
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
FACULTY OF INFORMATION T E C H N O L O G Y

ÚSTAV INTELIGENTNÍCH SYSTÉMŮ
DEPARTMENT OF INTELLIGENT S Y S T E M S

MODERNIZACE GIS SYSTÉMU GRASS
GRASS GIS MODERNIZATION

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE Bc. RADEK BARTOŇ
AUTHOR

VEDOUCÍ PRÁCE Ing. MARTIN HRUBÝ, Ph.D.
SUPERVISOR

BRNO 2008

Abstrakt
Geografický in fo rmačn í s y s t é m G R A S S se stal za 26 let své existence standardem na pol i

m o d e l o v á n í geografických j evů . Jeho v n i t ř n í s t ruktura však o d p o v í d á d o b ě jeho vzniku .
Tato p r á c e chce navrhnout m o ž n o u podobu modernizace in te rn ích čá s t í z aveden ím kom­
p o n e n t n í architektury a ob j ek tových n á v r h o v ý c h vzorů , j akož i podporu d i s t r i buovaných
v ý p o č t ů a d y n a m i c k ý c h j a z y k ů , ale z už iva te l ského pohledu chce o v l á d á n í zachovat. Výs ledek
n á v r h u je rozveden do p r o t o t y p o v é implementace knihovny n a z v a n é G A L Framework.

Klíčová slova
GIS, G R A S S , m o d e l o v á n í a simulace, k o m p o n e n t n í architektura, n á v r h o v é vzory, dynam­

ické jazyky, d i s t r i buované v ý p o č t y

Abstract
The geographical information system G R A S S has become a standard on the field of ge­

ographical phenomenon modeling during its 26 years o ld lifetime. However, its internal
structure follows practices from the date of its creation. This thesis aims to design a
possible shape of internal parts modernizat ion using a component architecture and object-
oriented design patterns wi th distr ibuted computing and dynamic languages support in
mind . The designed system should stay identical from the user's point-of-view. Design
results are proven on a prototype l ibrary implementat ion called the G A L Framework.

Keywords
GIS, G R A S S , model l ing and simulation, component architecture, design patterns, dynamic

languages, distr ibuted computing

Citace
Radek B a r t o ň : Modernizace GIS s y s t é m u G R A S S , d i p l o m o v á p ráce , Brno , F I T V U T
v B r n ě , 2008

G R A S S GIS Modernization

Prohlášení
Proh lašu j i , že jsem tuto diplomovou p rác i vypracoval s a m o s t a t n ě pod v e d e n í m pana M a r ­
t ina H r u b é h o . Ú p l n ý seznam p o u ž i t ý c h l i t e rá rn ích p r a m e n ů jsem uvedl v z a d n í čás t i p ráce .

Radek B a r t o ň
M a y 18, 2008

Poděkování
P o d ě k o v á n í za vznik t é t o d ip lomové p r á c e p a t ř í panu M a r t i n u H r u b é m u za če tné konzultace,
p ř á t e l ský p ř í s t u p a podporu na G R A S S - d e v e - m a i l o v é m fóru.

Acknowledgment
Thanks for this thesis creation belongs to M r . M a r t i n H r u b y for countless consultations,
friendly atti tude and support at G R A S S - d e v e -mai l forum.

© Radek B a r t o ň , 2008.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in­

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3
1.1 Mot iva t ion 3
1.2 Contents 3

2 G R A S S G I S Architecture 4
2.1 Br ie f G R A S S GIS His tory 4
2.2 General Concepts 5
2.3 Raster Architecture 6
2.4 Vector Archi tecture 6

3 Task Specification 8
3.1 Intended Objectives 8
3.2 Obstacles 8
3.3 Solved Objectives 9

4 Component Architecture 10
4.1 Components and Interfaces 10
4.2 Slots 11
4.3 Component Manager 11
4.4 Example 12

5 Analyt i ca l M o d e l 14
5.1 Use Cases 14
5.2 A n a l y t i c a l Classes 17

6 A p p l i e d Design Patterns 21
6.1 Singleton 21
6.2 Prototype 21
6.3 Abst rac t Factory 22
6.4 Strategy 22
6.5 Iterator 22

7 Slot Implementations 23
7.1 Cal lback Slots 24
7.2 D - B u s Slots 24

1

8 G A L Framework Subsystems
8.1 Core Subsystem 2 7

8.2 Except ion Subsystem 2 7

8.3 D - B u s Subsystem 2 7

8.3.1 Classes 2 7

8.4 General Subsystem 2 8

8.4.1 Classes 2 8

8.4.2 Interfaces 2 8

8.4.3 Components 2 9

8.4.4 Modules 2 9

8.5 Display Subsystem 2 9

8.5.1 Classes 2 9

8.5.2 Interfaces 3 0

8.5.3 Components 30
8.5.4 Modules 3 0

8.6 GIS Subsystem 3 1

8.6.1 Classes 3 2

8.6.2 Interfaces 3 2

8.6.3 Components 3 2

8.6.4 Modules 3 2

8.7 Raster Subsystem 3 3

8.7.1 Classes 3 3

8.7.2 Interfaces 3 4

8.7.3 Components 3 4

8.7.4 Modules 3 4

8.8 Vector Subsystem 3 4

9 Dynamic Language Bindings 35
9.1 S W I G Ut i l i za t ion 3 5
9.2 General Customizat ions 3 5
9.3 P y t h o n Bindings 3 ^
9.4 Java Bindings 3 6
9.5 Other Bindings 3 7

10 Experimental Results 38

11 Conclusion 40

12 References 4 4

A L i b r a r y Tutoria l 4 4

A . l Imaginary Interface 4 4

A . 2 Cus tom Object 4 6

A . 3 Cus tom Slot 4 8

A . 4 Cus tom Interfce 4 9

A . 5 Cus tom Component 50
A . 6 Lis t of Raster Layers 52

2

1 Introduction

1.1 Motivat ion

Geographic information systems (GIS) [] are becoming more and more significant in
many aspects of human life such as industry, engineering, ecology, public administrat ion,
sociology or nature sciences. Where people was previously deciding only by their personal
judgements, now relies on sophisticated and scientific analyses. Together w i th the vast
expansion of Internet services, Web based geographical information systems are spreading
too.

In Open Source domain, the best known and featured software for geographic analyses
is the G R A S S G I S . Unfortunately, its development is stagnating because of smal l interest
from fresh and young developers. This is par t ia l ly caused by the fact that its design and
concepts are overcomed by modern practices in a software development. Th is work tries to
propose one of many eventual ways of modernizat ion and prepare soil for further feature
advancement.

1.2 Contents

The thesis is d ivided into eight main chapters which concerns i n different aspects of
solved tasks. Analys is of the current G R A S S G I S architecture is placed first. P rob lem
specification is discussed next, followed by explanation of component architecture concepts
which is main approach to solve confronted problems. Significant parts of the analyt ical
model are described next but full description of designed classes, interfaces and components
is available at [2]. P inpoin t of used design patterns i n the design has its own chapter.
Exp lana t ion of slot execution mechanism implementations follows. The most extensive
chapter about each of G A L Framework's subsystems is situated after. Then are notes from
implementation of dynamic languages bindings and thesis is concluded wi th experimental
performance results and their analysis.

The work proceeds from the semestral thesis of the same name, uses and extends its
results. Theoret ical parts of the text (chapters 2, 3, 4, 5 and 7) are fully or par t ia l ly
originated from this source. The master's thesis appends pract ical results, experiences and
a more detailed documentation of a prototype implementation.

3

2 G R A S S GIS Architecture

This chapter summarises G R A S S evolvement during years of development and current
state of raster and vector subsystems (versions 6.x).

2.1 Brief G R A S S GIS History

The A r m y Corps of Engineers' Const ruct ion Engineering Research Labora tory (US-
A / C E R L) i n Champaign , Illinois, U S A started i n the 1980s work on an inexpensive raster
based GIS software for U N I X systems lately called the Geographic Resources Analys is
Support System (G R A S S) as an opposite for the E S R I ' s A R C I N F O software. To better
understand acquisition tendencies of the G A L Framework and this paper, it is needed to
list brief history of G R A S S development w i t h architecture innovations of each G R A S S
evolution step.

1982 [] The Fort H o o d Information System (FHIS) was developed. It was from today's
measures a simple raster processing program running on the P D P - 1 1 mainframe and
communicat ing wi th a remote terminal v ia a serial l ink. It used concepts of categories
and subcategories, an area of interest, overlapping 100 x 100 meters cell rasters and
a mask raster layer.

1983 [] Due to slow communicat ion wi th the terminal , the F H I S was ported to the S U N - 1
microcomputer and called the Installation GIS (IGIS). It used a monochrome monitor
for command input, a color monitor for data visual izat ion and it also separated data
from a program. These two innovations survided in form of monitors (d.mon) and
map locations.

1984 [] The first G R A S S called package of 20 programs was released. F r o m this point the
project focused on public comunity development although only i n a college area.

1990 [i] After six years of growth, current module organization to letter-dot format,
command-l ine argument parsing and module descriptions was introduced w i t h the
G R A S S 4.0. F i rs t attempts for a user interface fall to this period too. A source code
is organized to directories for general, miscellaneous, display, raster, imagery and sites
modules and core libraries sources. Vector data support is done by addit ional set of
tools for analog map digi t izat ion and conversion to rasters.

1997 [5] The G R A S S 4.2.1 was released wi th new modules, code cleanup and a T c l / T k
user interface.

1999 [] F i r s t G N U / G P L G R A S S 5.0 version wi th floating point and NULL raster data
support added.

4

2002 [] A new arc-based vector architecture wi th more l ikely modern approaches and
database support introduced.

2006 [] Real iza t ion of need for dynamic language support w i t h a S W I G interface prototype
for P y t h o n and P e r l (G R A S S 6.1.0).

2.2 General Concepts

From the users' point -of-view, the G R A S S GIS [] is a collection of rather independent
command-l ine modules performing ind iv idua l data transformation or analysis tasks. Some
functionality is done by coupling certain number of modules using Bourne shell scripting.
Lately, much effort to develop the comfortable graphical user interface which executes such
modules was done.

Al though formerly was a G R A S S GIS ' s codebase mix of C and For t ran language and
shell scripts, For t ran was abandoned and replaced w i t h C during years. A n experimental
P y t h o n interface to core libraries was introduced recently. Nevertheless, its code purely
follows the functional programming paradigm.

D a t a storage is organized wi th the hierarchical directory structure of the operating sys­
tem. The root directory is referred to as GISDBASE and may contain locations which rep­
resent mapped areas. Each locat ion is formed by mapsets that contains map layers of
common meaning. For example, one mapset could have map layers for hydrological analy­
ses and a second mapset could have layers for forestry models. O n l y one locat ion and one
mapset is active i n a single moment. There is a special mapset called PERMANENT which
must be present i n every location. It holds unchanging map data as well as some addit ional
metadata.

The mapset directories may hold subdirectories and files w i t h differently typed data and
information. Some of them could be:

cel l / - Integer data of 2D rasters,

fcell/ - F loa t ing data of 2D rasters.

ce l lhd/ - Information about a projection, dimensions and a resolution.

cats/ - Names of categories assigned to data values.

coir / - Color tables and rules for data visualizat ion.

ce lLmisc / - Information about NULL valued data and other metadata.

hist / - Metada ta wi th history of commands that was used to create stored data.

gr id3d/ - D a t a of 3D rasters.

vector/ - A vector data geometry.

dbf/ - Vector data attributes.

5

s t r u c t C e l l _ h e a d
{

i n t f o r m a t ; /* max number of b y t e s p e r c e l l minus 1 */
i n t c ompressed; /* 0 = u n c o m p r e s s e d , 1 = co m p r e s s e d , -1 pre 3.0 */
i n t rows; /* number of rows i n the d a t a 2D */
i n t rows3; /* number of rows i n the d a t a 3D */
i n t c o l s ; /* number of columns i n the d a t a 2D */
i n t c o l s 3 ; /* number of columns i n the d a t a 3D */
i n t d e p t h s ; /* number of d e p t h s i n d a t a */
i n t p r o j ; /* P r o j e c t i o n (s e e # d e f i n e s above) */
i n t zone; /* P r o j e c t i o n zone */
d o u b l e ew_res ; /* E a s t t o West c e l l s i z e 2D */
d o u b l e ew_res3 ; /* E a s t t o West c e l l s i z e 3D */
d o u b l e n s _ r e s ; /* N o r t h t o South c e l l s i z e 2D */
d o u b l e n s _ r e s 3 ; /* N o r t h t o South c e l l s i z e 3D */
d o u b l e t b _ r e s ; /* Top t o Bottom c e l l s i z e */
d o u b l e n o r t h ; /* c o o r d i n a t e s of l a y e r */
d o u b l e s o u t h ;
d o u b l e e a s t ;
d o u b l e west ;
d o u b l e top ;
d o u b l e bottom;

};

Code 2.1: Structure describing raster layer.

2.3 Raster Architecture

2D raster layers data can be of three types: integer, float and double. 3D rasters can be
only float and double []. A layer is accessed as one big grid, row by row and when lower
resolution is required it is resampled wi th nearest neighbour method the same way.

Each raster layer is described wi th C e l l _ h e a d structure [10] (see code 2.1). It is bounded
by a region i n a specified cartographic projection. Its dimensions (number of rows and
columns) are precomputed from this region, north-south and east-west resolution. Sup­
ported compression algori thm is R L E .

The G R A S S supports only a l imi ted number of metadata for raster layers. If a special
raster layer called MASK is created, a l l raster operations are masked by NULL valued cells of
this layer.

2.4 Vector Architecture

Vector data are represented by composit ion of nodes and arcs [6]. The arcs are paths
created wi th mult iple line segments and the nodes are boundary vertices (although interior
nodes are supported too). Mul t i p l e arcs forms a line. Th is structure is intended for modeling
of linear objects like streams or roads. Connected arcs w i th a centroid vertex form an area
which represents areal objects like forests or lakes. Op t ion to insert interior holes and isles
in the areas is present too. Point objects are implemented i n an own l ibrary and stored in
an internal file format.

G

Geometry, topology and attributes are stored separately. Geometry can be loaded from
a native format, shapefiles [], or the Pos tgreSQL [12] database wi th the Pos tGIS [13]
extension. Load ing from many other file formats w i t h the O G R [] l ibrary is available as
well . Topology is stored in a native format, the Pos tGIS database or constructed during
file loading. The attributes may be placed i n the D B F , S Q L i t e , Pos tgreSQL, M y S Q L or
O D B C database through a common D B M I [15] interface. Geometry of the objects have
two or three spatial coordinates and 3D objects like faces and volumes can be created too
but w i th l imi ted topology.

The attributes are associated to geometry wi th category numbers and field numbers also
called layers. The field number determines a database table and the category number
determines a table row where look for attribute values. A special text file describes this
association of fields to databases and tables.

7

3 Task Specification

Follow brief listings of intentions, ideas and problems that occurred after the project
analysis and a summary of objectives that was or wasn't solved dur ing given t ime wi th an
explanation.

3.1 Intended Objectives

The next list of key objectives draws up desired intentions of the G A L Framework project
in the t ime of its formation:

• Design a flexible, platform independent and extensible environment for development
of new largely analyt ical modules for the G R A S S GIS based on a component archi­
tecture.

• Design and implement an internal and external representation of raster and vector
data for use i n the G A L Framework.

• Use present G R A S S libraries beneath an abstraction interface for transient support
of the current raster and vector representation.

• Achieve compat ibi l i ty w i th the G R A S S GIS at module level so that any possible G U I
frontend for modules developed using the G R A S S l i b could be used w i t h modules
developed using the G A L Framework as well.

• Prepare detailed documentation of the entire system design and possible usage before
and during the implementation.

• Provide as complete as reasonable bindings to dynamic languages, especially for
P y t h o n and Java.

• Implement an example implementat ion of certain data loading and processing modules
to show example usage of the G A L Framework as programming environment.

• Prepare set of tutorials showing aspects of possible usage of the G A L Framework.

• Publ ic ize project's aims and intentions on the Web and at meetings.

• Discuss a l l concepts and ideas wi th comunity to acquire wishes and needs of majori ty
of the people from the GIS domain.

3.2 Obstacles

After brief consideration of the previous list of intentions these restrains appeared:

• Restrictions emergent from C / C + + as stat ically typed compiled languages.

8

• L imi ta t ions of the S W I G automatic wrapper generator, especially wi th variable length
arguments functions and callbacks. This appears to be solvable wi th l i t t le effort.

• Lack of current G R A S S libraries re-entrance safety since many of internal structures
are s t a t i c . There is necessity of locks when executing a G R A S S code in parallel
threads or processes which w i l l affect performance and may lead to deadlocks.

• Overa l l scope and time requirements of the project. There is need to invite other
developers to make this project reasonable.

• Unpleasant att i tude of G R A S S developers to the object-oriented programming.

3.3 Solved Objectives

Sumarizat ion of project status when this document was created and discussion of unre­
alized goals is following:

• The design of the core component management and communicat ion system forms
content of this thesis, especially of the chapter 5 and it is also distr ibuted to several
w i k i pages at the project's homepage []. The prototype implementat ion is stored in
a S V N source code management system and browsable through a web interface at the
same place.

• The external representation of raster data was shaped w i t h R a s t e r T i l e , C o l o r R u l e s
and C o l o r T a b l e classes and it is accessed wi th an I R a s t e r L a y e r P r o v i d e r interface
(see section 8.7). After further consideration, the internal representation was left i n a
native G R A S S format of the G R A S S l i b l ibrary and used i n a GRASSRasterLayerComponent
component. The vector subsystem was kept to other person's responsibility as were
consulted wi th the mentor of the thesis.

• Implemented example modules accepts the same command-l ine arguments as the
G R A S S modules if they provides the same functionality.

• A comprehensive conceptual documentation as well as the G A L Framework l ibrary
reference is available at the project's homepage [2] or on an attached C D .

• Bindings of the l ibrary was developed for P y t h o n and Java languages. More about
them in the chapter 9.

• G A L Framework tutorials are placed in the appendix A of this document.

• A full-featured Web site for the project management and propagation was established,
the project was introduced at the G R A S S - d e v mai l ing list and an article for the
Geoinformatics F C E C T U 2007 Workshop [16] was published.

• Unfortunately, no positive response was received from the comunity and no other
attention was given. Therefore, the proposed design is a product of a single mind (of
course, inspired from many sources) and not the product of a diverse group which the
system of such extent requires.

9

4 Component Architecture

To be as flexible and extensible as possible, the G A L Framework uses the component
architecture of software design similar to [17]. Here w i l l be described what does this term
mean in a context of the project and how it influences a l ibrary structure and usage at the
level of ind iv idua l G R A S S modules development.

4.1 Components and Interfaces

Using U M L [18] notat ion such an architecture can be shown as on the figure 4.1. There are
four components connected to one interface w i th different relationships. Y o u may consider
that the components are groups of objects or classes which form compact sub-systems doing
some job. For example a raster component which loads raster data from different files to the
memory or an analyt ical component which performs some computat ion over loaded data.

Component 1 Component 2

Component 3
Component 4

Figure 4.1: The component diagram of the component architecture.

The components may own, use or implement certain interfaces which describes how these
components would like to communicate w i th the others. O n the figure, it 's the Component 1
that declares (owns) an interface I n t e r f a c e which is indicated by a stereotype <CresideS>.
The Component 1 and the Component 2 use this interface (symbolized by dashed lines wi th
an arrow). The Component 3 and the Component 4 implement interface functions which is
represented by solid lines.

Owning an interface means that a component is responsible for its creation, destruction
and registration in the system, using an interface means that a component may cal l one or
more of the interface functions. In the most component which owns an interface is
using it at the same time but there is only single component owning single interface. O n

10

the other side of the interface, stay components which implement them. They listen what
the components using the interface say and respond to their requests. This implies that
the communicat ion is entirely directed by the components that use the interface but the
subsidiary components can use other interface which could be implemented by the superior
components to reverse this subordination.

4.2 Slots

There is an abstraction over the interface functions called a slot that may be configured
some way to specify which implementat ion w i l l be executed. Sometimes you may want to
execute just the lastly registered implementation, sometimes you may want to cal l each of
them, etc. The slot is meant to be a functor class that forwards interface function calls
everytime it is evoked.

Components using the interface can pick which implementations should be used. A
question what the available implementations are chosen when the interface function is
evoked could be separated into three cases. It is a l i t t le analogy to the T C P / I P unicast,
multicast and broadcast:

1 to N - O n l y a single implementat ion is chosen among the others. It can be the first
idle component or the lastly registered one. A n example of such interface may be the
component which loads data from certain file format.

M to N - A subset of the registered implementations is chosen. A n example of this are
data processing components that are used to balance C P U s usage.

N to N - A l l the implementations are evoked and results (if any) are collected together.
A n example could be two components that receives error or debug messages. One
displays them on the screen, a second logs them to a file but they are both notified.

Different slot implementations abstract a mechanism of interface function execution.
There is a static method callback and a D - B u s R P C l ibrary slot implementat ion currently
supported. More about the slot implementations is discussed in the chapter 7.

This layout brings flexibil i ty to the framework because any component using a part icular
interface can choose which implementat ion of the interface wants to uti l ize. Furthermore,
any component can engage to implement the interface and lately it can abandon its obl i­
gation.

4.3 Component Manager

To allow public access to a l l the available components and interfaces i n the system, a
common access point must be introduced. In this case, it is called a component manager
and it serves for a component or interface registration as long as the registration of the
interface implementations. The figure 4.2 shows a simplified class diagram of relationships
between the component manager, components, interfaces and slots.

11

Component

*
Interface

*
Slot Component Interface Slot Component

1 1

* *

1 1

ComponentManager

Figure 4.2: The class diagram of the component architecture.

Every component can then ask the component manager to receive a part icular interface
and use it or commit to implement i t . Interfaces, when they are used, contains capabilities
to manage a l l their implementing components so that the component using the interface
can decide which of them wants to use i n a manner presented before.

This brings a powerful extensibili ty to the system since the components can be loaded
from dynamic libraries like plugins on the system start or even i n runtime. Furthermore,
they can be spread over computer network or parallel environment and executed by a slot
mechanism implemented using some R P C library.

4.4 Example

A conceptual example of the component architecture applicabi l i ty [16], [19] is shown on
the figure 4.3. There is a component ModuleComponent implementing some G R A S S mod­
ule at the top which uses three different interfaces: the I V e c t r L a y e r P r o v i d e r for retrieving
vector data, the I R a s t e r L a y e r P r o v i d e r for accessing raster data and the IMessageHandler
for message display and logging.

The I V e c t o r L a y e r P r o v i d e r interface is implemented by two different components reg­
istered in the system. One of them shelters vector layer data in the Pos tgreSQL database,
the other provides for example data from the M y S Q L database.

The raster related interface I R a s t e r L a y e r P r o v i d e r is implemented by two components
too. The first offers raster data from the Pos tgreSQL database and the second enwraps
raster data i n ordinary data files. Th is diagram should demonstrate that using this approach
a module component can obtain GIS data and it don't need to care where and how are
these data stored.

W h e n the module does what it wants w i th retrieved data and it needs to output some
information to the console, logs or a G U I , it sends messages through a IMessageHandler
interface. In the discussed example is this interface implemented by two components which
forwards messages to the C L I , the G U I or write them the to log files. This again demon­
strates independence on outputted data presentation.

12

Figure 4.3: The component architecture practically.

13

5 Analytical Model

To realize deeper consequences between the G A L Framework core components, an ana­
ly t ica l model was created. It consists of an use case diagram (fig. 5.1) and an analyt ical
class diagram (fig. 5.2). Detai led description of each use case and each analyt ical class is
available at [20] and [-] and updated continuously. Fol lowing lists are constrained to note
about the most important of them.

5.1 Use Cases

Intended behavior and usage of the G A L Framework is modeled in the use cases. Rela­
tions between the ind iv idua l use cases are displayed on the use case diagram on figure 5.1.
Follows a list of some of them wi th an explanation. O n l y role present is a programmer who
develops new G R A S S modules using the framework.

DefinelnterfaceUseCase summarizes steps needed to define a new interface object. Th is
is done by the programmer and it includes definition and instant iat ion of a l l slot
objects of the interface which forms interface functions signatures. The custom slots
can be defined entirely or they can be renamed from pre-defined slots.

RegisterlnterfaceUseCase registers the interface object instance in the component man­
ager w i th a given name. This identifier must be unique i n the whole system or locally
if the interface is not intended to be used wi th a R P C based slot mechanism.

DefineComponentUseCase describes the course of actions needed to define a new com­
ponent by the programmer. Aggregated objects and interface objects w i th their slots
are instantiated and ini t ia l ized first, interface function implementations are prepared
as methods of the components then.

RegisterlnterfacelmplementationUseCase connects the interface function implemen­
tations of the component w i th an interface object prototype of the component man­
ager. Th is is done w i t h the component manager method cal l .

ImplementlnterfaceUseCase is performed during the component in i t ia l iza t ion at a mod­
ule start. The component registers the aggregated interface objects i n the system if it
owns them and thus they aren't known to the system yet. Afterwards, the interface
function implementations are registered by inclusion of the Registerlnterfacelm-
plementationUseCase use case.

UselnterfaceUseCase retrieves an interface object clone from the component manager
by an interface name, gets a slot object of a desired interface function by its name
and then executes the slot object as a functor.

14

ExecuteModuleUseCase defines and executes a module for the G R A S S GIS developed
in the G A L Framework. This use case contains: definition and ini t ia l izat ion of a l l
needed components either a single-purpose for this module execution or a general-
purpose from G A L subsystems, request for needed slots to their interfaces which are
received from the component manager, intended module computat ion wi th slots as
functor or dynamical ly using their methods and finally release of the a l l obtained
resources.

15

Figure 5.1: The use case diagram of the G A L Framework analyt ical model.

5.2 Analyt ical Classes

Ana ly t i c a l classes are the product of realization of the use cases. They can be viewed in
the analyt ical class diagram on the figure 5.2 as well as relationships between them. Here
is a list of them w i t h brief description of some of their methods.

G A L is a static class for l ibrary ini t ia l izat ion, deini t ia l izat ion and component manager
instance retrieval. It also takes care of event loop based subsystems for modules
running as a daemon or as a tool w i th user interface. Some of its significant methods
are:

initialize initializes the G A L Framework. It must be called at the start of a module.

finalize deinitializes the framework. It must be called before module end.

demonize turns a program call ing this method to a daemon that handles slot im­
plementation execution requests and other events.

quit exits the event processing loop started w i t h the demonize method.

getComponentManager provides access to a publ ic ly available component man­

ager.

ComponentManager is a singleton class that serves for components, interfaces and in­
terface implementations registration and retrieval.

getlnterface returns a cloned interface object of a registered interface. This local
copy can be then configured and used in modules to execute interface functions.

getlnterfacePrototype gives access to an internal prototype of a registered inter­
face. It can be used to create a clone for further usage but should not modified.

registerlnterface registers a new interface to the system w i t h an interface object
prototype.

register-Implementation assigns an interface wi th a component providing its im­
plementation. Implementing methods can be then called by components using
the interface.

registerObject registers a new object prototype i n the system that can be then used
as a interface function argument or as a return value.

createObject returns a cloned and deserialized instance of an object prototype re­
quested by a class name.

Component is the superclass for a l l components that can be registered i n a component
manager. A l l subclasses have to implement ini t ia l izat ion and finalization methods
where specify which interface functions may implement.

initialize is a pure v i r tua l method for the ini t ia l izat ion of aggregated objects and
interfaces and registration of declared or implemented interfaces. Avai lable in ­
terface function implementations of the component should be published in this
method too using a setlmplementation method.

finalize is a pure v i r tua l method for deini t ial izat ion of aggregated objects and inter­
faces of the component.

17

getFunction allows the component manager ask for the interface function implemen­
tations of the component. This method is necessary for interconnection of the
component and the interface object prototype during interface implementat ion
registration.

setlmplementation claims that there is a static method implementat ion of some
interface function i n the component. It is used in in i t ia l iza t ion of the component
in a initialize method.

ConcreteComponent is the realization of the abstract Component class. Th is class is
just exemplary i n the model and shows how concrete components could be derived in
practice.

Interface is a base class for interface objects. It contains slot object instances representing
its functions and it also have methods for their administrat ion as well as methods for
a slot implementat ion registration and selection. Each interface has its own unique
identifier.

clone returns a cloned instance of the interface object and allows use this class as a
prototype design pattern.

setSlotType changes the way how slots of this interface w i l l be executed, concretely
it exchanges used slot executor i n a l l aggregated slot objects.

getSlot returns a slot object representing an interface function identified by its name.
This method is often used i n modules when certain interface is used.

addSlot is used only i n a derived concrete interface objects' constructor to append
new functions to the interface.

registerComponent appends a component as an implementing component for the
local interface object instance. This function has global impact when applied on
an interface object prototype.

IConcretelnterface is again an exemplary realization of the abstract class Interface
showing what is needed to be done when deriving from its superclass i n a custom
interface definition.

Slot is a base class that serves as an abstraction over interface functions and their execution
mechanisms. E a c h slot instance has its name which is similar to the interface function
name where the slot belongs to.

clone returns a cloned instance of the slot object s imilar ly like the method wi th the
same name of the Interface class because interface objects are composed from
the slots.

add Argument defines a slot's input signature by appending new arguments of the
interface function.

addRet urn Value defines a slot's output signature wi th appended return values.

execute executes a slot implementat ion wi th the previously setted arguments using
a configured slot executor and fills specified return value variables w i th result of
the called interface function.

18

call is a pure v i r tua l ca l l operator which may be implemented i n descendant slots to
support a direct execution of the interface functions.

ConcreteS lot l , ConcreteSlot2 are custom slots extending the basic slot object w i th
a cal l operator implementation. This allows static execution of interface functions
wi th a defined signature in statically typed languages w i t h a fixed number of function
arguments.

SlotExecutor is a simple abstraction class that allows configure slots to use different
execution mechanisms i n runtime. New mechanisms are added to the system by
inheri t ing from this class and overriding a execute method.

getType returns a type of slots which execution the implemented slot executor sup­
ports.

execute accepts a slot object that interface function the slot executor w i l l cal l w i t h
its arguments and its return values.

EventHandler helps abstract different libraries and subsystems w i t h event processing
loops and merge them into the single loop. Der ived classes must implement both
variants of event processing methods.

waitEvent is a blocking variant of the event processing method. It serves at least
one pending event and returns the number of actually processed events. If no
event is available, it waits un t i l some is.

processEvent is a non-blocking variant of the previous method. It does nothing
and returns zero, if no events are prepared in a queue for this event handler.

Object is a base class for objects that can be used as interface function arguments and
that can be transferred between processes or over network using a serialization.

getClassName gives the name of the class that acts for runtime object type identi­
fication of derived classes.

clone returns a copy of the object instace. The objects are also prototypes because
they must be created dynamically.

serialize method returns a string representation of a object state either i n a text or
a binary form.

deserialize is an inverse operation for the previous. It accepts the string represen­
tat ion from which it builds a new object state.

19

« e n u m »
Type

INTEGER
FLOATING
STRING
OBJECT

Object
c lassName : String
getClassNameO : String
setClassName(name : String)
cloneQ : Object
serialize!) •' String
deserialize(data: String)

-slotExecutors [0..*] •

type : Type
value : Value 1

« i n t e r f a c e "
SlotExecutor

getTypeO : SiotType
exeßute(stot: SfôJ

CallbackSlotExecutor

getTypeO : SiotType
e x e c u t e l s l o t : Slot)

DBusSlotExecutor

getTypeO : SiotType
e x e c u t e l s l o t : Slot)

« e n u m »
SiotType

A N Y S L O T
C A L L B A C K S L O T
DBUS SLOT

« i n t e r f a c e "
Prototype

cloneQ : Prototype
freeO

-prototypes [0..*]
PrototvD eFa ctorv

-prototypes [0..*] DrototvDes r 0 . . * l : Prototvoe

< - 1

getPrototype()(name : String): Prototype
registerPrototype(name : String, prototype : Prototype)
unregisterPrototype(name : String)

Interface Fa ctory ObjectFactory

Slot

-arguments [0..*]^

name : String
arguments [0..*] : Argument
returns [0..*] : Argument
e x e c u t o r : SlotExecutor

* created
, destroyO

clone ()
getNameO : String
setName(name : String)
getTypeO : SiotType

, setType(type : SiotType)
getArguments [0..*]() : Argument
getReturnValues [0..*]() : Argument
addArgument(type : Type)
addReturnValue(type : Type)
setArgument(index : Integer, value : Value)
setReturnValue(index : Integer, value : Value)
executed

callO „

i [0. * ^

Interface
name : String = ""
slots [0..*] : Slot
implementinqComponents [Q..*l : Component
created
destroyO
c loned : Interface
getNameO : String
setName(name : String)
getSlotTypel) : SiotType
setSlotType(slotType : SiotType)
getSlot(name : String) : Slot
getSlot(name : String, type : SiotType) : Slot
addSlot(name : String, s l o t : Slot)
removeSlot(name : String)
reg isterComponent(component: Component)
unreqisterCompqnent(component: Component)

« i n t e r f a c e "
Singleton

getlnstanceO : Singleton
getConstlnstanceO : Singleton
freelnstanceQ

<--

interfaces : InterfaceFactory
objects : ObjectFactory

Component Manager

getlnterface(name : String) : Interface
getlnterfacePrototype(name : String) : Interface
registerlnterface(interface : Interface)

_ < 2 > unregisterlnterface(interface : Interface)
registerlmplementationdnterface : Interface, c o m p o n e n t : Component)
unregisterlmplementation(interface : Interface, c o m p o n e n t : Component)
createObject(name : String, data : String)
registerObject(object: Object)
unreqisterObject jobject: Object)

-componentManager

ConcreteSlot2

created
destroyO
c loned
c a ü ü

-concreteSlot2

TiplementingComponents [0..*]

ICon crete Interface
name : String = "IConcretelnterface"
c o n c r e t e S l o t l : ConcreteS lot l
concreteSlot2 : ConcreteSlot2
created
destroy!)
c loned : IConcretelnterface

ConcreteSlot l

created
destroyO
c loned

-concreteS lot l

name : String
i pie mentations fO..*l; void *

initialize ()
finalized
getNameO : String
setName(name : String)
getFunction(name : String) : void *
set lmplementat ion(name : String, function : void *)
unsetlmplementat ion(name : String)

c o m p o n e n t M a n a g e r : ComponentManagi
eventHandlers [0..*] : EventHandler
slotExecutors [Q..*l: SlotExecutor
initialize(argc : Integer, argv [0..*] : String)
f inal ized
daemonized
quitf)
getComponentManagerd : ComponentManager
getEventHandlerdd : undef) : EventHandler
addEventHandlerdd : String, eventHand ler : EventHandler)
removeEventHandlerdd : String)
getSlotExecutor(type SiotType) : SlotExecutor

ConcreteComponent
a g g r e g a t e d C l a s s l : C l a s s l
aqqreqatedClass2 : Class2
created
destroyO
initialized
f inal ized
s l o t l m p l e m e n t a t i o n l d
s lot lmplementat ion2d

-eventHandlers [0..*]

« i n t e r f a c e "
EventHandler

waitEventQ : Integer
processEventj)^: Integer

I ,
DBus EventHandler

waitEventl) : Integer
processEventd : Integer
connect(busName : String)
d isconnectd

Figure 5.2: The class diagram of the G A L Framework analyt ical model. Note that the createQ and destroy() methods denotes a regular
constructor and a destructor and the call() is a cal l operator.

6 Applied Design Patterns

Following sections of this chapter introspect deeper consequences i n the designed and
implemented parts of the G A L Framework core system and emphasizes appliance of object-
oriented design patterns as were described i n the well-known book Design Patterns: Ele­
ments of Reusable Object-Oriented Software [22]. They refer to a terminology used i n the
book and explain differences between the patterns presented i n the book and their usage
in the library. Ment ioned class names are taken from the l ibrary prototype implementat ion
and you can see their detailed documentation at [23].

6.1 Singleton

The singleton design pattern ensures that classes following it have only a single instance
and offers public access to it.

Clear candidate for this pattern was a component manager ComponentManager class but
after further consideration components (Component), event handlers (EventHandler) and
slot executors (S l o t E x e c u t o r) were assigned to the pattern too. A l l these classes are unique
in a process context and except of the S l o t E x e c u t o r , which is an read-only element, need
a private structure locking when race conditions w i l l occur. The singletons are realized by
a derivation from a S i n g l e t o n C + + template where it is possible. Th is allows receiving
an instance of a final type directly instead of using casting.

6.2 Prototype

The prototype pattern allows for creation of a cloned instance of an object by a v i r tua l
method defined i n the base class and implemented i n subclasses. It is not as restricted to
a concrete type as a regular copy constructor.

The G A L Framework uses the prototypes together w i th prototype managers implemented
in a PrototypeManager C + + template. They allows a registration, an unregistration and
an access to registered prototypes using methods parametrized wi th a string prototype
identifier. The returned reference to the prototype instance may be used to create the
clone but it must be dynamical ly casted to its end type before its use.

The pattern is concretely applied in an I n t e r f a c e and an Object class w i t h prototype
managers i n a I n t e r f aceManager and a ObjectManager classes. A copy method of the
I n t e r f a c e class performs a deep copy of an interface wi th a l l its slots so a S l o t class is a

21

prototype as well . Behavior of the copy method of the Object class is up to derived class
creator but it should be deep i n most cases.

6.3 Abstract Factory

Offers a way how to create a concrete object instance without knowledge of its final type.
On ly common base class type awareness is necessary for a complete class hierarchy. The
set of generated object instances can be dynamical ly reconfigured. The pattern is closely
related and cooperative w i t h the prototype and a factory method design pattern.

A s noted before, the abstract factories can be combined w i t h the prototype design pattern
to create new instances of registered objects. We can say that from this perspective the
ComponentManager class serves as such factory to create the I n t e r f a c e and the Object
classed objects. The desired interface object instance is requested wi th an identifier of the
interface and cloned from the registered interface prototype.

6.4 Strategy

The strategy is a simple design pattern which detaches diverse algorithms operating on
single data from their storage. It supports a dynamical ly configurable exchange of behavior.
The pattern consists of a strategy class which specifies behavior and a context class that
describes data.

This is very suitable for various implementations of the slot execution mechanism. The
strategy object of the pattern, which defines a common interface of the algorithm, is rep­
resented by a S l o t E x e c u t o r class i n the framework. A S l o t class represents the context
passed to a strategy method as long as a client that invokes the strategy algori thm method
when the slot is executed. Theoretically, this pattern can be changed to a command design
pattern to open a further possibilities i f a future development imply.

6.5 Iterator

The iterator is certainly the most frequently used design pat tern i n many applications.
It provides sequential access to elements of a compound container object while it keeps its
internal structures hidden. It may carry an addit ional information about the traversal than
just an actual i tem or a posit ion.

Since the l ibrary uses associative arrays implemented wi th S T L maps at many places, the
iterator pattern is ut i l ized even here. To simplify the S T L iterator usage, a M a p l t e r a t o r
template was created. It basically enwraps the standard iterator received from the container
map and extends it w i th a direct access to a value part of an i tem and wi th a boolean
cast operator which allows test it i n conditions directly. Few cases of the M a p l t e r a t o r
template ut i l iza t ion are a S l o t l t e r a t o r i n the interface objects, a I n t e r f a c e l t e r a t o r in
the component manager and a P r o t o t y p e M a p I t e r a t o r i n the prototype managers.

22

7 Slot Implementations

The first pr imary a im of the G A L Framework is to br ing a distr ibuted or multiprocessor
computat ion of GIS related tasks into the G R A S S . A n efficient singleprocessor slot execution
is crucial too. To satisfy this contradiction, two mechanisms for the interface function
execution was chosen and the others may be introduced on demand. The first is a slot
abstracting usual callbacks and the second is a slot cal l ing remote procedures w i th a D - B u s
l ibrary [24]. Other alternatives may be the O R B i t 2 [25], the H i g h Performance V i r t u a l
Machines (H P V M) [26], the X M L - R P C [27] or the Open M P I [28]. The spirit of the slot
design should help incorporate these libraries into the framework.

The slot objects defined in a S l o t class and belonging to some interface object of a class
I n t e r f a c e declare methods for an interface function signature management and a method
for a slot type setup. Change in the slot type replaces an assigned slot executor of a class
S l o t E x e c u t o r which is responsible for an actual slot implementat ion invocation. A n object
diagram of this is on figure the 7.1. It shows that the currently configured slot executor is
a D - B u s slot executor (the DBusSlotExecutor class).

interface

slots [0..*]

firstSlot

firstArgument

executor•
arguments [0..*]
returns [0..*]

second Argument returnValue

dbusExecutor

ca 11 bac kExec utor

Figure 7.1: The object diagram of a slot execution mechanism selection.

F rom a module developer posit ion, the communicat ion mechanism for the slot execution is
selected by a configuration of the slot type i n the interface. Th is configuration is performed
before the interface object is used i n modules and may be changed during usage i f it is
needed so. A called implementat ion is determined by an appropriate component loaded

23

locally i n the case of a local execution mechanism or by a master process i n the case of a
D-Bus mechanism. The master process is the one that have registered its name on a D - B u s
session bus as the first.

Because a new communicat ion types of the slots are added to the system by a derivation
of the S l o t E x e c u t o r base class, a derivation of the I n t e r f a c e and the S l o t base class
may be ut i l ized to extend more general behavior. A n example of this may be composed
interfaces and composed slots implemented i n a Composedlnterf ace and a ComposedSlot
class. The composed slots offers one addi t ional str ing argument which identifies an affected
subelement of the target component and the composed interfaces has a method for selection
of this element and one impl ic i t interface function which queries a list of available elements.
Th is interface can be used when the component hides many objects w i th the same behavior
and a selection of the concrete object is not too frequent.

For the demonstration of present abilities of the l ibrary the described configuration op­
tions are sufficient but for the future there could be for example configuration methods to
execute an implementat ion of a component specified by its name, a global last registered
component, a l l components w i th arguments and return values coupled to arrays, etc. A
load balancing is the next possible exploitat ion of these possibilities.

7.1 Callback Slots

The callback implementat ion of the slot executor in a C a l l b a c k S l o t E x e c u t o r class sim­
ply returns execution to the slot object which holds a function pointer to a registered
component's static method but due to a dynamic nature of a slot signature specification, a
foreign function interface l ibrary libffi [)] is used a for stack frame construction i n runtime.
The static methods must be used because taking a function pointer to a regular method and
coverting it to a void pointer is i l legal i n C + + . Arguments are passed to the static method
preppended wi th a pointer to the component instance to simulate the object method cal l .
M u l t i p l e return values are bound to a single structure returned by the method and then
unpacked to slot's return values.

7.2 D - B u s Slots

The D - B u s l ibrary was used as a pr imary l ibrary for a remote procedure execution because
it is a desktop oriented, l iv ing and spread project which w i l l soon become a standard on its
field as soon as the K D E 4 and the G N O M E w i l l uti l ize it more. Whole mechanism of the
D-Bus slot execution is slightly complex but a schema on the figure 7.2 tries to illustrate
it. It shows an example w i t h one object argument and one object return value but basic
types like integers and strings are supported too.

24

Client
Module

Interface * anlnterfacel
cm.getlnterface(
"Interfacel");

Slot * a S l o t l =
anlnterfacel.getSlot(
" S l o t l ") ;

Argument * argument —
new Argument();

Return * r e s u l t —
aSlotl(argument);

anlnterfacel

aSlotl

operator^

setArgument(0, argument);
setReturnValue(0, r e s u l t) ;
executor->execute(this);

ComponentManager

Interface"!!

Interface2l

Interface3

DBusSlot Executor

executeQ
eventHandler->callMethod(...);

I DBusEventHandler

callMethodO
argument.serialize();

dbus_connection_send_with_reply(...);

re s u l t = cm.createObject("Return",
data);

r e s u l t . d e s e r i a l i z e () ;

D-Bus

ComponentManager

Interface'l]

Interface2

Interfaces

Server
Component

slotl Implementation)

result = new Return();

DBusEventHandler

processEventQ

Argument * argument —
cm. createObject("Argument"
data);

argument.deserialize();
slotl.calllmplementation(...
r e s u l t . s e r i a l i z e () ;

dbus connection send)...);

Sl0t3 I
™sTo12 I

Interfacel

Slotl

calllmplementationO

f f i call<.. .) ;

Figure 7.2: The interface function execution schema of a slot configured to a D - B u s communication.

There are three main blocks: a C l i e n t and a S e r v e r wr i t ten using the G A L Framework
l ibrary and a D-Bus l ibrary system block. The C l i e n t consists of a code of an implemented
G R A S S module Module and a framework l ibrary code. If the module wants to use an
interface, it receives a cloned instance a n l n t e r f a c e l of an interface prototype I n t e r f a c e l
from a ComponentManager. To execute an interface function, the module asks a received
interface object for a reference to its slot a S l o t l by an interface function name. T h e n it
creates an instance of a function argument argument and calls the slot as a functor. A l l of
this denotes an unnamed block in the left part of the Module block.

The a S l o t l in a ca l l operator o p e r a t o r () deposits the argument object and a variable
for the return value object wi th in itself using a set Argument () and a s e t R e t u r n Value ()
method and tells the configured slot executor to execute i t . In this case of the D - B u s com­
municat ion example, a DBusSlotExecutor i n an execute () method calls an c a l l M e t h o d O
method of a DBusEventHandler object which serializes the input argument, sends a D - B u s
method cal l message and deserializes a received return value to the instance r e s u l t created
in the component manager from an object prototype. A control flow than returns to the
main module code that executed the slot.

O n the server side, the DBusEventHandler waits for the D - B u s method cal l messages.
W h e n such arrives, a processEvent () method of this object gets an instance of the argu­
ment object class from the component manager and deserializes it w i th message data. Next
it finds a proper interface and a slot prototype and executes an interface function imple­
mentation using a c a l l l m p l e m e n t a t i o n O method of the slot w i th the argument instance.
This calls a component's static method i n the same manner as i n the callback communi­
cation. After the method returns an allocated return value object, the DBusEventHandler
serializes it for a D - B u s method cal l message reply.

26

8 G A L Framework Subsystems

A directory structure of a source code tree is publ ic ly available at s v n : / / gal- f r a m e w o r k .
n o -ip . o r g : 3 6 9 1 or browsable at http://gal - f r a m e w o r k . n o-ip . o r g / b r o w s e r . It is cur­
rently divided into eight subsystems: core, e x c e p t i o n s , dbus, g e n e r a l , g i s , d i s p l a y ,
r a s t e r and v e c t o r . E a c h of them contains definitions of subsidiary classes as long as com­
ponent and interface object definitions. Here is listed only a content of the most important
of them. For a detailed description see the G A L Framework l ibrary reference [23] or the
commented source code.

8.1 Core Subsystem

The core subsystem comprise the same classes as mentioned i n the section 5.2 about
the analyt ical model plus a composed slot base class ComposedSlot, a composed inter­
face base class Composedlnterface, derived basic slots and composed slots w i th pre­
defined interface function signatures and a callback implementat ion of the slot executor
in a C a l l b a c k S l o t E x e c u t o r class. More about the composed slots, composed interfaces
and the callback slot executor can be read i n the chapter 7.

8.2 Exception Subsystem

Exceptions are from the beginning intended to be a main mechanism for reporting of
errors occurred during the interface function execution or an inval id state or operation sig-
nalizat ion when manipulat ing wi th objects. The exceptions forms a single inheritance tree
starting wi th an E x c e p t i o n superclass. Each exception bares a string message explaining
its meaning. They are currently defined i n two files the first contains general purpose ex­
ceptions and the second declares exceptions related to the D - B u s subsystem. Few examples
are: EIOError, ENotFound, EArgumentError and EConnectionError.

8.3 D-Bus Subsystem

This subsystem implements remote interface function execution wi th the D - B u s R P C
l ibrary []. Details on this matter and a deeper explanation of this implementat ion is
present i n the section 7.2.

8.3.1 Classes

DBusEventHandler is connected to a D - B u s system bus and ensures that a local interface
function implementat ion is found and executed when a D - B u s method cal l event from
another process arrives.

27

http://ip.org
http://gal-framework.no-ip.org/browser

DBusSlotExecutor performs the opposite side of the communicat ion — it produces the
D-Bus method cal l event of the slot's interface function when the slot is executed.

8.4 General Subsystem

It comprehends some general purpose classes and interfaces that could be potential ly
ut i l ized even i n non-GIS-related applications together w i th classes from the core, the ex­
ception, the D - B u s and par t ia l ly the display subsystem.

8.4.1 Classes

ModuleOptions is a container class w i th boolean module arguments. Each option has a
name and a help description.

ModuleArguments class is a list of module arguments w i t h an assigned value obtainend
from an IArgmentsProvider interface. Items of a ModuleArgument class are struc­
tures wi th a name, the value and a description.

Variable is a similar structure to the module argument used i n I E n v i r o n m e n t P r o v i d e r
interface functions.

8.4.2 Interfaces

IArgmentsProvider interface can be used to get options and arguments which controls
module actions. It also builds a help str ing from given module arguments and options
descriptions.

getOptions method returns the module options formatted i n the ModuleOptions
object.

setOptions sets the list of acceptable options of the module. If this function is not
used before the g e t O p t i o n s ca l l , the module gets a l l arguments provided by a
implementing component.

get Arguments gives the ModuleArguments object that contains a list of the re­
quested module arguments.

setAruments is an analogous method to the s e t O p t i o n s but for the module argu­
ments.

setDef aultArgument tells the implementing component what argument is a default
one.

getHelp creates a formatted help string for the module which can be printed to
the standard output or displayed i n the user interface. It accepts a module
description as a parameter and employs the previously setted descriptions.

IEnvironmentProvider helps abstract foreign sources of environment variables. For ex­
ample, a G R A S S GIS module g.env reads the varables from a global configuration
file or a local configuration file of a mapset. System-wide varables (an active monitor
for example) could be store using this interface too. Th i s interface has a g e t V a r i a b l e
and a s e t V a r i a b l e function.

28

8.4.3 C o m p o n e n t s

Default Argument sProvider returns from the I A r g m e n t s P r o v i d e r interface functions
formatted command-line arguments passed to the G A L Framework in i t ia l iza t ion method.

Def aultEnvironmentProvider implements the I E n v i r o n m e n t P r o v i d e r interface for a
G A L internal variables storage.

GRASSRCEnvironmentProvider also implements the I E n v i r o n m e n t P r o v i d e r interface but
for G R A S S ' S variables saved in the global configuration file.

GRASSMapsetEnvironementProvider is the same as the previous components but for the
variables of the mapset.

8.4.4 M o d u l e s

g.gald is a daemon module that loads a l l internal components of the G A L Framework
w i t h their implementations and it waits for their interface functions execution over
the D - B u s . It is needed for example i n cooperation w i t h a d.mon and a d . r a s t
modules because it keeps a component w i th monitor windows available even after the
d.mon module finishes.

g.quit is an auxi l iary module that terminates running master module which is i n the most
cases the g. gald.

g.gisenv supplies some possibilities of the equally called G R A S S module and operates
wi th the I E n v i r o n m e n t P r o v i d e r interface and its implementing components.

8.5 Display Subsystem

Classes, interfaces and components of the display subsystem provide a support for graph­
ical user interface or data visualizat ion related modules. They are created w i t h the help of
the Qt widget toolki t [] version 4.x but there is a possibil i ty to use any other G U I l ibrary
if it allows an ind iv idua l event processing.

8.5.1 Classes

QtEventHanler implements the EventHandler base class and manages the Qt event pro­
cessing loop and a Q A p p l i c a t i o n object. More on event handlers is in the section 5.2.

Area is a general rectangle region wi th x and y coordinates, a width and a height.

Raster Image is a class for a mult ichannel two dimensional raster image data storage and
manipulat ion. It's used i n a I R a s t e r D i s p l a y e r interface. Pixels can be accessed as
raw data or as C o l o r typed elements at chosen x and y cooordinates. The content or
the format can be described wi th a metadata attribute.

QtMonitorGLWidget inherits from a QGLWidget class and appends an internal image buffer
for widget canvas repaint everytime it 's needed. A s the name may indicate, it uses
O p e n G L for rendering.

29

QtMonitorWindow is derived from a QMainWindow class and contains the QtMonitorGLWidget
widget as a drawing area.

drawlmage is the only method added to the base class. M e t h o d converts a Rasterlmage
to a QImage for drawing on the canvas.

8.5.2 Interfaces

IMonitorController serves for modules that controls size, posit ion and appearance of
graphical windows. For example, modules like a d.mon module from the G R A S S GIS
which controls monitors. It is the composed interface where the element identifies a
target monitor window. A list of provided interface functions would be too long and
it is rather unimportant to be listed here.

IRasterDisplayer is the composed interface that allows modules display raster images on
the monitor. Visua l ized data is just mult ichannel p ixel pictures not raster GIS data
as name could insult . The element is a target monitor window name. A n example
module that could use this interface is a d . r a s t .

getRasterlmageArea returns an Area object w i t h dimensions of canvas where the
raster images can be drawn. This means that any rendering request beyond the
borders w i l l not be visible.

displayRasterImage displays a raster image of the Rasterlmage class at given
coordinates and wi th specified dimensions.

8.5.3 C o m p o n e n t s

Def aultMonitorController component implements the I M o n i t o r C o n t r o l l e r and the
I R a s t e r D i s p l a y e r interfaces for eight monitors named xO to x7. This respects prac­
tices from the G R A S S G I S . A s long as this component is resident in the memory and
ini t ial ized, it can accept interface functions implementat ion calls.

RoamerComponent is a base and only component that implements the I M o n i t o r C o n t r o l l e r
and the I R a s t e r D i s p l a y e r interfaces for a d.roamer visualizat ion tool . A n element
name of the module window is a roamer for the identification in interface functions.

8.5.4 M o d u l e s

d.mon is a simple module that shows, hides or selects as active monitors provided by the
Def a u l t M o n i t o r C o n t r o l l e r component instantiated i n the g . g a l d daemon. Raster
layers can be continuously displayed wi th the d. r a s t program. Such a monitor win­
dow can be seen on the figure 8.1.

d.move allows shift a monitor window from the command-line or a script. It uses one of
the I M o n i t o r C o n t r o l l e r interface functions to accomplish that.

d.resize is s imilar module to d.move but it resizes the monitor window instead.

d.roamer is a more complex 3D visual izat ion tool for the G R A S S GIS wri t ten using the
G A L Framework. The user can freely roam over the displayed terrain w i th this
tool and one of selectable level of detai l algorithms for the rendering is the R O A M

30

Monitor: xO _ • X

Figure 8.1: The monitor window opened wi th the d.mon module wi th an e l e v a t i o n . 10m
raster layer from the s p e a r f i s h 6 0 test mapset displayed by the d . r a s t module.

a lgori thm [] from the SoTerrain l ibrary [32]. That ' s where the module name comes
from.

The module displays a raster layer and it is controlled in the same way as the
Def a u l t M o n i t o r C o n t r o l l e r managed windows wi th the d.mon and the d . r a s t mod­
ules of the framework. The layer is interpreted as a texture but a terrain heightmap
can be selected w i t h the d . r a s t module using the different argument during the
visualizat ion too as can be seen on the figure 8.2.

The figure 8.3 demonstrates a communicat ion begind the raster layer display. The
d.roamer module w i t h its RoamerComponent is running as a daemon and accepts
D-Bus method cal l events. The d . r a s t module gets raster layer data from the
GRASSRasterLayerProvider component i n the framework and sends them to the
listening RoamerComponent component which creates and shows a scene graph wi th
the terrain.

8.6 GIS Subsystem

Here i n this subsystem, support instruments for performing GIS-specific computat ion
such as map projections or coordinate systems may be present. For the moment, there are
available only a rectangular region abstraction class representing an area of interest i n the
map and an interface and components working wi th it.

31

Figure 8.2: The d.roamer module user interface w i t h an aspect raster layer from the
spearf i s h 6 0 test mapset displayed as a texture and an e l e v a t i o n . 10m layer displayed as
a heightmap.

8.6.1 Classes

LayerRegion bounds cutout of a raster or a vector map layer w i t h an east, a west, a north
and a south edge. It also describes number of rows and columns and a north-south
and a east-west resolution for convenience although one information can be computed
from another.

8.6.2 Interfaces

IRegionProvider presents an access point to components providing different areas of
interest on the map layers.

getRegion returns the requested LayerRegion region object.

8.6.3 C o m p o n e n t s

GRASSDef aultRegionProvider manages the default region of the G R A S S GIS mapset
and offers it to any component or module that uses the I R e g i o n P r o v i d e r interface.

GRASSUserRegionProvider is analogous component but for the active region of the user.

8.6.4 M o d u l e s

g.region module allows read and modify the user region. It reimplements the same-called
module from the G R A S S GIS package using the I R e g i o n P r o v i d e r interface.

32

d.rast

T *

RasterLayerProvider
GAL Framework

GRASSRasterLayerProvider (^) IMonitorContoller (^) IRasterDisplayer

GRASS data
d.roamer

RoamerComponent

Figure 8.3: The internal architecture of the d.roamer module.

8.7 Raster Subsystem

Interaces and components that access or manipulate GIS raster data as wel l as modules
that implement such interfaces belong to this subsystem. A current implementat ion reads
raster data from the native G R A S S format using its raster l ibrary in tiles.

8.7.1 C l a s s e s

ColorTable is a linear table which converts raster data values to corresponding colors. It's
bounded by a min ima l and a max ima l value. It's used for a raster layer visualizat ion
where each value denotes an independent category.

getColor method returns a color of a C o l o r class for a given integer value of a raster
cell.

ColorRules is a set of intervals w i th assigned boundary colors. The resulting color is
computed by their interpolation during the look up. This is more suitable for the
visualizat ion of rasters that models continuous phenomenons.

addRule appends a new color rule to the set w i t h the specified interval and the
boundary colors.

getRule provides access to the stored color rules of a type C o l o r R u l e which offers a
color look up method g e t C o l o r .

RasterTile is a tile of raster data returned by a I R a s t e r L a y e r P r o v i d e r interface func­
t ion. It support various cell data types. Current ly it 's designed for two dimensional

33

rasters only but this should be changed for future pract ical applications of the library.
Some of its attributes are the color table, the color rules and metadata string.

getColorTable returns reference to the color table of the tile.

getColorRules gives reference to the object w i t h color rules.

getMedatata returns the string wi th metadata attached to the tile. It is not decided
what form this metadata should take because they are not needed i n example
modules.

getClolor performs a direct color look up for a raster tile cell at given coordinates.

8.7.2 Interfaces

IRasterLayerProvider is a composed interface that could be used i n every raster pro­
cessing module because it could provide access to any raster data i n a G R A S S mapset
and location or any other external format. Source of data depends only on a selected
implementing component. D a t a are requested i n tiles of specified posit ion and dimen­
sions by the layer region.

getLayer returns a part of the raster layer represented by a R a s t e r T i l e object
instance.

IRasterLayerDisplayer interface may be preferred in the cases where a raster data trans­
fer between components would be too expensive for the interactive visualizat ion. A n
interface function just passes request for layer display and an implementing compo­
nent reads the data by its own. Even this interface is the composed.

displayLayer tells what raster layer should be displayed.

8.7.3 C o m p o n e n t s

GRASSRasterLayerProvider implements the I R a s t e r L a y e r P r o v i d e r interface and pro­
vides raster layers from the G R A S S locations w i th the l i b g r a s s _ g i s l ibrary.

8.7.4 M o d u l e s

g . l i s t module is able to print to the standard output a list of a l l available raster layers
provided by the GRASSRasterLayerProvider component.

d.rast is more related to the raster subsystem even if it serves for the raster layer display
on the active monitor. It reads raster data using the I R a s t e r L a y e r P r o v i d e r inter­
face and sends them to a visual izat ion component i n the g . g a l d process using the
I R a s t e r D i s p l a y e r interface.

8.8 Vector Subsystem

The vector subsystem is not present in the l ibrary because an internal representation
of vector layers should have been elaborated i n the Be . Jan Ki t t l e r ' s master's project and
then interfaced to the framework's practices. Unfortunately, he postponed his work to the
next academic year. A u t h o r can only hope that further cooperation w i t h h i m w i l l br ing
outstanding implementat ion of vectors to the G A L Framework.

34

9 Dynamic Language Bindings

The second of the pr imary targets of the G A L Framework is to support an interface
function execution from various dynamic languages. Th is chapter discuss achievements
and obstructions of this objective.

9.1 S W I G Uti l izat ion

The Simplified Wrapper and Interface Generator (S W I G) [] tool is suitable for an
automatic generation of C / C + + libraries bindings to many dynamic languages. This fully
applies for a C code which don't use variable length arguments functions and callbacks.
Support of these programming techniques is not at a l l or at least hardly possible from
the principle. Some C + + constructs like nested classes, a new and a d e l e t e operator
overloading or an uncommon use of templates are not wrappable as well . O f course, a
set of transformed source language properties depends on a target language capabilities.
For this reason, a wrapper of the slot execution methods has to be thoroughly customized.
Fortunately, this could be done wi th advanced S W I G features or certain hacks.

9.2 General Customizations

A s mentioned before, the nested C + + classes can't be wrapped by the S W I G . To over­
come this l imi ta t ion , nested slot declarations inside the interface object classes had to be re­
named to a global G A L namespace. For example, they are accessible under a GAL. SomeSlot
class in P y t h o n instead of a GAL: :ISo m e l n t e r f a c e : :SomeSlot class i n C + + .

Even if wrapped object proxies can be thrown as exceptions in the target language, for
a more clearly readable exception backtrace it 's better to ca l l a predefined S W I G excep­
t ion evocation function i n a throws typemap which transforms the C + + exception to an
appropriate target language exception of a specified type.

A minor l imi ta t ion represents need of a template instantiat ion before their interfacing.
This means that there can't be used the templates typed wi th types declared i n the host
language.

9.3 Python Bindings

A t the beginning, only the P y t h o n bindings were developed to prove a G A L Framework's
core system possibilities i n the dynamic language support. Th is language was chosen be­
cause of its simplicity, clearness, frequent usage and because it 's the best implemented

35

target language i n the S W I G . This implies a good knowledge base available on the Inter­
net. The resulting wrapper is a dynamic l ibrary wri t ten using a P y t h o n / C A P I [34] and a
single P y t h o n script w i th a l l proxy classes.

The first needed modification to the wrapper interface for this language was a rename of
al l used o p e r a t o r [] operators to __getitem__() methods for a read access and __setitem__()
methods for a write access. Then , a in typemap converting a argc and a argv argument of
the GAL: : i n i t i a l i z e () method to a P y t h o n list of strings was created for a convenience
because P y t h o n stores the command-line arguments in a s y s . a r g v list.

The slots obtained from the interface objects must be casted to their final type to allow
the interface function cal l w i th a defined signature in C + + as you can notice i n a l ibrary
tu tor ia l i n the appendix A . The S W I G wraps an I n t e r f a c e : : g e t S l o t () method to return
a proxy object containing a pointer to a S l o t but P y t h o n expects that an object reference
is always of its final type and thus it doesn't offer any casting mechanism for this. To fix
this contradiction, C + + conversion functions would be needed to be wri t ten and wrapped
if there wasn't other solution. The slots were designed for a dynamic signature specification
and execution. The overloaded cal l operators of derived slots are provided only for conve­
nience. So, only th ing needed was extend the P y t h o n S l o t class w i th a _ _ c a l l _ _ () method
wi th variable length arguments which converts P y t h o n basic types to C + + basic types
and extracts an internal pointer from P y t h o n proxies when passing the slot arguments and
which converts the basic C + + types to the basic P y t h o n types and creates the appropriate
P y t h o n proxy object when dealing wi th the return values.

9.4 Java Bindings

The second selected dynamic language is Java for its vast usage although it is expl ici t ly
compiled, w i th less dynamism and more language restrictions than P y t h o n . The S W I G
generates a dynamic l ibrary wi th bindings for this language using a Java Nat ive Interface
(JNI) [] and it creates Java proxy classes for a l l defined types i n separate files.

Java doesn't have operator overloading, that 's why an o p e r a t o r () , an o p e r a t o r [] ,
an operator++, an o p e r a t o r — , an operator+, an o p e r a t o r - , an o p e r a t o r * and an
o p e r a t o r / operator had to be renamed to an c a l l () , an g e t () , an i n c () , an d e c () ,
an add(), an sub(), an mul() and an d i v () method. Even here, the in typemap was
wri t ten to allow pass a string array wi th arguments to the l ibrary in i t ia l iza t ion method.
Another trouble wi th Java was the fact that a name of the destructor collides wi th the name
of a framework deini t ial izat ion method therefore it was renamed to a GAL: : . f i n a l i z e () .

For experimental and presentational reasons, a conversion using a out typemap of the
S W I G tool was picked as a solution to the slot type problem for this language. The
typemap determines a slot type wi th a S l o t : :getClassName() method, creates a proxy
for this type and the proxy can be then safely casted using native casting operator i n a
Java code.

36

9.5 Other Bindings

Despite of the fact that only P y t h o n and Java was chosen from a long list of languages
that the S W I G supports, C # , Pe r l and R u b y was other candidates and presents a potential
field of evolvement of the G A L Framework. T e l could be considered also because it 's widely
used in a G R A S S GIS user interface.

37

10 Experimental Results

A s you may point out, the performace w i l l never be the strongest side of the slot execution
because of its dynamic nature. Expensive operations should be methods of objects returned
from the slots rather than the interface functions itself. The selected execution mechanism
affects an interface function ca l l overhead significantly. To make a better image about its
impact on the performace, a set of tests was created and performed. Results are presented
and discussed i n this chapter.

The testing machine was a Intel Core 2 Duo laptop at 1.8 G H z frequency wi th a 2 G B
R A M memory. There was defined an experimental interface w i th slots accepting differently
typed arguments and giving the same return values. Tha t means for example that there
was a slot w i t h a single integer argument and a single integer return value. Other tested
data types was double, string, object and a slot w i t h no arguments or return values. A
string argument value was the "test" word. The object argument was a simple Object
class derived instance w i t h one integer attribute. Testing applications and scripts are i n a
GAL/test/ directory of the root directory on the C D .

The measured results are listed in the table 10.1. Columns denote type of the slot
argument and the return value and rows represent used execution mechanism and language.
Values are t ime that costed one execution of an interface function implementation w i t h an
empty body.

Table 10.1: The performace of the slot execution.
Type V o i d Integer Double Str ing Object

C + + local
C + + D - B u s
P y t h o n local

P y t h o n D - B u s

200 ns
1.08 ms
2.07 pa
1.08 ms

287 ns
1.10 ms
2.48 pa
1.10 ms

285 ns
1.09 ms
2.53 as
1.10 ms

296 ns
1.09 ms
2.54 fis
1.10 ms

359 ns
1.11 ms
24.4 fis
1.12 ms

The first and the fastest row is a callback implementat ion of the slot mechanism called
from a C + + testing module locally. The first cell should describe a raw overhead of execu­
t ion, the others are the raw overhead plus an overhead per argument and return value of
the appropriate type. The integer, the double and the string slots are almost equal. O n l y
an object argument cost is a l i t t le bit higher because of an instance creation. Process ran
on a single core.

The next is a C + + module cal l ing the implementat ion i n a server process using the D -
Bus. It 's four orders slower because of the low bandwidth of the D - B u s . A l t h o u g h there

38

was enabled both cores during the testing, overall system usage was very low (about the
10% per core). This is caused by l imitat ions of a D - B u s synchronization and implies that
there is a need to introduce another R P C based slot implementat ion which don't suffer w i th
this problem. Us ing less messages i n a single moment or bigger ones is more than advised
when using the D - B u s slots.

The P y t h o n bindings wi th a direct implementat ion have proven only one order slower
when using the basic types but the object arguments are more expensive than that. This
is probably caused by a proxy object creation and destruction.

The cost of P y t h o n interpretation has no visible influence comparing to the t ime losses
in the D - B u s synchronization which shows the last line of the table although both client
and server was wri t ten in Py thon .

39

11 Conclusion

Al though many work on the design and the prototype implementat ion was done, there is
s t i l l much things that could or should be appended to the framework to be generally usable.
The author believes that the point of the project was to present an idea and prove it on a
pilot implementat ion not to create a final full-featured system. Future of the project now
depends on the intersest of the community.

Lastly, here is just mention about the support tools used during the project develop­
ment. The Trac [] was picked up as a project management tool, the Subversion [« 7] as
a source code management system, the SCons [38] as a bu i ld system, the Doxygen [J)] as
the l ibrary documentation generator and the many others that was noted previously in the
text. Thanks belongs to their developers for the help they have granted.

40

12 References

[1] T h e W i k i m e d i a Foundat ion. Geographic Information System, h t t p : / / e n . w i k i p e d i a .
o r g / w i k i / G e o g r a p h i c _ i n f o r m a t i o n _ s y s t e m , M a r c h 2008.

[2] Radek B a r t o ň . G A L Framework Homepage, h t t p : / / g a l - f r a m e w o r k . n o - i p . o r g / ,
J u l y 2007.

[3] W i l l i a m D . Goran , W i l l i a m E . Dvorak, L l o y d V a n Warren, and R o n a l d D . Webster.
Fort H o o d Geographic Information System: P i lo t System Development and User In­
structions. Technical Report N-154, U S A Construct ion Engineering Research Labora­
tory, Champaign , IL . , M a y 1983.

[4] James Westervelt. G R A S S Roots . In Proceedings of the FOSS/GRASS Users Confer­
ence. F O S S / G R A S S Users Conference, September 2004.

[5] G R A S S Development Team. G R A S S History. h t t p : / / g r a s s . i t c . i t / d e v e l /
g r a s s h i s t . h t m l , September 2007.

[6] R a d i m Blažek, Markus Neteler, and Roberto Mica re l l i . The New G R A S S 5.1 Vector
Architecture. In Proceedings of the Open source GIS - GRASS users conference 2002.
Universi ty of Trento, September 2002.

[7] G R A S S Development Team. G R A S S GIS 6.1.0 Released, h t t p : / / g r a s s . i t c . i t /
announces /announce_grass610 .h tml , August 2006.

[8] G R A S S Development Team and Markus Neteler. G R A S S 5.0 Programmer 's Manua l .
h t t p : / / g r a s s . i t c . i t / g r a s s 5 0 / p r o g m a n g r a s s 5 0 . p d f , January 2004.

[9] G R A S S Development Team. Raster D a t a Processing i n G R A S S G I S . h t t p : / / g r a s s .
i t c . i t / g r a s s 6 3 / m a n u a l s / h t m l 6 3 _ u s e r / r a s t e r i n t r o . h t m l , A p r i l 2008.

[10] G R A S S Development Team. G R A S S 6 Programmer 's Manua l , h t t p : / / d o w n l o a d .
o s g e o . o r g / g r a s s / g r a s s 6 _ p r o g m a n / , A p r i l 2008.

[11] The W i k i m e d i a Foundat ion. Shapefile. h t t p : / / e n . w i k i p e d i a . o r g / w i k i / S h a p e f i l e ,
A p r i l 2008.

[12] Pos tg reSQL G l o b a l Development Group . Pos tgreSQL. h t t p : / / w w w . p o s t g r e s q l .
o r g / .

[13] Pos tGIS Development Team. Pos tGIS . h t t p : / / w w w . p o s t g i s . o r g / .

[14] G D A L Development Team. O G R . h t t p : / / w w w . g d a l . o r g / o g r / .

41

http://en
http://gal-framework.no-ip.org/
http://grass.itc.it/devel/
http://grass.itc.it/
http://grass.itc.it/grass50/progmangrass50.pdf
http://grass
http://itc.it/grass63/manuals/html63_user/rasterintro.html
http://osgeo.org/grass/grass6_progman/
http://en.wikipedia.org/wiki/Shapefile
http://www.postgresql
http://www.postgis.org/
http://www.gdal.org/ogr/

[15] G R A S S Development Team. G R A S S D B M I DataBase Management Interface, h t t p :
/ / d o w n l o a d . o s g e o . o r g / g r a s s / g r a s s 6 _ p r o g m a n / d b m i l i b . h t m l , M a r c h 2008.

[16] Radek Bar ton and M a r t i n Hruby . G A L Framework. In Proceedings of the workshop
Geoinformatics FCE CTU 2007. Czech Technical Univers i ty i n Prague, September
2007.

[17] Chris topher Lenz, Dave Abrahams, and Chr i s t i an Boos. Trac Component Architecture,
h t t p : / / t r a c . e d g e w a l l . o r g / w i k i / T r a c D e v / C o m p o n e n t A r c h i t e c t u r e , Ju ly 2007.

[18] J i m A r l o w and Ila Neustadt. UML and the Unified Process: Practical Object-Oriented
Analysis and Design. Addison-Wesley Longman Publ i sh ing Co . , Inc., Boston, M A ,
U S A , 2002.

[19] Radek Bar ton . Component Architecture, h t t p : / / g a l - f r a m e w o r k . n o - i p . o r g / w i k i /
C o m p o n e n t A r c h i t e c t u r e , September 2007.

[20] Radek Bar ton . Use Cases. h t t p : / / g a l - f r a m e w o r k . n o - i p . o r g / w i k i / U s e C a s e s , J u l y
2007.

[21] Radek Bar ton . A n a l y t i c a l Classes. h t t p : / / g a l - f r a m e w o r k . n o - i p . o r g / w i k i /
A n a l y t i c a l C l a s s e s , Ju ly 2007.

[22] E r i c h G a m m a , R icha rd He lm, R a l p h Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, Read­
ing, M A , U S A , 1995.

[23] Radek Bar ton . A n a l y t i c a l Classes, h t t p : / / g a l - f r a m e w o r k . n o - i p . o r g / d o x y g e n / ,
M a y 2008.

[24] freedesktop.org. D - B u s . h t t p : / / w w w . f r e e d e s k t o p . o r g / w i k i / S o f t w a r e / d b u s .

[25] G N O M E Foundat ion. O R B i t 2 . h t t p : / / w w w . g n o m e . o r g / p r o j e c t s / 0 R B i t 2 / .

[26] A n d r e w A . Chien , Dan ie l Reed, and D a v i d Padua . H i g h Performance V i r t u a l Machines,
h t t p : / / w w w - c s a g . u c s d . e d u / p r o j e c t s / h p v m . h t m l .

[27] X M L - R P C Development Team. X M L - R P C . h t t p : / / w w w . x m l r p c . c o m / .

[28] Open M P I Development Team. Open M P I . h t t p : / / w w w . o p e n - m p i . o r g / .

[29] An thony Green and G i a n n i M a r i a n i . libffi. h t t p : / / s o u r c e w a r e . o r g / l i b f f i / .

[30] Troll tech A S A . Q t . h t t p : / / t r o l l t e c h . c o m / p r o d u c t s / q t .

[31] M a r k A . Duchaineau, M u r r a y Wolinsky, D a v i d E . Sigeti, M a r k C . Mi l l e r , Charles
A l d r i c h , and M a r k B . Mineev-Weinstein. R O A M i n g terrain: Real- t ime opt imal ly
adapting meshes. In IEEE Visualization, pages 81-88, 1997.

[32] Radek Bar ton . SoTerrain. h t t p : / / b l a c k h e x . n o - i p . o r g / w i k i / S o T e r r a i n , October
2007.

[33] S W I G Development Team. Simplified Wrapper and Interface Generator, h t t p : / / w w w .
s w i g . o r g / .

42

http://trac.edgewall.org/wiki/TracDev/ComponentArchitecture
http://gal-framework.no-ip.org/wiki/
http://gal-framework.no-ip.org/wiki/UseCases
http://gal-framework.no-ip.org/wiki/
http://gal-framework.no-ip.org/doxygen/
http://freedesktop.org
http://www.freedesktop.org/wiki/Software/dbus
http://www.gnome.org/projects/0RBit2/
http://www-csag.ucsd.edu/proj
http://www.xmlrpc.com/
http://www.open-mpi.org/
http://sourceware.org/libffi/
http://trolltech.com/products/qt
http://blackhex.no-ip.org/wiki/SoTerrain
http://www
http://swig.org/

[34] Python Software Foundation and Fred L. Drake, Jr. Python/C API Reference Manual.
http://docs.python.org/api/api.html, February 2008.

[35] The Wikimedia Foundation. Java Native Interface, http: / /en. wikipedia. org/wiki /
Java_Native_Interface, February 2008.

[36] Edgewall. Trac. http:/ / trac.edgewall .org/.

[37] Tigris.org. Subversion, ht tp: / /subvers ion. t igr is .org/ .

[38] The SCons Foundation. SCons. http://www.scons.org/.

[39] Dimitri van Heesch et al. Doxygen - Source Code Documentation Generator Tool.
http://www.stack.n1/~dimitri/doxygen//, May 2008.

43

http://docs.python.org/api/api.html
http://trac.edgewall.org/
http://Tigris.org
http://subversion.tigris.org/
http://www.scons.org/
http://www.stack.n1/~dimitri/doxygen//

A p p e n d i x A

Library Tutorial

This appendix contains a tu tor ia l of a G A L Framework l ibrary appliance in a G R A S S GIS
module development. F i rs t we w i l l show a basic u t i l iza t ion of a predefined functionality
in general on an imaginary interface. Then we w i l l define the used object, the slot, the
interface and the component on our own which may be interesting for those who wants
extend framework's features. Final ly , we w i l l create some more pract ical module that
simulates functionality of the g . l i s t r a s t command. Complete source codes of these
examples are placed i n a GAL/doc/Examples/ directory on an attached C D .

A . l Imaginary Interface

We are going to write a client-side module which calls interface functions to get some
data or perform a computat ion over them and then exits. A structure of such module can
be reduced to the following code skeleton:

// GAL Framework i n c l u d e s .
#include < G A L / c o r e / B a s i c . h >

// L o c a l i n c l u d e s

int m a i n (i n t a r g c , const char * argv [])
{

t r y
{

// I n i t i a l i z e GAL Framework.
G A L : : i n i t i a l i z e (a r g c , a r g v) ;

// C r e a t e and i n i t i a l i z e components.

// Get i n t e r f a c e o b j e c t s form component manager.

// Get s l o t s from i n t e f a c e s

// Do the j o b .

// F r e e r e c i e v e d o b j e c t s and i n t e r f a c e s .

44

// D e i n i t i a l i z e and f r e e component

// D e i n i t i a l i z e GAL Framework and
GAL: : f i n a l i z e () ;

}
catch (E x c e p t i o n e x c e p t i o n)
{

s t d : : c e r r << " U n e x p e c t e d e r r o r : "
<< s t d : : e n d l ;

return EXIT.FAILURE;
}

return EXIT_SUCCESS;
}

A l l significant code is enclosed in a t r y statement w i th an appropriate exception handler
and between a GAL: : i n i t i a l i z e () and a GAL: : f i n a l i z e () method. They prepare or free
internal structures of the G A L Framework so code that uses it should be wi th in .

Let 's suppose that there is a I C u s t o m l n t e r f ace interface and a CustomComponent com­
ponent that implements it i n the framework and we want to ca l l this implementat ion to
set or get some data. F i rs t we must load the component w i th the required interface imple­
mentation.

// C r e a t e and i n i t i a l i z e component w i t h i m p l e m e n t a t i o n .
CustomComponent * component = new CustomComponent();
c o m p o n e n t - > i n i t i a l i z e () ;

Then we get a reference to a component manager and request for the interface object by
an interface name.

// Get i n t e r f a c e o b j e c t form component manager.
ComponentManager & cm = GAL::getComponentManager();
I n t e r f a c e * i n t e r f a c e = c m . g e t l n t e r f a c e (" I C u s t o m l n t e r f a c e ") ;

The I C u s t o m l n t e r f ace interface has three functions. The first, called a f o o () , doesn't
have any arguments or return values, the second function a b a r () has a single integer
argument and the th i rd a g e t P o i n t O function returns a point object of a class P o i n t . To
cal l these functions, we must obtain slot objects representing them from the interface.

// Get s l o t of I C u s t o m l n t e r f a c e i n t e f a c e f u n c t i o n s .
F o o S l o t & f o o = r e i n t e r p r e t _ c a s t < F o o S l o t &>(

i n t e r f a c e - > g e t S l o t (" f o o ")) ;
B a r S l o t & bar = r e i n t e r p r e t _ c a s t < B a r S l o t &>(

i n t e r f a c e - > g e t S l o t (" b a r ")) ;
G e t P o i n t S l o t & g e t P o i n t = r e i n t e r p r e t . c a s t < G e t P o i n t S l o t & > (

i n t e r f a c e - > g e t S l o t (" g e t P o i n t ")) ;

// C a l l them,
fo o () ;

e x i t .

<< e x c e p t i o n . g e t M e s s a g e ()

45

b a r (9 9) ;
P o i n t * p o i n t = g e t P o i n t () ;

W h e n the work is done we should free the received point object and the interface object.

// F r e e r e c i e v e d o b j e c t and i n t e r f a c e ,
p o i n t - > f r e e () ;
i n t e r f a c e - > f r e e () ;

The component w i th an implementat ion is no longer needed so we can deinitialize and
release it too.

// D e i n i t i a l i z e and f r e e component,
c o m p o n e n t - > f i n a l i z e () ;
delete component;

That ' s a l l for this case, you can see the joint code snippets of this module example i n a
file GAL/doc/Examples/core_example.cpp on the C D .

A.2 Custom Object

We saw the point object of the class P o i n t in the previous example. N o w we w i l l show
how can be such custom object declared and implemented. Every object that can be used
as an interface function argument or a return value must be derived from a Object base
class and override a c l o n e () , a s e r i a l i z e () and a d e s e r i a l i z e () method i n order to be
be transferable between processes or hosts w i th remote procedure ca l l libraries.

class P o i n t : p u b l i c O b j e c t

A default constructor and a constructor w i th point coordinates is defined next. Notice
that both constructors sets a name of the object's class w i t h a setClassName () method.
This is crucial for runtime determination of a object type.

p u b l i c :
/* C o n s t r u c t o r s . */
P o i n t ()
{

t h i s - > s e t C l a s s N a m e (" P o i n t ") ;
};
P o i n t (i n t _x, i n t _y) :

x (_ x) , y (_y)
{

t h i s - > s e t C l a s s N a m e (" P o i n t ") ;
}

46

Every Object is a prototype (see chapter 6). That ' s why we must override the c l o n e ()
method to get the right instance of the P o i n t class. Th is can be done w i t h the copy
constructor. Because we won't define any pointer-linked internal attributes, we don't need
to write the copy constructor and we use an impl ic i t one.

/* P r o t o t y p e methods. */
v i r t u a l O b j e c t * c l o n e () c o n s t
{

// C l o n e w i t h copy c o n s t r u c t o r ,
r e t u r n new P o i n t (* t h i s) ;

}

Override the serialization and the deserialization method is what is left. The serialization
method returns a string object w i th (in this case) a binary representation of a P o i n t class
state and the deserialization takes that string and restores the state. In other words: they
must be complementary.

/* S e r i a l i z a t i o n methods. */
v i r t u a l S t r i n g s e r i a l i z e () c o n s t
i

// S e r i a l i z e p o i n t t o s t r i n g .
S t r i n g d a t a ;
d a t a . a p p e n d (r e i n t e r p r e t _ c a s t < c o n s t
d a t a . a p p e n d (r e i n t e r p r e t _ c a s t < c o n s t
r e t u r n d a t a ;

\

c h a r * > (& t h i s - > x) ,
c h a r * > (& t h i s - > y) ,

s i z e o f (i n t)) ;
s i z e o f (i n t)) ;

/
v i r t u a l v o i d d e s e r i a l i z e (c o n s t S t r i n
i

g & d a t a)
\

II D e s e r i a l i z e p o i n t f r o m s t r i n g ,
c o n s t c h a r * b y t e s = d a t a . d a t a O ;
t h i s - > x = * r e i n t e r p r e t _ c a s t < c o n s t
b y t e s += s i z e o f (i n t) ;
t h i s - > x = * r e i n t e r p r e t _ c a s t < c o n s t
b y t e s += s i z e o f (i n t) ;

}

i n t * > (b y t e s) ;

i n t * > (b y t e s) ;

Now comes a definition of an actual behavior of the point object which is only a g e t S t r i n g ()
method returning a string wi th point 's coordinates and attr ibute access methods.

/* A t t r i b u t e a c c e s s methods. */
i n t g e t X Q c o n s t { r e t u r n t h i s - > x ; }
v o i d s e t X (c o n s t i n t X) { t h i s - > x = X; }
i n t g e t Y Q c o n s t { r e t u r n t h i s - > y ; }
v o i d s e t Y (c o n s t i n t Y) { t h i s - > y = Y; }

/* O b j e c t methods. */
S t r i n g g e t S t r i n g O
{

// R e t u r n s t r i n g w i t h p o i n t c o o r d i n a t e s .
s t d : : o s t r i n g s t r e a m s t r e a m ;
stream << " [" << t h i s - > g e t X () << ", " << t h i s - > g e t Y () << "] " ;
r e t u r n s t r e a m . s t r () ;

>;

47

A n d finally a declaration of the internal attributes.

p r i v a t e :
/* I n t e r n a l a t t r i b u t e s . */
int x ;
int y;

};

Complete source code of this part is i n GAL/doc/Examples/custom_object.h file on the
C D .

A.3 Custom Slot

Now we w i l l define the custom slot G e t P o i n t S l o t that returns our P o i n t classed object.
It is the same that is used i n the I C u s t o m l n t e r f ace from the first part of the tu tor ia l and
derived from the basic slot object class S l o t .

c l a s s G e t P o i n t S l o t : p u b l i c S l o t

In a slot constructor, there is specified an interface function signature using a addArgument ()
and a addReturnValue () methods. In this case, it is only a single return value of a OBJECT
type since the slot just returns a point object derived from the Object class. See the l ibrary
reference for further information about the methods and the other possible types.

p u b l i c :
/* C o n s t r u c t o r . */
G e t P o i n t S l o t () :

S l o t ()
{

t h i s - > a d d R e t u r n V a l u e (O B J E C T) ;
}

The slot objects also honours the prototype design pattern thus the cloning method needs
to be implemented i n the same way as i n the Object derived classes.

/* P r o t o t y p e methods . */
v i r t u a l S l o t * c l o n e () c o n s t
{

r e t u r n new G e t P o i n t S l o t (* t h i s) ;
}

The most notable part of the custom slot implementat ion is their function ca l l operator.
To allow a direct slot execution as a functor i n C + + language, the ca l l operator must
set pointers to variables that holds arguments or where is a space for return values wi th
a s e t Argument () and a s e t R e t u r n V a l u e () method and then cal l an execute () method.
Here is the way how to accomplish this for the G e t P o i n t S l o t slot:

18

/* C a l l o p e r a t o r . */
P o i n t * o p e r a t o r () ()
{

P o i n t * r e s u l t = NULL;
t h i s - > s e t R e t u r n V a l u e (0 , ftresult);
t h i s - > e x e c u t e () ;
r e t u r n r e s u l t ;

}
};

That ' s i t . The point object w i l l be allocated and returned from the l ibrary and when
it won't be needed, it may be freed wi th a f r e e () method by the module. A full slot
definition can be seen in a GAL/doc/Examples/custom_slot . h file on the attached C D .

A.4 Custom Interfce

The next step is to create the I C u s t o m l n t e r f a c e interface object. We w i l l use the
G e t P o i n t S l o t slot from the previous example and two slots a F o o S l o t and a B a r S l o t
predefined in a header file G A L / i n c l u d e / c o r e / B a s i c S l o t s . h as a V_V_Slot and a V_I_Slot.
A s you may notice, names of these slots contain a shortcut for their signature. For example,
the first V in the V_V_Slot name means a void return value and the second means that the
slot has no arguments. We just rename them according to the interface function name.

// Name p r e d e f i n e d s l o t s ,
typedef V _ V _ S l o t F o o S l o t ;
typedef V _ I _ S l o t B a r S l o t ;

Then we inherit from the I n t e r f a c e base class of the interface objects.

// Custom component c l a s s .
c lass I C u s t o m l n t e r f a c e : p u b l i c I n t e r f a c e
{

In a default constructor, we first set an interface object class name for its identification
in the component manager at runtime and then we create and append the slot object
instances wi th an interface function names using a a d d S l o t O method. This declares the
available functions of the I C u s t o m l n t e r f ace interface and every component that wants to
implement it must implement a l l of them.

p u b l i c :
/* C o n s t r u c t o r . */
I C u s t o m l n t e r f ace () :

I n t e r f ace ()
{

// Set i n t e r f a c e name.
t h i s - > s e t N a m e (" I C u s t o m I n t e r f a c e ") ;

// Append p r e d e f i n e d s l o t i n s t a n c e s ,
t h i s - > a d d S l o t (" f o o " , new F o o S l o t ()) ;
t h i s - > a d d S l o t (" b a r " , new B a r S l o t ()) ;

49

t h i s - > a d d S l o t (" g e t P o i n t " , new G e t P o i n t S l o t ()) ;
}

A copy constructor i n this case must be defined even empty because there must bee called
an I n t e r f a c e ' s copy constructor which makes a copy of a l l aggregated slot objects.

/* Copy c o n s t r u c t o r . */
I C u s t o m l n t e r f a c e (c o n s t I C u s t o m l n t e r f a c e & i n t e r f a c e) :

I n t e r f a c e (i n t e r f a c e)
i

II N o t h i n g more s i n c e i n t e r f a c e d o e s n ' t have i n t e r n a l a t t r i b u t e s .
}

A destructor does the inverse action to the default constructor. Tha t is remove and deal­
locate the previously appended slots w i th a r e m o v e S l o t O counterpart of the a d d S l o t O
method.

/* D e s t r u c t o r . */
v i r t u a l " I C u s t o m l n t e r f a c e ()
{

// Remove and f r e e s l o t s .
S l o t * f o o S l o t = & (t h i s - > g e t S l o t (" f o o ")) ;
S l o t * b a r S l o t = & (t h i s - > g e t S l o t (" b a r ")) ;
S l o t * g e t P o i n t S l o t = & (t h i s - > g e t S l o t (" g e t P o i n t ")) ;
t h i s - > r e m o v e S l o t (" f o o ") ;
t h i s - > r e m o v e S l o t (" b a r ") ;
t h i s - > r e m o v e S l o t (" g e t P o i n t ") ;
d e l e t e f o o S l o t ;
d e l e t e b a r S l o t ;
d e l e t e g e t P o i n t S l o t ;

>

Fina l ly and again, the prototype cloning method have to be defined.

/* P r o t o t y p e methods. */
v i r t u a l I n t e r f a c e * c l o n e ()
{

II R e d e f i n e p r o t o t y p e c l o n n i n g method u s i n g copy c o n s t r u c t o r ,
r e t u r n new I C u s t o m l n t e r f a c e (* t h i s) ;

}
};

A file w i th this part is a GAL/doc/Examples/custom_interface.h

A.5 Custom Component

Now we have gotten through a l l preparation steps to br ing the new functionality to the
G A L Framework. In reality, the previous three steps won't be so often necessary because
in the most cases we implement already defined interfaces. O n l y left is to specify the own
component w i th the interface implementat ion. We start deriving from a Component class.

50

c l a s s CustomComponent: p u b l i c Component

Then we set a component's name and tel l what static methods of the component im­
plement what interface functions to the base class i n a copy constructor. The component
manager w i l l ask for this information during an implementat ion registration. A destructor
of this component is empty.

p u b l i c :
/* C o n s t r u c t o r and d e s t r u c t o r . * /
CustomComponent():

Component()
-T

// Set u n i q u e component name.
t h i s - > s e t N a m e (" C u s t o m C o m p o n e n t ") ;

// Add i m p l e m e n t a t i o n methods i n Component c l a s s .
t h i s - > s e t I m p l e m e n t a t i o n (" I C u s t o m I n t e r f a c e : f 00" ,

(v o i d *) & (t h i s - > f o o)) ;
t h i s - > s e t I m p l e m e n t a t i o n (" I C u s t o m I n t e r f a c e : b a r " ,

(v o i d *) & (t h i s - > b a r)) ;
t h i s - > s e t I m p l e m e n t a t i o n (" I C u s t o m I n t e r f a c e : g e t P o i n t " ,

(v o i d *) & (t h i s - > g e t P o i n t)) ;
>
s
v i r t u a l "CustomComponent() {}

In an in i t ia l iza t ion method of the component, we create and register i n the component
manager an owned interface object, a point object prototypes as well as an interface imple­
mentation.

/* Component methods t h a t have t o be im p l e m e n t e d . */
v o i d i n i t i a l i z e O
{

ComponentManager & cm = GAL::getComponentManager();

// R e g i s t e r P o i n t o b j e c t .
t h i s - > o b j e c t P r o t o t y p e = new P o i n t () ;
c m . r e g i s t e r O b j e c t (* t h i s - > o b j e c t P r o t o t y p e) ;

// R e g i s t e r C u s t o m l n t e r f a c e .
t h i s - > i n t e r f a c e P r o t o t y p e = new I C u s t o m l n t e r f a c e () ;
c m . r e g i s t e r l n t e r f a c e (* t h i s - > i n t e r f a c e P r o t o t y p e) ;

// R e g i s t e r C u s t o m l n t e r f ace i n t e r f a c e i m p l e m e n t a t i o n .
c m . r e g i s t e r I m p l e m e n t a t i o n (* t h i s - > i n t e r f a c e P r o t o t y p e , * t h i s) ;

}

A finalization method unregisters the prior registrations and deletes the allocated in­
stances of the prototypes.

v o i d f i n a l i z e ()

51

ComponentManager & cm = GAL::getComponentManager();

// U n r e g i s t e r i n t e r f a c e i m p l e m e n t a t i o n .

c m . u n r e g i s t e r I m p l e m e n t a t i o n (* t h i s - > i n t e r f a c e P r o t o t y p e , * t h i s) ;

// U n r e g i s t e r and f r e e i n t e r f a e .
c m . u n r e g i s t e r I n t e r f a c e (* t h i s - > i n t e r f a c e P r o t o t y p e) ;
delete t h i s - > i n t e r f a c e P r o t o t y p e ;
// U n r e g i s t e r o b j e c t .
c m . u n r e g i s t e r O b j e c t (* t h i s - > o b j e c t P r o t o t y p e) ;
delete t h i s - > o b j e c t P r o t o t y p e ;

}

Now it comes actual interface function implementations. In this example, they just prints
that the interface function was called and wi th what arguments but you may fill them wi th
whatever you want to do. They are static methods w i t h a component instance as the first
argument because taking a pointer to a C + + object method and converting it to a void
pointer is illegal.

p r i v a t e :
/* I n t e f a c e f u n c t i o n s i m p l e m e n t a t i o n s . */
stat i c void foo(Component * s e l f)
{

s t d : : cout << " I C u s t o m l n t e r f a c e : :foo () " << s t d : e n d l ;
}

stat i c void bar(Component * s e l f , i n t argument)
{

s t d : : cout << " I C u s t o m l n t e r f a c e : : b a r (" << argument << ") " << s t d : : e n d l ;
>
stat i c P o i n t * g e t P o i n t (Component * s e l f)
i

P o i n t * r e s u l t = new P o i n t (1 5 , 33) ;
s t d : : cout << " I C u s t o m l n t e r f a c e : : g e t P o i n t () : " << r e s u l t - > g e t S t r i n g ()

<< s t d : : e n d l ;
return r e s u l t ;

}

Attr ibutes serves only for a pointer to the registered prototypes storage.

/* I n t e r n a l a t t r i b u t e s . */
P o i n t * o b j e c t P r o t o t y p e ;
I C u s t o m l n t e r f ace * i n t e r f a c e P r o t o t y p e ;

};

We have finished rather imaginary but significant serie of tutorials. This part may be
viewed i n a file GAL/doc/Examples/custom_component .h on the attached C D .

A.6 List of Raster Layers

The final tu tor ia l presents possibil i ty write simple G R A S S modules using the G A L
Framework i n P y t h o n programming language. In this case its a module which gets list

52

of available raster layers i n the G R A S S and prints them to the standard output. Displayed
constructs are almost identical to that presented in the first tu tor ia l except there is no
deallocation and the GAL. i n i t i a l i z e () method accepts a list of module arguments in ­
stead of the C - l i k e arguments of a main function due to nature of Py thon . It's also i n a
G A L / d o c / E x a m p l e s / l i s t _ r a s t e r s . p y file.

#!/bin/env p y t h o n

S t a n d a r d i m p o r t s .
i m p o r t sys

GAL Framework i m p o r t s ,
f r o m GAL i m p o r t *

I n i t i a l i z e GAL Framework.
G A L . i n i t i a l i z e (s y s . a r g v)

I n i t i a l i z e component w i t h a s s c e s s to GRASS r a s t e r s .
r a s t e r _ l a y e r _ p r o v i d e r = G R A S S R a s t e r L a y e r P r o v i d e r ()
r a s t e r _ l a y e r _ p r o v i d e r . i n i t i a l i z e ()

Get I R a s t e r L a y e r P r o v i d e r i n t e r f a c e from component manager,
cm = GAL.getComponentManager()
i _ r a s t e r _ l a y e r _ p r o v i d e r = cm.get I n t e r f a c e (' I R a s t e r L a y e r P r o v i d e r ')
g e t E l e m e n t s = i _ r a s t e r _ l a y e r _ p r o v i d e r . g e t S l o t (' g e t E l e m e n t s ')

Get l i s t of a v a i l a b l e r a s t e r l a y e r s ,
l a y e r s = g e t E l e m e n t s ()

P r i n t them.
f o r l a y e r i n l a y e r s :

p r i n t l a y e r ,
p r i n t

D e i n i t i a l i z e component.
r a s t e r _ l a y e r _ p r o v i d e r . f i n a l i z e ()

D e i n i t i a l i z e GAL Framework.
G A L . f i n a l i z e ()

53

