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Abstract 

The focus in the field of structural variations is mainly focused on human genomes. Thus, 
detecting copy number variation (CNV) in bacteria is a less developed field. Commonly 
used C N V detection methods do not consider the features of bacterial circular genomes 
and generally, there is a space to improve performance metrics. This thesis presents a 
C N V detection method called CNproScan focused on bacterial genomes. CNproScan 
implements a hybrid approach combining read depth and read pair signals. It considers 
all bacteria features and depends only on NGS data. Based on the benchmarking results, 
the CNproScan achieved very well in various conditions. Using the read pair information, 
the CNVs are classified into several categories. Also, compared with other methods, 
CNproScan can detect much shorter C N V events. Because of the necessity of merging 
not only the various feature signals but also the results of different algorithms, the thesis 
also introduces a pipeline called ProcaryaSV developed to easily employ five C N V 
detection tools and merge their results. ProcaryaSV handles the whole procedure from 
quality check, reads trimming, and alignment to the C N V calling. 
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I N T R O D U C T I O N 

The topic of this thesis is the detection of copy number variations in bacterial genomes. 
The copy number variations (CNVs) are a subgroup of a large field of structural variations 
(SVs). The structural variations are largely studied, yet there are still many gaps in the 
knowledge about them. This is even more factual for structural variations in bacteria. 
Despite that the first gene amplification was observed in Escherichia coli back then in 
1963, this field of research is less developed in bacteria compared to the advancements 
in human or other eukaryotic genomes. 

However, CNVs play an important role in the bacteria. They have a direct impact on 
protein production. In the long term, this has an impact on evolution and specialization. 
The short-term adaptive gene duplication can cause antibiotic resistance, which is an 
emerging issue. 

Sequencing is a common way how to study these organisms and became substantially 
cheap. Two ways of sequencing bacterial genomes are being done. The sequencing of 
bacterial isolates or whole bacterial communities. The thesis deals with the first one as it 
enables the detection of structural changes in the genome such as copy number variations. 

The lesser attention paid to structural variations in bacteria could be partly caused by 
technical difficulties detecting small rearrangements with short-read sequencing. Right 
now, we are at the breaking point between the massively used short-read next-generation 
sequencing, and the long-read third-generation sequencing. However, the inertia in the 
field is large and the next-generation sequencers are abundantly present and used in the 
labs. Furthermore, next-generation sequencing produces high throughput data necessary 
for copy number detection. 

Firstly, I define briefly what structural variations and copy number variations are. The 
specifics of bacterial genomes are described in a special subchapter. 

In the second chapter, I describe the field of detection of structural variations. This 
chapter is focused on bioinformatical aspects of structural variations detection. 

The practical part of the thesis follows in two chapters. The first one is a novel 
algorithm for C N V detection named CNproScan. There were several reasons to create it. 
First, the majority of tools are aimed at large, mainly human, genomes. They require 
specific types of inputs and dominantly rely on paired sample-reference samples, e.g., 
tumor-normal tissues. Also, they are intended to detect large rearrangements, and they 
are not scaled to small copy-number events. However, large CNVs are rare in 
prokaryotes. Second, there are not enough detection tools aimed at bacteria genomes, and 
some of the already published ones are already deprecated. Also, based on the reviews, 
there is only a small overlap between the results of various tools. A high false positive 
discovery is a common issue. Third, bacterial pathogens pose still a highly deadly risk. In 
2019, they caused 13.6% of all global deaths. Five bacteria - S. aureus, E. coli, S. 
pneumoniae, K. pneumoniae, and P. aeruginosa, were responsible for more than half of 
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all cases. The bacteria pathogens were the second leading cause of death after ischemic 
heart failure. As mentioned previously, the CNVs can play a role in antibiotic resistance, 
bacteria adaptation, and specialization. The issue of bacteria drug resistance is present 
and emerging. Thus, there is a serious need to develop tools aimed at the detection of 
bacterial CNVs. A l l these aspects lead to the development of a new tool which was called 
CNproScan, derived from the words Copy Number prokaryotic Scanning. 

The second tool is a pipeline for the alignment and detection of CNVs and S Vs, named 
ProcaryaSV. The reasons to create the ProcaryaSV pipeline were two. It was more 
convenient to create a reproducible workflow than running the various scripts every time 
some parameter changed. Secondly, during the literature research, I came across the topic 
of merging not only the detection approaches but also the standalone detection tools. This 
idea origins in the results of multiple reviews which show how little C N V and SV overlap 
across multiple detection tools 

The presented tools extend the scope of tools for a microbiologist to study bacterial 
organisms. While CNproScan detects deletions and duplications, the ProcaryaSV pipeline 
enables the detection of inversions and insertions by combining multiple detection tools. 

This summary of the doctoral thesis is a shortened version of the doctoral thesis. The 
theoretical chapters are limited to a minimum while keeping a large portion of the 
practical chapters. 
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1. S T R U C T U R A L VARIATIONS 

1.1 Classification 

The SVs can be classified into several categories. The most common one is classification 
regarding copy numbers into balanced and unbalanced events. Another criterion 
classifies SVs into single and complex SVs which consist of more underlying simple 
SVs. The SVs can be classified based on their size as fine-scale, intermediate-scale, or 
large-scale. SVs can also be categorized based on the process of creation as cut-and-
paste and copy-and-paste. Structural variation is observed as a junction between two 
breakpoints in the genome. When the sequencing read spans over a breakpoint junction, 
it leads to discordant features compared to the other read alignment features. This junction 
is defined by its orientation, space between breakpoints, etc. [1] 

The canonical types of SVs are deletions, insertions, duplications, inversions, and 
translocations. The minimum length of such events is not exactly specified. The initial 
size threshold was 1 kbp, later decreased to 50 bp but nowadays the SVs are all variants 
that are not single nucleotide variants (SNV). A more accurate definition than by size 
could be by a mechanism of creation of that SV. Small indels are created by replication 
slippage, while larger CNVs are created by homology recombination [2], 

The inversions and translocations classify as a balanced type of SVs, whereas the rest 
as unbalanced SVs. The deletions and duplications are also called copy number 
variations (CNVs) especially when they include gene regions. [3] 

The basic illustration of various SV types is in Figure 1.1. The upper boxes represent 
the reference genome, while the lower boxes represent the sample genome situation. As 
you can realize, the definition of SV is tied to some reference situation. This reference is 
another genome, another sample of a different location or time, or a pool of samples 
merged. 
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Figure 1.1 - SV types, condition between referential and analyzed genome 

1.2 Structural Variations in Bacteria 

Although the first gene amplification was observed in the model organism Escherichia 
coli K-12 in 1963 [4], the later major effort regarding structural variants and copy number 
variants was focused on human genomes or generally eukaryotic organisms. However, 
that was an underestimation of the importance of prokaryotic genome rearrangements as 
was later discovered. Bacteria are an omnipresent and essential part of nature. There is an 
estimation of 5 x 10 3 0 bacteria present on the earth. Also, they belong to the most deadly 
pathogens and multiple issues related to bacterial pathogens emerged, namely growing 
antimicrobial resistance. [5] 

The sequencing of bacterial samples is done in two ways, by cultivating and 
sequencing bacterial isolates or by sequencing communities, e.g., microbiomes, by 
shotgun metagenomic sequencing, or by targeted amplicon sequencing. The focus of this 
thesis lies in the sequencing of bacterial isolates. [6] 

Prokaryotic genomes differ in multiple ways from eukaryotic ones. The genome is 
composed usually of a single double-stranded D N A formed into a circular shape. There 
can be additional independent circular genomes called plasmids carrying less important 
though beneficial genes. In some species, e.g. Shigella, the plasmids are responsible for 
virulence [7]. Because of the small size, the bacterial genome is dense. Genes lack introns 
and are almost next to each other without a significant gap. Some genes are organized in 
operons, adjacent genes belonging to the same pathway and expressed together. 

Most importantly, bacterial genomes are free of large repetitive regions, yet they 
contain some repetitive elements. These repetitions then serve as a substrate for genome 
rearrangements. They can also be incorporated through horizontal gene transfer (HGT). 
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It is important to mention that there is a negative relationship between genome stability 
and repetitive sequences. The bacterial genomes are limited to a finite number of genes 
they can harbor. They dispose of less-worthy genes to balance new gene gain from HGT. 
This bacterial continuous gene gain and loss makes them adaptable [8]. [9]—[11] 

Generally, rearrangements over 50 bp are considered SVs in Bacteria [6]. The role of 
SVs in the prokaryotic domain is different compared to eukaryotic genomes. Both 
evolutionary and phenotypic implications are extensively studied. The prokaryotic 
genomes are stable between subsequent generations (due to binary fission), but on the 
evolutionary timeline, they are plastic, shaped by HGT, genome rearrangements, 
prophages (bacteriophages), and mobile genetic elements (MGE). These can all 
participate in genome rearrangements [5], [12]. Furthermore, the mechanisms of SVs 
creation are similar to those described in Eukaryotic genomes [10]. 

The symmetrical design of the genome leads to biased symmetrical structural 
variations. Three forces were described as creating this bias. First, the distance of a gene 
from the replication origin (oriC) is a large force. More important genes were observed 
to be close to oriC. Second, there is a difference in replication between the leading and 
lagging strands. Third, the limitation to having symmetrically sized replichores (halves 
of a circular chromosome) leads to symmetrical inversions. Symmetrical inter-replichore 
inversions are the most commonly detected SV in bacteria. [10], [13]—[15] 

Structural variations in bacteria can change the distance of a gene from the 
replication origin (oriC) which can have an extensive impact [10]. The SVs and CNVs 
are part of pathogenesis evolution and antibiotic resistance [16]. 

2. D E T E C T I O N O F S T R U C T U R A L VARIANTS 

2.1 Using single approach 

The read-pair approach employs one of the biggest advantages of sequencing - paired-
end reads. This approach observes the position, distance, and orientation of read pairs 
in the alignment. The reads which differ from expectations are called 'discordant'. These 
discordant reads are mapped closer or further than expected, mapped in inverted 
orientation, mapped in the incorrect order, or mapped on different chromosomes. [17] 

Several signatures (features of mapped reads) are defined for classes of structural 
variations. The easiest signatures for detection are basic insertion and deletion. Pair of 
reads that span over isolated deletion are mapped in the correct orientation of forward-to-
reverse, but the insert size between reads is longer than the expected library insert size. 
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Sample genome 

Reference genome 

Duplication Deletion 

Figure 2.1- Read-pair signature for deletion and duplication 

The read-pair approach can distinguish between tandem and interspersed 
duplications. The signatures of reads from tandemly duplicated segments include lower 
insert size (as reads are mapping closer than expected) and reversed both orientation and 
order of the reads (upstream read location mapping to the reverse and downstream read 
location mapping to the forward, i.e. -/+). The interspersed duplication signatures include 
increased insert size and reads mapping to the opposing strands but with reversed order 
(+/-and -/+). [18] 

Another case of duplication is inverted duplication, which shares signatures with 
inversion. Contrary, direct duplication (unchanged orientation) shares a signature with 
deletion. These similarities make the detection challenge. The basic signature for 
duplication and deletion is in Figure 2.1- Read-pair signature for deletion and duplication. 
[18] 

The data distribution of the insert size is expected to be Gaussian [19], [20]. An 
interesting case represents sequencing with two different insert sizes libraries. This is 
designed to overcome the limitation of small insert sizes for detecting larger genome 
rearrangements. [21] 

The split-read approach takes full advantage of mapping properties to the reference 
genome. It enables single-base resolution. Firstly it was used in the project of human 
genome indels detection from Sanger sequencing [22]. The signatures are based on an 
incorrect alignment of mapped reads which is gapped or split. The approach to detect split 
reads is through soft clipping. The soft clip of the read represents a continuous mismatch 
at the 5' or 3' end of the read. The sources of soft clips can be sequencing errors, chimeric 
reads, reference errors but also structural variants. Another mechanism included in this 
approach is the anchor and orphan reads illustrated in Figure 2.2. This mechanism 
overlaps with the pair-read approach. [23] 
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Reference genome 

Orphan reads 
Figure 2.2 - Orphan and anchor reads 

Read sequenced over a deletion breakpoint will map with a split mapping signature, 
where both ends of reads (prefix and suffix) will map to different regions in reference. If 
its mate pair is uniquely mapped, the split read is masked as a so-called soft-clipped read. 
This signature is well used by long reads platforms but with short-read data, there can be 
too much false mapping of read halves. This can be mitigated by limiting the candidate 
reads or setting conditions. [24], [25] 

The decision of what is tagged as soft-clipped and what is tagged as an alignment 
mismatch depends on the mapping algorithm. The illustration of the soft clipping is in 
Figure 2.3. 

Breakpoint 
Reference 
CTACTGATGCGTAGGGAGATCCGGAATCTATTGGCCTATG 

GATGCGTAGGGAGATCCGGAGAATCTTAA \ 
CGTAGGGAGATCCGGAGAATCTTAATCTATG J 

ACTGATGCGTAGGGAGATCCGGA TCATTTGG\ 
Aligned reads AGGGAGATCCGGAGAAT J 

Soft-clipped 

Mismatches 

Figure 2.3 - Soft-clipping illustration 
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The read-depth approach evaluates the coverage, i.e. a number of reads that cover 
a certain position. The terms read-depth and coverage are often used interchangeably 
unless defined specifically. The distribution of coverage is assumed to be Poisson random 
distribution. In the presence of biases and sequencing errors, the observed coverage 
distribution differs from the expected Poisson and is wider [26]. The basic hypothesis is 
that duplicated regions will manifest significantly elevated coverage. Oppositely, the 
deleted regions will manifest zero or decreased coverage. Thus, only two signatures are 
created by the read-depth approach illustrated in Figure 2.4. The essential factor for 
successful detection is appropriate sequencing read-depth because the read-depth 
approach assumes that read depth is proportional to copy number. The average read 
counts in regions correlate very well with D N A copy numbers for Illumina and 
pyrosequencing platforms, while not for SOLID sequencing [27]. [28]-[30] 

Sample genome D e l e t i o n Duplication 

Sample reads 

Read-depth signal 

Reference genome 

Figure 2.4 - Read-depth signatures and read-depth signal 

Generally, the advent of read-depth was easier as the methods applied to C N V 
detection in array-CGH, e.g. circular binary segmentation, can be used with some 
modifications on NGS data [27]. However, they are differences: variance in probes is 
lowest for the normal state (equal copy numbers), and the variance increases for copy 
number changes. Contrarily, the lowest variance of read-depth is for the deletion state, 
and it further increases proportionally with increasing copy number [31]. 

Data processing steps are the following: data preparation (extracting read depth from 
a pre-filtered set of reads), data normalization (minimizing the influence of sequencing 
biases), reading read-depth in non-overlapping windows, detection of same copy-number 
regions (segmentation) and merging them, and estimating the copy-number. [27] 

The observed values of read depth can be converted into logarithm, log-ratio (for 
paired or pooled samples), or Z-scores depending on the algorithm [32], [33]. The CNVs 
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can be detected at the visible read-depth level, implicating statistical testing for significant 
changes from the global average or neighboring regions. Or it can be detected at the read-
depth distribution level, observing the significant deviations from the expected 
parameters of the distribution. [32] 

The results of the read-depth approach are influenced by many external factors. 
Several biases affecting read depth exist, e.g., PCR amplification bias, GC bias, 
mappability bias, repetitive segments, and artifacts created through multi-mapping reads. 
Coping with GC and mappability biases is an essential step of the read-depth approach. 
Multi-mapping reads represent another ambiguity. This phenomenon emerges when a 
read can be mapped into multiple positions at the same score (the same uniqueness). 

The de-novo assembly approach requires genome assembly. If read length and the 
amount would be sufficient for a de-novo assembly of the genome, it should be 
theoretically possible to detect all structural variants including copy numbers, content, 
and their structure. Such detection would not be based on inference from read signatures 
but would be directly visible in comparison to the reference, i.e. in self-dot-plot. However, 
whole-genome sequencing is still costly to perform at parameters that would enable de-
novo assembly. Assembly approaches include a whole-genome de-novo assembly and 
also a local re-assembly to produce contigs which are then compared to the reference 
genome. The latter is often used in combination with the split-read approach or with the 
orphaned reads. Generally, the de-novo assembly is limited by required coverage and 
sequencing costs. The required coverage is about 50x compared to the sufficient 15x 
coverage required for mapping-based methods. [17] 

2.2 Limitations of using a single approach 

It is necessary to mention that NGS methods have difficulties to detect SVS in repetitive 
regions, thus the detection of microsatellites, transposable elements, heterochromatin, and 
segmental duplications is challenging. This limitation is not possible to overcome with 
algorithm design, but rather a combination of other sequencing platforms overcomes this. 
[34] 

Each detection method itself has limitations. Split-read is the most precise in exact 
boundaries of SV, but on the other hand, is very limited to the length of the reads and 
short reads affect accuracy and precisions. Also, it works only in unique regions of the 
genome. [35] 

Read-pair can detect all types of SVs but is not precise in establishing boundaries. 
The accuracy of read-pair methods depends on the insert size and its distribution. Small 
SVs can be skipped in detection with large insert libraries. Similarly to split-read 
methods, the power is limited in nonunique regions of the genome. [35] 
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Assembly methods have poor detection power against duplications or repeats and 
require high coverage. Read-method works well on duplications and can detect the copy 
numbers as the only method. However, the boundaries resolution is poor. [35] 

The limitations of using a single approach are overcome by implementing multiple 
approaches or even tools together. 

Hybrid algorithms were the first to overcome the limitations of distinctive 
approaches. That is achieved by a combination of more approaches and overlapping their 
outputs or by increasing the support of SV events by multiple signatures. The breakpoint 
resolution can be increased by a hybrid approach, which leads to more precise detection 
of SV boundaries. This is enabled by integrating the split-read approach. The copy 
number can be calculated by integrating the read-depth approach. The spectrum of 
detected SVs can also be extended by integrating more approaches. The read-depth 
method can only detect deletions and duplications and by integrating them with other 
approaches we can detect a wider spectrum of SV or subtype them. The performance 
metrics such as sensitivity and specificity can also be improved by a hybrid approach. 
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3. Objectives o f the thesis 

The purpose of the thesis is to bring novel multidisciplinary approaches to bacterial 
genome analysis of copy number variations. CNVs play an important role in bacteria in 
processes of antibiotic resistance, bacteria adaptation, evolution, and specialization. The 
issue of bacteria drug resistance is present and emerging. Thus, there is a serious need to 
develop tools aimed at the detection of bacterial CNVs. 

Large structural variations are rare in bacteria because of their small and densely 
packed genomes. Thus, the detection of small CNVs is more important. Special features 
of bacterial genomes should be taken into consideration and could theoretically improve 
performance. Multiple bacterial genomes are not annotated. Therefore, the developed 
method should rely merely on sequencing reads, and a reference. 

Developing a standalone method for C N V detection in bacteria is the first objective. 
Incorporating this method into a pipeline is the second objective. The sub-objectives were 
set as follows: 

1. Develop a novel method for C N V detection (CNproScan) 

1.1 Using signal-based computational methods 

1.2 Not requiring apriori known genome annotation 

1.3 Targeting bacterial genomes 

1.4 Statistically evaluated and tested 

2. Develop a C N V detection pipeline (ProcaryaSV) 

2.1 Targeting bacterial genomes 

2.2 Implementing an efficient merging algorithm 

2.3 Statistically evaluated and tested 

2.4 Enabling the reproducibility and scalability 
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4. C N P R O S C A N 

4.1 The Algorithm Design 

The CNproScan uses the 'sandwich' design with partial blocks stacked vertically, as 
illustrated in Figure 4.1. The program consists of several main blocks. The first one is 
coverage normalization, the second is outliers detection to determine CNVs, the third is 
the application of the read-pair approach and signature rules to narrow the C N V subtype 
and the last is formatting the output. Each block is here described more from the 
implementation aspect. [36] 

4.1.1 Data preparation 
The preparation of sequencing reads before the CNproScan's detection of CNVs is carried 
out by the usual procedure. After trimming and quality check, the reads are mapped by 
the aligner. The B W A - M E M was used in the testing [37]. The samtools package is used 
to handle the rest of the work [38]. The alignment is sorted and written as a binary B A M 
file. The coverage signal is obtained by the command "samtools depth" with parameter -
a which includes zero coverage positions. 

For the optional mappability correction, the required genome mappability file is 
obtained from GenMap [39]. The settings - K 30 -E 2, meaning the size of unique k-mers 
and allowed mismatches, was generally used for all analysis. 

If the user is interested in the correction of the origin of replication bias, then, the 
location or multiple locations of oriC is necessary. This information can be searched for 
in the DoriC database [40]. The record from DoriC must match with the corresponding 
genome reference used for alignment. 
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Figure 4.1 - CNproScan workflow 

4.1.2 Main function 
The CNproScan was developed initially as a set of M A T L A B functions and during the 
peer review, it was rewritten into R. Both versions share the same methodology. Both 
versions are hosted in GitHub repositories (Table 4.1). A l l normalizations are optional, 
but the GC and the mappability normalization are recommended as commonly used. 

Table 4.1 - CNproScan GitHub repositories 

R version https: //github .com/robinj ugas/CNpro Scan 
MATLAB version https: //github .com/robinj ugas/CNpro ScanMatlab 
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4.1.3 Biases Normalization 
The GC normalization is done with the use of the modified Yoon approach [31]. The 
normalization requires to use of a sliding window. Benjamini et Speed notes that a 
window size of at least fragment length should be used [41]. Yoon ties the GC 
normalization and read-depth approach as it is common with the use of a lOObp 
window[31]. 

The mappability normalization is based on the Magi approach [27]. The approach 
is very similar to GC normalization. We use mappability scores calculated from an 
external tool named GenMap [39]. GenMap focus on the problem of finding the 
occurrence of a substring with length k in the sequence while allowing some errors e, 
when the sequence here is the reference genome sequence. It returns a mappability score, 
defined as the inverse of the occurrence frequency, of 1 for a unique substring and a 
mappability score close to 0 for repetitive substrings. GenMap was chosen because it is 
accessible as a conda package, based on the paper it outperforms previously published 
competing packages, is exact and non-heuristic, and enables the choice of a number of 
errors. The k=30 and e=2 were used by authors to perform analysis on Klebsiella pn. 
Thus, we take over the same settings. [39], [42] 

The replication origin bias is normalized by our approach, which is based on the 
previously presented principles for GC and mappability normalization. The genome is 
binned into lOObp windows similarly to the GC normalization. Whether the bias is 
corrected depends on the user and the result of the Spearman correlation test p-value. 

Firstly, it is required to remove any outliers. It is because the distance to oriC is 
symmetrical and deletion or duplication on one side of the symmetry could completely 
deflect the normalization of the regions with the same distance to the replication origin. 
The outliers are removed using the 1.5 times IQR (interquartile range) rule on both tails. 
Then, the distance to oriC is calculated in windows of 100 bp. The circular genome 
correction is applied so that the minimum value of all possible constellations is chosen. 

The important parameter is the level of rounding. This parameter impacts how many 
windows are taken together in estimating the median read depth of a certain distance to 
oriC. Rounding to thousands means that approximately ten lOObp windows on each side 
are taken together, rounding to tens of thousand means a hundred windows are taken 
together. The table of values of oriC distances and median read depths is constructed. 
Importantly, the Spearman correlation value is computed between the oriC distances and 
estimated read depth medians. The p-value is calculated for the alternative hypothesis that 
Spearman's correlation coefficient Rho (-1,1) is different from zero. The normalization 
is further applied i f the p-value of this test is less than the alpha value of 0.05. The p-
values are computed via the asymptotic approximation, which means that they depended 
on the number of oriC distance values and will likely be less than the alpha level for the 
lower rounding level. However, it was observed that higher rounding is more robust, and 
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rounding to tens of thousand is applied. The replication origin bias is then normalized by 
the formula 

RCT = RCT • — , /4 Y) 
miORICdist \^LJ 

where m stands for the median value of read-depth of all windows and tTii0RICdist: for 
the median value of the windows with the same oriC distance. 

The information about the genomic position of replication origin is accessible in the 
DoriC database [40]. If the oriC normalization is intended, it is useful to check if there is 
a record in DoriC for the selected genome reference or choose the different one. 

4.1.4 Outliers as CNV candidates 
The normalized coverage signal is sent into the outliers analysis. For this task, the 
CNproScan employs the GESD outlier detection algorithm described before. As this 
algorithm requires the upper bound of the suspected outliers. To serve a robust estimation 
of this upper bound, the modified Z-score outliers detection is used and values with a 
modified Z-score above 3.5 are labeled as candidate outliers. This usually leaves a large 
number of candidates, meaning several thousand and e.g., more than ten thousand 
candidates for real Klebsiella pneumoniae samples. 

To reduce the performance drawback of testing thousands of values in a for-cycle, the 
GESD testing is done in a parallel way. This was possible because the task is possible to 
parallelize. This is done in the R version with the use of R packages parallel, doParallel, 
and foreach. Simply done, the whole genome is divided into n sections which are tested 
separately and parallel. The argument cores in R main function serve as the definition of 
the number n. After each partial segment is done, the results, which are genomic positions 
of significantly large coverage values, are merged into a single vector. 

The results are post-processed. The vector of outliers is sorted and the gaps between 
outliers are detected using the lagged differences function. Then, depending on the 
parameter peakDistanceThreshold, which is set up to 20bp, the adjacent outliers closer 
than 20bp are merged into consecutive segments. These serve as a basis for C N V events. 

In Figure 4.2 the results of outliers detection are displayed for the artificial genome. 
The details of the creation of the artificial genome dataset are described later in the chapter 
Benchmarking on simulated data. The zero coverage values are removed first (in red). 
The candidate outliers from the modified Z-score method are in blue and multiple of them 
are overlapped with blue as they were confirmed by the GESD outliers test. 
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4.1.5 Extending CNV boundaries 
Because of the nature of outliers detection, only the most significant parts of CNVs are 
uncovered, i.e. for duplications, only the peaks are labeled yet. To extend the borders of 
the C N V down to the baseline, the slope of a line is used. The line is given as a coverage 
region. The slope is calculated as m = y 2 V l and the distance between x-axis values x2 — 

x2—x1 

xx is defined by a specified step (11 bp, optional). The slope is calculated gradually on 
both ends of the peak until there is a change in the numerical sign for the value of slope 
m. If the change of slope is detected x-times (x defined as 5, optional), then it is considered 
as the C N V s border. The updated version adds the condition of reaching the baseline 
defined as the average of the coverage. A detail of one C N V with extended boundaries is 
plotted in Figure 4.3. Notice how the whole depth of C N V is detected compared to the 
previous Figure 4.2 (third peak from the end). 
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Figure 4.3 - Detail on extending the CNV boundaries 

4.1.6 Read-pair information 
Since CNproScan detects solely CNVs, I choose only a few signatures to use from the 
read-pair approach. The features of deletion, tandem duplication, and interspersed 
duplication are targeted. The signatures are as defined in Soylev's work [18]. 

Contrary to other approaches which merge the two pieces of information, the read-
pair approach helps to validate and specify the C N V events detected from the read-depth 
approach. Both approaches are not equal, rather the read-pair information is subjugated 
to the main read-depth information. This is because as mentioned earlier, certain 
signatures are not exclusive, and specifically direct duplication signature is the same as a 
deletion signature. Because of this reality, the read-pair approach is subjugated to the 
read-depth approach which can distinguish between duplication and deletion very clearly. 

I search for outliers in the signatures because the distribution of fragment sizes in a 
library is Gaussian and the detected signature is usually largely distant from the normal 
state. The outliers are defined on a simple rule of 1.5IQR, which means that insert sizes 
larger than the sum of the upper Q3 quartile and 1.5 times the interquartile range are 
labeled as an outlier. 

Furthermore, the features are searched only in the regions of already detected CNVs 
and not genome-wide. This reduces the computational time. The genomic regions are 
scanned inside the detected C N V boundaries extended by the insert size on both ends. 
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The decision of which SV subtype will be chosen is done by selecting the most prevalent 
signature inside the region. 

The detection of discordant reads uses the fields defined in the S A M / B A M format 
[38], [43], mainly T L E N (Template length), and bitwise F L A G , which contains 
information about the read's relative orientation, etc. In the R version, packages 
Rsamtools, GenomicRanges, and IRanges were used to access the B A M file structure. In 
the Matlab version, the bamread function from the Bioinformatics Toolbox was used. 

As already mentioned, the B A M is scanned only in the regions of detected CNVs. 
The boundaries are defined as the start and end of C N V s coordinates plus/minus the 
insert size. The insert size is defined as the median of absolute values of whole B A M 
reads. Similarly, the interquartile range, the first and third quartiles are defined based on 
the whole B A M file. The "isize" in Rsamtools (TLEN in B A M definition) is used for 
these estimations. For median read length, the "qwidth" is used. 

The circular genome correction is used as described, and each C N V region defined in 
the read-depth approach part is scanned for reads defined by specified signature rules. 

The theoretical signature rules were extended because of some observations from the 
testing and are all listed in Table 4.2. 

Table 4.2 - Overview of applicated signature rules 

Type Subtype Strand orientation Insert Size 
Deletion +/-

(-/+) 
Higher 

Tandem Duplication Direct +/-
-/+ 

Lower 

Tandem Duplication Indirect +/+ 
-/-

Lower 

Interspersed 
Duplication 

Direct +/-
-/+ 

Higher 

Interspersed 
Duplication 

Indirect +/+ 
-/-

Higher 

4.2 Benchmarking 

The performance of CNproScan was evaluated on the dataset which had been previously 
used in the testing of the CNOGpro package [44]. This dataset is based on the S. aureus 
genome sequence into which were imputed 30 artificial CNVs with defined genomic 
coordinates, lengths, and copy-number. There are 12 deletions and 18 duplications of 
various lengths, mainly focused on the small events. 

The dataset has two parts - one with imputed CNVs and the second one with no CNVs 
to evaluate the metric of true negatives. These two datasets were constructed with 
different coverage values - 10x, 20x, 100x, and 200x. The sequencing reads were 
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generated with the ART reads simulator [45] and then processed by the described 
pipeline. 

The performance of CNproScan was compared directly with L U M P Y [46], CNVnator 
[47], Pindel [48], andDELLY [21]. And indirectly with CNOGpro [44], cnv-seq[49], and 
cn.MOPS [50], where I adopted the previously published results. 

The main focus was on 100x coverage, then the only tools competing well were 
evaluated for other coverages 10x, 20x, and 200x. The results are evaluated by the 
metrics of the confusion matrix. The Accuracy, Sensitivity /Recall, Specificity, Precision, 
and F l score are all used across the results chapters. Lastly, the results and discussion are 
taken from CNproScan's published paper [36], 

4.2.1 Results for coverage 100* 
The most emphasis was put on the 100x coverage. A l l 8 tools are benchmarked for this 
value of coverage. It is high enough to provide a sufficient signal-to-noise ratio with easily 
detectable CNVs. The complete results with the number of correct and false observations, 
and performance metrics are in Table 4.3. 

Focusing on the default 100x coverage (in Table 4.3), the overall accuracy achieved 
was 93% and was the highest among tools. CNproScan detected 26 TP. Four F N CNVs 
were short regions under 26 bp in length, consisting of 2 deletions and 2 regions with a 
copy number of two. There was a single C N V event detected outside the original 
coordinates, which we consider an F N case. 

CNproScan and Pindel were both able to detect shorter C N V events than other 
methods. Pindel has higher sensitivity as it was able to detect 27 out of 30 CNVs. 
However, Pindel's high sensitivity has the drawback of a high false positive rate. Pindel 
detected 371 CNVs, mainly deletions, in the empty reference dataset. Furthermore, there 
were another 418 FPs in the dataset with CNVs. A high false discovery rate in C N V 
detection is a common problem stated in the literature [51], however, only Pindel suffered 
from this. 

22 



Table 4.3 - Results for coverage 100* 
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TP 26 22 14 7 13 21 22 27 
FP 0 0 0 0 2 0 0 789 
FN 4 8 16 23 17 9 8 J 
TN 30 30 30 30 30 30 30 30 
Accuracy 93.3 86.7 73.3 61.7 69.4 85.0 86.7 6.7 
Sensitivity 86.7 73.3 46.7 23.3 43.3 70.0 73.3 90.0 
Precision 100.0 100.0 100.0 100.0 86.7 100.0 100.0 3.3 
Specificity 100.0 100.0 100.0 100.0 93.8 100.0 100.0 3.7 
Fl score 92.9 84.6 63.6 37.8 57.8 82.4 84.6 6.4 

Other tools detected fewer CNVs. Sorted from the lowest number of TPs, there was 
cn.MOPS, L U M P Y , cnv-seq, CNVnator, and equal CNOGpro and D E L L Y 2 . Since they 
all detected zero or a very low number of FPs, other metrics are influenced by the number 
of TP and FN. Thus, precision and specificity for all tools except Pindel were high. 

CNproScan achieved the highest F l score. The close competitors in this metric were 
CNOGpro, CNVnator, and D E L L Y 2 . 

Although D E L L Y 2 and L U M P Y are both hybrid triple method combinations, they 
differ significantly in the detection of CNVs. D E L L Y 2 performed better. 

The detection of short CNVs with a low copy number is the most challenging task. 
For 100x coverage, we can conclude that CNproScan detected duplicated CNVs longer 
than 37 bp. Two duplicated CNVs of 4bp and 23bp lengths were not detected. The shortest 
detected deletion was 4bp and then two 17bp deletions. 

The performance of the other tools varied. Pindel (90%) followed by CNproScan 
(86.67%) achieved the highest sensitivity. The third best performing in sensitivity were 
CNOGpro (73.33), D E L L Y (73.33), and L U M P Y (70.00). CNproScan achieved the 
highest accuracy (93.33%). CNOGpro (86.67%.), L U M P Y (85.00) and D E L L Y 
(86.67%.) were close in accuracy. 

4.2.2 Results for coverage 10, 20, 200x 
In the evaluation of other coverage's effect on the performance, only the best performers 
from the previous chapter were selected to reduce the complexity of the results. Selected 
were: CNproScan, CNOGpro, CNVnator, L U M P Y , D E L L Y , and PINDEL. 

I benchmarked CNproScan and others at four different coverage values: 10x, 20x, 
100x, and 200x. The complete performance metrics are in Table 4.4. The highest values 
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per row are highlighted in bold font type. The CNOGpro was aborted at 200x coverage 
because of an under-dispersion error, so the results are missing for this coverage. 

For 10x coverage, the CNproScan's sensitivity was 66.67%, and 20 out of 30 CNVs 
were detected. Pindel had the highest TP count of 26, while also having the highest FP 
rate. The second highest TP count has D E L L Y and CNproScan. L U M P Y has 17 TPs. 
D E L L Y and L U M P Y had both zero FP. Contrary, there were 19 FP and an additional 20 
FP in an empty dataset detected by CNproScan. The combined metric score was the best 
for L U M P Y and D E L L Y , then CNVnator followed by CNproScan. The hybrid methods 
L U M P Y and D E L L Y performed very well in the shallow coverage. 

For 20x coverage, CNproScan achieved the highest accuracy (86%) and detected 22 
TP. CNOGpro also detected 22 TP, L U M P Y 21 TP, D E L L Y 20, and Pindel 27 TP, thus 
Pindel had the highest sensitivity. There was no FP detected with CNproScan. There is a 
visible step in detection quality from increasing coverage from 10x to 20x. The combined 
metric score was the best for CNproScan followed by L U M P Y and D E L L Y . 

lOOx coverage was discussed in the previous chapter, the highest combined score was 
achieved by CNproScan followed by CNOGpro, L U M P Y , and D E L L Y . Only Pindel 
detected one more TP than CNproScan but suffered from a high false positive rate across 
the complete artificial dataset. 

Doubling the coverage to 200x, CNproScan detected 28 TP and 1 FP. The second 
closest was Pindel with 27 TP. The accuracy and sensitivity were the highest for 
CNproScan as the overall combined score. 

Beginning with the 20x coverage, the CNproScan had the highest F l score and 
Accuracy and kept it to 200 x. 

There is also Figure 4.4, where precision, recall, and F l scores are plotted. It is visible 
how since reaching coverage 20x, the performance metrics for CNproScan are going up 
to the highest numbers. 

100,00 

90,00 

80,00 

70,00 

60,00 

50,00 

40,00 

30,00 

20,00 

10,00 

0,00 ll 
10x 1" lOOx 200x 

i C N p r o S c a n C N O G p r o C N V n a t o r L U M P Y • D E L L Y • P I N D E L 

Figure 4.4 - Sensitivity, Precision and F l scores of the simulated dataset 
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Table 4.4 - Results of all coverage values 

lOx 
CNproScan CNOGpro CNVnator LUMPY DELLY PINDEL 

Accuracy 50.5 38.7 62.3 78.3 83.3 40.0 
Sensitivity 66.7 43.3 26.7 56.7 66.7 86.7 
Precision 33.9 20.3 88.9 100.0 100.0 24.5 
Specificity 43.5 37.0 96.8 100.0 100.0 27.3 
Fl score 44.9 27.7 41.0 72.3 80.0 38.2 

20x 
CNproScan CNOGpro CNVnator LUMPY DELLY PINDEL 

Accuracy 86.7 68.4 68.3 85.0 83.3 25.8 
Sensitivity ni i 

IÓ.Ó 
ni i 
IÓ.Ó 

36.7 70.0 66.7 90.0 
Precision 100.0 57.9 100.0 100.0 100.0 14.4 
Specificity 100.0 65.2 100.0 100.0 100.0 15.7 
Fl score 84.6 64.7 53.7 82.4 80.0 24.8 

lOOx 
CNproScan CNOGpro CNVnator LUMPY DELLY PINDEL 

Accuracy 93.3 86.7 69.4 85.0 86.7 6.7 
Sensitivity 86.7 ni i 

IÓ.Ó 
43.3 70.0 ni i 

IÓ.Ó 
90.0 

Precision 100.0 100.0 86.7 100.0 100.0 3.3 
Specificity 100.0 100.0 93.8 100.0 100.0 3.7 
Fl score 92.9 84.6 57.8 82.4 84.6 6.4 

200x 
CNproScan CNOGpro CNVnator LUMPY DELLY PINDEL 

Accuracy 95.1 - 70.0 85.0 85.0 2.7 
Sensitivity 93.3 - 46.7 70.0 70.0 90.0 
Precision 96.6 - 87.5 100.0 100.0 1.3 
Specificity 96.8 - 93.3 100.0 100.0 1.4 
Fl score 94.9 - 60.9 82.4 82.4 2.5 

4.2.3 CNV length analysis 
Next, I analyzed how tools dealt with various C N V lengths. The histogram depicting the 
tools' ability to detect various C N V lengths for 100x coverage is in Figure 4.5. The y-
axis shows the count of CNVs detected within four defined bin sizes. The numbers of 
CNVs in each bin are shown in the brackets in the figure legend. Only CNproScan and 
Pindel detected the shortest CNVs (blue color). The C N V lengths are categorized into 4 
bins: 0-25bp, 26-100bp, 101-1000bp, and 1001-4000bp. 

The majority of tools coped perfectly with the longest CNVs (1001-4000bp). Only 
Pindel and cn.MOPS did not detect a 1302bp duplicated CNV. In the 101-1000bp bin, 
several tools struggled to detect all CNVs - namely cnv-seq, and cn.MOPS, CNVnator. 

On the contrary, only 5 tools detected some CNVs from bin 26-100bp. CNproScan (3 
out of 4) and Pindel (4 out of 4) detected the most CNVs. Others were CNOGpro, 
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L U M P Y , and D E L L Y . In the smallest CNVs under 25bp, only CNproScan (3 out of 6) 
and PINDEL (4 out of 6) detected any CNVs. 

3 0 

CNproScan CNOGpro Cnv-seq c i l M O P S CNVnator L U M P Y P I N D E L D E L L Y 

size range • 0 - 2 5 [ 6 ] « 2 6 - 1 0 0 [ 4 ] • 1 0 1 - 1 0 0 0 [ 1 7 ] 1 0 0 1 - 4 0 0 0 [ 3 ] 

Figure 4.5 - CNV Size Histogram. 
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5. PROCARYASV 

Such as the hybrid method removes the limits of a single approach, the integration of 
multiple detection tools limits their weakness and improves performance. This issue is 
tied to the topic of merging structural variants. 

The topic of merging variant callers is more advanced in the field of SNP or SNV 
variant calling, where various tools are already being successfully merged based on their 
performance, e.g., using machine learning methods [52], 

In the fields of SVs or CNVs, the problem of overlaps arises. The parameters of the 
minimal overlap and the type of overlap (equal, within, etc.) can be both user-defined or 
hard-coded. However, these parameters are usually defined somehow arbitrarily. 

What reliable results are is the question to ask. Generally, the union or the intersection 
of results is the most common approach. It depends on the preference for higher 
sensitivity or specificity. Most effortlessly, the reliable results are those given by the most 
tools. Then, the threshold of how many tools are the most has to be set. On the other hand, 
rare events could be omitted. Alternatively, the union approach likely produces a high 
rate of false positives. A weighted approach can be applied i f performance metrics are 
known. But for accurate performance metrics, you need a valid ground truth set, ideally 
validated by sequencing methods. [51] 

5.1 Pipeline Design 

I decided to create a C N V / S V calling pipeline based on the Snakemake framework [53], 
It is a Python-based workflow management system for reproducible and scalable analysis. 
It consists of so-called Snakemake rules which define the inputs and outputs of a given 
rule. The rule serves to call a certain function, tool, package, etc. Parameters that are 
necessary for the called tool can be specified too inside the rule or can be adopted from 
the external configuration file. Scalability parameters can be defined too, such as the 
number of threads or memory requirements. The possibilities are multiple. 

I called the pipeline ProcaryaSV denoting the focus on prokaryotic genomes. It is 
based on commonly used C N V and SV detection tools and state-of-the-art processes for 
manipulating sequencing data. A l l the necessary specifical inputs for each SV/CNV caller 
are processed as described by the caller's manuals. In some cases, I used or further modify 
the Snakemake Wrappers repository where the finished easy-to-use rules and wrappers 
(small Python scripts calling the tools) are available. 

The overall simplified workflow is in Figure 5.1. Only the basic tools are pictured, 
without raw reads quality check or the optional trimming parts. 
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Figure 5.1- ProcaryaSV workflow 

Two C N V callers and three SV callers were used. One of the requirements was that 
the tools has to be placed in some conda repository to be easily installed by Snakemake. 
The only exception is the CNproScan which is available only in GitHub so far. Also, tools 
mustn't require too obscure inputs, e.g. from some deprecated packages. Most 
importantly, tools have to be suitable for haploid prokaryotic genomes. Thus, the 
CNproScan, CNVnator, L U M P Y , D E L L Y 2 , and Pindel were selected. 

The ProcaryaSV is available from the GitHub repository in Table 5.1. 

Table 5.1- ProcaryaSV GitHub repository 

Repository Version 
https: //github .com/robinj ugas/ProcaryaS V 1.0 

5.2 Merging algorithm 

The two main inputs to merging SVs are merging BED files, using the bedtools [54], or 
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merging the VCF files, using, for example, SURVIVOR (StructURal Variant majority 
VOte) [55] or SVDB [56]. 

I tried both SURVIVOR and SVDB to merge the resulting V C F files. The SVDB 
failed completely resulting in non-readable files because it writes the genomic sequence 
of the event into the file. The SURVIVOR did better compared to SVDB and thus was 
kept in the pipeline for user comparison. 

The merging algorithm of ProcaryaSV parses the VCF outputs for all callers and 
respects their specifics. It separates four categories of SV calls: deletions, duplications, 
inversions, and insertions, and merges them separately. Insertions and inversions are 
called only by Pindel and Delly2, while deletions and duplications are called by all of 
them. 

Here, I present my own approach to merging SVs based on cumulating binary vectors 
and then thresholding them. The user can define the value of the threshold by his or her 
preference. The input is VCF files from callers. The results are formatted as a TSV (tab-
separated values) file, which can be imported into any spreadsheet application. The 
parameters of minimum and maximum SV length are to be set. A l l SVs not fitting into 
these are deleted. 

For every type of SV detected (DEL, DUP, INV, INS) the simple binary vector is 
created for each caller separately and then these are summed up (see illustration in Figure 
5.2). This means that a region called by two callers will have a value of two spanning the 
region where these callers overlap. 

4 
Callers 3 
support 2 

signal 
0 

Coordinates 

Figure 5.2 - Caller's support signal of two structural variations. First one with a support of two 
callers, second one with a support of four callers. The steps are created by 

reported different start and stop coordinates. 

In the first iteration, all levels of callers support are outputted except those under the 
value of the user-defined caller's threshold. The regions called the most times are 
outputted first and then it proceeds to a lower number of callers. This also means that 
certain regions can be reported multiple times, once as a shorter region of higher support, 
and later as a longer region of lower support. The number of callers that called the regions 
is reported. 

In the second iteration, the events are searched for overlaps with the use of the Iranges 
package function findOverlaps. The important parameter here is the maxgap, meaning 
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the maximum allowed distance between the start and end coordinates. This step is to 
collapse overlapping events into one. The one event is reported with corresponding values 
and coordinates with maximum support are saved. The diagram of merging is in Figure 
5.3. The threshold represents the maxgap parameter and is applied to all firstly reported 
events. If the condition was not met, #3 would be reported separately. 

Callers support 

AD1 

0 

AD2 

1 
Genome Coordinates 

Reported 
CNVs 

Reported 
CNVs 

ID Start 
#1 
#2 
#3 • 

Stop Support 
• 5 

3 
• 1 

if AD1<threshold &AD2<threshold 

min max maxSup maxSup 
ID Start Stop Support Support Start Stop 

#1 • • 1 5 • • 

Figure 5.3 - SV merging diagram. The colored objects refer to detected SV's coordinates. 

After this, the reported CNVs are searched for overlaps again, to report potential cases 
where multiple shorter CNVs overlap a single long CNV. This information is stored in 
the output file. 

In the last iteration, all events are backtracked. The information about the number of 
underlying events and percentual coverage by each caller is recorded and saved. A region 
can be supported by multiple callers, but they can contribute as multiple separately 
reported events merged because of the merging step. 

The tabular separated file (.tsv) is the output together with informative graphs. These 
are the Venn diagram of callers and pie plot of different SV types' abundances. 

5.3 Benchmarking 

The merging algorithm of ProcaryaSV was benchmarked on the previous artificial 
dataset. The various values of minimum callers support (MinCallers) were used to decide 
the optimal value. The threshold is inclusive, the operator '>=' is used. 
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Table 5.2- ProcaryaSV merging performance metrics 

lOx 
MinCallers 
threshold 1 2 3 4 5 
Accuracy 36.3 90.0 85.0 73.3 56.7 
Sensitivity 90.0 80.0 70.0 46.7 13.3 
Precision 21.8 100.0 100.0 100.0 100.0 
Specificity 23.6 100.0 100.0 100.0 100.0 
Fl score 35.1 88.9 82.4 63.6 23.5 

20x 
MinCallers 
threshold 1 2 3 4 5 
Accuracy 37.0 90.0 83.3 83.3 58.3 
Sensitivity 90.0 80.0 66.7 66.7 16.7 
Precision 22.3 100.0 100.0 100.0 100.0 
Specificity 24.2 100.0 100.0 100.0 100.0 
Fl score 35.8 88.9 80.0 80.0 28.6 

lOOx 
MinCallers 
threshold 1 2 3 4 5 
Accuracy 13.1 87.3 85.0 85.0 61.7 
Sensitivity 90.0 83.3 70.0 70.0 23.3 
Precision 6.7 89.3 100.0 100.0 100.0 
Specificity 7.4 90.9 100.0 100.0 100.0 
Fl score 12.5 86.2 82.4 82.4 37.8 

200x 
MinCallers 
threshold 1 2 3 4 5 
Accuracy 7.0 88.9 85.0 85.0 61.7 
Sensitivity 93.3 86.7 70.0 70.0 23.3 
Precision 3.5 89.7 100.0 100.0 100.0 
Specificity 3.8 90.9 100.0 100.0 100.0 
Fl score 6.8 88.1 82.4 82.4 37.8 

A l l performance metrics are in Table 5.2, the maximum F l scores are in bold. The 
maximum F l scores are all achieved when the MinCallers threshold is set to 2. The 
precision-recall curves for all coverage levels are in Figure 5.4. The precision remains the 
same from the MinCallers threshold set to 2 (higher coverage) or 3 (lower coverage), 
while a threshold lower than 2 brings a lot of false positives. Recall (sensitivity) decreases 
to very low numbers, omitting many true positives. Following previous results, setting 
the minimal callers threshold to 2 is the optimal setting to balance precision and recall. 
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Figure 5.4- Precision-recall curve for MinCallers threshold parameter. Digits near lines denote 
the parameter value 

For comparison, in Table 5.3 there is an evaluation of the SURVIVOR merging 
algorithm. The numbers from the previous table are added for easier comparison. The 
SURVIVOR merge command settings were set to minimal callers 2, maximum allowed 
distance 1000, and minimal considered SV length 1. Looking at the results, they are 
almost the same looking at the same settings of minimal callers 2 for both algorithms. 
The ProcaryaSV had higher F l scores for 20x and higher coverages by a few points. 

This is expected based on the description of the SURVIVOR merging method. In 
SURVIVOR, two SVs are defined as overlapping i f their start and stop coordinates are 
within 1 kb and of the same SV class. 

Table 5.3 - SURVIVOR and ProcaryaSV performance metrics for minCallers of 2 
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CONCLUSION 

The main topic of the thesis is the detection of copy number variations specifically in the 
prokaryotic genomes. While there is a tremendous and still increasing number of papers 
focused on the topic of SVs and CNVs, the resources related to bacteria are much less 
frequent. The work presented in the thesis aims to partially fill this gap. 

In two practical chapters, I described the CNproScan algorithm and pipeline 
implementing it called ProcaryaS V. Both tools might be useful for microbiology research. 

The CNproScan was published two years ago and was minorly updated a few times, 
thus I presented the original results with the updated ones. The methodology is based on 
read-depth navigated C N V detection combined with read-pair-based categorization. The 
read-pair approach is based on recent knowledge and enables the categorization of CNVs 
into known duplication types. The CNproScan does not consist only of detection methods. 
It handles the GC and mappability biases and bacteria-only related replication origin bias. 

The CNproScan was tested on the artificial dataset of various coverages (10x, 20x, 
lOOx, 200x) and compared with other seven C N V detection tools. CNproScan had the 
highest accuracy and F l score for 20x, 100x, and 200x coverage. The accuracy for 100x 
was 93.3 % and the F l score was 84.6 %. That is about 10 % higher than the closest 
competition. Also, it proved to be useful for detecting short CNVs under 25bp. The 
reported C N V boundaries are accurately corresponding to the specified boundaries in the 
majority of test cases. The accuracy of reporting a valid copy number is about 75 %. 

Integration of multiple detection tools has already been done in the past. Merging two 
methods can easily be done, but the scalability decreases with adding more tools. Thus, I 
used a signal representation of genome rearrangements and summed the signals of 
individual detection tools. The merging algorithm was tested on the previous artificial 
dataset and compared with the SURVIVOR merging algorithm. Generally, the two 
methods are comparable, yet for coverages starting at 20x, the ProcaryaSV's merging 
algorithm performed slightly better. Both accuracy and F l score are about 90 %. The 
parameter of minimal callers support, denoting how many callers have to detect an SV, 
was calculated from the precision-recall graph to be ideally 2 or higher. The ProcaryaSV 
pipeline employs five state-of-the-art detection tools and provides all necessary inputs 
and outputs for them. The pipeline enables reproducibility and is coded in the Snakemake. 

Regarding the limitations of the presented methods. The CNproScan's running time 
is higher than the competition. This was mitigated as much as possible by implementing 
parallelization. Furthermore, the algorithm is based on the read-depth approach and 
requires a certain level of coverage, which is 20x based on results. However, coverage 
higher than 15x is a common requirement for the detection of any genome 
rearrangements. Generally, higher coverage leads to higher accuracy. 

Nowadays, the topic of bacteria drug resistance is an urgent task. Genome 
rearrangements, including copy number variations, play a role in this issue. Other than 
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that, genome rearrangements participate in the evolution and specialization of bacteria. 
Next-generation sequencing is still widely used and brings the high throughput necessary 
for accurate C N V detection. A reliable tool that is directly designed to detect CNVs in 
bacterial genomes (like the CNproScan), unlike tools designed for eukaryotic genomes, 
is essential. In turn, the proposed ProcaryaSV pipeline will enable C N V and SV analysis 
with maximum support for clinically relevant results. 
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