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Abstract 

The tensor theory is a branch of Multi l inear Algebra that describes the relationship be­

tween sets of algebraic objects related to a vector space. Tensor theory together with 
tensor analysis is usually known to be tensor calculus. This thesis presents a formal cat­

egory treatment on tensor notation, tensor calculus, and differential manifold. The focus 
lies mainly on acquiring and understanding the basic concepts of tensors and the opera­

tions over them. It looks at how tensor is adapted to differential geometry and continuum 
mechanics. In particular, it focuses more attention on the application parts of mechan­

ics such as; configuration and deformation, tensor deformation, continuum kinematics, 
Gauss, and Stokes' theorem with their applications. Finally, it discusses the concept of 
surface forces and stress vector. 
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1. INTRODUCTION TO TENSOR CALCULUS 

1. I N T R O D U C T I O N T O T E N S O R 
C A L C U L U S 

Tensors were introduced by Professor Gregorio Ricci of University of Padua (Italy) 
in 1887 primarily as an extension of vectors. A quantity having magnitude only is called 
scalar and a quantity that has both magnitude and direction is called vector but certain 
quantities are associated with two or more directions, such a quantity is called tensor . 

The stress at a point of an elastic solid is an example of a Tensor which depends on 
two directions one normal to the area and other that of the force on it [19]. Tensors have 
their applications to Riemannian geometry, mechanics, elasticity, the theory of relativity, 
electromagnetic theory, and many other disciplines of science and engineering. 

A n nth-rank tensor in m-dimensional space in a mathematical object that has n indices 
and ra" component and also obey some certain transformation rules. Generally m — 3. 
Each index of a tensor ranges over the number of dimensions of spaces. 

We have tensors of various ranks: Scalar fields are referred to as the tensor field of 
rank or order zero ( i.e has no index), a scalar (density, pressure, temperature, etc.) is a 
quantity whose specification (in any coordinate system) requires just one number. Vector 
fields are referred to as tensor fields of rank or order one ( i.e has exactly one index), a 
vector (displacement, acceleration, force, etc.) is a quantity whose specification requires 
three numbers, namely its components wi th respect to some basis. A second-order tensor 
is called a dyad, a third-order tensor is a tr iad and tensors of order three or higher are 
called higher-order tensors. 

scalar [ a i ] 
vector 

dyad 

a i 

a 2 

^ 3 

X I 

y j 
z k 

an a^2 3 i 3 

a2i a22 a23 
a31 932 S33 

triad 

an2 ai 
3 2 1 2 3 2 2 2 

a m ai2i 3131 
3211 3221 3231 
3̂ 11 3321 3331 

: > 

Figure 1.1: Tensor representation 
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1.1. INDEX NOTATION 

1.1. Index Notation 
Quantities which can be represented by a letter wi th subscripts or superscripts attached 
are known as a system but when these quantities obey some certain transformation rules 
as mentioned in the definition above then they are referred to as a tensor system [5]. 
For example: 

• \i j • \, j • \ '' Bj I); j d; j < J 

and so on. But we focus our work mainly on the use of A\ or AijXj. We talk about the 
later index A^Xj in the next sub-topic. Note that the subscripts and superscripts are 
known as indices. They must be in lower case and must not be among the listed letters 
at the end of the English alphabet (u, v, w, x, y, and z) [5]. 
Index notation uses coordinates x\,X2,x% to denote x, y and z coordinates respectively. 
The components of a vector V would be v\, v<i and V3 in 3D. 

1.2. Summation Convention over upper and lower in­
dices 

A s far as matrix elements are concerned, index notation such as A12 is the element in 
the first row and the second column has been in use for some time. The advantage of 
index notation in conjunction with the summation convention is that we can write a long 
mathematical expression in a concise way [9]. 

Choosing a system of M equation in N unknowns: 

Anxi + A12x2 H h A1NxN = C\ 
A2\X\ + A22X2 H h A2N%N = C2 

AMiXi + AM2x2 + • • • + AMNXN — CN 

This system of equations can also be written in the form: 

N 

^2Aijxj = Ci where % = 1,2, M and j = l,2,...,N (1.1) 
i=i 

In agreement wi th the Einstein summation convention we can further simplify the 
notation by writing: 

Aijxj = CI where i = 1,2,..., M ; j = l , 2 , . . . , 7 V (1.2) 

where summation on the repeated index j is implied. The Einstein summation con­
vention states that whenever there arises an expression where there is an index which 
occurs twice on the same side of any equation or term within an equation, it is clearly 
known to represent a summation on these repeated indices [5]. 

A repeated index is called the summation (dummy index) while the unrepeatable 
index is called the free index. 

14 



1. INTRODUCTION TO TENSOR CALCULUS 

1.3. Symmetry and Anti-symmetry System 
A system defined by subscripts and superscripts ranging over a set of values is said to be 
symmetric in two of its indices if the components are equal upon exchange of the index-
values [ ]. For example, the second order system T^ is symmetric in the indices i and j 
if 

Tij = Tji for all values of % and j 
i,j = 1,2,3 

A system defined by subscripts and superscripts ranging over a set of values is said to 
be anti-symmetric (skew-symmetric) in two of its indices if the components are equal but 
opposite upon exchange of the index-values [ ]. For example, the second order system T^ 
is anti-symmetric in the indices i and j if 

T^ = —Tji for all values of i and j 
i,j = 1,2,3 

Note that: 
In any skew-symmetric matrix, al l the diagonal elements are zero. 
Every tensor can be decomposed into sum of symmetric and anti-symmetric tensor. 

T = + T^ 
where TA and Ts are anti-symmetric and symmetric tensor respectively 

TS=T±^_ a n d TA=T=p_ 

_ T+TT I T-TT _ T+TT+T-TT _ rp 
2 *~ 2 2 

1.4. Order and Type of a System 
Order of a system 
The number of subscripts and superscripts determine the order of the system 
1. A system wi th one index is a first-order system 
2. A system wi th two indices is called a second-order system 
3. A system wi th N indices s called a Nth order system 
4. Lastly, a system wi th no indices is called a scalar or zeroth-order system 

Type of system 
The type of system depends on the number of subscripts or superscripts occurring in an 
expression. 
For example, the system: 
1. A\j and Bfm are of the same type because they have the same number of subscripts 
and superscripts. 
2. The system A\j and C^r are not the same type because one system has two superscripts 
and the other system has only one superscript. 

15 



1.5. KRONECKER DELTA AND PERMUTATION SYMBOL 

1.5. Kronecker Delta and Permutation Symbol 
Kronecker Delta 
The Kronecker delta symbol is defined by 

Sij 
if 
if 

i = j 

This definition assumes that % and j are explicit integers, such as % — 1, 2, 3 and j — 1,2, 3 
and it does not imply 5a = 1. Hence, elements of the Kronecker delta is the same as the 
elements of the identity matrix [9]. 

[Si 

Permutation Symbol 
The permutation symbol is defined by 

1 0 0 
0 1 0 
0 0 1 

1, if i,j, k are even permutations of 1, 2, 3 
eijk — \ ~ 1) ^ hji k a r e ° d d permutations of 1,2, 3 

0, otherwise. 

From the definition above, we have that: 

°ikj ~ 

•IJJ 

jik ji -

~- 1 
- 1 

= 0 

Example 

Consider the third-order system aprs , p, r, s — 1, 2,3 which is completely skew-symmetric 
in all of its indices. Show that the skew-symmetric systems have 27 elements, of which 
21 elements are zero [5]. 

The 6 nonzero elements are all related to the ones given in the above definition 

aprs = arsp = aspr = 1 which is the even permutation (clockwise) 
apsr = asrp = arps = — 1 which is the odd permutation (anticlockwise) 

The remaining 21 zero elements are: 

dprr Q^rpr drrp dpss ^sps ^ssp • • • dppp (Xrrr @>sss 0 

1.6. Quadratic Forms, Eigenvalue and Eigenvector Prob­
lems 

From the first part of our introduction chapter, a second-rank tensor (dyad or matrix), a 
homogeneous quadratic form [9] can be defined: 

A = A{jX{Xj = x Ax (1.3) 
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1. INTRODUCTION TO TENSOR CALCULUS 

If given an unsymmetrical (antisymmetric) matrix , we first change the unsymmetrical 
matrix to a symmetric matrix A^ while working wi th quadratic forms. The function A 
is called a homogeneous function of the second degree. 

We can perform constrained extremization by defining a modified function A* using a 
Lagrange multiplier A in the form 

A* = A - A (xiXi - 1) (1.4) 

This system of equations can be put in the form 

Ax = \x or [A - \I}x = 0 (1.5) 

Recall that, for a nontrivial solution, we require 

d e t [ A - A I ] = 0 (1.6) 

Assuming we have a 3 x 3 matrix, when the preceding determinant is expanded, we 
get a cubic equation known as the characteristic equation of the matrix A : 

- A 3 + I A 1 \ 2 - I A 2 \ + IAS = 0 (1.7) 

where the coefficients IAI, IA2, and IA3 can also be written as 

IAI = An, IA2 = ^ (AuAjj - AijAij), I AS = det A 

These coefficients are also known as the three invariants of the matrix A. If we denote 
the three roots of cubic equation by A i , A 2 , and A 3 , we have that: 

IAI — A i + A 2 + A 3 

IAI — A1A2 + A 2 A 3 + A3A1 

IAS = det(A) = A 1 A 2 A 3 

The relation between the extremum values of the quadratic form A and the Lagrange 
multipliers (eigenvalues) is as follows: Mul t ip ly the equation 

by x^T to get 

xwAxw = \lXwxw = A l 

Hence, the three eigenvalues are the extremum values of the quadratic form along 
the principal directions. If all the eigenvalues are positive, the quadratic form is called 
positive definite and the matrix is called a positive-definite matrix. 

1.6.1. Eigenvalue problem 

F i n d the eigenvalues and eigenvectors of the given matrix 

" 3 2 0 " 
2 1 1 
0 1 3 

17 



1.6. QUADRATIC FORMS, EIGENVALUE AND EIGENVECTOR PROBLEMS 

The characteristic equation is obtained from 

det(A - A J) = 0 

solving this, we get 

- ( A 3 ) + 7 A 2 - 1 0 A - 6 = 0 

- ( A - 3 ) ( A 2 - 4 A - 2 ) = 0 

A 1 = 3, A 2 = - \ / 6 + 2 A 3 = \ /6 + 2 

The invariants of the matr ix are 

IAI = A i + A 2 + A 3 = 7 
IA2 — A i A 2 + A 2 A 3 + A3A1 = 10 
IA3 = det(A) = A i A 2 A 3 = - 6 

we see that the eigenvalues are 
A i = 3 
A 2 = -VQ + 2 

A 3 = VQ + 2 

and the corresponding eigenvectors are 

[ =T 1 [ 2 1 [ 2 1 
0 - V 6 - 1 a / 6 - 1 

1 J 1 1 J 
These eigenvectors are called the principal directions of matrix A, and the eigen­

values are the principal values. 
Now, 

xwAxw = \iXwtxw = A l 

Solving this, we get 3 = A i . Hence, the three eigenvalues are the extremum values of 
the quadratic form along the principal directions. 

1.6.2. Diagonalization and Polar Decomposition 
Using the three eigenvectors as the three columns 
We can construct the modal matrix of the given matrix A by denoting the modal matrix 
by M [ 9 ] . Then, 

r " X M= [XW,x<»,xW] 

It is clear that 

M' AM 
Ai 0 0 
0 A 2 0 
0 0 A 3 

;i .9) 

Choosing a principal coordinate system a;J, using 

MijXj or x M+x ; i . i o ) 

18 



1. INTRODUCTION TO TENSOR CALCULUS 

Mult ip ly ing Equation (1.9) by M from the left and by MT from the right 

We can then express our matrix A as 

i=l 

This is called the spectral representation of A 
From the previous example above, the modal matrix of matrix A 

M 

Then 

MTAM 

0 — v / 6 - 1 \ / 6 - l 

3 0 0 
0 -Vq + 2 0 
0 0 V6 + 2 

1.6.3. Polar Decomposition 
The polar decomposition applies to any square matrix B. Polar decomposition refers to 
factoring B in the form [9] 

B = RU or B = VR 

where U and V are symmetric matrices and R is an orthogonal (rotation) matrix. 
Using RRT = J , we get 

U2 = BTB and V2 = BBT 

F i n d the square root of the matrices on R H S to get U or V 
Then R can be expressed 

R = BU1 OR R = V 1 B 

This brings us to finding the square root of a symmetric matrix, say C or, in general, any 
function F[C] of a matrix. 
We begin by assuming the function F[C] has a converging infinite series expansion in C : 

F [ C ] = J > C '1.111 

The functions we have in mind are C 1 / / 2 , sin[C], exp[C], etc. The corresponding functions 
of a single variable, say x, are x 1 / / 2 , s inx , expx, etc. 

The generic matrix function F has the corresponding function of a single variable F. 
Our symmetric matrix C has three orthogonal eigenvectors wi th the corresponding 
eigenvalues A;. 
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1.6. QUADRATIC FORMS, EIGENVALUE AND EIGENVECTOR PROBLEMS 

Mult ip ly ing Equation (1.11) from the right by x^l\ we see that F (Aj) is the eigenvalue 
of F corresponding to the eigenvector, . The eigenvalues of [ C ] 1 / / 2 , sin[C], and exp[C] 

1 ii 
arc A / , s inAj, and expAj, respectively. Next, we use the Cayley-Hamilton theorem to 
reduce Equation (1.11) to a quadratic in C (provided we are working wi th 3 x 3 matrices): 

F[C] = c0I + ClC + c2C2 (1.12) 

Then the eigenvalues satisfy 

F (Aj) = c 0 + ciAj + c 2 A 2 , i = l , 2 , 3 

For example, to find the square root of C , we use 

X1/2 = c 0 + CiAj + c 2 A 2 , % = 1, 2,3 

and solve for c,-. 

We substitute these coefficients in Equation (1.12) to get C 1 / / 2 which is clearly U and 
then get R and V. 

Example 

[9] Given the matrix B 

B 
17 - 1 1 
19 23 

0 
0 

0 0 15 

We know that 

U2 = BTB 

The factors U, V, and R are obtained from 

26 10 0 
U2 = C ee BTB = 10 26 0 , R = B U \ V = BRT 

0 0 9 

- A 3 + 61A 2 - 1044A + 5184 = -- ( A - - 9) (A 2 -- 52A + 576) = - ( A - 9)(A - 16)(A 

The eigenvalues of C are 
Ai = 9, A 2 = 16, A 3 = 36 

Using the expansion 
= c 0 + CiAj + c 2 A-

we have the system of equations 

3 = c 0 + 9ci + 9 2 c 2 , 4 = c 0 + 16ci + 16 2 c 2 , 6 = c 0 + 36ci + 36 2 c 2 

Solving this system of equations, we have 

c 0 = 52/35, c i = 23/126, c 2 = - 1 / 6 3 0 

20 



1. INTRODUCTION TO TENSOR CALCULUS 

Writ ing 

we get 

C1/2 = c0I + ClC + c2C2 

5 1 0 

U = C 1 / 2 = I 1 5 0 
0 0 3 

we can now solve for R and V 

and 

1 
25 

4 3 0 
-3 4 0 
0 0 5 

101 7 0 
7 149 0 
0 0 75 
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2. G E N E R A L T E N S O R S 
Aside from the number of indices, the position of the indices matters a lot. The coor­

dinates of a vector are enumerated by one upper index, which is called the contravariant 
index . The coordinates of a co-vector are enumerated by one lower index, which is called 
the covariant index . In bilinear form, we use two lower indices hence, bilinear forms 
are called twice-covariant tensors. Linear operators are tensors of mixed type, their 
components are enumerated by one upper and one lower index. The number of indices 
and their positions determines the transformation rules. In the general case, any tensor 
is represented by a multidimensional array wi th a definite number of upper indices and a 
definite number of lower indices [12]. 

Let's denote these numbers by r and s. Therefore, we have a tensor of the type (r, 
s), (or sometimes the term valency is used). A tensor of type (r, s), (or valency (r, s)) is 
called an r-times contravariantand an s-times co-variant tensor. 

2.1. Some Definitions 
Definition 2.1.1 If A is any point in space and B is another point then, a directed 
straight line segment from A to B is called a Line vector. 

Definition 2.1.2 Vectors are elements of a finite dimensional space V over reals, prac­
tically W1. 

Definition 2.1.3 Covectors are liner forms. Covectors are function (linear function) 
a : V —> K. that maps vectors to a real number and also obey the following rules: 
1. a (v + w) = a{v) + a(w) 
2. a{nv) = na(v) 

Definition 2.1.4 Dual Vector is the set of all covectors that act on a vector space V 
together form the vector space V* and these covectors have their own adding and scaling 
rules: 
1. (na)v = na(v) 
2. {P + i)(y) = P(y)+i(y) 

Definition 2.1.5 Dual basis of the dual space V* is as follows: 
If &i form a basis £ of V, then e1 defined by e* ( i j = <5*) form the basis of V*, the 

so-called dual basis. There are linear isomorphisms fs '• V —> V* defined by e*j e* 
depending on the choice of basis but there are not isomorphisms independent on the choice 
of basis. 

Nevertheless, there is a linear isomorphism F : V —> (V*)* defined by F(v)(f) = f(v) 
independent on the choice of a basis (by F we have denoted an element of V* 
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2. GENERAL TENSORS 

2.2. Vector Identities in Cartesian Coordinates 
Let x1 = x, x2 = y, x3 = z, where superscript variables are employed. Also denote the 
unit vectors in Cartesian coordinates by e i , e 2 , e 3 , we try to explain how various vector 
operations are written by using the index notation [5]. 

Definition 2.2.1 Gradient 
In Cartesian coordinates the gradient of a scalar field is 

, , <9(/u d(j)^ <9</u 
grad0 = — e i + ^ - e 2 + ^ - e 3 ox oy oz 

where 

% • grad 0 = 0 j = — , J = 1,2,3 

The comma subscripts notation is used to denote the derivative 
i - e 0 j = 0> A l s o 0j* = a f e f » a n d s o o n -

Definition 2.2.2 Divergence 
In Cartesian coordinates the divergence of a vector field A is a scalar field and can be 
represented by: 

vy 7 i . 7 dA, dA2 dA3 V • A = dwA = —— + —— + —— 
ox oy oz 

Introducing the Einstein summation convention over upper and lower indices, the diver­
gence in Cartesian coordinates can be represented by 

^ ' 'l dx% dx1 dx2 dx3 

where % is the dummy summation index. In other words with vector component indices up 

Definition 2.2.3 Curl: 
To represent the vector B = curl A — V x A in Cartesian coordinates, we note that the 
index notation focuses attention only on the components of this vector. The components 
Bi,i = 1,2,3 of B can be represented by 

Bi = ei- curl A = eijkAkJ, for i, j, k = 1, 2, 3 

where is the permutation symbol introduced in the previous chapter and Aj = 

To verify or check this representation of the curl A we need to perform the summations 

indicated by the repeated indices. We have summing on j = 1, j = 2, and j = 3 that 

Bi = e\xA\ + ei2Ak

2 + ei3A§ 

Now summing each term on the repeated index k gives: 

Bi = e2

ilA\ + e3

aA\ + e\2A\ + e3

i2A\ + ej3A\ + e2

aA\ 
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2.3. TRANSFORMATION RULES 

We have % as the free index which means that it can takes on any of the values 1, 2 or 3. 
we then have 

For i = l , B1 = A 3 , 2 - A 2 , 3 = f # - f # 
For i = 2, 5 2 = A , 3 - A 3 , i = f% - f j? 
F o r * = 3, i?3 = A 2 , i - ^ i , 2 = § ? - & 

which verifies the index notation representation of curl A in the Cartesian coordinates. 
In contrary to divergence and gradient, curl works only for dimension 3 ( or 2 in more 

t r ivial cases). 

2.3. Transformation Rules 
Tensors 

In an m-dimensional space, a tensor of rank n is a mathematical object that has n indices 
and ra" components and also obeys some certain transformation rules. 
We now discuss on Transformation rules: 
1. A tensor is an object that transforms like a tensor 
2. A tensor is an object that is invariant (does not change) under a change of coordinate 
systems, wi th components that change according to a special set of mathematical formulas. 

2.3.1. Contravariant and covariant Vectors 

Contravariant component: A1 

Covariant component: Bj 

Assumptions: 
Suppose that V is a vector field defined on a subset of M™ and suppose that (xl) and (xl) are 
two coordinate systems related by the coordinate transformation T : 

Contravariant vector 
Assume as above 
The vector field V is said to be a contravariant tensor of rank 1 (vector) if its components 
vl in the (xl) - coordinate system and v% in the (xl) - coordinate system are related by 
the following law of Transformation: 

vl = vr^:, where 1 < % < n 

Covariant vector 
Also assume as above 
The vector field V is said to be a covariant tensor of rank 1 (vector) if its components Vi 
in the (xl) - coordinate system and Vi in the (xl) - coordinate system are related by the 
following law of Transformation: 

Vi = vr^fj, where 1 < % < n 
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Invariant 
Invariant are mathematical objects that have intrinsic physical entities and laws that obey 
the transformation rules of tensors. 

If wJ represents the components of a contravariant vector and Uj represents the com­
ponents of a covariant vector, then if the inner product E = v^Uj is defined in each 
coordinate system, it is an invariant. 

A tensor is an object that is invariant under a change of coordinate sys­
tems, with components that change according to a special set of mathematical 
formula 

2.3.2. Contravariant and covariant Tensor 
Assumption 
Suppose that V is a matrix field o f n x n scalar fields defined over a region of U in M " . 
Assume that in the (xl) coordinate system, the components of V are . Assume also 
that after a coordinate transformation T: ) that takes us to the 
(xl) - coordinate system, the components of V becomes . 

Contravariant tensor 

Assume as above 

A matrix field V is said to be a contravariant tensor of rank 2 if its components V1^ 
in the (xl) - coordinate system and in the (xl) - coordinate system obey: 

•Trij \rmn dxl dxJ 

~ dxm dxn' 

where 1 < i,j < n; m , n are dummy indices while i,j are free indices 

Covariant tensor 

Assume as above 

A matrix field V is said to be a covariant tensor of rank 2 if its components Vij in the 
(xl) - coordinate system and in the (xl) - coordinate system obey: 

T> _ T/ dxm dxn 

Vij — Vmn dsi Qsj , 

where 1 < i, j < n; m , n are dummy indices while i, j are free indices. 

Mixed tensor 

Lastly, Assume that A is a matrix field of n x n scalar fields defined over a region of 
U G W1. Assume that (xl) coordinate system, the components of A are A1-. Assume also 
that after a coordinate transformation T: ) that takes us to the 
(xl) - coordinate system, the components of A becomes Ay 
A matrix field A is said to be a M i x e d tensor of rank 2 if its components Aj in the (xl) -
coordinate system and Aj in the (xl) - coordinate system obey: 
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m dxi dxn 

4* — A 
3 n dxm dxi ; 

where 1 < i,j < n m, n are dummy indices while i , j are free indices. 

2.3.3. Ranks of tensor 
Suppose V is a tensor wi th components ^ 1

1 ^ 2 ' . ' j ' s

v - Total rank of V is the sum of the con-
travariant indices (or rank) and covariant indices (or rank) i.e T = r + s. We can call V a 
(r,s)— tensor where r is the contravariant rank and s is the covariant rank For example: 
If A is a tensor wi th components: A^ is a contravariant tensor of rank 2 which is simply 
written as (2, 0) tensor. Aij is a covariant tensor of rank 2 which is simply written as 
(0, 2) tensor. Last ly Aj is a tensor wi th contravariant rank 1 and covariant rank 1 which 
is simply written as (1,1) tensor and the total rank is 2 

O n a general case 
Assumptions: 
Suppose V is an array (1-D, 2-D, 3-D,..., M - D array) field composed of nm scalar fields 
(functions) defined over a region U in l n . Assume that in the (xl) - coordinate system, 
the components of V are V£j*'"£, where r + p = m. 

Assume also that after a coordinate Transformation T 

r : ) that takes us to the (xl) - coordinate system, the compo­
nents of V become V ^ 1 ! 2 "T • 

A n array field V is a tensor of rank m = r + s wi th a contravariant rank of r and 
covariant rank of s if its components V£j*'"£ in the (xl) -coordinate system and Vj^".]l 
in the {xl) - coordinate system obey: 

yh,i2-ir = ykuk2-krdx^dx^ _ _ _ d^dx^dx^ _ _ _ dx^ 
3U32,;JS h,h,;h Qxki Qxk2 Qxkr Qxh Qxh dx^ 

where 1 < i,j,k,l < n k, 1 are dummy indices while i , j are free indices. 

2.4. Operations on Tensors 
Having defined the general concept of tensor over an n -dimensional vector space, let us 
now introduce the basic arithmetic operations involving tensors [ ]. 

2.4.1. Addi t ion 
Two tensors of the same type can be added term by term. The expression 

r~ii\...ir \i\...ir I nii...v 
1 ./-./, ~ •'./ -./, + -./, 

This means that each coordinate on the L . H . S holds the sum of the corresponding 
coordinates on the R . H . S . We can simply write tensor addition symbolically as C = A + B 
[12]. 
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2.4.2. Mult ipl icat ion by scalar 
Each of the coordinates of a tensor can be multiplied by a given scalar to yield a new 
tensor of the same type. This can be expressed as: 

(~ii\...ir _ Aiy—ir 
S i - i s ~ ' • • • . . / , 

We can write tensor multiplication by a scalar symbolically as C = cA [12]. 

2.4.3. Contraction 
Let C be a tensor of type (r,s) at x, wi th r and s at least 1. Then C has components 
Cf 1 ' '" ' /" as stated earlier. Then there is a tensor of type (r — 1, s— 1) which has components 

iji—js-ia 

a=l 

This tensor is called a contraction of C [12]. 
If r and s are large then there wi l l be many such contractions, depending on the indices 

we choose to sum over. 

2.4.4. Inner produt 
Here we try to disuss briefly on an important function in the section subsection which is 
the inner product . Let u and v be vectors in a real vector space V and denote by u - v 
a function acting on u and v and producing a scalar a = u • v , such that the following 
property holds: 

i . Bilinearity: 
(aui + &u2) • v = a (ui • v) + b (u 2 • v) 

u • ( av i + &u2) = a (u • v i ) + & (u • v 2 ) 

for all u, U i , u 2 , v , v 1 ; v 2 G V and a, & G M. Such a function is called an inner product on 
the space V . 
If the above property holds: 

i i . Symmetry: 
u • v = v • v for all u, v G V , then the inner product is called symmetric. Also, if the 
following property holds: 

i i i . Nondegeneracy: 

u • x = 0 for all u G V =>• x = 0 

then the inner product is called nondegenerate. 
A vector space equipped wi th an inner product is called an inner product space . 
Henceforth, we wi l l be considering symmetric nondegenerate inner products as inner 
product without stating it explicitly [12]. 
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2.5. The Metric Tensor 
2.5.1. Gram Mat r ix 

Let us express the inner product in some basis (ei , e 2 , . . . , e „ ) . 
Assume u = eiu1 and v = e ^ be two vectors. Then, using the bilinearity of the inner 
product, we get: 

u • v = (ej • ej) ulv* 

The entity (ê  • ê -, 1 < i, j < n), consisting of n2 numbers, is an n x n matrix and is called 
the G r a m matrix of the basis. We denote this matrix by G. 

B y symmetry of the inner product mentioned earlier in this section, the matrix G is 
symmetric [12]. 

Theorem 2.5.1 (Sylvester theorem) Every real symmetric matrix G is congruent to 
a diagonal matrix whose entries have values +1, —1, or 0. The number of l's, —l's and 
zeros, i.e n+,n_ and n 0 is invariant with respect to the change of the basis in which the 
discussed 2 — form is diagonal. The set of numbers n+, n_ and n 0 is said to be signature. 
If n- and no are zeros then we have the case of the classical tensors (euclidean), in other 
case we have (pseudo)riemannian tensors. In case of n = 4, n_ = 1 and no we have 
Minkowski tensor [12]. 

2.5.2. Metr ic tensor 
Define gij = ej • ê -, we have that: 

u • v = gijUlv3 

The (0, 2) -tensor g^ is called the metric tensor of the inner product space. Like every 
tensor, it is a geometric object, invariant under change-of-basis transformations. 

B y Sylvester's theorem, there exists a basis which makes the metric diagonal and 
reveals the signature of the space [12]. This signature is uniquely defined by the definition 
of the inner product. 
It immediately follows that the inner product is invariant under a change of basis. This 
is not new to us since the definition of inner product does not depend on a basis, since, 
by our assumption from the previous theorem, G is nonsingular, it possesses an inverse 

The entries of G _ 1 may be viewed as the coordinates of a ( 2, 0 )-tensor, called the 
dual metric tensor, and it is usually denoted by g^. It then follows immediately that 

9jkgki = 5) 

2.5.3. The Minkowski Space 
This is an example of non-Euclidean inner product space; Minkowski space. This is a 4-
dimensional inner product vector space possessing an orthogonal basis (e 0, e i , e 2, e 3) and 
a metric tensor whose coordinates in this orthogonal basis are 

r -m=j = o 
9ij = { M =j = 1,2,3 

( 0,i^3 
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The metric of this space has signature n+ = 3,n~ = 1. 
The Minkowski space is clearly seen to be a non-Euclidean; apparently, this space underlies 
relativity theory, therefore, it is the space in which our universe exists. The number of 
the dimensions is starting at 0 instead of 1 [12]. 
The index 0 is associated wi th ct, (time multiplied by the speed of light). 
The remaining indices are associated wi th the usual space coordinates x, y, z. 
However, relativity theory convention for the coordinates is (x°, x1, x2, x3) in agreement 
wi th tensor notation (we shouldn't confuse contravariant indices wi th powers) 
Now, let x be a vector in the Minkowski space, expressed in the time-space basis of the 
space. Then we have that: 

x - x = - ( x ° ) 2 + ^ ( * * ) 2 

i=l 

We can see that x x is not always non-negative because the inner product of the Minkowski 
space is not positive. 
The following terminology is in use, depending on the sign of x • x : 

{ < 0 : timelike components 
= 0 : lightlike components (or Null) 
> 0 : spacelike components 

2.6. Operation of lowering and raising of indices in­
duced by 
metric tensors 

Let Q>]{\"ja be the coordinates of the (r, s) -tensor a in some basis and be the metric 
tensor in this basis. 

Let us form the tensor product 9pqO>]{"l!ja- This tensor has type (r, s + 2). 

2.6.1. Lowering of tensors 
We now choose one of the contravariant coordinates of a, say z& and replace z& by q and 
then perform contraction wi th respect to q. So q w i l l disappear and we wi l l be left wi th 
a tensor of type (r — 1, s + 1) which is written simply in the form X J —> T J ^ 1 

,il...ik_1ik+1...ir A1...ik_1qik+1...ir 

This operation is called lowering. Lowering acts do decrease the contravariance valency 
by 1 and increase the covariant valency by 1. There are r possible lowerings, depending on 
the choice of k. Note that the new covariant index of the result, p in the equation above 
is placed in the first position [12]. 
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2.6.2. Raising of tensor 
Raising is the opposite of lowering. We begin wi th the dual metric tensor gpq and form 
the tensor product gpqalji'.'.js• Now we choose an index jk and replace jk by q and perform 
contraction wi th respect to q, we then obtain 

APh...ir npq Ah-ir 
jl-jk-dk+l-js X jl-Jk-lQJk+l—Ja 

This operation is called raising. 
Raising acts to increase the contravariance valency by 1 and decrease the covariant va­
lency by 1, so the resulting tensor has type (r + 1, s — 1), which is simply written in the 
form T J —> There are s possible raising, depending on the choice of k [12]. 

Note that the new contravariant index of the result, p in the above equation is placed 
in the first position. 
A common use of lowering and raising is in moving between vectors and covectors [ ]. 
If v% is a vector in some basis, we define its corresponding covector Vi through the rela­
tionships 

Vi = 9ikVk, and v% = g%kvk 

These relationships establish a natural isomorphism between the given vector space V and 
its dual space of covectors V* . 

2.7. The Levi-Civita Symbol 
The Lev i -Civ i t a Symbol e^j^...^ is a function of n indices, each taking values from 1 to 
n. It is therefore fully defined by nn values, one for each choice of indices. The definition 
of the Lev i -Civ i t a symbol is as follows [12]. 

( l,ziZ2 . . . i„ is an even permutation of 12 . . . n 

—1,1x12 . . . i„ is an odd permutation of 12 . . . n 

0,ziZ2 . . . in is not a permutation of 12 . . . n 

We can see that: 
£iii2...in is 1 in n\/2 cases out of nn 

e.g n = 3 =>- 3!/2 = 3 
£hh...in is -1 in n\/2 cases, and 
£hi2...in i s 0 i n a U other cases. Let A be an n x n matrix. Using the Lev i -Civ i t a symbol, 
we can express the determinant of A as 

det A = ej1j2...j„yl^1 A 2

2 . . . A1™ 

with implied summation over all indices. 

2.8. Symmetry and Anti-symmetry 
From our previous knowledge, we know that; ^4jU 2...j s is a (0, s) -tensor, but can also be a 
symbol such as the Lev i -C iv i t a symbol or a pseudotensor such as the volume tensor. We 
say that ^4jU 2...j s is symmetric wi th respect to a pair of indices p and q if 

^-hh—V—1—3a = Aj1j2...q...p...js (2-1) 
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We say that A J 1 J 2 J s is anti-symmetric wi th respect to a pair of indices p and q if 

Aj1j2...p...q...ja = ~-^jiJ2...q...p...j3 (2-2) 

We note that each of (2.1) and (2.2) above involves transposition of p and q; hence, 
symmetry and anti-symmetry are defined by the behavior of the coordinates under trans­
positions [12]. 
A tensor is called completely symmetric if it exhibits symmetry under all possible trans­
positions 
A tensor is called completely anti-symmetric if it exhibits anti-symmetry under all possible 
transpositions. 

Theorem 2.8.1 A tensor a.j1j2,„js is completely symmetric if and only if Ak1k2...k3 — 
A?U2...j s for anV permutation ki, k2, • • •, kn 

Proof: Tr iv ia l 
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3. D I F F E R E N T I A B L E M A N I F O L D 
As much as a material body is the fundamental object of Continuum Mechanics, a 

differentiable manifold is the fundamental object of Differential Geometry. We wi l l be 
presenting the general definition of this differential manifolds. There are many different 
ways of defining a differentiable manifold; an object whose main feature looks locally like 
the Euclidean space M.n [1]. 

There are only two possible 1-dimensional manifolds. Continuous plane curves that 
do not self-intersect (lines) and circles are topological 1 - dimensional manifolds. 

Also, the 2 - dimensional manifolds are known as surfaces. Examples include spheres, 
tori, and hyperboloids. These are topological 2- dimensional manifolds. 

Sphere = Torus — Surface of genus 2 
surface of genus 0 surface of genus 1 

Figure 3.1: 2-dimensional manifolds 

3.1. Manifold 
Definition 3.1.1 A Hausdorff topological space with a countable basis is said to be a 
manifold of order r or oo if the following claims are satisfied: 

(i) There is a system A = {Ua,(pa)aeI ,1 at most countable such that the system Ua 

consists of open subsets and cover M and the so-called local maps ipa : Ua —> ip (Ua) C Rn 

are homeomorphisms. 
(ii) the transition maps ip2 o tp^1 : cp1 (U1 f l U2) —> ̂ 2 {U\ H U2) are smooth (differen­

tiable up to order r or 00 ). 

Figure 3.2: From definition 9 

The system A is said to be an atlas on M 

32 



3. DIFFERENTIABLE MANIFOLD 

3.1.1. Differentiable Manifold 
Definition 3.1.2 A manifold of class Cr and dimension n is a topological Hausdorff 
space M with a fixed complete atlas compatible and where r is a positive integer or infinity 
Ul-

A manifold wi l l be called smooth when it is of class C°° . In concise, smooth manifold 
( is infinitely differentiable manifold). Henceforth, we wi l l only be dealing wi th smooth 
manifolds. 

In simple definition: smooth manifolds are geometrical objects that locally 
look like some Euclidean space and on which we can do calculus. [18] 

W i t h smooth we mean infinitely differentiable (smooth manifold), i.e, for a map / : 
U —> M open, all the partial derivatives of / need to exist and need to be continuous on 
U. When / is smooth we use the notation / e C°°(U) [18]. 
In general, a function F : U —> M f c wi th U C M.1 open is said to be smooth if each 
component function Fi of F = (F\,..., Fk) is smooth. 

Definition 3.1.3 Suppose U C M.1 and V C M.k are open subsets. A map F : U —> V is 
called a diffeomorphism if it is a bijective smooth map with a smooth inverse [18]. 

Note that when F is a diffeomorphism, it is definitely homeomorphism. 

Definition 3.1.4 Two charts (U,ip) and (V,ip) on M are said to be compatible if either 
the intersection U f l V is disjoint or the transition map 

i>o<p-1l{unv):<p(unv)^ij(unv) 

is a diffeomorphism [18]. 

Figure 3.3: Compatible 

Definition 3.1.5 Consider two differentiable manifolds (M,N) and a mapping f : M —> 
N. A mapping f : M —> N is said to be differentiable if for every chart (Ui, (pi) of M and 
every chart (Vk,ipk) of N such that f (Ui) C V% the mapping 

i>k° f ° Vi1 • (ft (Ui) -»• ibk (Vk) 

is differentiable (i.e smooth differentiable ) [4]. 
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3.2. TANGENT VECTOR SPACE 

Furthermore, in order to develop differential calculus on a manifold and to be able to 
calculate derivatives in a specific direction, we try to introduce the concept of a tangent 
vector to a differentiable manifold. 

3.2. Tangent vector space 
Definition 3.2.1 Tangent vector 
A linear map X : C°°(M) —> K. is said to be a derivation of M at p when it satisfies the 
Leibniz condition 

X{fg) = f{p)Xg + g{p)Xf 

for all f,geC°°(M). 

The tangent space of M at p, denoted by TPM, is the set of all derivations of M at 
p . A n element of TPM is also called a tangent vector of M at p [ ]. 

Clearly a tangent space is an R-vector space. Furthermore note that the Leibniz 
condition is some kind of product rule, hence an essential example of a derivation is the 
directional derivative of a function along a smooth path. 

Particularly, let 7 : R —>• M be some smooth path wi th the property 7(0) = p. Then 
the map X acts as 

d 
( / ° 7 ) 

t=0 
for all / G C°°(M) defines a derivation at p. This follows quite directly by noting the 
useful equality fgoj = ( / o 7 ) («7 o 7 ) . The converse is actually true as well [15]. 

3.3. Vector Fields 
Let M be an n -dimensional smooth manifold. Before we discuss on vector fields, we wi l l 
first have to define the notion of a tangent bundle. 

3.3.1. Tangent bundle 
In the above subsection, we defined the tangent space TpM at each point p on M. Now, 
let us consider a collection of tangent bundles over every point on M 

TM = UpeMTpM 

Which is clearly a manifold. 
For a given coordinate chart (C/j, (pi), we choose to define coordinates on Up£UiTpM 

as (xa,va), where (xa) are coordinates on [7$ and we parametrize a tangent vector as 

« d 
v = v dxc 

This defines differential structure on TM (TM is a differential manifold). Hence, TM is 
called a tangent bundle [1] [15]. 
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Definition 3.3.1 We define the space TXM as the set of all j 'q7 for curves 7 : K. —> M 
such that 7(0) = x. Then TM = UXTXM is said to be the tangent bundle on M. 

For a smooth map f : M —> N define the map Tf by Tf (j'qT) = Jo(f 0 7 ) [6] [17]. 

Proposition 3.3.1 There is a structure of a smooth manifold on TM, locally diffeomor-
phic to l n x R B . 

Furhter, there is a projection pu '• TM —> M mapping every element from TXM to x. 
Clearly, Tf is a smooth map. 

Definition 3.3.2 A local section X : M —> TM is said to be a vector field on M. Local 
section: p o X = id.M 

3.3.2. Vector field on manifold 
A vector field on manifold is a result of selecting at each point of a manifold a tangent 
vector. 

Definition 3.3.3 A vector field on the manifold M is a mapping 

X : M -»• \J TpM 

such that X{p) G TPM for every p G M. 

X is called a differentiable vector field if, for every differentiable function / , X(f), viewed 
as a real-valued function on M, is differentiable in a neighbourhood of every point, 
i.e, a vector field X is differentiable if, for every point p G M, there exists an open 
neighbourhood Up, such that Xq(f) is differentiable at every q G Up, and for every / G 
F(q). 
Denoting X„ in the given coordinate induced basis \ , • • • , I as 

v 
n Pi 

i = i 

where ^ is the components of the vector field X in the coordinate system u1,... ,un and 
these components are real-valued functions on the manifold M [1] 

Proposition 3.3.2 A vector field X on a manifold M is differentiable if and only if its 
components in one and therefore in every, coordinate system are differentiable functions 
on M. 

The set X(M) of all differentiable vector fields on M is a real vector space wi th point-
wise addition and multiplication by scalars. To be precise, it is an algebra with bracket 
operation defined by 

[X,Y](f)=X(Y(f))-Y(X(f)) 

for any differentiable function / : M —> M , and any pair of vector fields X, Y G X(M). 
X,Y are vector fields [15]. 

The above proposition leads us to consider vector fields as the element of a Lie Algebra. 
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3.3.3. Lie Algebra 
Let [x, y] be a vector field on a manifold M provided that X and Y are vector fields 
on M. Then X(M) is said to be a Lie algebra if there exists a bilinear map [—, — ] : 
X(M) x X(M) -»• AT(Af), called the Lie bracket [1], such that 
1. The Lie bracket [—, —] is skew-symmetric: 

[X,Y] = -\Y,X], VX,YeX(M) 

2. The Jacobi identity is satisfied: 

[X, [Y, Z}} + [Z, [X, Y]] + [Y, [Z, X]] = 0, V X , Y, Z G X(M) 

The space X(M) is indeed a Lie algebra over the set of real numbers. 

We may also regard X(M)) as a module over the algebra J~(M) of differentiable 
functions on M as follows [15] : 
If / is a function and X is a vector field on M, then fX is a vector field on M defined by 
(fX)p = f(p)X for p G M. Then 

[ / X , gY] = fg[X, Y] + f(Xg)Y - g(Yf)X 

f,geF(M), X,YeX(M) 

For a point p of M, the dual vector space T*(M) of the tangent space TP(M) is called the 
space of covectors at p. 
A n assignment of a covector at each point p is called a 1 -form (diferential form of degree 

1 )• 
For each function / on M, the total differential (df) of / at p is defined by: 

((df)p,X) = Xf for XeTp(M) 

where (,) denotes the value of the first entry on the second entry as a linear functional 
on T P ( M ) . If u\...,ua is a local [15]. 

As we mentioned earlier, the tangent space of the manifold M at the point p G M is 
a real vector space. Its dual space T*M is called the space of covectors at p. A smooth 
field of co-vectors u : M —> {JpeMT*M such that up = u(p) e T*M is called a 1 -form 
on M [15]. In other words, a 1 -form u on M is a linear mapping from the space X(M) 
of all vector fields on M into the algebra of all differentiable functions J~(M) on M such 
that 

oo(X)(p)=oop(Xp), XpeX(M), oopeT;M, peM 

In particular, given a differentiable function / : M —> M , its total differential is the 1 
-form d/ defined at each p 6 M b y 

d / p ( X p ) = X p ( / ) 

for every Xp G T p M . If u1,... ,un is a local coordinate system in a neighbourhood of 
p, the total differentials ( iu^, . . . , dii™ form a basis of T*M. Moreover, according to the 
definition of a differential 
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for any 

*p = E* f c (p) 
fe=i 

g 

and any j = 1 , . . . , n. Thus, given a coordinate system u1,..., un in an neighbourhood of 
a point p, any 1 -form u can be represented locally as 

fkdyk 

k=l 

where the functions called components of u in the coordinates u1,... ,un are differen-
tiable (in the neighbourhood of p ) real-valued functions [ ]. 

Generalizing the concept of a 1 -form we say that a (differentiable) r form on a n 
-dimensional manifold M is a skew-symmetric r-linear mapping of the Cartesinn product 
xrX(M) ee X(M) x • • • x X(M) (r-times) into F{M). We denote by Dr(M) the set of 
all differentiable r-forms on M, where r = 0 , 1 , . . . , n, and where by convention D°(M) = 
Jr(M)[ ]. Each set Dr(M) is a real vector space as well as an J-(M) -module. Namely, 
if / G J-"(M) and u G Dr(M) then fou G Dr(M) is viewed as an r -form such that 
(fou)p = f(p)ojp for any p G M. A n alternative way of defining an r -form is to consider 
the differentiable manifolds exterior algebra AT*M wi th an alternating product A defined 
as follows". 

If u)i,..., our are 1 -forms on M and if , . . . , Xr

v are vectors at p G M, then 

( W l A , • • • , A u v ) p ( X p \ . . . ,Xr

p) ee det {a;, {Xk

p)} , j , fc = 1,. . . , r 

A n r -form a; evaluated at p G M is an element of degree r in AT*M. In a local coordinate 
system u1,... ,un the form u can therefore be expressed uniquely as 

oo= f h - i r d u h A • • • A duir 

Let D(M) denote the totality of differential forms on M. The exterior differential d : 
D(M) —> D(M) is a linear mapping such that: 
1. d(Dr(M)) C D r + 1 ( M ) 
2. If / G J ' ( M ) then df is the total differential of / 
3. If w G Dr(M) and A G D*(M) then 

A A) = du A A + ( - l ) r o ; A d\ 

4. c?2 ee d o <i = 0 The concept of a differential form can be generalized further to include 
differential forms with values in a vector space. That is, let V be an m— dimensional real 
vector space. A V -valued r -form at p G M is a skewsymmetric r -linear mapping u of 
the product xrTpM into V. Given a basis v1,..., vm in V one can write 

m 
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3.4. SUBMANIFOLDS 

where Uj are usual r -forms on M. Indeed. 

m 

(* P \ • • • = X > ( p ) W • • • > X D y J 

for any X ^ , . . . , X™ G T p M . The exterior derivative of u is simply 

m 

du = dojj{p)vi 
3=1 

B y definition, the form a; is differentiable if each form ojj is differentiable [1]. In what 
follows we wi l l only consider differentiable forms, both real and vector valued. 

3.3.4. Tensor products 
Let A and B be two tensors at x of types (r, s) tensor and (p, q) tensor respectively. Then 
the tensor product A ® B is the tensor at x of type (r + p, s + q) defined by 

A®B O i , . . . , Vr+p,^!, . . . ,0JS+Q) = A (v1,. . . ,Vr,U!, ... ,us) • B (vr+l,. . . , Vr+p,Us+1, . . .,0JS+Q) 

for al l vectors v\,..., vr+p G TXM and all covectors ui,..., u s + q G T*M [12]. 

Definition 3.3.4 yl covector u at x G M is a linear map from TXM —> M. T7ie set o/ 
covectors at x forms an n -dimensional vector space, which we denote T*M. A tensor of 
type (k, I) at x is a multilinear map which takes k vectors and I covectors and gives a real 
number [12] 

Tx : TXM x . . . x TXM x T*M x . . . x T*M -»• M 
v v ' > v ' 

k times % time 

Note that a covector is just a tensor of type (1, 0), and a vector is a tensor of type (0,1), 
since a vector v acts linearly on a covector u by := u[v) Mult i l ineari ty means that 

T l j 2 c h v h , . . . , J 2 c i k v i k , J ] • • • , J ] ) 
V h ik ji ji / 

ch ...cikah ...ajlT(vil,...,vik,ujl,...,uji) 

3.4. Submanifolds 
Consider the space M.m supported by the standard inner product, which wi l l be denoted 
by E m . 

Definition 3.4.1 A subset M C I " is said to be an n-dimensional submanifold ofRm if 
for any x G M there is a neighbourhood W of x G W11 and a diffeomorphism f : W —> 
V CRm such that f(W fl M) = V and fn+1 = • • • = fm = 0 [17]. 

Consider its local parametrization 
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3. DIFFERENTIABLE MANIFOLD 

f(u\ ...,un)ior(u1,...,un)eUC W1 

Since / : U —> M is a local diffeomorphism the so-called coordinate tangent vectors 

/ i = J& = (§§)» « = 1, P = l , . . . , m 

are linearly independent and form the basis of the tangent space TaM where a = f{u). 
Let A = S " = 1 a l / i and B = £™ = 1 r / / i - We want to emphasize the extension of indices 

up to n, otherwise we could apply the Einstein summation convention. Then the value of 
their inner product is 

(A,B) = ^=1,J=1a*V(ft,fJ). 

Setting gij(u) = (fi(u), fj(u)) = g^u) = g^u) we obtain 

(A, B) = ElJ=igiJ(u)aV = gtJ(u)a*V, 

applying the Einstein summation convention in the last expression. We have obviously 
obtained the symmetric bilinear form 

(1) gij{u)dxldx3. 

which is a (0, 2)-tensor field (briefly tensor), i.e. a symmetric 2-form. 
In the domain of parameters, let us define a path ul — ul(t), % — 1 , . . . , n. In E m , we 

have the path f(ul(t)). Its tangent vectors satisfy ^ r p ^ = fi^fr- For its square we have 

(2) { i s ? = 9 l M t ) ) ^ , 

which is a quadratic form wi th the associated symmetric bilinear form (1). 

Remark 3.4.1 In what follows we apply the concept of a curve, which is only the trajec­
tory of path determined by a map /:/—>• M. Unlike curve, paths contain the complete 
kinematic history. In other words, a curve can be identified with all possible reparametriza-
tions of a given path determining the same trajectory. 

Consider a curve C C E m detrmined by xl(t) for t G (a, b). Its length is given by the 
expression as follows 

<3) / n ^ i i * = r ^ ) ' + - + ( ^ ) ' * = / * « . . 
a 

see (2). 

Definition 3.4.2 The quadratic form (2) is said to be the first fundamental form. 

Remark 3.4.2 (a) The quadratic form (2) is the generalization of the fundamental form 
from the classical differential geometry. Two coordinate tangent vectors correspond to the 
parametrization of a surface and the formula (3) yields the length of a curve with the 
parametrization xl(t) lying on a given surface. 

(b) All properties depending on the first fundamental form only are said to be the 
properties of the inner geometry of a submanifold while the others like normal curvature 
are called the external geometry. 
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3.5. Paralel transport 
Definition 3.5.1 Let M be a submanifold in E m . By the normal space NXM of M we 
call the orthogonal complement to TXM in TxKm. The union {JxeN NXM is said to be the 
normal bundle of M C E m [7]. 

The following, obvious definition defines the parallel transport of a system of vectors 
along a curve in E m . 

Definition 3.5.2 Let pit) be a path in E m and v(t) be a system of vectors considered 
as bounded vectors coming out from the points of pit). Then v(t) is said to be paralelly 
transported along pit) if and only if % = 0 [7]. 

It is easy to verify that any reparametrization of p(t) giving the same trajectory does 
not affect the parallel transport of v(t). We generalize the recent definition corresponding 
to the case of n = m to a general submanifold TV as follows. 

Definition 3.5.3 A system of vectors vit) G M.m is said to be parallely transported along 
a path p(t) CM if and only if § e Np(t)M. 

Let us describe the parallel transport in formulas. Clearly, T E m = E m x W71. The 
vectors /$ can then be considered as a map U —> M.m (U being the domain of parameters). 
Then = | A . The definition of the coordinate tangent vectors /$ yields, = f^. 
Further, let ns(u) be a basis of a normal space at u, s — 1 , . . . , m — n = m — d im M. Then 

(4) h = E J U r £ - ( u ) / f c ( u ) + E™- 1»6?,.(«)n.(«). 

In coordinates, let p(t) be expressed by -u* = p*(t) and w(t) = vl(t)fip(t), i.e. w(t) = 
vl(t) fi(p(t)), applying the Einstein summation convention. Taking the derivative of the 
recent equality we have 

(5) | = ^ / . W « ) ) + A « ) / « W « ) ) f . 

The parellel transport corresponds to the zero projection of 4r to TXM, which is 
equivalent to the zero values of Substituting (4) to (5) we obtain 

U . f + r } J ^ ) = o. 

Then the regularity and consequently the invertibility of the inner product matrix yields 
the following formula and Proposition [7]. 

Proposition 3.5.1 The system of vector v(t) is parallely transported along the path p(t) 
if and only if the following formula is satisfied 

f + W * ) ) ^ = o. 

where Christoffel symbols Yl-k are defined by the formula 

•pi _ lyn nie (&9je , dgek _ dgjk 
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3. DIFFERENTIABLE MANIFOLD 

B y gte we denote the inverse matrix to g. We have unified the indices in formula [7]. 

It is easy to verify that the recent formula remains valid if we reparametrize the path 
p[t). Thus Proposition (3.5.1) can be reformulated for a curves instead paths (paths 
being representatives of curves). 

Definition 3.5.4 Let x = p(t) be an integral curve of a vector field X. Then we can 
defined the parallel transport of a vector field Y on M along the curve field X by the 
following condition: 

z ^ f r + riMt))Yjxk = o, i.e, ( g + v)k(x)Y^x)) x k = o 

Definition 3.5.5 Let X be a vector field on a submanifold M C W1. Then the map 

V z : x{M) —> x{M) defined byY —> (j!^ + Tl

jk(x)Yj(x) j Xk(x) is said to be a covariant 

derivative of a vector field Y along the vector field X. 

Corollary 3.5.0.1 Parallel transport is the inner property of a submanifold. In other 
words, it depends only on the first fundamental form of the given submanifold M C E m . 

Remark 3.5.1 Given a curve along which we parallely transport, the vector field is par-
allely transported in a unique way. The system of differential equation from Proposition 
(3.5.1) is uniquely defined. 

Furthermore, parallel transport preserves linear combinations of vectors [17]. 

Examples: 

Consider the unit sphere, more exactly | of the unit sphere 

(a) 7i : f(ť) — (r c o s i , r s i n í , 0), 72 = (—r s i n í , r cos i , 0), 73 = (0, 0,1) 

Its tangent vector is N(t) = (—r s in í , r cos i , 0) G Nf^M 
(b) Let us further transport paralelly the vector v(0) along 72, Clearly ^ = 0 
(c) Finally, let us transport v(t) paralelly along 73. 
The situation is quite analogous to (a); the main (principal) circle on the sphere. 

Figure 3.4: Parallel transport of a vector around a closed loop (from A to N to B and 
back to A ) on the sphere [20] 
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3.5. PARALEL TRANSPORT 

If we transport v(0) from A to be along 71, then the result vector in B is different from 
that obtained by parallel transport from A along 72 and along 73. Thus parallel tansport 
of a vector from A to B depends on the curve. 

Theorem 3.5.1 For arbitrary vector fields x,y on M and any function f : M —> M the 
following holds: 
(i) Vx(Y1 + Y2)=VxY1 + VxY2 

(ii) Vx(fY) = (Xf)Y + fVxY 
(in) V X l + X 2 Y = VXlY + VXiY 
(iv) VfXY = fVxY 

The above are the so-called Koszul Axioms. 

Definition 3.5.6 A curve j(t) is said to be a geodesic curve if there is a parametrization 
(i.e. a pathp(t)) such that the system of its tangent vectors is paralelly transported along 
Pit). 
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4. APPLICATION OF TENSOR IN CONTINUUM MECHANICS 

4. Application of Tensor in 
Continuum Mechanics 

We start by briefing us through Gauss theorem and Stokes' theorem 

4.1. Gauss Theorem 
In vector calculus, Gauss theorem which is also known as divergence theorem is a result 
that is related to the flux of a vector field in an enclosed volume [11]. 

Theorem 4.1.1 Let F be a continuously differentiable vector field defined in a volume V 
where V is a subset ofMJ1 i.e n = 3. Let S be the closed surface forming the boundary of 
V and let n be the unit outward normal to S. Then, the Gauss theorem states that 

Mathematically speaking, the Gauss theorem states that the total amount of expansion 
of F wi thin the volume V is equal to the flux of F out of the surface S. 

The left side is a volume integral over the volume V, the right side is the surface 
integral over the boundary of the volume V [21]. 

Now, let us consider a convex region V bounded by a smooth surface S in 3 — D . Let 
A (xi, x2, £3) be a differentiable function defined in V. We start by defining the integral 

where V A. 
dx 

Integrating wi th respect to X\, we have that 

let dx2dx3 = n\dS on S* 
and 
let dx2dx3 = -n\*dS on S** then we get 

O n a general case 
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4.1. GAUSS THEOREM 

4.1.1. Applications of Gauss Theorem 

Conservation of mass for a fluid 
A s an example of the application of the divergence theorem, this section presents the 
derivation of the law of conservation of mass for a fluid of variable density [11]. 

Consider a fluid wi th density p(r, t) flowing with velocity u(r, t). Let V be an arbitrary 
volume fixed in space, wi th surface S and outward normal n. Then the total mass of the 
fluid contained in V is the volume integral of p : 

Figure 4.1: F l u i d flows wi th velocity u through region V 

The rate at which mass enters V is equal to the surface integral of the flux pu 

Rate of mass flow into V — — § pu • ndS 

where the minus sign is signifying n points outward, so mass enters V if 

u • n < 0 

We can now apply the physical law that mass is conserved: the rate of change of the mass 
in V must equal the rate at which mass enters V. 

Mathematically, we have 

pu • ndS (4.2) 

The surface integral on the R H S can now be written as a volume integral using the 
divergence theorem. 

Also, the order of the derivative and the integral on the L H S can be interchanged: 

J77>v'=-17Lv'-{pu)dv ( 4 3 ) 

where the time derivative has become a partial derivative since p is a function of space 
and time. 
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4. APPLICATION OF TENSOR IN CONTINUUM MECHANICS 

Now we combine the two integrals into one, we then have 

dp 
, , V-(pu)dV = 0 (4.4) 

v °t 

We have obtained the result without any restrictions on the volume V. Thus it is 
true for any arbitrary volume V. The only way that this can be true is if the integrand 
(the quantity inside the integral) is zero everywhere. If there were some point where the 
integrand were non-zero, a small volume could be drawn around that point, which would 
contradict (4.4) 

Therefore the law for conservation of mass of a fluid is 

% + V • (pu) = 0 (4.5) 

This conservation law takes the following form: the rate of change of the density plus 
the divergence of the flux is zero. 

Many other conservation laws can also be written in this form: conservation of energy 
or conservation of electric charge [11]. 

B y expanding the divergence of pu, in equation (4.5). It can be written in the form 

^+u-Vp + pV-u = 0 (4.6) 
at 

If the density of the fluid is constant and uniform, i.e. independent of time and space, 
then this equation simplifies to 

V • u = 0 (4.7) 

A fluid satisfying equation (4.7) is said to be incompressible. 

4.2. Stokes Theorem 
In vector calculus and differential geometry, Stokes' theorem is a statement about the 
integration of differential forms on manifolds, which both simplifies and generalizes several 
theorems from vector calculus [ ]. 

Stokes's theorem gives an alternative expression for the surface integral of the curl of 
a vector field. This is analogous to the divergence theorem, so Stokes's theorem could be 
referred to as the 'curl theorem'. The proof of the theorem is very similar to that for 
the divergence theorem, being based on the definition of curl in terms of a line integral 
[11]. 

Theorem 4.2.1 Let C be a closed curve which forms the boundary of a surface S. Then 
for a continuously differentiable vector field u, Stokes's theorem states that 

V x u • ndS = (p u • dr 
s Jc 

where the direction of the line integral around C and the normal n are oriented in a 
right-handed sense 

45 



4.2. STOKES THEOREM 

see (Figure 4.2). 

A s we did in the Gauss theorem above, we express the same here. 
Now, consider a 2 — D convex region S bounded by the curve C in the xi, x2 plane. Let 
A be differentiable inside S. Then the area integral is defined by: 

OA 
dx\ 

dx\dx2 

Integrating wi th respect to x\ we have that 

Adx2\c** 

Adxi 
c* 

I -

Adxi 
c** 

Adx2 

c 
We have shown the two points Pi and P2, which are located at the minimum and maximum 
values of x2, dividing the curve C into C* and C**. 

Similarly, we do the same for function B 

dB 
J 

dx-. 

Integrating wi th respect to x2, we then have 

J = J Bdx\ 

J = 

a 
C" 

Bdx\ — I Bdx\ 
C" JC" 

J=-j> Bdxi 

where C and C" are gotten by dividing the curve C Using the minimum and maximum 
values of x\ and summing I and J together, we have that 

DA dB 

dx\ dx2 

dx\dx2 = <j> [Adx2 + Bdx\ 

Figure 4.2: Orientation of curve C and surface S 
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Equating A and B to vector components. 

i.e A = A2, and B — A\ 

we have that 
dA2 dA1 

dx1dx2 = <j> [A1dx1 + A2dx2] 
dxi dx2 

This above result is known as the Stokes theorem. 
The left-hand side of this equation has the e% component of the curl of the vector A. 

We may write this as 

e 3 • (V x A) dx\dx2 = <j> A - dx 

This shows that the integral of the normal component of the curl of a vector field on 
the surface S is equal to the integral of the tangential component of the same field around 
the closed curve C [9]. 

4.2.1. Applications of Stokes' Theorem 
Stokes's theorem can be useful for evaluating integrals, by converting line integrals to 
surface integrals or vice versa [11]. 

Example: Show that any irrotational vector field is conservative. 

Proof: Suppose that u is irrotational, so V x u = 0. Then for any closed curve C 

u- dr = II V x u- ndS = 0 
c J Js 

where S is any surface spanning C. 

Thus a is a conservative vector field. 

4.2.2. Ampere's Law 
Ampere's law states that the total flux of electric current flowing through a loop is pro­
portional to the line integral of the magnetic field around the loop [11]. 

Using Stokes's theorem to obtain an alternative form of this law that does not involve 
any integrals. 

Let B be the magnetic field strength and j be the current density. The constant of 
proportionality is /x 0 in SI units. Then, Ampere's law states that 

B • dr = fi0 3 • ndS 
c J Js 

for any surface S that spans the loop C. 
Rewrit ing the L H S using Stokes' theorem, we have 

V x B • ndS — fx0 I I j • ndS 
s J Js 
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4.3. CONFIGURATION AND DEFORMATION 

Now if this is true for any loop C, and so any surface S, it follows that 

V x B = fioj 

(V x B) - fj^j = 0 

which is therefore the differential form of Ampere's law and is one of Maxwell 's equa­
tions. 

4.3. Configuration and deformation 
B y a material body we mean an open submanifold B CM.3. Let E 3 be the euclidean space, 
i.e, the affme space supported by the standard inner product over real vectors, which is 
also called a physical space. Such space can be also considered as the space M3 if we 
choose a frame (formed by the origin and some orthonormal basis). 

B y a configuration, we mean a local map K : B —> E 3 . A selected configuration 
KQ is said to be the reference configuration. In terms of the refernece configuration we 
transmit the metric structure from the physical space to the body B . B y a deformation 
we mean any map K O K,Q 1 : M3 —> M3. Let us denote the coordinates with respect to the 
reference configuration by Xa (the so-called Lagrange coordinates) while the coordinates 
wi th respect to a generic configuration K by xl. They are said to be Euler or space 
coordinates[17]. 

Convention : For the Lagrange coordinates (reffering to the reference configuration) 
we use capital letters while for the Euler (spatial) coordinates we use ordinary letters. 

As for indices, in [9] there are applied greek letters for indices of Lagrange coordinates 
and lat in letters for indices of the Euler coordinates in order to differ between these 
kinds of coordinates. Nevertheless, this part of the convention wi l l not be obligatory, 
particularly in some deductions below where keeping only one notation of indices is more 
convenient. 

If we define the map XK — X = K ° Ko 1 then its Jacobi matrix (non-singular) dxlXa 

represents the deformation gradient F . This is a (1,1) tensor since it obeys the tensor 
transformation rules if we change the coordinate system on B. 

Figure 4.3: The deformation and its gradient 
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4.4. Continuum kinematics 
The motion of a material body can be investigated point-wise, 
can describe the motion of the individual particles of the body 
descriptions; the Lagrangian one and the Eulerian one. 

Lagrange description: 

xi = xi {Xa,t). 

The last equation corresponds to the motion of a particle which in the ini t ial time 
t — 0 occupies the place wi th the coordinates Xa. 

Euler description: is determined by the equation as follows: 

u* = ^(x^t). 

This yields the velocity of a particle depending on time t and the location xl. A s a 
matter of fact, a field of velocities is given. Under reasonable assumption on velocity field 
like smoothness, non-degeneracy one can aggregate the system of curves on the tangent 
vectors of which take the same direction as an element of a velocity field at a given point. 
The curves of this kind are said to be the stream lines, [9]. 

The general form for of a stream line is given by the equation as follows 

dxz 

— = k(s)vi 
as 

The following concept of integral curve on a manifold M [ ] corresponds to the concept 
of a path line in [9]. 

This means that we 
There are two basis 

Definition 4.4.1 Given a vector field X on a manifold M, a curve jit) on M is said to 
be the integral curve of X if j'(t) = X{j{t) where "/(t) denotes Tt{l)^ for 7 : I —> M and 
the unit tangent vector 1 G TtM to 7 . 

The following theorem guarantees for any x G X at least locally the existence of integral 
curve of the vector field X intersecting X. 

Theorem 4.4.1 Let X be a vector field on a manifold M and x G M. Then there is 
an integral curve jx : Ix —> M of X satisfying 7 S (0) = x in some neighbourhood Ix CM, 
containing 0. If Ix is a maximal interval of this property then jx is uniquely determined. 

4.4.1. Helmholtz theorem 
Starting from the Euler description (equations for v% depending on a location x J ) and 
assuming the velocity v% {x\ t) at a point x J and time t we obtain at the location x J + dx^ 
the velocity Vi(x^ + dxP, t) as follows: 

vi(xj + dxj, t) = v\xj, t) + ^-dxj. 
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4.4. CONTINUUM KINEMATICS 

The expression can be written in the form: 

dv% 1 dv% dvj 1 ,dvl dvj 

The first bracket corresponds to the symmetric part and the second bracket the skew-
symmetric part. Substituting this to the recent equation we obtain: 

« V ' + d^", t) = v\x^ t) + ± ( f g - $)dxi + § ( g j + j g ) 

The first and second term express the motion of the continuum itself. The first one 
represent the translation and the second one the vorticity. The thi rd term represents 
the proper deformation characterizing the change of distance of the individual particles 
during the motion. In case of the zero deformation term we are speaking about the rigid 
motion or a a rigid body .The first term corresponds to the translation velocity while the 
second one the vorticity velocity. 

The recent deductions can be summarized to the the classical Helmholtz theorem as 
follows: 

A motion of a a continuum body can be uniquely decomposed to the translation, 
rotation and proper deformation. 

4.4.2. Tensors of deformation 
In what follows let us focus our attention to searching for changes of distances during a 
fixed time interval. Let us consider the ini t ial locations of particles tied wi th the reference 
configuration while the present location tied with the spatial configuration are of the form: 

xj = xj {Xa, t = 0) = X1 and xj = xj {Xa, t) 

The time dependency of deformations wi l l be not considered and thus we wi l l only write 

xj = xj(Xa) (4.8) 

In the following deduction we drop the convention from the end of Subsection 1.1. 
regarding greek and latin indices. The recent equation gives an assignment of a particle 
from the location Xa in the reference configuration to the location x% in common (spa­
tial) coordinates. Of course, we assume the uniqueness of such assignment. Consider a 
displacement vector u = x — X , in coordinates u% = x% — X\ 
In other words 

x> = xi(Xi) = Xi + ui(Xi) 

It is easy to see that we can write 

dv? 
dx3 = dxP + du3 = dxJ + —dxl (4.9) 

dxl v ' 

We are to evaluate the following expression characterizing the distance between the 
init ial and the common location 

dxjdxj -dXjdXj (4.10) 
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4. APPLICATION OF TENSOR IN CONTINUUM MECHANICS 

Clearly, we have 

dxPdxP = (dX> + duj){dXj + du>) = (dX> + —dXl){dxj + g^j:dXk) (4.11) 

B y means of the Kronecker symbol 5j, the expression d X J + {j^dX1) can be rewritten 

to the form {5j + | ^ ) d X z . In the analogous way we can write d X J + J ^ d X f c = {5k + 

J^7r)dX f c and consequently 

dx>dx> = {53 + ^i)dX\5{ + ^ ) d X k = {53 + + §fk)dXldXk = (4.12) 

- (XJXJ 4. d u J & 4. & d u J 4 d u J d u J )HXlHXk (A 11) 
- ( * A + Q^ih + 6i^-k + dx-idx-k)dx d x (413) 

Notice that in the recent term of the bracket we have applied the convention summing 
repeating indices. Nevertheless, the next equation below regarding wi l l be not the 
case. 

Taking into account that 5J5{dXldXk = dXHXi a 5{ = f ^ , 5j §^ = | ^ we 

can write dxjdxj = dXjdXj + (|^j- + + f f i J ^ ) d X z d X f c and so we have 

dxjdxj - dXjdXj = 2elkdXldXk, (4.14) 

where 
duk dul duj duj 

2 e i k = w + ^ + dJOdx* ( 4 1 5 ) 

Thus we have the second order covariant tensor ((0,2)-tensor, which is obviously 
symmetric. Clearly, eki and consequently the tensor under discussion depends on X%. The 
recently described tesor of deformation, which has been considered wi th respect to the 
reference configuration is said to be Green tensor. 

Now we reverse our deductions in the sense of dx%dx% — dXldX% depending on the 
common (spatial) coordinates x% and defined the so-called Almansi tensor. Taking the 
difference between the init ial and common location in the form of 

Xi = xi -ul{xj), (4.16) 

where uJ denotes the displacement vector we write d X * as 

dXl = dx1 - —dx3 = {5) - Tr-)dx3, (4.17) 
OX3 J OX3 

which implies 

Then we have 

dX'dX1 = {51 - g^)(SÍ - —Adxkdxl = (4.18) 

= dxidxi - l^d-í/fcd-í/z - ^rdxkdxl + | 4 j£dxkdxl 

axK a h a l ox1 axK ox1 

dxldx% - dX'dX1 = (|^ + ^ - ^-^-)dxkdxl (4.19) 
oxk ox1 axk oyl 
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Introducing the notation 
dul duk dul dul 

a * = 8 P + s ? - O T - ( 4 ' 2 0 ) 

we have 
dxidxi - dXidXi = 2ektdkdxl. (4.21) 

Since ul is considered as a function x J , it is obvious that eki depends on the spatial 
coordinates x J as well: 

eki = €ki(xJ). (4.22) 

The first tensor has been defined wi th respect to ther reference configuration and Lagrange 
coordinates while the second one wi th respect to the spatial (common) configuration and 
Euler (spatial) coordinates. 

Both of the discusses tensors are modeling all kinds of deformations including the big 
ones and so they are sometimes said to be tensors of big deformations instead the more 
brief name of tensor of deformation or deformation tensor. 
Tensors of small deformations 

In what follows, suppose that the deformations are small. More exactly, suppose that 
the components of the displacement vector u as well as the partial derivatives jj^j are 
small. Neglecting the last term in the coefficients ê - reduces the deformation tensor to 
the so-called tensor of small deformations wi th the coefficients defined as follows 

1 . dul duj , 
e " = 2 ( 9 * + 3 X ^ < 4 ' 2 3 ) 

For the assumptions imposed on displacement vectors and its partial derivatives above 
we obviously obtain 

dxidxi - dX]dX] = 2eikdXldXk. (4.24) 

Conversely, the tensor of small deformations can be expressed by 

1 ,dul du\ . „ . 

provided we start from the deformed configuration and express the tensor wi th respect to 
the spatial coordinates. In formulas we have 

dxidxi - dXldXl = 2elkdxhdxk (4.26) 

If we consider only small deformations then the displacements dX1 and dx% can be iden­
tified, which follows that it is not necessary to distinct between them and consequently 
we can identify eik(xj) and e^(yj). This finally implies the unique notation for the 
coefficients of both tensors. 
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4. APPLICATION OF TENSOR IN CONTINUUM MECHANICS 

4.5. Mechanical meaning of the coefficients of the 
deformation tensor 

In the first step, consider the relative prolongation of a segment rJX by a deformation de­
fined by ^ ^ x p ^ • Let r i X 1 = ( d X 1 , 0 , 0) and rjx 1 be the corresponding deformed segment. 

Then dx1 = y/l + 2e\\dX1 implies ^-j^r~ = v 7 ! + 2en — 1 and en corresponds to the 
relative prolongation in direction of the first axis. Analogously we can do for the relative 
prolongations of the segments in the directions of the remaining axes. 

As for the mixed coefficient e i 2 , take r i X 1 , r ix 1 and r JX 2 = (0, d X 2 , 0) together with the 
corresponding deformed segment rjx 2 . letting r ix 1 = (dx^O^O), f ix 2 = (0 ,dx 2 , 0 ) , r JX 1 = 
( d X ^ O , 0) and r JX 2 = ( 0 , d X 2 , 0 ) In the subsection devoted to deriving the deformation 
tensor (in the Green form) we have deduced that:s 

^ = { S i + dx^)dXk 

Taking the inner product rjx 1 • d x 2 of the deformed segments to the originally perpen­
dicular segments r i X 1 and r JX 2 we obtain 

, i , 9 <9u2 dv} du1 du1 „ „ r , 
d x 1 • d x 2 = — + — + — — = 2 e 1 2 d X 1 d X 2 . 

ox1 oxz ox1 oxz 

Since f ix 1 • d x 2 = | d x 1 | | d x 2 | cos if we obtain the formula: 

2ei 2 

sin«12 = cos0? = _ . = . 
V I + 2 e u v / l + 2e 2 2 ' 

where a i 2 = | — ip denotes the change of the originally right angle between the segments 
dX] and r JX 2 . 
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5. Surface forces and a stress vector 
Consider a body B in a deformed configuration and take a volume element together 

wi th the surface element surrounding it (Figure 5.1). Let z7 be the unit normal vector 
determining the orientation of the surface, which directs out from the volume. 

Figure 5.1: surface forces 

Clearly, z7 enables to define the positive and negative side of the oriented surface element 
[10]. ' 

We make some assumptions analogous to the rigid body working for sufficiently small 
volume and surface elements. A n effect of surface forces over such element can be replaced 
by a force vector H at any point P G AS and the same holds for the force momentum 
G . Then we define the so-called stress vector Tu as the l imit as follows: 

F 
T" = l im -

s^o S 

while 

hm —— = 0. 
A S ^ O AS 

B y the principle of the action and reaction, the force — Tv acts to the reverse (negative) 
side of the surface [10]. 

In order to emphasize the orientation of the surface by the unit normal v we involve 
it to the notation. 

Analogously we can do with a volume element and volume forces. A n effect of volume 
forces over the element A y can be reduced to the choice of a point P G AV and one force 
vector K such that l im Ay ^ 7 = F . Analogously to the case of surface forces we have 
l imAy^o £ y = 0 for the force momentum. 

As for the stress vector at a point P it would be completely described in case of 
knowledge of its values over all infinitesimal surface containing P, which would be rather 
complicated. Fortunately, it suffices to know the values of the stress vector under discus­
sion only on three elementary surface elements. 

Consider the z-th elementary surface AS perpendicular to the i - th axis wi th the normal 
determining its orientation coincides z-th unit vector e*j. The components of the stress 
acting on this surface let us denote by T[, T-,T^. Let us denote by the j - t h component 
of the stress vector acting to the i - th elementary surface. Clearly, to the reverse (negative) 
side of the i - th elementary surface, the stress vector is formed by the components —Tu, 
-T&, -Ta [10]. 
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(see figure 5.2) 

5. SURFACE FORCES AND A STRESS VECTOR 

Figure 5.2: the surface elementary to the i-th axis 

It is easy to see that by means of nine components r^- one can determine the stress 
vector acting on an arbitrary infinitesimal surface wi th the normal V. To deduce the 
equilibrium equation for surface and volume forces, consider the elementary tetrahedron, 
three surfaces of which are parallel wi th coordinate planes and the fourth one is in the 
distance h from the point P, (see Figure 5.3). 

Figure 5.3: Tetrahedron 

It is easy to see that provided a is the area of the surface ABC in this picture then the 
area of the i- th surface is <7j = crz/j, since z/j are exatly the direction cosines of the normal 
v related to the surface ABC [10]. 
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The equilibrium equation for the surface and volume forces (the first impulse theorem) 
is of the form: 

( 1 ) / / s

T " d S + / / / v F d V ^ / / / ^ d V 

while the equlibrium for forces momentum (the second impulse theorem) is of the form 

(2) J Jy xTv + J J ^ y x F d V = 0. 

If there are not inertial forces in the first equilibrium equation (i.e. the right hand 
side equals to zero) then we obtain 

T? - Tjicjj + ^crhFi = 0 

The orientation of the tetrahedron surface is determined by a normal directing outside 
and therefore the negative signs by the z-th surface). Taking the limit wi th respect to 
h —> 0 yields only 

T- r /rr ; 

since the limit of the volume of the tetrahedron draws near to zero faster than the surfaces 
[10]. 

We outline that in the recent two equations, we have used the convention for summing 
over the repeating indices. A s a matter of fact, Tv is a vector (the index v being not a 
tensor index but indicating the unit normal determining the orientation of the surface). 
Since the last equation transforms normal vectors to vectors, it is a linear map and so a 
(1, l)-tensor. Coming back to the Einstein convention we rewrite T" = T^CTJ to 

V = T)O\ 

omitting the symbol v. We remark that the recent form of the tensor has the discussed 
mechanical sense over unit vectors only but taking other vectors v, T is st i l l a (1,1) tensor. 

Now we present the equilibrium equation in the differential form. Consider the first 
"negative" elementary surface (i = 1) of the cube from figure (5.2) above (i.e. the surface 
elementary to the 1-st axis) where the stress vector is of the form: 

(—  Tl( X iX iX )i~T2(X iX iX )i~Tz(X iX iX )) 

while on the positive the value of the stress is: 

(rlix1 + dx1

)x2

)xz))ri2{x1 + dx1, x2, x3), r^x1 + dx1, x2, x3). 

The corresponding forces to the individual surfaces of the cube are 

{-T{{X1, x2, x3), -T\{XX,X2, x 3 ) , -T^X1, x2,x3))dx2dx3 

and 
(rlix1 + dx1, x2, x3), T^X1 + dx1, x2, x3), T^X1 + dx1, x2, x3)dx2dx3. 
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5. SURFACE FORCES AND A STRESS VECTOR 

Replacing the force vectors on the "positive" surface by the first order Taylor polynomial 
and subtracting the "negative" we obtain the equilibrium condition for forces acting on 
the sides perpendicular to the first canonical vector as follows 

drl dr\ drf 
dx1 dx2 dx3 

Further, the volume force is of the form F1dx1dx2dx3. The same can be done for the 
remaining couples of mutually parallel surfaces of the cube and we finally obtain: 

drj 

Fl + —^ = 0 or Fi + divn = 0 
ox? 

or, finally 
F + D i v r = 0, 

by the capital symbol Div indicating matrices instead vectors corresponding to entries of 
div. 

5.1. Principal Stresses 
O n an arbitrary plane wi th normal n, the traction can be obtained [9] as 

cr ( n ) = (TijUiej (5.1) 

We may resolve this wi th one component perpendicular to the plane and the remainder 
tangential to the plane. Denoting the perpendicular component by N, we have 

N = n - cr ( n ) = o-ijUiUj (5.2) 

For a given stress tensor cr̂ -, as the direction of the plane changes, the value of N changes 
according to the preceding relation. We call TV the normal stress on the plane. It is 
important to know the maximum value of the normal stress and the corresponding plane 
when we design and analyze structures [9]. 

We should find the extremum value of TV wi th respect to rii wi th the constraint = 
1. The procedure is identical to the one we used for extremum stretch, and it results in an 
eigenvalue problem. However, as we wi l l see, the stress tensor is not symmetric when the 
body moments I are present. This fact appears to make this eigenvalue problem different 
from the case of the maximum stretch. But an inspection of the quadratic form in rii 
shows that, because of the symmetry of riiUj its coefficient is Oij + Uji. Thus we are free 
to use the symmetric form of the matrix in computing the eigenvalues. Assuming the 
new matrix is the symmetric version O~UJ\ , the eigenvalue problem results in the system of 
equations 

a(ij)nj = ani (5-3) 

where a is the eigenvalue and n is the eigenvector. For nontrivial solutions of this homo­
geneous system, we have to have 

o~(ij) - aSij \ = 0 (5.4) 

Suppose and be the eigenvalues and eigenvectors of this problem. 
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5.1. PRINCIPAL STRESSES 

Mult ip ly ing Equation (5.3) by n i ; we see that the eigenvalues are the stationary values 
of N, i.e.. 

N = a{ij)nf> = a^n^n? = a™ (5.5) 

Hence, the three eigenvectors are mutually orthogonal, and these directions are called 
the principal directions and the corresponding normal tractions a^k> are the principal 
stresses. The three invariants of the matrix are 

I & i = <r« + a™ + <r(3) = a W 

Ia3 = a ^ a ^ = \a{l3)\ 
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6. CONCLUSION 

6. Conclusion 
In this thesis, we discuss the basic concepts and properties of tensors. We studied the 

basic operations over them. The attention focused on the part of the application. Two 
main ideas of this thesis are structured on tensors and tensor fields and the last idea is 
explored on the application part of the thesis. 

The first idea is to introduce us to the formulation of the tensor (which is an extension 
of the vector). We studied how the index notation and in conjunction wi th the Einstein 
summation convention is implied. I also studied different kinds of tensors we have and how 
the transformation rules are implemented. We concluded the first main part of this work 
by explaining the operation on tensor (i.e addition, multiplication by scalar, contraction, 
and inner product) and the operation of raising and lowering of indices by metric tensors. 

The second major idea in this thesis is focused on the differentiable manifold and 
vector fields. I also introduce the concept of submanifold, and parallel transport. 

In the applications part of the thesis, we have implemented the knowledge gained 
in the previous parts for the formulation of Gauss and Stokes theorem and a series of 
mechanical concepts. For example deformation, configuration, tensors of deformation, 
and mechanical meaning on it. We also studied the stress tensor and used the idea gained 
in the first chapter of this work in getting the principal directions and the principal 
stresses. 
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