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Abstract
The tensor theory is a branch of Multilinear Algebra that describes the relationship be-
tween sets of algebraic objects related to a vector space. Tensor theory together with
tensor analysis is usually known to be tensor calculus. This thesis presents a formal cat-
egory treatment on tensor notation, tensor calculus, and differential manifold. The focus
lies mainly on acquiring and understanding the basic concepts of tensors and the opera-
tions over them. It looks at how tensor is adapted to differential geometry and continuum
mechanics. In particular, it focuses more attention on the application parts of mechan-
ics such as; configuration and deformation, tensor deformation, continuum kinematics,
Gauss, and Stokes’ theorem with their applications. Finally, it discusses the concept of
surface forces and stress vector.
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1. INTRODUCTION TO TENSOR CALCULUS

1. INTRODUCTION TO TENSOR
CALCULUS

Tensors were introduced by Professor Gregorio Ricci of University of Padua (Italy)
in 1887 primarily as an extension of vectors. A quantity having magnitude only is called
scalar and a quantity that has both magnitude and direction is called vector but certain
quantities are associated with two or more directions, such a quantity is called tensor .

The stress at a point of an elastic solid is an example of a Tensor which depends on
two directions one normal to the area and other that of the force on it [19]. Tensors have
their applications to Riemannian geometry, mechanics, elasticity, the theory of relativity,
electromagnetic theory, and many other disciplines of science and engineering.

An nth-rank tensor in m-dimensional space in a mathematical object that has n indices
and mn component and also obey some certain transformation rules. Generally m = 3.
Each index of a tensor ranges over the number of dimensions of spaces.

We have tensors of various ranks: Scalar fields are referred to as the tensor field of
rank or order zero ( i.e has no index), a scalar (density, pressure, temperature, etc.) is a
quantity whose specification (in any coordinate system) requires just one number. Vector
fields are referred to as tensor fields of rank or order one ( i.e has exactly one index), a
vector (displacement, acceleration, force, etc.) is a quantity whose specification requires
three numbers, namely its components with respect to some basis. A second-order tensor
is called a dyad, a third-order tensor is a triad and tensors of order three or higher are
called higher-order tensors.

Figure 1.1: Tensor representation
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1.1. INDEX NOTATION

1.1. Index Notation
Quantities which can be represented by a letter with subscripts or superscripts attached
are known as a system but when these quantities obey some certain transformation rules
as mentioned in the definition above then they are referred to as a tensor system [5].
For example:

Aij Ak
ij Aijk Bj bij δij eijk

and so on. But we focus our work mainly on the use of Aj
i or Aijxj. We talk about the

later index Aijxj in the next sub-topic. Note that the subscripts and superscripts are
known as indices. They must be in lower case and must not be among the listed letters
at the end of the English alphabet (u, v, w, x, y, and z) [5].
Index notation uses coordinates x1, x2, x3 to denote x, y and z coordinates respectively.
The components of a vector V would be v1, v2 and v3 in 3D.

1.2. Summation Convention over upper and lower in-
dices

As far as matrix elements are concerned, index notation such as A12 is the element in
the first row and the second column has been in use for some time. The advantage of
index notation in conjunction with the summation convention is that we can write a long
mathematical expression in a concise way [9].

Choosing a system of M equation in N unknowns:

A11x1 + A12x2 + · · ·+ A1NxN = C1

A21x1 + A22x2 + · · ·+ A2NxN = C2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AM1x1 + AM2x2 + · · ·+ AMNxN = CN

This system of equations can also be written in the form:

N∑
j=1

Aijxj = Ci where i = 1, 2, . . . ..M and j = 1, 2, . . . , N (1.1)

In agreement with the Einstein summation convention we can further simplify the
notation by writing:

Aijxj = Ci where i = 1, 2, . . . ,M ; j = 1, 2, . . . , N (1.2)

where summation on the repeated index j is implied. The Einstein summation con-
vention states that whenever there arises an expression where there is an index which
occurs twice on the same side of any equation or term within an equation, it is clearly
known to represent a summation on these repeated indices [5].

A repeated index is called the summation (dummy index) while the unrepeatable
index is called the free index.

14



1. INTRODUCTION TO TENSOR CALCULUS

1.3. Symmetry and Anti-symmetry System
A system defined by subscripts and superscripts ranging over a set of values is said to be
symmetric in two of its indices if the components are equal upon exchange of the index-
values [5]. For example, the second order system Tij is symmetric in the indices i and j
if

Tij = Tji for all values of i and j
i, j = 1, 2, 3

A system defined by subscripts and superscripts ranging over a set of values is said to
be anti-symmetric (skew-symmetric) in two of its indices if the components are equal but
opposite upon exchange of the index-values [5]. For example, the second order system Tij
is anti-symmetric in the indices i and j if

Tij = −Tji for all values of i and j
i, j = 1, 2, 3

Note that:
In any skew-symmetric matrix, all the diagonal elements are zero.
Every tensor can be decomposed into sum of symmetric and anti-symmetric tensor.

T = TA + T S

where TA and T S are anti-symmetric and symmetric tensor respectively

T S = T+TT

2
and TA = T−TT

2

T = T+TT

2
+ T−TT

2
= T+TT+T−TT

2
= T

1.4. Order and Type of a System
Order of a system
The number of subscripts and superscripts determine the order of the system
1. A system with one index is a first-order system
2. A system with two indices is called a second-order system
3. A system with N indices s called a Nth order system
4. Lastly, a system with no indices is called a scalar or zeroth-order system

Type of system
The type of system depends on the number of subscripts or superscripts occurring in an
expression.
For example, the system:
1. Ak

ij and Bn
lm are of the same type because they have the same number of subscripts

and superscripts.
2. The system Ak

ij and Cqr
p are not the same type because one system has two superscripts

and the other system has only one superscript.

15



1.5. KRONECKER DELTA AND PERMUTATION SYMBOL

1.5. Kronecker Delta and Permutation Symbol
Kronecker Delta
The Kronecker delta symbol is defined by

δij =

{
1, if i = j
0, if i 6= j

This definition assumes that i and j are explicit integers, such as i = 1, 2, 3 and j = 1, 2, 3
and it does not imply δii = 1. Hence, elements of the Kronecker delta is the same as the
elements of the identity matrix [9].

I = [δij] =

 1 0 0
0 1 0
0 0 1


Permutation Symbol
The permutation symbol is defined by

eijk =


1, if i, j, k are even permutations of 1, 2, 3
−1, if i, j, k are odd permutations of 1, 2, 3
0, otherwise.

From the definition above, we have that:

eijk = ejki = ekij = 1
eikj = ejik = ekji = −1
eijj = ejij = ejij = 0

Example

Consider the third-order system aprs , p, r, s = 1, 2, 3 which is completely skew-symmetric
in all of its indices. Show that the skew-symmetric systems have 27 elements, of which
21 elements are zero [5].

The 6 nonzero elements are all related to the ones given in the above definition

aprs = arsp = aspr = 1 which is the even permutation (clockwise)
apsr = asrp = arps = −1 which is the odd permutation (anticlockwise)

The remaining 21 zero elements are:

aprr = arpr = arrp = apss = asps = assp = . . . = appp = arrr = asss = 0

1.6. Quadratic Forms, Eigenvalue and Eigenvector Prob-
lems

From the first part of our introduction chapter, a second-rank tensor (dyad or matrix), a
homogeneous quadratic form [9] can be defined:

A = Aijxixj = xTAx (1.3)

16



1. INTRODUCTION TO TENSOR CALCULUS

If given an unsymmetrical (antisymmetric) matrix Aij , we first change the unsymmetrical
matrix to a symmetric matrix A(ij) while working with quadratic forms. The function A
is called a homogeneous function of the second degree.

We can perform constrained extremization by defining a modified function A∗ using a
Lagrange multiplier λ in the form

A∗ = A− λ (xixi − 1) (1.4)

This system of equations can be put in the form

Ax = λx or [A− λI]x = 0 (1.5)

Recall that, for a nontrivial solution, we require

det[A− λI] = 0 (1.6)

Assuming we have a 3 × 3 matrix, when the preceding determinant is expanded, we
get a cubic equation known as the characteristic equation of the matrix A :

− λ3 + IA1λ
2 − IA2λ+ IA3 = 0 (1.7)

where the coefficients IA1, IA2, and IA3 can also be written as

IA1 = Aii, IA2 =
1

2
(AiiAjj − AijAij) , IA3 = detA

These coefficients are also known as the three invariants of the matrix A. If we denote
the three roots of cubic equation by λ1, λ2, and λ3, we have that:

IA1 = λ1 + λ2 + λ3
IA2 = λ1λ2 + λ2λ3 + λ3λ1
IA3 = det(A) = λ1λ2λ3

The relation between the extremum values of the quadratic form A and the Lagrange
multipliers (eigenvalues) is as follows: Multiply the equation

Ax(1) = λ1x
(1)

by x(1)T to get
x(1)TAx(1) = λ1x

(1)Tx(1) = λ1

Hence, the three eigenvalues are the extremum values of the quadratic form along
the principal directions. If all the eigenvalues are positive, the quadratic form is called
positive definite and the matrix is called a positive-definite matrix.

1.6.1. Eigenvalue problem
Find the eigenvalues and eigenvectors of the given matrix

A =

 3 2 0
2 1 1
0 1 3
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1.6. QUADRATIC FORMS, EIGENVALUE AND EIGENVECTOR PROBLEMS

The characteristic equation is obtained from

det(A− λI) = 0

solving this, we get
−(λ3) + 7λ2 − 10λ− 6 = 0

−(λ− 3)(λ2 − 4λ− 2) = 0

λ1 = 3, λ2 = −
√
6 + 2 λ3 =

√
6 + 2

The invariants of the matrix are

IA1 = λ1 + λ2 + λ3 = 7
IA2 = λ1λ2 + λ2λ3 + λ3λ1 = 10
IA3 = det(A) = λ1λ2λ3 = −6

we see that the eigenvalues are
λ1 = 3

λ2 = −
√
6 + 2

λ3 =
√
6 + 2

and the corresponding eigenvectors are

x(1) =


−1
2

0
1

 , x(2) =


2

−
√
6− 1

1

 , x(3) =


2√
6− 1

1


These eigenvectors are called the principal directions of matrix A, and the eigen-

values are the principal values.
Now,

x(1)TAx(1) = λ1x
(1)Tx(1) = λ1

Solving this, we get 3 = λ1. Hence, the three eigenvalues are the extremum values of
the quadratic form along the principal directions.

1.6.2. Diagonalization and Polar Decomposition
Using the three eigenvectors as the three columns
We can construct the modal matrix of the given matrix A by denoting the modal matrix
by M [9]. Then,

M =
[
x(1),x(2),x(3)

]
(1.8)

It is clear that

MTAM =

 λ1 0 0
0 λ2 0
0 0 λ3

 (1.9)

Choosing a principal coordinate system x′i, using

xi =Mijx
′
j or x′ =MTx (1.10)

18



1. INTRODUCTION TO TENSOR CALCULUS

Multiplying Equation (1.9) by M from the left and by MT from the right

We can then express our matrix A as

A =
3∑

i=1

λix
(i)x(i)T

This is called the spectral representation of A
From the previous example above, the modal matrix of matrix A

M =

 −1
2

2 2

0 −
√
6− 1

√
6− 1

1 1 1


Then

MTAM =

 3 0 0

0 −
√
6 + 2 0

0 0
√
6 + 2


1.6.3. Polar Decomposition
The polar decomposition applies to any square matrix B. Polar decomposition refers to
factoring B in the form [9]

B = RU or B = V R

where U and V are symmetric matrices and R is an orthogonal (rotation) matrix.
Using RRT = I, we get

U 2 = BTB and V 2 = BBT

Find the square root of the matrices on RHS to get U or V
Then R can be expressed

R = BU−1 OR R = V −1B

This brings us to finding the square root of a symmetric matrix, say C or, in general, any
function F [C] of a matrix.
We begin by assuming the function F [C] has a converging infinite series expansion in C :

F [C] =
∑
0

alC (1.11)

The functions we have in mind are C1/2, sin[C], exp[C], etc. The corresponding functions
of a single variable, say x, are x1/2, sinx, expx, etc.

The generic matrix function F has the corresponding function of a single variable F .
Our symmetric matrix C has three orthogonal eigenvectors x(i) with the corresponding
eigenvalues λi.
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1.6. QUADRATIC FORMS, EIGENVALUE AND EIGENVECTOR PROBLEMS

Multiplying Equation (1.11) from the right by x(i), we see that F (λi) is the eigenvalue
of F corresponding to the eigenvector, x(i). The eigenvalues of [C]1/2, sin[C], and exp[C]

arcλ1/2i , sinλi, and expλi, respectively. Next, we use the Cayley-Hamilton theorem to
reduce Equation (1.11) to a quadratic in C (provided we are working with 3×3 matrices):

F [C] = c0I + c1C + c2C
2 (1.12)

Then the eigenvalues satisfy

F (λi) = c0 + c1λi + c2λ
2
i , i = 1, 2, 3

For example, to find the square root of C, we use

λ
1/2
i = c0 + c1λi + c2λ

2
i , i = 1, 2, 3

and solve for ci.

We substitute these coefficients in Equation (1.12) to get C1/2 which is clearly U and
then get R and V .

Example

[9] Given the matrix B

B =
1

5

 17 −11 0
19 23 0
0 0 15


We know that

U 2 ≡ BTB

The factors U ,V , and R are obtained from

U 2 = C ≡ BTB =

 26 10 0
10 26 0
0 0 9

 , R = BU−1, V = BRT

−λ3 + 61λ2 − 1044λ+ 5184 = −(λ− 9) (λ2 − 52λ+ 576) = −(λ− 9)(λ− 16)(λ− 36)

The eigenvalues of C are
λ1 = 9, λ2 = 16, λ3 = 36

Using the expansion √
λi = c0 + c1λi + c2λ

2
i

we have the system of equations

3 = c0 + 9c1 + 92c2, 4 = c0 + 16c1 + 162c2, 6 = c0 + 36c1 + 362c2

Solving this system of equations, we have

c0 = 52/35, c1 = 23/126, c2 = −1/630

20



1. INTRODUCTION TO TENSOR CALCULUS

Writing
C1/2 = c0I + c1C + c2C

2

we get

U = C1/2 =

 5 1 0
1 5 0
0 0 3


we can now solve for R and V

R =
1

5

 4 3 0
−3 4 0
0 0 5


and

V =
1

25

 101 7 0
7 149 0
0 0 75
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2. GENERAL TENSORS
Aside from the number of indices, the position of the indices matters a lot. The coor-

dinates of a vector are enumerated by one upper index, which is called the contravariant
index . The coordinates of a co-vector are enumerated by one lower index, which is called
the covariant index . In bilinear form, we use two lower indices hence, bilinear forms
are called twice-covariant tensors. Linear operators are tensors of mixed type, their
components are enumerated by one upper and one lower index. The number of indices
and their positions determines the transformation rules. In the general case, any tensor
is represented by a multidimensional array with a definite number of upper indices and a
definite number of lower indices [12].

Let’s denote these numbers by r and s. Therefore, we have a tensor of the type (r,
s), (or sometimes the term valency is used). A tensor of type (r, s), (or valency (r, s)) is
called an r-times contravariantand an s-times co-variant tensor.

2.1. Some Definitions
Definition 2.1.1 If A is any point in space and B is another point then, a directed
straight line segment from A to B is called a Line vector.

Definition 2.1.2 Vectors are elements of a finite dimensional space V over reals, prac-
tically Rn.

Definition 2.1.3 Covectors are liner forms. Covectors are function (linear function)
α : V → R that maps vectors to a real number and also obey the following rules:
1. α (~v + ~w) = α(~v) + α(~w)
2. α(n~v) = nα(~v)

Definition 2.1.4 Dual Vector is the set of all covectors that act on a vector space V
together form the vector space V ? and these covectors have their own adding and scaling
rules:
1. (nα)~v = nα(~v)
2. (β + γ)(~v) = β(~v) + γ(~v)

Definition 2.1.5 Dual basis of the dual space V ∗ is as follows:
If ~ei form a basis E of V, then ~ei defined by ~e′

(−→ej = δij
)

form the basis of V ∗, the
so-called dual basis. There are linear isomorphisms fE : V → V ∗ defined by ~ei 7→ ~e∗

depending on the choice of basis but there are not isomorphisms independent on the choice
of basis.

Nevertheless, there is a linear isomorphism F : V → (V ∗)∗ defined by F (~v)(f) = f(~v)
independent on the choice of a basis (by F we have denoted an element of V ∗
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2.2. Vector Identities in Cartesian Coordinates
Let x1 = x, x2 = y, x3 = z, where superscript variables are employed. Also denote the
unit vectors in Cartesian coordinates by ê1, ê2, ê3, we try to explain how various vector
operations are written by using the index notation [5].

Definition 2.2.1 Gradient
In Cartesian coordinates the gradient of a scalar field is

gradφ =
∂φ

∂x
ê1 +

∂φ

∂y
ê2 +

∂φ

∂z
ê3

where
êj · gradφ = φ,j =

∂φ

∂xj
, j = 1, 2, 3

The comma subscripts notation is used to denote the derivative
i.e φ,j =

∂φ
∂xj , Also φ,jk =

∂2φ
∂xj∂xk , and so on.

Definition 2.2.2 Divergence
In Cartesian coordinates the divergence of a vector field ~A is a scalar field and can be
represented by:

∇ · ~A = div ~A =
∂A1

∂x
+
∂A2

∂y
+
∂A3

∂z

Introducing the Einstein summation convention over upper and lower indices, the diver-
gence in Cartesian coordinates can be represented by

∇ · ~A = div ~A = Ai
,i =

∂Ai

∂xi
=
∂A1

∂x1
+
∂A2

∂x2
+
∂A3

∂x3

where i is the dummy summation index. In other words with vector component indices up

Definition 2.2.3 Curl:
To represent the vector B = curl ~A = ∇ × ~A in Cartesian coordinates, we note that the
index notation focuses attention only on the components of this vector. The components
Bi, i = 1, 2, 3 of ~B can be represented by

Bi = êi · curl ~A = eijkAk,j, for i, j, k = 1, 2, 3

where eijk is the permutation symbol introduced in the previous chapter and Ak
j = ∂Ak

∂xj .
To verify or check this representation of the curl ~A we need to perform the summations
indicated by the repeated indices. We have summing on j = 1, j = 2, and j = 3 that

Bi = eki1A
k
1 + ei2A

k
2 + ei3A

k
3

Now summing each term on the repeated index k gives:

Bi = e2i1A
2
1 + e3i1A

3
1 + e1i2A

1
2 + e3i2A

3
2 + e1i3A

1
3 + e2i3A

2
3
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2.3. TRANSFORMATION RULES

We have i as the free index which means that it can takes on any of the values 1, 2 or 3.
we then have

For i = 1, B1 = A3,2 − A2,3 =
∂A3

∂x2 − ∂A2

∂x3

For i = 2, B2 = A1,3 − A3,1 =
∂A1

∂x3 − ∂A3

∂x1

For i = 3, B3 = A2,1 − A1,2 =
∂A2

∂x1 − ∂A1

∂x2

which verifies the index notation representation of curl ~A in the Cartesian coordinates.
In contrary to divergence and gradient, curl works only for dimension 3 ( or 2 in more

trivial cases).

2.3. Transformation Rules
Tensors

In an m-dimensional space, a tensor of rank n is a mathematical object that has n indices
and mn components and also obeys some certain transformation rules.
We now discuss on Transformation rules:
1. A tensor is an object that transforms like a tensor
2. A tensor is an object that is invariant (does not change) under a change of coordinate
systems, with components that change according to a special set of mathematical formulas.

2.3.1. Contravariant and covariant Vectors
Contravariant component: Ai

Covariant component: Bj

Assumptions:
Suppose that V is a vector field defined on a subset of Rn and suppose that (xi) and (x̄i) are
two coordinate systems related by the coordinate transformation T : x̄i = x̄i (x1, x2, x3, · · · , xn)

Contravariant vector
Assume as above
The vector field V is said to be a contravariant tensor of rank 1 (vector) if its components
vi in the (xi) - coordinate system and v̄i in the (x̄i) - coordinate system are related by
the following law of Transformation:

v̄i = vr ∂x̄i

∂xr , where 1 ≤ i ≤ n

Covariant vector
Also assume as above
The vector field V is said to be a covariant tensor of rank 1 (vector) if its components vi
in the (xi) - coordinate system and v̄i in the (x̄i) - coordinate system are related by the
following law of Transformation:

v̄i = vr
∂xr

∂x̄i , where 1 ≤ i ≤ n
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Invariant
Invariant are mathematical objects that have intrinsic physical entities and laws that obey
the transformation rules of tensors.

If vj represents the components of a contravariant vector and uj represents the com-
ponents of a covariant vector, then if the inner product E ≡ vjuj is defined in each
coordinate system, it is an invariant.

A tensor is an object that is invariant under a change of coordinate sys-
tems, with components that change according to a special set of mathematical
formula

2.3.2. Contravariant and covariant Tensor
Assumption
Suppose that V is a matrix field of n × n scalar fields defined over a region of U in Rn.
Assume that in the (xi) coordinate system, the components of V are V ij. Assume also
that after a coordinate transformation T : x̄i = x̄i (x1, x2, x3, · · · , xn) that takes us to the
(x̄i) - coordinate system, the components of V becomes V̄ ij.

Contravariant tensor

Assume as above

A matrix field V is said to be a contravariant tensor of rank 2 if its components V ij

in the (xi) - coordinate system and V̄ ij in the (x̄i) - coordinate system obey:

V̄ ij = V mn ∂x̄i

∂xm
∂x̄j

∂xn ,

where 1 ≤ i, j ≤ n; m,n are dummy indices while i, j are free indices

Covariant tensor

Assume as above

A matrix field V is said to be a covariant tensor of rank 2 if its components Vij in the
(xi) - coordinate system and V̄ij in the (x̄i) - coordinate system obey:

V̄ij = Vmn
∂xm

∂x̄i
∂xn

∂x̄j ,

where 1 ≤ i, j ≤ n; m,n are dummy indices while i, j are free indices.

Mixed tensor

Lastly, Assume that A is a matrix field of n × n scalar fields defined over a region of
U ∈ Rn. Assume that (xi) coordinate system, the components of A are Ai

j. Assume also
that after a coordinate transformation T : x̄i = x̄i (x1, x2, x3, · · · , xn) that takes us to the
(x̄i) - coordinate system, the components of A becomes Āi

j.
A matrix field A is said to be a Mixed tensor of rank 2 if its components Ai

j in the (xi) -
coordinate system and Āi

j in the (x̄i) - coordinate system obey:
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Āi
j = Am

n
∂x̄i

∂xm
∂xn

∂x̄j ,

where 1 ≤ i, j ≤ n m,n are dummy indices while i, j are free indices.

2.3.3. Ranks of tensor
Suppose V is a tensor with components V i1,i2··· ,ir

j1,j2,·,js . Total rank of V is the sum of the con-
travariant indices (or rank) and covariant indices (or rank) i.e T = r+ s. We can call V a
(r, s)− tensor where r is the contravariant rank and s is the covariant rank For example:
If A is a tensor with components: Aij is a contravariant tensor of rank 2 which is simply
written as (2, 0) tensor. Aij is a covariant tensor of rank 2 which is simply written as
(0, 2) tensor. Lastly Ai

j is a tensor with contravariant rank 1 and covariant rank 1 which
is simply written as (1, 1) tensor and the total rank is 2

On a general case
Assumptions:
Suppose V is an array (1-D, 2-D, 3-D,..., M-D array) field composed of nm scalar fields
(functions) defined over a region U in Rn. Assume that in the (xi) - coordinate system,
the components of V are V i1,i2···ir

j1,j2,·,js , where r + p = m.
Assume also that after a coordinate Transformation T

T : x̄i = x̄i (x1, x2, . . . , xn) that takes us to the (x̄i) - coordinate system, the compo-
nents of V become V̄ i1,i2···ir

j1,j2,·,js .
An array field V is a tensor of rank m = r + s with a contravariant rank of r and

covariant rank of s if its components V i1,i2···ir
j1,j2,·,js in the (x̄i) -coordinate system and V̄ i1,i2···ir

j1,j2,·,js
in the (x̄i) - coordinate system obey:

V̄ i1,i2···ir
j1,j2,·,js = V k1,k2···kr

l1,l2,·,ls
∂x̄i1

∂xk1
∂x̄i2

∂xk2
· · · ∂x̄

ir

∂xkr
∂xl1

∂x̄j1
∂xl2

∂x̄j2
· · · ∂x

ls

∂x̄js

where 1 ≤ i, j, k, l ≤ n k, l are dummy indices while i, j are free indices.

2.4. Operations on Tensors
Having defined the general concept of tensor over an n -dimensional vector space, let us
now introduce the basic arithmetic operations involving tensors [12].

2.4.1. Addition
Two tensors of the same type can be added term by term. The expression

Ci1...ir
j1...js

= Ai1...ir
j1...js

+Bi1...ir
j1...js

This means that each coordinate on the L.H.S holds the sum of the corresponding
coordinates on the R.H.S. We can simply write tensor addition symbolically as C = A+B
[12].
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2.4.2. Multiplication by scalar
Each of the coordinates of a tensor can be multiplied by a given scalar to yield a new
tensor of the same type. This can be expressed as:

Ci1...ir
j1...js

= cAi1...jr
j1...js

We can write tensor multiplication by a scalar symbolically as C = cA [12].

2.4.3. Contraction
Let C be a tensor of type (r, s) at x, with r and s at least 1. Then C has components
Cj1,...,js

i1,...,ir
as stated earlier. Then there is a tensor of type (r−1, s−1) which has components

n∑
a=1

C
j1...js−1a
i1...ir−1a

This tensor is called a contraction of C [12].
If r and s are large then there will be many such contractions, depending on the indices

we choose to sum over.

2.4.4. Inner produt
Here we try to disuss briefly on an important function in the section subsection which is
the inner product . Let u and v be vectors in a real vector space V and denote by u ·v
a function acting on u and v and producing a scalar a = u · v, such that the following
property holds:

i. Bilinearity:
(au1 + bu2) · v = a (u1 · v) + b (u2 · v)
u · (av1 + bu2) = a (u · v1) + b (u · v2)

for all u,u1,u2,v,v1,v2 ∈ V and a, b ∈ R Such a function is called an inner product on
the space V .
If the above property holds:

ii. Symmetry:
u · v = v · v for all u,v ∈ V , then the inner product is called symmetric. Also, if the
following property holds:

iii. Nondegeneracy:
u · x = 0 for all u ∈ V ⇒ x = 0

then the inner product is called nondegenerate.
A vector space equipped with an inner product is called an inner product space .
Henceforth, we will be considering symmetric nondegenerate inner products as inner
product without stating it explicitly [12].
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2.5. The Metric Tensor

2.5.1. Gram Matrix
Let us express the inner product in some basis (e1, e2, . . . , en) .
Assume u = eiu

i and v = eiv
i be two vectors. Then, using the bilinearity of the inner

product, we get:
u · v = (ei · ej)u

ivj

The entity (ei · ej, 1 ≤ i, j ≤ n), consisting of n2 numbers, is an n×n matrix and is called
the Gram matrix of the basis. We denote this matrix by G.

By symmetry of the inner product mentioned earlier in this section, the matrix G is
symmetric[12].

Theorem 2.5.1 (Sylvester theorem) Every real symmetric matrix G is congruent to
a diagonal matrix whose entries have values +1,−1, or 0. The number of 1′s, −1′s and
zeros, i.e n+, n− and n0 is invariant with respect to the change of the basis in which the
discussed 2− form is diagonal. The set of numbers n+, n− and n0 is said to be signature.
If n− and n0 are zeros then we have the case of the classical tensors (euclidean), in other
case we have (pseudo)riemannian tensors. In case of n = 4, n− = 1 and n0 we have
Minkowski tensor [12].

2.5.2. Metric tensor
Define gij = ei · ej, we have that:

u · v = giju
ivj

The (0, 2) -tensor gij is called the metric tensor of the inner product space. Like every
tensor, it is a geometric object, invariant under change-of-basis transformations.

By Sylvester’s theorem, there exists a basis which makes the metric diagonal and
reveals the signature of the space [12]. This signature is uniquely defined by the definition
of the inner product.
It immediately follows that the inner product is invariant under a change of basis. This
is not new to us since the definition of inner product does not depend on a basis. since,
by our assumption from the previous theorem, G is nonsingular, it possesses an inverse
G−1. The entries of G−1 may be viewed as the coordinates of a ( 2, 0 )-tensor, called the
dual metric tensor, and it is usually denoted by gij. It then follows immediately that

gjkg
ki = δij

2.5.3. The Minkowski Space
This is an example of non-Euclidean inner product space; Minkowski space. This is a 4-
dimensional inner product vector space possessing an orthogonal basis (e0, e1, e2, e3) and
a metric tensor whose coordinates in this orthogonal basis are

gij =


−1, i = j = 0

1, i = j = 1, 2, 3
0, i 6= j
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The metric of this space has signature n+ = 3, n− = 1.
The Minkowski space is clearly seen to be a non-Euclidean; apparently, this space underlies
relativity theory, therefore, it is the space in which our universe exists. The number of
the dimensions is starting at 0 instead of 1 [12].
The index 0 is associated with ct, (time multiplied by the speed of light).
The remaining indices are associated with the usual space coordinates x, y, z.
However, relativity theory convention for the coordinates is (x0, x1, x2, x3) in agreement
with tensor notation (we shouldn’t confuse contravariant indices with powers)
Now, let x be a vector in the Minkowski space, expressed in the time-space basis of the
space. Then we have that:

x · x = −
(
x0
)2

+
3∑

i=1

(
xi
)2

We can see that x·x is not always non-negative because the inner product of the Minkowski
space is not positive.
The following terminology is in use, depending on the sign of x · x :

x · x


< 0 : timelike components
= 0 : lightlike components (or Null)
> 0 : spacelike components

2.6. Operation of lowering and raising of indices in-
duced by
metric tensors

Let ai1...irj1...js
be the coordinates of the (r, s) -tensor a in some basis and gij be the metric

tensor in this basis.
Let us form the tensor product gpqai1...isj1...js

. This tensor has type (r, s+ 2).

2.6.1. Lowering of tensors
We now choose one of the contravariant coordinates of a, say ik and replace ik by q and
then perform contraction with respect to q. So q will disappear and we will be left with
a tensor of type (r − 1, s+ 1) which is written simply in the form T r

s → T r−1
s+1

A
i1...ik−1ik+1...ir
pj1...js

→ gpqA
i1...ik−1qik+1...ir
j1...js

This operation is called lowering. Lowering acts do decrease the contravariance valency
by 1 and increase the covariant valency by 1. There are r possible lowerings, depending on
the choice of k. Note that the new covariant index of the result, p in the equation above
is placed in the first position [12].
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2.6.2. Raising of tensor
Raising is the opposite of lowering. We begin with the dual metric tensor gpq and form
the tensor product gpqai1...irj1...js

. Now we choose an index jk and replace jk by q and perform
contraction with respect to q, we then obtain

Api1...ir
j1...jk−1jk+1···js → gpqAi1...ir

j1...jk−1qjk+1...js

This operation is called raising.
Raising acts to increase the contravariance valency by 1 and decrease the covariant va-
lency by 1, so the resulting tensor has type (r + 1, s− 1), which is simply written in the
form T r

s → T r+1
s−1 . There are s possible raising, depending on the choice of k [12].

Note that the new contravariant index of the result, p in the above equation is placed
in the first position.
A common use of lowering and raising is in moving between vectors and covectors [12].
If vi is a vector in some basis, we define its corresponding covector vi through the rela-
tionships

vi = gikv
k, and vi = gikvk

These relationships establish a natural isomorphism between the given vector space V and
its dual space of covectors V∗.

2.7. The Levi-Civita Symbol
The Levi-Civita Symbol εi1i2,...,in is a function of n indices, each taking values from 1 to
n. It is therefore fully defined by nn values, one for each choice of indices. The definition
of the Levi-Civita symbol is as follows [12].

εi1i2...in =


1,i1i2 . . . in is an even permutation of 12 . . . n

−1,i1i2 . . . in is an odd permutation of 12 . . . n
0,i1i2 . . . in is not a permutation of 12 . . . n

We can see that:
εi1i2...in is 1 in n!/2 cases out of nn

e.g n = 3 =⇒ 3!/2 = 3
εi1i2...in is -1 in n!/2 cases, and
εi1i2...in is 0 in all other cases. Let A be an n × n matrix. Using the Levi-Civita symbol,
we can express the determinant of A as

detA = εi1i2...inA
i1
1 A

i2
2 . . . A

in
n

with implied summation over all indices.

2.8. Symmetry and Anti-symmetry
From our previous knowledge, we know that; Aj1j2...js is a (0, s) -tensor, but can also be a
symbol such as the Levi-Civita symbol or a pseudotensor such as the volume tensor. We
say that Aj1j2...js is symmetric with respect to a pair of indices p and q if

Aj1j2...p...q...js = Aj1j2...q...p...js (2.1)
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We say that Aj1j2...js is anti-symmetric with respect to a pair of indices p and q if

Aj1j2...p...q...js = −Aj1j2...q...p...js (2.2)

We note that each of (2.1) and (2.2) above involves transposition of p and q; hence,
symmetry and anti-symmetry are defined by the behavior of the coordinates under trans-
positions [12].
A tensor is called completely symmetric if it exhibits symmetry under all possible trans-
positions
A tensor is called completely anti-symmetric if it exhibits anti-symmetry under all possible
transpositions.

Theorem 2.8.1 A tensor aj1j2...js is completely symmetric if and only if Ak1k2...ks =
Aj1j2...js for any permutation k1, k2, . . . , kn

Proof: Trivial
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As much as a material body is the fundamental object of Continuum Mechanics, a

differentiable manifold is the fundamental object of Differential Geometry. We will be
presenting the general definition of this differential manifolds. There are many different
ways of defining a differentiable manifold; an object whose main feature looks locally like
the Euclidean space Rn [4].

There are only two possible 1-dimensional manifolds. Continuous plane curves that
do not self-intersect (lines) and circles are topological 1 - dimensional manifolds.

Also, the 2 - dimensional manifolds are known as surfaces. Examples include spheres,
tori, and hyperboloids. These are topological 2- dimensional manifolds.

Figure 3.1: 2-dimensional manifolds

3.1. Manifold
Definition 3.1.1 A Hausdorff topological space with a countable basis is said to be a
manifold of order r or ∞ if the following claims are satisfied:

(i) There is a system A = (Uα, ϕα)α∈I , I at most countable such that the system Uα

consists of open subsets and cover M and the so-called local maps ϕα : Uα → ϕ (Uα) ⊆ Rn

are homeomorphisms.
(ii) the transition maps ϕ2 ◦ ϕ−1

1 : ϕ1 (U1 ∩ U2) → ϕ2 (U1 ∩ U2) are smooth (differen-
tiable up to order r or ∞ ).

Figure 3.2: From definition 9

The system A is said to be an atlas on M
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3.1.1. Differentiable Manifold
Definition 3.1.2 A manifold of class Cr and dimension n is a topological Hausdorff
space M with a fixed complete atlas compatible and where r is a positive integer or infinity
[4].

A manifold will be called smooth when it is of class C∞. In concise, smooth manifold
( is infinitely differentiable manifold). Henceforth, we will only be dealing with smooth
manifolds.

In simple definition: smooth manifolds are geometrical objects that locally
look like some Euclidean space and on which we can do calculus. [18]

With smooth we mean infinitely differentiable (smooth manifold), i.e, for a map f :
U → R open, all the partial derivatives of f need to exist and need to be continuous on
U. When f is smooth we use the notation f ∈ C∞(U) [18].
In general, a function F : U → Rk with U ⊂ Rl open is said to be smooth if each
component function Fi of F = (F1, . . . , Fk) is smooth.

Definition 3.1.3 Suppose U ⊂ Rl and V ⊂ Rk are open subsets. A map F : U → V is
called a diffeomorphism if it is a bijective smooth map with a smooth inverse [18].

Note that when F is a diffeomorphism, it is definitely homeomorphism.

Definition 3.1.4 Two charts (U,ϕ) and (V, ψ) on M are said to be compatible if either
the intersection U ∩ V is disjoint or the transition map

ψ ◦ ϕ−1
∣∣
ϕ(U∩V )

: ϕ(U ∩ V ) → ψ(U ∩ V )

is a diffeomorphism [18].

Figure 3.3: Compatible

Definition 3.1.5 Consider two differentiable manifolds (M,N) and a mapping f :M →
N. A mapping f :M → N is said to be differentiable if for every chart (Ui, ϕi) of M and
every chart (Vk, ψk) of N such that f (Ui) ⊂ Vk the mapping

ψk ◦ f ◦ ϕ−1
i : ϕi (Ui) → ψk (Vk)

is differentiable ( i.e smooth differentiable ) [4].
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Furthermore, in order to develop differential calculus on a manifold and to be able to
calculate derivatives in a specific direction, we try to introduce the concept of a tangent
vector to a differentiable manifold.

3.2. Tangent vector space
Definition 3.2.1 Tangent vector
A linear map X : C∞(M) → R is said to be a derivation of M at p when it satisfies the
Leibniz condition

X(fg) = f(p)Xg + g(p)Xf

for all f, g ∈ C∞(M).

The tangent space of M at p, denoted by TpM, is the set of all derivations of M at
p . An element of TpM is also called a tangent vector of M at p [4].

Clearly a tangent space is an R-vector space. Furthermore note that the Leibniz
condition is some kind of product rule, hence an essential example of a derivation is the
directional derivative of a function along a smooth path.

Particularly, let γ : R → M be some smooth path with the property γ(0) = p. Then
the map X acts as

X(f) =
d

dt

∣∣∣∣
t=0

(f ◦ γ)

for all f ∈ C∞(M) defines a derivation at p. This follows quite directly by noting the
useful equality fg ◦ γ = (f ◦ γ)(g ◦ γ). The converse is actually true as well [15].

3.3. Vector Fields
Let M be an n -dimensional smooth manifold. Before we discuss on vector fields, we will
first have to define the notion of a tangent bundle.

3.3.1. Tangent bundle
In the above subsection, we defined the tangent space TpM at each point p on M. Now,
let us consider a collection of tangent bundles over every point on M

TM = ∪p∈MTpM

Which is clearly a manifold.
For a given coordinate chart (Ui, ϕi) , we choose to define coordinates on ∪p∈Ui

TpM
as (xα, vα) , where (xα) are coordinates on Ui and we parametrize a tangent vector as

v = vα
∂

∂xα

This defines differential structure on TM (TM is a differential manifold). Hence, TM is
called a tangent bundle [4] [15].
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Definition 3.3.1 We define the space TxM as the set of all j10γ for curves γ : R → M
such that γ(0) = x. Then TM = ∪xTxM is said to be the tangent bundle on M .

For a smooth map f :M → N define the map Tf by Tf (j10γ) = j10(f ◦ γ) [6] [17].

Proposition 3.3.1 There is a structure of a smooth manifold on TM, locally diffeomor-
phic to Rn × Rn.

Furhter, there is a projection pM : TM → M mapping every element from TxM to x.
Clearly, Tf is a smooth map.

Definition 3.3.2 A local section X : M → TM is said to be a vector field on M . Local
section: p ◦X = idM

3.3.2. Vector field on manifold
A vector field on manifold is a result of selecting at each point of a manifold a tangent
vector.

Definition 3.3.3 A vector field on the manifold M is a mapping

X :M →
⋃
p∈M

TpM

such that X(p) ∈ TpM for every p ∈M.

X is called a differentiable vector field if, for every differentiable function f,X(f), viewed
as a real-valued function on M, is differentiable in a neighbourhood of every point.
i.e, a vector field X is differentiable if, for every point p ∈ M, there exists an open
neighbourhood Up, such that Xq(f) is differentiable at every q ∈ Up, and for every f ∈
F(q).
Denoting Xp in the given coordinate induced basis ∂

∂uτ

∣∣
p′
· · · , ∂

∂uw

∣∣
p

as

Xp =
n∑

j=1

ξj(p)
∂

∂w

∣∣∣∣∣
p

where ξj is the components of the vector field X in the coordinate system u1, . . . , un and
these components are real-valued functions on the manifold M [4]

Proposition 3.3.2 A vector field X on a manifold M is differentiable if and only if its
components in one and therefore in every, coordinate system are differentiable functions
on M .

The set X (M) of all differentiable vector fields on M is a real vector space with point-
wise addition and multiplication by scalars. To be precise, it is an algebra with bracket
operation defined by

[X,Y ](f) ≡ X(Y (f))− Y (X(f))

for any differentiable function f :M → R, and any pair of vector fields X,Y ∈ X (M).
X, Y are vector fields [15].

The above proposition leads us to consider vector fields as the element of a Lie Algebra.
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3.3.3. Lie Algebra
Let [x, y] be a vector field on a manifold M provided that X and Y are vector fields
on M . Then X (M) is said to be a Lie algebra if there exists a bilinear map [−,−] :
X (M)×X (M) → X (M), called the Lie bracket [1], such that
1. The Lie bracket [−,−] is skew-symmetric:

[X,Y ] = −[Y,X], ∀X,Y ∈ X (M)

2. The Jacobi identity is satisfied:

[X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0, ∀X,Y, Z ∈ X (M)

The space X (M) is indeed a Lie algebra over the set of real numbers.

We may also regard X (M)) as a module over the algebra F(M) of differentiable
functions on M as follows [15] :
If f is a function and X is a vector field on M, then fX is a vector field on M defined by
(fX)p = f(p)X for p ∈M. Then

[fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X

f, g ∈ F(M), X, Y ∈ X (M)

For a point p of M, the dual vector space T ∗
p (M) of the tangent space Tp(M) is called the

space of covectors at p.
An assignment of a covector at each point p is called a 1 -form (diferential form of degree
1 ).
For each function f on M , the total differential (df) of f at p is defined by:

〈(df)p, X〉 = Xf for X ∈ Tp(M)

where (, ) denotes the value of the first entry on the second entry as a linear functional
on Tp(M). If u1, . . . , ua is a local [15].

As we mentioned earlier, the tangent space of the manifold M at the point p ∈ M is
a real vector space. Its dual space T ∗

pM is called the space of covectors at p. A smooth
field of co-vectors ω : M →

⋃
p∈M T ∗

pM such that ωp ≡ ω(p) ∈ T ∗
pM is called a 1 -form

on M [15]. In other words, a 1 -form ω on M is a linear mapping from the space X (M)
of all vector fields on M into the algebra of all differentiable functions F(M) on M such
that

ω(X)(p) = ωp (Xp) , Xp ∈ X (M), ωp ∈ T ∗
pM, p ∈M

In particular, given a differentiable function f : M → R, its total differential is the 1
-form df defined at each p ∈M by

dfp (Xp) ≡ Xp(f)

for every Xp ∈ TpM. If u1, . . . , un is a local coordinate system in a neighbourhood of
p, the total differentials du1p, . . . , dunp form a basis of T ∗

pM . Moreover, according to the
definition of a differential

dujp (Xp) = dujp

(
ξk(p)

∂

∂uk

∣∣∣∣
p

)
= ξj(p)
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for any

Xp =
n∑

k=1

ξk(p)
∂

∂uk

∣∣∣∣∣
p

and any j = 1, . . . , n. Thus, given a coordinate system u1, . . . , un in an neighbourhood of
a point p, any 1 -form ω can be represented locally as

ω =
n∑

k=1

fkdu
k

where the functions fk, called components of ω in the coordinates u1, . . . , un are differen-
tiable (in the neighbourhood of p ) real-valued functions [4].

Generalizing the concept of a 1 -form we say that a (differentiable) r form on a n
-dimensional manifold M is a skew-symmetric r-linear mapping of the Cartesinn product
×rX (M) ≡ X (M) × · · · × X (M) (r-times) into F(M). We denote by Dr(M) the set of
all differentiable r-forms on M , where r = 0, 1, . . . , n, and where by convention D0(M) ≡
F(M)[4]. Each set Dr(M) is a real vector space as well as an F(M) -module. Namely,
if f ∈ F(M) and ω ∈ Dr(M) then fω ∈ Dr(M) is viewed as an r -form such that
(fω)p = f(p)ωp for any p ∈ M. An alternative way of defining an r -form is to consider
the differentiable manifolds exterior algebra ∧T ∗

pM with an alternating product ∧ defined
as follows”.

If ω1, . . . , ωr are 1 -forms on M and if X1
p , . . . , X

r
p are vectors at p ∈M, then

(ω1∧, · · · ,∧ωr)p
(
X1

p , . . . , X
r
p

)
≡ det

{
ωj

(
Xk

p

)}
, j, k = 1, . . . , r

An r -form ω evaluated at p ∈M is an element of degree r in ΛT ∗
pM. In a local coordinate

system u1, . . . , un the form ω can therefore be expressed uniquely as

ω =
∑

i1<i2<···<ir

fi1...irdu
i1 ∧ · · · ∧ duir

Let D(M) denote the totality of differential forms on M. The exterior differential d :
D(M) → D(M) is a linear mapping such that:
1. d (Dr(M)) ⊂ Dr+1(M)
2. If f ∈ F(M) then df is the total differential of f
3. If ω ∈ Dr(M) and λ ∈ D∗(M) then

d(ω ∧ λ) = dω ∧ λ+ (−1)rω ∧ dλ

4. d2 ≡ d ◦ d = 0 The concept of a differential form can be generalized further to include
differential forms with values in a vector space. That is, let V be an m− dimensional real
vector space. A V -valued r -form at p ∈ M is a skewsymmetric r -linear mapping ω of
the product ×rTpM into V. Given a basis v1, . . . , vm in V one can write

ωp =
m∑
j=1

ωj(p)v
j
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3.4. SUBMANIFOLDS

where ωj are usual r -forms on M. Indeed,

ωp

(
X1

p , · · · , Xm
p

)
=

m∑
j=1

ωj(p)
(
X1

p , · · · , Xm
p

)
vj

for any X1
p , . . . , X

m
p ∈ TpM. The exterior derivative of ω is simply

dω ≡
m∑
j=1

dωj(p)v
j

By definition, the form ω is differentiable if each form ωj is differentiable [4]. In what
follows we will only consider differentiable forms, both real and vector valued.

3.3.4. Tensor products
Let A and B be two tensors at x of types (r, s) tensor and (p, q) tensor respectively. Then
the tensor product A⊗B is the tensor at x of type (r + p, s+ q) defined by

A⊗B (v1, . . . , vr+p, ω1, . . . , ωs+q) = A (v1, . . . , vr, ω1, . . . , ωs) · B (vr+1, . . . , vr+p, ωs+1, . . . , ωs+q)

for all vectors v1, . . . , vr+p ∈ TxM and all covectors ω1, . . . , ωs+q ∈ T ∗
xM [12].

Definition 3.3.4 A covector ω at x ∈ M is a linear map from TxM → R. The set of
covectors at x forms an n -dimensional vector space, which we denote T ∗

xM. A tensor of
type (k, l) at x is a multilinear map which takes k vectors and l covectors and gives a real
number [12]

Tx : TxM × . . .× TxM︸ ︷︷ ︸
k times

×T ∗
xM × . . .× T ∗

xM︸ ︷︷ ︸
i time

→ R

Note that a covector is just a tensor of type (1, 0), and a vector is a tensor of type (0, 1),
since a vector v acts linearly on a covector ω by v(ω) := ω(v) Multilinearity means that

T

(∑
i1

ci1vi1 , . . . ,
∑
ik

cikvik ,
∑
j1

aj1ωω
j1 . . . ,

∑
ji

ajlω
jl

)
=

∑
i1,...,ik,j1,...,jl

ci1 . . . cikaj1 . . . ajlT
(
vi1 , . . . , vik , ω

j1 , . . . , ωji
)

3.4. Submanifolds
Consider the space Rm supported by the standard inner product, which will be denoted
by Em.

Definition 3.4.1 A subset M ⊆ Rn is said to be an n-dimensional submanifold of Rm if
for any x ∈ M there is a neighbourhood W of x ∈ Rm and a diffeomorphism f : W →
V ⊆ Rm such that f(W ∩M) = V and fn+1 = · · · = fm = 0 [17].

Consider its local parametrization
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3. DIFFERENTIABLE MANIFOLD

f(u1, . . . , un) for (u1, . . . , un) ∈ U ⊆ Rn

Since f : U →M is a local diffeomorphism the so-called coordinate tangent vectors

fi =
∂f
∂ui = (∂f

p

∂ui ), i = 1, . . . , n, p = 1, . . . ,m

are linearly independent and form the basis of the tangent space TaM where a = f(u).
Let A = Σn

i=1a
ifi and B = Σn

i=1b
ifi. We want to emphasize the extension of indices

up to n, otherwise we could apply the Einstein summation convention. Then the value of
their inner product is

(A,B) = Σn
i=1,j=1a

ibj(fi, fj).

Setting gij(u) = (fi(u), fj(u)) = gij(u) = gji(u) we obtain

(A,B) = Σn
i,j=1gij(u)a

ibj = gij(u)a
ibj,

applying the Einstein summation convention in the last expression. We have obviously
obtained the symmetric bilinear form

(1) gij(u)dx
idxj,

which is a (0, 2)-tensor field (briefly tensor), i.e. a symmetric 2-form.
In the domain of parameters, let us define a path ui = ui(t), i = 1, . . . , n. In Em, we

have the path f(ui(t)). Its tangent vectors satisfy df(u(t))
dt

= fi
dui

dt
. For its square we have

(2) (ds)2 = gij(u(t))
dui

dt

duj

dt
,

which is a quadratic form with the associated symmetric bilinear form (1).

Remark 3.4.1 In what follows we apply the concept of a curve, which is only the trajec-
tory of path determined by a map f : I → M . Unlike curve, paths contain the complete
kinematic history. In other words, a curve can be identified with all possible reparametriza-
tions of a given path determining the same trajectory.

Consider a curve C ⊆ Em detrmined by xi(t) for t ∈ 〈a, b〉. Its length is given by the
expression as follows

(3)

∫ b

a

||dx
i

dt
||dt =

∫ b

a

√
(
dx1

dt
)2 + · · ·+ (

dxn

dt
)2dt =

∫ b

a

ds,

see (2).

Definition 3.4.2 The quadratic form (2) is said to be the first fundamental form.

Remark 3.4.2 (a) The quadratic form (2) is the generalization of the fundamental form
from the classical differential geometry. Two coordinate tangent vectors correspond to the
parametrization of a surface and the formula (3) yields the length of a curve with the
parametrization xi(t) lying on a given surface.

(b) All properties depending on the first fundamental form only are said to be the
properties of the inner geometry of a submanifold while the others like normal curvature
are called the external geometry.
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3.5. Paralel transport
Definition 3.5.1 Let M be a submanifold in Em. By the normal space NxM of M we
call the orthogonal complement to TxM in TxEm. The union

⋃
x∈N NxM is said to be the

normal bundle of M ⊆ Em [7].

The following, obvious definition defines the parallel transport of a system of vectors
along a curve in Em.

Definition 3.5.2 Let p(t) be a path in Em and v(t) be a system of vectors considered
as bounded vectors coming out from the points of p(t). Then v(t) is said to be paralelly
transported along p(t) if and only if dv

dt
= 0 [7].

It is easy to verify that any reparametrization of p(t) giving the same trajectory does
not affect the parallel transport of v(t). We generalize the recent definition corresponding
to the case of n = m to a general submanifold N as follows.

Definition 3.5.3 A system of vectors v(t) ∈ Rm is said to be parallely transported along
a path p(t) ⊆M if and only if dv

dt
∈ Np(t)M .

Let us describe the parallel transport in formulas. Clearly, TEm = Em × Rm. The
vectors fi can then be considered as a map U → Rm (U being the domain of parameters).
Then fij = ∂fi

∂uj . The definition of the coordinate tangent vectors fi yields, fij = fji.
Further, let ns(u) be a basis of a normal space at u, s = 1, . . . ,m−n = m−dimM . Then

(4) fij = Σn
k=1Γ

k
ij(u)fk(u) + Σm−n

s=1 b
s
ij(u)ns(u).

In coordinates, let p(t) be expressed by ui = pi(t) and v(t) = vi(t)fip(t), i.e. v(t) =
vi(t)fi(p(t)), applying the Einstein summation convention. Taking the derivative of the
recent equality we have

(5)
dv

dt
=
dvi

dt
fi(p(t)) + vi(t)fij(p(t))

dpj

dt
.

The parellel transport corresponds to the zero projection of dv
dt

to TxM , which is
equivalent to the zero values of (fl, dvdt ). Substituting (4) to (5) we obtain

(fl,
dvi

dt
+ Γi

jkfi
dpk

dt
) = 0.

Then the regularity and consequently the invertibility of the inner product matrix yields
the following formula and Proposition [7].

Proposition 3.5.1 The system of vector v(t) is parallely transported along the path p(t)
if and only if the following formula is satisfied

dvi

dt
+ Γi

jk(p(t))v
j dpk

dt
= 0.

where Christoffel symbols Γi
jk are defined by the formula

Γi
jk =

1
2
Σn

e=1g
ie
(

∂gje
∂uk + ∂gek

∂uj − ∂gjk
∂ue

)
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3. DIFFERENTIABLE MANIFOLD

By gie we denote the inverse matrix to g. We have unified the indices in formula [7].

It is easy to verify that the recent formula remains valid if we reparametrize the path
p(t). Thus Proposition (3.5.1) can be reformulated for a curves instead paths (paths
being representatives of curves).

Definition 3.5.4 Let x = p(t) be an integral curve of a vector field X. Then we can
defined the parallel transport of a vector field Y on M along the curve field X by the
following condition:

dY i

dXk
∂Xk

∂t
+ Γi

jk(p(t))Y
jXk = 0, i.e,

(
∂Y i

∂Xj + Γi
jk(X)Y j(x)

)
Xk = 0

Definition 3.5.5 Let X be a vector field on a submanifold M ⊂ Rn. Then the map
∇x : χ(M) → χ(M) defined by Y →

(
∂Y i

∂Xk + Γi
jk(x)Y

j(x)
)
Xk(x) is said to be a covariant

derivative of a vector field Y along the vector field X.

Corollary 3.5.0.1 Parallel transport is the inner property of a submanifold. In other
words, it depends only on the first fundamental form of the given submanifold M ⊂ Em.

Remark 3.5.1 Given a curve along which we parallely transport, the vector field is par-
allely transported in a unique way. The system of differential equation from Proposition
(3.5.1) is uniquely defined.

Furthermore, parallel transport preserves linear combinations of vectors [17].

Examples:
Consider the unit sphere, more exactly 1

8
of the unit sphere

(a) γ1 : f(t) = (r cos t, r sin t, 0), γ2 = (−r sin t, r cos t, 0), γ3 = (0, 0, 1)

Its tangent vector is N(t) = (−r sin t, r cos t, 0) ∈ Nf(t)M
(b) Let us further transport paralelly the vector v(0) along γ2, Clearly dv

dt
= 0

(c) Finally, let us transport v(t) paralelly along γ3.
The situation is quite analogous to (a); the main (principal) circle on the sphere.

Figure 3.4: Parallel transport of a vector around a closed loop (from A to N to B and
back to A) on the sphere [20]
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If we transport v(0) from A to be along γ1, then the result vector in B is different from
that obtained by parallel transport from A along γ2 and along γ3. Thus parallel tansport
of a vector from A to B depends on the curve.

Theorem 3.5.1 For arbitrary vector fields x, y on M and any function f : M → R the
following holds:
(i) ∇X(Y1 + Y2) = ∇XY1 +∇XY2
(ii) ∇X (fY ) = (Xf)Y + f∇XY
(iii) ∇X1+X2Y = ∇X1Y +∇X2Y
(iv) ∇fXY = f∇XY

The above are the so-called Koszul Axioms.

Definition 3.5.6 A curve γ(t) is said to be a geodesic curve if there is a parametrization
(i.e. a path p(t)) such that the system of its tangent vectors is paralelly transported along
p(t).
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4. Application of Tensor in
Continuum Mechanics

We start by briefing us through Gauss theorem and Stokes’ theorem

4.1. Gauss Theorem
In vector calculus, Gauss theorem which is also known as divergence theorem is a result
that is related to the flux of a vector field in an enclosed volume [11].

Theorem 4.1.1 Let F be a continuously differentiable vector field defined in a volume V
where V is a subset of Rn i.e n = 3. Let S be the closed surface forming the boundary of
V and let n be the unit outward normal to S. Then, the Gauss theorem states that∫ ∫ ∫

V

(∇ · F)dV =

∮ ∮
S

(F · n)dS

Mathematically speaking, the Gauss theorem states that the total amount of expansion
of F within the volume V is equal to the flux of F out of the surface S.

The left side is a volume integral over the volume V , the right side is the surface
integral over the boundary of the volume V [21].

Now, let us consider a convex region V bounded by a smooth surface S in 3−D . Let
A (x1, x2, x3) be a differentiable function defined in V . We start by defining the integral∫ ∫ ∫

V

(∇ · A)dV

where ∇ = ∂
∂x

I =

∫ ∫ ∫
V

∂A

∂x1
dx1dx2dx3

Integrating with respect to x1, we have that

I =

∫ ∫
Adx2dx3|S

∗

S∗∗

I =

∫ ∫
S∗
Adx2dx3 −

∫∫
S∗∗

Adx2dx3

let dx2dx3 = n∗
1dS on S∗

and
let dx2dx3 = −n∗∗

1 dS on S∗∗ then we get

I =

∫
S

An1dS

On a general case ∫
V

∂iAdV =

∫
S

niAdS
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4.1.1. Applications of Gauss Theorem

Conservation of mass for a fluid
As an example of the application of the divergence theorem, this section presents the
derivation of the law of conservation of mass for a fluid of variable density [11].

Consider a fluid with density ρ(r, t) flowing with velocity u(r, t). Let V be an arbitrary
volume fixed in space, with surface S and outward normal n. Then the total mass of the
fluid contained in V is the volume integral of ρ :

Mass of fluid in V =

∫∫∫
V

ρdv (4.1)

Figure 4.1: Fluid flows with velocity u through region V

The rate at which mass enters V is equal to the surface integral of the flux ρu

Rate of mass flow into V = −
∮

s ρu · ndS

where the minus sign is signifying n points outward, so mass enters V if

u · n < 0

We can now apply the physical law that mass is conserved: the rate of change of the mass
in V must equal the rate at which mass enters V .

Mathematically, we have

d

dt

∫ ∫ ∫
V

ρdV = −
∮ ∮

S

ρu · ndS (4.2)

The surface integral on the RHS can now be written as a volume integral using the
divergence theorem.

Also, the order of the derivative and the integral on the LHS can be interchanged:∫ ∫ ∫
V

∂ρ

∂t
dV = −

∫ ∫ ∫
V

∇ · (ρu)dV (4.3)

where the time derivative has become a partial derivative since ρ is a function of space
and time.
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Now we combine the two integrals into one, we then have∫ ∫ ∫
V

∂ρ

∂t
+∇ · (ρu)dV = 0 (4.4)

We have obtained the result without any restrictions on the volume V . Thus it is
true for any arbitrary volume V . The only way that this can be true is if the integrand
(the quantity inside the integral) is zero everywhere. If there were some point where the
integrand were non-zero, a small volume could be drawn around that point, which would
contradict (4.4)

Therefore the law for conservation of mass of a fluid is

∂ρ

∂t
+∇ · (ρu) = 0 (4.5)

This conservation law takes the following form: the rate of change of the density plus
the divergence of the flux is zero.

Many other conservation laws can also be written in this form: conservation of energy
or conservation of electric charge [11].

By expanding the divergence of ρu, in equation (4.5). It can be written in the form

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0 (4.6)

If the density of the fluid is constant and uniform, i.e. independent of time and space,
then this equation simplifies to

∇ · u = 0 (4.7)

A fluid satisfying equation (4.7) is said to be incompressible.

4.2. Stokes Theorem
In vector calculus and differential geometry, Stokes’ theorem is a statement about the
integration of differential forms on manifolds, which both simplifies and generalizes several
theorems from vector calculus [21].

Stokes’s theorem gives an alternative expression for the surface integral of the curl of
a vector field. This is analogous to the divergence theorem, so Stokes’s theorem could be
referred to as the ’curl theorem’. The proof of the theorem is very similar to that for
the divergence theorem, being based on the definition of curl in terms of a line integral
[11].

Theorem 4.2.1 Let C be a closed curve which forms the boundary of a surface S. Then
for a continuously differentiable vector field u, Stokes’s theorem states that∫ ∫

S

∇× u · ndS =

∮
C

u · dr

where the direction of the line integral around C and the normal n are oriented in a
right-handed sense
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see (Figure 4.2).

As we did in the Gauss theorem above, we express the same here.
Now, consider a 2−D convex region S bounded by the curve C in the x1, x2 plane. Let
A be differentiable inside S. Then the area integral is defined by:

I =

∫ ∫
S

∂A

∂x1
dx1dx2

Integrating with respect to x1 we have that

I =

∫
Adx2|C

∗

C∗∗

I =

∫
C∗
Adx2 −

∫
C∗∗

Adx2

I ==

∮
C

Adx2

We have shown the two points P1 and P2, which are located at the minimum and maximum
values of x2, dividing the curve C into C∗ and C∗∗.

Similarly, we do the same for function B

J =

∫ ∫
S

∂B

∂x2

Integrating with respect to x2, we then have

J =

∫
Bdx1|C

′

C′′

J =

∫
C′
Bdx1 −

∫
C′′
Bdx1

J = −
∮
C

Bdx1

where C ′ and C ′′ are gotten by dividing the curve C Using the minimum and maximum
values of x1 and summing I and J together, we have that∫ ∫

S

[
∂A

∂x1
− ∂B

∂x2

]
dx1dx2 =

∮
C

[Adx2 +Bdx1]

Figure 4.2: Orientation of curve C and surface S
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Equating A and B to vector components,

i.e A = A2, and B = A1

we have that ∫ ∫
S

[
∂A2

∂x1
− ∂A1

∂x2

]
dx1dx2 =

∮
C

[A1dx1 + A2dx2]

This above result is known as the Stokes theorem.
The left-hand side of this equation has the e3 component of the curl of the vector A.

We may write this as ∫ ∫
S

e3 · (∇×A) dx1dx2 =

∮
C

A · dx

This shows that the integral of the normal component of the curl of a vector field on
the surface S is equal to the integral of the tangential component of the same field around
the closed curve C [9].

4.2.1. Applications of Stokes’ Theorem
Stokes’s theorem can be useful for evaluating integrals, by converting line integrals to
surface integrals or vice versa [11].

Example: Show that any irrotational vector field is conservative.
Proof: Suppose that u is irrotational, so ∇× u = 0. Then for any closed curve C∮

C

u · dr =

∫∫
S

∇× u · ndS = 0

where S is any surface spanning C.

Thus u is a conservative vector field.

4.2.2. Ampère’s Law
Ampere’s law states that the total flux of electric current flowing through a loop is pro-
portional to the line integral of the magnetic field around the loop [11].

Using Stokes’s theorem to obtain an alternative form of this law that does not involve
any integrals.

Let B be the magnetic field strength and j be the current density. The constant of
proportionality is µ0 in SI units. Then, Ampère’s law states that∮

C

B · dr = µ0

∫∫
S

j · ndS

for any surface S that spans the loop C.
Rewriting the LHS using Stokes’ theorem, we have∫ ∫

S

∇×B · ndS = µ0

∫ ∫
S

j · ndS
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Now if this is true for any loop C, and so any surface S, it follows that

∇×B = µ0j

(∇×B)− µ0j = 0

which is therefore the differential form of Ampère’s law and is one of Maxwell’s equa-
tions.

4.3. Configuration and deformation
By a material body we mean an open submanifold B ⊆ R3. Let E3 be the euclidean space,
i.e, the affine space supported by the standard inner product over real vectors, which is
also called a physical space. Such space can be also considered as the space R3 if we
choose a frame (formed by the origin and some orthonormal basis).

By a configuration, we mean a local map κ : B → E3. A selected configuration
κ0 is said to be the reference configuration. In terms of the refernece configuration we
transmit the metric structure from the physical space to the body B. By a deformation
we mean any map κ ◦ κ−1

0 : R3 → R3. Let us denote the coordinates with respect to the
reference configuration by Xα (the so-called Lagrange coordinates) while the coordinates
with respect to a generic configuration κ by xi. They are said to be Euler or space
coordinates[17].

Convention : For the Lagrange coordinates (reffering to the reference configuration)
we use capital letters while for the Euler (spatial) coordinates we use ordinary letters.

As for indices, in [9] there are applied greek letters for indices of Lagrange coordinates
and latin letters for indices of the Euler coordinates in order to differ between these
kinds of coordinates. Nevertheless, this part of the convention will not be obligatory,
particularly in some deductions below where keeping only one notation of indices is more
convenient.

If we define the map χκ = χ = κ ◦ κ−1
0 then its Jacobi matrix (non-singular) ∂xiXα

represents the deformation gradient F. This is a (1, 1) tensor since it obeys the tensor
transformation rules if we change the coordinate system on B.

Figure 4.3: The deformation and its gradient
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4. APPLICATION OF TENSOR IN CONTINUUM MECHANICS

4.4. Continuum kinematics
The motion of a material body can be investigated point-wise. This means that we
can describe the motion of the individual particles of the body. There are two basis
descriptions; the Lagrangian one and the Eulerian one.

Lagrange description:

xi = xi (Xα, t) .

The last equation corresponds to the motion of a particle which in the initial time
t = 0 occupies the place with the coordinates Xα.

Euler description: is determined by the equation as follows:

vi = vi(xj, t).

This yields the velocity of a particle depending on time t and the location xi. As a
matter of fact, a field of velocities is given. Under reasonable assumption on velocity field
like smoothness, non-degeneracy one can aggregate the system of curves on the tangent
vectors of which take the same direction as an element of a velocity field at a given point.
The curves of this kind are said to be the stream lines, [9].

The general form for of a stream line is given by the equation as follows

dxi

ds
= k(s)vi

The following concept of integral curve on a manifold M [15] corresponds to the concept
of a path line in [9].

Definition 4.4.1 Given a vector field X on a manifold M , a curve γ(t) on M is said to
be the integral curve of X if γ′(t) = X(γ(t) where γ′(t) denotes Tt(1)γ for γ : I →M and
the unit tangent vector 1 ∈ TtM to γ.

The following theorem guarantees for any x ∈ X at least locally the existence of integral
curve of the vector field X intersecting X.

Theorem 4.4.1 Let X be a vector field on a manifold M and x ∈ M . Then there is
an integral curve γx : Ix → M of X satisfying γx(0) = x in some neighbourhood Ix ⊆ R
containing 0. If Ix is a maximal interval of this property then γx is uniquely determined.

4.4.1. Helmholtz theorem
Starting from the Euler description (equations for vi depending on a location xj) and
assuming the velocity vi (xj, t) at a point xj and time t we obtain at the location xj + dxj
the velocity vi(xj + dxj, t) as follows:

vi(xj + dxj, t) = vi(xj, t) +
∂vi

∂xj
dxj.
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4.4. CONTINUUM KINEMATICS

The expression ∂vi

∂xj can be written in the form:

∂vi

∂xj
=

1

2
(
∂vi

∂xj
+
∂vj

∂xi
) +

1

2
(
∂vi

∂xj
− ∂vj

∂xi
)

The first bracket corresponds to the symmetric part and the second bracket the skew-
symmetric part. Substituting this to the recent equation we obtain:

vi(xj + dxj, t) = vi(xj, t) + 1
2
( ∂vi

∂xj - ∂vj

∂xi )dxj + 1
2
( ∂vi

∂xj + ∂vj

∂xi )

The first and second term express the motion of the continuum itself. The first one
represent the translation and the second one the vorticity. The third term represents
the proper deformation characterizing the change of distance of the individual particles
during the motion. In case of the zero deformation term we are speaking about the rigid
motion or a a rigid body .The first term corresponds to the translation velocity while the
second one the vorticity velocity.

The recent deductions can be summarized to the the classical Helmholtz theorem as
follows:

A motion of a a continuum body can be uniquely decomposed to the translation,
rotation and proper deformation.

4.4.2. Tensors of deformation
In what follows let us focus our attention to searching for changes of distances during a
fixed time interval. Let us consider the initial locations of particles tied with the reference
configuration while the present location tied with the spatial configuration are of the form:

xj = xj (Xα, t = 0) = Xj and xj = xj (Xα, t)

The time dependency of deformations will be not considered and thus we will only write

xj = xj(Xα) (4.8)

In the following deduction we drop the convention from the end of Subsection 1.1.
regarding greek and latin indices. The recent equation gives an assignment of a particle
from the location Xα in the reference configuration to the location xi in common (spa-
tial) coordinates. Of course, we assume the uniqueness of such assignment. Consider a
displacement vector u = x − X , in coordinates ui = xi −X i,
In other words

xj = xj(X i) = Xj + uj(X i)

It is easy to see that we can write

dxj = dxj + duj = dxj +
∂uj

∂xi
dxi (4.9)

We are to evaluate the following expression characterizing the distance between the
initial and the common location

dxjdxj − dXjdXj (4.10)
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4. APPLICATION OF TENSOR IN CONTINUUM MECHANICS

Clearly, we have

dxjdxj = (dXj + duj)(dXj + duj) = (dXj +
∂uj

∂X l
dX l)(dxj +

∂uj
∂Xk

dXk) (4.11)

By means of the Kronecker symbol δij, the expression dXj + ( ∂uj

∂Xl dX l) can be rewritten
to the form (δjl + ∂uj

∂Xl )dX l. In the analogous way we can write dXj + ∂uj

∂Xk dXk = (δjk +
∂uj

∂Xk )dXk and consequently

dxjdxj = (δjl +
∂uj

∂X l
)dX l(δjk +

∂uj

∂Xk
)dXk = (δjl +

∂uj

∂X l
)(δjk +

∂uj

∂Xk
)dX ldXk = (4.12)

= (δjl δ
j
k +

∂uj

∂X l
δjk + δjl

∂uj

∂Xk
+
∂uj

∂X l

∂uj

∂Xk
)dX ldXk (4.13)

Notice that in the recent term of the bracket we have applied the convention summing
repeating indices. Nevertheless, the next equation below regarding εlk will be not the
case.

Taking into account that δjl δ
j
kdX

ldXk = dXjdXj a ∂uj

∂xl δ
j
k = ∂uk

∂Xl , δjl ∂uj

∂Xk = ∂ul

∂Xk we
can write dxjdxj = dXjdXj + ( ∂uk

∂Xl + ∂ul

∂Xk + ∂uj

∂Xl
∂uj

∂Xk )dX ldXk and so we have

dxjdxj − dXjdXj = 2εlkdX
ldXk, (4.14)

where
2εlk =

∂uk

∂X l
+

∂ul

∂Xk
+
∂uj

∂X l

∂uj

∂Xk
(4.15)

Thus we have the second order covariant tensor ((0, 2)-tensor, which is obviously
symmetric. Clearly, εkl and consequently the tensor under discussion depends on X i. The
recently described tesor of deformation, which has been considered with respect to the
reference configuration is said to be Green tensor.

Now we reverse our deductions in the sense of dxidxi − dX idX i depending on the
common (spatial) coordinates xi and defined the so-called Almansi tensor. Taking the
difference between the initial and common location in the form of

X i = xi − ui(xj), (4.16)

where uj denotes the displacement vector we write dX i as

dX i = dxi − ∂ui

∂xj
dxj = (δij −

∂ui

∂xj
)dxj, (4.17)

which implies

dX idX i = (δik −
∂ui

∂xk
)(δil −

∂ui

∂xl
)dxkdxl = (4.18)

= dxidxi - ∂ul

∂xk dykdyl - ∂uk

∂xl dxkdxl + ∂ui

∂xk
∂ui

∂xl dxkdxl

Then we have
dxidxi − dX idX i = (

∂ul

∂xk
+
∂uk

∂xl
− ∂ui

∂xk

∂ui

∂yl
)dxkdxl (4.19)
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4.4. CONTINUUM KINEMATICS

Introducing the notation

2ε̄lk =
∂ul

∂xk
+
∂uk

∂xl
− ∂ui

∂xk
∂ui

∂xl
. (4.20)

we have
dxidxi − dX idX i = 2ε̄kld

kdxl. (4.21)

Since ui is considered as a function xj, it is obvious that ε̄kl depends on the spatial
coordinates xj as well:

ε̄kl = ε̄kl(x
j). (4.22)

The first tensor has been defined with respect to ther reference configuration and Lagrange
coordinates while the second one with respect to the spatial (common) configuration and
Euler (spatial) coordinates.

Both of the discusses tensors are modeling all kinds of deformations including the big
ones and so they are sometimes said to be tensors of big deformations instead the more
brief name of tensor of deformation or deformation tensor.
Tensors of small deformations

In what follows, suppose that the deformations are small. More exactly, suppose that
the components of the displacement vector ~u as well as the partial derivatives ∂uj

∂Xi are
small. Neglecting the last term in the coefficients εij reduces the deformation tensor to
the so-called tensor of small deformations with the coefficients defined as follows

eij =
1

2
(
∂ui

∂Xj
+
∂uj

∂X i
), (4.23)

For the assumptions imposed on displacement vectors and its partial derivatives above
we obviously obtain

dxidxi − dXIdXI = 2elkdX
ldXk. (4.24)

Conversely, the tensor of small deformations can be expressed by

ēij =
1

2
(
∂ui

∂xj
+
∂uj

∂xi
) (4.25)

provided we start from the deformed configuration and express the tensor with respect to
the spatial coordinates. In formulas we have

dxidxi − dX idX i = 2ēlkdxldxk (4.26)

If we consider only small deformations then the displacements dXI and dxi can be iden-
tified, which follows that it is not necessary to distinct between them and consequently
we can identify εlk(xj) and ε̄lk(yj). This finally implies the unique notation eij for the
coefficients of both tensors.
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4. APPLICATION OF TENSOR IN CONTINUUM MECHANICS

4.5. Mechanical meaning of the coefficients εij of the
deformation tensor

In the first step, consider the relative prolongation of a segment dX by a deformation de-
fined by |dx|−|dX|

|dX| . Let dX1 = (dX1, 0, 0) and dx1 be the corresponding deformed segment.
Then dx1 =

√
1 + 2ε11dX

1 implies dx1−dX1

dX1 =
√
1 + 2ε11−1 and ε11 corresponds to the

relative prolongation in direction of the first axis. Analogously we can do for the relative
prolongations of the segments in the directions of the remaining axes.

As for the mixed coefficient ε12, take dX1, dx1 and dX2 = (0, dX2, 0) together with the
corresponding deformed segment dx2. letting dx1 = (dx1, 0, 0), dx2 = (0, dx2, 0), dX1 =
(dX1, 0, 0) and dX2 = (0, dX2, 0) In the subsection devoted to deriving the deformation
tensor (in the Green form) we have deduced that:s

dxi = (δik +
∂ui

∂xk
)dXk

Taking the inner product dx1 ·dx2 of the deformed segments to the originally perpen-
dicular segments dX1 and dX2 we obtain

dx1 · dx2 =
∂u2

∂x1 +
∂u1

∂x2 +
∂ui

∂x1
∂ui

∂x2 = 2ε12dX1dX2.

Since dx1 · dx2 = |dx1||dx2| cosϕ we obtain the formula:

sinα12 = cosϕ =
2ε12√

1 + 2ε11
√
1 + 2ε22

,

where α12 =
π
2
− ϕ denotes the change of the originally right angle between the segments

dX1 and dX2.
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5. Surface forces and a stress vector
Consider a body B in a deformed configuration and take a volume element together

with the surface element surrounding it (Figure 5.1). Let ~ν be the unit normal vector
determining the orientation of the surface, which directs out from the volume.

Figure 5.1: surface forces

Clearly, ~ν enables to define the positive and negative side of the oriented surface element
[10].

We make some assumptions analogous to the rigid body working for sufficiently small
volume and surface elements. An effect of surface forces over such element can be replaced
by a force vector H at any point P ∈ ∆S and the same holds for the force momentum
G. Then we define the so-called stress vector Tν as the limit as follows:

Tν = lim
S→0

F
S

while
lim

∆S→0

∆G
∆S

= 0.

By the principle of the action and reaction, the force −T ν acts to the reverse (negative)
side of the surface [10].

In order to emphasize the orientation of the surface by the unit normal ~ν we involve
it to the notation.

Analogously we can do with a volume element and volume forces. An effect of volume
forces over the element ∆V can be reduced to the choice of a point P ∈ ∆V and one force
vector K such that lim∆V→0

∆K
∆V

= F. Analogously to the case of surface forces we have
lim∆V→0

∆L
∆V

= 0 for the force momentum.
As for the stress vector at a point P it would be completely described in case of

knowledge of its values over all infinitesimal surface containing P , which would be rather
complicated. Fortunately, it suffices to know the values of the stress vector under discus-
sion only on three elementary surface elements.

Consider the i-th elementary surface ∆S perpendicular to the i-th axis with the normal
determining its orientation coincides i-th unit vector ~ei. The components of the stress
acting on this surface let us denote by T i

1, T
I
2 , T

i
3. Let us denote by τij the j-th component

of the stress vector acting to the i-th elementary surface. Clearly, to the reverse (negative)
side of the i-th elementary surface, the stress vector is formed by the components −τi1,
−τi2, −τi3 [10].
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5. SURFACE FORCES AND A STRESS VECTOR

(see figure 5.2)

Figure 5.2: the surface elementary to the i-th axis

It is easy to see that by means of nine components τij one can determine the stress
vector acting on an arbitrary infinitesimal surface with the normal ~ν. To deduce the
equilibrium equation for surface and volume forces, consider the elementary tetrahedron,
three surfaces of which are parallel with coordinate planes and the fourth one is in the
distance h from the point P , (see Figure 5.3).

Figure 5.3: Tetrahedron

It is easy to see that provided σ is the area of the surface ABC in this picture then the
area of the i-th surface is σi = σνi, since νi are exatly the direction cosines of the normal
ν related to the surface ABC [10].
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The equilibrium equation for the surface and volume forces (the first impulse theorem)
is of the form:

(1)

∫ ∫
S

TνdS +

∫ ∫ ∫
V

FdV =
d
dt

∫ ∫ ∫
ρvdV

while the equlibrium for forces momentum (the second impulse theorem) is of the form

(2)

∫ ∫
S

y × Tν +

∫ ∫ ∫
V

y × FdV = 0.

If there are not inertial forces in the first equilibrium equation (i.e. the right hand
side equals to zero) then we obtain

T ν
i − τjiσj +

1

3
σhFi = 0

The orientation of the tetrahedron surface is determined by a normal directing outside
and therefore the negative signs by the i-th surface). Taking the limit with respect to
h→ 0 yields only

T ν
i = τ ji σj

since the limit of the volume of the tetrahedron draws near to zero faster than the surfaces
[10].

We outline that in the recent two equations, we have used the convention for summing
over the repeating indices. As a matter of fact, Tν is a vector (the index ν being not a
tensor index but indicating the unit normal determining the orientation of the surface).
Since the last equation transforms normal vectors to vectors, it is a linear map and so a
(1, 1)-tensor. Coming back to the Einstein convention we rewrite T ν

i = τ jiσj to

T i = τ ijσ
j,

omitting the symbol ν. We remark that the recent form of the tensor has the discussed
mechanical sense over unit vectors only but taking other vectors ν, T is still a (1, 1) tensor.

Now we present the equilibrium equation in the differential form. Consider the first
”negative” elementary surface (i = 1) of the cube from figure (5.2) above (i.e. the surface
elementary to the 1-st axis) where the stress vector is of the form:

(−τ i1(x1, x2, x3),−τ i2(x1, x2, x3),−τ i3(x1, x2, x3))

while on the positive the value of the stress is:

(τ i1(x
1 + dx1, x2, x3), τ i2(x

1 + dx1, x2, x3), τ i3(x
1 + dx1, x2, x3).

The corresponding forces to the individual surfaces of the cube are

(−τ i1(x1, x2, x3),−τ i2(x1, x2, x3),−τ i3(x1, x2, x3))dx2dx3

and
(τ i1(x

1 + dx1, x2, x3), τ i2(x
1 + dx1, x2, x3), τ i3(x

1 + dx1, x2, x3)dx2dx3.
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5. SURFACE FORCES AND A STRESS VECTOR

Replacing the force vectors on the ”positive” surface by the first order Taylor polynomial
and subtracting the ”negative” we obtain the equilibrium condition for forces acting on
the sides perpendicular to the first canonical vector as follows

∂τ 11
∂x1

+
∂τ 21
∂x2

+
∂τ 31
∂x3

+ F 1 = 0.

Further, the volume force is of the form F 1dx1dx2dx3. The same can be done for the
remaining couples of mutually parallel surfaces of the cube and we finally obtain:

F i +
∂τ ji
∂xj

= 0 or Fi + divτi = 0

or, finally
F + Divτ = 0,

by the capital symbol Div indicating matrices instead vectors corresponding to entries of
div.

5.1. Principal Stresses
On an arbitrary plane with normal n, the traction σ(n) can be obtained [9] as

σ(n) = σijniej (5.1)

We may resolve this with one component perpendicular to the plane and the remainder
tangential to the plane. Denoting the perpendicular component by N, we have

N = n · σ(n) = σijninj (5.2)

For a given stress tensor σij, as the direction of the plane changes, the value of N changes
according to the preceding relation. We call N the normal stress on the plane. It is
important to know the maximum value of the normal stress and the corresponding plane
when we design and analyze structures [9].

We should find the extremum value of N with respect to ni with the constraint nini =
1. The procedure is identical to the one we used for extremum stretch, and it results in an
eigenvalue problem. However, as we will see, the stress tensor is not symmetric when the
body moments ` are present. This fact appears to make this eigenvalue problem different
from the case of the maximum stretch. But an inspection of the quadratic form in ni

shows that, because of the symmetry of ninj its coefficient is σij + σji. Thus we are free
to use the symmetric form of the matrix σij in computing the eigenvalues. Assuming the
new matrix is the symmetric version σ(ij), the eigenvalue problem results in the system of
equations

σ(ij)nj = σni (5.3)
where σ is the eigenvalue and n is the eigenvector. For nontrivial solutions of this homo-
geneous system, we have to have ∣∣σ(ij) − σδij

∣∣ = 0 (5.4)

Suppose σ(k) and n(k) be the eigenvalues and eigenvectors of this problem.
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5.1. PRINCIPAL STRESSES

Multiplying Equation (5.3) by ni, we see that the eigenvalues are the stationary values
of N, i.e..

N = σ(ij)n
(k)
j = σ(k)n

(k)
i n

(k)
i = σ(k) (5.5)

Hence, the three eigenvectors are mutually orthogonal, and these directions are called
the principal directions and the corresponding normal tractions σ(k) are the principal
stresses. The three invariants of the matrix σ(ij) are

Iσ1 = σ(1) + σ(2) + σ(3) = σ(ii)
Iσ2 = σ(1)σ(2) + σ(2)σ(3) + σ(3)σ(1) = 1

2

[
σ(ii)σ(ji) − σ(ij)σ(ij)

]
Iσ3 = σ(1)σ(2)σ(3) =

∣∣σ(ij)∣∣
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6. CONCLUSION

6. Conclusion
In this thesis, we discuss the basic concepts and properties of tensors. We studied the

basic operations over them. The attention focused on the part of the application. Two
main ideas of this thesis are structured on tensors and tensor fields and the last idea is
explored on the application part of the thesis.

The first idea is to introduce us to the formulation of the tensor (which is an extension
of the vector). We studied how the index notation and in conjunction with the Einstein
summation convention is implied. I also studied different kinds of tensors we have and how
the transformation rules are implemented. We concluded the first main part of this work
by explaining the operation on tensor (i.e addition, multiplication by scalar, contraction,
and inner product) and the operation of raising and lowering of indices by metric tensors.

The second major idea in this thesis is focused on the differentiable manifold and
vector fields. I also introduce the concept of submanifold, and parallel transport.

In the applications part of the thesis, we have implemented the knowledge gained
in the previous parts for the formulation of Gauss and Stokes theorem and a series of
mechanical concepts. For example deformation, configuration, tensors of deformation,
and mechanical meaning on it. We also studied the stress tensor and used the idea gained
in the first chapter of this work in getting the principal directions and the principal
stresses.
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