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Abstract 

This diploma thesis deals with the electrochemical processes in lithium-ion 

batteries. To characterize the different electrochemical processes a method called 

electrochemical impedance spectroscopy (EIS) is used. In the first couple of chapters 

the different types of batteries and their differences are described. The thesis also 

contains the description of an experimental device used for EIS. The thesis also contains 

a comparison between the experimental device and the device from BioLogic Science 

Instruments. 
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Abstrakt 

Tato diplomová práce se zabývá elektrochemickými procesy v lítium-iontových 

bateriích. Pro charakterizaci různých elektrochemických procesů se používá metoda 

nazývaná elektrochemická impedanční spektroskopie (EIS). V prvních kapitolách jsou 

popsány různé typy baterií a jejich rozdíly. Práce také obsahuje popis experimentálního 

zařízení používaného pro EIS. Součástí práce je také porovnání experimentálního 

zařízení a zařízení od společnosti BioLogic Science Instruments. 

 

 

Klíčová slova 

lítium, baterie, záporná elektroda, kapacita, elektrochemická, impedance, EIS 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ZSIGMOND, András. Testing of a Prototype Device Using Electrochemical Impedance 

Spectroscopy (EIS). Brno, 2019. Dostupné také z: https://www.vutbr.cz/studenti/zav-

prace/detail/119390. Master's Thesis. Vysoké učení technické v Brně, Fakulta 

elektrotechniky a komunikačních technologií, Department of Electrical and Electronic 

Technology. Supervisor Jiří Libich. 

https://www.vutbr.cz/studenti/zav-prace/detail/119390
https://www.vutbr.cz/studenti/zav-prace/detail/119390


 

 

 

 

 

Author's statement on the originality of the work 

I declare that I have written my diploma thesis “Testing of a Prototype Device 

Using Electrochemical Impedance Spectroscopy (EIS)” independently, under the 

guidance of the doctoral thesis supervisor and using the technical literature and other 

sources of information which are all quoted in the thesis and detailed in the list of 

literature at the end of the thesis.  

As the author of the diploma thesis, I furthermore declare that, as regards the 

creation of this doctoral thesis, I have not infringed any copyright. In particular, I have 

not unlawfully encroached on anyone's personal and/or ownership rights and I am fully 

aware of the consequences in the case of breaking Regulation §11 and the following of 

the Copyright Act No. 121/2000 Coll., and of the rights related to intellectual property 

right and changes in some Acts (Intellectual Property Act) and formulated in later 

regulations, inclusive of the possible consequences resulting from the provisions of 

Criminal Act No. 40/2009 Coll., Section 2, Head VI, Part 4. 

 

 

Brno ..............................                  .................................... 

              (signature) 

 

 

 

 

 

 

 



 

Contents 

Introduction 7 

1 Batteries 8 

1.1 Lithium-ion batteries ........................................................................................... 8 

1.2 Cathode material ............................................................................................... 10 

1.3 Anode material .................................................................................................. 10 

1.4 Electrolyte solutions .......................................................................................... 11 

1.5 Separators .......................................................................................................... 11 

2 Electrochemical reactions 12 

2.1 Reactions in a lithium-ion cell .......................................................................... 12 

2.2 Forming of the SEI layer ................................................................................... 13 

2.3 Additives for improving the SEI layer .............................................................. 14 

3 Performance comparison 16 

3.1 Energy density and specific energy .................................................................. 16 

3.2 Charge and discharge ........................................................................................ 17 

3.3 Cycle life ........................................................................................................... 18 

3.4 Temperature operating range ............................................................................ 18 

4 Electrochemical Impedance Spectroscopy (EIS) 19 

4.1 Data presentation .............................................................................................. 20 

4.2 Electrical circuit elements ................................................................................. 21 

4.2.1 Common Equivalent Circuit Models ............................................................ 22 

4.3 A typical representation of a fuel cell ............................................................... 22 

5 The experimental device 24 

5.1 Parts of the device ............................................................................................. 26 

6 Results of the measurements 28 

6.1 Interpretation of the data ................................................................................... 29 

6.2 Comparison between PEIS and GEIS ............................................................... 30 

6.3 Comparison between the experimental device and the BioLogic device .......... 33 

6.4 Summary ........................................................................................................... 41 

7 Conclusion 43 

Literature 44 



 

List of images 

Figure 1.1 Lithium-ion batteries [7] ................................................................................. 8 

Figure 1.2 Discharge curve with a graphite anode [6] .................................................... 10 

Figure 1.3 Discharge curve with a hard carbon anode [6] .............................................. 11 

Figure 1.7 Pore characteristics (a) Dry-process one-component system (b) wet-process 

two-component system and (c) wet-process three-component system [6]

 ................................................................................................................ 11 

Figure 2.1 Schematic diagram of lithium-ion cell [8] .................................................... 12 

Figure 2.2 SEI layer [2] .................................................................................................. 13 

Figure 2.3 Formation of the SEI layer in EC solvent [9] ................................................ 14 

Figure 2.4 The chemical structures of the additives: a.) vinyl carbonate, b.) vinyl 

ethylene carbonate, c.) allyl ethyl carbonate, d.) vinyl acetate [9] ......... 15 

Figure 2.5 Characteristics of the graphite, (a) without pretreatment, (b) pretreatment 

with Na2CO3 [9] .................................................................................... 15 

Figure 3.1 Example voltage curves for different discharge rates [8] .............................. 17 

Figure 4.1 Nyquist Plot with Impedance Vector [11] ..................................................... 20 

Figure 4.2 Bode Plot with One Time Constant [11] ....................................................... 21 

Figure 4.3 A typical representation of a fuel cell [12] .................................................... 23 

Figure 5.1 Experimental device ...................................................................................... 24 

Figure 5.2 The power amplifier ...................................................................................... 26 

Figure 5.3 DAC for power amplifier .............................................................................. 26 

Figure 5.4 Voltage and current measurement ADC’s ..................................................... 27 

Figure 5.5 Microcontroller unit ...................................................................................... 27 

Figure 6.1 a.) The wires soldered to the battery holder, b.) The crocodile clips used for 

connecting the wires to the battery holder .............................................. 28 

Figure 6.2 Panasonic NCR 18650 B in charged state (zoomed in) ................................ 29 

Figure 6.3 Panasonic NCR 18650 B in discharged state (zoomed in) ............................ 30 

Figure 6.4 Panasonic NCR 18650 F in charged state, PEIS and GEIS (impedance plot)

 ................................................................................................................ 31 

Figure 6.5 Panasonic NCR 18650 F in discharged state, PEIS and GEIS (impedance 

plot) ......................................................................................................... 31 

Figure 6.6 Panasonic NCR 18650 F in charged state, PEIS and GEIS (phase plot) ...... 32 

Figure 6.7 Panasonic NCR 18650 F in discharged state, PEIS and GEIS (phase plot) .. 32 

Figure 6.8 Panasonic NCR 18650 B in charged state, GEIS .......................................... 33 

Figure 6.9 Panasonic NCR 18650 B in discharged state, GEIS ..................................... 34 



 

Figure 6.10 Panasonic NCR 18650 B in charged state, PEIS ......................................... 35 

Figure 6.11 Panasonic NCR 18650 B in discharged state, PEIS .................................... 36 

Figure 6.12 Panasonic NCR 18650 F in charged state, GEIS ........................................ 37 

Figure 6.13 Panasonic NCR 18650 F in discharged state, GEIS .................................... 38 

Figure 6.14 Panasonic NCR 18650 F in charged state, PEIS ......................................... 39 

Figure 6.15 Panasonic NCR 18650 F in discharged state, PEIS .................................... 40 

 

 

List of Tables 

Table 3.1 Comparison of lithium-ion, lead-acid and nickel-metal hydride performance 

[8] ............................................................................................................ 16 

Table 4.1 Common Electrical Elements [11] .................................................................. 21 

Table 4.2 Circuit Elements Used in the Models [11] ..................................................... 22 

Table 5.1 Commands ...................................................................................................... 24 

Table 5.2 Variables ......................................................................................................... 25 

Table 6.1 The Ohmic resistance of the GEIS (Panasonic NCR 18650 B, charged) ....... 33 

Table 6.2 The Ohmic resistance of the GEIS (Panasonic NCR 18650 B, discharged) .. 34 

Table 6.3 The Ohmic resistance of the PEIS (Panasonic NCR 18650 B, charged) ........ 35 

Table 6.4 The Ohmic resistance of the PEIS (Panasonic NCR 18650 B, discharged) ... 36 

Table 6.5 The Ohmic resistance of the PEIS (Panasonic NCR 18650 F, charged) ........ 37 

Table 6.6 The Ohmic resistance of the PEIS (Panasonic NCR 18650 F, discharged) ... 38 

Table 6.7 The Ohmic resistance of the PEIS (Panasonic NCR 18650 F, charged) ........ 39 

Table 6.8 The Ohmic resistance of the PEIS (Panasonic NCR 18650 F, discharged) ... 40 

Table 6.9 The Ohmic resistance of the measurements ................................................... 41 



7 

 

INTRODUCTION 

Batteries exist since the end of the 19th century. They provided the main source 

of electricity before the development of electric generators. Successful improvements in 

battery technology lead us to the use of portable computers, mobile phones, electric 

cars, and many other electrical devices. 

The term "battery" was first used by Benjamin Franklin in the 18th century. He 

described a set of linked capacitors as a "battery". These capacitors were panels of glass 

coated with metal on each surface and were charged with an electrostatic generator and 

discharged by touching metal to their electrodes. The term originally meant "a group of 

two or more similar objects functioning together". Later on this term was used 

for voltaic piles and similar devices similar to Franklin's connected capacitors. Today 

even a single electrochemical cell is called a battery.  

Experimentation with lithium batteries began in 1912 by G.N. Lewis, and in the 

1970s the first lithium batteries were sold. Important developments were made in the 

1980s. An American chemist John B. Good experimented with LiCoO2 as the positive 

electrode (cathode). Another research scientist Rachid Yazami at the same time 

discovered the graphite anode (negative electrode). The results of these experiments 

were put together by Akira Yoshino of Asahi Chemical in Japan. The first lithium-ion 

battery prototype was built in 1985. The commercialization of the lithium-ion battery 

was done by Sony in 1991. [1] 
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1 BATTERIES 

Battery is a device used to store electric energy. It changes chemical energy to 

electricity by putting certain chemicals in contact with each other in a specific way. 

When electrons flow, this makes an electrical current that can power a lot of different 

devices, mobile phones, e-cigarettes, remote controls, etc. [2] 

Batteries have three parts, a negative electrode (anode -), a positive electrode 

(cathode +), and the electrolyte. The positive electrode and negative electrode is used to 

connect the battery to an electrical circuit. The chemical reactions in the battery cause a 

buildup of electrons at the negative electrode. This results in an electrical difference 

between the two electrodes. The electrons want to rearrange themselves to get rid of this 

difference. Electrons repel each other and try to go to a place with fewer electrons, the 

only place to go is to the positive electrode. The electrolyte keeps the electrons from 

going straight from the negative to the positive electrode within the battery. When the 

circuit is closed the electrons will be able to get to the positive electrode through the 

electrical circuit. [2]  

1.1 Lithium-ion batteries 

Work with the lithium battery (LIB) began in 1912 but it was not until the early 

1970s when the first non-rechargeable lithium batteries became commercially available. 

The use of lithium metal was not possible due to the instability of the material, 

especially during charging. Research shifted to a non-metallic lithium battery using 

lithium ions. In comparison lithium-ion is more stable than pure lithium, however it is 

lower in energy density. [3]  

 
Figure 1.1 Lithium-ion batteries [7] 

Figure 1.1 shows the various shapes of the Li-ion batteries. These can be divided 

into four groups. Small cylindrical, which has a solid body without terminals and can be 

used in laptop batteries. Large cylindrical with solid body and large threaded terminals. 

Batteries with soft, flat body called pouch. These are mainly used in cell phones. The 

fourth type is a semi-hard plastic case with large threaded terminals, called prismatic 

and they are used as vehicle traction packs. [5] 
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The primary components of a lithium-ion battery are the positive and negative 

electrodes, the separator and the electrolyte. The negative electrode is generally made 

from carbon, while the positive electrode is metal oxide. Lithium salt in an organic 

solvent is used as the electrolyte. Depending on the direction of current flow the 

electrochemical roles of the electrodes reverse between anode and cathode. The most 

popular material used as the negative electrode is graphite. The positive electrode is 

either, layered oxide (lithium cobalt oxide), a polyanion (lithium-iron phosphate) or 

spinel (lithium-manganese oxide). [5] 

As mentioned before the electrolyte is a mixture of organic carbonates (ethylene 

carbonate or diethyl carbonate) containing lithium ions. These non-aqueous electrolytes 

use anion salts such as lithium hexafluorophosphate (LiPF6), lithium hexafluoroarsenate 

monohydrate (LiAsF6), lithium perchlorate (LiClO4), lithium tetrafluoroborate (LiBF4) 

and lithium triflate (LiCF3SO3). The reason why non-aqueous  electrolytes are used lays 

in the highly reactive properties of lithium. The reaction with water produces lithium 

hydroxide and hydrogen gas, therefore the sealed container strictly excludes moisture 

from the battery pack. Material choices heavily affect the voltage, energy density, life 

and safety of a lithium-ion battery. Performance improvements have been employed by  

new architectures using nanotechnology. [5] 

When the battery is charging up, the lithium-cobalt oxide, positive electrode gives 

up some of its lithium ions. These ions move through the electrolyte to the negative, 

graphite electrode. The battery takes in and stores energy during this process. When the 

battery is discharging, the lithium ions move back to the positive electrode, producing 

the energy. In both cases, electrons flow in the opposite direction to the ions around the 

outer circuit. Electrons do not flow through the electrolyte, it is an insulating barrier. 

The movement of ions and electrons are connected, if either one of them stops so does 

the other. Ions can stop moving through the electrolyte if the battery completely 

discharges, if that happens then the electrons can't move through the circuit, the battery 

loses power. Similarly, if the device powered by the battery is switched off, the flow of 

electrons stops and so does the flow of ions. [5] 

Unlike simpler batteries, lithium-ion batteries have built in electronic controllers 

that regulate how they charge and discharge. They prevent the overcharging and 

overheating that can cause lithium-ion batteries to explode. [5] 

Lithium is a highly reactive element; a lot of energy can be stored in its atomic 

bonds. Typically lithium-ion batteries can store 150 watt-hours of electricity in 1 

kilogram of battery. A Ni-MH (nickel-metal hydride) battery pack can store typically 60 

to 70 watt-hours in 1 kilogram of battery, while a lead-acid battery can store only 25 

watt-hours per kilogram. Using lead-acid technology means that, it would take 6 

kilograms to store the same amount of energy that a 1 kilogram lithium-ion battery can 

handle. Other important advantages are related to charge. A lithium-ion battery pack 

loses only about 5 % of its charge per month, compared to a 20 % loss per month for 

Ni-MH batteries. They have no memory effect, which means that it does not have to be 

completely discharged before recharging. They can handle hundreds of 

charge/discharge cycles. [5] 

Of course lithium-ion batteries have some flaws. They start degrading as soon as 

they leave the factory. They will only last a few years whether it is used or not. They are 

extremely sensitive to high temperatures. Heat causes lithium-ion battery packs to 
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degrade much faster than they normally would. If it's completely discharged they are 

ruined. A lithium-ion battery pack must have an on-board computer to manage the 

battery. This makes them more expensive. There is a small chance that, if a lithium-ion 

battery pack fails, it will burst into flame. [5] 

1.2 Cathode material 

In the beginning of development LiCoO2 (LCO) was the dominant cathode 

material, with the spinel LiMn2O4 (LMO) occupying only a small part of the market. 

Over time the LCO remained the most common cathode material, however the market 

has been flooded by other materials. By 2010, the use of LiNi1/3Mn1/3Co1/3O2 (NMC), a 

ternary system with nickel, manganese, and cobalt, had increased. For certain 

applications the use of LiNi0,8Co0,15Al0,05O2 (NCA) and LMO are preferred. With only a 

limited use, phosphates with an olivine structure is a promising new class of cathode 

materials, LiFePO4 (LFP) being the most prominent. [6] 

1.3 Anode material 

The discharge profile for lithium-ion battery anode made of graphite, has a curve 

characterized by a very broad, flat range (shown in Figure 1.2). For hard carbon the 

discharge profile is characterized by a steadily declining curve across the charge range, 

shown in Figure 1.3. For the rapidly spread mobile phones a flat discharge profile is 

preferable, meaning graphite became the dominant anode material. Among the various 

types of graphite, modified natural graphite has become the most common. Mostly 

because natural graphite is inexpensive, available, however its high reactivity to 

electrolyte prevents its use without modification. The most widely used technology is to 

coat the graphite surface with thin carbon layer. A more recent development in the 

anode market is the resurgence of hard carbon. It is making a comeback, due to its 

suitable use for HEV applications. [6] 

 

Figure 1.2 Discharge curve with a graphite anode [6] 
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Figure 1.3 Discharge curve with a hard carbon anode [6] 

1.4 Electrolyte solutions 

The electrolyte for LIBs is a mixture of organic solvents and an electrolyte salt 

compound, most commonly mixtures of cyclic carbonate esters (ethylene carbonate, 

propylene carbonate), and linear carbonate esters (dimethyl carbonate, diethyl 

carbonate). The added salt compound is commonly LiPF6 or LiBF4. The free transport 

of lithium ions requires high dielectric constant and low viscosity. The required 

dielectric constant and viscosity can be achieved by mixing cyclic carbonate esters and 

linear carbonate esters. [6] 

1.5 Separators 

The separator in lithium-ion batteries is a thin microporous membrane made of 

polyolefin. It is used to prevent contact between the anode and cathode, while enabling 

lithium ions to pass through. The three basic categories of separator are classified based 

on their production methods, with different morphologies and characteristics, each for 

different battery applications. The typical separators produced by each of the three 

methods are shown in Figure 1.7. [6] 

 

Figure 1.4 Pore characteristics (a) Dry-process one-component system (b) wet-process two-

component system and (c) wet-process three-component system [6] 
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2 ELECTROCHEMICAL REACTIONS   

This chapter contains the description of chemical reactions occurring in one battery 

cell. A schematic diagram of the cell is shown providing visual information about the 

chemical reactions, which are also described by chemical equations. The forming of the 

solid electrolyte interphase (SEI) is also described in this chapter. 

2.1 Reactions in a lithium-ion cell 

Figure 2.1 shows a schematic diagram of a lithium-ion cell. The positive electrode 

is made of lithium metal oxide (LiMO2), where M stands for a metal such as Co, while 

the negative electrode is lithiated carbon (LixC). The active materials are connected to 

current collectors at both ends of the cell. The electrolyte between the active materials is 

electrically isolating and they are usually made of a microporous polymer or gel-

polymer. Liquid or gel-polymer electrolytes enable lithium ions (Li+) to diffuse between 

the positive and negative electrodes. The lithium ions are inserted into or de-inserted 

from the active materials through an intercalation process. [8] 

 

Figure 2.1 Schematic diagram of lithium-ion cell [8] 

During charge in the positive electrode the active material is oxidized and lithium 

ions are de-intercalated: 

2

argarg

21 LiCoOxexLiCoOLi edischech

x    

 . [8]   (2.1) 

In the negative electrode during charge, the active material is reduced and the 

lithium ions that migrate from the positive electrode are intercalated in the reaction: 

    xexLiCCLi edischech

x

argarg
. [8]   (2.2) 

These reactions produce a theoretical cell voltage of 4,1 V, which is a higher value 

than the Ni-MH (Nickel-metal hydride) or lead-acid cells. The capacity of a lithium-ion 

battery fades with cycling. This is due to the increase of internal resistance or 
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impedance. Thanks to these Ohmic losses, energy is wasted, heat is produced and the 

aging is accelerated. Losses in capacity can also be caused by the degradation of the 

positive and negative electrodes and the electrolyte. The degradation mechanisms are 

dependent on cell chemistry, design and manufacturing. In the negative electrode, the 

dominant aging mechanisms are: SEI growth, lithium corrosion, contact loss and 

lithium plating. [8] 

The growth of the SEI leads to an impedance rise and the entraining of lithium 

atoms. The SEI layer forms at the beginning of cycling and grows during cycling and 

storage, especially at higher temperatures. Lithium corrosion causes capacity fade due 

to the irreversible loss of lithium. The corroding lithium is found in the active carbon 

material of the negative electrode. Contact loss means that the impedance of the cell 

increases by the disconnection of the SEI layer from the negative electrode. If the cell is 

at low temperatures with high charge rates, the lithium metal can plate on the negative 

electrode. This leads to irreversible loss of lithium. [8] 

Recent studies show that impedance rise and capacity fade can be caused by the 

positive electrode. The rise in impedance and the capacity fade primarily happens 

during cycling. The discharge capacity may be limited by a decrease in active lithium 

intercalation sites in the oxide particles. A passivation layer also forms on the positive 

electrode which can change properties during cycling, resulting in cell impedance rise 

and power fade. [8] 

2.2 Forming of the SEI layer 

SEI is an ionically conductive, electrically not conductive polymer layer. A 

schematic representation is shown in Figure 2.2. This layer is created at the first 

formation by a strong reaction between the carbon anode and the electrolyte, which 

requires about 15-45 % of the total battery capacity. Maintaining stability, reduction of 

fluctuations during charging or temperature fluctuations is among the main 

characteristics of this layer, together with an effect on overall battery life. The thickness 

of the SEI layer varies over time. The increase in thickness contributes to a reduction in 

capacity. In materials that have a higher charge/discharge potential than lithium, the SEI 

layer thickness is much smaller. On the surface of materials like the LTO (where the 

charge/discharge potential is 1,55 times bigger than lithiums) the SEI layer is very thin, 

it can almost be completely ignored. [9] 

 

Figure 2.2 SEI layer [2] 

The major components of SEI layer are degraded products of electrolyte solvents 
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and salts, which were identified by using spectroscopic analysis. The mentioned 

degraded products include Li2CO3, lithium alkyl carbonate, lithium alkyoxid and other 

groups of salts, such as LiF. Based on the layer composition two mechanisms were 

identified in the formation process while using an electrolyte with carbon solvents. An 

example of the SEI layer formation in an ethyl carbonate (EC) solvent is shown in 

Figure 2.3. [9] 

 

Figure 2.3 Formation of the SEI layer in EC solvent [9] 

Acronym RA in the figure means radical anion; it's the reactive compound in the 

solution. The formation of the SEI layer happens with both reactions present, as seen in 

the figure. With the domination of mechanism (I) the decomposition of the compound 

generates gaseous products, resulting in less stable Li2CO3 as the final layer. 

Mechanism (II), on the other hand, generates less gaseous products, forms a layer 

insoluble in the electrolyte. Another advantage of mechanism (II) is greater stability in 

the battery. These two mechanisms involved in the formation of SEI layer also depend 

on the graphite surface morphology. The layer formed on the edges of the surface is 

oriented towards pyrolytic graphite and is rich in inorganic compounds. In contrast, the 

middle layer is formed predominantly by organic compounds. [9] 

The creation of the SEI layer can also be categorized into two stages. The first 

stage takes place before the intercalation of lithium ions into the graphite. This results in 

a structurally porous, highly resistive and dimensionally unstable layer. At the end of 

the second stage the layer is formed by the intercalation of lithium, producing a more 

compact and highly conductive layer. The capacity created in the second stage is 

connected not only to the reduction of the solvent molecules, but to the electrochemical 

reduction of functional surface groups on the side of the graphite as well. [9] 

2.3 Additives for improving the SEI layer 

The SEI layer formed before the intercalation of lithium is unstable and full of 

inorganic compounds. Furthermore, the formation is accompanied by the generation of 

gas. A possible method for suppressing this layer is done with a chemical coating on the 

graphites surface by a layer of organic film. These types of additives have a higher 

reduction potential than electrolytic solvents, and are selected because they are 

insoluble and protect the surface of the graphite against reaction within the electrolyte. 

Reduced generation of gas and an increased overall stability can be achieved with the 

use of these additives. Figure 2.4 shows possible additives, containing one or more 

double carbon-carbon bonds. [9] 
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Figure 2.4 The chemical structures of the additives: a.) vinyl carbonate, b.) vinyl ethylene 

carbonate, c.) allyl ethyl carbonate, d.) vinyl acetate [9] 

During the creation of the SEI layer the products of reducing agents are absorbed 

into the graphite. The effectiveness of facilitating the formation of the layer depends on 

the molecular groups. These groups can help create the layer; they belong to the group 

of sulfuric compounds, including SO2, CS2 and others. Sulfuric compounds are not 

soluble in organic electrolytes and are unstable at higher potentials, resulting in self-

discharge. This means that the amount of sulfuric additive has to be limited. Other 

usable types of reducing agents contain nitrogen, such as N2O. [9] 

The next type of additive is capable of devouring radical anions, which are 

undesirable solvents, or can combine products such as lithium alkyl dicarbonate, 

thereby creating a more stable SEI layer. The above mentioned improvements can be 

done with CO2. Instead of CO2 dialkyl pyrocarbonate is a possible additive, with a 

weaker solubility and higher pressure, capable of reaching higher conductivity within 

the SEI layer under lower temperatures. Other types of reagents, certain boron 

compounds increase the life of the battery, while LiBOB increases high-temperature 

parameters. [9] 

Salts of alkali metals reduce the irreversible capacity, improving the holding of the 

capacity during cycling. SEI layer formed in the presence of Na2CO3 has a higher 

conductivity. The results of pretreated graphite in a solution containing Na2CO3 is 

shown in Figure 2.5. This figure shows reduced irreversible capacity and reduced 

possibility for Li+ intercalation and de-intercalation in the graphite structure. [9] 

 

Figure 2.5 Characteristics of the graphite, (a) without pretreatment, (b) pretreatment with 

Na2CO3 [9] 
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3 PERFORMANCE COMPARISON 

 This chapter contains the comparison between the most popular types of batteries. 

For each type of battery (lead-acid, nickel-metal hydride and lithium-ion batteries) a 

description about the energy density, charge and discharge characteristics, cycle life and 

information about the temperature operating range is included.  

3.1 Energy density and specific energy 

The key categories of the comparison are shown in Table 3.1. The electrode 

materials determine the theoretical voltage, while the practical voltage is what can be 

achieved in a real battery. For lead-acid and lithium-ion batteries the practical values 

and the theoretical values are essentially the same, however the nickel-metal hydrnide 

(Ni-MH) batteries show a 10% difference. Following the previous values the specific 

energy is listed, which is the energy storage capacity in watt-hours (Wh) divided by the 

mass of the battery in kilograms (kg). Equivalent weight of the active materials 

participating in the electrochemical reaction determines the theoretical capacity in 

ampere-hours/gram (Ah/g). Multiplying the theoretical capacity and voltage gives the 

theoretical specific energy in Wh/kg. [8] 

Table 3.1 lists a number of properties, and in most of them the lithium-ion battery 

excels over the lead-acid and nickel-metal hydride batteries.  

Table 3.1 Comparison of lithium-ion, lead-acid and nickel-metal hydride performance [8]  

 lithium-ion nickel-metal hydride lead-acid 

Theoretical 

Voltage [V] 4,1 1,35 1,93 

Specific energy [Wh/kg] 410 240 166 

Practical 

Specific energy [Wh/kg] 150 75 35 

Energy density [Wh/L] 400 240 70 

Coulometric efficiency >0,85 0,65 - 0,70 0,80 

Energy efficiency ~0,80 0,55 - 0,65 0,65 - 0,70 

Specific power, 80% DOD [W/kg] 350 150 220 

Power density [W/L] >800 >300 450 

 

An important metric for batteries, listed in Table 3.1, is the energy storage 

efficiency. This can be determined by two metrics: coulometric efficiency and energy 

efficiency. Coulometric efficiency:  






Idt

Idt
f

ech

edisch

arg

arg

,   (3.1) 
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where I (t) is the battery current and t is time. Energy efficiency: 






IUdt

IUdt

ech

edisch

arg

arg
 ,   (3.2) 

where V(t) is the battery voltage. Lithium-ion has the most efficient chemistry 

followed by lead-acid and nickel-metal hydride. [8] 

3.2 Charge and discharge 

Charge and discharge operation regulates the speed of current put into and taken 

from storage, this is called dynamic performance. The terminal voltage rises and falls 

during steady charging and discharging. At the end of charging or discharging the 

transient voltage response settles out, for sufficient long charges, the battery voltage 

saturates at a maximum value. These are overcharged situations, where most of the 

input energy goes to heat losses or harmful side reactions. [8] 

Similarly, undercharge occurs when the battery voltage falls below the end or cut-

off voltage causing damage to the battery. The state of charge (SOC), defined as the 

percentage of maximum possible charge that is present inside a rechargeable battery, 

determines the working range of a battery. A fully charged battery is at 100 % SOC, 

however a more practical example would be 30 to 70 % SOC with a Ni-MH battery in 

hybrid electric vehicle (HEV) applications having a very high coulometric efficiency. 

The depth of discharge (DOD = 100 % - SOC) is another way to quantify stored charge. 

[8] 

The rate of charge or discharge is measured relative to the battery capacity C, 

meaning that a 0,1 C discharge rate for a 5 Ah battery is 0,5 A or a 2 C discharge rate 

for a 10 Ah battery is 20 A. Figure 3.1 shows discharge plots at low, medium, and high 

rates. [8] 

 

Figure 3.1 Example voltage curves for different discharge rates [8]   

The low rate curve approximates the equilibrium cell (or open-circuit) potential. 

For the voltage to remain constant during discharge the optimal open-circuit potential 

curve is flat over a broad range of DOD. This simplifies the design and reduces the cost 

of the added voltage-regulation circuits. Due to Ohmic losses over the entire DOD 
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range the medium rate discharge curve shifts downward. Charge transfer kinetic losses 

and mass transport limitations at low and high DOD are also responsible for the 

discharge curve to shift downward. [8] 

The high rate discharge case demonstrates that only a fraction of the capacity can 

be utilized at high discharge rates due to quick voltage drops. A good way to summarize 

the statistics for battery discharge performance is with specific power (W/kg) and power 

density (W/L). These values are shown in Table 3.1, where lithium-ion has the highest 

specific power and power density. [8] 

3.3 Cycle life 

The most reliable way to determine cycle life is to test several batteries from the 

same batch. Test results depend on battery chemistry, discharge-charge cycle, 

temperature, prior history of storage and manufacturer, and are conducted on a cycling 

machine that repeats a prescribed current trajectory representing a typical cycle. During 

the testing process one of the batteries is randomly selected from cycling to be tested for 

capacity. This way, a plot of capacity versus number of cycles can be obtained. 

Generally all batteries have longer life for lower depths of discharge (DOD) cycles. At 

100 % DOD Li-ion batteries typically last 3000 cycles at low charge/discharge rates and 

room temperature. A 20-40 % DOD, however can last 20 000 cycles. Other types of 

batteries, like the nickel-metal hydride and lead-acid batteries only last a few hundred 

cycles at 80-100 % DODs. The end of life is characterized by a drop in capacity by 50-

80% from the initial capacity, depending on the chemistry and application. [8] 

3.4 Temperature operating range 

The use of batteries at extremely low or high temperatures is not optimal. Problems 

occurring at low temperature are tied to ionic diffusion and migration with possible 

lithium plating. The battery used in higher temperatures is exposed to corrosion and gas 

generation. For lithium-ion and lead-acid batteries, charge and discharge temperatures 

should be between -40 and 60 ⁰C. The operating range for nickel-metal hydride 

batteries is a bit narrow; it's between -20 and 45 ⁰C. [8] 
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4 ELECTROCHEMICAL IMPEDANCE 

SPECTROSCOPY (EIS) 

This is an experimental technique for investigating the volume and interphase 

electrical properties of various types of solid or liquid materials. The method is based on 

measuring the complex impedance in frequency response, with an applied low-

amplitude sinusoidal signal. 

The system is usually measured over a wide range of frequencies to detect both fast 

(charge transfer) and slow (diffuse) electrode events. It is recommended to start 

measuring from higher frequencies to lower, as some systems are limited in stability. 

Frequencies range from 1 MHz to 0.1 mHz. An important advantage of electrochemical 

impedance spectroscopy is the possibility of applying frequencies gradually; this is the 

so-called single-sine technique. With this method the measured values have higher 

accuracy. The condition of proper measurements depends on the choice of the 

appropriate amplitude. Too high amplitude values can cause irreversible changes in the 

material. Low amplitude may be distorted by noise. [8]  

Impedance Z describes the complex resistance. The voltage is applied to the 

electrode and the current response is measured, which according to Ohm's law means 

the resistance of the system. Since alternating voltage is used, the resistance is 

frequency dependent and is called impedance. The properties of the electrical elements 

can be determined from the frequency dependency, described by the phase shift 

between voltage and current. [8] 

The more commonly applied method is the potentiostatic. With this method the 

electrochemical impedance is measured by applying an AC potential to an 

electrochemical cell and then measuring the current through the cell. If the applied 

signal is a sinusoidal potential excitation, the response is going to be an AC current 

signal. Electrochemical impedance is normally measured using a small excitation 

signal, so that the cell's response is linear (pseudo-linear). In a system like this, the 

current response will be a sinusoid signal shifted in phase. [8] 

The excitation signal is expressed as a function of time: 

)tsin(UU 0t  ,   (4.1) 

where Ut is the potential at time t, U0 is the amplitude of the signal, and ω is the radial 

frequency. The response signal, It, is shifted in phase (ϕ): 

)tsin(II 0t  .   (4.2) 

With the help of (4.1) and (4.2) the impedance Z will be described by its 

magnitude, Z0, and a phase shift, ϕ: 

)tsin(
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Z 0

0

0
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





 .   (4.3) 

Before the availability of modern EIS instrumentation analysis of Lissajous Figures 

(sinusoidal signal U(t) plotted on the X-axis of a graph, the response signal I(t) plotted 

on the Y-axis) on oscilloscope screens was the accepted method of impedance 
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measurement. With the help of Eulers relationship, 

 sinjcos)jexp( ,   (4.4) 

it is possible to express the impedance as a complex function. 

)tjexp(UU 0t  ,   (4.5) 

   

)tjexp(II 0t  .     (4.6) 

The impedance is then represented as a complex number: 

)sinj(cosZ)jexp(Z
I

U
Z 00  .   (4.7) 

The other method is the galvanostatic. It is the less commonly used method. The 

principle is the opposite of the potentiostatic method. A constant DC current with 

superimposed low amplitude alternating current is fed to the working electrode. The 

alternating voltage component is measured. [11] 

4.1 Data presentation 

The expression for Z is composed of a real and an imaginary part. These parts are 

plotted on a chart and it’s called a Nyquist Plot (Figure 4.1). The real part is plotted on 

the X-axis and the imaginary part is plotted on the Y-axis.  

 

Figure 4.1 Nyquist Plot with Impedance Vector [11] 

The impedance |Z| is represented as a vector (arrow). The angle ϕ is called phase 

angle. One major shortcoming in the Nyquist Plot is that it cannot be determined what 

frequency was used to record the data points.  

Another popular presentation method is the Bode Plot. The impedance is plotted 

with log frequency on the X-axis and both the absolute values of the impedance (|Z|=Z0) 

and the phase-shift on the Y-axis. Unlike the Nyquist Plot, the Bode Plot does show 

frequency information. [11] 
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Figure 4.2 Bode Plot with One Time Constant [11]   

4.2 Electrical circuit elements 

Determining of the electrical properties of the system is done by approximating the 

model of the equivalent circuit. Most of the circuit elements in the model are common 

electrical elements such as resistors, capacitors, and inductors. Most models contain a 

resistor that models the cell's solution resistance. [11] 

Table 4.1 Common Electrical Elements [11]  

component current vs. voltage impedance 

resistor R.IU   RZ   

inductor 

dt

di
.LU   

LjZ   

capacitor 

dt

du
.CI   

Cj

1
Z


  

 

The impedance of a resistor is independent of frequency and has no imaginary 

components; therefore the current through a resistor stays in phase with the voltage. 

Inductors have only an imaginary impedance component, the current through an 

inductor is phase-shifted -90 degrees with respect to the voltage. Capacitors also have 

only an imaginary impedance component. The current through a capacitor is phase 

shifted 90 degrees with respect to the voltage. Few electrochemical cells can be 

modeled using a single equivalent circuit element, EIS models usually consist of a 

number of elements in a network. Both serial and parallel combinations of elements can 

occur. [11] 
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4.2.1 Common Equivalent Circuit Models 

Some of the common equivalent circuit models can be used to interpret simple EIS 

data. Many of these models have been included as standard models in different EIS 

software. The most common elements are presented in Table 4.2. Equations for both the 

admittance and impedance are given for each element. 

Table 4.2 Circuit Elements Used in the Models [11]  

equivalent element admittance impedance 

R 

R

1
 

R  

C Cj  

Cj

1


 

L 

Lj

1


 

Lj  

W (infinite Warburg) jY0  
jY

1

0
 

O (finite Warburg) )jBcoth(.jY0 
 





jY

)jBtanh(

0
 

Q (CPE) )j(Y0  
)j(Y

1

0
 

 

The EIS software uses the following variables as fit parameters, R, C, L, Y0, B, and 

α.  B is a constant and α is an exponent equaling 1 for a capacitor. [11] 

4.3 A typical representation of a fuel cell 

The above mentioned circuit elements can express the properties of the fuel cell, 

such as the properties of the three major parts: anode, electrolyte and cathode. 

Resistance characterizes the transport of ions or electrons. In Figure 4.3 the electrolyte 

section is being shown as a resistance model with small resistances in the anode and 

cathode part to account for the resistance of electron movement. [12] 

An electrical double layer exists at the interface between an electrode and the 

surrounding electrolyte. Charges in the electrode are separated from the charges of the 

ions in the solution. This separation is very small (order of nanometers) and form a 

capacitor. The value of the double layer capacitance depends on electrode potential, 

temperature, ionic concentrations, types of ions, oxide layers, electrode roughness, 

impurity adsorption, etc. Figure 4.3 shows these capacitors on both sides. The Warburg 

element accounts for the diffusion layer formed at the cathode section. It resists the flow 

of hydronium ions to the cathode. [12] 
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A representative Nyquist plot for a fuel cell is on the lower part of Figure 4.3. The 

values in the Figure are just examples taken from [12]. 

 

Figure 4.3 A typical representation of a fuel cell [12] 

Figure 4.3, above, shows that there are two semicircles in the Nyquist plot. This 

means that the system has two time constants, one for the cathode side and another for 

the anode side. The diameters of the semicircles represent the resistance of that part of 

the cell. Because of the much faster kinetics at the anode, the resistance has a larger 

value there, than at the cathode. Usually, the smaller semicircle is too small to be 

visualized and in many cases removed to make the system simpler to analyze. The later 

section of the graph is linear, and is represented by the Warburg element. [12] 

Software used for EIS analysis today usually contains a lot of different circuit 

models to describe the electrochemical processes. The above mentioned models are the 

most basic ones, the ones that are closest to the most common electrical components. 
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5 THE EXPERIMENTAL DEVICE 

In this thesis for the EIS measurements an experimental device was used. The 

device is shown in Figure 5.1. For measuring, this unit is connected to a computer via 

USB cable and is controlled by software. Through this software the unit is run by typing 

in commands into command line.  

 

Figure 5.1 Experimental device  

The available commands and changeable variables are included in Table 5.1 and 

Table 5.2 respectively.  

Table 5.1 Commands  

Commands 

status displays live status 

config displays configuration 

reset resets system 

upgrade starts firmware updater 

enable enables power output 

disable disables power output 

get returns current measurement results 

sweep starts a frequency sweep 

stop aborts a running sweep 

poll returns available data from running sweep 

 

To display the value of the variable, typing in the name is enough. Changing the 

value of a variable is also simple; it has to be written as an equation. For example: 

sftart=10.0 would set the start frequency to 10.0 Hz. 
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Table 5.2 Variables  

Variables 

serial shows system serial number (read only) 

date shows firmware creation date (read only) 

average sets number of periods to average 

skip sets number of periods to skip before averaging (sweep mode) 

time sets sweep minimum measurement time per sample (sweep mode, seconds) 

mode configures operation mode: 0 = GEIS, 1 = PEIS 

vmin sets minimum output voltage (Volts) 

vmax sets maximum output voltage (Volts) 

imin sets minimum output current (Amperes-PEIS AC amplitude only) 

imax sets maximum output current (Amperes-PEIS AC amplitude only) 

ampl sets instantaneous AC amplitude (GEIS: Amperes, PEIS: Volts) 

dc sets instantaneous DC current level (Amperes) 

f sets instantaneous AC frequency (Hertz) 

sampl sets sweep AC amplitude (GEIS: Amperes, PEIS: Volts) 

sdc sets sweep DC current level (Amperes) 

sfstart sets sweep starting frequency (Hertz) 

sfend sets sweep final frequency (Hertz) 

step sets sweep frequency step (positive: lin step in Hertz, negative: log multiplier) 

 

This device uses the four-terminal sensing method as an electrical impedance 

measuring method. Separate pairs of current-carrying and voltage-sensing electrodes are 

used. This gives more accurate measurements. Separation of current and voltage 

electrodes reduce the lead and contact resistance from the measurement.  

Some additional technical information: the maximum DC discharge current is 3 A, 

the maximum DC charge current is 2 A and the maximum AC test current is 5V. The 

unit operates only on single cell batteries and only up to 5 Volts. There is no over-

temperature protection. 

For safe operation, it is important to connect and disconnect the batteries only 

when the output is disabled. First the command “disable” has to be typed in, then the 

battery is connected and following the “enable” command is used. The selection 

between the two different types of measuring methods is done with the “mode” 

variable. Setting it to 0 will enable the galvanostatic method, 1 the potentiostatic 

method. The unit has two modes of operation: not sweeping or sweeping. The “sweep” 

command starts the AC impedance measurements at different frequencies. The sweep 

parameters are given by the variables: “sampl”, “sdc”, “sfstart”, “sfend”, “step”, 

“average” and “skip”. After the correct setup the battery can be connected and a sweep 

can be started. During the sweep the available data is shown by typing in “poll”. This 

command will write out all the measured data in a row like this: number of the 
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measured data, frequency, voltage (AC amplitude), voltage (DC component), current 

(AC amplitude), current (DC component), phase (between the AC voltage and current). 

Everything that is typed into the command line is also saved into a text document. 

5.1 Parts of the device 

The device uses symmetrical supply of power (± 30 V) and can only be used for 

one cell batteries. This supply of ± 30 V is needed to operate the power amplifier part of 

the device. The power amplifier shown on Figure 5.2 is responsible for creating the 

measuring signals (sinusoid signal, for GEIS a current signal, for PEIS a voltage signal). 

 

Figure 5.2 The power amplifier  

A digital to analog converter (DAC) is used with the power amplifier. The device is 

from Texas Instruments and uses the DAC8801 multiplying digital-to-analog converter. 

This part of the device is in Figure 5.3. The applied external reference input voltage 

VREF determines the full-scale output current, when combined with an external I-to-U 

precision amplifier an internal feedback resistor (RFB) provides temperature tracking. 

[13] 

 

Figure 5.3 DAC for power amplifier  
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For measuring the AC voltage and current an analog digital converter (ADC) is 

used. Shown in Figure 5.4 is the module used in the device, it consist of two 

AMC1305EVM modules from Texas Instruments. The AMC1305 device is a precision, 

delta-sigma (ΔΣ) modulator that separates the output from the input circuitry by a 

capacitive double isolation barrier. This barrier is highly resistant to magnetic 

interference. The AMC1305 is optimized for direct connection to shunt resistors or 

other low voltage level signal sources supporting excellent dc and ac performance. [14] 

 

Figure 5.4 Voltage and current measurement ADC’s  

Controlling the experimental device is done with a microcontroller module from 

STMicroelectronics. The module used in the device is 32L4R9IDISCOVERY kit and 

it’s shown in Figure 5.5. This module is a complete demonstration and development 

platform based on the STM32L4R9AI microcontroller, a user-friendly unit that provides 

out-of-the-box programming and debugging capabilities. [15] 

 

Figure 5.5 Microcontroller unit  
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6 RESULTS OF THE MEASUREMENTS 

The measurements were conducted with the VMP-300 device from BioLogic 

Science Instruments. These measurements were used as reference data for the 

comparison. The two methods of measurement were the galvanostatic electrochemical 

impedance spectroscopy (GEIS) and the potentiostatic electrochemical impedance 

spectroscopy (PEIS). The same measurements were done with the experimental device. 

Microsoft Excel was used to process the data and graphs were generated. 

The setup for the measurements were kept as close to each other as possible 

between the two devices. With GEIS the measuring signal was a sinusoid current with 

an amplitude of 1 A. The reason for such high amplitude was the experimental device; 

smaller amplitudes produced only a noise signal. In the case of PEIS the signal was a 

sinusoid voltage with amplitude of 100 mV (higher values to reduce the noise in the 

signal). The frequency range was set from 50 kHz to 50 mHz, measuring six data points 

in every decade. With the device from BioLogic this was a straight setup parameter: 

Nd=6 points/decade in logarithmic spacing, and with the experimental device the 

variable step was set to -1,468 (as described in Chapter 5, Table 5.2). The rest of the 

setup consists of the voltage and current limits for the measurements and the value of 

averaging. Average Na=3 measure(s)/frequency (the BioLogic device) and the average 

with the experimental device was set to 30 (as described in Chapter 5, Table 5.2). The 

reason for a ten times higher averaging count was to get more accurate measurements 

from the experimental device (signal noise with lower values of averaging was 

prevalent). 

The measurements were carried out on two types of batteries, Panasonic NCR 

18650 B and NCR 18650 F. Two of each types were measured. Furthermore the 

batteries were measured in fully charged states (based on the values in the datasheet, 

they were charged to 4,1 V) and in discharged states (they were not fully discharged, in 

the datasheet the lower limit is 2,5 V, they were discharged to 2,8 V). On the 

experimental device the connection leads were first used with crocodile clips (connected 

to the contacts of the battery holder), and then they were soldered to the battery holder, 

in order to reduce the added impedance of the measuring wires and connections. 

 

Figure 6.1 a.) The wires soldered to the battery holder, b.) The crocodile clips used for 

connecting the wires to the battery holder  
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6.1 Interpretation of the data 

For this analysis the results from the experimental device were used. These results 

are for the NCR 18650 B type battery after soldering the contacts to the battery holder. 

Figure 6.2 shows the result in a Nyquist Plot. 

 

Figure 6.2 Panasonic NCR 18650 B in charged state (zoomed in) 

I. The highest frequencies show an inductive behavior. Usually this part 

represents the inductive properties of the measuring wires and/or the battery 

electrode itself. The intersection with the x-axis represents the total Ohmic 

resistance of the system. This includes the electrolyte resistance and the 

contact resistance. 

II. This part represents the interlayer effects at the solid electrolyte interface, 

the passing through of charges. It describes the de- or intercalation of the 

Lithium ions into the active material. The solid state diffusion of Lithium 

ions is compelled by the concentration gradient of ions between the surface 

and the bulk of the electrode. 

III. The curve at mid-range frequencies (kHz to Hz range) corresponds to the 

charge transfer kinetics. It designates the electrons conduction from one 

electrode to the other and the conduction through the outside circuit. 

IV. The arc at very low frequencies (near DC) is associated with the diffusion 

behavior. This means the ions conduction in the electrolyte through the 

separator, which is forced by the concentration gradient and it happens at a 

higher rate than in solids.  

These processes can be described by equivalent circuit modeling of the impedance 

response (described in Chapter 4). Some of the more common types of elements 

include: Cdl-the electrochemical double layer capacitance, RCT-the faradaic charge 

transfer resistance, Cint-the intercalation capacitance corresponding to the accumulation 

of the lithium ions, Z(ω)-the Warburg solid-state impedance. [16] 
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Figure 6.3 Panasonic NCR 18650 B in discharged state (zoomed in)  

The difference between a charged and discharged Nyquist Plot are instantly visible. 

However the first two areas in the graph are similar. These chemical processes are 

almost identical; the difference is due to the state of charge (SOC). However the SOC 

doesn’t seem to have a huge impact on the Ohmic resistance at the intersection with the 

x-axis. The differences lie in the charge transfer rate (area III.), where the internal 

resistance increases. This can be interpreted as an effect of the low SOC state, the 

electrode is close to full discharge, and no obvious electrode reaction occurs, resulting 

in increased charge transfer impedance. In the fourth part of the graph the diffusion 

impedance is affected. The shape of the Nyquist Plot and the increased values of the 

diffusion impedance are due to the empty state of the electrode at the end of the 

discharge phase, making it more difficult for Li+ to embed or detach from the active 

material. [17] 

With discharged batteries the Nyquist Plot curves were consistent, part of the high 

frequency curve is concentrated, while the low and medium frequency curve is 

relatively dispersed. Even between the two methods (PEIS and GEIS) were no 

significant differences. What differed was usually the Ohmic resistance at the 

intersection with the x-axis. These differences can be caused by the charge and 

discharge processes, was it properly charged (discharged), how long was it charged 

(discharged) and how long was the battery not used between charging and discharging 

cycles. [17] 

6.2 Comparison between PEIS and GEIS 

For this part the results of EIS on the Panasonic NCR 18650 F type were used. The 

Bode Plot with the real and imaginary parts of the impedance is shown on Figure 6.4. 

These were measured on the same Panasonic NCR 18650 F battery. 
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Figure 6.4 Panasonic NCR 18650 F in charged state, PEIS and GEIS (impedance plot) 

As the Figure 6.4 shows the difference between the methods is negligible, with the 

naked eyes non-visible. Similarly the results of EIS on the Panasonic NCR 18650 F in a 

discharged state are also minimal, barely visible, shown in Figure 6.5. 

 

Figure 6.5 Panasonic NCR 18650 F in discharged state, PEIS and GEIS (impedance plot) 
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Figure 6.6 and 6.7 shows the Bode Plot with the phase, measured on the same 

Panasonic NCR 18650 F battery. 

 

Figure 6.6 Panasonic NCR 18650 F in charged state, PEIS and GEIS (phase plot) 

Similarly the results shown in a Bode Plot with phase are also negligible. 

 

Figure 6.7 Panasonic NCR 18650 F in discharged state, PEIS and GEIS (phase plot) 
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6.3 Comparison between the experimental device and the 

BioLogic device 

In this part the results of EIS measurements with the experimental and BioLogic 

devices are shown. The results of PEIS and GEIS measurements are compared for both 

types of battery, separately. As before, the measurements were done on fully charged 

batteries and discharged batteries. The comparison with the GEIS method is shown in 

Figure 6.8.  

 

Figure 6.8 Panasonic NCR 18650 B in charged state, GEIS  

There are two reference curves (GEIS BioLogic 1, GEIS BioLogic 2) on the graph, 

the reason being, that the measurements with the experimental device were carried out 

at different times, so individual reference measurements were made. Between the two 

measurements the batteries were discharged and charged multiple times. Even after that, 

the reference values are very close to each other.  

Table 6.1 The Ohmic resistance of the GEIS (Panasonic NCR 18650 B, charged) 

Name of the curve R [Ω] 

GEIS BioLogic 1 0,072 

GEIS BioLogic 2 0,071 

GEIS with clips 0,105 

GEIS soldered 0,057 
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Table 6.1 highlights the Ohmic resistances at the intersection with the x-axis. This 

shows the affect of the type of connection used with the experimental device. Soldering 

the contacts significantly reduced the resistance. 

The reference curve GEIS BioLogic 2 is corresponding to the curve measured with 

the experimental device after soldering the contacts to the battery holder (GEIS 

soldered). The other curve (GEIS BioLogic 1) is the reference for the curve GEIS with 

clips. 

 

Figure 6.9 Panasonic NCR 18650 B in discharged state, GEIS  

Figure 6.9 shows the comparison between the results of the measurements on a 

discharged Panasonic NCR 18650 B type battery.  

Table 6.2 The Ohmic resistance of the GEIS (Panasonic NCR 18650 B, discharged) 

Name of the curve R [Ω] 

GEIS BioLogic 1 0,083 

GEIS BioLogic 2 0,073 

GEIS with clips 0,124 

GEIS soldered 0,062 

 

The affect of soldering the contacts is shown in Table 6.2. For the discharged 

battery the resistance also decreases.  

 



35 

 

 

Figure 6.10 Panasonic NCR 18650 B in charged state, PEIS  

Figure 6.10 compares the results measured on a fully charged Panasonic NCR 

18650 B type battery.  

Table 6.3 The Ohmic resistance of the PEIS (Panasonic NCR 18650 B, charged) 

Name of the curve R [Ω] 

PEIS BioLogic 1 0,076 

PEIS BioLogic 2 0,067 

PEIS with clips 0,121 

PEIS soldered 0,057 

 

The affect of soldering the contacts shows the same trend with PEIS method as 

well. The resistance values are shown in Table 6.3. 
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Figure 6.11 Panasonic NCR 18650 B in discharged state, PEIS  

Figure 6.11 compares the results of the measurements on a discharged Panasonic 

NCR 18650 B type battery.  

Table 6.4 The Ohmic resistance of the PEIS (Panasonic NCR 18650 B, discharged) 

Name of the curve R [Ω] 

PEIS BioLogic 1 0,070 

PEIS BioLogic 2 0,071 

PEIS with clips 0,131 

PEIS soldered 0,062 

 

The resistance values are shown in Table 6.4. The same as before the resistance is 

reduced by bypassing the crocodile clips. 
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Figure 6.12 Panasonic NCR 18650 F in charged state, GEIS  

Figure 6.12 shows the results with a fully charged Panasonic NCR 18650 F type 

battery.  

Table 6.5 The Ohmic resistance of the PEIS (Panasonic NCR 18650 F, charged) 

Name of the curve R [Ω] 

GEIS BioLogic 1 0,078 

GEIS BioLogic 2 0,057 

GEIS with clips 0,116 

GEIS soldered 0,055 

 

The resistance values are shown in Table 6.5. The same as before the resistance is 

reduced by bypassing the crocodile clips. With the Panasonic NCR 18650 F battery the 

reference values differ as well. This is can be due to the discharge process itself or the 

amount of time the battery was idle. It is, however closer to the curve measured with the 

experimental device.  
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Figure 6.13 Panasonic NCR 18650 F in discharged state, GEIS  

Figure 6.13 shows the results with a discharged Panasonic NCR 18650 F type 

battery.  

Table 6.6 The Ohmic resistance of the PEIS (Panasonic NCR 18650 F, discharged) 

Name of the curve R [Ω] 

GEIS BioLogic 1 0,071 

GEIS BioLogic 2 0,070 

GEIS with clips 0,121 

GEIS soldered 0,057 

 

The resistance values are shown in Table 6.6. The same as before the resistance 

decreases after soldering the wires to the battery holder. This time the reference values 

are nearly identical, showing the importance of the discharging process. 
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Figure 6.14 Panasonic NCR 18650 F in charged state, PEIS  

Figure 6.14 shows the results of measuring with the PEIS method on a fully 

charged Panasonic NCR 18650 F type battery. 

Table 6.7 The Ohmic resistance of the PEIS (Panasonic NCR 18650 F, charged) 

Name of the curve R [Ω] 

PEIS BioLogic 1 0,082 

PEIS BioLogic 2 0,056 

PEIS with clips 0,120 

PEIS soldered 0,056 

 

The resistance values are shown in Table 6.7. The same as before the resistance is 

reduced after soldering the wires to the battery holder. Like with the GEIS method the 

reference values differ, however this time, the measurement after soldering and the 

corresponding reference values have the same Ohmic resistance.  
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Figure 6.15 Panasonic NCR 18650 F in discharged state, PEIS  

Figure 6.15 shows the results of measuring with the PEIS method on a discharged 

Panasonic NCR 18650 F type battery. 

Table 6.8 The Ohmic resistance of the PEIS (Panasonic NCR 18650 F, discharged) 

Name of the curve R [Ω] 

PEIS BioLogic 1 0,074 

PEIS BioLogic 2 0,065 

PEIS with clips 0,138 

PEIS soldered 0,057 

 

Table 6.8 shows the resistance values. The same as before the resistance is reduced 

by bypassing the crocodile clips. Out of all the measured values these are the closest to 

each other. The biggest difference was measured, when the crocodile clips were used to 

connect the battery.  

The visible trend with these comparisons was that, reducing the resistance of the 

connection with the experimental device (by directly soldering it to the battery holder) 

got the values closer to the reference data. This shows that the experimental device 

needs further calibration, but is capable of producing reliable data. 
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6.4 Summary 

To summarize the results a table containing the last values of the Ohmic resistance 

of the measurements was created.  

Table 6.9 The Ohmic resistance of the measurements 

Type of battery  Name of the curve R [Ω] ΔR [Ω] δR [%] 

 

Panasonic NCR 18650 B 

charged state 

GEIS with clips 0,105 

0,033 31,429 GEIS BioLogic 1 0,072 

GEIS soldered 0,057 

-0,014 -24,561 GEIS BioLogic 2 0,071 

 

Panasonic NCR 18650 B 

discharged state 

GEIS with clips 0,124 

0,041 33,065 GEIS BioLogic 1 0,083 

GEIS soldered 0,062 

-0,011 -17,742 GEIS BioLogic 2 0,073 

 

Panasonic NCR 18650 B 

charged state 

PEIS with clips 0,121 

0,045 37,190 PEIS BioLogic 1 0,076 

PEIS soldered 0,057 

-0,01 -17,544 PEIS BioLogic 2 0,067 

 

Panasonic NCR 18650 B 

discharged state 

PEIS with clips 0,131 

0,061 46,565 PEIS BioLogic 1 0,070 

PEIS soldered 0,062 

-0,009 -14,516 PEIS BioLogic 2 0,071 

 

Panasonic NCR 18650 F 

charged state 

GEIS with clips 0,116 

0,038 32,759 GEIS BioLogic 1 0,078 

GEIS soldered 0,055 

-0,002 -3,636 GEIS BioLogic 2 0,057 

 

Panasonic NCR 18650 F 

discharged state 

GEIS with clips 0,121 

0,05 41,322 GEIS BioLogic 1 0,071 

GEIS soldered 0,057 

-0,013 -22,807 GEIS BioLogic 2 0,070 

 

Panasonic NCR 18650 F 

charged state 

PEIS with clips 0,120 

0,038 31,667 PEIS BioLogic 1 0,082 

PEIS soldered 0,056 

0 0,000 PEIS BioLogic 2 0,056 

 

Panasonic NCR 18650 F 

discharged state 

PEIS with clips 0,138 

0,064 46,377 PEIS BioLogic 1 0,074 

PEIS soldered 0,057 

-0,008 -14,035 PEIS BioLogic 2 0,065 
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Figures 6.8 to 6.15 show the results from the different battery types and states of 

charge, corresponding to Table 6.9. On these figures the shape of the curves is visible 

(for better visibility it is zoomed in). The constructed table compares the Ohmic 

resistance of the measurements, which shows the affect of the added impedance to the 

measuring wires. In order to get more accurate results (compared to the reference values 

from the BioLogic instrument), the measuring wires were soldered to the battery holder. 

This reduced the unwanted, added resistance and got the values closer to the reference 

measurements. Table 6.9 also shows the absolute and relative deviation. The differences 

clearly show how much the results improved bypassing the resistance of the crocodile 

clips. The deviations ΔR (in Ω) and δR (in %) were calculated with the following 

equations: 

REFMR XX  ,   (6.1) 

100.
XM

R
R


 ,   (6.2) 

where XM is the data measured with the experimental device and XREF is the 

reference data (measured with the BioLogic instrument). 

On the mentioned figures the shape of the Nyquist Plot is also visible, where the 

differences in the curves are due to the affect of the charging and discharging processes. 

Leaving the battery to charge longer affects the “length” of the semi-circle (the 

impedance of the battery), which can mean over-charging or under-charging (if not 

charged for the proper time). The results are also affected by the measuring signals, 

higher current and voltage amplitudes can also be the cause of the differences between 

the two devices. After getting closer to the reference values, additional measurements 

could be conducted to determine the optimal amplitudes for the measuring signals. The 

higher values, 1 A for GEIS and 100 mV for PEIS, were used because of the 

experimental device. The device needed these values in order to measure correctly. 

Lower values yielded poor results; only the signal noise was measured. The BioLogic 

instrument usually measures with lower values, for PEIS 10 mV is commonly used and 

for GEIS even couple mili-amperes (even micro-amperes) can be used. 

Chapter six also contains a comparison between the measuring methods (PEIS, 

GEIS), shown on Figures 6.4 and 6.5, for charged and discharged states, respectively. 

For this comparison the Bode Plot of the complex impedance was used, measured with 

the experimental device. The plot contains both the real and imaginary part of the 

impedance and shows no visible differences between the methods of measurement. The 

curves in the plot completely overlay. The Bode Plots with phase shift are also included, 

Figure 6.6 and 6.7.     

The results of these measurements show, that the experimental device is a viable 

tool for measuring EIS. The differences are not significant and with more measurements 

and experiments it could produce the exact same results as a commercially available 

instrument. 
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7 CONCLUSION 

This diploma thesis focuses on attaining the information needed to understand the 

working principal of the lithium-ion batteries. Furthermore the electrochemical 

impedance spectroscopy methods are described. This description contains the difference 

between the galvanostatic and potentiostatic method, the mathematical models of how 

to process the acquired data and the information on how to operate the experimental 

device. The first step was to study through the above described information about 

lithium-ion batteries and the electrochemical spectroscopy method. Secondly a proper 

workstation had to be set up. A computer alongside with two power supplies was 

needed to start up the experimental device. This device uses symmetrical supply of 

power (± 30 V) and can only be used for one cell batteries.  

After setting up the workstation and getting familiar with how the experimental 

device functions the first task was to get the device up and running. The variables and 

commands described in chapter five are used to operate the device. It can use both the 

galvanostatic and potentiostatic electrochemical impedance methods. The measuring 

signal is a sinusoid signal with amplitude set by the variable sampl (for both methods). 

Selecting the measuring method is done with the mode variable (mode=0 for GEIS and 

mode=1 for PEIS). The other variables are used to set the measuring parameters. The 

frequency range is set by the variables sfstart and sfend. The variables average, step, 

skip describe the number of measurements on every given frequency, the steps between 

each measured point and how many periods are skipped in the beginning of the 

frequency sweep in order to synchronize the device, respectively.  

During the experiments a faulty power amplifier had to be switched out. One of the 

capacitors was damaged and because of that the unit could not function properly, it 

could not generate the proper measuring signals. After the repairs the device started to 

function. At first the results were very inaccurate. With trying out different amplitudes 

and different setup parameters more and more accurate results were achieved. In order 

to measure accurately, higher amplitudes were used for the measuring signals alongside 

with a higher averaging count (average=30 compared to the BioLogic instrument, which 

only uses Na=3). The measurements were carried out in the frequency range from 50 

kHz to 50 mHz. This range was used partially because of the faster measurement times 

and partially because of the experimental device (the highest frequency setting on the 

device is 50 kHz). The BioLogic instrument completed these measurements under five 

minutes; however the experimental device needed more time (around fifteen minutes), 

because of the much higher average count.  

The device in its current state functions and is able to use both measuring methods. 

In order to precisely determine the amplitudes for the measuring signals, thus reducing 

the differences between the two instruments, further experiments are needed. Other 

improvements would include the addition of a more practical user interface for setting 

up the measurements and streamline the work with the measured data. The versatility 

and the relatively easy handling of the device are amongst the biggest advantages. 

However the greatest advantage lies in the price/quality (features) ratio, for small scale 

applications it is exceptional. 
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Table 7.1 Panasonic NCR 18650 B, GEIS, charged 

f [Hz] UAC [V] IAC [A] φ [º] Real Z [Ω] Imaginary Z [Ω] 

5,00E+04 9,11E-02 1,00E+00 -3,83E+01 7,15E-02 -5,64E-02 

3,43E+04 9,23E-02 1,18E+00 -3,20E+01 6,62E-02 -4,14E-02 

2,31E+04 7,59E-02 1,11E+00 -2,55E+01 6,19E-02 -2,96E-02 

1,58E+04 6,59E-02 1,05E+00 -1,92E+01 5,96E-02 -2,08E-02 

1,08E+04 6,16E-02 1,04E+00 -1,48E+01 5,75E-02 -1,52E-02 

7,32E+03 5,82E-02 1,02E+00 -9,92E+00 5,64E-02 -9,87E-03 

5,00E+03 5,67E-02 1,01E+00 -6,81E+00 5,58E-02 -6,66E-03 

3,40E+03 5,63E-02 1,01E+00 -3,71E+00 5,58E-02 -3,62E-03 

2,32E+03 5,63E-02 1,00E+00 -1,61E+00 5,60E-02 -1,57E-03 

1,58E+03 5,68E-02 1,00E+00 9,96E-02 5,67E-02 9,86E-05 

1,08E+03 5,74E-02 1,00E+00 9,22E-01 5,73E-02 9,23E-04 

7,33E+02 5,81E-02 1,00E+00 1,88E+00 5,81E-02 1,90E-03 

4,99E+02 5,89E-02 9,99E-01 2,31E+00 5,89E-02 2,38E-03 

3,40E+02 5,98E-02 9,99E-01 2,52E+00 5,98E-02 2,63E-03 

2,32E+02 6,07E-02 9,99E-01 2,61E+00 6,07E-02 2,77E-03 

1,58E+02 6,14E-02 9,98E-01 2,73E+00 6,15E-02 2,93E-03 

1,08E+02 6,23E-02 9,99E-01 2,66E+00 6,23E-02 2,89E-03 

7,32E+01 6,32E-02 9,99E-01 2,53E+00 6,32E-02 2,79E-03 

4,99E+01 6,39E-02 9,99E-01 2,42E+00 6,39E-02 2,70E-03 

3,40E+01 6,46E-02 9,97E-01 2,04E+00 6,48E-02 2,31E-03 

2,32E+01 6,50E-02 9,96E-01 1,76E+00 6,53E-02 2,00E-03 

1,58E+01 6,54E-02 9,95E-01 1,64E+00 6,57E-02 1,88E-03 

1,07E+01 6,58E-02 9,95E-01 1,40E+00 6,61E-02 1,61E-03 

7,32E+00 6,62E-02 9,96E-01 1,17E+00 6,65E-02 1,35E-03 

4,98E+00 6,66E-02 9,98E-01 1,12E+00 6,67E-02 1,30E-03 

3,40E+00 6,69E-02 1,00E+00 9,22E-01 6,69E-02 1,08E-03 

2,31E+00 6,70E-02 9,98E-01 9,72E-01 6,71E-02 1,14E-03 

1,58E+00 6,74E-02 1,00E+00 8,24E-01 6,73E-02 9,67E-04 

1,07E+00 6,76E-02 1,00E+00 9,87E-01 6,76E-02 1,17E-03 

7,31E-01 6,79E-02 1,00E+00 1,05E+00 6,78E-02 1,25E-03 

4,98E-01 6,80E-02 1,00E+00 1,33E+00 6,79E-02 1,57E-03 

3,39E-01 6,82E-02 1,00E+00 1,42E+00 6,81E-02 1,69E-03 

2,31E-01 6,84E-02 1,00E+00 1,55E+00 6,83E-02 1,85E-03 
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Figure 7.1 Panasonic NCR 18650 B, Nyquist Plot, GEIS, charged  
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Figure 7.2 Panasonic NCR 18650 B, Bode Plot for the Impedance, GEIS, charged  
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Figure 7.3 Panasonic NCR 18650 B, Bode Plot for the phase, GEIS, charged  
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Table 7.2 Panasonic NCR 18650 B, GEIS, discharged 

f [Hz] UAC [V] IAC [A] φ [º] Real Z [Ω] Imaginary Z [Ω] 

5,00E+04 1,01E-01 1,00E+00 -4,02E+01 7,71E-02 -6,52E-02 

3,43E+04 1,01E-01 1,18E+00 -3,36E+01 7,10E-02 -4,71E-02 

2,31E+04 8,23E-02 1,10E+00 -2,64E+01 6,68E-02 -3,32E-02 

1,58E+04 7,11E-02 1,04E+00 -1,96E+01 6,42E-02 -2,29E-02 

1,08E+04 6,69E-02 1,04E+00 -1,48E+01 6,25E-02 -1,65E-02 

7,32E+03 6,32E-02 1,02E+00 -9,92E+00 6,14E-02 -1,07E-02 

5,00E+03 6,23E-02 1,01E+00 -6,00E+00 6,14E-02 -6,46E-03 

3,40E+03 6,20E-02 1,01E+00 -3,52E+00 6,16E-02 -3,79E-03 

2,32E+03 6,21E-02 1,00E+00 -1,09E+00 6,19E-02 -1,18E-03 

1,58E+03 6,26E-02 1,00E+00 2,46E-01 6,25E-02 2,68E-04 

1,08E+03 6,33E-02 1,00E+00 1,50E+00 6,33E-02 1,66E-03 

7,33E+02 6,44E-02 1,00E+00 2,12E+00 6,43E-02 2,38E-03 

4,99E+02 6,53E-02 9,99E-01 2,69E+00 6,52E-02 3,06E-03 

3,40E+02 6,63E-02 9,99E-01 3,08E+00 6,62E-02 3,56E-03 

2,32E+02 6,73E-02 9,99E-01 3,26E+00 6,73E-02 3,83E-03 

1,58E+02 6,83E-02 9,98E-01 3,40E+00 6,83E-02 4,06E-03 

1,08E+02 6,95E-02 9,99E-01 3,31E+00 6,95E-02 4,01E-03 

7,32E+01 7,05E-02 9,99E-01 3,42E+00 7,05E-02 4,21E-03 

4,99E+01 7,15E-02 9,98E-01 3,55E+00 7,15E-02 4,44E-03 

3,40E+01 7,24E-02 9,97E-01 3,47E+00 7,24E-02 4,39E-03 

2,32E+01 7,33E-02 9,95E-01 3,65E+00 7,35E-02 4,69E-03 

1,58E+01 7,42E-02 9,94E-01 3,87E+00 7,44E-02 5,04E-03 

1,07E+01 7,52E-02 9,95E-01 4,23E+00 7,54E-02 5,58E-03 

7,32E+00 7,63E-02 9,95E-01 4,88E+00 7,64E-02 6,52E-03 

4,98E+00 7,76E-02 9,97E-01 5,77E+00 7,74E-02 7,82E-03 

3,40E+00 7,93E-02 9,99E-01 6,79E+00 7,88E-02 9,38E-03 

2,31E+00 8,13E-02 9,96E-01 8,46E+00 8,07E-02 1,20E-02 

1,58E+00 8,46E-02 9,99E-01 1,02E+01 8,34E-02 1,51E-02 

1,07E+00 8,93E-02 9,96E-01 1,18E+01 8,78E-02 1,84E-02 

7,31E-01 9,53E-02 9,96E-01 1,31E+01 9,32E-02 2,17E-02 

4,98E-01 1,02E-01 9,95E-01 1,34E+01 1,00E-01 2,38E-02 

3,39E-01 1,09E-01 9,95E-01 1,30E+01 1,07E-01 2,46E-02 

2,31E-01 1,16E-01 9,95E-01 1,16E+01 1,14E-01 2,34E-02 
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Figure 7.4 Panasonic NCR 18650 B, Nyquist Plot, GEIS, discharged  
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Figure 7.5 Panasonic NCR 18650 B, Bode Plot for the Impedance, GEIS, discharged  
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Figure 7.6 Panasonic NCR 18650 B, Bode Plot for the phase, GEIS, discharged  
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