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Abstrakt

Rod Ficaria zahrnuje bézné rozsifené, jarné€ kvetouci geofyty vyznacujici se vysokou
fenotypovou plasticitou a existenci n¢kolika ploidnich trovni (od 2x do 6x). Vysoka
morfologickd a geneticka variabilita je patrné do zna¢né miry zplisobena nasledkem
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Ficaria tak neni stale uspokojivé vyieSena. Pro pochopeni fylogenetické struktury
rodu Ficaria byla tedy zhodnocena reprodukéni biologie, prezygotické a
postzygotické reprodukéné izolaéni mechanismy pomoci studia schopnosti autonomni
apomixie, autonomniho autogamie, zivotaschopnosti pylovych zrn a velikosti
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viabilité, pylova viabilita byla redukovéna u vyssich ploidnich stupiti. Pylova délka
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k reprodukéni  izolaci studovanych taxont. Proto, naslednd mezitaxonova
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vybranymi taxony rodu Ficaria v kontrolovanych podminkach.
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Ficaria is a polyploid complex with high phenotypic diversity and the existence of
several ploidy levels (from 2x to 6x). Both hybridization and polyploidization
probably can be a major source of morphological and genetic variation that have given
the taxonomic uncertainties in the genus Ficaria. Despite this taxonomic complexity,
the phylogeny and taxonomy of the genus Ficaria, up to now remains poorly
understood. Quantitative and qualitative studies of autonomous apomixis, autonomous
selfing, pollen viability, and pollen length of most taxa/ploidy levels, and experimental
homoploid crosses between the selected taxa with assessment of other reproductive
modes (autonomous apomixis, autonomous selfing, outcrossing), and inference of the
paternity via the estimation of the genome size of parental taxa and their hybrids were
employed in evaluating of the reproductive biology, prezygotic and postzygotic
reproductive isolation barriers within the genus Ficaria. Autonomous apomixis and
autonomous selfing were absent in the studied Ficaria taxa regardless of ploidy level.
All investigated taxa were allogamous. Number of well-developed achenes formed by
outcrossing corresponded to pollen viability, pollen viability was reduced in high
ploidy levels. Pollen length was increasing with genome size, but the pollen length
was heterogenous, so that was not suitaible for the estimation of ploidy level of the
studied taxa. Abnormally large pollen was detected in several polyploid taxa.
Assemblages of the lack of autonomous apomixis and autonomous selfing and high
pollen viability do not act as a prezygotic barrier to prevent mating between Ficaria
taxa. Therefore, subsequent intertaxa compatibility allowed easy reciprocal
asymmetric homoploid hybridization between selected taxa in the genus Ficaria in
controlled conditions.
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1. Introduction

Hybridization is considered as a major driver of evolution and speciation in vascular
plants (Ramsey & Schemske 1998; Mallet 2007; Soltis & Soltis 2009). A recent study
by Whitney et al. (2010) estimates that hybridization occurs in 40 % of families
and 16 % of genera of vascular plants. Nevertheless, approximations of the occurrence
of hybridization vary among authors depending on the methodology applied
(Folk et al. 2018). Moreover, the estimates likely remain underestimated due to the
generally challenging detection of hybrids (Mallet 2007; Whitney et al. 2010;
Abbott et al. 2013). However, the actual occurrence of hybridization is unevenly
distributed  across  different  taxonomic  groups  (Ellstrand et al. 1996;
Whitney et al. 2010; Abbott 2017). In general, the frequency of hybridization is
considerably higher in taxa from evolutionary lineages characterized by perennial
habits, longevity, clonal reproduction, outcrossing, selfing (favouring the persistence
of once-formed hybrids), and less variable within-genus genome sizes (increasing the
potential of hybridization, Ellstrand et al. 1996; Rieseberg 1997; Mallet 2007;
Brys et al. 2016; Mitchell et al. 2019).

Hybridization has both positive and negative evolutionary consequences (e.g.,
Rieseberg 1997; Barton 2001; Abbott et al. 2013). Hybridization between taxa with a
high degree of genome difference may contribute to the strengthen of reproductive
barriers of hybridizing parental taxa (Paun et al. 2009), but in the case of closely
related taxa, the hybridization may generate novel genotypic and phenotypic diversity
that may result in speciation (Rieseberg 1997; Soltis & Soltis 2009; Abbott et al. 2013;
Nieto Feliner et al. 2017). Backcrossing of the hybrid with one parental taxon
(Rieseberg & Willis 2007) could lead to transfer of beneficial alleles between different
taxa. Moreover, a hybrid by transgression, i.e., the formation of extreme phenotypes
(Rieseberg & Ellstrand 1993; Rieseberg 1997; Seehausen 2004; Soltis & Soltis 2009;
Abbott et al. 2013) could exhibit novel functional traits. These traits provide an
elevated adaptive potential of hybrids (Barton 2001; Abbott et al. 2013; Soltis 2013)
in the first filiar generation (F1) (Rieseberg & Ellstrand 1993) and especially in
subsequent filiar generations (Abbott et al. 2013). Increased adaptive potential is
usually reflected by the ability of hybrids to colonize of ecological niches not occupied
by the parental taxa (Seehausen 2004), as hybrid phenotypes are a mosaic parent-like,

and novel trait rather than intermediate ones in the subsequent generations



(Rieseberg & Ellstrand 1993, Rieseberg 1995; Rieseberg et al. 1999; Mallet 2005,
Abbott et al. 2013). However, if partially fertile hybrid without morphological,
phenological, or ecological differentiation to parents occurrs in the parental habitat,
recurrent hybridization and introgression also can contribute to breakdown of the
genetic integrity of parental taxa (Rhymer & Simberloff 1996; Otto & Whitton 2000;
Mallet 2007; Brennan et al. 2014; Abbott 2017). The rapid breakdown of the genetic
integrity prevalent between closely related taxa (reflected by reduced sterility of
hybrids). Breakdown of the genetic integrity of parental taxa is reflected by the local
complex hybrid swarms of primary contact between sympatric taxa
(Rhymer & Simberloft 1996) and by the hybrid zones of secondary contact between
allopatric taxa (Barton & Hewitt 1985; Rieseberg et al. 1999; Abbott 2017). The
formation of hybrid zones results in the morphological and genetic continuum between
parental taxa (Otto & Whitton 2000; Mallet 2007; Mackové et al. 2017). The
competition for abiotic and biotic resources may eventually lead to extinction, i.e.,
demographic exclusion of parental taxa by hybrids (Rhymer & Simberloft 1996;
Bleeker et al. 2007; Todesco et al. 2016; Abbott 2017).

Therefore, to maintain the integrity of the different taxa, reproductive isolation
mechanisms have evolved. These reproductive isolation mechanisms can be
distinguished into two main categories, based on the developmental stage in which
they appear: (a) prezygotic (before fertilization of the egg cell) and (b) postzygotic
(after fertilization of the egg cell). Prezygotic reproductive isolation mechanisms
include ecological temporal/spatial isolation, i.e., pollinator specificity, different
flowering phenology, ecogeographical differentiation (e.g., Rieseberg & Carney 1998;
Lowry et al. 2008;  Abbott et al. 2013;  Vallejo-Marin & Hiscock 2016),  and
reproductive isolation, i.e, the prevalence of prior selfing or mentor effect
(Brys et al. 2016), and autonomous apomixis (e.g., Petit et al. 1999). Postzygotic
reproductive isolation mechanisms include reproductive barriers that can be further
classified into: (a) extrinsic, i.e., environment-dependent barriers such as ecological
low wviability of hybrids, minority cytotype exclusion and (b) intrinsic, i.e.
environment-independent barriers such as low viability of hybrids, their sterility,
reduction or loss of pollen viability, endosperm failure (Rieseberg & Carney 1998;
Rieseberg et al. 1999; Lowry et al. 2008; Abbott et al. 2013; Lafon-
Placette & Kohler 2016;  Vallejo-Marin & Hiscock 2016). However, the above

mentioned prezygotic and external postzygotic reproductive isolation mechanisms
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might be overcome by natural or human-mediated disturbances (Rieseberg et al. 1999;
Ellstrand & Schierenbeck 2000; Orians 2000; Todesco et al. 2016; Vallejo-
Marin & Hiscock 2016). Hence, the effectiveness of prezygotic and postzygotic
barriers may be different among hybridizing taxa (Vallejo-Marin & Hiscock 2016).
Effective reproductive barriers to reduce gene flow between taxa are required for the
existence of a separate, genetically delimited taxon (Rieseberg & Willis 2007).
Consequently, homoploid hybrids that can be recognized as evolutionarily separated
taxa have developed ecogeographical differentiation (Abbott et al. 2010), different
asexual reproduction (clonal growth, apomixis), and sexual ones (autonomous selfing).
These changes reduce the breakdown of the genetic integrity of parental taxa by
introgressive  hybridization (Rhymer & Simberloff 1996; Rieseberg et al. 1999).
Changes in reproductive modes are often associated with polyploidization resulting in
evolutionary more  stable hybrids (Otto & Whitton 2000;  Mallet 2007;
Rieseberg & Willis 2007; Siopa et al. 2020). Multiplication of complete chromosome
sets can usually reduce between ploidy mating (“triploid block”,
Ramsey & Schemske 1998), inbreeding depression (Siopa et al. 2020), manifestation
of recessive (often harmful) alleles, maintain high level of fixed heterozygosity in
allopolyploids, and cause changes in gene expression, subsequently leading to changes
of ecological niche (niche expansion, niche shift) via increasing of genetic variability
(Ramsey & Schemske 2002; Otto & Whitton 2000; Adams & Wendel 2005;
Jackson & Chen 2010; Soltis et al. 2016).

Hybridization accompanied by polyploidization probably also contributed to
the taxonomic complexity of a seemingly negligible polyploid complex of the genus
Ficaria of the family Ranunculaceae Juss. (Zonneveld 2015; Drenckhahn 2016). The
occurrence of polyploidization and hybridization is inferred from the existence of
individuals with an intermediate phenotype (Marsden-Jones & Turrill 1952;
Towpasz 1971; Gill et al. 1972; Sell 1994; Késtner & Fischer 2006; Drenckhahn 2016;
Popelka et al. 2019b). Despite this, experimental and molecular studies that would
confirm the impact of occurrence of the polyploidization and hybridization on the
taxonomic complexity of the genus Ficaria are scarce (Popelka et al. 2019a; Sochor
unpubl.). The genus Ficaria comprises widespread spring-flowering geophytes that
commonly occupy predominantly wet and moist habitats (Post et al. 2009). The genus
Ficaria is distributed throughout most parts of Europe and adjacent areas of Asia and

Africa (Taylor & Markham 1978; Tutin & Cook 1993; Sell 1994; Veldkamp 2015)
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but its members have been introduced to the North America (Post et al. 2009;
Axtell et al. 2010), and New Zealand (Webb et al. 1995; Howell 2008). Within the
genus, only one species, Ranunculus Ficaria L., in the broad sense has been originally
considered (Sell 1994). Based on its considerable morphological variability and the
existence of several ploidy levels, many taxa with unclear taxonomic values have been
described later (e.g., Allen 1958; Love & Love 1961; Clapham et al. 1962;
Tutin & Cook 1993; Hess etal. 1997). Moreover, many taxa have probably been
described repeatedly at various taxonomic levels from different parts of Europe,
leading to a substantial nomenclatural confusion (Veldkamp 2015).

Recently, seven subspecies of the species Ficaria verna Huds (sensu
Veldkamp 2015) are recognized (Table 1), but an alternative approach suggests that
these subspecies might be considered at the species level (Zonneveld 2015). In total,
five ploidy levels have been recorded so far (Popelka unpubl.). Althought, only few
studies have adressesd the ploidy level structure in populations and distribution of each
ploidy level of Ficaria taxa, one ploidy level is usually recognized for each single
taxon (Table 1). More common are diploids (2n=2x=16, based on x=8; Gill et al. 1972;
Pogan & Wcisto 1974; Sell 1994; Zonneveld 2015; Konecnéa 2018; Popelka unpubl.)
with the possible presence from one to seven (exceptionally eight) B chromosomes
(Larter 1932; Marsden-Jones & Turrill 1952; Gill et al. 1972;
Marchant & Brighton 1974; Pogan & Wcisto 1981b; Sell 1994), and tetraploids
(2n=4x=32, based on x=8; Pogan & Wcisto 1974; Sell 1994; Zonneveld 2015;
Konec¢na 2018; Popelka unpubl.). In contrary, triploids (2n=3x=24, based on x=8),
pentaploids (2n=5x=40, based on x=8), and hexaploids (2n=6x=48, based on x=8) are
the minority cytotypes (Neves 1942; So6 & Borhidi 1964; Pogan & Wcisto 1974;
Trohler 1976; Anders-Gasser 1985; Sell 1994; Zonneveld 2015;
Drenckhahn et al. 2017; Kone¢né 2018; Popelka unpubl.).

Mixed populations comprising more cytotypes/taxa and populations
comprising single, minority cytotype found to be extremely rare. Coexistence of the
following ploidy levels/taxa were reported so far: triploids of F. xsellii with diploids
of F. verna subsp. calthifolia and tetraploids of F verna subsp. verna
(Pogan & Wcisto 1974, 1986; Popelka et al. 2019a, b); diploids of F. verna subsp.
fertilis with tetraploids of F. verna subsp. verna (Marsden-Jones & Turrill 1952;
Gill et al. 1972; Popelka unpubl.) tetraploids of F. verna subsp. verna with tetraploids
of F verna subsp. ficariiformis (Popelka unpubl.); triploids, tetraploids, and
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pentaploids of F verna subsp. verna (Trohler 1976; Anders-Gasser 1985). Populations
containing single, minority cytotype were recorded just for triploids of F. xsellii
(Popelka unpubl.). These mixed populations provide evidence for the polyploid
establishment, inter-taxa/ploidy coexistence and the potential of subsequent ecological
segregation such as F. xsellii (Popelka et al. 2019a).

All Ficaria taxa that have been studied so far reproduce vegetatively by the
fragmentation of below-ground tubers (Marsden-Jones 1933), in the case of tetraploids
F. verna subsp. verna and F. verna subsp. ficariiformis additionally also by axillary
bulbils (Sell 1994), and reproduce sexually through production of seeds, although in
polyploids success of sexual reproduction is (substantially) reduced (Marsden-
Jones 1933; Gill et al. 1972; Wcisto & Pogan 1981; but see Popelka et al. 2019a). In
addition to these reproductive modes, the results reported by Metcalfe (1939) suggest
the minor occurrence of autonomous selfing in diploids £ verna subsp. fertilis and in
tetraploids F. verna subsp. verna, autonomous apomixis in diploids F. verna subsp.
fertilis and pseudogamy or autonomous selfing in F. verna subsp. fertilis and F. verna
subsp. verna (Metcalfe 1939). Unfortunately, the germination of such seeds was not
investigated (Metcalfe 1939). In contrast to Metcalfe (1939), the occurrence of
autonomous  selfing (Pogan & Wcisto 1981a) and autonomous apomixis
(Popelka et al. 2019a) was not later recorded for diploids of F. verna subsp. calthifolia
and tetraploids of F. verna subsp. verna (Pogan & Wcisto 1981a; Popelka et al. 2019a).
Experimental crosses (Popelkaetal.2019a) and the study of genetic
(Pogan & Wcisto 1974, 1983, 1986;  Popelka et al. 2019a) and  morphological
variability (Towpasz 1971; Kaéstner & Fischer 2006; Drenckhahn 2016;
Popelka et al. 2019b) have revealed recent heteroploid, reciprocal, asymmetric
hybridization between F. verna subsp. verna (2n=4x=32) and F. verna subsp.
calthifolia (2n =2x=16), resulting in triploid, morphologicaly intermediate hybrids
(2n =3x=24), beeing mostly sterile and persisting by vegetative propagation
(Popelka et al. 2019a, 2019b). Early studies have found that the occurrence of
heteroploid hybridization between F. verna subsp. verna (2n =4x=32) and F. verna
subsp. fertilis (2n=2x=16) could not be also excluded (2n =3x=24; Marsden-
Jones & Turrill 1952; Gill et al. 1972). On the contrary to heteroploid hybridization,
homoploid hybridization has not been so far performed, although a polyphyletic origin
of some recent polyploid taxa via homoploid hybridization and subsequent

polyploidization has been hypothesised (e.g. origin of F verna subsp. verna, see
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below).

Existence of strong phenotypic plasticity (Post et al. 2009; Uhlifova 2019),
shared chloroplast haplotypes between individuals of different taxa (Sochor unpubl.),
and the occurrence of several ploidy levels (from 2x to 6x; e.g., So6 & Borhidi 1964;
Anders-Gasser 1985; Sell 1994 Zonneveld 2015; Drenckhahn et al. 2017) with high
variability within-cytotype genome sizes in diploids F. verna subsp. calthifolia and
tetraploids F. verna subsp. verna (Kone¢na 2018), suggest a possible role of
homoploid hybridization followed by subsequent introgression or polyploidization in
the genus Ficaria. Evaluation of the phylogenetic complexity of the polyploid complex
of the genus Ficaria based on a cytogenetic approach (assessment of absolute genome
size and DNA ploidy level) was first drawn by Zonneveld (2015). A widely distributed,
tetraploid, bulbils-producing F. verna subsp. verna is supposed to be of allotetraploid
origin, resulting from homoploid hybridization between the diploid taxa of F. verna
subsp. calthifolia and F. verna subsp. fertilis, followed by polyploidization
(Zonneveld 2015). However, further study of the genome size variability in tetraploid
F. verna subsp. verna on a broad geographical scale revealed the existence of genome-
size  delimited lineages/populations, i.e., western and eastern ones
(Drenckhahn et al. 2017). Therefore, Drenckhahn et al. (2017) concluded that the
tetraploid of F. verna subsp. verna contains two different taxa with divergent origin.
However, phylogenetic origin and spatial distribution of F. verna subsp. verna is
unknown. Moreover, Popelka (unpubl.) suggests a minor occurrence of diploid plants
morphologically similar to the tetraploid cytotype of £ verna subsp. verna, considered
as diploid of F. verna subsp. verna in the present study.

In addition, there have not been published any studies about the origin of other
polyploid taxa in the genus, including F. verna subsp. chrysocephala and F. verna
subsp. ficariiformis. Therefore, the origin and evolutionary role of homo- and
heteroploid hybridization and associated introgressions within the polyploid,
taxonomically complicated complex of the genus Ficaria are still not clear. Despite of
various karyological (e.g., Pogan & Wcisto 1974; 1981a, 1981b, 1986;
Trinajsti¢ 1979; Zonneveld 2015; Drenckhahn et al. 2017; Konecna 2018;
Popelka et al. 2019a; ~ Sochor unpubl.),  morphological  (e.g.,  Vesela 1969;
Marchant & Brighton 1974; Trohler 1976; Taylor &Markham 1978; Trinajsti¢ 1979;
Sell 1994; Post et al. 2009; Veldkamp 2015; Drenckhahn 2016; Vazquez 2016;
Popelka et al. 2019b; Uhlitova 2019), and ecological (e.g., Marsden-Jones 1933;
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Metcalfe 1938; Marchant & Brighton 1974; Nicholson 1983; Popelka et al. 2019b)
studies, no comprehensive molecular phylogenetic studies, crossing experiments,
reproductive modes investigation, pollen viability & size, in most taxa have been
performed yet.

To provide insight to the potential hybridization and possibly come up with
taxonomic implication, the intra-cytotype compatibility, direction of crosses and
reproductive output as assessment of postzygotic reproductive barriers are investigated
in the selected taxa. Reproductive modes, pollen viability & size, and correlation
between pollen viability and reproductive percentage of well-developed achenes, and
correlation between pollen size and genome size as assessment of the prezygotic
reproductive barriers are elucidated in most Ficaria taxa/ploidy levels. Such approach
as a useful tool to reveal prezygotic and postzygotic reproductive isolation barriers was
also applied in other polyploid complexes (e. g., Hieracium s. str., Mraz & Paule 2006;
Cyanus Mill., Olsavska & Loser 2013). Variation of reproductive modes, pollen

viability & size is compared between taxa/ploidy levels.



2. Objectives of thesis

The evolutionary relationships among the taxa of the genus Ficaria are yet unresolved,
owing to the occurrence of polyploidization and hybridization. Therefore, the present
study investigates the reproductive modes and pollen viability & size of most Ficaria
taxa. Furthermore, this study evaluates the postzygotic barriers between three diploid
taxa and within groups of populations from different parts of the distribution range of
one tetraploid taxon. At least, this study examines the possibility of recurrent
polyploidization via one step model or triploid bridge in the genus Ficaria. The

following questions were adressed:

1. What is the diversity of reproductive modes in the studied taxa? Does the pattern
of reproductive modes relate to the ploidy level of the taxon? Does the percentage
of well-developed achenes (seeds) per collective fruit of the studied taxa relate to
their pollen viabilities?

2. What is the variability of pollen viability in the studied taxa? Does the pollen
viability relate to hybrid or polyploid origins?

3. Whatis the variability of pollen length in the studied taxa? Do the patterns of pollen
lengths relate to the genome size of the ploidy level of the taxa? Are there any
differences in pollen lengths suggesting the production of viable ‘“gigas”
(unreduced) pollens in the studied taxa?

4. Do homoploid crosses and intrataxa outcroses between/within the diploid
cytotypes of F. verna subsp. calthifolia, F. verna subsp. fertilis and diploid plants
morphologically similar to the tetraploid cytotype of F. verna subsp. verna and
between/within eastern and western populations of the tetraploid cytotype of F.
verna subsp. verna, result in production of viable seeds? If so, what is the genome

size and morphology of hybrids?
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3. Materials and methods

3.1 Sampling of plant material

Plants were provided by members of the research Ficaria team from natural
populations covering the entire area of distribution of the studied taxa in Europe (sensu
Veldkamp 2015) between 2011 — 2019 (Appendix 1). Within each population, the
sampled plants were spaced at least two metres apart to minimize the collection of
clones. The collected plants were transported to the outdoor conditions of the common
garden of the Department of Botany, Faculty of Science, Palacky University in
Olomouc, and cultivated individually in plastic pots (8 x 8 x 8 cm) filled with a mixture
of commercial substrate and natural soil substrate in the proportion of 3:1. Pots were
immersed into the soil to limit the drying of plants. In long dry periods, the plants were
occasionally watered. Plants were shaded by light shade fabric (relative irradiation
70 %) during the whole growing period to simulate natural conditions.

Each plant was assigned to a specific taxon (see Table 1) by available keys
(especially according to Sell 1994; Veldkamp 2015). The ploidy levels of individual
plants were derived based on measurements of the genome sizes of the same
individuals as previously used for counting the chromosomes (Popelka et al. 2019a;
Kobrlova unpubl.). The DNA ploidy of plants that were not previously included to
counting of chromosomes was assessed based on the genome size estimated by ML
CyFlow (Partec GmbH, Miinster) equipped with a green laser (532 nm, 100 mW,
Cobolt Samba; Cobolt AB, Stockholm, Sweden, Popelka etal.2019a;
Kobrlova unpubl.).

The maps visualising the distribution of populations of Ficaria taxa used for
estimation of reproductive modes, pollen viability & size in the present study were
created in R software version 3.5.2 (RStudio Team 2020) using the packages

29 ¢ 29 ¢

“tidyverse”, “rnaturalearth”, “rnaturalearthdata”, “st”, “rgeos”, “ggspatial”.

3.2 Flow cytometry
The genome sizes were estimated for the offspring and parental taxa used in the
crossing experiments. Samples were prepared according to a simplified protocol of
Dolezel et al. (2007). Fresh leaves of the sample (~0.5 cm?) and an appropriate volume
of the internal standard (Secale cereale L. ‘Dankovské’ 2C = 16.19 pg, for tetraploid
individuals, Pisum sativum L. ‘Ctirad’2C = 9.09 pg for diploid individuals,

11



Dolezel et al. 1998) were chopped together using a sharp razor blade in a Petri dish
containing 1 ml of ice-cold LBOI1 isolation buffer (Dolezel etal. 2007). The
suspension was filtered through a 42-pm nylon mesh into a tube. Then, 50 pl of RNA-
sy (50 pg-ml') was added to prevent RNA staining, and the nuclei suspension was
stained with 50 pl of fluorochrome PI (propidium iodide, 50 pg-ml™) and vortexed
briefly. The relative fluorescence intensity of the PI staining was recorded for
5000 nuclei of each sample. The estimated genome size of the sample was determined
on a linear scale of the graphical output based on the ratios of the distances of the peaks
of the standard and the sample in the G1 phase. The resulting genome size of a given
plant is derived from a single measurement.
3.3 Reproductive modes
The following reproductive modes were tested in the studied Ficaria taxa:
autonomous apomixis, autonomous selfing, and outcrossing. In total, 180 plants from
64 populations were examined (Fig. 1).

The reproductive modes of the studied taxa were determined by using pollen

exclusion bags (Kearns & Inouye 1993). Before flowering, the flowers used for testing
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Figure 1: Distribution of populations of Ficaria taxa used to reproductive modes investigation in the present
study. yellow circle the diploid cytotype of the F. verna subsp. calthifolia, orange circle the diploid cytotype
of F. verna subsp. fertilis, green square the tetraploid cytotype of F. verna subsp. ficariiformis, green diamond
the pentaploid cytotype of F. verna subsp. ficariiformis, purple square the tetraploid cytotype of F. verna subsp.
chrysocephala, purple diamond the pentaploid cytotype of F. verna subsp. chrysocephala, blue triangle the
triploid cytotype of F. xsellii (F. verna subsp. calthifolia x F. verna subsp. verna), red square the tetraploid
cytotype of F. verna subsp. verna, red diamond the pentaploid cytotype of F. verna subsp. verna, red star the
hexaploid cytotype of F. verna subsp. verna.
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of autonomous apomixis were emasculated and wrapped with non-woven synthetic
textile for pollinator exclusion. Flowers used for testing of autonomous selfing were
not emasculated and wrapped in non-woven synthetic textile bags for pollinator
exclusion.

The ability of intrataxa (interpopulation) outcrossing was analysed for taxa
used in the crossing experiment, realised in two years. Specifically, flowers used for
testing of intrataxa (interpopulation) outcrossing were emasculated, and flowers were
pollinated using the fresh pollen of plants from different populations of the same taxon
in three consecutive days. Paternal plants from three different populations were
crossed in all possible combinations with three maternal plants within respective
population. Individuals used for the study of intrataxa (interpopulation) outcrossing
were also involved in the crossing experiment (see chapter 3.5). The bags were kept
until maturity of achenes to prevent achene loss. Achenes were harvested month after
flowering.

Ripening achenes were harvested and stored in paper bags at room temperature
for four months. After this period, the achenes were classified as mature (well-
developed achenes) or aborted (wrinkled and small achenes). The reproductive success
(%) was calculated as the number of well-developed achenes/total number of produced

achenes*100. Aborted achenes were excluded from further analysis.

3.4 Pollen viability & length

The pollen viability of 360 plants from 145 populations were examined (Fig. 3), the
pollen length of well-developed pollen was analysed on the subset of individuals used
for the study of pollen viability; in total 335 plants from 139 populations were
examined (Fig. 3).

Mature anthers on the onset of anther dehiscence were removed from a flower
per individual early in the morning. Fresh pollen grains were released from those
anthers onto the slide into a drop of a solution of fluorescein diacetate (~10°M in
sucrose, Heslop-Harrison & Heslop-Harrison 1970).  The  suspension  was
homogenized and incubated at room temperature for five minutes. Subsequently, the
suspension was covered by a glass coverslip and observed under a fluorescence
microscope at 100x magnification (Olympus Bx60, Olympus Optical Co. (Europa)
GmbH) and images taken by Quick PHOTO CAMERA 3 software (Fig. 2, Appendix 4)
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Figure 2: Example of graphical output from a microscope Olympus BX60: observing of pollen viability
&length, pollen viability is estimated by fluorescein diacetate, A, B F. verna subsp. calthifolia, C, D F. verna
subsp. verna, A, B all pollen grains, B, D viable, fluorescently detected pollen grains.

from ten microscopic areas were used for estimation of pollen viability & length. The
pollens that accumulated free fluorescein were considered viable, unstained pollen
grains were considered inviable (Heslop-Harrison & Heslop-Harrison 1970). At least
300 pollens per each plant for estimation of the pollen viability (%) were counted. The
well-developed viable pollen grains are almost spherical in Ficaria; therefore, their
length was measured as the diameter of the circle. At least 100 pollen lengths per each
plant were measured. The lengths of aborted pollen grains were not measured. The
measurements were performed using the ImageJ software (Rasband, W.S., ImagelJ, U.
S. National Institutes of  Health, Bethesda, Maryland, USA,
https://imagej.nih.gov/ij/, 1997-2016.). Data were analysed in R software using the
package “Ime4” for Linear mixed models (Bates et al. 2018), “multcomp” for multiple
comparisons after Type-I1l analysis of variance (Hothorn et al. 2016), “gg2plot* for
histograms. Pollen lengths were visualised using histograms, bin widths were
estimated according to Sturge’s Rule. Differences in pollen viability & length among
different taxa/ploidy levels were tested using Linear mixed models with the effect of

the population nested within the fixed effect of the taxon/ploidy level and followed by
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Figure 3: Distribution of populations of Ficaria taxa used to examination of pollen viability &length in the
present study. yellow circle the diploid cytotype of F. verna subsp. calthifolia, yellow square the tetraploid
cytotype of F. verna subsp. calthifolia, orange circle the diploid cytotype of F. verna subsp. fertilis, green
square the tetraploid cytotype of F. verna subsp. ficariiformis, green diamond the pentaploid cytotype of F.
verna subsp. ficariiformis, brown circle, the diploid cytotype of F. verna subsp. ficaroides , purple square the
tetraploid cytotype of F. verna subsp. chrysocephala, blue triangle the triploid cytotype of F. xsellii (F. verna
subsp. calthifolia x F. verna subsp. verna), red circle the diploid cytotype of F. verna subsp. verna, red square
the tetraploid cytotype of F. verna subsp. verna, red diamond the pentaploid cytotype of F. verna subsp. verna,
red star the hexaploid cytotype of F. verna subsp. verna.

post hoc comparisons using Tukey-Kramer Multiple Comparison test. A parametric
bootstrap was used for calculations of p-value. Correlations between pollen lengths
and genome sizes, between percentage of well-developed achenes (seeds) per
collective fruit by spontaneous xenogamy and pollen viability, between numbers of
well-developed achenes by spontaneous xenogamy and pollen viability, between
longitude and pollen viability, between latitude and pollen viability were analysed
using Pearson linear correlations. Genome sizes and reproductive outputs (percentage
of well-developed achenes (seeds) per collective fruit by spontaneous xenogamy were
adopted for the subset of plants as were previously measured by Konec¢na (2018) and

by Uhlifova (unpubl.), respectively.

3.5 Crossing experiments

In March 2019, 30 mature individuals were selected from three populations of F. verna
subsp. calthifolia (from Bulgaria, Czech Republic, Montenegro), three populations of
F verna subsp. fertilis (from Great Britain [two populations], France). In March 2020,
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another 90 individuals were selected from six populations of F. verna subsp. calthifolia
(from Austria, Bosnia and Herzegovina, Czech Republic [two populations], Hungary,
Montenegro), three populations of F. verna subsp. fertilis (from Great Britain [two
populations], France), population of the diploid cytotype F verna subsp. verna
(individual from Russia), six populations from the western part of the distribution
range of F. verna subsp. verna (from France [five populations], borderline between
France and Italy [population]) and six populations from the eastern part of the
distribution range of F. verna subsp. verna (from Montenegro [four populations],
Croatia [two populations]). Samples of F. verna subsp. calthifolia and F. verna subsp.
fertilis consisted of individuals covering geographical variability and variability in
genome sizes. Samples of F. verna subsp. verna consisted of individuals from the
western part of the distribution range (represented by populations from France) and
from the eastern part of the distribution range (represented by populations from the
Balkans, Montenegro, and Croatia). The DNA ploidy levels of all experimental plants
were assessed using flow cytometry, as described above.

Three plants from each population (one flower per treatment per individual)
represented the acceptors of pollen (= maternal plants) and two plants from each
population were used as a donor of pollen (= paternal plants). The maternal and
paternal plants were grown separately in outdoor conditions of the common garden.
Plants were regularly watered and partly shaded (relative irradiation 70 %) to simulate
optimal growing conditions in field. Before flowering, plants were isolated from
pollinators using pollinator exclusion cages covered with a layer of fine mesh fabric.
In addition, all manipulated flowers were wrapped with non-woven textile bags
(Kearns & Inouye 1993) to prevent contaminated pollination within the cage. The bags
were kept until maturity of achenes to prevent achenes loss. In total, four types of
treatments were performed: (a) autonomous apomixis, flowers were emasculated and
left unpollinated (control flowers), (b) autonomous selfing, flowers were not
emasculated (autogamy), (c) intrataxa (interpopulation) outcrossing, flowers were
emasculated, flowers were pollinated using the fresh pollen of plants from different
populations of the same taxon (xenogamy) and (d) intertaxa, homoploid crossing,
flowers were emasculated, and pollinated with fresh pollen from flowers of the other
taxon (homoploid crossing). At flowering, the receptive styles of the maternal plant
were, in the case of intrataxa outcrossing and intertaxa homoploid crossing, gently

brushed against the anthers of the three paternal plants, once every day for three
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consecutive days. Paternal plants from three different populations were crossed in all
possible combinations with three maternal plants within the respective population.
Achenes were harvested about month after flowering.

Ripening achenes were harvested and stored in paper bags at room temperature
for four months. After this period, the achenes were classified as mature (well-
developed achenes) or aborted (wrinkled and small achenes). All obtained well-
developed achenes (seeds) were sown in autumn of a given year in pots (two achenes
per one pot, 0.5 cm below the soil surface) filled with a mixture of commercial and
natural soil substrates in the proportion of 1: 1 and placed in the outdoor conditions of
the common garden. The following parameters were recorded during the next two
seasons after sowing: germination rate of mature well-developed achenes (seeds) per
ploidy level/taxon (%), pollen viability of seedlings (%), and percentage of well-
developed achenes (seeds) per collective fruit (seeds) in seedlings derived by
spontaneous xenogamy. A total 317 seedlings were transplanted.

Data were analysed in R. Differences in the percentage of well-developed
achenes (seeds) per collective fruit, germination rate (%) across the pollination

treatments xtaxa/ploidy level were tested using One-way ANOVA.
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4. Results

4.1 Reproductive biology of Ficaria taxa as assesment of prezygotic
reproductive barriers

4.1.1 Autonomous apomixis and autonomous selfing

Presence of autonomous apomixis in the emasculated flowers of the studied taxa was
excluded, as no well-developed achenes were recorded in any collective fruit of
experimentally treated plants. Rate of well-developed achenes formed by autonomous
selfing was extremely low (tetraploid F. verna subsp. verna) or did not occur at all
(other taxa/ploidy levels, Table 2).

Table 2: Summary of the percentage of well-developed and aborted achenes (seeds) per collective fruit formed by
autonomous apomixis and autonomous selfing of Ficaria taxa under study.

Apomixis Selfing

5 g 3

S 3 S 5 s °xX S 5 s
= 3o Ta 5 .= 3o Ta 5 =
= ¢ 28 Z¢ 38 38 <28 g¢ 23
S =& S o 2L €3 = o S o c g € 2
& o o a5 S % 5 g L o a < 5 % 5 g
~ =Q <8 =z z8 = 3 <8 =Z& =8
FC (2x) 0.00 100 35 11 0.00 100 34 11
FFE (2x) 0.00 100 27 11 0.00 100 27 11
FFI1 (4x) 0.00 100 22 7 0.00 100 22 7
FFI1 (5%) 0.00 100 5 2 0.00 100 5 2
FCH (4x) 0.00 100 3 3 0.00 100 3 2
FCH (5%) 000 100 3 2 000 100 2 2
FS (3%) 0.00 100 12 4 0.00 100 12 4
FV (4x) 0.00 100 57 23 0.34 99.66 56 23
FV (5x) 0.00 100 10 3 0.00 100 10 3
FV (6x) 0.00 100 1 1 0.00 100 2 1

FC (2x) the diploid cytotype of the F. verna subsp. calthifolia, FFE (2x) the diploid cytotype of F. verna subsp.
fertilis, FFI (4x) the tetraploid cytotype of F. verna subsp. ficariiformis, FFI (5x) the pentaploid cytotype of F.
verna subsp. ficariiformis, FCH (4x) the tetraploid cytotype of F. verna subsp. chrysocephala, FCH (5x) the
pentaploid cytotype of F. verna subsp. chrysocephala, FS (3x) the triploid cytotype of F. xsellii (F. verna subsp.
calthifolia x F. verna subsp. verna), FV(4x) the tetraploid cytotype of F. verna subsp. verna, FV(5x) the pentaploid
cytotype of F. verna subsp. verna, FV(6x) the hexaploid cytotype of F. verna subsp. verna.
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4.1.2  Pollen viability

Pollen stainability was used as an approximation of pollen viability. The pollen
viability was significantly different between the studied taxa/ploidy levels (LMM,
¥?=140.24, d.f.=7, p < 0.001, Fig. 4). The diploid cytotypes showed high pollen
viability, whereas the tetraploid cytotypes showed a tendency for reduced pollen
viability (but see the tetraploid F. verna subsp. calthifolia). Poor pollen viability
occurred in odd ploidy levels (the triploid cytotype of F. xsellii, the pentaploid
cytotype of F. verna subsp. ficariiformis, and of F. verna subsp. verna). Medium
positive correlation between the mean value of the percentage of well-developed
achenes (seeds) per collective fruit (according to Uhlifova unpubl.) per population and
the mean value of pollen viability per maternal population was confirmed (r = 0.407,
n =67, p<0.001, Fig. 5). Percentage of well-developed achenes (seeds) per collective
fruit of tetraploid F. verna subsp. verna (according to Uhlifova unpubl.) and the mean
pollen viability per population were not correlated (r = 0.079, n = 44, p=0.61). Weak
positive correlation between the mean number of well-developed achenes (seeds) per
collective fruit (according to Uhlitova unpubl.) per population and the mean pollen
viability per maternal population was confirmed (r = 0.345, n = 67, p<0.001, Fig. 6).
Longitude and mean pollen viability per population and latitude and mean pollen
viability per population of tetraploid F. verna subsp. verna were not correlated (r =
0.006, n =71, p=0.961; r=0.192, n=71, p=0.102, respectively).
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Figure 4: Comparison of variability of pollen viability of Ficaria taxa under study. The values of pollen viability
are estimated as the average value per individual. FC (2x) the diploid cytotype of the F. verna subsp. calthifolia,
FC (4x) the tetraploid cytotype of F. verna subsp. calthifolia, FFE (2x) the diploid cytotype of F. verna subsp.
fertilis, FF1 (4x) the tetraploid cytotype of F. verna subsp. ficariiformis, FFI (5x) the pentaploid cytotype of F.
verna subsp. ficariiformis, FS (3x) the triploid cytotype of F. xsellii (F. verna subsp. calthifolia x F. verna subsp.
verna), FV(4x) the tetraploid cytotype of F. verna subsp. verna, FV(5x) the pentaploid cytotype of F. verna subsp.
verna. Letters indicate the results of comparisons between groups represented by combination taxon/ploidy level
using Tukey-Kramer Multiple Comparison test. Taxa with the same letter do not differ significantly (p < 0.001).
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Figure 5: Relationship between pollen viability and percentage of well-developed achenes (seeds) per collective
fruit * of Ficaria taxa under study. The values of pollen viability and percentage of well-developed achenes (seeds)
per collective fruit are estimated as average values per each population. FC (2x) the diploid cytotype of the F. verna
subsp. calthifolia, FFE (2x) the diploid cytotype of F. verna subsp. fertilis, FFI (4x) the tetraploid cytotype of F.
verna subsp. ficariiformis, FFI (5x) the pentaploid cytotype of F. verna subsp. ficariiformis, FS (3x) the triploid
cytotype of F. xsellii (F. verna subsp. calthifolia x F. verna subsp. verna), FV(4x) the tetraploid cytotype of F.
verna subsp. verna, FV(5x) the pentaploid cytotype of F. verna subsp. verna.* Data on the percentage of well-
developed achenes (seeds) per collective fruit were adopted from Uhlitova (unpubl.).
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Figure 6: Relationship between pollen viability and numbers of well-developed achenes (seeds) per collective
fruit* of Ficaria taxa under study. The values of pollen viability and numbers of well-developed achenes are
estimated as average values per each population. FC (2x) the diploid cytotype of the F. verna subsp. calthifolia,
FFE (2x) the diploid cytotype of F. verna subsp. fertilis, FFI (4x) the tetraploid cytotype of F. verna subsp.
ficariiformis, FFI (5x) the pentaploid cytotype of F. verna subsp. ficariiformis, FS (3x) the triploid cytotype of F.
xsellii (F. verna subsp. calthifolia x F. verna subsp. verna), FV(4x) the tetraploid cytotype of F. verna subsp.
verna, FV(5x) the pentaploid cytotype of F. verna subsp. verna.* Data on the number of well-developed achenes
(seeds) per collective fruit were adopted from Uhlifova (unpubl.).

21



4.1.3 Pollen length

Aborted pollen grains were excluded from further analysis. Pollen length differed
significantly among taxa (LMM, y?= 229.69, d.f.=7, p<0.001, Fig. 7), with diploid taxa
having significantly shorter pollens than polyploid taxa. Accordingly, strong positive
correlation between the mean value of pollen length per population and the mean value
of absolute genome size (2C DNA; according to Konecna 2018) per population was
confirmed (r = 0.779, n = 30, p<0.001, Fig. 8).

Negligible production of abnormal gametes indicating of “gigas” male gametes
was recorded for the tetraploid cytotype of F. verna subsp. verna and especially for
odd-ploidy levels, the triploid cytotype of £ x sellii, the pentaploid cytotype of F. verna
subsp. verna, and for high even-ploidy level, the hexaploid cytotype of F. verna subsp.
verna (Fig. 9).
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Figure 7: Comparison of variability of pollen length of Ficaria taxa under study. The values of pollen length are
estimated as the average value per individual. FC (2x) the diploid cytotype of the F. verna subsp. calthifolia, FC
(4x) the tetraploid cytotype of F. verna subsp. calthifolia, FFE (2x) the diploid cytotype of F. verna subsp. fertilis,
FFI (4x) the tetraploid cytotype of F. verna subsp. ficariiformis, FFI (5x) the pentaploid cytotype of F. verna
subsp. ficariiformis, FS (3x) the triploid cytotype of F. verna xsellii (F. verna subsp. calthifolia xF. verna subsp.
verna), FV(4x) the tetraploid cytotype of F. verna subsp. verna, FV(5x) the pentaploid cytotype of F. verna
subsp.verna. Letters indicate the results of comparisons between groups represented by combination taxon/ploidy
using Tukey-Kramer Multiple Comparison test. Taxa with the same letter do not differ significantly (p < 0.001).
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Figure 8: Relationship between pollen length and absolute genome size * of Ficaria taxa under study. The values
of pollen length and genome size are estimated as average values per each population. FC (2x) the diploid cytotype
of the F. verna subsp. calthifolia, FC (4x) the tetraploid cytotype of F. verna subsp. calthifolia, FFE (2x) the
diploid cytotype of F. verna subsp. fertilis, FFI (4x) the tetraploid cytotype of F. verna subsp. ficariiformis, FFI
(5x) the pentaploid cytotype of F. verna subsp. ficariiformis, FS (3x) the triploid cytotype of F. xsellii (F. verna
subsp. calthifolia x F. verna subsp. verna), FV(4x) the tetraploid cytotype of F. verna subsp. verna.* Data on the
absolute genome size were adopted from Koneéna (2018).
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Figure 9: Comparisons of pollen length of stained, potentially viable pollen. These numbers are based on all
measured pollen grains in individual flowers. FC (2x) the diploid cytotype of the F. verna subsp. calthifolia, FC
(4x) the tetraploid cytotype of F. verna subsp. calthifolia, FFE (2x) the diploid cytotype of F. verna subsp. fertilis,
FFI (4x) the tetraploid cytotype of F. verna subsp. ficariiformis, FFI (5x) the pentaploid cytotype of F. verna
subsp. ficariiformis, FFO (2x) the diploid cytotype of F. verna subsp. ficarioides, FS (3x) the triploid cytotype of
F. xsellii (F. verna subsp. calthifolia x F. verna subsp. verna), FV(2x) the diploid cytotype of F. verna subsp.
verna, FV(4x) the tetraploid cytotype of F. verna subsp. verna, FV(5x) the pentaploid cytotype of F. verna
subsp.verna, FV(6x) the hexaploid cytotype of F. verna subsp. verna.
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4.2 Postzygotic reproductive barriers

4.2.1 Crossing experiment

Percentage of well-developed achenes (seeds) per collective fruit of diploids of
F. verna subsp. calthifolia, F. verna subsp. fertilis, and F. verna subsp. verna differed
significantly across the pollination treatments xtaxa/ploidy level (one-way ANOVA,
Fs,106=4.831, p<0.001, Fig. 10). Percentage of well-developed achenes (seeds) per
collective fruit derived from intertaxa homoploid crosses between F. verna subsp.
calthifolia and F. verna subsp. fertilis in reciprocal crosses was lower than by intrataxa
(interpopulation) outcrosses for both parental taxa. The percentage of well-developed
achenes (seeds) per collective fruit derived from intrataxa (interpopulation) outcrosses
was higher in F. verna subsp. calthifolia than in F. verna subsp. fertilis. Intertaxa
homoploid crosses between F. verna subsp. fertilis and F. verna subsp. calthifolia
(maternal x paternal taxon) yielded a higher number of well-developed achenes (seeds)
per collective fruit than reciprocal crosses. The percentage of well-developed achenes
(seeds) per collective fruit derived from homoploid crosses of F. verna subsp.
calthifolia and F'. verna subsp. fertilis (maternal taxa) with diploid cytotype of F. verna
subsp. verna (paternal taxon) was negligible (Table 3). The number of well-developed
achenes (seeds) per collective fruit of diploids of F. verna subsp. calthifolia, F. verna
subsp. fertilis and F. verna subsp. verna did not differ significantly across the
pollination treatments xtaxa/ploidy level (one-way ANOVA, Fs 106= 1.371, p= 0.257,
Fig. 10; Table 3).

Percentage of well-developed achenes (seeds) per collective fruit of tetraploids
of F. verna subsp. verna did not differ significantly across the pollination treatments
xtaxa/ploidy level (one-way ANOVA, F34s=0.619, p=0.606, Fig. 11). The number of
well-developed achenes (seeds) per collective fruit formed by intrataxa
(interpopulation) outcrosses between/within eastern and western populations of the
tetraploids of F. verna subsp. verna was negligible (Table 4). The number of well-
developed achenes (seeds) per collective fruit of tetraploids of F. verna subsp. verna
did not differ significantly across the pollination treatments xtaxa/ploidy level (one-
way ANOVA, F3 5= 0.805, p= 0.496, Fig. 11, Table 4).

Germination rate (%) of seeds (achenes) per collective fruit of diploids of F.
verna subsp. calthifolia and F. verna subsp. fertilis did not differ significantly across

the pollination treatments xtaxa/ploidy level (one-way ANOVA, F3 s4=0.946, p=0.424,
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Fig. 12). The germination rate of seeds (achenes) formed by intertaxa homoploid
crosses between F. verna subsp. calthifolia (maternal taxon) with the diploid cytotype
of F. verna subsp. verna (paternal taxon) was negligible and reached 3.41 %, but
intertaxa homoploid crosses using the diploid cytotype of F. verna subsp. verna as a
paternal taxon yielded the reduced number of well-developed achenes (seeds) per
collective fruit, so that the germination rate of offspring was reduced, too (Table 3).

The seeds (achenes) produced by intrataxa (interpopulation) outcrosses
between/within eastern and western populations of the tetraploids of F. verna subsp.
verna did not germinate at all (Table 4).

Mean holoploid genome size (2C value) of offspring formed by intrataxa
(interpopulation) outcrosses of F. verna subsp. calthifolia and of F. verna subsp.
fertilis was comparable with the mean value of holoploid genome size (2C value) of
parental taxa (Table 5, Figs 13, 14), with some deviating cases with either slightly
higher (up to 20 % difference; F. verna subsp. calthifolia) or lower (up to 12%
difference; F'. verna subsp. fertilis) genome size than parents. Holoploid genome size
of offspring derived from intertaxa homoploid crosses between F. verna subsp.
calthifolia and F'. verna subsp. fertilis (maternal x paternal taxon) and from reciprocal
crosses was intermediate between the 2C values of their parental taxa (Table 5,
Figs 13, 14). Pollen viability (Table 6) and the percentage of well-developed achenes
(seeds) per collective fruit formed by spontaneous xenogamy (Table 7) of flowering
offspring from intrataxa (interpopulation) outcrosses of F. verna subsp. calthifolia and
F. verna subsp. fertilis and intertaxa homoploid crosses between F. verna subsp.
fertilis and F. verna subsp. calthifolia (maternal x paternal taxon) were reduced. No
unreduced male gametes formed by cultivated offspring from pollination treatments
were recorded. Visual elucidation of the morphology of cultivated offspring formed by
intertaxa homoploid crosses between diploids of F. verna subsp. calthifolia and F.
verna subsp. fertilis revealed that the offspring in the first filial generation was

morphologically intermediate between parental taxa.
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Figure 10: Percentages of well-developed achenes (seeds) per collective fruit formed by intertaxa homoploid
crosses between diploids of F. verna subsp. calthifolia (maternal taxon) and F. verna subsp. fertilis (paternal taxon,
FC x FFE), intertaxa homoploid crosses between diploid cytotypes of F. verna subsp. fertilis (maternal taxon) and
F. verna subsp. calthifolia (paternal taxon), FFE x FC), intrataxa outcrossing of the diploid cytotype of F. verna
subsp. calthifolia (Intra. Outcross. (FC)), intrataxa (interpopulation) outcrosses of diploids of F. verna subsp.
fertilis (Intra. Outcross. (FFE)).
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Figure 11: Percentages of well-developed achenes per collective fruit formed by intrataxa (interpopulation)
outcrosses of eastern populations of the tetraploids of F. verna subsp. verna (Intra. Outcross. (FV e. p.), intrataxa
(interpopulation) outcrosses of western populations of the tetraploids of F. verna subsp. verna (Intra. Outcross.
(FV w. p). intrataxa (interpopulation) outcrosses of eastern and western populations of the tetraploids of F. verna
subsp. verna (Intra. Outcross. (FV e. p. x FV w.p.), intrataxa (interpopulation) outcrosses of tetraploids of western
and eastern populations of tetraploids of F. verna subsp. verna (Intra. Outcross. (FV w. p. X FV e. p.).
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Figure 12: Germination rate of well-developed achenes (seeds) per collective fruit formed by intertaxa homoploid
crosses between diploids of F. verna subsp. calthifolia (maternal taxon) and F. verna subsp. fertilis (paternal taxon,
FC x FFE), intertaxa homoploid crosses between diploid cytotypes of F. verna subsp. fertilis (maternal taxon) and
F. verna subsp. calthifolia (paternal taxon), FFE x FC), intrataxa outcrossing of the diploid cytotype of F. verna

subsp. calthifolia (Intra. Outcross. (FC)), intrataxa (interpopulation) outcrosses of diploids of F. verna subsp.
fertilis (Intra. Outcross. (FFE)).
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Figure 13: Examples of FCM histograms. A Maternal taxon of F. verna subsp. fertilis, B Offspring derived by
intrataxa outcrossing of F. verna subsp. fertilis, C Offspring formed by intertaxa crossing of F. verna subsp. fertilis
and F. verna subsp calthifolia, (maternal x paternal. taxon), D Maternal taxon of F. verna subsp. calthifolia, E
Offspring formed by intrataxa outcrossing of F. verna subsp. calthifolia. Pisum sativum was used as an internal
standard. * Indicates the position of peak of the standard.
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Figure 14: Comparison of variability of genome size (2C DNA, pg) of parental taxa and offspring derived by
intrataxa (interpopulation) outcrossing (intrataxa xenogamy) of F. verna subsp. calthifolia (FC), F. verna subsp.
fertilis (FFE), intertaxa homoploid crossing of F. verna subsp. calthifolia and F. verna subsp. fertilis (FC x FFE,
maternal x paternal plant), and intertaxa homoploid crossing of F. verna subsp. fertilis and F. verna subsp.
calthifolia (FC x FFE, maternal and paternal plant).
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Table 6: Summary of pollen viability of offspring under the experimental crosses. Pollen viability was

estimated by FDA.

Taxon

F. verna subsp.

calthifolia

F. verna subsp.

fertilis

F. verna subsp.

fertilis

Ploidy
2X

2X

2X

Treatment
Intrataxa
outcrossing
Intrataxa
outcrossing
Intertaxa
outcrossing
FFE x FC

Ind.

3

Pop.

1

Viability [%6]

Mean £SD Min.

30.37 13.33 10.14

2561 9.19 19.11

20.96 14.83 4.29

Max.

43.76

32.11

32.69

n (count), Ind. (individual), Pop. (populations), SD (standard deviation), Min. (minimum), Max. (maximum), FFE
x FC (F. verna subsp. fertilis x F. verna subsp. calthifolia, maternal plant x paternal plant).
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5. Discussion

In the present study, the reproductive modes, pollen viability& length in most taxa of
the genus Ficaria and intertaxa homoploid crossing and intrataxa (interpopulation)
outcrossing between/within selected taxa of the genus Ficaria were assessed using a
combination of pollen exclusion bags, pollen viability analysis, morphometric analysis
of pollen length, genome size estimation and experimental crosses. Results of the
present study indicated that autonomous apomixis and selfing are almost not present
in the representatives of the genus Ficaria. Therefore, the high pollen viability,
especially in diploids, enables sexual reproduction that provides potential for intertaxa
hybridization. Potential for the generation of neopolyploids in the genus Ficaria are
supported by the recorded subtle production of abnormally large and well-developed
pollen by allotriploids of F. x selli, and by tetraploids, pentaploids, and hexaploids of
F. verna subsp. verna. This study thus provides the first evidence for potential
production of unreduced gametes in the genus Ficaria. The pollen length was found
to increase with genome size, but it cannot be solely used for the delimitation of
individual taxa/ploidy levels, because the pollen lengths were rather heterogenous
within ploidy level, especially in odd ploidy levels.

The results also demonstrated that the absence of occurrence of autonomous
apomixis and autonomous selfing and high pollen viability do not act as sufficient
prezygotic barriers to prevent hybridization between most taxa of the genus Ficaria.
This is supported by the recorded asymmetric hybridization between diploid cytotypes
(F. verna subsp. calthifolia, F. verna subsp. fertilis, and F. verna subsp. verna diploid
plants, morphologically similar to the tetraploid cytotype of F. verna subsp. verna),
which resulted in the formation of viable progeny, and experimental crosses between
geographically distant lineages of the tetraploid cytotype (western and eastern
populations of F. verna subsp. verna), which resulted in the formation of well-
developed achenes. Seedlings produced by intertaxa homoploid crossing and intrataxa
(interpopulation) outcrossing of diploids (F. verna subsp. calthifolia, F. verna subsp.
fertilis and diploid plants, morphologically similar to the tetraploid cytotype of F.
verna subsp. verna were of the same ploidy as the parental taxa, and the genome sizes
of those plants were intermediate between the genome sizes of the parental taxa.
Recorded achenes (seeds) derived from homoploid crosses between diploids of F.

verna subsp. calthifolia, F. verna subsp. fertilis, and F. verna subsp. verna, and within
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two (western and eastern) populations of the tetraploid cytotype of F. verna subsp.

verna, supports the classification of those taxa as subspecies.

5.1 Reproductive modes do not depend on the ploidy level, but pollen viability

affects the percentage of well-developed achenes

Reproductive mode plays a crucial role in reproductive outcome and on genetic within-
taxa diversity (Hamrick & Godt 1996). In general, apomixis (agamospermy) as one
possible mechanism to avoid hybrid sterility and establishment of hybrids, is almost
exclusively associated with polyploidization (e.g., Asker & Jerling 1992). Only a few
diploid taxa have been developed apomixis as a mechanism to prevent loss of genetic
heterozygosity (Noirotetal. 1997), e. g Boechera A. Love and D. Love
(Bocher 1951). However, irrespective to the ploidy level, no well-developed achenes
formed by autonomous apomixis in the studied Ficaria taxa were recorded in bagging
experiments realised in two years. Presented results are not in line with those of
Metcalfe (1939), who found the occurrence of autonomous apomixis in emasculated
and unpollinated flowers of F. verna subsp. fertilis and the potential occurrence of
pseudogamy in not emasculated and unpollinated flowers of F. verna subsp. fertilis
and F. verna subsp. verna (Metcalfe 1939). However, these results need to be
interpreted with caution, because the germination capacity of these seeds was not
investigated. Moreover, Popelka et al. (2019a), in agreement with the present study,
did not provide any evidence for the occurrence of autonomous apomixis in diploid F.
verna subsp. calthifolia and tetraploid F. verna subsp. verna (Popelka et al. 2019a).
Therefore, as was expected, the occurrence of autonomous apomixis within the genus
Ficaria seems to be unlikely.

However, the occurrence of pseudogamy that requires pollen for proper
endosperm development (Richards 1997) was not investigated in bagging experiment,
since emybryo of Ficaria taxa is not fully developed at the end of the vegetation period.
Therefore, the flow cytometric screening of seeds to reveal the mode of endosperm
development cannot be applied. Thus, the possible achenes derived by pseudogamy
within treat of spontaneous xenogamy (according to Uhlifova unpubl.) cannot be
assessed. However, any evidence of the occurrence of pseudogamy in the intertaxa
homoploid crosses between diploids of F. verna subsp. calthifolia, F. verna subsp.

fertilis, and F. verna subsp. verna was not found, since hybrids with intermediate
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genome size were recorded. Similarly, Popelka et al. (2019a) in the experimental
heteroploid crosses between diploids of F. verna subsp. calthifolia and tetraploids of
F. verna subsp. verna found only triploid offspring (Popelka et al. 2019a). Therefore,
the occurrence of pseudogamy such as autonomous apomixis seems to be unlikely, too.

The present study also showed that autonomous selfing does not occur in the
studied taxa with except for tetraploids of F. verna subsp. verna, where a negligible
number of well-developed achenes (seeds) formed by autonomous selfing were
recorded in the bagging experiments. Present results confirm general assumption of
the occurrence of the self-incompatibility in diploids, as selfing leads to loss of genetic
heterozygosity, often reflected by inbreeding depression (Schemske & Lande 1985a,
b). However, selfing may promote the likelihood of polyploid establishment
(Ramsey & Schemske 1998) and the breaking of self-incompatibility is common in
polyploids (Levin 1983; Thompson & Lumaret 1992; but see Mable 2004), as the high
genetic diversity in polyploids masks any effects of inbreeding depression in short term
period (Otto 2007). Therefore, negligible number of well-developed achenes formed
by autonomous selfing in the tetraploids of F. verna subsp. verna might be explained
by the breaking of self-incompatibility. The observed patterns of almost lacking ability
of selfing contradict with Metcalfe (1939), who found the occurrence of autonomous
selfing in unpollinated and not emasculasted flowers of F. verna subsp. fertilis and F.
verna subsp. verna (Metcalfe 1939). However, such as in autonomous apomixis, the
germination capacity of those seeds was not investigated by Metcalfe, too. Moreover,
Pogan & Wcisto (1981a) did not provide any evidence for the occurrence of selfing in
F. verna subsp. calthifolia and F. verna subsp. verna (Pogan & Wcisto 1981a).
Furthermore, the flowers are slightly proterandric (Marsden-Jones 1933) and exhibit
floral traits encouraging cross-pollination (Sell 1994; Veldkamp et al. 2015;
Viézquez 2016). In addition, all taxa can reproduce vegetatively regardeless to the
ploidy level (Marsden-Jones 1933, Sell 1994) and large local stands
(Reisch & Scheitler 2009). Therefore, self-incompatibility can also evolve as
consequence of natural selection, since many studies in self-compatible clonal plants
declare the increased reduction of species fitness via geitonogamy (Aconitum
kusnezoffii Reichenbach, Liao et al. 2009; Pulsatilla vulgaris Mill., DiLeo et al. 2018).

However, the induced autogamy, i.e., mentor effects has not been investigated
in the present study. Mentor effects could lead toa break of self-

incompatibility of outcrossing sexual species if pollen of another related species is
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present on the stigma (Richards 1997). Such a scenario was observed in close relatives
of the genus Ficaria, e.g., in sexual diploids of Ranunculus auricomus L. complex
(sect. Auricomus; Richards 1997; Horiandl & Temsch 2009).

By contrast to autonomous apomixis and autonomous selfing, seeds and viable
seedlings with the same ploidy level as parental taxa were formed by intrataxa
(interpopulation) outcrossing of diploids of F. verna subsp. calthifolia, F. verna subsp.
fertilis and tetraploids of F. verna subsp. verna in the present study. Observed numbers
of well-developed achenes (seeds) formed by intrataxa (interpopulation) outcrossing
in the present study are almost consistent with previous studies on the production of
well-developed achenes by spontaneous outcrosses in the studied Ficaria taxa
(diploids of F. verna subsp. calthifolia, Uhlitova 2019; Popelka et al. 2019a; diploids
of F. verna subsp. fertilis, Uhlitova 2019; Marsden-Jones 1933; Veldkamp 2015;
tetraploids of F. verna subsp. verna, Andreas 1966; Drenckhahn 2016; Uhlifova 2019;
Popelka et al. 2019a). The number of well-developed achenes per collective fruit
differed between parental taxa and ploidy levels. The number of well-developed
achenes (seeds) per collective fruit was higher in diploids of F. verna subsp. calthifolia
and F. verna subsp. fertilis in comparison with tetraploids of F. verna subsp. verna.
Similarly, large number of well-developed achenes derived from the xenogamy and
high germination of the diploids of F'. verna subsp. calthifolia have been reported also
by Drenckhahn (2016). Dominant importance of sexual reproduction for maintenance
and dispersal of populations of F. verna subsp. calthifolia is also reported by
Popelka et al. (2019a), who revealed that genotypic diversity in all three studied
populations was 1.0, i.e., the highest possible. Prevalence of sexual reproduction is
also expected in the diploids of F. verna subsp. fertilis (Uhlitova 2019; Marsden-
Jones 1933; Veldkamp 2015), but the present study found that the number of well-
developed achenes per collective fruit is slightly lower in comparison with that of the
F'. verna subsp. calthifolia. Similar pattern was observed also by Uhlifova (unpubl.).
Lower pollen viability is likely to explain lower achene (seeds) production. However,
recorded reduced number of well-developed achenes per collective fruit of F. verna
subsp. fertilis might be an artefact of low number of the sampled populations through
all distribution range, more extensive sampling would potentially reveal a distinct
pattern.

In contrast to those diploid cytotypes, the tetraploids of F. verna subsp. verna

produced a lower number of well-developed achenes per collective fruit. This is
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consistent with general assumption that the postzygotic genomic incompatibilities
between parental taxa related to unbalanced chromosome pairing during meiosis are
more common in polyploids (Ramsey & Schemske 1998). Observed pattern of
production of well-developed achenes by F. verna subsp. verna is consistent with
previous data that the F. verna subsp. verna is almost seed sterile taxon, spread by
fragmentation of bellow ground tubers (Marsden-Jones 1933; Andreas 1966;
Taylor & Markham 1978; Wcisto & Pogan 1981; but see Popelka et al. 2019a) and
additionally also by axillary bulbils (Sell 1994). Vegetative reproduction is commonly
prevalent in polyploids (Ramsey & Schemske 1998; Fawcett & Van de Peer 2010;
Herben et al. 2017). However, Popelka et al. (2019a) in comparison to former studies
(Marsden-Jones 1933; Andreas 1966; Taylor & Markham 1978;
Woeisto & Pogan 1981) reported higher rates of sexual reproduction of F. verna subsp.
verna and the relatively high genotypic diversity of these populations. Those
contradictory results may be explained by the differenences of studied populations that
were provided from different parts of distribution range of among authors and require
further study. Polyphyletic origin of F. verna subsp. verna is also suggested by
Drenckhahn et al. (2017). However, additional factors such as recurrent origin,
variable selection pressure in the different parts of the distribution range could be
responsible for the recorded variation in the numbers of well-developed achenes per
individual. The high variation in numbers of well-developed achenes per collective
fruit among individual plants of the tetraploids of F. verna subsp. verna has been
actually observed by Uhlifova (unpubl.).

The observed intra-taxa variation in the numbers of well-developed achenes
per collective fruit derived from spontaneous xenogamy at the large geographical
range (according to Uhlifova unpubl.) could be partly explained by pollen viability of
the pollen donor plants in the present study. The pollen viability is generally
considered as the most important factor, that could contribute to the limitation of
number of well-developed achenes per collective fruit (e.g., Cirsium (L.),
Bures et al. 2010). Although the limitation of number of well-developed achenes per
collective fruit by resource availability and geitonogamy could be ruled out in the
present study, the variation of numbers of well-developed achenes per collective fruit
among the individual plants was still recorded. This variation (according to
Uhlitova unpubl.) can be substantially affected by pollen limitation

(Ramsey & Schemske 1998) or by interspecific pollen deposition (Briggs et al. 2015).
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The interaction between intraspecific and interspecific pollen deposition generally
results in lower seed set, as intraspecific pollen germination may be reduced by the
high density of interspecific pollen on a stigma. This way of limitation of reproductive
output was also reported in the family Ranunculaceae (e.g., Delphinium barbeyi;
Briggs et al. 2015) and it could be expected also in the genus Ficaria. Considering the
overlapping flowering periods, generalist-pollination and lack of the floral assurance
among different Ficaria taxa/ploidy levels, the high interspecific pollen deposition in

the common garden is probable.

5.2 Pollen viability relates to the ploidy level
Pollen viability is commonly influenced by the ploidy level and origin of taxa, where
decreased pollen viability is wusually detected in F1 homoploid hybrids
(Ramsey & Schemske 1998; Ramsey & Schemske 2002). The pollen viability of
diploids of F. verna subsp. calthifolia (mean 54.79 %, range 23.44 % — 78.49 %, n=69)
was high, but in diploids of F. verna subsp. fertilis (mean 37.50 %, range 0 % —
70.53 %, n=25) was reduced. In contrast to the diploids of F. verna subsp. calthifolia,
the pollen viability of tetraploids of F. verna subsp. verna (mean 36.20 %, range 0.58 %
— 69.07 %, n=208) and F. verna subsp. ficariiformis (mean 21.12 %, range 0.3 %
—73.6 %, n=21). was reduced with the exception of tetraploid plants morphologically
similar to the diploid cytotype of F. verna subsp. calthifolia, considered as tetraploids
of the F'. verna subsp. calthifolia (mean 51.36 %, range 27.81 % —70.91 %, n=5). Poor
pollen viability was detected in the odd ploidy levels, i.e., in the triploid cytotype of F.
xsellii (mean 11.55 %, range 1.23 % — 24.28 %, n=13), in the pentaploid cytotype of
F. verna subsp. ficariiformis (mean 25.51 %, range 8.58 — 65.19, n=7), and F'. verna
subsp. verna (mean 8.8 %, range 0 % — 28.22, n=9). Observed patterns of pollen
viability are almost consistent with previous studies on pollen viability in several
Ficaria taxa (F. verna subsp. calthifolia, Pogan & Wcisto 1974; F. verna
subsp. fertilis, Marchant & Brighton 1974; Nicholson 1983; tetraploid cytotype of F.
verna subsp. verna, Neves 1942; Gill et al. 1972; Marchant & Brighton 1974; the
triploid cytotype of F.  verna subsp.verna (Marchant & Brighton 1974;
Pogan & Wcisto 1974; Popelka et al. 2019b).

Findings of high pollen viability detected in diploids of F. verna subsp.

calthifolia agreed with the general assumption that homologous chromosomes pair
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nonrandomly and are segregated independently and regularly in diploids
(Ramsey & Schemske 2002). The lower mean pollen viability of F. verna subsp.
fertilis, in comparison with mean pollen viability of F. verna subsp. calthifolia would
be rather than to disorders in microsporogenesis closely matched to the existence of
almost sterile plants of F. verna subsp. fertilis in the present study. Pollen sterility of
F. verna subsp. fertilis might be explained by inappropriate conditions for this taxon
in the common garden. Besides, more extensive and intensive sampling could reveal a
different pattern, as a low rate of disorder during meiosis was actually observed in the
diploids of F. verna subsp. calthifolia (Pogan & Wcisto 1983).

The observed larger reduction of pollen viability in tetraploids of F. verna
subsp. verna, and F'. verna subsp. ficariiformis in comparison with diploids of F. verna
subsp. calthifolia and F. verna subsp. fertilis could be interpreted as meiotic
disturbances in microsporogenesis that are more common in taxa with hybrid or
polyploid origin (Ramsey & Schemske 1998; Ramsey & Schemske 2002, and the
references therein). In general, pollen viability of neoallopolyploids is higher than the
pollen viability of neoautopolyploids, since the bivalent pairing of chromosomes
during meiosis (disomic inheritance) and associated no complexes, bridges or
fragments, and few  univalents are observed in  allopolyploids
(Ramsey & Schemske 2002, and the references therein). Ramsey & Schemske (2002)
reviewed that that the mean percent occurrence of multivalents (trivalents and
quadrivalents) is significantly higher in autopolyploids (28.8 %) than in allopolyploids
(8.0 %, Ramsey & Schemske 2002). However, the transition in meiotic behaviour
from multivalent pairing to bivalent pairing was recorded in subsequent generations of
autopolyploids (Sybenga 1996; Soltis et al. 2009). Therefore, pollen variability of
tetraploids of F. verna subsp. verna that did not reflect any geographical pattern might
be explained by different reccurent origin of individual plants in their distribution
range.

In contrast to F. verna subsp. verna pollen viability of tetraploid of F. verna
subsp. ficariiformis, measured on the lower number of populations was reduced, but
populations examined on pollen viability covered the whole distribution range of this
taxon. Therefore, reduced pollen viability of F. verna subsp. ficariiformis might be
generally explained by recent origin (Ramsey & Schemske 2002, and the references
therein).

Observed deviation patterns in pollen viability of the tetraploid plants,
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morphologically similar to diploid of F. verna subsp. calthifolia, where the
autotetraploid origin with diploids of F. verna subsp. calthifolia as a parental taxon or
allotetraploid origin with diploid ancestors of F. verna subsp. calthifolia as parental
taxa is suggested (Popelka unpubl.), might be explained by the evolutionary
divergence of the tetraploid of F. verna subsp. calthifolia in the past. Subsequent
restoration of hybrid fertility in autopolyploids was observed several times
(Ramsey & Schemske 2002, and the references therein).

The observed near full sterility of odd ploidy levels is caused by the absence of
mechanism that could evenly divide the chromosomes of an odd-number configuration
in meiosis (Ramsey & Schemske 1998). Consequently, aneuploid gametes are
commonly produced by odd ploidy level plants, as, for instance, in triploids of either
(a) two bivalents and one univalent; (b) one trivalent, or (c) three univalents are formed

(Ramsey & Schemse 2002).

5.3 The degree of the variation in pollen length relates to ploidy level

In general, the size of pollen increases with the increase of genome size/ploidy level
within related taxa (Bennett 1972, Knight et al. 2010, and the references therein).
Differences in pollen length of the studied Ficaria taxa/ploidy levels support this
assumption (Fig. 8). The mean pollen length increases from diploids to hexaploids
(Fig. 8,9). However, it cannot be solely used for the delimitation of individual
taxa/ploidy levels, since the differences in the genome size are small (Kone¢na 2018;
Kobrlova unpubl.; Popelka unpubl.) and the heterogenous pollen lengths are produced
by high ploidy levels. Degree of variability of pollen length differed between ploidy
levels.

Variability of pollen length was lower in diploids of F. verna subsp. calthifolia
(mean 42.82 um, range 39.33 pm —45.76 um, n=67) and F. verna subsp. fertilis (mean
42.4 um, range 39.31 um — 45.49 um, n=22) than in the tetraploids of F. verna subsp.
calthifolia (mean 50.84 pm, range 39.31 um — 52.34 um, n=4), F. verna subsp. verna
(mean 48.51 um, range 43.16 um — 54.44 um, n=197) and F. verna subsp. ficariiformis
(mean 49.58 pum, range 43.74 um — 54.81 pm, n=13). The highest pollen viability was
recorded in odd ploidy levels, i.e., triploids of F. xsellii (mean 44.98 um, range
39.79 um — 51.92 uym, n=13), and the pentaploids of F. verna subsp. ficariiformis
(mean 49.94 pum, range 48.60 um — 51.09 um, n=7), and F. verna subsp. verna (mean
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49.21 pm, range 45.66 pm — 52.69 um, n=5, Fig. 7). The observed pattern of pollen
variability closely matches to the recorded higher homogeneity of pollen length in
diploids than in even-ploidy and especially in the odd ploidy levels. In general, meiotic
disturbances in microsporogenesis such as highly irregular chromosome pairing,
lagging chromosomes and chromosome bridges, micronuclei, and multiple spindles
are common in hybrids and polyploids, especially in neoautopolyploids and in odd
ploidy levels (Ramsey & Schemske 1998; Ramsey & Schemske 2002;
Henry et al. 2005; Wang et al. 2010, and the references therein). Frequent production
of aneuploid gametes by a karyological approach was also documented in triploids of
F. xsellii (Pogan & Wcisto 1974) and tetraploids of F. verna subsp. verna
(Pogan & Wcisto 1981a).

5.4  Abnormal pollen length suggesting a different amount of genome

Production of unreduced gametes with the full somatic chromosome number is
generally representing a prevalent evolutionary mechanism contributing to the
establishment of polyploids (Ramsey & Schemske 1998; Kreiner et al. 2017b) as
unreduced gametes can serve as bridges between diploids and tetraploids (“triploid
bridge”, Ramsey & Schemske 1998). However, unreduced gamete production is
generally rare in the field and unevenly produced across different individuals in
dependence  on  the mating system and  environmental  stress
(Bretagnolle & Thompson 1995; Ramsey & Schemske 1998; Mason & Pires 2015;
Kreiner et al. 2017a, 2017b). Kreiner et al. (2017b), based on the analysis of 1696
individuals of 24 species of the family Brassicaceae by flow cytometry, revealed that
most individuals (75.1 %) produced very low levels of unreduced gametes, from 0.1 %
to 2 %, but a minority of individuals (6.7 %), produced substantial more unreduced
gametes, which exceeded 5 %.

Limited production of unreduced gametes is expected also in the studied
Ficaria taxa here, as pollens with substantial length were only rarely recorded in
triploids of F. x sellii, and tetraploids, pentaploids, and hexaploids of F'. verna subsp.
verna and it may therefore suggest the occurrence of unreduced gametes. However,
the large size of those gametes can be also generally attributed to irregular pairing of
chromosomes during meiosis that do not differ between auto and allopolyploids and

subsequently cause a variable genome content (“aneuploidy*,
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Ramsey & Schemske 2002; Henry et al. 2005) or to cytomixis (migration of
chromosomes  between  meiocytes  through  cytoplasmic  connections,
Falistocco et al. 1995; Mursalimov et al. 2013). Moreover, triploid or hexaploid
seedlings were not found in experimental homoploid crosses, and the pollen of the
homoploid hybrids also did not show any evidence for unreduced gamete production.
However, the non-occurrence of unreduced gametes in the experimental homoploid
crosses may be simply an artefact caused by the low number of involved experimental
plants that therefore resulted in a low number of achenes and less probability to detect
the potential unreduced gametes.

Irrespective of the uncertainty related to the unreduced pollen production above,
triploid (Drenckhahn 2016; Drenckhahn et al. 2017) and tetraploid plants
(Popelka unpubl.) without knowledge of their origin, morphologically similar to
diploids of F. verna subsp. calthifolia were reported from Greece
(Drenckhahn et al. 2017; Popelka unpubl.). Furthermore, neoallotriploid origin of F.
xsellii was confirmed by a molecular approach (Popelka et al. 2019a). Moreover, the
hexaploid plants morphologically similar to the tetraploids of F. verna subsp. verna
with unclear origin have been recorded a few times in the past (So6 & Borhidi 1964;
Anders-Gasser 1985). Moreover, nothing is known about the origin of other polyploid
taxa such as tetraploids of F. verna subsp. chrysocephala and tetraploids and
pentaploids of F. verna subsp. ficariiformis.

The establishment of polyploid of bulbil-producing F. verna subsp. verna by
unreduced gametes was proposed by Drenckhahn et al. (2017) based on the genome
size and geographical distribution (Drenckhahn et al. 2017). Drenckhahn et al. (2017)
concluded that the tetraploid of F. verna subsp. verna contains two different lineages
with divergent origin, western and eastern ones. For the western lineage/populations
of the tetraploid cytotype of F. verna subsp. verna (a) allotetraploid origin with F.
verna subsp. calthifolia and F. verna subsp. fertilis as parental taxa or (b)
autotetraploid origin with F. verna subsp. fertilis as a parental taxon is considered.
Autotetraploid origin contradicts to Nicholson (1983), who revealed the absence of
axillary bulbils in plants developed by experimental autotetraploidization of F. verna
subsp. fertilis. For the eastern lineage of F. verna subsp. verna then
Drenckhahn et al. (2017) suggested an autotetraploid origin of F. verna subsp. verna
with F. verna subsp. calthifolia as a parental taxon. However, autotetraploid origin of

the eastern lineage F. verna subsp. verna with F. verna subsp. calthifolia as a parental
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taxon contradicts to conclusions by Kone¢na (2018), who found that the monoploid
genome size of F. verna subsp. verna is gradually decreasing along NW-SE direction
in south-eastern Europe (Balkans), while that of F. verna subsp. calthifolia is
increasing along the same direction. Therefore, Kone¢na (2018) was convinced that,
if F. verna subsp. verna originated from F. verna subsp. calthifolia, the geographic
patterns in the monoploid genome size of both taxa should be the same
(Kone¢na 2018). However, unpublished research by Popelka (unpubl.) observed in the
field and sampled Ficaria plants, morphologically similar to the tetraploids of F. verna
subsp. verna, which were later identified to be diploids (Popelka unpubl.). The
production of unreduced gametes by polyploids in the present study suggests the origin

of auto(allo)polyploids by unreduced gametes, at least in the past.

5.5 Prezygotic barriers do not contribute to reduction of gene flow

Prezygotic barriers are usually recognized to be most important for reproductive
isolation of parental species (Rieseberg & Willis 2007; Lowry et al. 2008;
Widmer et al. 2009; Baack et al. 2015; Pickup et al. 2019; Yan et al. 2019) or for
stabilization of once-established hybrids (Wissemann 2007; Koutecky et al. 2011;
Barke et al. 2018) The prezygotic barries usually evolve faster than postzygotic
reproductive isolation (Rieseberg & Willis 2007; Lowry et al. 2008;
Widmer et al. 2009; Baack et al. 2015; Yan et al. 2019). Apomixis (Petit et al. 1999;
Koutecky etal. 2011), and  selfing  (Petitetal. 1999;  Widmer et al. 2009;
Koutecky et al. 2011; Brys et al. 2016; Becher et al. 2020), which are among the
strongest ~ prezygotic  barriers  (Petit etal. 1999;  Rieseberg & Willis 2007;
Lowry et al. 2008), especially in established hybrids (Barke et al. 2018), do not seem
to contribute to prevent homoploid mating between studied taxa of the genus Ficaria.

Besides, the lacking ability of autonomous apomixis and autonomous selfing,
that was observed in the present study, generally strong prezygotic barriers such as
different pollinators, diverged floral morphology and flowering periods
(Schemske & Bradshaw 1999), were not recorded in the studied Ficaria taxa
(Marsden-Jones 1933; Taylor & Markham 1978; Masters & Emery 2015; present
study). Therefore, the absence of above-mentioned prezygotic reproductive barriers
together enables opportunities for the occasional formation of homoploid and

heteroploid hybrids between the studied taxa of the genus Ficaria. The formation of

44



viable seedlings in homoploid crosses between diploids (F. verna subsp. calthifolia, F'.
verna subsp. fertilis and diploid plants morphologically similar to the tetraploid
cytotype of F. verna subsp. verna) and in heteroploid crosses between diploids (F.
verna subsp. calthifolia) and tetraploids (F. verna subsp. verna) were demonstrated
(present  study, Popelka etal. 2019a, respectively).Therefore, pollen-stigma
incompatibility as another postpollination prezygotic barrier is weak or absent in the
studied Ficaria taxa.

However, another prezygotic barrier such as complete ecogeographical
differentiation, generally may promote complete reproductive isolation (Vallejo-
Marin & Hiscock 2016). However, the ecogeographical differentiation between
recognized taxa of the genus Ficaria is not well known (e.g., Gill et al. 1972;
Taylor & Markham 1978; Késtner & Fischer 2006; Post et al. 2009; Veldkamp 2015;
Popelka et al. 2019b), but mixed populations consisting of more taxa/ploidy levels
were found to be rare (the total number of sites sampled were 443, Popelka unpubl.).
Therefore, the recent intertaxa hybridization between Ficaria taxa probably could be
extremely reduced in the field. However, a possible hybrid could be maintained
considering the ability of vegetative reproduction in most Ficaria taxa (Marsden-
Jones 1933; Sell 1994). Therefore, one established hybrid could persist and spread in
the field such as an almost seed sterile allotriploid of F. verna subsp. xselli

(Popelka et al. 2019b).

5.6 Reproductive output of experimental crosses depends on the ploidy level
and direction of crosses: consequences on hybrid fitness

Reproductive outputs by homoploid crosses between different taxa (species) are
usually constrained by postzygotic barriers, 1. e., endosperm failure (Lafon-
Placette & Kohler 2016), hybrid inviability, hybrid sterility
(Rieseberg & Carney 1998; Rieseberg et al. 1999; Lowry et al. 2008;
Abbott et al. 2013; Baack et al. 2015; Vallejo-Marin & Hiscock 2016). However,
these postzygotic barriers could be lacking/overcome, and homoploid hybridization
results in the formation of hybrid swamps/hybrid zones by introgression
(Barton & Hewitt 1985; Rieseberg et al. 1999; Abbott 2017). Investigation of
intertaxa compatibility demonstrated that the postzygotic barrier via endosperm failure

did not contribute to the prevent of intertaxa homoploid crosses in studied Ficaria taxa.
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Intertaxa homoploid crosses between diploid cytotypes (F. verna subsp. calthifolia, F.
verna subsp. fertilis and F. verna subsp. verna) and within one tetraploid cytotype
(western and eastern lineages of F. verna subsp. verna), resulted in the formation of
viable achenes (seeds) and in diploids also in the formation of viable seedlings.
However, viable achene (seed) production per collective fruit considerably varied
between different taxa/ploidy levels and pollination treatments. Different levels of
reproductive isolation between the studied taxa that can have different evolutionary
impact are suggested.

Intertaxa homoploid crosses of F. verna subsp. fertilis and F. verna subsp.
calthifolia (maternal x paternal taxon) produced a lower number of viable achenes
(seeds) than the intrataxa (interpopulation) outcrosses of those taxa. In general,
genome incompatibility increases with increasing differences in genomes between
parental taxa (Ramsey & Schemske 1998) and depends on the direction of crosses
(Stadler et al. 2021, and the references therein).

The maternal excess crosses were found to be more successful, since
endosperm failure is less common in maternal excess crosses (retrieved by
Stédler et al. 2021 and references therein). Asymmetric hybridization is well known
from many homoploid crosses (Tiffin 2001; Lowry etal. 2008). Asymmetric
hybridization was also observed in the present study, where maternal excess intertaxa
homoploid crosses of F. verna subsp. fertilis and F. verna subsp. calthifolia (maternal
x paternal taxon) was more successful than the reciprocal crosses.

However, no asymmetry was observed in homoploid crosses of diploids of F.
verna subsp. fertilis and F'. verna subsp. calthifolia (maternal taxa) with diploids of F.
verna subsp. verna (paternal taxon). The homoploid crosses of F. verna subsp. fertilis
and F. verna subsp. calthifolia (maternal taxa) and the of F. verna subsp. verna
(paternal taxon) produced a comparable number of viable achenes (seeds), but these
numbers were lower than in homoploid reciprocal crosses between F. verna subsp.
calthifolia and F. verna subsp. fertilis and than intrataxa (interpopulation) outcrosses.
The obtained pattern can be caused by the geographical distance between the studied
taxa. The diploid of F. verna subsp. verna was provided from Russia, i.e., the distinct
part of the distribution range of Ficaria taxa. In general, the genomic incompatibilities
are reflected by geographic distance of the studied taxa ("Dobzhansky-Miiller model”,
Dobzhansky 1936). However, simply artefact cannot be also excluded, since just one

plant was involved in experimental homoploid crosses in the present study.
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The present study also showed that asymmetric hybridization was also not
recorded in the intrataxa (interpopulation) crosses between the western and eastern
populations and within the western and eastern ones of the tetraploid cytotype of F.
verna subsp. verna. The yield of viable achenes (seeds) from intrataxa (interpopulation)
crosses between the western and eastern populations and within western and eastern
ones of F. verna subsp. verna was comparable but scarce. The obtained pattern of
limited production of achenes (seeds) did not reflect the geographical distance of the
involved plants. Therefore, it supports the low degree of genome differentiation
between western and eastern populations of the tetraploids of F. verna subsp. verna.
Observed patterns contradict with Drenckhahn et al. (2017), who proposed the
existence of two separated lineages, eastern and western ones, within F. verna subsp.
verna (Drenckhahn et al. 2017).

However, the observed patterns of achene (seed) production in intertaxa
homoploid crosses of diploids of F. verna subsp. calthifolia, F. verna subsp. fertilis,
and F. verna subsp. verna and intrataxa (interpopulation) crosses of the western and
eastern populations of the tetraploid cytotype of F. verna subsp. verna in the present
study could be distinct from the patterns under natural conditions. In general, two
possible constraints of experimental hybridization should be considered. First, in
experimental conditions, the hybridization may be completely different from
hybridization in natural conditions owing to the absence of natural selection and
competition pressure (e.g., Popelka et al. 2019a, 2019b). Secondly, mixed pollination
by intrataxa and intertaxa pollen was not realized. Therefore, we cannot rule out the
possible role of pollen competition (Rieseberg et al. 1995; Baack et al. 2015; Alonso-
Marcos et al. 2018) and mentor effect (Richards 1997). Experimental crosses based on
mix pollination combined with revealing the origin of progeny by molecular markers
would be crucial for the elucidation of the mechanism of pollen competition between
Ficaria taxa.

Irrespective of the constraints associated with differences between expeimental
and field conditions and mixed pollination, germination have strongest effect on the
postzygotic barrier. Offspring produced by intertaxa homoploid, reciprocal crosses of
diploids (F. verna subsp. calthifolia, F. verna subsp. fertilis, F. verna subsp. verna)
and outcrosses weakly differed in their germination capacity. Reduced germination
capacity of seeds from intertaxa homoploid crosses of F. verna subsp. calthifolia, F.

verna subsp. fertilis was probably caused by genomic incompatiblities in developing
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seeds, as a large amount of seemingly developed seeds are unable to germinate in the
Ficaria taxa (Andreas 1954, Metcalfe 1939). Furthermore, seeds of Ficaria taxa are
dormant (Salisbury 1925 cit. in Taylor& Markham 1978) and germinate gradually in
several consecutive years. Sterckx observed that achenes sown in summer mostly
germinate after two years (Sterckx 1900 cit. in Metcalfe 1936).

Unfortunately, the fitness of hybrids and thus the role of the potential
backcrossing of hybrids with parental taxa and the production of unreduced pollen by
homoploid hybrids cannot be fully assessed by the present study. Ficaria seedlings
usually form one single cotyledon leaf and one assimilation leaf in the first year
(Taylor & Markham 1978), and no offspring usually flower in the first year, almost all
offspring flower in the third year (Marsden-Jones 1933). The period of this study was
too short to obtain enough flowering hybrids, allowing experimental backcrossing with
parents to reveal the potential of gene flow between taxa via their (homoploid) hybrids.
There was just limited number of measures of pollen viability of F1 hybrids to allow
statistical comparisons, but findings of pollen viability seem to be in agreement with
general assumption that the pollen viability of new hybrid is lower than is their parental
taxa (Ramsey & S Schemske 2002). However, persistence of once-formed hybrid in
the genus Ficaria is suggested by the capacity of vegetative reproduction (Marsden-
Jones 1933; Sell 1994), and comparable habitat requirements of hybridizing taxa that
generally lead to the mitigated reduction of hybrid fitness in parental habitats
(reviewed by Baack et al. 2015). Consequently, the introgressive hybridization, which
is the prevailing outcome of hybridization (Gross & Rieseberg 2005), cannot be
excluded, since the restoration of hybrid fertility often occursin subsequent
generations (Rieseberg 1995; Rieseberg et al. 1999; Seehausen 2004; Abbott 2017).
Molecular evidence are needed to provide proof of recent gene flow between Ficaria

taxa.

5.7 Genome size and morphology of hybrids seem to be intermediate
between parental taxa

Homoploid hybridization is usually accompanied with changes in genome size,
including chromosome rearrangements, amplifications of tandem repeats, activation
of mobile repetitive elements, and gene expression modifications (reviewed by

Glombik et al. 2020). It is hypostatized that the genome size of homoploid hybrids is
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intermediate between parental taxa (e. g., Hieracium s. str., Mraz & Paule 2006;
Cyanus Mill., Olsavska & Loser 2013). Here, the genome size of offspring from the
first filial generation formed by intertaxa homoploid crosses between diploids of F.
verna subsp. calthifolia, and F. verna subsp. fertilis in reciprocal crosses almost agreed
with this general assumption. The intermediate genome size of hybrids was in the
genus Ficaria, also observed for F. verna subsp. xselli derived from inter-ploidy
hybridization between F. verna subsp. verna and F. verna subsp. calthifolia
(Popelka et al. 2019b). However, shifts from the intermediate genome size of fertile
hybrids would be expected in the subsequent generations by backcrossing of hybrids
with parental taxa (Baack et al. 2005).

Few deviating cases in genome size of offspring derived from intrataxa
(interpopulation) crosses of diploids of F. verna subsp. calthifolia, and F. verna subsp.
fertilis with either slightly higher genome size or lower genome size were observed,
respectively. Increasing in genome size might be explained by differences in intron
size and transposon copy number between merging parental genomes. Decreasing in
genome size may be generally caused by elimination of retrotransposons
(Baack et al. 2005).

Hybridization is also reflected by the changes of the morphology. In general,
hybrids display a mosaic parent-like, and novel trait rather than intermediate ones in
the  first  filial and especially in the subsequent generations
(Rieseberg & Ellstrand 1993, Rieseberg 1995; Rieseberg et al. 1999; Mallet 2005,
Abbott et al. 2013). In contrast to this general assumption, intermediate character of
homoploid hybrids was based on the visual elucidation suggested in the present study.
This contradictory result might be explained by rarely occurred coherence of parental
traits that is reflected by the intermediate character of the hybrids (Rieseberg 1995 and
references therein). Intermediate character is furthermore common in the first filial
generation, since the backcrossing and transgressive hybridization (Rieseberg 1995
and references therein), that are resulted in reinforcements associated with phenotypic
divergence are occurr in subsequent generations (Ramsey & Schemske 2002). Similar
intermediate character of hybrids was documented in an almost sterile allotriploid
hybrid between F. verna subsp. calthifolia, and F. verna subsp. verna (F. xselli,
Pogan & Wcisto 1974, 1986; Popelka et al. 2019b) and between F'. verna subsp. verna
and F'. verna subsp. fertilis (Mardsen-Jones & Turrill 1952).
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5.8 Taxonomic implications

Hybridization may have made taxonomic difficulties in the genus Ficaria resulting in
considerable nomenclatural chaos (Veldkamp 2015), but it also may strengthen
reproductive barriers between taxa that occasionally came into contact and contribute
to speciation (e. g., Euphrasia L., Becher et al. 2020). Previous classifications based
on morphological approach (Sell 1994; Post et al. 2009; Stace 2010) and the combined
geographical and morphological approach (Veldkamp et al. 2015) have delimited all
recognized taxa within the genus Ficaria as subspecies (Sell 1994; Post et al. 2009;
Stace 2010; Veldkamp et al. 2015). In contrast to delimitation as subspecies, several
recently published studies based on the cytogenetic approach with knowledge of the
genome size and ploidy level (Zonneveld et al. 2015), and the morphological approach
(Drenckhahn 2016; Vazquez 2016) suggest an infrageneric classification of all
recognized taxa as species (Zonneveld et al. 2015; Drenckhahn 2016; Vazquez 2016).

Various taxonomic classifications are caused by the existence of
morphologically intermediate phenotypes, overlapping values of morphological traits
between taxa, strong morphological plasticity (Sell 1994; Post et al. 2009;
Veldkamp et al. 2015; Drenckhahn 2016; Popelka et al. 2019b;  Uhlitova 2019),
shared haplotypes in different taxa (Sochor unpul.) and observed genome size
continuum (Kone¢na 2018). However, the present study suggests that the
hybridization between taxa with the same ploidy level potentially can occur at sites
where different taxa co-occur. In general, this ability of gene flow might be explained
by the low degree of the genomic divergence between parental taxa and close
evolutionary relationships (Paun et al. 2009). Therefore, I expect that the recent
divergence of Ficaria taxa is not enough for the creation of sufficient reproductive
isolation barriers. This mechanism at the microevolutionary level is supported by
Yakimowski & Reiseberg (2014), who found that the creation of effective
reproductive isolation barriers, particularly within homoploid hybrids, is long-term
process. Thus, successful hybridization and backcrossing may threaten the existence
of closely related parental taxa of the genus Ficaria because of the demographic
replacement of parental taxa or the breakdown of the genetic integrity of parental taxa.
Blurring species borders is a quite widespread phenomenon in the field (e.g.,
Rhymer & Simberloff 1996). Therefore, in line with Sell (1994), Post et al. (2009),
Stace (2010), and Veldkamp et al. (2015), I proposed classification of diploids of F.
verna subsp. caltihifolia and F. verna subsp. fertilis and tetraploids of F. verna subsp.
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verna in the genus Ficaria as subspecies. In addition, rare production of unreduced
gametes may lead to the (auto)hexaploid origin of the hexaploid cytotype of F. verna
subsp. verna. Additional, detailed studies on nuclear and chloroplast markers,
chromosome number, and morphology can be useful to the comprehensive taxonomic

classification of the Ficaria taxa.
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6. Conclusion

By combining a quantitative and qualitative study of autonomous apomixis,
autonomous selfing, and pollen viability & length of most Ficaria taxa, and
experimental intertaxa homoploid crosses between selected taxa, the present study
demonstrates that the prezygotic and postzygotic reproductive isolation mechanisms
between selected taxa of the genus Ficaria are weak. Autonomous apomixis and
autonomous selfing seem to not contribute to reproductive isolation or to maintain the
genetic integrity of established hybrids. Even pollen viability does not act as barrier
against gene flow. Hence, the potential hybridization, and persistence of hybrids via
vegetative reproduction, especially in polyploids, could threaten the taxa integrity of
the genus Ficaria at sites where they co-occur.

Nevertheless, further studies to fill the gaps in the knowledge of prezygotic and
postzygotic reproductive barriers are needed, together with additional studies on
unreduced gamete formation, germination capacity of progeny and experiments on
gene flow from hybrids to parental taxa, are necessary to understand the strength of
reproductive isolation barriers and the role of hybridization and backcrossing in the
genus Ficaria. Additional studies upon using molecular markers (e.g., AFLP, cp DNA,
microsatelites) are required for understanding the phylogenetic structure of the genus

Ficaria.
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Appendix 2: Examples of graphical output from a microscope Olympus BX60: observing of pollen viability,
shape and length, pollen viability estimated by fluorescein diacetate, (A, B) diploid cytotype of F. verna subsp.
calthifolia, (C,D) tetraploid cytotype of F. verna subsp. calthifolia, (E,F) diploid cytotype of F. verna subsp.
fertilis, (G,H) tetraploid cytotype of F. verna subsp. ficariiformis, (CH,I) pentaploid cytotype of F. verna subsp.
ficariiformis, (J,K) triploid cytotype of F. verna subsp. sellii, (L,M) tetraploid cytotype of F. verna subsp. verna,
(N,O) pentaploid cytotype of F. verna subsp. verna, (P,Q) hexaploid cytotype of F. verna subsp. verna, all pollen
grains are on the left, fluorescently detected viable pollen grains are on the right
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Appendix 3: Diploid cytotype of F. verna subsp. calthifolia, (A) habitus, (B) flower, (C) anthokyan in the petals, (D)
leaf, (E) achenes, ID: 15 _22_8.
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Appendix 4: Diploid cytotype of F. verna subsp. fertilis, (A) habitus, (B) flower, (C) anthokyan in the petals, (D) leaf,
(E) flower stalk, (F) flower, ID: 17_56_5 (A, B, C, E), and 19_36_4. (D, F)
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Appendix 5: Diploid cytotype of F. verna subsp. verna, (A) habitus, (B) flower, (C) anthokyan in the petals,
(D) leaf, (E) flower stalk, ID: 15 _24A 13
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Appendix 6: Triplod cytotype of F. verna subsp. verna, (A) habitus, (B) flower, (C) anthokyan in the petals,
(D) leaf, (E) flower stalk, ID: 15 _24A _10.
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Appendix 7: Tetraploid cytotype of western lineage of F. verna subsp. verna, (A) habitus, (B) flower, (C) anthokyan in the
petals, d) petiole, (E) leaf, (F) achenes, (G) flower stalk, ID: 16_32 2 (A, B, C, D, F, G)and 16_49 1. (E)
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Appendix 8: Tetraploid cytotype of eastern lineage of F. verna subsp. verna, (A) habitus, (B) flower, (C)
anthokyan in the petals, (D) leaf, (E) flower stalk, ID: 15_12 7.

84



Appendix 9: Pentaploid cytotype of F. verna subsp. verna, (A) habitus, (B) flower, (C) anthokyan in the petals,
(D) leaf, (E) flower stalk, ID: 17_99 3.
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Appendix 10: Hexaploid cytotype of F. verna subsp. verna, (A) habitus, (B) flower, (C) anthokyan in the petals,
(D) leaf, (E) flower stalk, ID: 17_91_1.
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Appendix 11: Tetraploid cytotype of F. verna subsp. ficariiformis, (A) habitus, (B) flower, (C) anthokyan in the
petals, (D) leaf, (E) flower stalk, ID: 16_72_4.
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Appendix 12: Pentaploid cytotype of F. verna subsp. ficariiformis, (A) habitus, (B) flower, (C) anthokyan in
the petals, (D) leaf, (E) flower stalk, ID: 17_109_8.
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