Vue. j s into
a native desktop applicat ion.

The final deployment of the applicat ion involves packaging the Elec t ron applicat ion
wi th a l l its dependencies into an executable file for Windows, macOS, or L i n u x . Tools
such as Elec t ron Bui lder or Elec t ron Packager are typical ly used for this purpose, allowing
developers to create a standalone applicat ion that users can instal l and run on their devices.

3.5 Applicat ion architecture design

This section sketches the foundational design of the application's architecture, i l lustrat ing
the integration and functionality of ind iv idua l processes wi th in the applicat ion. Th is ex­
planation includes the flow of data, the responsibilities of each component, and how they
interact to mainta in applicat ion state and functionality.

3.5.1 A p p l i c a t i o n Processes S c h e m a

User Interface
^_ Attire

File Manager File V ideo Player S'.ISlIilä Subti t le Table WaveForm File Manager V ideo Player
4—Iime->

Subti t le Table lime WaveForm
4—Iime->

lackend

Correlate signals Subtiles

Files Cache

Ses s ion

Application Data

Figure 3.6: App l i ca t i on Schema

Figure 3.6 showcases the roles and interactions of applicat ion processes across three
pr imary layers - User Interface, Backend, and App l i ca t i on D a t a Layer.

The applicat ion uses a session, j son file to persistently store a l l data required by both
the backend and the user interface. Th is J S O N file is central to the application's abi l i ty
to mainta in its state across sessions. D a t a wi th in this file is updated wi th each session

33

change and is reloaded every t ime the applicat ion is launched. This mechanism not only
preserves the state after the appl icat ion is closed but also enables functionalities such as
undo (C t r l+Z) and redo (C t r l + Y) by keeping track of historical states. Moreover, the user
interface is designed to be dynamical ly updated by the backend v ia notifications to reload
the session data when significant updates are made and stored in session, json .

The FileManagement component of the applicat ion leverages a f i l e s . j s o n file to effi­
ciently manage and cache data regarding a l l loaded video and subtitle files. Th is caching
mechanism significantly speeds up the reopening of files by providing quick access through
the recent files list w i th in the FileManager component.

For handling audio, the applicat ion utilizes a dedicated cache directory to store wav files,
which are generated from the video files using ffmpeg when a video is first opened i n the
VideoPlayer component. These audio files are then accessed by the WaveForm component,
which relies on wavesurfer. j s for rendering the audio waveforms visually.

The subtitle alignment process is ini t ia ted when the user selects a subtitle that acts
as the reference for synchronization. The selected subtitle's corresponding audio segment,
defined by its start and end times, is fetched from the cached wav file. This segment is
then used by the backend to correlate w i t h other audio signals to determine the opt imal
alignment. Last ly, the process compares a l l parsed audio segments from a l l of the subtitles
to verify their alignment relative to the reference subtitle. Once alignment is confirmed, the
adjusted subtitles are saved back into the session, j son file. The frontend is subsequently
notified to reload the session data to reflect these updates.

3.5.2 A p p l i c a t i o n d a t a synchron i sa t ion

In the frontend, several pieces of data need to be shared and updated globally among
components to ensure proper reactivity and synchronization:

• V ideo file - Th is is used to reference the current video file across the FileManager
and VideoPlayer components, enabling seamless file management and playback in­
teraction.

• Subtitle file - Shared between the FileManager and SubtitleTable, this ensures
that the currently loaded subtitles are accessible and can be displayed or edited as
needed.

• Playback time - Th is cr i t ical piece of data is shared among VideoPlayer, SubtitleTable,
and WaveForm to accurately align the video playback wi th the displayed subtitles and
waveform visualizat ion.

• Subtitles - The full list of subtitles is shared between the SubtitleTable and
WaveForm to facilitate the display of subtitles on the waveform for easier editing
and synchronization.

• Act ive subtitle - Shared between SubtitleTable and VideoPlayer, this data helps
in highlighting the currently active subtitle wi th in the video playback, enhancing the
user's edit ing and viewing experience.

34

Chapter 4

Implementation

This chapter focuses on key and most challenging parts of implementat ion of the frontend
and backend. Las t ly it provides a analysis of project directory where files of frontend and
backend are differentiated.

4.1 Frontend

This section breaks down key components and other modules of the user interface involving
challenging parts of implementat ion. The final version of the user interface is slightly
different than the designed version due to several factors. Throughout the development
process, new ideas and feedback from in i t i a l user testing influenced modifications to the
original design. Addi t ional ly , pract ical considerations such as improved usability, better
workflow integration, and technical constraints led to further refinements. These changes
were implemented to enhance the overall user experience, ensuring the applicat ion is both
functional and intuit ive.

4.1.1 C o m p o n e n t s a n d module s

The diagram shown in Figure 4.1 provides a comprehensive visualizat ion of the various
components and their dependencies wi th in a the project, which was buil t using Vue.js.
Th is graph was generated using Vue Developer Tools, a popular tool for inspecting and
debugging Vue applications. Here's a detailed breakdown of the graph's elements and their
interactions:

• Vue Components - Represented by green nodes, these are the pr imary bui lding
blocks of the Vue applicat ion. E a c h component defines its template, logic, and styling,
encapsulating functionality i n a modular way.

• Javascript modules - Shown i n dark blue nodes, these files are probably used for
ut i l i ty functions, event handling, or service logic.

• Styling Files - Yel low and pink nodes represent s tyl ing files which define the visual
aspect of the applicat ion. The S C S S files (colors. scss, common, scss) allow for use
of variables, nested rules, and other features not available in pla in C S S (style.ess).

• Ut i l i ty and Framework Scripts - Nodes like vuet i fy . j s show the use of Vuetify,
a Vue U I l ibrary wi th a collection of pre-made components that adhere to Mate r i a l

35

Figure 4.1: Modules 's G r a p h

Design principles. Th i s is indicated by a light blue node, which is l inked to other
components to provide consistent U I elements across the applicat ion.

• Data and Session Management - Shown wi th orange nodes, these are crucial for
handling configuration and maintaining session state (session, json), essential for
data persistence across user sessions.

The lines connecting these nodes illustrate the dependencies and data flow between com­
ponents and scripts, indicat ing a well-structured frontend architecture where components
are modular but interconnected, where main, js functions as the entry point in i t ia l iz ing
the Vue instance and other global settings and App.vue acts as the root component from
which other components are derived. The arrows depict dependencies, start ing from the
parent node (where the arrow originates) and point ing to the chi ld node (where it ends).
Th is shows how components like Content Container .vue and LoaderSpinner. vue are in ­
tegrated into App.vue. The widespread use of helpers, j s across various components is
indicated by mult iple incoming arrows, which highlights its role i n providing u t i l i ty func­
tions throughout most of the applicat ion.

4.1.2 C e n t r a l M o d u l e Integrat ion

The file main. j s serves as the entry point for a Vue.js application, playing a crucial role in
the in i t i a l setup and configuration of the entire applicat ion. Th is central script is responsible
for several foundational tasks crucial for the robust functioning of the applicat ion.

36

The pr imary function of main.js is to create the root Vue instance. This involves
impor t ing the Vue l ibrary and other essential libraries that enhance Vue's capabilities, such
as Vuex for state management or Vue Router for seamless navigation between views. It
also binds the root component, App.vue, to an element in the H T M L . This root component
acts as the container for the entire applicat ion, w i th a l l other components nested wi th in i t .

Integrating various plugins and libraries into the appl icat ion is also done i n main. j s. For
instance, U I libraries like Vuetify are ini t ia l ized here to ensure they are available throughout
the applicat ion. This file is where global components are registered, making them accessible
in any part of the appl icat ion without the need for ind iv idua l imports in each component.
•

import { createApp, reactive } from 'vue'
import './style.ess'
import App from './App.vue'
import apiService from 'O/utilities/client.js'
import vuetify from './plugins/vuetify'
import { PerfectScrollbarPlugin } from 'vue3-perfect-scrollbar'
import 'vue3-perfect-scrollbar/style.ess '
import 'vuetify/dist/vuetify.min.ess'
import '@mdi/font/ess/materialdesignicons.min.ess'
import './ess/colors.scss'
import './ess/common.scss'

const app = createApp(App)
const globalError = reactive({ message: 1 1 })
const globalLoad = reactive({ message: '' })
const globalUpdate = reactive({ targets: [], stuck: false })

// Use Vuetify instance here
app. us e (vuet i f y)
app.use(Perf ectScrollbarPlugin)

app.config.globalProperties.$apiService = apiService
app.config.globalProperties.$error = globalError
app.config.globalProperties.$loading = globalLoad
app.config.globalProperties.$update = globalUpdate

app.mount('#app')

List ing 4.1.1: Cent ra l module - main.js

The script shown i n l is t ing 4.1.1 begins by impor t ing the necessary modules and C S S
for the Vue applicat ion. The code sets up global reactive states globalError, globalLoad,
and globalUpdate, which are used for managing errors, loading states, and updates that
cannot use the usual reactivi ty system due to performance concerns. These states are then
assigned to Vue's global properties to be accessible throughout the applicat ion. Variable
globalError is watched to display error pop-ups across the applicat ion, which helps in
centralizing error management and displaying messages whenever an error occurs i n any
part of the applicat ion. Variable globalLoad is monitored to show loading overlays wi th
progress circles. It is par t icular ly useful i n user interface feedback for operations that take
a significant amount of t ime. Last global variable globalUpdate is a stack-like structure
for updat ing parts of the appl icat ion that cannot uti l ize Vue's reactivity system directly
due to performance reasons. Instead, specific functions wi th in certain components watch
this state and make updates accordingly. Last line app. mount (' #app ') ensures that the
application is mounted to the D O M element w i th the ID ' app'.

3 7

4.1.3 Session m o d u l e

This module serves as a comprehensive session management system wi th in the applicat ion,
part icularly designed to handle dynamic user interactions that frequently modify session
data. Th is module ensures the persistence and reversible modification of session data, which
is crucial due to editing and real-time content manipulat ion.

M o d u l e Operat ion

The module initializes by setting up a reactive session object using Vue's ref , which holds
the session's current state including identifiers, timestamps, media file details, and historical
data for undo and redo actions. Th is in i t i a l setup is populated wi th blank data which w i l l
later be replaced upon loading actual session data from the backend.

Session Loading and Saving

U p o n component mounting, indicated by the onMounted hook, the module calls the load
function to fetch existing session data from the backend. This function attempts to retrieve
a session J S O N file and populates the session state wi th its contents. If no existing data is
found, a new session wi th a unique ID and t imestamp is in i t ia l ized and immediately saved
using $apiService. sendMessage('save-session') to ensure that a val id session state is
always present.

Moni tor ing Changes and Saving Session D a t a

The module uses Vue's watch to monitor changes to session.value. Whenever a change
occurs, the module compares the new session data against the last session snapshot stored in
lastSession. If differences are found, and they are not due to keys listed i n keyBlacklist
(which are ignored to prevent excessive saves), the new state is serialized and pushed into the
appropriate history stack (undo or redo) and saved back to the backend. This mechanism
ensures that every significant change is captured and can be reversed i f necessary.

U n d o and Redo Functionality

The undo and redo mechanisms are fundamental features of this module. They allow
the user to navigate through their change history, either reverting to a previous state or
reapplying changes they have rolled back. W h e n an undo or redo operation is executed, it
triggers a notification to update specific parts of the applicat ion by pushing 'undo-redo' into
$update.targets. Th is informs other components that a major data change has occurred,
allowing the applicat ion to react and update accordingly.

38

Session data

{
"data": [

{
"id"* ""
"sync": true,
"videoFile": "C:/Users/user/example.mkv",
"subtitleFile": "C:/Users/user/example.srt",
"subtitleRows": [] ,
"offset": 43264.000000000124,
"offsetMs": 43264.000000000124

},

O
] ,
"history": {

"undoList": [] ,
"redoList": []

}

}

List ing 4.1.2: Session data structure

Breaking down the session data structure i n l is t ing 4.1.2 can provide insight into the data
that the applicat ion uses and what applicat ion logic is bu i ld for it:

1. D a t a - Th is array holds objects each representing a media content container. Each
container includes:

• i d - A unique identifier for each content set, useful for t racking and managing
multiple files.

• sync - A boolean indicat ing whether the subtitle has been successfully synchro­
nized wi th the video.

• videoFile and s u b t i t l e F i l e - Paths to the video and subtitle files, respec­
tively.

• subtitleRows - A n array of subtitle entries, each containing t iming and text
data.

• offset and offsetMs - The amount of t ime (in milliseconds) by which subtitles
have been shifted to achieve synchronization.

2. History - Manages the undo and redo functionalities:

• undoList and redoList - Ar rays that store historical states of the applicat ion
data, enabling users to revert or reapply changes made during the editing process.

It is important to note that not a l l data used by the applicat ion is saved i n this structure
due to too many frequent updates like for example the current playback time of the video.

4.1.4 A p p

The A p p component serves as the main hub of the application, acting as the parent for
al l other components. It is essential for integrating various parts of the system, such as
ContentContainers and WaveContainer, creating a cohesive user interface. This layout is
effectively i l lustrated in figure 4.2 which showcases how the A p p component organizes the
view into distinct sections for content management and waveform display.

3 9

Figure 4.2: App l i ca t ion base layout

Handl ing Updates

W i t h i n the A p p component, there is a sophisticated mechanism for handling updates across
the applicat ion, par t icular ly those related to subtitle management. These updates are intr i ­
cately l inked wi th session management functionalities like undo, redo, and load operations
managed by session, js. Subti t le updates, due to their complexity, are often batched and
pushed to $update.targets. Th is system allows for handling mult iple updates at once,
ensuring that a l l components remain i n sync. Detai led handling of these updates can be
referenced in 4.1.7. If concurrent editing features are enabled, the component ensures that
updates affecting one subtitle are also applied to other synchronized subtitles, maintaining
consistency across the platform.

4.1.5 V i d e o P l a y e r

This component is designed to manage and display video content along wi th its associated
subtitles. It renders the video on the right side of the interface and features a scrollbar for
previewing subtitles in S R T format, showing how they w i l l appear once saved as can be
seen i n figure 4.3. The video player inherits standard controls from the H T M L <video>
element, which include play, pause, seek, and volume control, al lowing users to interact
w i th the video directly wi th in the UI .

'ivlaids.E01.e-subs.540p-ZASK.mkv V l
80:01:09,114 --> 08:01:10,883
Do you want "to be dragged there?1

w 2
00:01:15,933 --> 00:01:^132
Unless you want to betreated like a bag...

You people... 3

• 2:37/1:06:16] ; 80:81:18,132 --> 00:01:20^15
walk on your own two feet.

V 4

Figure 4.3: Video Player

In addi t ion to video playback, the component supports file management operations
through embedded controls. Users can open a new video file, embed subtitles directly
into the video, or close the current video file. These functions are facilitated through an

40

http://'ivlaids.E01.e-subs.540p-ZASK.mkv

ActionMenu component that dynamical ly updates its items based on the state of the video
file and the presence of subtitles. For instance, the save action becomes available only
when both a video file and subtitles are loaded and the subtitles are ready to be embedded.
This ensures that users only see relevant options, streamlining the interface and preventing
errors. Addi t ional ly , the edit action allows users to change the current video file if one is
already loaded, or open a new file if none is present. Similarly, the close action is enabled
when a video file is open, providing a quick way to clear the current session.

U p o n video play, the component emits an update event update:time to synchronize
the current t ime across a l l components wi th in the applicat ion that require this data. This
ensures that a l l related components are aware of the current video t ime.

Current ly playing subtitle

The currently playing subtitle is displayed i n an overlay style directly on the video, which
dynamical ly adjusts based on user interaction and video playback status. The styl ing and
animation are carefully designed to enhance readabili ty and user experience. L i s t i ng 4.1.3
contains the C S S and the conditions under which the style changes.

<style scoped>
.subtitle-overlay {
position: absolute;
bottom: 4rem;
z-index: 99;
width: 100%;
transition: transform ease 0 2s;

}
.subtitle-overlay-content {

color: white;
background: rgba(50, 50, 50, 0.9);
margin: auto;
padding: O.lrem 0.5rem;
border-radius: 0.5rem;
font-size: 0.85rem;

}
</style>

List ing 4.1.3: Subti t le overlay styling

The .subtitle-overlay class i n l is t ing 4.1.3 defines the posit ioning and basic appear­
ance of the subtitle overlay, ensuring it is placed at a consistent locat ion above the video
controls. The overlay content is styled to ensure the text is legible against potential ly vary­
ing video backgrounds. The transi t ion for the transform property is defined to smooth out
the movement of the subtitle text, which translates vert ically based on whether the video
controls are being interacted wi th .

4.1.6 Subt i t l e T a b l e

The SubtitleTable component, as visualized, provides a user-friendly layout designed for
managing subtitle files effectively. It features a structured table format that displays various
attributes of subtitle entries, enabling easy edit ing and manipulat ion of subtitle data. It is
perhaps the most important component, because user w i l l be editing subtitles here.

Figure 4.4 showcases how the SubtitleTable component looks like inside the applica­
t ion.

41

(,
Maids.EOle

subs.540p-ZASK.srt j

A l i g n e d D u r a t i o r t CPS S u b t i t l e t e x t

V Z 4 0 s 17.51 Can you still call yourself a human being? t

1.93 s 7.27 Vou are right

4.03 s 4.97 We... are not human.

*y 1.36 s 19.08 Get your head on s t ra ight

4.72 s 9.53 You t o o are no longer a human.but a servant

>/ 3.30 s 2.73 No... no.

2.18 s 16.06 - You're w rong l - No, you' re w rong !

V 5.49 s 5.10 You, too, are a servant now.

4.55 s 7.03 You are no longer a human being.

X 2.32 s 4.74 [Episode 1] Split

1.69 s 18.40 Today, it is hydrangea flowers. @ [1 [+] | f)

X 5.95 s 9.25 1 don ' t know how he f inds a dif ferentf lower every day.

X 1.21 S 17.33 Did you look in to it?

V J

Figure 4.4: Subti t le Table

Component Layout

The header of the table is la id out horizontally and includes columns such as Aligned,
Duration, CPS (Characters Per Second), and Subtitle text. Each header column is
dynamical ly set to display a ti t le unless it 's reserved for action buttons, offering a clear
indicator of the data below it . Below the headers, the body of the table is wrapped in
a perfect-scrollbar component, ensuring smooth scrolling even w i t h a large number
of subtitle entries. This scrollable area contains rows, each corresponding to a subtitle
segment.

Each row presents ind iv idua l subtitle data, al igning wi th the headers above. Special
icons are used to indicate whether a subtitle is properly aligned (green check for yes, red
cross for no). Duration and CPS are calculated and displayed dynamically, w i t h C P S values
colorized based on certain cri teria to provide visual feedback about subtitle pacing. The
Subtitle text field i n each row is editable, al lowing for direct modifications. This input
is styled to take up the full w id th of its column when the header is Subtitle text.

Active Subtitle

The active subtitle is highlighted in blue, making it visually distinct i n the interface. It is
automatical ly selected when a user interacts w i th a corresponding section on the Waveform
component, as detailed in 4.1.7. W h e n aligned and concurrent editing is enabled, this active
status is synchronized across other subtitle tables.

For the active subtitle, specific action buttons are presented under the actions header.
These buttons facilitate operations such as spl i t t ing the subtitle, merging it w i th others,
inserting a new subtitle immediately after, and deleting i t . Equ ipped wi th tooltips, each
but ton provides clear guidance and is designed to perform its respective action upon being
clicked. Th is setup is essential for efficient subtitle editing, al lowing direct manipula t ion of
subtitles through the table interface, as further supported by keyboard shortcuts described
i n 4.1.6.

K e y b o a r d Shortcuts

The component also supports various keyboard shortcuts to enhance product iv i ty and ease
of use. The handleMultipleKeyCombinations function is designed to respond to specific

42

http://subs.540p-ZASK.srt

Figure 4.5: Wave Container

keyboard inputs, providing shortcuts for common actions. For instance, arrow keys are
used to navigate between subtitles, w i th addi t ional functionality when combined w i t h the
C t r l key to j ump to the beginning or end of the list. Other shortcuts include the Q key to
play from the active subtitle, Enter to select a subtitle, and D along wi th Shift to duplicate
a subtitle. Spl i t t ing a subtitle can be achieved by pressing S w i th Shift, and pressing Insert
adds a new subtitle after the active one.

4.1.7 W a v e F o r m

The WaveForm component is a crucial display tool for managing audio and subtitle synchro­
nizat ion wi th in this video editing software. It utilizes the wavesurfer. j s l ibrary, as intro­
duced i n 2.3.2, to display audio waveforms from video files. This component also employs
the regions plugin from wavesurfer .js to visualize subtitles, enabling users to interact
directly w i th the audio timeline to re-time, add, or delete subtitle entries. The waveforms
of mult iple videos are shown simultaneously, providing a comprehensive overview of the
audio and subtitle synchronization, as i l lustrated i n figure 4.5. They are a l l wrapped in a
component called WaveContainer, which handles concurrent scrolling, t ime zoom and wave
zoom. Concurrent scrolling is later broken down i n 4.1.7.

Rendering and performance

W h e n it comes to rendering, the WaveForm displays a progress circle dur ing processing to
indicate that data is being loaded or adjusted. The waves of the waveform are generated
into the wavesurfer. js's canvas from audio data extracted using ffmpeg on the backend
and are stored in a cache directory. Th is cached data is accessed v ia a U R L path, allowing
for efficient loading and rendering of the waveforms i n the user interface.

A s mentioned i n 4.1.2, there is a globalUpdate variable, which is used for parts of the
application that cannot uti l ize Vue's reactivity system directly due to performance reasons.
One of these parts is rendering of the subtitles on the WaveForm, so this variable is watched
as shown in l is t ing 4.1.4.

4 3

const handleSubtitleUpdates = () = > {
const { name, target, idx } = $update.targets[$update.targets.length - 1]
i f (idx !== props.idx) return
let region = null
i f (target && target.id && target.id !== -1)

region = wsRegions.value.regions.find(region => region && region.subld === target.id)
switch (name) {

case 'subtitles':
updateRegionsFromSubtitles()
break

case 'subtitle-update':
updateRegion(target, region)
break

case 'subtitle-delete':
i f (region) {

region.remove()
delete wsRegions.value.regions[wsRegions.value.regions.indexOf(region)]

}
break

case 'subtitle-add':
addRegion(target)
break

default:
break

}
$update.targets.pop()

}
watch(

() => $update.targets,
0 => {

i f (!$update.targets.length) return
i f ($update.targets[$update.targets.length - 1] === 'undo-redo') {

updateRegionsFromSubtitles()
i f (props.idx === Array.from(document.getElementsByClassName('waveform')).length - 1)

$update. targets = []
} else {

handleSubtitleUpdates()
}

},

{ deep: true },

Listing 4.1.4: Handl ing subtitle updates

The handleSubtitleUpdates function i n l is t ing 4.1.4 is triggered by a watcher on the
$update.targets array, which stores details about which subtitles need updat ing. This
function specifically checks the last i tem i n the $update.targets array to determine the
nature of the update required:

• Update single subtitle - If a single subtitle's details have changed, method updateRegion
is called to update just that specific region (or subtitle segment) on the waveform.
This is more efficient than redrawing a l l subtitles because it only addresses the changed
element.

• Update all Subtitles - M e t h o d updateRegionsFromSubtitles re-renders a l l subti­
tle regions on the waveform. It's used when a more comprehensive update is necessary,
such as after undoing or redoing changes, which might affect mult iple subtitles.

• Delete subtitle - If a subtitle is to be removed, the corresponding region is identified
and deleted from the waveform display. This also involves cleaning up the internal

4 4

array that tracks these regions, ensuring that the application's state remains accurate
and up-to-date.

• A d d new subtitle - W h e n a new subtitle is added, this function creates a new
region on the waveform to represent it visually.

Interactions with subtitles

Interactivity wi th in the WaveForm includes a variety of menu options that enhance user
experience. C l i ck ing on a subtitle wi th in the waveform opens a popup menu that allows
the user to al ign or clear alignment and delete the subtitle. If a click occurs on the waveform
where no subtitle exists, it opens a popup menu that to add a subtitle, reload the waveform,
and clear any existing alignments are presented. These features facilitate precise control
over subtitle t iming and placement directly from the waveform interface.

Alignment

The alignment process wi th in the WaveForms is designed to ensure accurate synchronization
of audio tracks wi th subtitles. W h e n a user aligns a subtitle, the start and end times of
the referenced subti t le(which was clicked on) are sent to the backend, which then updates
the session data w i th the aligned subtitles and calculates any necessary offsets. Th is offset
is applied as a left margin to the start of one of the WaveForms, helping to visually align
the audio signals beneath the subtitles.

Before Alignment

Figure 4.6: Subti t le alignment

This alignment is key to ensuring that the audio and subtitles are in sync, which can
be visual ly confirmed as from figure 4.6.

Re-t iming

The re-t iming of subtitles wi th in the WaveForm component allows users to interactively
adjust the t iming of subtitles directly through the waveform interface. Th is interaction is
done in two pr imary ways:

1. M o v i n g subtitle on the timeline - Users can click, hold, and drag a subtitle region
left or right to shift its start and end times simultaneously. This method maintains
the durat ion of the subtitle but changes its posit ioning wi th in the timeline, allowing
for quick adjustments in sync w i t h audio cues.

45

2. Modi fy ing duration by adjusting edges - B y holding and dragging the right
or left edge of a subtitle region, users can change either the start t ime or end t ime,
respectively. Th is action affects the durat ion of the subtitle, making it longer or
shorter depending on the direction of the drag.

To ensure subtitles do not overlap, which can confuse viewers and disrupt the viewing ex­
perience, the WaveForm component includes specialized listeners wi th in the wavesurfer. js
framework. The provided code snippet i n l is t ing 4.1.5 is crucial for managing these inter­
actions.
• •

wsRegions.value.on('region-created', region => {
region.content.style.margin = 'auto'
region.listeners.update.add(() => handleRegionDrag(region))

})

List ing 4.1.5: Region listeners

W h e n a region (subtitle) is created, a margin is automatical ly set, and an update listener
is added. This listener invokes handleRegionDrag as shown in l is t ing 4.1.6 whenever the
region is manipulated.

const handleRegionDrag = region => {
const regions = wsRegions.value.getRegions().sort((a, b) => a.start - b.start)
const regionlndex = regions.indexOf(region)
const regionStart = region.start
const regionEnd = region.end

// check if region is overlapping with his left neighbor
const nearestLeftRegion = regions

. f i l t e r ((r , i) => i < regionlndex)

.reduce((acc, r) => (r.end > acc.end ? r : acc), { end: 0 })
i f (nearestLeftRegion.end > regionStart) {

region.start = nearestLeftRegion.end
region.end = regionEnd + (nearestLeftRegion.end - regionStart)

}

// check if region is overlapping with his right neighbor
const nearestRightRegion = regions

. f i l t e r ((r , i) => i > regionlndex)

.reduce((acc, r) => (r.start < acc.start ? r : acc), { start: 1000000 })
i f (nearestRightRegion.start < regionEnd) {

region.end = nearestRightRegion.start
region.start = regionStart - (regionEnd - nearestRightRegion.start)

}

}

List ing 4.1.6: Handl ing region updates

Funct ion shown i n l is t ing 4.1.6 retrieves a l l existing subtitle regions and sorts them by
their start times. E a c h region is then indexed to identify its posi t ion relative to others.
Handl ing drag operations for each moved region is done by checking if there is overlap
wi th the subtitle directly to the left. If the current region's start t ime intrudes into the
left neighbor's end time, both the start and end times of the current region are adjusted
forward to eliminate the overlap. Similarly, i f the current region's end t ime extends into
the start t ime of the right neighbor, it 's pulled back to prevent overlap.

4 6

Scrolling into playback

This applicat ion behaviour is important i n order to ensure that the WaveContainer display
scrolls synchronised wi th video playback, providing a smooth auto-scrolling experience as
the video progresses. It is done by dynamical ly calculat ing the appropriate scroll posi t ion
wi th in the waveform container based on the current playback t ime of the video as can be
seen in l is t ing 4.1.7.

const handleTimeUpdate = ()=>{
i f (ws.value) {

ws.value.setTime(time.value)
}

const container = document.getElementById('waveform-container')
const currentContainerWidth = ws.value.Tenderer.container.getBoundingClientRect().width
const maxWidth = Math.max(

...Array.from(document.getElementsByClassName('waveform')).map(
x => x.children[0].shadowRoot.querySelector('.scroll').getBoundingClientRect().width,

),
)
const containerRatio = currentContainerWidth / maxWidth
const cursorPosPercent = ws.value.getCurrentTime() / ws.value.getDuration()
const scrollPos = container.scrollWidth * cursorPosPercent * containerRatio - 100
container.scrollTo({

l e f t : scrollPos,
})

}

List ing 4.1.7: Hand l ing t ime updates

The method handleTimeUpdate i n l is t ing 4.1.7 then computes the ratio of the con­
tainer's wid th to this m a x i m u m wid th (containerRatio), ensuring that the scroll posi t ion
scales correctly relative to the size of the waveform displayed. The posit ion of the play­
back cursor wi th in the WaveContainer's (cursorPosPercent) is calculated by d iv id ing the
current playback time by the total durat ion of the video, resulting in a percentage that
represents how far along the video has played.

The desired scroll posit ion (scrollPos) is then calculated by mul t ip ly ing the total
scrollable wid th of the container by both the cursor's percentage posit ion and the container
ratio. A fixed offset of 100 pixels is subtracted to align the scroll posi t ion accurately wi th
the cursor wi th in the WaveContainer's display, ensuring the cursor is ideally positioned
wi th in the viewport.

Final ly , the WaveContainer is instructed to scroll to this calculated posit ion using the
scrollTo method, w i th smooth scrolling enabled.

Concurrent Ed i t ing

The concurrent edit ing functionality enhances the flexibility of subtitle editing. A central
but ton wi th in the A p p toggles a popup menu that offers several options depending on
whether a subtitle is currently aligned. If no subtitle is aligned, the first action is to align
the active subtitle from the SubtitleTable. F r o m this menu, users can choose to re-time
subtitles, edit their text concurrently, delete aligned subtitles, or add new subtitles wi th in
aligned sections.

Re- t iming is performed directly on the WaveForm, s imilar to the process described in
4.1.7, but it also adjusts the t iming of any subtitles that are aligned w i t h the currently
active one. Concurrent text edit ing occurs wi th in the SubtitleTable (as detailed i n 4.1.6),

47

allowing for simultaneous modifications to the text of aligned subtitles i f this feature is
enabled.

Popups

W i t h i n the applicat ion, the management of user notifications and loading states is handled
through specialized popups. These include the ErrorBox for displaying error messages and
the LoaderSpinner for indicat ing loading states, enhancing user feedback and applicat ion
responsiveness.

watch(errorMessage, value => {
i f (value) {

setTimeout(C) => {
$error.message = ''
errorMessage.value = ''

}, 5000)
}

})

Listing 4.1.8: Hand l ing error message display

C o m m a n d shown i n l is t ing 4.1.8 attaches a watch function to the errorMessage reactive
property. W h e n an error message is detected (i.e., value becomes true), a t imer is ini t iated
using setTimeout. Th is t imer clears the error message stored in both errorMessage and
the global $error .message after 5 seconds, ensuring that error notifications are visible just
long enough to inform the user without lingering on the screen.

watch($error, value => {
i f (value) {

errorMessage.value = value.message
}

})

Listing 4.1.9: Upda t ing error message from global error state
C o m m a n d shown i n l is t ing 4.1.9 listens for changes in the $error reactive object. If there is
a change, the errorMessage reactive property is updated to reflect the new message. This
ensures that any errors affecting the applicat ion are quickly displayed i n the ErrorBox,
providing t imely feedback to the user.

watch(
$loading,
value => {

i f (value) {
loadingMessage.value = value

}

},

{ immediate: true },
)

Listing 4.1.10: Hand l ing loading state display

C o m m a n d shown i n l is t ing 4.1.10 watches the $loading reactive state wi th the immediate:
true option, which triggers the function as soon as the component is ini t ia l ized. This watch
captures and updates the loadingMessage reactive property whenever $loading changes,

18

signaling the start or end of a loading process. The LoaderSpinner is thus controlled
to show or hide based on the current loading status, keeping the user informed about
the application's activity. These reactive watch functions effectively manage the dynamic
display of errors and loading states wi th in the applicat ion, providing cr i t ica l feedback to
users i n a controlled and t imely manner. Th is setup ensures that the user interface remains
clear, informative, and responsive to the ongoing activities wi th in the applicat ion.

4.2 Backend

This section delves into the backend processes essential for handling various mul t imedia
tasks such as parsing subtitle files, converting audio formats, aligning audio signals, and
synchronizing subtitles w i th audio. These functions are cr i t ica l for ensuring that the media
content is properly processed and synchronized as fast as possible for an opt imal user
experience.

4.2.1 P r o c e s s i n g Subt i t les

The handling of subtitle files in this applicat ion involves specific functions that uti l ize the
FFmpeg tool and subtitle l ibrary to manage subtitles directly from video files. These
functions are tailored to extract subtitles, merge them back into video files, save subtitles
in different formats, and parse subtitle data effectively.

4 9

Extract ing subtitles from video

const extractSubtitles = inputFilePath => {
return new Promise((resolve, reject) => {

inputFilePath = inputFilePath
.replace(/\\/g, '/')
. replace (A//g, '\\')
.replace(/file:\\\\\\/g, ")
.replace(/\r\n/, '')

i f (!fs.existsSync(inputFilePath)) {
console.error('The input f i l e does not exist:', inputFilePath)
reject (new ErrorC Input f i l e not found'))
return

}

const outputFilePath = " ${process.cwd()}\\videos\\
${path.basename(inputFilePath, path.extname(inputFilePath))}.srt"
ffmpeg(inputFilePath)

.outputOptions([
'-map 0:s:0', //Assumes the first subtitle stream; adjust if needed
'-c:s srt', //Specifies copying the subtitle stream as-is, assuming it's in SRT format

])
.save(outputFilePath)
. on(' end' , () => {

console.log("Subtitles have been extracted to: ${outputFilePath}~)
// Read and parse the subtitle f i l e
fs.readFile(outputFilePath, 'utf8', (err, data) => {

i f (err) {
console.error('Error reading the subtitle f i l e : ' + err.message)
reject(err)

} else {
try {

const subtitlesObj = parseSync(data)
resolve(subtitlesObj)

} catch (parseError) {
console.error('Error parsing the subtitle f i l e : ' + parseError.message)
rej ect(parseError)

}

}

})
})
.on('error', err => {
console.error('An error occurred: ' + err.message)
reject(err)

})
})

}

List ing 4.2.1: Ex t rac t subtitles from video

Funct ion shown i n l is t ing 4.2.1 uses F F m p e g to extract S R T subtitle streams from video files.
It targets the embedded subtitle tracks wi th in the video file, extracting them into standalone
S R T files. This capabil i ty is par t icular ly useful for workflows that require subtitles to be
edited or processed separately from their corresponding video. The function modifies the
path to accommodate file system differences, checks the file's existence, and then executes
the extraction, saving the subtitles to a specified output path.

50

Embedding subtitles to video

const mergeSubtitles = (inputFilePath, subtitles, outputFilePath) => {
return new Promise((resolve, reject) => {

ffmpeg(inputFilePath)
.input(subtitles)
.outputOptions(['-c copy', '-c:s mov_text'])
.save(outputFilePath)
. on(' end' , () => {

console.log("Subtitles have been merged to: ${outputFilePath}~)
resolve(outputFilePath)

})
.on('error', err => {
console.error('An error occurred: ' + err.message)
reject(err)

})
})

}

Listing 4.2.2: E m b e d subtitles into video
Funct ion shown i n l is t ing 4.2.2 integrates the S R T files back into the original video using
FFmpeg . After subtitles have been modified or created, they need to be embedded back into
the video. This function allows for the inclusion of new or edited subtitle tracks without
altering the original audio and video streams, ensuring that the final product is ready for
playback wi th the updated subtitles seamlessly integrated.

Loading and saving subtitle files

const loadSubtitles = subtitles => {
return parseSync(subtitles)

}

const saveSubtitles = (subtitles, outputFilePath, preview = false) => {
const format = outputFilePath.endsWith('.vtt') ? 'WebVTT' : 'SRT'
const srtString = stringifySync(subtitles, { format })
i f (preview) return srtString
fs.writeFileSync(outputFilePath, srtString)

}

Listing 4.2.3: L o a d and save subtitles
Funct ion shown in l is t ing 4.2.3 uses the subtitle l ibrary to load and save subtitle files. The
loadSubtitles function is crucial for loading subtitles from files and converting them into a
structured format that can be easily accessed and manipulated wi th in the applicat ion. The
saveSubtitles function converts subtitle data into a textual format like S R T or W e b V T T
and writes it to a file. The subtitle l ibrary provides functions to serialize subtitle objects
according to the specifications of different subtitle formats.

4.2.2 A u d i o C o n v e r s i o n

Audio conversion is a cr i t ica l step i n preparing media for efficient processing and visualiza­
t ion w i t h i n this applicat ion, par t icular ly when dealing wi th complex and long audio-visual
content. Therefore, a decision to convert videos into WAV files was made, due to relatively
long waveform loading from video into waveform using the wavesurfer. j s l ibrary. Cur ­
rently wavesurfer. j s uses a local pa th to fetch the decoded audio data from cached WAV
file. These cached files are also useful when aligning audio signals, which is the subject of
section 4.2.3.

51

const convertToWave = (videoFilePath, wavFilePath, sampleRate) => {
return new Promise((resolve, reject) => {

ffmpeg(videoFilePath)
.audioCodec('pcm_sl61e') //Set the audio codec
.audioFrequency(sampleRate) // Set the sample rate
.audioChannels(1) // Set to mono audio
.format('wav') // Set the output format
. on(' end' , () => {
console.log("Audio extracted to: ${wavFilePath}~)
resolve(wavFilePath)

})
.on('error', err => {
console.error('An error occurred: ' + err.message)
reject(err)

})
.save(wavFilePath) // Output file path

})
}

Listing 4.2.4: Convert video audio to W A V file
Funct ion shown i n l is t ing 4.2.4 sets the audio codec to pcm_sl61e, which is a format for
raw audio that strikes a balance between file size and audio quality, ideal for processing
and quick loading. The audio is converted to a mono track to reduce complexity and size,
and the sample rate is expl ic i t ly set to 8000 Hz. Th is lower sample rate is sufficient for
visual waveform analysis while significantly reducing the data load, which accelerates the
waveform rendering on the frontend. The output WAV file is saved into a cache directory,
ensuring that it is readily accessible for subsequent operations or mult iple accesses, which
enhances the application's responsiveness and user experience.

4.2.3 A u d i o s ignal corre la t ion

Audio signal correlation is a cr i t ica l technique used in audio processing to determine how
closely one audio signal matches a segment of another audio signal.

The objective is to compute a correlation score that quantifies the s imilar i ty between
two audio signals. This involves analyzing the audio data to extract meaningful features and
then comparing these features to find the best alignment or match. One common approach
is to use Mel-Frequency Cepst ra l Coefficients (M F C C s) , which are capable of capturing the
key characteristics of an audio signal. The correlation between these coefficients can then
be used to determine how similar two audio segments are.

4.2.4 E x t r a c t i o n of M F C C s

const extractMFCCs = (audioData, sampleRate, bufferSize) => {
Meyda.sampleRate = sampleRate
Meyda.bufferSize = bufferSize // A common bufferSize for MFCC
const mfccs = []

for (let i = 0; i < audioData.length; i += Meyda.bufferSize) {
let buffer = audioData.slice(i, i + Meyda.bufferSize)
i f (buffer.length === Meyda.bufferSize) {

const mfcc = Meyda.extract('mfcc', buffer)
mfccs.push(mfcc)

}

}

return mfccs
}

52

List ing 4.2.5: Ex t r ac t ion of M F C C s

The function extractMFCCs i n l ising 4.2.5 processes audio data to compute a series of
M F C C s by using the Meyda. j s l ibrary, where sampleRate of 8000 Hz is used just like in
audio conversion 4.2.2, because it uses the same audio data or segments from it as are saved
in the WAV file. Below is a mathematical overview of how exactly are the M F C C s computed:

Let s[n] be the input audio signal, where n is the sample index. The M F C C extraction
process involves d iv id ing the audio signal into overlapping frames and applying a window
function. For each frame, the Fourier transform is calculated, followed by the M e l filter
bank processing, and finally the discrete cosine transform to obtain the M F C C s :

MFCC = DCT (log (MelFilter (\F FT (window (s[n}))\2))) (4.1)

In equation 4.1:

• DCT denotes the Discrete Cosine Transform

• MelFilter represents the M e l scale filter bank applicat ion

• FFT is the Fast Fourier Transform

• window refers to the applied window function

4.2.5 C r o s s - C o r r e l a t i o n of M F C C s

const crossCorrelateMFCC = (mfccSegment, mfccSignal) => {
let maxCorr = -Infinity // Start with a very low correlation score.
let bestOffset = 0

for (let offset = 0; offset <= mfccSignal.length - mfccSegment.length; offset++) {
let sum = 0

for (let i = 0; i < mfccSegment.length; i++) {
let diffSum = 0
for (let j = 0; j < mfccSegment[i].length; {

// Calculate squared difference for each MFCC coefficient
let d i f f = mfccSegment[i][j] - mfccSignal[i + offset][j]
diffSum += di f f * d i f f

}

sum -= diffSum // Subtract to simulate correlation (minimizing distance)
}

// We look for the maximum since sum is negative (maximally less negative is better)
i f (sum > maxCorr) {
maxCorr = sum
bestOffset = offset

}

}

return { bestOffset, maxCorr: -maxCorr }
}

List ing 4.2.6: Cross-Correlat ion of M F C C s

The function crossCorrelateMFCC shown i n l is t ing 4.2.6 is used to find the best align­
ment between two sets of M F C C s . The cross-correlation is performed by shifting the seg­
ment M F C C array over the signal M F C C array and calculat ing the sum of squared differ-

5 3

ences for each potential alignment. The alignment w i t h the m i n i m u m squared difference
(maximally negative sum i n this implementation) indicates the best match:

- y~] - s[i + k][j})2 (4.2)

In equation 4.2:

• m is the M F C C array of the segment,

• s is the M F C C array of the signal,

• N is the number of frames i n the segment,

• M is the number of coefficients per frame,

• k is the offset i n the signal where the segment is being compared.

The resulting offset from function crossCorrelateMFCC is later used for posit ioning the
subtitle i n the correct part of the audio signal or checking i f the subtitle is aligned, which
is the objective of next subsection.

4.2.6 Subt i t l e A l i g n m e n t

This section outlines the methodology for al igning subtitles based on the correlation of their
audio signals, focusing pr imar i ly on backend processes. The alignment procedure begins
by identifying and synchronizing a specific subtitle from the frontend interface, where the
start and end times of the subtitle are relayed to the backend.

A complete process is showcased i n figure 4.7, which consits of aligning segment to a l l
audio and aligning rest of the subtitles.

Initial alignment

The first step i n the alignment process involves posit ioning a selected subtitle's audio seg­
ment wi th in the complete audio track of the video to which the subtitle is being aligned.
The backend performs the following operations:

• A u d i o files pertinent to the alignment are loaded into memory to facilitate rapid access
and processing.

• Mel-Frequency Cepstra l Coefficients (M F C C s) are extracted from both the subtitle's
segment and the entire audio track.

• The extracted M F C C s are then cross-correlated to determine the best offset, ensuring
that the subtitle's audio segment aligns accurately wi th the video's audio track. The
determined offset is stored i n session, json for subsequent processing and reference.

Aligning all subtitles

U p o n successfully al igning the in i t i a l subtitle segment, the process extends to other subtitles
wi th in the video. The steps involved are:

54

Before alignment

-V3V. M F l C i

All MFCCs and segment MFCCs

Cross correlate
M F C C e

Extract MFCCs
•"ran- . ^ ; t t e

segments

Cross correlate
MFCCs subtit le

segments
-Sutit i l les with aligned flag—

After alignment
Figure 4.7: Al ignment process in the backend

Evaluat ion of audio signals from other subtitles to ascertain i f they match using a
s imilar i ty threshold established through prel iminary experiments.

Identification of subtitle pairs that are temporal ly proximate, enhancing the l ikelihood
of alignment.

Ex t rac t ion and cross-correlation of M F C C s from these subtitle segments. Successful
alignment is indicated by an offset equal to zero and m a x i m u m correlation wi th in the
experimentally determined range.

Subtitles that are aligned are flagged and adjusted i n t iming to ensure precise syn­
chronization.

The updated subtitles are saved into session, json.

5 5

A notification is sent to the frontend, prompt ing it to refresh and display the aligned
subtitles.

4.3 Production vs development

This section presents a comparative analysis between the operational environments of back-
end and frontend technologies i n Product ion and Development contexts.

Backend

Figure 4.8: P roduc t ion vs development frameworks

The overview of the frameworks used for product ion and development is showcased in
figure 4.8. In the product ion setting, the system utilizes a buil t Vue3 applicat ion com­
bined wi th Electron. Th is setup ensures a stable and efficient applicat ion deployment
suitable for end-users. Dur ing development, the system operates using a preview Vue3 ap­
plicat ion that features hot module reload, facil i tating immediate updates and debugging.
A n Express server is used as the backend, support ing dynamic development needs wi th
increased flexibility.

The file c l i e n t . j s plays a crucial role i n determining the interaction between the
frontend and the backend services, either through the Express server or Electron ' s I P C
(Inter-Process Communica t ion) . Below is the code snippet showcasing how the applicat ion
determines the environment and communicates accordingly:

5 6

import axios from 'axios'

const isElectron = typeof window.electron !== 'undefined'
const apiService = {

async sendMessage(channel, data, config) {
i f (!isElectron) {

i f (config?.method === 'GET') {
return await axios.get("http://localhost:3000/${channel}~)

}
return await axios.post("http://localhost:3000/${channel}~, data, config)

}
console.log('API request:', channel, data)
const response = {

data: await window.electron.ipcRenderer.invoke(channel, data),
}

console.log('API response:', response)
return response

},

}

export default apiService)

Listing 4.3.1: Endpoin t for frontend - c l i e n t , js

The c l i e n t , j s script shown i n l is t ing 4.3.1 checks i f the applicat ion is running in an
Elect ron environment (indicative of production) by verifying the presence of window, electron.
Depending on the environment, it chooses between making H T T P requests v i a axios (for
development) or using Electron's I P C features (for production) to communicate w i t h the
backend.

Axios is a promise-based H T T P client for making requests to external servers. In the
development environment, axios is used to perform G E T or P O S T requests to an Express
server running locally. This is essential for rapid development and testing, al lowing for
real-time feedback and updates v i a hot module reloading.

In an Elec t ron application, the ipcRenderer module as mentioned i n 3 of Elec t ron
facilitates communicat ion between renderer processes (web pages) and the main process.
In this code, electron.ipcRenderer is accessed v i a the window object. Th is integra­
t ion is achieved by modifying the window object in the Elec t ron environment to include
ipcRenderer, thus making it available as window.electron.ipcRenderer. Th is allows
the frontend to send messages and receive responses from the main process, enabling seam­
less backend-frontend integration i n a desktop applicat ion context.

5 7

http://localhost:3000/$%7bchannel%7d~
http://localhost:3000/$%7bchannel%7d~

Chapter 5

Testing

This chapter delves into the various testing methodologies employed to ensure the reliability,
performance, and user experience of the appl icat ion across different platforms and opera­
t ional scenarios. It outlines the structure and purpose of compat ibi l i ty and performance
tests.

5.1 Test Data

This section introduces the various datasets ut i l ized for testing the applicat ion, catego­
rized into smal l and large data sets to accommodate different testing scenarios such as
compat ibi l i ty and performance testing.

Smal l datasets are crucial for compat ibi l i ty testing to ensure that the applicat ion func­
tions correctly across mult iple environments. These datasets include:

• example 1 .mkv: A short video file containing speeches.

• examplel_extended.mkv: A n extended version of examplel.mkv.

• examplel. srt: Subtitles corresponding to examplel .mkv.

• examplel_extended. srt: Subtitles for the extended video examplel_extended.mkv.
These files are designed to be lightweight and easily downloadable to various testing envi­
ronments, w i th the download facilitated by a script provided in README.md.

To evaluate the application's performance, par t icular ly the speed of alignment, larger
datasets are used:

• Maids. E01. e-subs. 540p-ZASK. mkv: A larger video file used to test the application's
processing capabilities.

• Maids.E01.e-subs.540p-ZASK. srt: Subtitles for the aforementioned video.

• Maids. S01E01.1080p. WEB-DL. H264. AAOAppleTor. mp4: A n extended high-definition
version of Maids .E01.e-subs.540p-ZASK.mkv.

• Maids.S01E01.1080p.WEB-DL.H264.AAC-AppleTor.srt: Subtitles for the extended
H D video.

These files are significantly larger and contain private content, making them unsuitable
for public download. T h e y are used internally to assess how well the appl icat ion handles
large-scale data inputs and aligns long subtitle tracks efficiently.

5 8

5.2 Compatibili ty testing

Compat ib i l i ty testing assesses whether the applicat ion functions as intended across various
operating systems such as L inux , Windows, and M a c . This testing is facilitated by the
automated testing framework Playwright, which allows for the simulation of user inter­
actions wi th the applicat ion i n different environments 1 . The ut i l iza t ion of Playwright is
part icularly effective due to the application's development i n JavaScript, enabling full func­
t ional i ty wi th in a web browser. Th is compat ibi l i ty w i th web standards allows for a seamless
integration of Playwright, enhancing the testing process across different platforms.

The pr imary goal of these tests is to ensure that the applicat ion behaves consistently
and reliably regardless of the operating system or hardware configuration. Th is involves
checking that a l l functionalities are accessible and perform as expected across a l l supported
platforms.

"C:\Program Files\nodejs\npm.cmd" test

> my-electron-app@0.0.0 test
> playwright test —workers=l

Running 13 tests using 1 worker
Slow test f i l e : [Google Chrome] > example.spec.js (31.4s)
Consider s p l i t t i n g slow test f i l e s to speed up parallel execution
13 passed (32.6s)

To open last HTML report run:

npx playwright show-report

Process finished with exit code 0

List ing 5.2.1: Runn ing automated tests

These tests were conducted on L i n u x , Windows, and M a c environments, successfully
passing a l l the predefined test scenarios. The results from these tests are compiled into an
H T M L report, which is included in the Playwright test packages. A n example of such a
report is depicted i n figure 5.1

The tests described uti l ize Playwright to automate interaction sequences i n a develop­
ment environment mimicking the functionality of the product ion bu i ld . Each test operates
wi th in a fresh instance of a Chrome browser, ak in to opening and closing the applicat ion
in Electron, w i th state persistence managed through session, json. Th is setup ensures
that each feature can be tested in isolation, providing a reliable and consistent testing
environment.

Here's a brief description of what each test accomplishes:

• O p e n application - Verifies that the appl icat ion loads properly and displays the
expected tit le, ensuring the in i t i a l launch is successful.

• O p e n videos - Tests the functionality of loading video files by interacting wi th the
U I to select and verify the vis ibi l i ty of specific video files.

1For more details on Playwright, see the official documentation: https://playwright.dev

5 9

file://C:/Program
file://Files/nodejs/npm.cmd
https://playwright.dev

Q All 13 Passed 13 Failed 0 Flaky 0 Skipped 0

Project: Google Chrome 5/15/2024.11:09:55 PM Total time: 32.6s

v exam pie. spec.js

v O p e n a p p l i c a t i o n 1.4s

exa m ple.spec.js:29

•y O p e n v i d e o s 2.0s

example.&pec.js:35

v O p e n sub t i t l es 1.6s

example.spec.js:58

•y M o d i f y sub t i t l e 1.0s

example.&pec.js:67

v Close sub t i t l es 1.5s

exa m ple.spec.js:7&

•y De tec t speeches 1.1s

example.&pec.js:84

v A l i g n sub t i t l es 2.6s

example.spec.js:96

•y Clear a l i g n m e n t 1.7s

example.&pec.js:119

v C o n c u r r e n t e d i t i n g 3.4s

example.s.pec.js;14Q

•y C o n c u r r e n t t i m i n g 3.4s

example.spec.js:145

v E m b e d sub t i t l es 3.5s

example.s.pec.js:150

•y Expo r t sub t i t l es 3.4s

example.&pec.js:159

v Keyboard sho r t cu t s 4.8s

example.s.pec.js;171

Figure 5.1: Au tomated tests - results

O p e n subtitles - Ensures that subtitle files can be loaded and displayed correctly
by selecting them through the U I and checking their presence on the screen.

Modi fy subtitle - Confirms the abi l i ty to edit subtitles and verify that the changes
are reflected wi th in the application's interface.

Close subtitles - Tests the capabil i ty to close subtitle files and ensures that they
are removed from the display, verifying the close functionality.

Detect speeches - Automates the detection of speech wi th in video content and
checks for the appropriate generation and display of subtitles.

A l i g n subtitles - Verifies that subtitles can be accurately aligned wi th the video's
audio through U I interactions and evaluates the alignment by checking specific U I
elements.

Clear alignment - Tests the abi l i ty to remove existing alignments of subtitles, en­
suring that the U I updates to reflect these changes correctly.

Concurrent editing - Simulates the scenario of mult iple users editing subtitles at
the same time to test the application's handling of concurrent edits.

Concurrent t iming - Examines the application's capacity to manage simultaneous
adjustments to subtitle t imings by mult iple users.

E m b e d subtitles - Checks the embedding functionality by integrating subtitles into
the video and ensuring no error messages appear during the process.

60

• Expor t subtitles - Validates the functionality to export subtitles successfully and
checks for the presence and accuracy of exported files.

• K e y b o a r d shortcuts - Assesses the responsiveness of the appl icat ion to keyboard
shortcuts for various subtitle editing tasks, enhancing user interface interaction.

5.3 Performance Testing

Performance testing involves custom manual testing by measuring the speed of subtitle
alignment and the loading t ime of waveforms. These tests are essential for evaluating the
efficiency and responsiveness of the applicat ion under different data loads and conditions.
Test results in this section were created by measuring execution t ime of related functions.

5.3.1 L o a d i n g of W a v e f o r m

W h e n a new video is opened, the appl icat ion converts the audio track to a W A V file, a
process that can be time-consuming, as shown in l is t ing 5.3.1.

Audio extracted to: backend/cache/videos_Maids.E01.e-subs.540p-ZASK.wav
Converted \videos\Maids.E01.e-subs.540p-ZASK.mkv to Wav in: 12.6314983s
Audio extracted to: backend/cache/videos_Maids.S01E01.1080p.WEB-DL.H264.AAC-AppleTor.wav
Converted \videos\Maids.S01E01.1080p.WEB-DL.H264.AAC-AppleTor.mp4 to Wav in: 22.4528153s

List ing 5.3.1: Convert ing audio to W A V file

However, upon subsequent loads, the applicat ion utilizes the cached W A V files, signifi­
cantly reducing loading times, as shown i n l is t ing 5.3.2.

Loaded cached WAV f i l e : backend/cache/videos_Maids.E01.e-subs.540p-ZASK.wav
Converted \videos\Maids.E01.e-subs.540p-ZASK.mkv to Wav in: 0.0010645s
Loaded cached WAV f i l e : backend/cache/videos_Maids.S01E01.1080p.WEB-DL.H264.AAC-AppleTor.wav
Converted \videos\Maids.S01E01.1080p.WEB-DL.H264.AAC-AppleTor.mp4 to Wav in: 0.0012184s

List ing 5.3.2: Load ing of cached W A V files

The waveform for the video is then generated from the decoded audio using the wave surf er. j s
library, as shown i n l is t ing 5.3.3.

Wavesurfer i s ready. Loading took 2138 m i l l i i seconds.
Wavesurfer i s ready. Loading took 2064 m i l l i i seconds.

List ing 5.3.3: Wavesurfer.js rendering speed

Al though the overall performance is satisfactory, rel iabil i ty is a concern. Approximate ly
5% of the t ime, the waveform is not visible due to issues w i t h the wavesurfer.js l ibrary.
W h i l e efforts have been made to address this bug, a complete fix has not been achieved. A
simple workaround is to adjust the wave zoom to a lower value and then back to a higher
value, which restores the waveform visibi l i ty. This bug is displayed in figure 5.2.

61

file:///videos/Maids
file:///videos/Maids
file:///videos/Maids
file:///videos/Maids

Figure 5.2: Waveform loading error

5.3.2 A l i g n m e n t of Subt i t les

The speed of subtitle alignment varies w i t h the signal values of the reference subtitle, as
shown i n listings 5.3.4 and 5.3.5.

Segment length: 17592
Audio length: 33503915
MFCC segment length: 34
MFCC signal length: 65437
Best offset: 81.34400000000001
Signals aligned in: 11.509625400000001s
MaxCorr 69293.09164471625
A l l subtitles aligned in: 0.2602723s

List ing 5.3.4: A l i g n i n g a 2.2-second subtitle
C o m m a n d shown i n l is t ing 5.3.4 aligns a reference subtitle of 2.2 seconds.

Segment length: 25888
Audio length: 33503915
MFCC segment length: 50
MFCC signal length: 65437
Best offset: 176.576
Signals aligned in: 10.664324s
MaxCorr 154863.00279628698
A l l subtitles aligned in: 0.2302391s

List ing 5.3.5: A l i g n i n g a 3.2-second subtitle
C o m m a n d shown i n l is t ing 5.3.5 aligns a reference subtitle of 3.2 seconds.

The alignment process is highly accurate when the subtitle segment is part of the audio,
which it is al igning to. However, i f it is not, the resulting best correlation can produce
inaccurate alignments. Most subtitles are aligned correctly, but occasionally, the high
correlation of signal pairs results i n subtitles not being marked as aligned. This issue is
i l lustrated in figure 5.3.

Figure 5.3: Al ignment inaccuracy

62

In summary, while performance testing indicates good speed and efficiency i n loading
and alignment processes, certain rel iabi l i ty issues wi th waveform vis ib i l i ty and subtitle
alignment accuracy need to be addressed to enhance the overall performance and user
experience.

6 3

Chapter 6

Conclusion

This thesis has outl ined the design, development, and testing of a mult i -platform tool aimed
at simplifying the process of editing subtitles for videos that have different versions. B y
addressing the unique challenge of synchronizing subtitles across various cuts and inserted
scenes, this tool offers a significant advancement i n the realm of subtitle editing.

6.1 Summary of Achievements

The pr imary objective of this work was to create a tool that allows for the simultane­
ous editing of mult iple subtitle files, which is par t icular ly useful for videos wi th different
versions. Th is objective has been successfully met through several key achievements:

• Cross-Plat form compatibility: B y leveraging frameworks such as Elec t ron (2.1.4)
and Taur i (2.1.4), the tool ensures a consistent user experience across major operating
systems, including L inux , Windows, and Mac .

• Subtitle and video format support: The tool supports mult iple subtitle formats,
including S R T and W e b V T T as discussed i n (2.2). Supported video formats are M P 4
and M K V . This flexibility ensures broad appl icabi l i ty for various user needs.

• Advanced signal processing: Incorporating audio-visual signal processing tech­
niques such as waveform analysis (2.3.2), Dynamic T i m e Warp ing (D T W) , M e l -
frequency cepstral coefficients (M F C C) , and Fast Fourier Transform (F F T) allows for
accurate synchronization of subtitles. The usage of F F m p e g for transcoding (2.4.4)
and subtitle extract ion (2.4.4) further enhances the tool's capabilities.

• User-Friendly interface: The design and implementation of a user-friendly inter­
face, as detailed i n (3.1) and (3.5), ensure that both novice and experienced users can
efficiently use the tool for subtitle editing.

• Robust testing framework: Extensive compat ibi l i ty and performance testing, fa­
cil i tated by tools like Playwright , have validated the tool's rel iabi l i ty across different
environments. The detailed testing results, including performance metrics for subtitle
alignment and waveform loading, demonstrate the tool 's efficiency and effectiveness.

6 4

6.2 Challenges and Limitations

W h i l e the tool has achieved its pr imary goals, several challenges and l imitat ions were en­
countered:

• Waveform Loading Reliability: Despite overall satisfactory performance, the
waveform loading process occasionally fails due to issues wi th the wavesurfer. js
l ibrary (5.2). A l though a workaround exists, further refinement is needed for a per­
manent fix.

• Al ignment Accuracy: W h i l e the subtitle alignment process is generally accurate,
there are instances where high correlation of signal pairs leads to misalignment (5.3).
Continuous improvement of the alignment algorithms is necessary to enhance relia­
bility.

6.3 Future Work

Look ing ahead, several areas for future development and improvement have been identified:

• Enhanced B u g Fixing: Addressing the rel iabil i ty issues w i t h waveform vis ibi l i ty
and alignment accuracy w i l l be a priority. Th is involves further development and
testing of the wavesurfer . j s l ibrary and the alignment algorithms.

• C o m m u n i t y Feedback and A / B Testing: A s the tool is released as an open-source
project, gathering feedback from the community w i l l be invaluable. Implementing
A / B testing w i l l help refine the user interface and functionality based on real-world
usage data.

• Expanded Feature Set: A d d i n g new features such as advanced spell checking, more
robust speech recognition capabilities, and addi t ional subtitle formats w i l l further
increase the tool's u t i l i ty and appeal.

• Performance Optimization: Cont inued efforts to optimize the tool's performance,
part icularly for large datasets, w i l l ensure that it remains responsive and efficient even
under heavy usage conditions.

6.4 Summary

In conclusion, this thesis has successfully demonstrated the development of a comprehen­
sive, user-friendly tool for simultaneous subtitle editing across different video versions. B y
addressing the specific challenges of subtitle synchronization and leveraging advanced signal
processing techniques, the tool provides a powerful solution for video editors and content
creators. The ongoing development and community engagement w i l l further enhance its
capabilities, ensuring it remains a valuable resource i n the field of mul t imedia editing.

6 5

Bibliography

[1] A D O B E . Choosing the Best A u d i o Format, [online]. 2024. Accessed: A p r i l 30, 2024.
Available at:
h t tp s : //www. adobe, com/ c rea t ivec loud /v ideo /d i scover /bes t - aud io - fo rmat .h tml .

[2] A D O B E . Choosing the Best Video Format, [online]. 2024. Accessed: A p r i l 30, 2024.
Available at:
h t tp s : //www. adobe, com/ c rea t ivec loud /v ideo /d i scover /bes t -v ideo- fo rma t .h tml .

[3] C . A . B U L T E R M A N , D . , J A N S E N , J . , C E S A R , P . and C R U Z L A R A , S. A n Efficient,

Streamable Text Format for M u l t i m e d i a Captions and Subtitles. In: ACM
Symposium on Document Engineering - DocEng 2007. [b.n.], August 2007. Available
at: h t t p s : / / i n r i a . h a l . s c i e n c e / i n r i a -00192467 .

[4] C O N T R I B U T O R S , W . Audio file format [online]. Wik iped i a , The Free Encyclopedia ,
2024. Date of last revision: 15 May 2024 09:02 U T C . Accessed: Apr i l 30, 2024. Date
retrieved: 16 May 2024 06:07 U T C . Available at:
h t tp s : / / en .wik ipedia .org /w/ index. php?ti t le=Audio_file_format&oldid=1223942973.

[5] C O N T R I B U T O R S , W . Video file format [online]. W i k i p e d i a , The Free Encyclopedia ,
2024. Date of last revision: 10 May 2024 19:28 U T C . Accessed: May 16, 2024. Date
retrieved: 16 May 2024 06:08 U T C . Available at:
h t tp s : / / en .wik ipedia .org /w/ index.php?ti t le=Video_file_format&oldid=1223237686.

[6] K A P U R I Y A , P . Desktop App l i ca t i on Development: A Complete Guide . Codz Garage.
2023. [Last edited: 4/15/2024]. Available at:
h t tp s : //www. codzgarage.com/blog/desktop-app-development-guide/.

[7] M U L L E R , M . Information Retrieval for Music and Motion. 1st ed. Springer, 2007.
69-84 p. I S B N 978-3-540-74048-3.

[8] N I K K H A H , E . Subtitles file formats: The most used and when to choose each one.
[online]. 2023. Accessed: M a y 3, 2023. Available at:
h t tp s : / / s c r i p t m e . i o / s u b t i t l e - f i l e - f o r m a t s / .

[9] N U N E S , E . C . Anomalous Sound Detect ion wi th Machine Learning: A Systematic
Review. Ar5iv. 2021. Accessed: M a y 1, 2024. Available at:
h t tp s : / /a r5 iv . labs .arx iv .org/h tml /2102.07820.

[10] O P P E N H E I M , A . V . and S C H A F E R , R . W . Discrete-time Signal Processing. 2nd ed.
Upper Saddle River , N J : Pearson, dec 1998. I S B N 0-13-754920-2.

66

https://inria.hal.science/inria-00192467
http://codzgarage.com/blog/desktop-app-development-guide/
http://arxiv.org/html/2102.07820

[11] O P P E N H E I M , A . V . and W I L L S K Y , A . S. Continuous-t ime and Discrete-time Signals.
In: H O R T O N , M . , ed. Signals and Systems. 2nd ed. Upper Saddle River , N J : Pearson,
A u g 1996, chap. 1.1. I S B N 0-13-814757-4.

[12] O Z E R , J . Video Codecs in 2021 and Beyond [Streaming Learning Center Webinar].
2021. Accessed: May 1, 2024. Available at: h t tps : / / s t reaminglearn ingcenter .com/
learn ing/webinar -v ideo-codecs- in-2021-and-beyond-wi th- jan-ozer .h tml .

[13] C O M P A N Y , Q . Introduction to Qt . Q t . 2024. [Accessed on: 1/5/2024]. Available at:
h t tp s : / /doc . q t . i o / q t - 6 / q t - i n t r o . h t m l .

[14] S I N G H , P . P . and R . , P . A n Approach to Ex t rac t Feature using M F C C . IOSR
Journal of Engineering. I O S R Journals, august 2014, vol . 4, no. 8, p. 21-25. D O I :
10.9790/3021-04812125. Available at: ht tps: / /doi .org /10.9790/3021-04812125.

[15] T E C H T E R M S . Waveform Definition [online]. 2015. Retrieved: December 9, 2015.
Available at: h t tps : / / techterms.com/def in i t ion/waveform.

[16] C L O U D , V . W h a t is a Desktop A p p ? V 2 C l o u d . 2024. [Accessed on: 1/4/2024].
Available at: h t tps : / /v2c loud . com/g lossa ry /wha t - i s -a -desk top-app / .

[17] R O C A , J . W h a t is Cross P la t form Software? Triangle. 2022. [Accessed on: 1/5/2024].
Available at: h t tps : / /www. t r i ang le .es /en /wha t - i s -c ross -p la t fo rm-sof tware / .

67

https://streaminglearningcenter.com/
https://doi.org/10.9790/3021-04812125
https://techterms.com/definition/waveform
https://v2cloud.com/glossary/what-is-a-desktop-app/
https://www.triangle.es/en/what-is-cross-platform-software/

