
VYSOKÉ UČENI TECHNICKE V BRNE 
BRNO UNIVERSITY OF T E C H N O L O G Y 

FAKULTA INFORMAČNÍCH TECHNOLOGII 
FACULTY OF INFORMATION T E C H N O L O G Y 

ÚSTAV INTELIGENTNÍCH SYSTÉMŮ 
DEPARTMENT OF INTELLIGENT S Y S T E M S 

MODERNIZACE GIS SYSTÉMU GRASS 
GRASS GIS MODERNIZATION 

DIPLOMOVÁ PRÁCE 
MASTER'S THESIS 

AUTOR PRÁCE Bc. RADEK BARTOŇ 
AUTHOR 

VEDOUCÍ PRÁCE Ing. MARTIN HRUBÝ, Ph.D. 
SUPERVISOR 

BRNO 2008 



Abstrakt 
Geografický in fo rmačn í s y s t é m G R A S S se stal za 26 let své existence standardem na pol i 

m o d e l o v á n í geografických j evů . Jeho v n i t ř n í s t ruktura však o d p o v í d á d o b ě jeho vzniku . 
Tato p r á c e chce navrhnout m o ž n o u podobu modernizace in te rn ích čá s t í z aveden ím kom­
p o n e n t n í architektury a ob j ek tových n á v r h o v ý c h vzorů , j akož i podporu d i s t r i buovaných 
v ý p o č t ů a d y n a m i c k ý c h j a z y k ů , ale z už iva te l ského pohledu chce o v l á d á n í zachovat. Výs ledek 
n á v r h u je rozveden do p r o t o t y p o v é implementace knihovny n a z v a n é G A L Framework. 
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Abstract 
The geographical information system G R A S S has become a standard on the field of ge­

ographical phenomenon modeling during its 26 years o ld lifetime. However, its internal 
structure follows practices from the date of its creation. This thesis aims to design a 
possible shape of internal parts modernizat ion using a component architecture and object-
oriented design patterns wi th distr ibuted computing and dynamic languages support in 
mind . The designed system should stay identical from the user's point-of-view. Design 
results are proven on a prototype l ibrary implementat ion called the G A L Framework. 
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1 Introduction 

1.1 Motivat ion 

Geographic information systems (GIS) [ ] are becoming more and more significant in 
many aspects of human life such as industry, engineering, ecology, public administrat ion, 
sociology or nature sciences. Where people was previously deciding only by their personal 
judgements, now relies on sophisticated and scientific analyses. Together w i th the vast 
expansion of Internet services, Web based geographical information systems are spreading 
too. 

In Open Source domain, the best known and featured software for geographic analyses 
is the G R A S S G I S . Unfortunately, its development is stagnating because of smal l interest 
from fresh and young developers. This is par t ia l ly caused by the fact that its design and 
concepts are overcomed by modern practices in a software development. Th is work tries to 
propose one of many eventual ways of modernizat ion and prepare soil for further feature 
advancement. 

1.2 Contents 

The thesis is d ivided into eight main chapters which concerns i n different aspects of 
solved tasks. Analys is of the current G R A S S G I S architecture is placed first. P rob lem 
specification is discussed next, followed by explanation of component architecture concepts 
which is main approach to solve confronted problems. Significant parts of the analyt ical 
model are described next but full description of designed classes, interfaces and components 
is available at [2]. P inpoin t of used design patterns i n the design has its own chapter. 
Exp lana t ion of slot execution mechanism implementations follows. The most extensive 
chapter about each of G A L Framework's subsystems is situated after. Then are notes from 
implementation of dynamic languages bindings and thesis is concluded wi th experimental 
performance results and their analysis. 

The work proceeds from the semestral thesis of the same name, uses and extends its 
results. Theoret ical parts of the text (chapters 2, 3, 4, 5 and 7) are fully or par t ia l ly 
originated from this source. The master's thesis appends pract ical results, experiences and 
a more detailed documentation of a prototype implementation. 
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2 G R A S S GIS Architecture 

This chapter summarises G R A S S evolvement during years of development and current 
state of raster and vector subsystems (versions 6.x). 

2.1 Brief G R A S S GIS History 

The A r m y Corps of Engineers' Const ruct ion Engineering Research Labora tory (US-
A / C E R L ) i n Champaign , Illinois, U S A started i n the 1980s work on an inexpensive raster 
based GIS software for U N I X systems lately called the Geographic Resources Analys is 
Support System ( G R A S S ) as an opposite for the E S R I ' s A R C I N F O software. To better 
understand acquisition tendencies of the G A L Framework and this paper, it is needed to 
list brief history of G R A S S development w i t h architecture innovations of each G R A S S 
evolution step. 

1982 [ ] The Fort H o o d Information System (FHIS) was developed. It was from today's 
measures a simple raster processing program running on the P D P - 1 1 mainframe and 
communicat ing wi th a remote terminal v ia a serial l ink. It used concepts of categories 
and subcategories, an area of interest, overlapping 100 x 100 meters cell rasters and 
a mask raster layer. 

1983 [ ] Due to slow communicat ion wi th the terminal , the F H I S was ported to the S U N - 1 
microcomputer and called the Installation GIS (IGIS). It used a monochrome monitor 
for command input, a color monitor for data visual izat ion and it also separated data 
from a program. These two innovations survided in form of monitors (d.mon) and 
map locations. 

1984 [ ] The first G R A S S called package of 20 programs was released. F r o m this point the 
project focused on public comunity development although only i n a college area. 

1990 [i] After six years of growth, current module organization to letter-dot format, 
command-l ine argument parsing and module descriptions was introduced w i t h the 
G R A S S 4.0. F i rs t attempts for a user interface fall to this period too. A source code 
is organized to directories for general, miscellaneous, display, raster, imagery and sites 
modules and core libraries sources. Vector data support is done by addit ional set of 
tools for analog map digi t izat ion and conversion to rasters. 

1997 [5] The G R A S S 4.2.1 was released wi th new modules, code cleanup and a T c l / T k 
user interface. 

1999 [ ] F i r s t G N U / G P L G R A S S 5.0 version wi th floating point and NULL raster data 
support added. 
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2002 [ ] A new arc-based vector architecture wi th more l ikely modern approaches and 
database support introduced. 

2006 [ ] Real iza t ion of need for dynamic language support w i t h a S W I G interface prototype 
for P y t h o n and P e r l ( G R A S S 6.1.0). 

2.2 General Concepts 

From the users' point -of-view, the G R A S S GIS [ ] is a collection of rather independent 
command-l ine modules performing ind iv idua l data transformation or analysis tasks. Some 
functionality is done by coupling certain number of modules using Bourne shell scripting. 
Lately, much effort to develop the comfortable graphical user interface which executes such 
modules was done. 

Al though formerly was a G R A S S GIS ' s codebase mix of C and For t ran language and 
shell scripts, For t ran was abandoned and replaced w i t h C during years. A n experimental 
P y t h o n interface to core libraries was introduced recently. Nevertheless, its code purely 
follows the functional programming paradigm. 

D a t a storage is organized wi th the hierarchical directory structure of the operating sys­
tem. The root directory is referred to as GISDBASE and may contain locations which rep­
resent mapped areas. Each locat ion is formed by mapsets that contains map layers of 
common meaning. For example, one mapset could have map layers for hydrological analy­
ses and a second mapset could have layers for forestry models. O n l y one locat ion and one 
mapset is active i n a single moment. There is a special mapset called PERMANENT which 
must be present i n every location. It holds unchanging map data as well as some addit ional 
metadata. 

The mapset directories may hold subdirectories and files w i t h differently typed data and 
information. Some of them could be: 

cel l / - Integer data of 2D rasters, 

fcell/ - F loa t ing data of 2D rasters. 

ce l lhd/ - Information about a projection, dimensions and a resolution. 

cats/ - Names of categories assigned to data values. 

coir / - Color tables and rules for data visualizat ion. 

ce lLmisc / - Information about NULL valued data and other metadata. 

hist / - Metada ta wi th history of commands that was used to create stored data. 

gr id3d/ - D a t a of 3D rasters. 

vector/ - A vector data geometry. 

dbf/ - Vector data attributes. 
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s t r u c t C e l l _ h e a d 
{ 

i n t f o r m a t ; /* max number of b y t e s p e r c e l l minus 1 */ 
i n t c ompressed; /* 0 = u n c o m p r e s s e d , 1 = co m p r e s s e d , -1 pre 3.0 */ 
i n t rows; /* number of rows i n the d a t a 2D */ 
i n t rows3; /* number of rows i n the d a t a 3D */ 
i n t c o l s ; /* number of columns i n the d a t a 2D */ 
i n t c o l s 3 ; /* number of columns i n the d a t a 3D */ 
i n t d e p t h s ; /* number of d e p t h s i n d a t a */ 
i n t p r o j ; /* P r o j e c t i o n ( s e e # d e f i n e s above) */ 
i n t zone; /* P r o j e c t i o n zone */ 
d o u b l e ew_res ; /* E a s t t o West c e l l s i z e 2D */ 
d o u b l e ew_res3 ; /* E a s t t o West c e l l s i z e 3D */ 
d o u b l e n s _ r e s ; /* N o r t h t o South c e l l s i z e 2D */ 
d o u b l e n s _ r e s 3 ; /* N o r t h t o South c e l l s i z e 3D */ 
d o u b l e t b _ r e s ; /* Top t o Bottom c e l l s i z e */ 
d o u b l e n o r t h ; /* c o o r d i n a t e s of l a y e r */ 
d o u b l e s o u t h ; 
d o u b l e e a s t ; 
d o u b l e west ; 
d o u b l e top ; 
d o u b l e bottom; 

}; 

Code 2.1: Structure describing raster layer. 

2.3 Raster Architecture 

2D raster layers data can be of three types: integer, float and double. 3D rasters can be 
only float and double [ ]. A layer is accessed as one big grid, row by row and when lower 
resolution is required it is resampled wi th nearest neighbour method the same way. 

Each raster layer is described wi th C e l l _ h e a d structure [10] (see code 2.1). It is bounded 
by a region i n a specified cartographic projection. Its dimensions (number of rows and 
columns) are precomputed from this region, north-south and east-west resolution. Sup­
ported compression algori thm is R L E . 

The G R A S S supports only a l imi ted number of metadata for raster layers. If a special 
raster layer called MASK is created, a l l raster operations are masked by NULL valued cells of 
this layer. 

2.4 Vector Architecture 

Vector data are represented by composit ion of nodes and arcs [6]. The arcs are paths 
created wi th mult iple line segments and the nodes are boundary vertices (although interior 
nodes are supported too). Mul t i p l e arcs forms a line. Th is structure is intended for modeling 
of linear objects like streams or roads. Connected arcs w i th a centroid vertex form an area 
which represents areal objects like forests or lakes. Op t ion to insert interior holes and isles 
in the areas is present too. Point objects are implemented i n an own l ibrary and stored in 
an internal file format. 
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Geometry, topology and attributes are stored separately. Geometry can be loaded from 
a native format, shapefiles [ ], or the Pos tgreSQL [12] database wi th the Pos tGIS [13] 
extension. Load ing from many other file formats w i t h the O G R [ ] l ibrary is available as 
well . Topology is stored in a native format, the Pos tGIS database or constructed during 
file loading. The attributes may be placed i n the D B F , S Q L i t e , Pos tgreSQL, M y S Q L or 
O D B C database through a common D B M I [15] interface. Geometry of the objects have 
two or three spatial coordinates and 3D objects like faces and volumes can be created too 
but w i th l imi ted topology. 

The attributes are associated to geometry wi th category numbers and field numbers also 
called layers. The field number determines a database table and the category number 
determines a table row where look for attribute values. A special text file describes this 
association of fields to databases and tables. 
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3 Task Specification 

Follow brief listings of intentions, ideas and problems that occurred after the project 
analysis and a summary of objectives that was or wasn't solved dur ing given t ime wi th an 
explanation. 

3.1 Intended Objectives 

The next list of key objectives draws up desired intentions of the G A L Framework project 
in the t ime of its formation: 

• Design a flexible, platform independent and extensible environment for development 
of new largely analyt ical modules for the G R A S S GIS based on a component archi­
tecture. 

• Design and implement an internal and external representation of raster and vector 
data for use i n the G A L Framework. 

• Use present G R A S S libraries beneath an abstraction interface for transient support 
of the current raster and vector representation. 

• Achieve compat ibi l i ty w i th the G R A S S GIS at module level so that any possible G U I 
frontend for modules developed using the G R A S S l i b could be used w i t h modules 
developed using the G A L Framework as well. 

• Prepare detailed documentation of the entire system design and possible usage before 
and during the implementation. 

• Provide as complete as reasonable bindings to dynamic languages, especially for 
P y t h o n and Java. 

• Implement an example implementat ion of certain data loading and processing modules 
to show example usage of the G A L Framework as programming environment. 

• Prepare set of tutorials showing aspects of possible usage of the G A L Framework. 

• Publ ic ize project's aims and intentions on the Web and at meetings. 

• Discuss a l l concepts and ideas wi th comunity to acquire wishes and needs of majori ty 
of the people from the GIS domain. 

3.2 Obstacles 

After brief consideration of the previous list of intentions these restrains appeared: 

• Restrictions emergent from C / C + + as stat ically typed compiled languages. 
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• L imi ta t ions of the S W I G automatic wrapper generator, especially wi th variable length 
arguments functions and callbacks. This appears to be solvable wi th l i t t le effort. 

• Lack of current G R A S S libraries re-entrance safety since many of internal structures 
are s t a t i c . There is necessity of locks when executing a G R A S S code in parallel 
threads or processes which w i l l affect performance and may lead to deadlocks. 

• Overa l l scope and time requirements of the project. There is need to invite other 
developers to make this project reasonable. 

• Unpleasant att i tude of G R A S S developers to the object-oriented programming. 

3.3 Solved Objectives 

Sumarizat ion of project status when this document was created and discussion of unre­
alized goals is following: 

• The design of the core component management and communicat ion system forms 
content of this thesis, especially of the chapter 5 and it is also distr ibuted to several 
w i k i pages at the project's homepage [ ]. The prototype implementat ion is stored in 
a S V N source code management system and browsable through a web interface at the 
same place. 

• The external representation of raster data was shaped w i t h R a s t e r T i l e , C o l o r R u l e s 
and C o l o r T a b l e classes and it is accessed wi th an I R a s t e r L a y e r P r o v i d e r interface 
(see section 8.7). After further consideration, the internal representation was left i n a 
native G R A S S format of the G R A S S l i b l ibrary and used i n a GRASSRasterLayerComponent 
component. The vector subsystem was kept to other person's responsibility as were 
consulted wi th the mentor of the thesis. 

• Implemented example modules accepts the same command-l ine arguments as the 
G R A S S modules if they provides the same functionality. 

• A comprehensive conceptual documentation as well as the G A L Framework l ibrary 
reference is available at the project's homepage [2] or on an attached C D . 

• Bindings of the l ibrary was developed for P y t h o n and Java languages. More about 
them in the chapter 9. 

• G A L Framework tutorials are placed in the appendix A of this document. 

• A full-featured Web site for the project management and propagation was established, 
the project was introduced at the G R A S S - d e v mai l ing list and an article for the 
Geoinformatics F C E C T U 2007 Workshop [16] was published. 

• Unfortunately, no positive response was received from the comunity and no other 
attention was given. Therefore, the proposed design is a product of a single mind (of 
course, inspired from many sources) and not the product of a diverse group which the 
system of such extent requires. 
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4 Component Architecture 

To be as flexible and extensible as possible, the G A L Framework uses the component 
architecture of software design similar to [17]. Here w i l l be described what does this term 
mean in a context of the project and how it influences a l ibrary structure and usage at the 
level of ind iv idua l G R A S S modules development. 

4.1 Components and Interfaces 

Using U M L [18] notat ion such an architecture can be shown as on the figure 4.1. There are 
four components connected to one interface w i th different relationships. Y o u may consider 
that the components are groups of objects or classes which form compact sub-systems doing 
some job. For example a raster component which loads raster data from different files to the 
memory or an analyt ical component which performs some computat ion over loaded data. 

Component 1 Component 2 

Component 3 
Component 4 

Figure 4.1: The component diagram of the component architecture. 

The components may own, use or implement certain interfaces which describes how these 
components would like to communicate w i th the others. O n the figure, it 's the Component 1 
that declares (owns) an interface I n t e r f a c e which is indicated by a stereotype <CresideS>. 
The Component 1 and the Component 2 use this interface (symbolized by dashed lines wi th 
an arrow). The Component 3 and the Component 4 implement interface functions which is 
represented by solid lines. 

Owning an interface means that a component is responsible for its creation, destruction 
and registration in the system, using an interface means that a component may cal l one or 
more of the interface functions. In the most component which owns an interface is 
using it at the same time but there is only single component owning single interface. O n 
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the other side of the interface, stay components which implement them. They listen what 
the components using the interface say and respond to their requests. This implies that 
the communicat ion is entirely directed by the components that use the interface but the 
subsidiary components can use other interface which could be implemented by the superior 
components to reverse this subordination. 

4.2 Slots 

There is an abstraction over the interface functions called a slot that may be configured 
some way to specify which implementat ion w i l l be executed. Sometimes you may want to 
execute just the lastly registered implementation, sometimes you may want to cal l each of 
them, etc. The slot is meant to be a functor class that forwards interface function calls 
everytime it is evoked. 

Components using the interface can pick which implementations should be used. A 
question what the available implementations are chosen when the interface function is 
evoked could be separated into three cases. It is a l i t t le analogy to the T C P / I P unicast, 
multicast and broadcast: 

1 to N - O n l y a single implementat ion is chosen among the others. It can be the first 
idle component or the lastly registered one. A n example of such interface may be the 
component which loads data from certain file format. 

M to N - A subset of the registered implementations is chosen. A n example of this are 
data processing components that are used to balance C P U s usage. 

N to N - A l l the implementations are evoked and results (if any) are collected together. 
A n example could be two components that receives error or debug messages. One 
displays them on the screen, a second logs them to a file but they are both notified. 

Different slot implementations abstract a mechanism of interface function execution. 
There is a static method callback and a D - B u s R P C l ibrary slot implementat ion currently 
supported. More about the slot implementations is discussed in the chapter 7. 

This layout brings flexibil i ty to the framework because any component using a part icular 
interface can choose which implementat ion of the interface wants to uti l ize. Furthermore, 
any component can engage to implement the interface and lately it can abandon its obl i­
gation. 

4.3 Component Manager 

To allow public access to a l l the available components and interfaces i n the system, a 
common access point must be introduced. In this case, it is called a component manager 
and it serves for a component or interface registration as long as the registration of the 
interface implementations. The figure 4.2 shows a simplified class diagram of relationships 
between the component manager, components, interfaces and slots. 
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Component 

* 
Interface 

* 
Slot Component Interface Slot Component 

1 1 

* * 

1 1 

ComponentManager 

Figure 4.2: The class diagram of the component architecture. 

Every component can then ask the component manager to receive a part icular interface 
and use it or commit to implement i t . Interfaces, when they are used, contains capabilities 
to manage a l l their implementing components so that the component using the interface 
can decide which of them wants to use i n a manner presented before. 

This brings a powerful extensibili ty to the system since the components can be loaded 
from dynamic libraries like plugins on the system start or even i n runtime. Furthermore, 
they can be spread over computer network or parallel environment and executed by a slot 
mechanism implemented using some R P C library. 

4.4 Example 

A conceptual example of the component architecture applicabi l i ty [16], [19] is shown on 
the figure 4.3. There is a component ModuleComponent implementing some G R A S S mod­
ule at the top which uses three different interfaces: the I V e c t r L a y e r P r o v i d e r for retrieving 
vector data, the I R a s t e r L a y e r P r o v i d e r for accessing raster data and the IMessageHandler 
for message display and logging. 

The I V e c t o r L a y e r P r o v i d e r interface is implemented by two different components reg­
istered in the system. One of them shelters vector layer data in the Pos tgreSQL database, 
the other provides for example data from the M y S Q L database. 

The raster related interface I R a s t e r L a y e r P r o v i d e r is implemented by two components 
too. The first offers raster data from the Pos tgreSQL database and the second enwraps 
raster data i n ordinary data files. Th is diagram should demonstrate that using this approach 
a module component can obtain GIS data and it don't need to care where and how are 
these data stored. 

W h e n the module does what it wants w i th retrieved data and it needs to output some 
information to the console, logs or a G U I , it sends messages through a IMessageHandler 
interface. In the discussed example is this interface implemented by two components which 
forwards messages to the C L I , the G U I or write them the to log files. This again demon­
strates independence on outputted data presentation. 
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Figure 4.3: The component architecture practically. 

13 



5 Analytical Model 

To realize deeper consequences between the G A L Framework core components, an ana­
ly t ica l model was created. It consists of an use case diagram (fig. 5.1) and an analyt ical 
class diagram (fig. 5.2). Detai led description of each use case and each analyt ical class is 
available at [20] and [- ] and updated continuously. Fol lowing lists are constrained to note 
about the most important of them. 

5.1 Use Cases 

Intended behavior and usage of the G A L Framework is modeled in the use cases. Rela­
tions between the ind iv idua l use cases are displayed on the use case diagram on figure 5.1. 
Follows a list of some of them wi th an explanation. O n l y role present is a programmer who 
develops new G R A S S modules using the framework. 

DefinelnterfaceUseCase summarizes steps needed to define a new interface object. Th is 
is done by the programmer and it includes definition and instant iat ion of a l l slot 
objects of the interface which forms interface functions signatures. The custom slots 
can be defined entirely or they can be renamed from pre-defined slots. 

RegisterlnterfaceUseCase registers the interface object instance in the component man­
ager w i th a given name. This identifier must be unique i n the whole system or locally 
if the interface is not intended to be used wi th a R P C based slot mechanism. 

DefineComponentUseCase describes the course of actions needed to define a new com­
ponent by the programmer. Aggregated objects and interface objects w i th their slots 
are instantiated and ini t ia l ized first, interface function implementations are prepared 
as methods of the components then. 

RegisterlnterfacelmplementationUseCase connects the interface function implemen­
tations of the component w i th an interface object prototype of the component man­
ager. Th is is done w i t h the component manager method cal l . 

ImplementlnterfaceUseCase is performed during the component in i t ia l iza t ion at a mod­
ule start. The component registers the aggregated interface objects i n the system if it 
owns them and thus they aren't known to the system yet. Afterwards, the interface 
function implementations are registered by inclusion of the Registerlnterfacelm-
plementationUseCase use case. 

UselnterfaceUseCase retrieves an interface object clone from the component manager 
by an interface name, gets a slot object of a desired interface function by its name 
and then executes the slot object as a functor. 
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ExecuteModuleUseCase defines and executes a module for the G R A S S GIS developed 
in the G A L Framework. This use case contains: definition and ini t ia l izat ion of a l l 
needed components either a single-purpose for this module execution or a general-
purpose from G A L subsystems, request for needed slots to their interfaces which are 
received from the component manager, intended module computat ion wi th slots as 
functor or dynamical ly using their methods and finally release of the a l l obtained 
resources. 
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Figure 5.1: The use case diagram of the G A L Framework analyt ical model. 



5.2 Analyt ical Classes 

Ana ly t i c a l classes are the product of realization of the use cases. They can be viewed in 
the analyt ical class diagram on the figure 5.2 as well as relationships between them. Here 
is a list of them w i t h brief description of some of their methods. 

G A L is a static class for l ibrary ini t ia l izat ion, deini t ia l izat ion and component manager 
instance retrieval. It also takes care of event loop based subsystems for modules 
running as a daemon or as a tool w i th user interface. Some of its significant methods 
are: 

initialize initializes the G A L Framework. It must be called at the start of a module. 

finalize deinitializes the framework. It must be called before module end. 

demonize turns a program call ing this method to a daemon that handles slot im­
plementation execution requests and other events. 

quit exits the event processing loop started w i t h the demonize method. 

getComponentManager provides access to a publ ic ly available component man­

ager. 

ComponentManager is a singleton class that serves for components, interfaces and in­
terface implementations registration and retrieval. 

getlnterface returns a cloned interface object of a registered interface. This local 
copy can be then configured and used in modules to execute interface functions. 

getlnterfacePrototype gives access to an internal prototype of a registered inter­
face. It can be used to create a clone for further usage but should not modified. 

registerlnterface registers a new interface to the system w i t h an interface object 
prototype. 

register-Implementation assigns an interface wi th a component providing its im­
plementation. Implementing methods can be then called by components using 
the interface. 

registerObject registers a new object prototype i n the system that can be then used 
as a interface function argument or as a return value. 

createObject returns a cloned and deserialized instance of an object prototype re­
quested by a class name. 

Component is the superclass for a l l components that can be registered i n a component 
manager. A l l subclasses have to implement ini t ia l izat ion and finalization methods 
where specify which interface functions may implement. 

initialize is a pure v i r tua l method for the ini t ia l izat ion of aggregated objects and 
interfaces and registration of declared or implemented interfaces. Avai lable in ­
terface function implementations of the component should be published in this 
method too using a setlmplementation method. 

finalize is a pure v i r tua l method for deini t ial izat ion of aggregated objects and inter­
faces of the component. 
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getFunction allows the component manager ask for the interface function implemen­
tations of the component. This method is necessary for interconnection of the 
component and the interface object prototype during interface implementat ion 
registration. 

setlmplementation claims that there is a static method implementat ion of some 
interface function i n the component. It is used in in i t ia l iza t ion of the component 
in a initialize method. 

ConcreteComponent is the realization of the abstract Component class. Th is class is 
just exemplary i n the model and shows how concrete components could be derived in 
practice. 

Interface is a base class for interface objects. It contains slot object instances representing 
its functions and it also have methods for their administrat ion as well as methods for 
a slot implementat ion registration and selection. Each interface has its own unique 
identifier. 

clone returns a cloned instance of the interface object and allows use this class as a 
prototype design pattern. 

setSlotType changes the way how slots of this interface w i l l be executed, concretely 
it exchanges used slot executor i n a l l aggregated slot objects. 

getSlot returns a slot object representing an interface function identified by its name. 
This method is often used i n modules when certain interface is used. 

addSlot is used only i n a derived concrete interface objects' constructor to append 
new functions to the interface. 

registerComponent appends a component as an implementing component for the 
local interface object instance. This function has global impact when applied on 
an interface object prototype. 

IConcretelnterface is again an exemplary realization of the abstract class Interface 
showing what is needed to be done when deriving from its superclass i n a custom 
interface definition. 

Slot is a base class that serves as an abstraction over interface functions and their execution 
mechanisms. E a c h slot instance has its name which is similar to the interface function 
name where the slot belongs to. 

clone returns a cloned instance of the slot object s imilar ly like the method wi th the 
same name of the Interface class because interface objects are composed from 
the slots. 

add Argument defines a slot's input signature by appending new arguments of the 
interface function. 

addRet urn Value defines a slot's output signature wi th appended return values. 

execute executes a slot implementat ion wi th the previously setted arguments using 
a configured slot executor and fills specified return value variables w i th result of 
the called interface function. 
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call is a pure v i r tua l ca l l operator which may be implemented i n descendant slots to 
support a direct execution of the interface functions. 

ConcreteS lot l , ConcreteSlot2 are custom slots extending the basic slot object w i th 
a cal l operator implementation. This allows static execution of interface functions 
wi th a defined signature in statically typed languages w i t h a fixed number of function 
arguments. 

SlotExecutor is a simple abstraction class that allows configure slots to use different 
execution mechanisms i n runtime. New mechanisms are added to the system by 
inheri t ing from this class and overriding a execute method. 

getType returns a type of slots which execution the implemented slot executor sup­
ports. 

execute accepts a slot object that interface function the slot executor w i l l cal l w i t h 
its arguments and its return values. 

EventHandler helps abstract different libraries and subsystems w i t h event processing 
loops and merge them into the single loop. Der ived classes must implement both 
variants of event processing methods. 

waitEvent is a blocking variant of the event processing method. It serves at least 
one pending event and returns the number of actually processed events. If no 
event is available, it waits un t i l some is. 

processEvent is a non-blocking variant of the previous method. It does nothing 
and returns zero, if no events are prepared in a queue for this event handler. 

Object is a base class for objects that can be used as interface function arguments and 
that can be transferred between processes or over network using a serialization. 

getClassName gives the name of the class that acts for runtime object type identi­
fication of derived classes. 

clone returns a copy of the object instace. The objects are also prototypes because 
they must be created dynamically. 

serialize method returns a string representation of a object state either i n a text or 
a binary form. 

deserialize is an inverse operation for the previous. It accepts the string represen­
tat ion from which it builds a new object state. 
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Figure 5.2: The class diagram of the G A L Framework analyt ical model. Note that the createQ and destroy() methods denotes a regular 
constructor and a destructor and the call() is a cal l operator. 



6 Applied Design Patterns 

Following sections of this chapter introspect deeper consequences i n the designed and 
implemented parts of the G A L Framework core system and emphasizes appliance of object-
oriented design patterns as were described i n the well-known book Design Patterns: Ele­
ments of Reusable Object-Oriented Software [22]. They refer to a terminology used i n the 
book and explain differences between the patterns presented i n the book and their usage 
in the library. Ment ioned class names are taken from the l ibrary prototype implementat ion 
and you can see their detailed documentation at [23]. 

6.1 Singleton 

The singleton design pattern ensures that classes following it have only a single instance 
and offers public access to it. 

Clear candidate for this pattern was a component manager ComponentManager class but 
after further consideration components (Component), event handlers (EventHandler) and 
slot executors ( S l o t E x e c u t o r ) were assigned to the pattern too. A l l these classes are unique 
in a process context and except of the S l o t E x e c u t o r , which is an read-only element, need 
a private structure locking when race conditions w i l l occur. The singletons are realized by 
a derivation from a S i n g l e t o n C + + template where it is possible. Th is allows receiving 
an instance of a final type directly instead of using casting. 

6.2 Prototype 

The prototype pattern allows for creation of a cloned instance of an object by a v i r tua l 
method defined i n the base class and implemented i n subclasses. It is not as restricted to 
a concrete type as a regular copy constructor. 

The G A L Framework uses the prototypes together w i th prototype managers implemented 
in a PrototypeManager C + + template. They allows a registration, an unregistration and 
an access to registered prototypes using methods parametrized wi th a string prototype 
identifier. The returned reference to the prototype instance may be used to create the 
clone but it must be dynamical ly casted to its end type before its use. 

The pattern is concretely applied in an I n t e r f a c e and an Object class w i t h prototype 
managers i n a I n t e r f aceManager and a ObjectManager classes. A copy method of the 
I n t e r f a c e class performs a deep copy of an interface wi th a l l its slots so a S l o t class is a 
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prototype as well . Behavior of the copy method of the Object class is up to derived class 
creator but it should be deep i n most cases. 

6.3 Abstract Factory 

Offers a way how to create a concrete object instance without knowledge of its final type. 
On ly common base class type awareness is necessary for a complete class hierarchy. The 
set of generated object instances can be dynamical ly reconfigured. The pattern is closely 
related and cooperative w i t h the prototype and a factory method design pattern. 

A s noted before, the abstract factories can be combined w i t h the prototype design pattern 
to create new instances of registered objects. We can say that from this perspective the 
ComponentManager class serves as such factory to create the I n t e r f a c e and the Object 
classed objects. The desired interface object instance is requested wi th an identifier of the 
interface and cloned from the registered interface prototype. 

6.4 Strategy 

The strategy is a simple design pattern which detaches diverse algorithms operating on 
single data from their storage. It supports a dynamical ly configurable exchange of behavior. 
The pattern consists of a strategy class which specifies behavior and a context class that 
describes data. 

This is very suitable for various implementations of the slot execution mechanism. The 
strategy object of the pattern, which defines a common interface of the algorithm, is rep­
resented by a S l o t E x e c u t o r class i n the framework. A S l o t class represents the context 
passed to a strategy method as long as a client that invokes the strategy algori thm method 
when the slot is executed. Theoretically, this pattern can be changed to a command design 
pattern to open a further possibilities i f a future development imply. 

6.5 Iterator 

The iterator is certainly the most frequently used design pat tern i n many applications. 
It provides sequential access to elements of a compound container object while it keeps its 
internal structures hidden. It may carry an addit ional information about the traversal than 
just an actual i tem or a posit ion. 

Since the l ibrary uses associative arrays implemented wi th S T L maps at many places, the 
iterator pattern is ut i l ized even here. To simplify the S T L iterator usage, a M a p l t e r a t o r 
template was created. It basically enwraps the standard iterator received from the container 
map and extends it w i th a direct access to a value part of an i tem and wi th a boolean 
cast operator which allows test it i n conditions directly. Few cases of the M a p l t e r a t o r 
template ut i l iza t ion are a S l o t l t e r a t o r i n the interface objects, a I n t e r f a c e l t e r a t o r in 
the component manager and a P r o t o t y p e M a p I t e r a t o r i n the prototype managers. 
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7 Slot Implementations 

The first pr imary a im of the G A L Framework is to br ing a distr ibuted or multiprocessor 
computat ion of GIS related tasks into the G R A S S . A n efficient singleprocessor slot execution 
is crucial too. To satisfy this contradiction, two mechanisms for the interface function 
execution was chosen and the others may be introduced on demand. The first is a slot 
abstracting usual callbacks and the second is a slot cal l ing remote procedures w i th a D - B u s 
l ibrary [24]. Other alternatives may be the O R B i t 2 [25], the H i g h Performance V i r t u a l 
Machines ( H P V M ) [26], the X M L - R P C [27] or the Open M P I [28]. The spirit of the slot 
design should help incorporate these libraries into the framework. 

The slot objects defined in a S l o t class and belonging to some interface object of a class 
I n t e r f a c e declare methods for an interface function signature management and a method 
for a slot type setup. Change in the slot type replaces an assigned slot executor of a class 
S l o t E x e c u t o r which is responsible for an actual slot implementat ion invocation. A n object 
diagram of this is on figure the 7.1. It shows that the currently configured slot executor is 
a D - B u s slot executor (the DBusSlotExecutor class). 

interface 

slots [0..*] 

firstSlot 

firstArgument 

executor• 
arguments [0..*] 
returns [0..*] 

second Argument returnValue 

dbusExecutor 

ca 11 bac kExec utor 

Figure 7.1: The object diagram of a slot execution mechanism selection. 

F rom a module developer posit ion, the communicat ion mechanism for the slot execution is 
selected by a configuration of the slot type i n the interface. Th is configuration is performed 
before the interface object is used i n modules and may be changed during usage i f it is 
needed so. A called implementat ion is determined by an appropriate component loaded 
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locally i n the case of a local execution mechanism or by a master process i n the case of a 
D-Bus mechanism. The master process is the one that have registered its name on a D - B u s 
session bus as the first. 

Because a new communicat ion types of the slots are added to the system by a derivation 
of the S l o t E x e c u t o r base class, a derivation of the I n t e r f a c e and the S l o t base class 
may be ut i l ized to extend more general behavior. A n example of this may be composed 
interfaces and composed slots implemented i n a Composedlnterf ace and a ComposedSlot 
class. The composed slots offers one addi t ional str ing argument which identifies an affected 
subelement of the target component and the composed interfaces has a method for selection 
of this element and one impl ic i t interface function which queries a list of available elements. 
Th is interface can be used when the component hides many objects w i th the same behavior 
and a selection of the concrete object is not too frequent. 

For the demonstration of present abilities of the l ibrary the described configuration op­
tions are sufficient but for the future there could be for example configuration methods to 
execute an implementat ion of a component specified by its name, a global last registered 
component, a l l components w i th arguments and return values coupled to arrays, etc. A 
load balancing is the next possible exploitat ion of these possibilities. 

7.1 Callback Slots 

The callback implementat ion of the slot executor in a C a l l b a c k S l o t E x e c u t o r class sim­
ply returns execution to the slot object which holds a function pointer to a registered 
component's static method but due to a dynamic nature of a slot signature specification, a 
foreign function interface l ibrary libffi [ )] is used a for stack frame construction i n runtime. 
The static methods must be used because taking a function pointer to a regular method and 
coverting it to a void pointer is i l legal i n C + + . Arguments are passed to the static method 
preppended wi th a pointer to the component instance to simulate the object method cal l . 
M u l t i p l e return values are bound to a single structure returned by the method and then 
unpacked to slot's return values. 

7.2 D - B u s Slots 

The D - B u s l ibrary was used as a pr imary l ibrary for a remote procedure execution because 
it is a desktop oriented, l iv ing and spread project which w i l l soon become a standard on its 
field as soon as the K D E 4 and the G N O M E w i l l uti l ize it more. Whole mechanism of the 
D-Bus slot execution is slightly complex but a schema on the figure 7.2 tries to illustrate 
it. It shows an example w i t h one object argument and one object return value but basic 
types like integers and strings are supported too. 
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Figure 7.2: The interface function execution schema of a slot configured to a D - B u s communication. 



There are three main blocks: a C l i e n t and a S e r v e r wr i t ten using the G A L Framework 
l ibrary and a D-Bus l ibrary system block. The C l i e n t consists of a code of an implemented 
G R A S S module Module and a framework l ibrary code. If the module wants to use an 
interface, it receives a cloned instance a n l n t e r f a c e l of an interface prototype I n t e r f a c e l 
from a ComponentManager. To execute an interface function, the module asks a received 
interface object for a reference to its slot a S l o t l by an interface function name. T h e n it 
creates an instance of a function argument argument and calls the slot as a functor. A l l of 
this denotes an unnamed block in the left part of the Module block. 

The a S l o t l in a ca l l operator o p e r a t o r ( ) deposits the argument object and a variable 
for the return value object wi th in itself using a set Argument () and a s e t R e t u r n Value () 
method and tells the configured slot executor to execute i t . In this case of the D - B u s com­
municat ion example, a DBusSlotExecutor i n an execute () method calls an c a l l M e t h o d O 
method of a DBusEventHandler object which serializes the input argument, sends a D - B u s 
method cal l message and deserializes a received return value to the instance r e s u l t created 
in the component manager from an object prototype. A control flow than returns to the 
main module code that executed the slot. 

O n the server side, the DBusEventHandler waits for the D - B u s method cal l messages. 
W h e n such arrives, a processEvent () method of this object gets an instance of the argu­
ment object class from the component manager and deserializes it w i th message data. Next 
it finds a proper interface and a slot prototype and executes an interface function imple­
mentation using a c a l l l m p l e m e n t a t i o n O method of the slot w i th the argument instance. 
This calls a component's static method i n the same manner as i n the callback communi­
cation. After the method returns an allocated return value object, the DBusEventHandler 
serializes it for a D - B u s method cal l message reply. 
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8 G A L Framework Subsystems 

A directory structure of a source code tree is publ ic ly available at s v n : / / gal- f r a m e w o r k . 
n o -ip . o r g : 3 6 9 1 or browsable at http://gal - f r a m e w o r k . n o-ip . o r g / b r o w s e r . It is cur­
rently divided into eight subsystems: core, e x c e p t i o n s , dbus, g e n e r a l , g i s , d i s p l a y , 
r a s t e r and v e c t o r . E a c h of them contains definitions of subsidiary classes as long as com­
ponent and interface object definitions. Here is listed only a content of the most important 
of them. For a detailed description see the G A L Framework l ibrary reference [23] or the 
commented source code. 

8.1 Core Subsystem 

The core subsystem comprise the same classes as mentioned i n the section 5.2 about 
the analyt ical model plus a composed slot base class ComposedSlot, a composed inter­
face base class Composedlnterface, derived basic slots and composed slots w i th pre­
defined interface function signatures and a callback implementat ion of the slot executor 
in a C a l l b a c k S l o t E x e c u t o r class. More about the composed slots, composed interfaces 
and the callback slot executor can be read i n the chapter 7. 

8.2 Exception Subsystem 

Exceptions are from the beginning intended to be a main mechanism for reporting of 
errors occurred during the interface function execution or an inval id state or operation sig-
nalizat ion when manipulat ing wi th objects. The exceptions forms a single inheritance tree 
starting wi th an E x c e p t i o n superclass. Each exception bares a string message explaining 
its meaning. They are currently defined i n two files the first contains general purpose ex­
ceptions and the second declares exceptions related to the D - B u s subsystem. Few examples 
are: EIOError, ENotFound, EArgumentError and EConnectionError. 

8.3 D-Bus Subsystem 

This subsystem implements remote interface function execution wi th the D - B u s R P C 
l ibrary [ ]. Details on this matter and a deeper explanation of this implementat ion is 
present i n the section 7.2. 

8.3.1 Classes 

DBusEventHandler is connected to a D - B u s system bus and ensures that a local interface 
function implementat ion is found and executed when a D - B u s method cal l event from 
another process arrives. 
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DBusSlotExecutor performs the opposite side of the communicat ion — it produces the 
D-Bus method cal l event of the slot's interface function when the slot is executed. 

8.4 General Subsystem 

It comprehends some general purpose classes and interfaces that could be potential ly 
ut i l ized even i n non-GIS-related applications together w i th classes from the core, the ex­
ception, the D - B u s and par t ia l ly the display subsystem. 

8.4.1 Classes 

ModuleOptions is a container class w i th boolean module arguments. Each option has a 
name and a help description. 

ModuleArguments class is a list of module arguments w i t h an assigned value obtainend 
from an IArgmentsProvider interface. Items of a ModuleArgument class are struc­
tures wi th a name, the value and a description. 

Variable is a similar structure to the module argument used i n I E n v i r o n m e n t P r o v i d e r 
interface functions. 

8.4.2 Interfaces 

IArgmentsProvider interface can be used to get options and arguments which controls 
module actions. It also builds a help str ing from given module arguments and options 
descriptions. 

getOptions method returns the module options formatted i n the ModuleOptions 
object. 

setOptions sets the list of acceptable options of the module. If this function is not 
used before the g e t O p t i o n s ca l l , the module gets a l l arguments provided by a 
implementing component. 

get Arguments gives the ModuleArguments object that contains a list of the re­
quested module arguments. 

setAruments is an analogous method to the s e t O p t i o n s but for the module argu­
ments. 

setDef aultArgument tells the implementing component what argument is a default 
one. 

getHelp creates a formatted help string for the module which can be printed to 
the standard output or displayed i n the user interface. It accepts a module 
description as a parameter and employs the previously setted descriptions. 

IEnvironmentProvider helps abstract foreign sources of environment variables. For ex­
ample, a G R A S S GIS module g.env reads the varables from a global configuration 
file or a local configuration file of a mapset. System-wide varables (an active monitor 
for example) could be store using this interface too. Th i s interface has a g e t V a r i a b l e 
and a s e t V a r i a b l e function. 
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8.4.3 C o m p o n e n t s 

Default Argument sProvider returns from the I A r g m e n t s P r o v i d e r interface functions 
formatted command-line arguments passed to the G A L Framework in i t ia l iza t ion method. 

Def aultEnvironmentProvider implements the I E n v i r o n m e n t P r o v i d e r interface for a 
G A L internal variables storage. 

GRASSRCEnvironmentProvider also implements the I E n v i r o n m e n t P r o v i d e r interface but 
for G R A S S ' S variables saved in the global configuration file. 

GRASSMapsetEnvironementProvider is the same as the previous components but for the 
variables of the mapset. 

8.4.4 M o d u l e s 

g.gald is a daemon module that loads a l l internal components of the G A L Framework 
w i t h their implementations and it waits for their interface functions execution over 
the D - B u s . It is needed for example i n cooperation w i t h a d.mon and a d . r a s t 
modules because it keeps a component w i th monitor windows available even after the 
d.mon module finishes. 

g.quit is an auxi l iary module that terminates running master module which is i n the most 
cases the g. gald. 

g.gisenv supplies some possibilities of the equally called G R A S S module and operates 
wi th the I E n v i r o n m e n t P r o v i d e r interface and its implementing components. 

8.5 Display Subsystem 

Classes, interfaces and components of the display subsystem provide a support for graph­
ical user interface or data visualizat ion related modules. They are created w i t h the help of 
the Qt widget toolki t [ ] version 4.x but there is a possibil i ty to use any other G U I l ibrary 
if it allows an ind iv idua l event processing. 

8.5.1 Classes 

QtEventHanler implements the EventHandler base class and manages the Qt event pro­
cessing loop and a Q A p p l i c a t i o n object. More on event handlers is in the section 5.2. 

Area is a general rectangle region wi th x and y coordinates, a width and a height. 

Raster Image is a class for a mult ichannel two dimensional raster image data storage and 
manipulat ion. It's used i n a I R a s t e r D i s p l a y e r interface. Pixels can be accessed as 
raw data or as C o l o r typed elements at chosen x and y cooordinates. The content or 
the format can be described wi th a metadata attribute. 

QtMonitorGLWidget inherits from a QGLWidget class and appends an internal image buffer 
for widget canvas repaint everytime it 's needed. A s the name may indicate, it uses 
O p e n G L for rendering. 
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QtMonitorWindow is derived from a QMainWindow class and contains the QtMonitorGLWidget 
widget as a drawing area. 

drawlmage is the only method added to the base class. M e t h o d converts a Rasterlmage 
to a QImage for drawing on the canvas. 

8.5.2 Interfaces 

IMonitorController serves for modules that controls size, posit ion and appearance of 
graphical windows. For example, modules like a d.mon module from the G R A S S GIS 
which controls monitors. It is the composed interface where the element identifies a 
target monitor window. A list of provided interface functions would be too long and 
it is rather unimportant to be listed here. 

IRasterDisplayer is the composed interface that allows modules display raster images on 
the monitor. Visua l ized data is just mult ichannel p ixel pictures not raster GIS data 
as name could insult . The element is a target monitor window name. A n example 
module that could use this interface is a d . r a s t . 

getRasterlmageArea returns an Area object w i t h dimensions of canvas where the 
raster images can be drawn. This means that any rendering request beyond the 
borders w i l l not be visible. 

displayRasterImage displays a raster image of the Rasterlmage class at given 
coordinates and wi th specified dimensions. 

8.5.3 C o m p o n e n t s 

Def aultMonitorController component implements the I M o n i t o r C o n t r o l l e r and the 
I R a s t e r D i s p l a y e r interfaces for eight monitors named xO to x7. This respects prac­
tices from the G R A S S G I S . A s long as this component is resident in the memory and 
ini t ial ized, it can accept interface functions implementat ion calls. 

RoamerComponent is a base and only component that implements the I M o n i t o r C o n t r o l l e r 
and the I R a s t e r D i s p l a y e r interfaces for a d.roamer visualizat ion tool . A n element 
name of the module window is a roamer for the identification in interface functions. 

8.5.4 M o d u l e s 

d.mon is a simple module that shows, hides or selects as active monitors provided by the 
Def a u l t M o n i t o r C o n t r o l l e r component instantiated i n the g . g a l d daemon. Raster 
layers can be continuously displayed wi th the d. r a s t program. Such a monitor win­
dow can be seen on the figure 8.1. 

d.move allows shift a monitor window from the command-line or a script. It uses one of 
the I M o n i t o r C o n t r o l l e r interface functions to accomplish that. 

d.resize is s imilar module to d.move but it resizes the monitor window instead. 

d.roamer is a more complex 3D visual izat ion tool for the G R A S S GIS wri t ten using the 
G A L Framework. The user can freely roam over the displayed terrain w i th this 
tool and one of selectable level of detai l algorithms for the rendering is the R O A M 
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Monitor: xO _ • X 

Figure 8.1: The monitor window opened wi th the d.mon module wi th an e l e v a t i o n . 10m 
raster layer from the s p e a r f i s h 6 0 test mapset displayed by the d . r a s t module. 

a lgori thm [ ] from the SoTerrain l ibrary [32]. That ' s where the module name comes 
from. 

The module displays a raster layer and it is controlled in the same way as the 
Def a u l t M o n i t o r C o n t r o l l e r managed windows wi th the d.mon and the d . r a s t mod­
ules of the framework. The layer is interpreted as a texture but a terrain heightmap 
can be selected w i t h the d . r a s t module using the different argument during the 
visualizat ion too as can be seen on the figure 8.2. 

The figure 8.3 demonstrates a communicat ion begind the raster layer display. The 
d.roamer module w i t h its RoamerComponent is running as a daemon and accepts 
D-Bus method cal l events. The d . r a s t module gets raster layer data from the 
GRASSRasterLayerProvider component i n the framework and sends them to the 
listening RoamerComponent component which creates and shows a scene graph wi th 
the terrain. 

8.6 GIS Subsystem 

Here i n this subsystem, support instruments for performing GIS-specific computat ion 
such as map projections or coordinate systems may be present. For the moment, there are 
available only a rectangular region abstraction class representing an area of interest i n the 
map and an interface and components working wi th it. 
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Figure 8.2: The d.roamer module user interface w i t h an aspect raster layer from the 
spearf i s h 6 0 test mapset displayed as a texture and an e l e v a t i o n . 10m layer displayed as 
a heightmap. 

8.6.1 Classes 

LayerRegion bounds cutout of a raster or a vector map layer w i t h an east, a west, a north 
and a south edge. It also describes number of rows and columns and a north-south 
and a east-west resolution for convenience although one information can be computed 
from another. 

8.6.2 Interfaces 

IRegionProvider presents an access point to components providing different areas of 
interest on the map layers. 

getRegion returns the requested LayerRegion region object. 

8.6.3 C o m p o n e n t s 

GRASSDef aultRegionProvider manages the default region of the G R A S S GIS mapset 
and offers it to any component or module that uses the I R e g i o n P r o v i d e r interface. 

GRASSUserRegionProvider is analogous component but for the active region of the user. 

8.6.4 M o d u l e s 

g.region module allows read and modify the user region. It reimplements the same-called 
module from the G R A S S GIS package using the I R e g i o n P r o v i d e r interface. 
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d.rast 

T * 

RasterLayerProvider 
GAL Framework 

GRASSRasterLayerProvider ( ^ ) IMonitorContoller ( ^ ) IRasterDisplayer 

GRASS data 
d.roamer 

RoamerComponent 

Figure 8.3: The internal architecture of the d.roamer module. 

8.7 Raster Subsystem 

Interaces and components that access or manipulate GIS raster data as wel l as modules 
that implement such interfaces belong to this subsystem. A current implementat ion reads 
raster data from the native G R A S S format using its raster l ibrary in tiles. 

8.7.1 C l a s s e s 

ColorTable is a linear table which converts raster data values to corresponding colors. It's 
bounded by a min ima l and a max ima l value. It's used for a raster layer visualizat ion 
where each value denotes an independent category. 

getColor method returns a color of a C o l o r class for a given integer value of a raster 
cell. 

ColorRules is a set of intervals w i th assigned boundary colors. The resulting color is 
computed by their interpolation during the look up. This is more suitable for the 
visualizat ion of rasters that models continuous phenomenons. 

addRule appends a new color rule to the set w i t h the specified interval and the 
boundary colors. 

getRule provides access to the stored color rules of a type C o l o r R u l e which offers a 
color look up method g e t C o l o r . 

RasterTile is a tile of raster data returned by a I R a s t e r L a y e r P r o v i d e r interface func­
t ion. It support various cell data types. Current ly it 's designed for two dimensional 
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rasters only but this should be changed for future pract ical applications of the library. 
Some of its attributes are the color table, the color rules and metadata string. 

getColorTable returns reference to the color table of the tile. 

getColorRules gives reference to the object w i t h color rules. 

getMedatata returns the string wi th metadata attached to the tile. It is not decided 
what form this metadata should take because they are not needed i n example 
modules. 

getClolor performs a direct color look up for a raster tile cell at given coordinates. 

8.7.2 Interfaces 

IRasterLayerProvider is a composed interface that could be used i n every raster pro­
cessing module because it could provide access to any raster data i n a G R A S S mapset 
and location or any other external format. Source of data depends only on a selected 
implementing component. D a t a are requested i n tiles of specified posit ion and dimen­
sions by the layer region. 

getLayer returns a part of the raster layer represented by a R a s t e r T i l e object 
instance. 

IRasterLayerDisplayer interface may be preferred in the cases where a raster data trans­
fer between components would be too expensive for the interactive visualizat ion. A n 
interface function just passes request for layer display and an implementing compo­
nent reads the data by its own. Even this interface is the composed. 

displayLayer tells what raster layer should be displayed. 

8.7.3 C o m p o n e n t s 

GRASSRasterLayerProvider implements the I R a s t e r L a y e r P r o v i d e r interface and pro­
vides raster layers from the G R A S S locations w i th the l i b g r a s s _ g i s l ibrary. 

8.7.4 M o d u l e s 

g . l i s t module is able to print to the standard output a list of a l l available raster layers 
provided by the GRASSRasterLayerProvider component. 

d.rast is more related to the raster subsystem even if it serves for the raster layer display 
on the active monitor. It reads raster data using the I R a s t e r L a y e r P r o v i d e r inter­
face and sends them to a visual izat ion component i n the g . g a l d process using the 
I R a s t e r D i s p l a y e r interface. 

8.8 Vector Subsystem 

The vector subsystem is not present in the l ibrary because an internal representation 
of vector layers should have been elaborated i n the Be . Jan Ki t t l e r ' s master's project and 
then interfaced to the framework's practices. Unfortunately, he postponed his work to the 
next academic year. A u t h o r can only hope that further cooperation w i t h h i m w i l l br ing 
outstanding implementat ion of vectors to the G A L Framework. 
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9 Dynamic Language Bindings 

The second of the pr imary targets of the G A L Framework is to support an interface 
function execution from various dynamic languages. Th is chapter discuss achievements 
and obstructions of this objective. 

9.1 S W I G Uti l izat ion 

The Simplified Wrapper and Interface Generator ( S W I G ) [ ] tool is suitable for an 
automatic generation of C / C + + libraries bindings to many dynamic languages. This fully 
applies for a C code which don't use variable length arguments functions and callbacks. 
Support of these programming techniques is not at a l l or at least hardly possible from 
the principle. Some C + + constructs like nested classes, a new and a d e l e t e operator 
overloading or an uncommon use of templates are not wrappable as well . O f course, a 
set of transformed source language properties depends on a target language capabilities. 
For this reason, a wrapper of the slot execution methods has to be thoroughly customized. 
Fortunately, this could be done wi th advanced S W I G features or certain hacks. 

9.2 General Customizations 

A s mentioned before, the nested C + + classes can't be wrapped by the S W I G . To over­
come this l imi ta t ion , nested slot declarations inside the interface object classes had to be re­
named to a global G A L namespace. For example, they are accessible under a GAL. SomeSlot 
class in P y t h o n instead of a GAL: :ISo m e l n t e r f a c e : :SomeSlot class i n C + + . 

Even if wrapped object proxies can be thrown as exceptions in the target language, for 
a more clearly readable exception backtrace it 's better to ca l l a predefined S W I G excep­
t ion evocation function i n a throws typemap which transforms the C + + exception to an 
appropriate target language exception of a specified type. 

A minor l imi ta t ion represents need of a template instantiat ion before their interfacing. 
This means that there can't be used the templates typed wi th types declared i n the host 
language. 

9.3 Python Bindings 

A t the beginning, only the P y t h o n bindings were developed to prove a G A L Framework's 
core system possibilities i n the dynamic language support. Th is language was chosen be­
cause of its simplicity, clearness, frequent usage and because it 's the best implemented 
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target language i n the S W I G . This implies a good knowledge base available on the Inter­
net. The resulting wrapper is a dynamic l ibrary wri t ten using a P y t h o n / C A P I [34] and a 
single P y t h o n script w i th a l l proxy classes. 

The first needed modification to the wrapper interface for this language was a rename of 
al l used o p e r a t o r [] operators to __getitem__() methods for a read access and __setitem__() 
methods for a write access. Then , a in typemap converting a argc and a argv argument of 
the GAL: : i n i t i a l i z e ( ) method to a P y t h o n list of strings was created for a convenience 
because P y t h o n stores the command-line arguments in a s y s . a r g v list. 

The slots obtained from the interface objects must be casted to their final type to allow 
the interface function cal l w i th a defined signature in C + + as you can notice i n a l ibrary 
tu tor ia l i n the appendix A . The S W I G wraps an I n t e r f a c e : : g e t S l o t () method to return 
a proxy object containing a pointer to a S l o t but P y t h o n expects that an object reference 
is always of its final type and thus it doesn't offer any casting mechanism for this. To fix 
this contradiction, C + + conversion functions would be needed to be wri t ten and wrapped 
if there wasn't other solution. The slots were designed for a dynamic signature specification 
and execution. The overloaded cal l operators of derived slots are provided only for conve­
nience. So, only th ing needed was extend the P y t h o n S l o t class w i th a _ _ c a l l _ _ ( ) method 
wi th variable length arguments which converts P y t h o n basic types to C + + basic types 
and extracts an internal pointer from P y t h o n proxies when passing the slot arguments and 
which converts the basic C + + types to the basic P y t h o n types and creates the appropriate 
P y t h o n proxy object when dealing wi th the return values. 

9.4 Java Bindings 

The second selected dynamic language is Java for its vast usage although it is expl ici t ly 
compiled, w i th less dynamism and more language restrictions than P y t h o n . The S W I G 
generates a dynamic l ibrary wi th bindings for this language using a Java Nat ive Interface 
(JNI) [ ] and it creates Java proxy classes for a l l defined types i n separate files. 

Java doesn't have operator overloading, that 's why an o p e r a t o r ( ) , an o p e r a t o r [ ] , 
an operator++, an o p e r a t o r — , an operator+, an o p e r a t o r - , an o p e r a t o r * and an 
o p e r a t o r / operator had to be renamed to an c a l l ( ) , an g e t ( ) , an i n c ( ) , an d e c ( ) , 
an add(), an sub(), an mul() and an d i v ( ) method. Even here, the in typemap was 
wri t ten to allow pass a string array wi th arguments to the l ibrary in i t ia l iza t ion method. 
Another trouble wi th Java was the fact that a name of the destructor collides wi th the name 
of a framework deini t ial izat ion method therefore it was renamed to a GAL: : . f i n a l i z e ( ) . 

For experimental and presentational reasons, a conversion using a out typemap of the 
S W I G tool was picked as a solution to the slot type problem for this language. The 
typemap determines a slot type wi th a S l o t : :getClassName() method, creates a proxy 
for this type and the proxy can be then safely casted using native casting operator i n a 
Java code. 
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9.5 Other Bindings 

Despite of the fact that only P y t h o n and Java was chosen from a long list of languages 
that the S W I G supports, C # , Pe r l and R u b y was other candidates and presents a potential 
field of evolvement of the G A L Framework. T e l could be considered also because it 's widely 
used in a G R A S S GIS user interface. 
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10 Experimental Results 

A s you may point out, the performace w i l l never be the strongest side of the slot execution 
because of its dynamic nature. Expensive operations should be methods of objects returned 
from the slots rather than the interface functions itself. The selected execution mechanism 
affects an interface function ca l l overhead significantly. To make a better image about its 
impact on the performace, a set of tests was created and performed. Results are presented 
and discussed i n this chapter. 

The testing machine was a Intel Core 2 Duo laptop at 1.8 G H z frequency wi th a 2 G B 
R A M memory. There was defined an experimental interface w i th slots accepting differently 
typed arguments and giving the same return values. Tha t means for example that there 
was a slot w i t h a single integer argument and a single integer return value. Other tested 
data types was double, string, object and a slot w i t h no arguments or return values. A 
string argument value was the "test" word. The object argument was a simple Object 
class derived instance w i t h one integer attribute. Testing applications and scripts are i n a 
GAL/test/ directory of the root directory on the C D . 

The measured results are listed in the table 10.1. Columns denote type of the slot 
argument and the return value and rows represent used execution mechanism and language. 
Values are t ime that costed one execution of an interface function implementation w i t h an 
empty body. 

Table 10.1: The performace of the slot execution. 
Type V o i d Integer Double Str ing Object 

C + + local 
C + + D - B u s 
P y t h o n local 

P y t h o n D - B u s 

200 ns 
1.08 ms 
2.07 pa 
1.08 ms 

287 ns 
1.10 ms 
2.48 pa 
1.10 ms 

285 ns 
1.09 ms 
2.53 as 
1.10 ms 

296 ns 
1.09 ms 
2.54 fis 
1.10 ms 

359 ns 
1.11 ms 
24.4 fis 
1.12 ms 

The first and the fastest row is a callback implementat ion of the slot mechanism called 
from a C + + testing module locally. The first cell should describe a raw overhead of execu­
t ion, the others are the raw overhead plus an overhead per argument and return value of 
the appropriate type. The integer, the double and the string slots are almost equal. O n l y 
an object argument cost is a l i t t le bit higher because of an instance creation. Process ran 
on a single core. 

The next is a C + + module cal l ing the implementat ion i n a server process using the D -
Bus. It 's four orders slower because of the low bandwidth of the D - B u s . A l t h o u g h there 
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was enabled both cores during the testing, overall system usage was very low (about the 
10% per core). This is caused by l imitat ions of a D - B u s synchronization and implies that 
there is a need to introduce another R P C based slot implementat ion which don't suffer w i th 
this problem. Us ing less messages i n a single moment or bigger ones is more than advised 
when using the D - B u s slots. 

The P y t h o n bindings wi th a direct implementat ion have proven only one order slower 
when using the basic types but the object arguments are more expensive than that. This 
is probably caused by a proxy object creation and destruction. 

The cost of P y t h o n interpretation has no visible influence comparing to the t ime losses 
in the D - B u s synchronization which shows the last line of the table although both client 
and server was wri t ten in Py thon . 
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11 Conclusion 

Al though many work on the design and the prototype implementat ion was done, there is 
s t i l l much things that could or should be appended to the framework to be generally usable. 
The author believes that the point of the project was to present an idea and prove it on a 
pilot implementat ion not to create a final full-featured system. Future of the project now 
depends on the intersest of the community. 

Lastly, here is just mention about the support tools used during the project develop­
ment. The Trac [ ] was picked up as a project management tool, the Subversion [« 7] as 
a source code management system, the SCons [38] as a bu i ld system, the Doxygen [J )] as 
the l ibrary documentation generator and the many others that was noted previously in the 
text. Thanks belongs to their developers for the help they have granted. 
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A p p e n d i x A 

Library Tutorial 

This appendix contains a tu tor ia l of a G A L Framework l ibrary appliance in a G R A S S GIS 
module development. F i rs t we w i l l show a basic u t i l iza t ion of a predefined functionality 
in general on an imaginary interface. Then we w i l l define the used object, the slot, the 
interface and the component on our own which may be interesting for those who wants 
extend framework's features. Final ly , we w i l l create some more pract ical module that 
simulates functionality of the g . l i s t r a s t command. Complete source codes of these 
examples are placed i n a GAL/doc/Examples/ directory on an attached C D . 

A . l Imaginary Interface 

We are going to write a client-side module which calls interface functions to get some 
data or perform a computat ion over them and then exits. A structure of such module can 
be reduced to the following code skeleton: 

// GAL Framework i n c l u d e s . 
#include < G A L / c o r e / B a s i c . h > 

// L o c a l i n c l u d e s 

int m a i n ( i n t a r g c , const char * argv []) 
{ 

t r y 
{ 

// I n i t i a l i z e GAL Framework. 
G A L : : i n i t i a l i z e ( a r g c , a r g v ) ; 

// C r e a t e and i n i t i a l i z e components. 

// Get i n t e r f a c e o b j e c t s form component manager. 

// Get s l o t s from i n t e f a c e s 

// Do the j o b . 

// F r e e r e c i e v e d o b j e c t s and i n t e r f a c e s . 
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// D e i n i t i a l i z e and f r e e component 

// D e i n i t i a l i z e GAL Framework and 
GAL: : f i n a l i z e () ; 

} 
catch ( E x c e p t i o n e x c e p t i o n ) 
{ 

s t d : : c e r r << " U n e x p e c t e d e r r o r : " 
<< s t d : : e n d l ; 

return EXIT.FAILURE; 
} 

return EXIT_SUCCESS; 
} 

A l l significant code is enclosed in a t r y statement w i th an appropriate exception handler 
and between a GAL: : i n i t i a l i z e ( ) and a GAL: : f i n a l i z e ( ) method. They prepare or free 
internal structures of the G A L Framework so code that uses it should be wi th in . 

Let 's suppose that there is a I C u s t o m l n t e r f ace interface and a CustomComponent com­
ponent that implements it i n the framework and we want to ca l l this implementat ion to 
set or get some data. F i rs t we must load the component w i th the required interface imple­
mentation. 

// C r e a t e and i n i t i a l i z e component w i t h i m p l e m e n t a t i o n . 
CustomComponent * component = new CustomComponent(); 
c o m p o n e n t - > i n i t i a l i z e ( ) ; 

Then we get a reference to a component manager and request for the interface object by 
an interface name. 

// Get i n t e r f a c e o b j e c t form component manager. 
ComponentManager & cm = GAL::getComponentManager(); 
I n t e r f a c e * i n t e r f a c e = c m . g e t l n t e r f a c e ( " I C u s t o m l n t e r f a c e " ) ; 

The I C u s t o m l n t e r f ace interface has three functions. The first, called a f o o ( ) , doesn't 
have any arguments or return values, the second function a b a r ( ) has a single integer 
argument and the th i rd a g e t P o i n t O function returns a point object of a class P o i n t . To 
cal l these functions, we must obtain slot objects representing them from the interface. 

// Get s l o t of I C u s t o m l n t e r f a c e i n t e f a c e f u n c t i o n s . 
F o o S l o t & f o o = r e i n t e r p r e t _ c a s t < F o o S l o t &>( 

i n t e r f a c e - > g e t S l o t ( " f o o " ) ) ; 
B a r S l o t & bar = r e i n t e r p r e t _ c a s t < B a r S l o t &>( 

i n t e r f a c e - > g e t S l o t ( " b a r " ) ) ; 
G e t P o i n t S l o t & g e t P o i n t = r e i n t e r p r e t . c a s t < G e t P o i n t S l o t & > ( 

i n t e r f a c e - > g e t S l o t ( " g e t P o i n t " ) ) ; 

// C a l l them, 
fo o () ; 

e x i t . 

<< e x c e p t i o n . g e t M e s s a g e ( ) 
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b a r ( 9 9 ) ; 
P o i n t * p o i n t = g e t P o i n t () ; 

W h e n the work is done we should free the received point object and the interface object. 

// F r e e r e c i e v e d o b j e c t and i n t e r f a c e , 
p o i n t - > f r e e () ; 
i n t e r f a c e - > f r e e ( ) ; 

The component w i th an implementat ion is no longer needed so we can deinitialize and 
release it too. 

// D e i n i t i a l i z e and f r e e component, 
c o m p o n e n t - > f i n a l i z e ( ) ; 
delete component; 

That ' s a l l for this case, you can see the joint code snippets of this module example i n a 
file GAL/doc/Examples/core_example.cpp on the C D . 

A.2 Custom Object 

We saw the point object of the class P o i n t in the previous example. N o w we w i l l show 
how can be such custom object declared and implemented. Every object that can be used 
as an interface function argument or a return value must be derived from a Object base 
class and override a c l o n e ( ) , a s e r i a l i z e ( ) and a d e s e r i a l i z e ( ) method i n order to be 
be transferable between processes or hosts w i th remote procedure ca l l libraries. 

class P o i n t : p u b l i c O b j e c t 

A default constructor and a constructor w i th point coordinates is defined next. Notice 
that both constructors sets a name of the object's class w i t h a setClassName () method. 
This is crucial for runtime determination of a object type. 

p u b l i c : 
/* C o n s t r u c t o r s . */ 
P o i n t () 
{ 

t h i s - > s e t C l a s s N a m e ( " P o i n t " ) ; 
}; 
P o i n t ( i n t _x, i n t _y) : 

x ( _ x ) , y ( _y) 
{ 

t h i s - > s e t C l a s s N a m e ( " P o i n t " ) ; 
} 
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Every Object is a prototype (see chapter 6). That ' s why we must override the c l o n e ( ) 
method to get the right instance of the P o i n t class. Th is can be done w i t h the copy 
constructor. Because we won't define any pointer-linked internal attributes, we don't need 
to write the copy constructor and we use an impl ic i t one. 

/* P r o t o t y p e methods. */ 
v i r t u a l O b j e c t * c l o n e ( ) c o n s t 
{ 

// C l o n e w i t h copy c o n s t r u c t o r , 
r e t u r n new P o i n t ( * t h i s ) ; 

} 

Override the serialization and the deserialization method is what is left. The serialization 
method returns a string object w i th (in this case) a binary representation of a P o i n t class 
state and the deserialization takes that string and restores the state. In other words: they 
must be complementary. 

/* S e r i a l i z a t i o n methods. */ 
v i r t u a l S t r i n g s e r i a l i z e ( ) c o n s t 
i 

// S e r i a l i z e p o i n t t o s t r i n g . 
S t r i n g d a t a ; 
d a t a . a p p e n d ( r e i n t e r p r e t _ c a s t < c o n s t 
d a t a . a p p e n d ( r e i n t e r p r e t _ c a s t < c o n s t 
r e t u r n d a t a ; 

\ 

c h a r * > ( & t h i s - > x ) , 
c h a r * > ( & t h i s - > y ) , 

s i z e o f ( i n t ) ) ; 
s i z e o f ( i n t ) ) ; 

/ 
v i r t u a l v o i d d e s e r i a l i z e ( c o n s t S t r i n 
i 

g & d a t a ) 
\ 

II D e s e r i a l i z e p o i n t f r o m s t r i n g , 
c o n s t c h a r * b y t e s = d a t a . d a t a O ; 
t h i s - > x = * r e i n t e r p r e t _ c a s t < c o n s t 
b y t e s += s i z e o f ( i n t ) ; 
t h i s - > x = * r e i n t e r p r e t _ c a s t < c o n s t 
b y t e s += s i z e o f ( i n t ) ; 

} 

i n t * > ( b y t e s ) ; 

i n t * > ( b y t e s ) ; 

Now comes a definition of an actual behavior of the point object which is only a g e t S t r i n g () 
method returning a string wi th point 's coordinates and attr ibute access methods. 

/* A t t r i b u t e a c c e s s methods. */ 
i n t g e t X Q c o n s t { r e t u r n t h i s - > x ; } 
v o i d s e t X ( c o n s t i n t X) { t h i s - > x = X; } 
i n t g e t Y Q c o n s t { r e t u r n t h i s - > y ; } 
v o i d s e t Y ( c o n s t i n t Y) { t h i s - > y = Y; } 

/* O b j e c t methods. */ 
S t r i n g g e t S t r i n g O 
{ 

// R e t u r n s t r i n g w i t h p o i n t c o o r d i n a t e s . 
s t d : : o s t r i n g s t r e a m s t r e a m ; 
stream << " [ " << t h i s - > g e t X ( ) << ", " << t h i s - > g e t Y ( ) << " ] " ; 
r e t u r n s t r e a m . s t r ( ) ; 

>; 
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A n d finally a declaration of the internal attributes. 

p r i v a t e : 
/* I n t e r n a l a t t r i b u t e s . */ 
int x ; 
int y; 

}; 

Complete source code of this part is i n GAL/doc/Examples/custom_object.h file on the 
C D . 

A.3 Custom Slot 

Now we w i l l define the custom slot G e t P o i n t S l o t that returns our P o i n t classed object. 
It is the same that is used i n the I C u s t o m l n t e r f ace from the first part of the tu tor ia l and 
derived from the basic slot object class S l o t . 

c l a s s G e t P o i n t S l o t : p u b l i c S l o t 

In a slot constructor, there is specified an interface function signature using a addArgument () 
and a addReturnValue () methods. In this case, it is only a single return value of a OBJECT 
type since the slot just returns a point object derived from the Object class. See the l ibrary 
reference for further information about the methods and the other possible types. 

p u b l i c : 
/* C o n s t r u c t o r . */ 
G e t P o i n t S l o t ( ) : 

S l o t () 
{ 

t h i s - > a d d R e t u r n V a l u e ( O B J E C T ) ; 
} 

The slot objects also honours the prototype design pattern thus the cloning method needs 
to be implemented i n the same way as i n the Object derived classes. 

/* P r o t o t y p e methods . */ 
v i r t u a l S l o t * c l o n e () c o n s t 
{ 

r e t u r n new G e t P o i n t S l o t ( * t h i s ) ; 
} 

The most notable part of the custom slot implementat ion is their function ca l l operator. 
To allow a direct slot execution as a functor i n C + + language, the ca l l operator must 
set pointers to variables that holds arguments or where is a space for return values wi th 
a s e t Argument () and a s e t R e t u r n V a l u e () method and then cal l an execute () method. 
Here is the way how to accomplish this for the G e t P o i n t S l o t slot: 
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/* C a l l o p e r a t o r . */ 
P o i n t * o p e r a t o r ( ) ( ) 
{ 

P o i n t * r e s u l t = NULL; 
t h i s - > s e t R e t u r n V a l u e ( 0 , ftresult); 
t h i s - > e x e c u t e ( ) ; 
r e t u r n r e s u l t ; 

} 
}; 

That ' s i t . The point object w i l l be allocated and returned from the l ibrary and when 
it won't be needed, it may be freed wi th a f r e e ( ) method by the module. A full slot 
definition can be seen in a GAL/doc/Examples/custom_slot . h file on the attached C D . 

A.4 Custom Interfce 

The next step is to create the I C u s t o m l n t e r f a c e interface object. We w i l l use the 
G e t P o i n t S l o t slot from the previous example and two slots a F o o S l o t and a B a r S l o t 
predefined in a header file G A L / i n c l u d e / c o r e / B a s i c S l o t s . h as a V_V_Slot and a V_I_Slot. 
A s you may notice, names of these slots contain a shortcut for their signature. For example, 
the first V in the V_V_Slot name means a void return value and the second means that the 
slot has no arguments. We just rename them according to the interface function name. 

// Name p r e d e f i n e d s l o t s , 
typedef V _ V _ S l o t F o o S l o t ; 
typedef V _ I _ S l o t B a r S l o t ; 

Then we inherit from the I n t e r f a c e base class of the interface objects. 

// Custom component c l a s s . 
c lass I C u s t o m l n t e r f a c e : p u b l i c I n t e r f a c e 
{ 

In a default constructor, we first set an interface object class name for its identification 
in the component manager at runtime and then we create and append the slot object 
instances wi th an interface function names using a a d d S l o t O method. This declares the 
available functions of the I C u s t o m l n t e r f ace interface and every component that wants to 
implement it must implement a l l of them. 

p u b l i c : 
/* C o n s t r u c t o r . */ 
I C u s t o m l n t e r f ace ( ) : 

I n t e r f ace () 
{ 

// Set i n t e r f a c e name. 
t h i s - > s e t N a m e ( " I C u s t o m I n t e r f a c e " ) ; 

// Append p r e d e f i n e d s l o t i n s t a n c e s , 
t h i s - > a d d S l o t ( " f o o " , new F o o S l o t ( ) ) ; 
t h i s - > a d d S l o t ( " b a r " , new B a r S l o t ( ) ) ; 
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t h i s - > a d d S l o t ( " g e t P o i n t " , new G e t P o i n t S l o t ( ) ) ; 
} 

A copy constructor i n this case must be defined even empty because there must bee called 
an I n t e r f a c e ' s copy constructor which makes a copy of a l l aggregated slot objects. 

/* Copy c o n s t r u c t o r . */ 
I C u s t o m l n t e r f a c e ( c o n s t I C u s t o m l n t e r f a c e & i n t e r f a c e ) : 

I n t e r f a c e ( i n t e r f a c e ) 
i 

II N o t h i n g more s i n c e i n t e r f a c e d o e s n ' t have i n t e r n a l a t t r i b u t e s . 
} 

A destructor does the inverse action to the default constructor. Tha t is remove and deal­
locate the previously appended slots w i th a r e m o v e S l o t O counterpart of the a d d S l o t O 
method. 

/* D e s t r u c t o r . */ 
v i r t u a l " I C u s t o m l n t e r f a c e ( ) 
{ 

// Remove and f r e e s l o t s . 
S l o t * f o o S l o t = & ( t h i s - > g e t S l o t ( " f o o " ) ) ; 
S l o t * b a r S l o t = & ( t h i s - > g e t S l o t ( " b a r " ) ) ; 
S l o t * g e t P o i n t S l o t = & ( t h i s - > g e t S l o t ( " g e t P o i n t " ) ) ; 
t h i s - > r e m o v e S l o t ( " f o o " ) ; 
t h i s - > r e m o v e S l o t ( " b a r " ) ; 
t h i s - > r e m o v e S l o t ( " g e t P o i n t " ) ; 
d e l e t e f o o S l o t ; 
d e l e t e b a r S l o t ; 
d e l e t e g e t P o i n t S l o t ; 

> 

Fina l ly and again, the prototype cloning method have to be defined. 

/* P r o t o t y p e methods. */ 
v i r t u a l I n t e r f a c e * c l o n e ( ) 
{ 

II R e d e f i n e p r o t o t y p e c l o n n i n g method u s i n g copy c o n s t r u c t o r , 
r e t u r n new I C u s t o m l n t e r f a c e ( * t h i s ) ; 

} 
}; 

A file w i th this part is a GAL/doc/Examples/custom_interface.h 

A.5 Custom Component 

Now we have gotten through a l l preparation steps to br ing the new functionality to the 
G A L Framework. In reality, the previous three steps won't be so often necessary because 
in the most cases we implement already defined interfaces. O n l y left is to specify the own 
component w i th the interface implementat ion. We start deriving from a Component class. 
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c l a s s CustomComponent: p u b l i c Component 

Then we set a component's name and tel l what static methods of the component im­
plement what interface functions to the base class i n a copy constructor. The component 
manager w i l l ask for this information during an implementat ion registration. A destructor 
of this component is empty. 

p u b l i c : 
/* C o n s t r u c t o r and d e s t r u c t o r . * / 
CustomComponent(): 

Component() 
-T 

// Set u n i q u e component name. 
t h i s - > s e t N a m e ( " C u s t o m C o m p o n e n t " ) ; 

// Add i m p l e m e n t a t i o n methods i n Component c l a s s . 
t h i s - > s e t I m p l e m e n t a t i o n ( " I C u s t o m I n t e r f a c e : f 00" , 

( v o i d *) & ( t h i s - > f o o ) ) ; 
t h i s - > s e t I m p l e m e n t a t i o n ( " I C u s t o m I n t e r f a c e : b a r " , 

( v o i d *) & ( t h i s - > b a r ) ) ; 
t h i s - > s e t I m p l e m e n t a t i o n ( " I C u s t o m I n t e r f a c e : g e t P o i n t " , 

( v o i d *) & ( t h i s - > g e t P o i n t ) ) ; 
> 
s 
v i r t u a l "CustomComponent() {} 

In an in i t ia l iza t ion method of the component, we create and register i n the component 
manager an owned interface object, a point object prototypes as well as an interface imple­
mentation. 

/* Component methods t h a t have t o be im p l e m e n t e d . */ 
v o i d i n i t i a l i z e O 
{ 

ComponentManager & cm = GAL::getComponentManager(); 

// R e g i s t e r P o i n t o b j e c t . 
t h i s - > o b j e c t P r o t o t y p e = new P o i n t ( ) ; 
c m . r e g i s t e r O b j e c t ( * t h i s - > o b j e c t P r o t o t y p e ) ; 

// R e g i s t e r C u s t o m l n t e r f a c e . 
t h i s - > i n t e r f a c e P r o t o t y p e = new I C u s t o m l n t e r f a c e ( ) ; 
c m . r e g i s t e r l n t e r f a c e ( * t h i s - > i n t e r f a c e P r o t o t y p e ) ; 

// R e g i s t e r C u s t o m l n t e r f ace i n t e r f a c e i m p l e m e n t a t i o n . 
c m . r e g i s t e r I m p l e m e n t a t i o n ( * t h i s - > i n t e r f a c e P r o t o t y p e , * t h i s ) ; 

} 

A finalization method unregisters the prior registrations and deletes the allocated in­
stances of the prototypes. 

v o i d f i n a l i z e ( ) 
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ComponentManager & cm = GAL::getComponentManager(); 

// U n r e g i s t e r i n t e r f a c e i m p l e m e n t a t i o n . 

c m . u n r e g i s t e r I m p l e m e n t a t i o n ( * t h i s - > i n t e r f a c e P r o t o t y p e , * t h i s ) ; 

// U n r e g i s t e r and f r e e i n t e r f a e . 
c m . u n r e g i s t e r I n t e r f a c e ( * t h i s - > i n t e r f a c e P r o t o t y p e ) ; 
delete t h i s - > i n t e r f a c e P r o t o t y p e ; 
// U n r e g i s t e r o b j e c t . 
c m . u n r e g i s t e r O b j e c t ( * t h i s - > o b j e c t P r o t o t y p e ) ; 
delete t h i s - > o b j e c t P r o t o t y p e ; 

} 

Now it comes actual interface function implementations. In this example, they just prints 
that the interface function was called and wi th what arguments but you may fill them wi th 
whatever you want to do. They are static methods w i t h a component instance as the first 
argument because taking a pointer to a C + + object method and converting it to a void 
pointer is illegal. 

p r i v a t e : 
/* I n t e f a c e f u n c t i o n s i m p l e m e n t a t i o n s . */ 
stat i c void foo(Component * s e l f ) 
{ 

s t d : : cout << " I C u s t o m l n t e r f a c e : :foo () " << s t d : e n d l ; 
} 

stat i c void bar(Component * s e l f , i n t argument) 
{ 

s t d : : cout << " I C u s t o m l n t e r f a c e : : b a r ( " << argument << ") " << s t d : : e n d l ; 
> 
stat i c P o i n t * g e t P o i n t ( Component * s e l f ) 
i 

P o i n t * r e s u l t = new P o i n t ( 1 5 , 33) ; 
s t d : : cout << " I C u s t o m l n t e r f a c e : : g e t P o i n t ( ) : " << r e s u l t - > g e t S t r i n g ( ) 

<< s t d : : e n d l ; 
return r e s u l t ; 

} 

Attr ibutes serves only for a pointer to the registered prototypes storage. 

/* I n t e r n a l a t t r i b u t e s . */ 
P o i n t * o b j e c t P r o t o t y p e ; 
I C u s t o m l n t e r f ace * i n t e r f a c e P r o t o t y p e ; 

}; 

We have finished rather imaginary but significant serie of tutorials. This part may be 
viewed i n a file GAL/doc/Examples/custom_component .h on the attached C D . 

A.6 List of Raster Layers 

The final tu tor ia l presents possibil i ty write simple G R A S S modules using the G A L 
Framework i n P y t h o n programming language. In this case its a module which gets list 
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of available raster layers i n the G R A S S and prints them to the standard output. Displayed 
constructs are almost identical to that presented in the first tu tor ia l except there is no 
deallocation and the GAL. i n i t i a l i z e () method accepts a list of module arguments in ­
stead of the C - l i k e arguments of a main function due to nature of Py thon . It's also i n a 
G A L / d o c / E x a m p l e s / l i s t _ r a s t e r s . p y file. 

#!/bin/env p y t h o n 

# S t a n d a r d i m p o r t s . 
i m p o r t sys 

# GAL Framework i m p o r t s , 
f r o m GAL i m p o r t * 

# I n i t i a l i z e GAL Framework. 
G A L . i n i t i a l i z e ( s y s . a r g v ) 

# I n i t i a l i z e component w i t h a s s c e s s to GRASS r a s t e r s . 
r a s t e r _ l a y e r _ p r o v i d e r = G R A S S R a s t e r L a y e r P r o v i d e r ( ) 
r a s t e r _ l a y e r _ p r o v i d e r . i n i t i a l i z e ( ) 

# Get I R a s t e r L a y e r P r o v i d e r i n t e r f a c e from component manager, 
cm = GAL.getComponentManager() 
i _ r a s t e r _ l a y e r _ p r o v i d e r = cm.get I n t e r f a c e ( ' I R a s t e r L a y e r P r o v i d e r ' ) 
g e t E l e m e n t s = i _ r a s t e r _ l a y e r _ p r o v i d e r . g e t S l o t ( ' g e t E l e m e n t s ' ) 

# Get l i s t of a v a i l a b l e r a s t e r l a y e r s , 
l a y e r s = g e t E l e m e n t s ( ) 

# P r i n t them. 
f o r l a y e r i n l a y e r s : 

p r i n t l a y e r , 
p r i n t 

# D e i n i t i a l i z e component. 
r a s t e r _ l a y e r _ p r o v i d e r . f i n a l i z e ( ) 

# D e i n i t i a l i z e GAL Framework. 
G A L . f i n a l i z e () 
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