BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INTELLIGENT SYSTEMS
USTAV INTELIGENTNICH SYSTEMU

IMPLEMENT RUBBER DUCKIES ON AVAILABLE USB
DEVICES AND MAKE A PRACTICAL TEST

IMPLEMENTACE RUBBER DUCKIES NA BEZNE DOSTUPNYCH USB ZARIiZENICH
A JEJICH PRAKTICKY TEST

BACHELOR'S THESIS
BAKALARSKA PRACE

AUTHOR HUNG DO
AUTOR PRACE

SUPERVISOR Ing. MAREK TAMASKOVIC,
VEDOUCIi PRACE

BRNO 2023

BRNO FACULTY
UNIVERSITY | OF INFORMATION
OF TECHNOLOGY | TECHNOLOGY

Bachelor's Thesis Assignment |||||||||||||||||||

147782
Institut: Department of Intelligent Systems (UITS)
Student: Do Hung
Programme: Information Technology
Specialization: Information Technology
Title: Implement Rubber Duckies on Available USB Devices and Make a Practical Test
Category: Security

Academic year: 2022/23

Assignment:

1. Study how the Universal Serial Bus (USB) works and describe it. Next, study and describe how
BadUSB and RubberDucky attacks work.

2. Implement RubberDucky on a Raspberry Pico platform working on platforms Microsoft Windows
10 and later and GNU/Linux with kernel 5.15 and later:

1. The device will behave like a keyboard and execute a desired command in command line
(execute reverse shell, blue screen / kernel panic, otherwise specified command
executable in the command line).

2. The device will behave as a virtual USB Hub with a virtual USB memory and a virtual
Rubber Ducky device with the above specification.

3. Study and find ways to defend against RubberDucky attacks on Microsoft Windows and
GNU/Linux operating systems.

4. Test the functionality of these techniques using your RubberDucky implementation.

5. Evaluate acquired results.

Literature:

* van Woudenberg, J., & O’Flynn, C. (2021). The Hardware Hacking Handbook: Breaking
Embedded Security with Hardware Attacks

* USB Specification 2.0, Dostupné z: https://www.usb.org/document-library/usb-20-specification

* USBCaptchaln: Preventing (un)conventional attacks from promiscuously used USB devices in
industrial control systems

® Hou, Hao-Hsun ; 2018, Method for Preventing BadUSB Attack

®* NEUNER, Sebastian, Artemios G. VOYIATZIS, Spiros FOTOPOULQOS, Collin MULLINER a Edgar
R. WEIPPL. USBlock: Blocking USB-Based Keypress Injection Attacks. In: Data and Applications
Security and Privacy XXXII [online]. Cham: Springer International Publishing, 2018, s. 278-295
[cit. 2022-10-20]. ISBN 9783319957289. ISSN 0302-9743. Dostupné z: doi:10.1007/978-3-319-
95729-6_18

Requirements for the semestral defence:
1-2.

Detailed formal requirements can be found at https://www fit.vut.cz/study/theses/

Supervisor: Tamaskovi¢ Marek, Ing.
Head of Department: Hanacek Petr, doc. Dr. Ing.
Beginning of work: 1.11.2022

Submission deadline: 10.5.2023

Approval date: 3.11.2022

Faculty of Information Technology, Brno University of Technology / Bozetéchova 1/2 / 612 66 / Brno

Abstract

This thesis deals with computer security attack named BadUSB, implements an example
device (Rubber Ducky) and looks for a defense against these types of attack. My task is
to analyze the functionality of Universal Serial Bus, communication between the host and
device and its shortcomings against BadUSB attacks. For that I implemented a composite
USB device on Raspberry Pi Pico using an external open source library TinyUSB. And with
a working prototype I present reader a few possible defense mechanisms against these kinds
of devices and attacks on Microsoft Windows and GNU/Linux operating systems. The
contribution of this thesis is to warn people about the weakness of USB’s plug-and-play
feature and the danger of connecting unknown USB devices to our computers.

Abstrakt

Tato prace se zabyva problematikou pocitacovych ttokt typu BadUSB, implementaci jed-
noho ze zafizeni (Rubber Ducky) a néslednou obranou proti témto typum ttoku. Mym
ukolem je rozbor funkcionality univerzalni sériové sbérnice, komunikace mezi hostem a
zalizenim a slabiny proti BadUSB ttokim. Za timto tcelem jsem implementoval com-
posite (slozené) USB zafizeni pfi pouziti mikrokontroleru Raspberry Pi Pico a externi
open source knihovny TinyUSB. S funkénim prototypem prezentuji ¢tenaii nékolik moznych
ochrannych mechanismu pred témito druhy dtokt na operac¢nich systémech Microsoft Win-
dows a GNU/Linux. Tato prace varuje lidi pfed nevyhodami USB funkce plug-and-play a
nebezpec¢im pii pripojovani neznamych USB zafizeni do nasich pocitacu.

Keywords

cyber security, USB, Rubber Ducky, BadUSB, Raspberry Pi Pico W, TinyUSB, IwIP,
whitelist, payload, scripting language, embedded device

Klicova slova

kyberbezpecost, USB, Rubber Ducky, BadUSB, Raspberry Pi Pico W, TinyUSB, 1wIP, bila
listina, payload, skriptovaci jazyk, vestavéné zarizeni

Reference

DO, Hung. Implement Rubber Duckies on Awvailable USB Devices and Make a Practical
Test. Brno, 2023. Bachelor’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Ing. Marek Tamaskovic,

Rozsireny abstrakt

Univerzalni sériova sbérnice neboli zkracené USB je populdrni periferie pro pfipojovani
zatizeni k pocitaci. Pred vyndlezem USB existovalo nespocet periferii s riznymi tvary
konektoru a protokoli. To dosti omezovalo jak uzivatele, ktefi mnohdy neméli potiebné
porty na pocitaci, tak i vyvojare, kteri se museli rozhodovat mezi pouzitim dostupnych
periferii, nebo vytvorenim novych. To vedlo k vyvoji nové periferie a v roce 1995 byla
predstavena prvni specifikace USB rozhrani. Rozhrani podporovalo jak datovy prenos, tak
i napajeni. Novinku predstavovala vlastnost “plug-and-play” neboli “pripoj a hraj”, ktera
zjednodusila manipulaci s danym zafizenim. Po zapojeni do pocitace je zafizeni ihned
rozpoznano a systém automaticky pridéli pottebné ovladace (drivery).

Bohuzel tato jednoduchost a divéra ve vsem, co uzivatel pripoji do pocitace skrze USB
rozhrani, pfinesla novy druh malwaru. V roce 2014, na Black Hat konferenci ve Spojenych
statech americkych, védci ze Security Research Labs predstavili novy skodlivy ttok nazvany
BadUSB. BadUSB je USB zafizeni, jehoz stary firmware byl pfepsan a jenz rozsitfuje vlast-
nost zarizeni o novou funkcionalitu (napf. klavesnici nebo sitovou kartu). Do zarizeni se téz
predem naprogramuje skript, ktery je ulozen v nedostupné paméti, a po pripojeni zafizeni
do pocitace zacne novou funkcionalitu vykonavat. Bézné antivirové programy nedokazou
tento typ utoku detekovat, a proto je tento malware velice nebezpecny.

Tato prace se zaméruje na implementaci zafizeni schopného vykondvat tento druh ttoku.
Vychézi z USB zafizeni vytvoreného skupinou Hakd jménem Rubber Ducky. K vyvoji
byl pouzit jednocipovy pocita¢ Raspberry Pi Pico fady W, ktery obsahuje Wi-Fi modul.
Implementace je rozdélena do dvou ¢asti: prvni ¢ast je zaméfena na vygenerovani firmwaru
pro Raspberry Pi Pico a druhd ¢ast se zaméruje na generovani (Gto¢nych) skripti a jejich
nahravani na Raspberry Pi Pico zafizeni.

Software pro generovani firmwaru je napsany v jazyce C a pomoci Pico-SDK, TinyUSB,
lwIP a CYW43-driver knihoven. TinyUSB knihovna obsahuje funkce potiebné k definovani
vlastnosti USB zarizeni; v tomto pripadé chceme, aby se zafizeni chovalo zaroven jako
klavesnice a zaroven pamétové médium. lwIP knihovna definuje funkce potiebné k vytvoreni
TCP serveru pro moznou komunikaci s externim zafizenim. A CYW43-driver knihovna
slouzi k inicializaci Wi-Fi modulu na Raspberry Pi Pico. Software téz povoluje nastaveni
automatického vykonavani prikazu stisku klaves ihned po zapojeni zafizeni do pocitace,
nebo moznost opétovného vykonani skriptu pomoci tlacitka CapsLock na klavesnici.

Generovani a nahravani skriptl je napsané v jazyce Python. Uzivatelé si vytvareji svoje
skripty ve specidlné definovaném jazyce. Ty jsou pak predany programu, ktery provede
lexikalni, syntaktickou a sémantickou kontrolu pomoci regularniho vyrazu jazyka. Po kon-
trole mohou byt data prekonvertovana bud do C zdrojového souboru, nebo jsou pieposlana
pires TCP spojeni bezdratove.

Druhad polovina prace se zaméruje na otestovani vysledné implementace, rozbor moznych
skodlivych skriptd a testovani dostupnych obrannych néstroju na operacnich systémech
Windows a GNU/Linux. Mezi programy byly zafazeny USBGuard a Kaspersky Security
Endpoint. Oba programy pouzivaji jiny pristup k potlaceni ttoku. Vychozi nastaveni
USBGuardu blokuje vsechna nové pripojend USB zarizeni a pro jeho zprovoznéni je potieba,
aby uzivatel manualné zafizeni povolil. Kaspersky program na druhou stranu blokuje jen
zatizeni, kterd se chovaji jako klavesnice. Uzivateli se po zapojeni kladvesnice na obrazovce
zobrazi okno, kterym provede autentizaci zarizeni.

Hlavnim piinosem této prace je upozornéni spolecnosti na tomto druh ttoku. Popisuje
jeho myslenku, jak doopravdy funguje a jak se proti nému branit. Implementaci této prace

chci dat verejnosti moznost experimentovat s modifikovanym zafizenim a pochopit tuto
problematiku.

Implement Rubber Duckies on Available USB De-
vices and Make a Practical Test

Declaration

I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Mr. Marek Tamaskovi¢. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

Hung Do
May 9, 2023

Acknowledgements

I would like to express my deepest appreciation to my supervisor Mr. Marek Tamaskovic,
for providing me with the opportunity to work on this very interesting topic and for his
advice throughout the writing of my thesis.

Contents

1 Introduction 3
2 Universal Serial Bus 4
2.1 History e 4
2.2 USBtopology o . o 6
2.3 Enumeration e 7
2.4 Descriptors e 7
2.5 USB Device Classes and Human Interface Device 9

3 BadUSB 10
3.1 First appearance 10
3.2 BadUSB devices and attackso 11

4 Design and Architecture 13
4.1 Basedevice e 13
4.2 Custom Rubber Ducky scripting language 14
4.3 Communication protocol L 18

5 Implementation of Rubber Ducky-like device 22
5.1 Used third-party libraries 22
5.2 Rubber Ducky device 23
5.2.1 USB configuration L. 23

5.2.2 Thekeyboard 24

5.2.3 Themassstorage e 25

5.24 The payload 26

5.3 Wi-Fi Access Point and TCP Server 27
5.4 Language Parserot e e e e e 29
5.5 Client application L 30
5.6 Summary ... 32

6 Implementation evaluation 33
7 Malicious payloads 36
8 Testing defense mechanisms 38
8.1 Selected programs 38
8.2 Other defense mechanisms available 41

9 Conclusion 44

Bibliography

A Content of SD card

45

47

Chapter 1

Introduction

Universal Serial Bus (USB) is the most widely-used connector for modern computer systems.
It has replaced many older interfaces, such as parallel and serial ports, and has become the
standard for connecting devices such as keyboards, mice, printers, and storage devices to
computers. The main selling point of the USB interface was the introduction of a ,plug-
and-play* feature which removes the need for the users to configure the device. Upon
connecting the device to the machine, the system automatically recognizes the device and
immediately assigns appropriate drivers.

Unfortunately, as the popularity of the interface grew, new types of malicious attacks
against USB began to emerge. In 2014, a group of researchers from Security Research Labs
announced a new kind of USB malware called BadUSB. They demonstrated a USB device
with modified firmware that could spoof a keyboard, network card, and display. And this
type of malware is undetectable by conventional antivirus programs.

The main focus of this work is to design and implement this type of device on the
Raspberry Pi Pico board, as well as to evaluate what the finished product is capable of.
Numerous defense mechanisms that have been created since the introduction of the malware.
So I tested my device against several of them to see how it performed.

The thesis aims to provide readers with an overview of the BadUSB attack security
issue so that they can better understand what makes them so dangerous, how they work,
and how to defend against them. My implementation, therefore, gives readers a low-cost
and simple tool to work with the BadUSB device.

Chapter 2

Universal Serial Bus

Universal Serial Bus (also known as USB) is a peripheral interface used to connect external
devices to computers. It defines the specifications of cables, sets of protocols, the speed of
data exchange, and the way the host and the device communicate. It can also send power
to devices (for example, to charge smartphones).

In this chapter, we will discuss the interface’s history, which dates back to 1995. Then
we analyze how the USB protocol is structured: how does the host learned about the device,
what the communication between the device and the host looks like, and what a USB device
needs to act as a keyboard. All the information about USB was drawn from a book USB
Complete by Jan Axelson [4].

2.1 History

Before the invention of the USB peripheral, countless kinds of ports were in any shape
and size. In the past, every peripheral had its own uniquely shaped connector, a protocol
through which it communicated with the computer, and a limited number of devices it
could run at once. And that brought many disadvantages.

First, computer manufacturers had to decide which ports to include in the final moth-
erboard. We could usually find ports like PS/2 for connecting keyboards and mice or VGA
connectors for connecting monitors on the old machines. But what if the user wanted to
attach a device (for example, a scanner or a printer) whose port was not on the machine?
They usually had to go outside, purchase dedicated cards, and manually install them after-
ward. That is something a person without computer experience might have struggled with.
And as for developers, during the development of new computer accessories, they had to
decide whether to use one of the existing interfaces but run into a risk of being stuck with
its original protocols that do not provide enough features the developer needs or design a
new interface which is very expensive.

That led to the development of a new interface. In 1995 a group named USB Imple-
menters Forum (also known as USB-IF) was formed by these seven companies: Compag,
DEC, IBM, Intel, Microsoft, NEC, and Nortel. They aimed to create an interface with
these goals in their mind:

e Easy to use — The user doesn’t need to configure and set up a device.

e Fast — To minimize the delay in communication between the host and device and to
be able to transfer

Reliable — To lower the occurrence of errors and automatic error handling.

Versatile — Many kinds of peripherals can use the interface.

Inexpensive — So that the price of a final product can be as low as possible.

Supported by all operating systems — To let developers effortlessly create new
drivers.

A year later, USB-IF released the first version of the USB interface called USB 1.0.
The new interface allowed a user to connect different kinds of peripherals, such as printers,
keyboards, mobile devices, and much more, using a single, standardized interface socket.
It also lets the user connect and disconnect a peripheral whenever needed without turning
off a computer. And at last, a feature called ,plug-and-play“ was introduced. It shows the
simplicity of the USB — the user plugs the device into the computer and can immediately
use it'.

But it wasn’t until the introduction of USB 1.1 in 1998 that the interface started to
be widely used. In that year, the new operating system Windows 98 included support for
USB. Version 1.1 also introduced two speeds: Low Speed with 1.5 Mbps and Full Speed
with 12 Mbps.

Over the next 20 years, USB has been constantly being developed. In April 2000, USB
2.0 came out with a new maximum transfer rate of 480 Mbps. It was called High Speed.
Eight years later, in November 2008, USB-IF released a new specification for USB 3.0
with an even faster transfer speed of 5 Gbps (SuperSpeed USB). As for the time of writing
this thesis, USB-IF has released the specification for USB4 2.0 with a maximum transfer
rate of 80 Gbps and power delivery of 240 W (48 V, 5 A).

Host Controller
and
Root Hub

[1 [1 [1 []

[[a

External Hub External Hub i
A B USB Device

[1 1 [1 [1] [1 []

|_I

L]

USB Device

External Hub USB Device | | USB Device
C USB Device

[1 T[]

Figure 2.1: An example of USB topology. A red line represents an upstream connection
and blue lines downstream connections.

'Link to the article about USB history: https://www.intel.com/content/www/us/en/standards/usb-
two-decades-of-plug-and-play-article.html

https://www.intel.com/content/www/us/en/standards/usb-two-decades-of-plug-and-play-article.html
https://www.intel.com/content/www/us/en/standards/usb-two-decades-of-plug-and-play-article.html

2.2 USB topology

USB communication requires two components to work: a host machine with USB support
and one or more USB devices. The host machine consists of a USB host controller,
which manages the communication on the bus, and a root hub, which connects external
USB devices and USB hubs to the host machine. Together they detect newly attached
devices and transfer requests from the host to the device. USB protocol supports up to 127
simultaneously connected devices, including hubs.

Every USB hub creates a star-shaped topology. It typically has two, four, or seven
USB ports. Each USB hub has one upstream-facing connector, which the devices use for
communicating with the host, and one or multiple downstream connections, each leading
to the USB sockets, which are the connected devices use to transfer data to the devices.
USB hubs can be connected in series, as shown in Figure 2.1.

Usually, the host machine initiates the USB communication, and the devices are required
to respond to incoming requests. The USB specification defines a list of request calls for
each device class that the host can send to the device. The device’s chip must be able to
accept the request and adequately respond to them. That usually requires the device to
move data to a buffer to send it back to the host.

HOST HUB DEVICE

Attached

i . <
 New device connected
<

)
'

Get speed

SRV GEL

Reset device

: Device uses "X" speed |
_ :

I, A

Get_Descriptor(DEVICE)

Device déscriptor

oo DS
Set_Address() X
Get_DescriptofCONFIGURATION)

< Configuratioh descriptors
Get_Descriptor(INTERFACE) %

: Interface dlescriptors H
f€rmm s nm e prTTnmmmemmnseeenee E

load drives

Figure 2.2: USB enumeration process in sequence diagram.

2.3 Enumeration

The interaction between the host and the device starts when the device is connected to
the host machine. The host needs to identify what kind of device has been plugged in.
The process of learning the device’s functionality is called enumeration. When the host
detects that a new device has been attached, it starts by requesting what speed the device
supports for communicating. Depending on the version of the USB, it can support low
speed, full speed, high speed, or SuperSpeed. The host sends multiple requests to retrieve
device descriptors and configuration data (more in Section 2.4). Once all information has
been pull, the host assigns an address and loads the device drives. Figure 2.2 depicts the
whole series of events.

2.4 Descriptors

As mentioned in the previous section, the host uses an enumeration process to get all
descriptors from the device. The descriptors contain crucial information that describes
the capabilities of the device. Each device must have these four descriptors defined:

e device descriptor,

e configuration descriptor,
e interface descriptor,

e and endpoint descriptor.

Other types of descriptors are not required by the host. If a device supports multiple
speeds (full and high speed), it needs to define additional configuration descriptors for each
kind of speed (device__qualifier and other__speed__configuration). Another commonly used
descriptor is a string descriptor, which allows the host to retrieve descriptive text from the
device. Table 2.1 shows a shortened list of descriptor types with their corresponding byte
value used in the Get Descriptor request.

Descriptor type Value
device 0x01
configuration 0x02
string 0x03
interface 0x04
endpoint 0x05
device_ qualifier 0x06
other speed_ configuration | 0x07

Table 2.1: Table of seven most used descriptors and their corresponding identification
byte value. In total, there are 18 descriptor types.

Device descriptor

Device descriptor is the first descriptor requested by the host requests upon connecting the
device to the host machine. It comprises device identification information such as Product

1D, Vendor ID, and Serial Number, as well as information that the host needs to get further
data such as Device Class or the number of configurations. The host retrieves this descriptor
using the Get Descriptor request with the parameter byte set to 0x01.

Configuration descriptor

After receiving the device descriptor, the host proceeds to retrieve configuration, interface,
and endpoint descriptors. The configuration descriptor specifies the device’s functionalities.
The device can support multiple configurations based on the power use, but only one is
active at a given time. Each configuration holds information that tells the host how many
interface descriptors and endpoint descriptors are present in the response buffer. The host
retrieves this descriptor using Get Descriptor request with the parameter byte set to 0x02.

Interface descriptor

An interface descriptor tells the host what the device is capable of doing. The descriptor
contains an interface class, subclass, protocol, and number of endpoints. The interface
class? is what defines the device’s functionality. Some interface classes (such as Human
Interface Device class, or shortly HID) require additional descriptors to be defined and sent
to the host. In the case of HID, its descriptor defines the format of a report which is HID
means of transporting data between the host and the device. The interface descriptors
and their subordinate descriptors are usually sent together with a configuration descriptor
request.

Endpoint descriptor

Finally, the endpoint descriptor defines information about the endpoint address. It contains
a direction (IN if data are sent to the host, and OUT if data are received from the host)
and transfer type. There are, in total, four transfer types:

Control This transfer is primarily used for standard requests, such as the Get Descriptor
request.

Interrupt Interrupt transfer is implemented on devices that need data to be sent to the
host as soon as possible. We can associate interrupt transfers with HIDs.

Bulk This transfer is usually used when the transferring speed is not critical, such as
sending data to the printer or reading/writing data to the disk.

Isochronous Isochronous transfer guarantees the delivery of data, but no error correction
is present. It is usually used to transfer audio and video in real-time. The device does
not re-transmit lost or corrupted data.

Every device must have Endpoint 0 configured for control transfer. The endpoint descrip-
tors and their subordinate descriptors are sent together with a configuration descriptor
request.

An example of the device’s descriptor structure can be seen in Figure 2.3.

2A list of interface classes can be found here: https://www.usb.org/defined-class-codes

https://www.usb.org/defined-class-codes

Device

Descriptor Another Configuration Descriptor

Configuration
Descriptor

Interface
Descriptor

Interface
Descriptor

HID Class Report
Descriptor Descriptor

Endpoint Endpoint
Descriptor Descriptor

Endpoint

Descriptor

Figure 2.3: A descriptor structure hierarchy of a USB composite device. A green box
marks data that can be retrieved with Get Descriptor(device) request and a red box is
retrieved with Get Descriptor(configuration) request. Yellow boxes highlight the
interface descriptor and its subordinate descriptors and blue boxes mark out endpoint
descriptors.

2.5 USB Device Classes and Human Interface Device

USB introduced device classes to group devices that provide similar functionality. All
cameras are designed to capture a video, and all speakers are made to play music. The
group can be identified by three bytes named: Base Class, SubClass, and Protocol. The
information is stored either in Device descriptor, Interface descriptor, or both?.

One of the classes is named Human Interface Device (or HID). Peripherals input devices,
such as keyboards, mice, or game consoles, are included in the class. Each device in this
class must define a report structure to communicate with the host. The host pulls this
structure during the enumeration phase. The report structure is very flexible, and the user
can easily create a new one for its custom device. The host periodically polls from the
device IN endpoint. When the device wants to send data to the host, it creates an instance
of the report filled with given data and sends it as a reply to the poll token. If not defined
differently, the host can send data to the device through the Set Report request using
control transfer (Endpoint 0).

3Defined class codes can be found here: https://www.usb.org/defined-class-codes

https://www.usb.org/defined-class-codes

Chapter 3

BadUSB

BadUSB is a computer security attack that targets peripherals that use USB interfaces.
This attack involves modifying a device’s firmware to act as a different kind of device, such
as a keyboard or a network card. Unlike the usual USB-related attacks, which involve a
removable storage device to carry harmful executable files and immediately run them upon
plugging into the host machine, BadUSB attacks are immune against antivirus programs
since the actual code is stored inside an inaccessible section of memory.

3.1 First appearance

BadUSB was initially revealed in 2014 at the Black Hat conference in the USA. Three
security researchers from Security Research Labs, Karsten Nohl, Jakob Lell, and Sascha
KriBller, presented a collection of proof-of-concept malicious software that highlighted the
security weakness of the USB[8]. They spent months patching the firmware of a thumb
drive by listening to the USB communication using a Wireshark! sniffing tool, decoding the
communication, and creating modified firmware. During the conference, they demonstrated
three devices. The first was an infected USB stick used to steal a sudo password on the
Linux systems, the second was a USB thumb drive that changed DNS settings in Windows,
and the third was an Android device that redirected the network traffic. An original
presentation can be found here [15].
The team also briefly discussed a list of five potential defense ideas:

Whitelist USB devices Only selected USB devices will be allowed to communicate with
the host. Unfortunately, USB devices have no reliable identifier since not all have a
unique serial number. In 2018, Hessam Mohammadmoradi and Omprakash Gnawali
presented a work that deals with this problem|[14].

Block critical device classes, block USB completely This will reduce the usability
of the USB interface. And only a few device classes can be used for abuse.

Scan peripheral firmware for malware Very difficult and not always possible.

Use code signing for firmware updates The main problem with this approach is that
billions of old devices that will remain susceptible.

Disable firmware updates in hardware A very simple and effective approach.

Link to official homepage: https://www.wireshark.org

10

https://www.wireshark.org

3.2 BadUSB devices and attacks

In this section, we will discuss in detail some of the attacks that are related to the BadUSB.

Rubber Ducky

Rubber Ducky is a modified USB thumb drive designed by Hak5 group?. The device
emulates a keyboard. The group created a scripting language called DuckyScript?® that
is used to create a set of key presses in the form of a payload. The payload is then
compiled and stored on the microSD card of the Rubber Ducky device. Once the device is
connected to the computer, it will immediately execute the pre-defined keypresses. Another

reprogrammable board that can be used for the same purpose is a Teensy USB development
board?.

BadAndroid

BadAndroid is a modified Android device designed to execute an attack over USB. The
device emulates a network card (USB Ethernet) which will alter the network routing of the
victim’s machine. It can change the IP address of the default gateway to the IP address of
the Android device, meaning all the network traffic is routed through the Android device
(man-in-the-middle attack model). Or it can change the entries of the system’s DNS server
and, therefore, redirects the communication to the server controlled by the attacker. This
attack requires the Android to be rooted®.

BadUSB Cable

BadUSB cables, such as USBNinja, resemble standard USB charging cables but contain a
programmable chip inside. They function similarly to the Rubber Ducky device by emu-
lating a keyboard and carrying a malicious payload®.

BadUSB-C

The concept of BadUSB-C was introduced in work by Hongyu Lu and his team[13]. The
attack uses the Type-C connection’s ability to transfer up to 10 Gb of data per second to its
advantage. They designed a device that functions as a keyboard and a video capture card.
Figure 3.1 below depicts the device’s attacking mode. The device can wirelessly transmit
the victim’s computer screen content and accept keyboard inputs from the attacker. This
device extends the capabilities of the standard BadUSB device by allowing the attacker to
see the screen content.

Other BadUSB attacks concepts

A BadUSB device can also deliver an attack during the machine’s boot phase. It can
override an existing computer BIOS with the one stored on the device. The machine will

2Link to the product: https://shop.hakb.org/products/usb-rubber-ducky

3Link to the documentation: https://docs.hakb.org/haks-usb-rubber-ducky/duckyscript-tm-
quick-reference

4Link to official homepage: https://www.pjrc.com/teensy/

SLink to the source files: https://github.com/tst-zdouglas/BadAndroid

Shttps://mg.lol/blog/badusb-cables/

11

https://shop.hak5.org/products/usb-rubber-ducky
https://docs.hak5.org/hak5-usb-rubber-ducky/duckyscript-tm-quick-reference
https://docs.hak5.org/hak5-usb-rubber-ducky/duckyscript-tm-quick-reference
https://www.pjrc.com/teensy/
https://github.com/tst-zdouglas/BadAndroid

then boot into the system inside the USB device.
execute commands before the actual operating system is loaded. The USB device can also
be programmed to brute force the lock screen PIN on an Android phone”. The last example
is the ability to sniff data from the downstream USB traffic. So if a USB thumb drive is
connected to the same hub as the BadUSB device, the device can reconstruct a file that

4

@ KEY

_
— —

ey))) Commands

FA

Attacker's PC

Video, Profile,
_/ Privacy, -

Victim’s Devices

USB 3.x Hub |
l Video output I HID signals I

HID Emulator

‘ Video Capture
\ PN p
l Video captured I Commands

[Single Board Computer ‘

l, I Data

(((-[Wi-Fi / GSM module [

BADUSB-C

Attacker’s Remote PC

Fig. 3: Attack Model.

Figure 3.1: BadUSB-C’s attack model [13].

was transferred to the USB thumb drive sent from the host machine.

"Link to the payload written in DuckyScript: https://shop.hak5.org/blogs/payloads/android-pin-

brute-force

12

This method allows the attacker to

https://shop.hak5.org/blogs/payloads/android-pin-brute-force
https://shop.hak5.org/blogs/payloads/android-pin-brute-force

Chapter 4

Design and Architecture

In this section, we analyze the key features of this project. The goal here is to break
down the whole problem into manageable parts, identify critical issues and come up with
a solution.

Since our device is based on Hak5’s Rubber Ducky, it must support its main function-
alities. The device will be able to execute a series of keystrokes that are stored inside its
firmware. The software will provide an easy way to create, generate, and upload these
payloads. Together with a keyboard, the device will also include Mass Storage where the
users can store a shell basic script or executable file, which they can then run on the host
machine.

Figure 4.1: A picture of a Raspberry Pi Pico W (the green board) connected to the
computer.

4.1 Base device

When designing a device capable of a BadUSB attack, the first thing to consider is which
device we should work on. The device needs to have a reprogrammable chip. We also wanted
a board that is publicly accessible, inexpensive, and easy to work with. After searching the
current market, we came across Raspberry Pi Pico, which matches our criteria. Raspberry

13

Pi Pico is a small board with an RP2040 microcontroller chip designed by Raspberry Pi
Foundation. Its purpose is to encourage people to learn programming and build hardware
projects without spending much money on the hardware itself. We chose a newer version of
Raspberry Pi Pico model W (seen in Figure 4.1) as it also comes with a built-in CYW43439
wireless chip that supports Wi-Fi and Bluetooth. That enables us to add a new use case to
our project. And with a well-documented SDK! and great support for third-party libraries,
this board is a perfect choice for us.

4.2 Custom Rubber Ducky scripting language

First, we need to think of a language that we will use to generate new payloads. The
new language has to be intuitive and easy to write in. Since the only thing the devices can
produce is keystrokes, we need to find a way to represent each key available on the keyboard.
Luckily most (if not all) operating systems come with a keyboard driver preinstalled since
it is a commonly used device. For this reason, we don’t need to write a driver for our
keyboard emulator. USB-IF created a table with a list of supported keys and their IDs?.
What that means is that we can build our language based on the IDs. That would be great
for the machines as all they have to do is upload it directly to our Rubber Ducky device
without any processing (apart from converting the ID values to bytes). But unfortunately,
that doesn’t meet our criteria for the language to be easy to write. After all, typing
Oc 11 17 18 Oc 17 Oc 19 083 feels more like writing a cipher message than a payload.

<RD-SCRIPT> ::= <COMMENT><RD-SCRIPT> |
<DELAY><RD-SCRIPT> |
<PRINTABLE><RD-SCRIPT> |
<SPECIAL-COMBINATION><RD-SCRIPT> |

<EOL>

<COMMENT> ::= "#" everything after this is ignored

<DELAY> ::= "<DELAY " <DELAY-VALUE> ">"

<DELAY-VALUE> ::= positive whole number

<SPECIAL-COMBINATION> ::= "<" <HOLD-VALUE><MODIFIERS><PRINTABLES> ">" |
"<" <HOLD-VALUE><MODIFIERS><SPECIAL-KEY> ">"

<HOLD-VALUE> ::= positive whole number "-" | ""

<MODIFIERS> ::= <MODIFIER> "-" <MODIFIERS> | ""

<MODIFIER> ::= modifier short alias

<SPECIAL-KEY> ::= "\" <SPECIAL-OR-MACRO>

<SPECIAL-OR-MACRO> ::= special key name | macro name

<PRINTABLES> ::= <PRINTABLE><PRINTABLES> | ""

<PRINTABLE> ::= ASCII printable character

Figure 4.2: Language grammar in BNF notation

Another possible way is to map each ID to a key name. That will make it a lot more
human-readable. The only thing left to do is to find a way to tell the device to group a set
of keystrokes. Without this feature, we would not be capable of producing an upper case £
since it takes two keys to be pressed all at once: Shift and f keys.

1SDK stands for Software Development Kit
2The usage table can be found here: https://usb.org/sites/default/files/hutl_4.pdf#chapter.10
3If you guessed the word intuitive you can call yourself a master of ciphers.

14

https://usb.org/sites/default/files/hut1_4.pdf#chapter.10

What I designed is a language inspired by a VIM key notation?. Its grammar can be
represented with a BNF notation seen in Figure 4.2.

The language accepts two types of lexical tokens: printable keys and special combina-
tions.

Printable keys are a group of keys that can produce an ASCII printable character.
In total, there are 95 printable characters in the ASCII table ranging from 32, representing
a space character, to 126, representing a tilde character. However, there are only 48 keys
that directly produce a printable character. The second half of the keys also require a shift
modifier (the exception being a spacebar key which doesn’t have a shift counterpart). So a
string Hello World! produces the following list of keys seen in Figure 4.3:

shift+key_h, key_e, key_1, key_1l, key_o, spacebar,
shift+key_w, key_o, key_r, key_1l, key_d, shift+key_1

Figure 4.3: Hello world! converted to key presses.

One note here: due to the wide variety of different keyboard layouts, the official key
mapping is only compatible with the US layout. That means that if the target’s machine
uses a different keyboard layout than the US layout, some keys or key combinations will
produce a different string than expected. So, for example, with our machine’s keyboard

layout set to the Czech QWERTZ, the following set of keystrokes will produce output that
the user probably didn’t want:

Input: page_123.cz
US layout: page_123.cz
CZ layout: page’%+&s.cy

Figure 4.4: Comparing outputs between cs-CZ and en-US layout given the same input
string.

A Special combination gives the user more control over the key presses. It extends
the functionality by adding features that cannot be executed using only printable keys. The
format of the special combination looks as follows:

"<" [special_combination_content] ">"

Figure 4.5: Special combination’s content is wrapped in < and > symbols

There are four features that the user can define within the scope:

e waiting time between the keystrokes,

e pressing non-printable keys,

e pressing keys with modifiers with an option to set a holding time,

e force multiple printable key pressed simultaneously.

4VIM (which is an acronym to Vi IMproved) is a free open-source text editor. It is known among
programmers as a text editor filled with keyboard shortcuts which makes coding and writing much faster
and more efficient. Unfortunately, VIM has a steep learning curve making it not beginner-friendly. The
official documentation for VIM key notation can be found here: https://vimdoc.sourceforge.net/htmldoc/
intro.html#key-notation

15

https://vimdoc.sourceforge.net/htmldoc/intro.html#key-notation
https://vimdoc.sourceforge.net/htmldoc/intro.html#key-notation

Waiting time or delay tells the device how long it has to wait before sending the next
series of keystrokes to the host. It is crucial, as omitting it, most of the payloads would fail
since the device usually needs to wait until a GUI element loads or a file is downloaded. The
format of a delay command is defined as follows: <DELAY [delay_in_ms]>. An example
usage of the delay command can be seen in Figure 4.6.

take <DELAY 5000> dave brubeck

14

Figure 4.6: In this example the USB device will type ,take * string, wait 5 seconds, and
finish by typing the string ,, dave brubeck®.

Non-printable keys are, as the name suggests, keys that don’t produce any print-
able characters - in other words, all other keys. Of course, there are some notable excep-
tions. Even though Keypad_1 or Keypad_Asterisk keys all produce a printable character
(*17, %’ respectively), they are not considered printable keys. The user has to explicitly
put them in the special combination format to execute them. To differentiate non-printable
keys from printable keys, a \ prefix is attached to the former. Figure 4.7 shows examples of
non-printable keys. The parser doesn’t distinguish between uppercase and lowercase letters
(case-insensitive).

<\enter><\SPACEBAR><\BackSpace><\arrow_up><\f12><\numi1><\volume_up>

Figure 4.7: Examples of non-printable key presses in custom Rubber Ducky script
language.

Other additions to non-printable keys are supports for modifier keys and holding time.
Modifier keys are special keys that temporarily alter the action of a Normal key (printable
or non-printable key) when pressed together. There are, in total, eight modifier keys:

e left and right Alt,
e left and right Control,

e left and right Meta (also known as Windows, Hyper, Super, or Command key depend-
ing on the operating system),

e left and right Shift.

We have already encountered a modifier key when discussing printable keys. When we
press Shift key together with Key_s, the shift key changes the action of the s key to
output upper case S instead of the lowercase s it would generally output. We can also
associate modifier keys with keyboard shortcuts, the most famous one being alt+f4 to
close an active window on Windows or ctrl+s to save the content of a file. Modifier keys
usually do not produce any action when pressed alone (the Meta key being an exception), so
they are handled differently when sending keystrokes to the host’s machine. In the special
combination format, modifier keys are placed before Normal keys, as seen in Figure 4.2.
Each modifier is identified by the location of the key followed by its starting letter - ’1a’
for LeftAlt, ’rs’ for RightShift, and more. If the user does not specify which one of the
keys is meant, the left one will be chosen implicitly - *m’> will trigger LeftMeta, ’c¢’ will
trigger LeftControl, and so on. Each key is then separated with a - separator.

Holding time, as the name suggests, defines how long a group of keys is meant to be
pressed before releasing, measured in milliseconds. The hold delay value is located at the

16

start of the special combination. This field is optional, and the implicit value is set to 0 if
not given.

The last thing the special combination scope supports is pressing multiple printable keys
at once. That is especially useful when the user wants to execute a keyboard shortcut that
contains two or more Normal keys. For example, we can use Visual Studio Code’s® keyboard
shortcut for closing all files in the editor: Ctrl+k Ctrl+w. The language’s equivalent of the
given keystrokes is <c-kw>.

There are some letters that would not work in this format, < and > being the case. For
that, I created a group of macro keys. A Macro key is an alias to an existing key. It
can be an alias to either the Normal key or modifier key and is treated the same way as
a non-printable key - it starts with an escape backslash character followed by the macro
name. So we can use <\gt> and <\1t> to produce < and >, respectively.

The last feature of the language is the ability to write comments. The comment grammar
is inspired by scripting programming languages such as Bash or Python. It starts with #
symbol, and the characters that follow this symbol are all ignored by the parser until the
end of the line. There are no multi-line comments support. If the users want to type a #
symbol, they put it into the special combination scope.

The following Listing 4.1 shows an example of a payload that highlights all the grammar
syntax of the language

#
This is a single line comment

let’s open a terminal on Ubuntu using its keyboard shortcut
and wait 500ms for it to open
<c-a-t><DELAY 500>

... now run a command
echo "hello world!"

... it doesn’t work :(oh wait we must run it first!
<\enter> # yay it outputs hello world!

lets run some calculation in python now
python -c "a = 2<\enter><#> a = 4<\enter>print(a <\1t> 3)"<\enter>

the commands from above should produce something like this
$ python -c "a = 2

##a=4

print(a < 3)"

now lets find the oldest command run on the machine!

hopefully 10 seconds will be enough
<10000-\arrow_up><\enter>

that is the end of our Linux terminal scripting 101 tutorial

5Visual Studio Code is a popular graphical text editor developed by Microsoft that supports extensions:
https://code.visualstudio.com/

17

https://code.visualstudio.com/

Listing 4.1: Example payload in custom language.

4.3 Communication protocol

Since our development board supports Wi-Fi, we decided to create a communication pro-
tocol and a network application based on it. Let our Rubber Ducky device be the server
and our network application the client. We need to define use cases for each side. What
follows is a list of requests that we want the client to support:

e Notify the device (server) that the client will send a new payload.

Send to the device a new series of keystrokes.

Remove the last sent set of keystrokes.

Retrieve keystrokes from the device.

Start the stored payload execution.

The server, on the other hand, will have only two types of responses: an OK response,
which signalizes that the request was successfully processed, and an ERR response with
an error message when something unexpected happened while processing the request.

We created a communication protocol on L7 application layer® with a diagram shown
in Figure 4.8, Figure 4.9, and Figure 4.11. We wanted to simplify the packet’s structure
as much as possible. The packet header is 4 bytes long, and the rest being filled with the
packet’s content (payload data).

Packet format

| OP CODE | RESERVED | PAYLOAD LENGTH |
e L L e I e e S e e S
| PAYLOAD DATA I
/ /

to—t——t——p bt — bt ——p——f——t——t——p——+——+

Figure 4.8: Communication protocol’s packet format used in the project.

The first byte of the header contains an operational code. It tells the server what
kind of action we are requesting. It also informs the client about the operation’s result.
All operational codes are analyzed later in this section. The second byte in the header is
reserved due to structure padding in the C programming language[10]. The last two bytes
in the header store the size of the payload data. Two bytes here will give us values
ranging from 0 to 65 535, which should be enough to carry the payload.

Next, we can analyze the request packet structure. Our project supports nine operational
codes, as shown in Figure 4.9. We can divide them into four groups:

SMore about Internet Network’s ISO/OSI model here: https://www.ietf.org/rfc/rfc1122.txt

18

https://www.ietf.org/rfc/rfc1122.txt

1. work with the USB device’s (server’s) inner read-write mode,
update device payload,

analyze the payload stored on the device,

- WD

run the payload.

Request

Operation codes and their values:

e oo o T ettt +
| op | opcode | payload | expected | description |

I I name | size | value I |
Fom b pom— Fomm Fmm +

| 01 | SET | 01 | 00/01 | Enable/disable device |

| | EDITABLE | | | read-write mode |
e oo Fomm e et +

| 02 | GET | 00 | - | Check device’s

I | EDITABLE | I | read-write mode status |
e T e Fomm o +

| 03 | CLEAR DATA | 00 I - I Clear device’s | *
I I I I I current payload |
e oo o e et +

| 04 | PUSH DATA | 0d | key sequence | Send a new key sequence | *
e B pom— Fomm o +

| 06 | POP DATA | 00 | - | Remove last key sequence | *
e oo oo T ettt +

| 06 | GET DEBUG | 00 | - | Retrieve a key sequence |

I | CURSOR | I | at the debug |

| | | | I cursor’s position |
e B po—— Fomm o +

| 07 | INC DEBUG | 00 I - | Move debug cursor to the |

I | CURSOR I I I next key sequence |
e oo o et +

| 08 | RESET DEBUG | 00 | - | Reset debug cursor’s

| | CURSOR | | | position |
e o o o +

| 09 | RUN | 00 I - | Tell the device to start | *x*
| | SEQUENCES | | | executing the payload |
o o o P +

* - device must be set to read-write mode to run this command

** — device must be set to read-only mode to run this command

Figure 4.9: Set of request’s operational codes, their payload, and description.

The first two operational codes fall under the first group. Their purpose is to change
or check whether the device is currently in read-write mode. Other actions will depend on
it. SET_EDITABLE (0x01) sends a single-byte payload of 0x00, which will set the device to
read-only mode, or 0x01, which will switch the device to read-write mode. GET_EDITABLE
(0x02) retrieves the current mode present on the device.

The second group’s functionality is to alter the payload stored on the device. It is
required for the device to be in read-write mode. Otherwise, the device will respond with

19

an error message, and the action will be ignored. CLEAR_DATA (0x03) action removes the
current payload from the device. PUSH_DATA (0x04) uploads a new key sequence to the
device. The payload should contain the key sequence data already reshaped to the desired
format expected by the device”. POP_DATA (0x05) removes the last inserted key sequence.
Users can retrieve it from the server response payload.

0 1 2 3 4 5 6 7
o o o o e o o - +
I DELAY | MDFR | RESV | KEY1 | KEY2 |
e o e e tm———— Fm———— Fm———— Fm————— +
| KEY3 | KEY4 | KEY5 | KEY6 | LAST |
tm———— te———— Fm———— Fm———— Fm———— +

Figure 4.10: Key sequence format.

The third group contains actions that serve as a debug tool for the user. The debug
cursor always starts at the beginning of the series. A request with GET_DEBUG_CURSOR (0x06)
will retrieve a key sequence that is under the cursor. To get the following key sequence, the
user needs to send INC_DEBUG_CURSOR (0x07) request, which moves the cursor to the next
one (if available). Finally, the RESET_DEBUG_CURSOR (0x08) request moves it back to the
beginning.

The last operation on the list is RUN_SEQUENCES (0x09) request. As the name suggests,
this request will start executing the payload on the device. The only requirement here is
that the device must be in read-only mode.

Now, we can analyze the last two operation codes, which we can see in Figure 4.11.
They are response codes that the server uses to answer incoming requests from the client.
The OK response is generated when the request has been successfully proceeded. It can carry
some data depending on the received request (for example, key sequence data as an answer
to POP_DATA or device mode when received GET_EDITABLE). The other type of response is
ERR which is generated when an error has occurred during the request processing. This
response will always carry the error message in its payload.

Response
et Hmm o e it E Fommm - +
| op | name | payload_len | description | payload |
R e T Hmm e +
| 0Oa | OK | varies | Request was successfully | data from |
| | | | processed | server |
oo Hmm T it HFmmmm o +
| Ob | ERR | varies | Request was not correctly | error |
| | I | processed | message |
oo Hmm e e +

Figure 4.11: Set of responses, their content, and description.

"The expected format can be seen in Figure 4.10. It is a 13 bytes long structure where waiting delay
occupies the first 4 bytes, followed by a 1 bitmap of modifiers (MDFR), a reserved byte, 6 keyboards key IDs
(see Section 4.2), and a LAST byte, which indicates that this key sequence will be the last one in the series.

20

Let’s end this section with a data flow diagram showcasing a possible communication
between the server (device) and the client (user) shown below in Figure 4.12:

User Rubber Ducky
Client Server
J- Create a TCP connection ‘J-

Ll

ACK
(___

CLEAR_DATA
>
< ERR (device not in read-write mode)
GET_EDITABLE
>
OK (0x00)

(___
SET_EDITABLE (0x01) |
Ll

OK
(___

CLEAR_DATA

>

OK
(___
PUSH_DATA (delay=0, mdfr=0,keys=[ENTER], last=0) |
Ll

OK
(___
PUSH_DATA (delay=500, mdfr=0,keys=[], last=0) R
Ll

OK
(___
SET_EDITABLE (0x00) |
Ll

OK
(___

RUN_SEQUENCES

>

OK
(___

T T

Figure 4.12: Example of the communication between the client and the server. In this
example, the user sends two key sequences to the device: <\enter><DELAY 500>. We can
also see the user making a mistake at the beginning of the communication by sending a
CLEAR_DATA request when the device is still in read-only mode.

21

Chapter 5

Implementation of Rubber
Ducky-like device

The purpose of this section is to familiarize the reader with the actual structure of this
project. The goal here is to show the reader how each section of the software is implemented.
The design from Chapter 4 will serve as our source, and all implemented parts of this project
will be based on it.

The first half of the chapter is dedicated to the Rubber Ducky software, which I wrote
using C programming language. All the source codes are present in the rubber_ducky
directory. The second half of the chapter deals with the Rubber Ducky scripting language
and the client application for which I used Python, and the code is located in the rd_client
directory.

5.1 Used third-party libraries

This project was developed using four open-source an SDK and libraries:

pico-sdk The Raspberry Pi Pico SDK (henceforth the SDK) provides the headers, libraries
and build system necessary to write programs for the RP2040-based devices such as
the Raspberry Pi Pico in C, C4++, or assembly language.’

cyw43-driver An open-source library which implements a driver for CYW43xx Wi-Fi/BT
SoC.2

TinyUSB TinyUSB is an open-source cross-platform USB Host/Device stack for embed-
ded systems, designed to be memory-safe with no dynamic allocation and thread-safe
with all interrupt events deferred and then handled in the non-ISR task function.?

IwIP IwIP library is a small independent implementation of the TCP/IP protocol suite.
The focus of the IwIP TCP/IP implementation is to reduce the RAM usage while still
having a full-scale TCP.*

"https://github.com/raspberrypi/pico-sdk
’https://github.com/georgerobotics/cywd3-driver
*https://github.com/hathach/tinyusb
‘https://github.com/lwip-tcpip/lwip

22

https://github.com/raspberrypi/pico-sdk
https://github.com/georgerobotics/cyw43-driver
https://github.com/hathach/tinyusb
https://github.com/lwip-tcpip/lwip

5.2 Rubber Ducky device

This section gives an overview of how the Raspberry Pi Pico firmware section is imple-
mented. The class diagram can be seen in Figure 5.1.

EE rubber_ducky

msc.c
enum interface_t usb_descriptors.c
- memory_disk: static uint8_t**) 5
ITF_NUM_HID=0 + desc_device: tusb_desc_device_t const
+tud_msc_read10_cb(...): int32_t ITF_NUM_MSC=1 + desc_config: tusb_desc_configuration const
+ tud_msc_write10_cb(...): int32_t ITF_NUM_TOTAL=2 \
+tud_msc_inquiry_cb(...): void + desc_itf_hid: tusb_desc_interface_t const
+tud_msc_test_unit_ready_cb(...): bool + desc_hid: tgsbih\didescriplorir!idit const
+ tud_msc_capacity_cb(...): void + desc_ep_hid: tusb_desc_endpoint_t const
+ tud_msc_start_stop_cb(...): bool))
+tud_msc_scsi_cb(...): int32_t + desc_itf_msc: tusb_desc_interface_t const
+ desc_ep_msc_in: tusb_desc_endpoint_t const
+ desc_ep_msc_out: tusb_desc_endpoint_t const
/ + config_buffer: uint8_t *
- string_descriptor: char **
TinyUSB —_— usb_general - _desc_buffer: uint16_t *
tusb_config.h 4 AUTOMATA GONTENT + tud_descriptor_device_cb(...): uint8_t const *
4 # READMEfCioNTENT + tudidescr!plorfconfigurationJ:_b(...): uint8_t const *
#AUTOSTART + tud_descriptor_string_cb(...): uint16_t const *
config.h #BYTES_PER_SECTOR
N #NUM_OF_SECTORS
#CrG_TUD_HID #_REPORT_LENGTH
#KEYPRESS_DELAY_MS
#CFG TUD MSC # FILE_SIZE(_size)
#WIFI ENABLE +is_ejected: bool
x - enable_key_seqv: bool
#WIFI_SSID —Key_seq Keyseqv
:VYIIELSFEI‘Q/Y/%R PORT + get_enable_key_seqv(): bool
#DEBUG CAPS LOCK + set_enable_key_seqv(bool): void
used by — — + active_delay(uint32_t): void

usb_reports.c

#AUTOSTART_AFTER_PLUGGIN
_INITIAL_BOOT_DELAY
et CYW43-driver
main.c — |

‘» hid_report: const uint8_t*

+ tud_hid_descriptor_report_cb(...): uint8_t const *
+ tud_hid_get_report_cb(...): uint16_t (_— IwlP
+ tud_hid_set_report_cd(...): void rd_server
+ tud_hid_report_complete_cb(...): void
%Lj|

+ tud_mount_cb(): void
Figure 5.1: RubberDucky module UML class diagram.

+ tud_resume_cb(): void

5.2.1 USB configuration

In the first part, I needed to configure the USB device for the enumeration process. TinyUSB
library requires tusb_config.h header file, which defines configuration macros, such as
CFG_TUD_ENABLED, to set the device as a ,device“ and not as a ,host“ or CFG_TUD_HID,
defining how many HID configurations the device will have, and more. Part of the configu-
ration is moved to config.h header file. This file contains macros that the user can freely
edit. config.h is imported to tusb_config.h afterwards.

Next, I had to configure the Raspberry Pi Pico board to behave like a keyboard and mass
storage. As mentioned previously in Chapter 2, the host identifies the USB device’s identity
by retrieving its descriptor and configurations. TinyUSB defines 3 callback functions for
that:

1. tud_descriptor_device_cb — A callback function which the host uses to retrieve
device descriptor.

2. tud_descriptor_configuration_cb — A callback function which the host uses to
retrieve every configuration descriptors present on the device. It also includes interface
descriptors, device class descriptors (if exists), and endpoint descriptors.

23

3. tud_descriptor_string cb — A callback function which the host uses to retrieve
string descriptors based on the index.

usb_descriptors.c defines all three callback functions. I created instances of descrip-
tors with the structures provided by the library and wrote each callback function’s logic to
return a pointer to those instances (see an example in Listing 5.1).

// device descriptor
tusb_desc _device t const desc_device = {
.bLength = sizeof (tusb_desc_device_t),
.bDescriptorType = TUSB_DESC_DEVICE, // DEVICE constant
.bcdUSB = 0x0110, // USB1.1
.bDeviceClass = 0x00,

.bDeviceSubClass = 0x00,
.bDeviceProtocol = 0x00,
.bMaxPacketSize0 = CFG_TUD_ENDPOINTO_SIZE,

// list of vendors found here: http://www.linux-usb.org/usb.ids
.idVendor = 0xDODO, // vendor’s id (must be unique)

.idProduct = OxCAFE, // product id (must be unique with vendor)
.bcdDevice = 0x0100, // version

.iManufacturer = 0x01, // string index of manufacture name
.iProduct = 0x02, // string index of product name
.iSerialNumber = 0x00,

.bNumConfigurations = 0x01 // number of configuration

};
/] ...

uint8_t const * tud_descriptor_device_cb() {
return (uint8_t const *) &desc_device;

3

Listing 5.1: Definition of the device descriptor and its callback function used in
usb_descriptors.c.

5.2.2 The keyboard

Since a keyboard is classified as a human interface device (HID), I had to define its report
structure. That is defined in usb_reports.c file. A keyboard report consists of three parts:

1. a modifier bitmap, which is sent to the host,
2. an LED bitmap, which is received from the host,
3. and up to 6 keycodes, which are sent to the host.

I created a large byte array named hid_report, loaded it with the report byte codes. Then
I defined the required HID callback functions. To ease myself during the testing of the

24

device, I added a debugging feature. If the user turns the Caps Lock LED on and off, the
device will start executing the payload again. The algorithm is simple and can be seen in
Listing 5.2. In order for this to work, the user needs to set a DEBUG_CAPS_LOCK macro to 1
in the config.h header file

void tud_hid_set_report_cb(uint8_t instance, uint8_t report_id,
hid_report_type_t report_type,
uint8_t const* buffer, uintl6_t bufsize) {
// ignore this request
(void) instance;
(void) report_id;
(void) report_type;
(void) buffer;
(void) bufsize;
#if DEBUG_CAPS_LOCK
if (buffer == NULL || bufsize <= 0)
return;
if (report_type != HID_REPORT_TYPE_QUTPUT)
return;

// reset key sequence after the caps lock LED
// state changes from on to off
if (caps_lock_led_on && ! (buffer[0] & KEYBOARD_LED_CAPSLOCK)) {
key_seqv_reset_index_counter(false);
if (!get_enable_key_seqv()) {
set_enable_key_seqv(true);

}
}
caps_lock_led_on = buffer[0] & KEYBOARD_LED_CAPSLOCK;
#endif
}

Listing 5.2: A snippet of code which implements the payload re-execution.

5.2.3 The mass storage

Mass storage configuration is located, surprisingly, in msc. c file. TinyUSB library requires
six callback functions to be defined for the mass storage device to run:

e tud_msc_readl10_cb — Returns a content of a memory sector given an address of the
sector.

e tud_msc_writelO_cb — Updates a content of a memory sector given an address of
the sector.

e tud_msc_inquiry_cb — Returns Vendor ID, Product ID, and Product revision number
of the device.

e tud_msc_test_unit_ready_cb — Returns true allowing the host to read and write on
the device.

25

e tud_msc_capacity_cb — Determines a disk size.
e tud_msc_scsi_cb — Defines the logic of other SCSI commands.

Unfortunately, due to Raspberry Pi Pico’s lack of onboard nonvolatile memory, I had to
write a static file system from scratch. I chose a FAT12 file system since it is one of the
simplest file systems out there, and, for the proof of concept, a sufficient one. The content
of the file system is stored in the memory_disk array, which emulates a physical disk. It
is represented as a two-dimensional array where the first dimension emulates an array of
sectors, and the second being the sector® itself. The first sector contains a boot table,
the second is a FAT table, the third is a root directory, and the rest of the disk is filled
with file contents. Each part of the file system is described in [12].

5.2.4 The payload

The keyseqv directory manages both the payloads and its API. Each key sequence is
represented by a key_seqv_t structure which can be seen in Figure 5.2. It contains three
members: a delay that will be applied after sending the report to the host, the report
with key presses, and a last item flag that tells the device not to send any report after this
one. The whole payload is stored in key_seqvs array and defined in key_seqv_script.c
source file. This file can be generated by rd_client script.

g keyseqv

key_seqv

- key_seqv_index: size_t key_seqv_script
TinyUSB - key_seqv_index_debug: size_t + key_seqvs: key_seqv_t []
- read_write: bool 7

- key_seqv_len: int

+ key_seqv_reset_index_counter(...): void

. + key_seqv_increase_counter(...): void
main.c
(—\

+ key_seqv_get_report(...): bool

+ key_seqv_debug_report(...): size_t

+ key_seqv_set_mode(...): void
/ + key_seqv_is_read_write(): bool \

+ key_seqv_push_report(...): bool struct key_seqv_t
rd_server -
+ key_seqv_pop_report(...): bool + delay: uint32_t

+ key_seqv_clear(): bool + report: hid_keyboard_report_t

+ key_seqv_get_len(): int + last_item: bool

+ key_seqv_run_sequences(): void

Figure 5.2: Kegseqv module UML class diagram.

Lastly, the key_seqv. c source file defines all the functions that operate directly with the
key_seqv_t structure. That includes functions that update the payload content through
the server’s API (more in the next section) and those that are used for executing the pay-
load. The two most important functions here are named key_seqv_increase_counter,

5A sector is an elementary storage unit. It is the smallest number of bytes that the host can retrieve
from the disk.

26

which moves the cursor index to the following item (key sequence) in the array, and
key_seqv_get_report, which retrieves the current report from the array.

Putting these last two functions together, we can see the pseudocode of the core algo-
rithm of executing the payload in Algorithm 1 shown below:

Algorithm 1: Payload execution algorithm

Input: cursor, key_seqvs

device initialization;
while true do
process USB device tasks;
retrieve an item from key_seqvs at cursor’s position;
if execution not enabled or item is empty then
delay = 0;
report = empty report;
send a report to host;
else
delay = item.delay;
report = item.report;
send a report to host;
if report sent successfully then
increase the cursor position in key_seqvs;
wait delay before executing next key sequence;
end

end
end

5.3 Wi-Fi Access Point and TCP Server

To run a server, we need two things: a port and an IP address of the server. But first, the
Raspberry Pi Pico device has to share the same network with the client machine. There
are two ways to achieve this: the device can connect to the local Wi-Fi during the booting
process or create an access point and let the client connect to its Wi-Fi network. I chose
to implement the latter one. The advantage of having the device being an access point is
that the server IP address is known — it is the IP address of the network’s gateway. The
disadvantage is that I need to implement a DHCP server® to have a functional network.
For the device to act as an access point, the user needs to set WIFI_ENABLE macro,
network’s SSID (or simply a name), and password, all in config.h header file. Once done,
Raspberry’s software will call cyw43_arch_enable_ap_mode during the initialization phase.
After the access point is running, the TCP servers for DHCP and our application are
initialized. They are all defined in the rd_server directory seen in Figure 5.3. The source
codes for the DHCP server are taken over from Raspberry Pi Pico’s example page’. We

SDHCP (Dynamic Host Configuration Protocol) is a network management protocol used to dynamically
assign an IP address to any device, or node, on a network, so it can communicate using IP (source: https:
//wwu.techtarget.com/searchnetworking/definition/DHCP)

"DHCP server source codes: https://github.com/raspberrypi/pico-examples/tree/master/pico_w/
wifi/access_point

27

https://www.techtarget.com/searchnetworking/definition/DHCP
https://www.techtarget.com/searchnetworking/definition/DHCP
https://github.com/raspberrypi/pico-examples/tree/master/pico_w/wifi/access_point
https://github.com/raspberrypi/pico-examples/tree/master/pico_w/wifi/access_point

rd_server

server_data_t

client_data_t

+ pcb: struct tcp_pcb

main.c

+ pcb: struct tcp_pcb

+ buffer: uin8_t *

Iwipopts.h

™

tcp_server

A\

/\

enum oper_codes

request_process

N

dnsserver

network_data_t

+ mask: ip_addr_t

+ gateway: ip_addr_t

+ set_editable_pl(...): size_t

+ get_editable_pl(...): size_t

+ clear_data_pl(...): size_t

+ push_data_pl(...): size_t

+ pop_data_pl(...): size_t

+ get_debug_cursor_pl(...): size_t
+inc_debug_cursor_pl(...): size_t
+ reset_debug_cursor_pl(...): size_t
+ run_sequences_pl(...): size_t

+ unknown_opcode_pl(...): size_t

+ too_big_pl(...): size_t

+ init_server(...): bool

+ close_server(...): void

- accept_cb(...): static err_t
- err_cb(...): static void

- sent_cb(...): static err_t

- poll_cb(...): static err_t

- recv_cb(...): static err_t

- close_connection(...): static err_t

S~

Y
packet_t

+ op_code: uint8_t
+ reserved: uint8_t

+ payload_len: uint16_t

+ payload: uint8_t []

Y

keyseqv

Figure 5.3: RD Server module UML class diagram.

initialize the DHCP server by providing the network’s gateway and mask (see Listing 5.3).
There is no DNS server in this network since we only want to create communication between
the USB device and a client’s application, and that can be running in the isolated private

network.

int main() {

//

// define network’s IP range

struct network_data_t nd;

IP4_ADDR(ip_2_ip4(&(nd.gateway)), 192, 168, 4, 1);
IP4_ADDR(ip_2_ip4(&(nd.mask)), 255, 255, 255, 252);

dhcp_server_t dhcp_server;

dhcp_server_init (&dhcp_server, &(nd.gateway), &(nd.mask));

//
+

Listing 5.3: A basic network configuration used in the project. In this case, the IP address
of the network is 192.168.4.0/30.

There are two source files that deal with our server application: tcp_server and
request_process. The former defines a TCP socket server using the IwIP library, and

the latter defines functions that process requests.

28

The server waits for the connection.

Once it has been established and the server received a request, it extracts its opcode and
calls the corresponding function from request_process. The generated response is then
sent back to the client.

5.4 Language parser

This section describes how the parser of the language, defined in Section 4.2, works. Both
lexical and syntax analysis of the input is done using regular expression in KeySeqvParser
class®. I use groups in the regex pattern (seen in Figure 5.4) to extract data from the input
string. First, the program cycles through the input lines from the file or STDIN. Each line’s

(KDELAY (\d+)>) | (<((7: (\d+)-)7((?7: [a-zA-Z]{1,2}-)*) A\\)7(["<>\sI+))>) | #. %) | ([-~1)

Figure 5.4: Language’s regex pattern.

content is then passed to the parse_line function, where it is normalized and added to the
lof_keyseqvs list for later processing. The parsing algorithm can be seen in Algorithm 2.

Algorithm 2: Processing the input

key sequence = empty key sequence;
foreach line in input do
check 1line string and extract all groups;
foreach group in groups do
if key sequence is full then
add key sequence to lof_keyseqvs;
initialize empty key sequence;
end
fill data from group to key sequence;
end
// store the last pending key sequence if exists
if key sequence is not empty then
‘ add key sequence to lof_keyseqvs;
end
set last key sequence item in lof_keyseqvs to last;

end

The class KeySeqv contains information about a single key sequence. It is the same
structure as a key_seqv_t structure we can find in the Rubber Ducky system (see Sub-
section 5.2.4). The class also contains a to_bytes method which converts the object’s
content to a series of bytes that complies with the key sequence byte format described in
Figure 4.10.

Parser module also implements exception classes for each error case in error.py. Fig-
ure 5.5 depicts their hierarchy. All exceptions derive from the base class ParserError. Six
lexical and syntax errors with their corresponding class names are listed below:

8This regex pattern was inspired by this project: https://github.com/lydell/vim-1like-key-notation

29

https://github.com/lydell/vim-like-key-notation

ParserError

A

UnknownModifierError ShiftToggleWithPrintableKeysError

NonReadableCharacterError KeySequenceSizeExceededError

SpecialSequenceShiftToggleError UndefinedSpecialKeyN. ror

Figure 5.5: Parser exception hierarchy.

NonReadableCharacterError The script contains a character that is not in ASCII en-
coding or is not printable.

SpecialSequenceShift ToggleError Normal keys in special combination uses Shift key
inconsistently.

UnknownModifierError The special combination contains an unknown modifier.

UndefinedSpecialKeyNameError Special key or macro key used in special combination
is not recognized by the program.

KeySequenceSizeExceededError The number of simultaneously pressed keys exceeded
the maximum limit.

Shift ToggleWithPrintableKeysError The use of printable keys and Shift key in spe-
cial combination is forbidden.

The whole parser module can be seen in Figure 5.6.

5.5 Client application

There are two modes to run the client application:

CLI mode is a CLI application for creating static payloads. It converts the keystrokes
written in Rubber Ducky language to a C source code. The user can use it to replace
the existing rubber_ducky/keyseqv/key_seqv_script.c file.

Network mode is a CLI application for deploying payloads on the USB device wirelessly
using sockets.

Both frontend applications classes (CliMode and NetworkMode) derive from that base class
BaseMode as seen in Figure 5.6. Both process the input script in the similar way. They create
an instance of KeySeqvParser class and feed it with the input data described in the previous
section. What differentiate them apart is how they handle the processed data. CliMode
generates a new C source code file on the STDOUT or output file if given. NetworkMode, on
the other hand, creates a TCP connection with the server and performs a series of requests
where it sets the USB device to read-write mode, sends PUSH_DATA requests for each key

30

__main__.py

‘555“‘-—_>

rd_client

app_mode

=

utils.py

parser

——

regex_groups.py

KeySeqvParser

+ KEY_SEQV_REGEX: str

+ LINE_REGEX: str

verbose: bool

lof_keyseqvs: list{KeySeqv]

+ parse_line(...): None

+MACRO_KEYS: dict

+ SPECIAL_MAP: dict

+ NORMAL_TO_KEY_MAP: dict
+ SHIFT_TO_NORMAL_MAP: dict
+ MODIFIER_INDEX_MAP: list

+ KEY_TO_VALUE_MAP: dict

- process,
\ + get_mode(): BaseMode

_args(): dict[str, Any]

BaseMode

verbose: bool

display_nonverbose_error_msg(...): None

one

l

NetworkMode

#in_f: TextlO | TexttOWrapper

host: str

- modifiers: list{Modifier]
- keys: list[Key]

- last: bool

+ to_bytes(...): bytearray

/A

«enumeration»

«enumeration»

Key Modifier

«enumeration» - new_sequence_structure(): None +run(...): int
Groups # create_log(...): None i #log_msg(...): N
log_seqv_content(...): None
push_press_and_release(): None
+ clear_lof_keyseqvs(): None [
error.py CliMode
+ set_last(): None
/y‘ #in_f: TextlO | TexttOWrapper
. T # out_f: TextlO | TextlOWrapper
mappings.py
+ MODIFIER_MAP: dict KeySeav
- delay: int

port: int

format_recv_msg(...): str

format_sent_msg(...): str

A

E=

payload

«enumeration»

__init__.py

OperationCodes

PayloadF

ormatError

+ create_payload(...): bytearray

Figure 5.6: RD Client module UML class diagram.

sequence stored in KeySeqvParser, then sets the device back to read-only mode, and finish

it off by sending a RUN_SEQUENCES to start executing the payload.

The user can choose the mode by giving the application the corresponding parameter.
-n/--network flag will toggle the network mode. Otherwise, a CLI mode is run by default.
All of this is handled in get_mode function in utils.py (shown in Listing 5.4). Lastly,
the user can also toggle an option to generate logs by adding -v/--verbose flag. That is
handled using Python’s standard logging library.

module rd_client.app_modes.utils

def get_mode() -> BaseMode:

"""Factory function that returns AppMode based on given arguments."""

args = __process_args()

return selected mode
if args[’network’]:
communication with RubberDucky using network (wifi)
return NetworkMode(args[’input’], args[’port’],
args[’host’], args[’verbose’])
cli script parsing to C-file source code

31

return CliMode(args[’input’], args[’output’], args[’verbose’])

Listing 5.4: This snippet of code shows how the frontend mode is chosen.

5.6 Summary

The diagram in Figure 5.7 below summarizes how the Rubber Ducky and client application
work. The left one shows the steps the Rubber Ducky device needs to execute before
processing the payload. The diagram on the right displays the communication data flow
between the client and the server when the user runs NetworkMode.

Client Server request_process
Plugged in
= connect N = E
SET_EDITABLE(1) :
» decoded request]
»
OK :I read_write=1
oK (Crmmmmm e
Device initialization [Srmmmmrmmmmmmee s T
PUSH_DATA(...) H
> decoded request ™
WIFI_ENABLE=1 - insert new
WIFI_ENABLE=0 OK < oK :Ikey sequence
- - WiFi and Server P A L
start H
PUSH_DATA(...)
» decoded request M
P oK d insert new
Initial Delay I oK . key sequence
L
SET_EDITABLE(0) :
» decoded request m
enable_key_seqv=1 >
OK :I read_write=0
OK [Commmmm e
[Gmmmmmmmmmm s e
Retrieving a key RUN_SEQUENCES |
sequence » decoded request ™
d key_seqv_index=0
OK lenable_key_seqv=1
OK [Commmmm e
[Cmmmmmmmmm s =
close connection .
Sending the key ' '
sequence to the host H H

Figure 5.7: Rubber Ducky’s state machine and client-server communication data flow.

32

Chapter 6

Implementation evaluation

In this section I will briefly evaluate my implementation of the Rubber Ducky device. When
we connect our device to the machine, the operating system immediately recognizes it as
a composite device, and the file system is correctly mounted (shows both ,, Automata.txt*
and hidden ,,README.md* files). We can check it by opening Device Manager on Win-
dows (or running lsusb command on Linux systems). The Vendor ID and Product ID of
the device can be seen in Figure 6.1. Both values correspond to the values specified in
usb_descriptors.c source file.

General Driver Details Events General Driver Details Events Power Management

- USB Composite Device - USB Mass Storage Device
Property Property
Hardware Ids Hardware Ids
Value Value
USBWID_DODO&PID_CAFE&REV 0100 USB\WID_DODO&PID_CAFE&REV_0100&MI_01
USB\VID_DODO&PID_CAFE USB\VID_DODO&PID_CAFE&MI_01
HID Keyboard Device Properties X

General Driver Details Events Power Management

HID Keyboard Device

Property

Hardware |ds

Value
HID\VID_DOD0&PID_CAFE&REV_0100&MI_00
HID\VID_DODO&PID_CAFE&MI_00
HID\VID_DOD0&UP:0001_U:0006
HID_DEVICE_SYSTEM_KEYBOARD
HID_DEVICE_UP:0001_U:0006
HID_DEVICE

OK Cancel

Figure 6.1: Composite device info in Device Manager. 0xDODO value for Vendor ID and
0xCAFE value for Product ID.

The algorithm used to generate the payload is designed to produce as few key sequences
as possible (if possible, it will send six keys in one report). Based on the KEYPRESS_DELAY_MS

33

constant, we can test how fast and accurate the device can type. That was tested using the
TUI application tt!. We prepared two test payloads: one with regular three paragraphs
long Lorem Ipsum text (2884 characters) and the other with a randomized list of printable
ASCII characters (2800 characters)?. The mass storage driver was disabled for this test case.
Table 6.1 below shows an average typing speed of 20 tests. We can see that the device’s ac-

Lorem Ipsum Randomized text
KEYPRESS_DELAY_MS WPM | Accuracy | WPM | Accuracy
0 6590.8 | 99.719 % | 2625.05 | 93.607 %
10 2641.1 | 99.957 % 1128.5 | 99.6285 %
20 1321.5 | 99.981 % 566.1 99.942 %
50 528.95 | 99.9985 % 226 100 %
80 329.95 100 % 141 100 %

Table 6.1: Typing speed based on the KEYPRESS_DELAY_MS constant value. Testing was
conducted on Fedora Linux 36 (Thirty Six); kernel 6.2.9 operating system with
AMD Ryzen 7 4700U process and 16 GB of RAM.

curacy decreases as it types faster. Our Rubber Ducky device struggled a lot on the Fedora
system when executing the randomized text at the highest speed, with an average accuracy
of less than 94 %. It made most of the mistakes when the Shift key modifier was not properly
turned on or off. The table also shows that randomized text slowed typing speed by approx-
imately 2.3 times. We later discovered that running the device on a differently configured
system can produce different results. When we ran the randomized text typing test with
the KEYPRESS_DELAY_MS constant set to 0 on Manjaro Linux x86_64; kernel 5.15.108
with i3wm? window manager, the average typing speed and accuracy were both higher
(2837.85 WPM and 100 % accuracy).

Next, we evaluate how accurate the delay feature of our device is. We use the time pro-
gram that is available on most Linux operating systems. Our device executes a time sleep 10
command in the shell, waits 2 seconds, and then terminates sleep command with Ctrl+C
key shortcut. The time result is then appended to the output file. We repeat the test 20
times and average the results. What we ended up with is a rough estimate of our wait
time. According to the results, the average time between starting and terminating the
sleep program was 2.02s. We can declare that the wait time of our device is accurate to 2
hundredths of a second.

Lastly, we wanted to see how simple it is, to use the device in a real-world scenario.
We chose to complete the first training map in the racing game TrackMania 2020%. The
game is completely deterministic, which means that given the same sequence of key presses,
it will produce the same result every time. The map only consists of a downhill and three
turns (left-right-left) before the finish line. For this test, we disabled autostart and enabled
CapsLock debugging features of the device so that we could fully control when we started
running our payload. First, we tried a trial and error method, where every time we wrote or
updated our payload script, we had to compile a new firmware and flash it into our device.
That proved very time-consuming as compiling the code inside the Windows Subsystem

'Link to the web page: https://github.com/lemnos/tt

?Both payloads can be found here: https://github.com/hungdojan/elastic-quacker/tree/main/
tests/typing

3Link to official homepage: https://i3wm.org/

4Link to official homepage: https://www.ubisoft.com/en-gb/game/trackmania/trackmania

34

https://github.com/lemnos/tt
https://github.com/hungdojan/elastic-quacker/tree/main/tests/typing
https://github.com/hungdojan/elastic-quacker/tree/main/tests/typing
https://i3wm.org/
https://www.ubisoft.com/en-gb/game/trackmania/trackmania

Linux was very slow, and unplugging and plugging the device repeatedly was inconvenient.
So we changed our approach and enabled the Wi-Fi module in the configuration file. That
improved the user experience significantly because, after that, it only took a single command
to update the payload. We also learned that the hold delay works correctly, as we needed
to hold a w key in order to accelerate the car in the game. In the end, it took us around 20
minutes to finish the script, and we completed the track without the car hitting the wall®.

A final run can be seen here: https://youtu.be/sDXVFk_Yiyc

35

https://youtu.be/sDXVFk_Yiyc

Chapter 7

Malicious payloads

The chapter analyzes the types of payloads that can be installed on our USB device, specif-
ically the ones that were designed to cause damage to the victim’s machine. Most attacks
require access to the command line application (or terminal). Here are a few examples of
payload’s notion once access to the command line has been granted:

e update victim’s system configuration,

e download and execute a malicious script from the internet, or stored inside the con-
nected device to retrieve sensitive information,

e perform a Denial of Service or BSoD (Blue Screen of Death),

e create a communication backdoor by initializing a reverse shell.

The first item on the list is updating system configuration. The attacker can write a
payload that, for example, changes the network settings, such as changing the IP address of
the DNS server to redirect the requests to the attacker’s server, or creates a new symlink or
alias of a command (for example, alias sudo="sudo rm -rf /; sudo which will, without
the user’s knowledge, delete the root directory when sudo command is called), disable an
antivirus program, firewall, or built-in hardware such as a touchpad or keyboard.

Another possible attack involves downloading malware from the internet and running
it on the victim’s computer (or from mass storage). Keylogger software is one example.
Keylogger is an application that runs in the background and captures anything the user
types on the keyboard. The collected keystrokes can be uploaded to the remote server
controlled by the attacker. The attacker can then examine the sent data and extract
the user’s login credentials. This type of attack is called Data exfiltration - a form of
attack that involves transferring unauthorized data from a computer. A keylogger can be a
software program or a physical device (for example, KeyGrabber!). Other data exfiltration
methods involve redirecting the user to a fake phishing website.

The attacker can also write a payload that will perform a Denial of Service attack or
force a Blue Screen of Death or Kernel Panic. The former attack, Denial of Service,
is an attack that is associated with network security. It aims to prevent access to a service
or resources [6]. One such attack is known as Ping of Death, in which the host machine
is overwhelmed with numerous ping requests to a remote server. Once the server’s request
queue is filled, it will begin to drop new incoming requests, making it unresponsive. Blue

"https://www.keelog.com/keygrabber-keylogger/

36

https://www.keelog.com/keygrabber-keylogger/

Screen of Death (on Windows) and Kernel panic (on GNU/Linux), on the other hand,
indicate that a fatal error has occurred in the host computer and it is unable to recover
from it. This action may result in the victim losing all unsaved data.

Lastly, the attacker can create a payload to get access to the victim’s computer. One
of the techniques is known as reverse shelling. netcat is a command-line interface ap-
plication used by administrators to provide connectivity between two systems. Netcat can
operate in either server (listening) or client (creating a connection) mode. The attacker
starts a listening shell on the victim’s machine and uses his/her machine to connect to it
remotely. Unfortunately, the connection will not be established if the victim’s computer
has a firewall enabled. This problem can be bypassed by creating a reverse shell. The
attacker runs netcat in listening mode on his/her machine and uses the victim’s machine
to connect to it (connecting from the inside out). That will surpass the victim’s firewall
since it usually only blocks incoming connections [17].

In 2020 and 2021, the cybercriminal group FIN7 started shipping packages containing
BadUSB devices to US companies. They were loaded with a malicious payload that gave
them access to the victim’s network. Once they were in, they deployed the ransomware,
such as BlackMatter or REvil, within the network [7] [9].

37

Chapter 8

Testing defense mechanisms

At the time of writing this thesis, there are many available defense programs on the internet.
In this section, I describe how some of them work and whether my device was successful
in breaking past any of them. I used the open-source program USBGuard on GNU /Linux
and Kaspersky Endpoint Security program on Windows 10.

8.1 Selected programs

USBGuard! is a software framework for implementing USB device authorization policies.
It was developed in 2015 and has been manage by Red Hat Inc. since then. It consists
of two main programs: usbguard-daemon and usbguard. The former is a service that
runs in the background and applies USBGuard policies to each USB device. The service
behavior can be configured by editing usbguard-daemon.conf. The latter is a command
line interface that provides the user with a tool to update the USBGuard policies.

Before I started experimenting, I needed to initialize the service. The instructions
were simple: generate an initial policy file using usbguard generate-policy, then start
the service with systemctl start usbguard.service. It was critical to create the rules
before starting the service. If not, all USB devices would be blocked by the daemon. The
program scans all the USB devices and hubs currently connected to the machine and sets
their target to allow, meaning they are all whitelisted on the host machine. The testing
environment was Fedora Linux 36 (Thirty Six); kernel 6.2.9.

The program I chose for Windows operating systems is called Kaspersky Endpoint
Security?. It is a security application that provides computer protection against various
types of threads, networks, or phishing attacks. It contains a list of protection components
such as File Threat Protection, Web Thread Protection, system scan, and more. What we
are interested in is their BadUSB Attack Prevention. It works as follows: when a new
USB device that emulates a keyboard is connected to the computer, the user receives a pop-
up window where he/she/they have to type a 4-digit number displayed on the screen from
the connected device. The testing environment for this application was Windows 10 21H2.

I tested both software in the following way:

1. Enable only HID class on the Rubber Ducky device.

2. Connect the device to the host machine with the installed and running application.

"https://github.com/USBGuard/usbguard
thtps ://www.kaspersky.com/small-to-medium-business-security/endpoint-windows

38

https://github.com/USBGuard/usbguard
https://www.kaspersky.com/small-to-medium-business-security/endpoint-windows

. Observe the application’s behavior.

3
4. Give the USB device access to the system and connect the device again.
5. Enable MSC on the Rubber Ducky device.

6

. Connect the device again and observe if something has changed.

The payload present on the USB device opens a terminal or Powershell and runs the 1s
command. I also added a feature where the LED on the board turns on when the device
starts to execute the payload.

First, I tested the USBGuard software on Fedora. When I connected the Rubber Ducky
device to the machine with USBGuard running, no keystrokes injection happened. In fact,
the device did not finish the enumeration process because the LED did not turn on. The
system registers that a new device has been connected, but the application immediately
blocks it, as seen in Figure 8.1. After I changed the policy for this particular device, the
status changed to allow, and the payload was executed. Unfortunately, the start of it was
trimmed, and only the 1s command was executed (a new terminal did not open). But that
can be resolved by increasing the initial delay.

[root@thinkpadel4 rebulien_fedoral# usbguard watch

[IPC] Connected

[device] PresenceChanged: id=21

event=Insert

target=block

device_rule=block id d0dO:cafe serial "" name "Rubber Ducky" hash "fY0dXdp4d700Fc0255L+bXvYptG
mtyX+aZZD89zRshY=" parent-hash "4a4NgfdUaJ043rkCzmWRSeHHR/uUh5+SNsXnhosm9qs=" via-port "1-4" wi
th-interface 03:00:00 with-connect-type "hotplug"

[device] PolicyChanged: id=21

target_old=block

target_new=block

device_rule=block id d0dO:cafe serial "" name "Rubber Ducky" hash "fY0dXdp4d700Fc0255L+bXvYptG
mtyX+aZZD89zRshY=" parent-hash "4a4NgfdUaJ043rkCzmWRSeHHR/uUh5+SNsXnhosm?qs=" via-port "1-4" wi
th-interface 03:00:00 with-connect-type "hotplug"

rule_id=4294967294

[device] PolicyApplied: id=21

device_rule=block id d0dO:cafe serial "" name "Rubber Ducky" hash "fY0dXdp4d700Fc0255L+bXvYptG
mtyX+aZZD89zRshY=" parent-hash "4a4NgfdUaJ043rkCzmWRSeHHR/uUh5+SNsXnhosm?qs=" via-port "1-4" wi
th-interface 03:00:00 with-connect-type "hotplug"

rule_id=4294967294

Figure 8.1: Screenshot of USBGuard logging after a new USB device is plugged in.

USBGuard also gave me the option to update the device’s policy permanently. Once I
whitelisted the Rubber Ducky device, it successfully executed the payload. I also tried to
plug it into different ports. I discovered that the policy did not apply to the device if it
was connected to a different USB HUB than previously. And lastly, I updated the device’s
firmware to enable MSC. And again, the USBGuard successfully blocked the device and
prevented it from executing the payload.

Kaspersky Endpoint Security program was next to be tested. Upon connecting the Rub-
ber Ducky device, I immediately received a pop-up window, as shown in Figure 8.2. The
device did manage to execute the keystrokes, but nothing happened on the host machine
since it was ,stuck” in the pop-up window. The Kaspersky program let me input the num-
bers using my mouse and whitelist the USB device. Unfortunately, I was unable to locate

39

l¢ Keyboard authorization - Standard keyboards : HID Keyboard Device

Keyboard connection detected
Standard keyboards : HID Keyboard Device

To authorize and unlock this keyboard, type the following
code from this keyboard:

1543

Figure 8.2: Pop-up authentication by Kaspersky Endpoint Security program.

the list of whitelisted devices to remove it from the list. Once the device was whitelisted,
it successfully executed the payload just like on the previous test with USBGuard. Inter-
estingly, unlike USBGuard, the Kaspersky application did block all other ports, including
those within the same hub. And it also registered the change of firmware when the MSC
class was enabled. In Figure 8.3 you can see the reports of the program.

Both programs were very effective against keystrokes injection attacks. The USBGuard
was more effective since the device had no real to the system, and all USB-related attacks
would have been suppressed (not only the keystrokes injection attack). The disadvantage
of USBGuard is that it is not very intuitive to control. All interactions are done using a
terminal since there is no official GUI application available. So unless the user is familiar
with working with the command line, he/she/they cannot update a device policy?.

Kaspersky application, on the other hand, gives users a user-friendly GUI application
with online documentation. Unfortunately, I was able to break through the defense by
sending the authentication PIN through Wi-Fi. So if the attacker has access to the screen, he
will also gain access to the victim’s machine. Another weakness of the Kaspersky application
is that it only covers keystrokes injection attacks. Other types of attacks, such as network
card spoofing, will not be detected.

3There used to be usbguard-applet-qt, but this software is no longer supported. The latest project
that provides user-friendly notification pop-ups related to device presence updates is usbguard-notifier
(https://github.com/Cropi/usbguard-notifier)

40

https://github.com/Cropi/usbguard-notifier

l¢ Reports

BadUSB Attack Prevention | Update H Save report |

0

Sz Importance: ‘ @ ‘ Q Search

@ Advanced Threat Protection Period: | Day

Behavior Detection
Event date Event LEST Device Device path
Exploit Prevention
Today, 4/26/2023 8:41:29 PM Keyboard not authorized Blocked HID Keyboard Device Standard keyboards
Host Intrusion Prevention
Today, 4/26/2023 8:24:59 PM Keyboard not authorized Blocked HID Keyboard Device Standard keyboards

O Essential Threat Protection (@ Today, 4/26/2023 8:12:28 PM Keyboard authorized Allowed HID Keyboard Device Standard keyboards
(ke Tt Chstadem Today, 4/26/2023 8:02:46 PM Keyboard not authorized Blocked HID Keyboard Device Standard keyboards

Web Threat Protection (@ Today, 4/26/2023 8:02:34 PM Task started Task started

Mail Threat Protection
Firewall
Network Threat Protection

BadUSB Attack Prevention Event: Keyboard not authorized
Component: BadUSB Attack Prevention
. Device vendor: Standard keyboards
AMSI Protection Device: HID Keyboard Device
Device path: Standard keyboards
Q Security Controls User: DESKTOP-221AJ8G\hungd
User type: Active user
Result: Blocked
Adaptive Anomaly Control

Application Control

Figure 8.3: The Kaspersky Endpoint Security reports of the test. The reports are sorted
from the newest to the oldest. We can see that the first connection (at 8:02 PM) was
blocked, then I authorized the device (8:12 PM), tried a different port (8:24 PM), and

lastly plugged the device with an updated firmware into the first port (8:41 PM).

8.2 Other defense mechanisms available

As stated in Chapter 7, most attacks require access to the terminal/command line. So
another way to protect the host machine is by setting a password for running a command
line as an administrator on Windows operating systems. All that is needed is to change
the Windows registry?. The result can be seen in Figure 8.4. As we can see, before we
updated the registry, it was fairly easy to open a terminal (or any other application as an
administrator, as the only thing preventing us from doing so was a , Yes/No* confirmation
button. But the new notification pop-up window requires us to enter the username and
password (or any other type of authentication).

Another defense mechanism was presented in work [16] by Tian with his team called
GoodUSB in 2015. They modified a Linux kernel module that maps USB devices to
specific whitelisted drivers (for example, an audio device such as headphones registered as
a Human Interface Device should only be able to execute a limited number of keys like
Volume Up and Volume Down). Then they introduced a GoodUSB service (called gud),
which sits between the host controller and USB drivers. Upon connecting the USB device to
the computer, the user is asked to identify the device’s functionality. If the device is marked
as malicious, GoodUSB service will redirect it to a virtualized USB honeypot where it can
be monitored and analyzed. Otherwise, a driver will be loaded. The GoodUSB architecture
can be seen in Figure 8.5.

4The instructions can be found here: https://www.manageengine.com/device-control/badusb.html

41

https://www.manageengine.com/device-control/badusb.html

User Account Control %

Do you want to allow this app to make
changes to your device?

B Windows Powershell

Verified publisher: Microsoft Windows
User Account Control X

Do you want to allow this app to make) .
changes to your device? To continue, enter an admin user name and password.

O

2 Windows PowerShell

Scan your finger on the fingerprint
reader.

Verified publisher: Microsoft Windows

More *oices

Figure 8.4: The ,run as administrator pop-up window before (on the left) and after (on
the right) the registry value update.

And last defense software I will present here is Cinch, a work by Sebastian Angel and his
team from The University of Texas at Austin and New York University [2]. Their approach
to USB attacks is to create a mediator between a hardware layer host controller and software
layer HCI®. The USB data are then transferred through a narrow choke point to be analyzed.
The Cinch architecture can be seen in Figure 8.5. Cinch uses I/O virtualization hardware
to redirect direct memory access and interrupts a red virtual machine. The virtual machine
then encapsulates and sends USB transfers through the Tunnel to another virtual machine
(called Gateway), where it applies all security policies. Once finished, the USB transfer is
then sent to the host’s HCI (blue machine).

Red machine |i| Gateway

Tunnel

,,,,,,,,,,,,,,,, _ ’ i P ———— P —————
' I

! 1GoodUSB Daemon |TJSB Honeypot :
: Hypervisor : | (gud) 1 (REmEUEE) i
! ! 1 i~ =+ CUSB Profiler) !
: IOMMU 3 : Grahical Interface : : USB Monitor :
' ! ((Device Database) CQEMUKVM)
! Trusted components | oS [_D Tnfe_D_at_allaie_ ’ S _QEE’I U_K !M_ g
,,, ser Space
o e

Host controller
Root hub

usB
Interface
Drivers

£~ Device Class identifier) Host Ctrl Passthrough

(Hostctl 0) (HostCtri1) Host Ctrl 2

» ~ ¥ v

P P P P
R TR
]

Figure 8.5: Cinch (left)[2] and GoodUSB (right)[16] architecture designs side by side.
Both of these pictures were taken from their corresponding papers.

© <D0 T
FEET)
©— DO T

EEET)

PEERE]

EET)

EEERE]

SHost Controller Interface, of HCI, is a register-level interface that enables a host controller for USB
or IEEE 1394 hardware to communicate with a host controller driver in software. Link to the article:
https://en.wikipedia.org/wiki/Host_controller_interface_(USB,_Firewire)

42

https://en.wikipedia.org/wiki/Host_controller_interface_(USB,_Firewire)

Other defense concepts are:

block the USB device when it starts typing with inhuman speed [11], [3],

disable firmware updates,

disable USB drivers on the host machine,

hardware USB data blocker such as ,USB condom“[1] or USGJ[5],

e and many more. . .

There are two concepts that occurred to me while I was writing this thesis, and one of them
is related to Section 4.2. The notion is that the majority of keystrokes injection payloads
rely on the standard US QWERTY keyboard. So the operating system can change the
keyboard layout, for example, to CZ DVORAK, when a keyboard connects. That makes
the payload fail most of the time because each key is mapped to a different output than on
QWERTY. The second idea is to create a mediator that would ignore modifier keys until
the user authenticates the device. Without them, the attacker cannot reliably launch the
desired applications.

Of course, none of the concepts have yet to be implemented. Changing the keyboard
layout may be insufficient and can be bypassed if the attacker guesses the keyboard lay-
out. Furthermore, keyboard layouts only change printable keys, so the attack will remain
unchanged if the payload simply consists of modifier and non-printable keys (for example,
Enter, Tab, and arrow keys). The second approach seems safer, but the idea of authenti-
cating a device upon connecting already exists.

43

Chapter 9

Conclusion

The main objective of this thesis was to create a USB device capable of executing the pre-
defined sequence of keystrokes (payload) which I successfully accomplished. The payload
can be statically generated and compiled with the Raspberry Pi Pico’s firmware or dynam-
ically deployed after the USB device is connected to the computer. I created a custom
language with easy-to-understand syntax for developing payloads. And thanks to Rasp-
berry Pi Pico’s inclusion of a Wi-Fi chip, the user can easily control the device wirelessly.
The device can also act as a USB thumb drive if enabled.

The BadUSB threads might be undetectable by antivirus programs, but fortunately, the
community has already developed numerous effective defense strategies that can protect us
against these types of attacks. I tested the implemented device against two programs:
USBGuard and Kaspersky Endpoint Security. Both performed well and successfully sup-
pressed the attack. I also discussed a few other possible defense strategies that are currently
available.

Even though the core functionality is working pretty well, there are more features that
can be added to this project. From supporting simple payloads written in the official
DuckyScript to extending the server’s API or getting the mass storage fully to work with
external hardware (microSD). There are no limitations to what can and cannot be added.
I wanted to make this project available to everyone, and so I decided to publish the source
code publicly'. I hope that this project’s development will not end with this thesis.

I created this project for people to experiment and better understand the potential
damage that this attack can cause. Though Rubber Ducky is considered a dangerous
device, in the end, it is up to us how we will use the device. It can help us automate complex
processes and operations that cannot be done by running a script on the computer.

"https://github.com/hungdojan/elastic-quacker

44

https://github.com/hungdojan/elastic-quacker

Bibliography

1]

AL SiBAI, N. You can apparently use a ,,USB condom* to protect against the FBI’s
latest boogeyman [online]. Futurism, Apr 2023 [cit. 30/04/2023]. Available at:
https://futurism.com/the-byte/usb-condom-juice-jacking.

ANGEL, S., WAHBY, R. S., HowaLD, M., LENERS, J. B., SPILO, M. et al. Defending
against Malicious Peripherals with Cinch. In: 25th USENIX Security Symposium
(USENIX Security 16). Austin, TX: USENIX Association, August 2016, p. 397-414.
ISBN 978-1-931971-32-4. Available at: https://www.usenix.org/conference/

usenixsecurityl6/technical-sessions/presentation/angel.

ARGHIRE, B. Google releases tool to block USB keystroke injection attacks [online].
Mar 2020 [cit. 30/04/2023]. Available at: https://www.securityweek.com/google-
releases-tool-block-usb-keystroke-injection-attacks/.

AXELSON, J. USB Complete: Everything You Need to Develop USB Peripherals. 3rd
ed. Lakeview Research LLC, 2005. ISBN 1931448027.

Doctorow, C. USG: An open source anti-badusb hardware firewall for your USB
port. Mar 2017 [cit. 01/05/2023]. Available at:
https://boingboing.net/2017/03/02/countermeasures.html.

ERICSON, J. Hacking: The Art of Exploitation [online]. 2nd ed. William Pollock,
2008 [cit. 30/04/2023]. ISBN 1593271441. Available at:
https://repo.zenk-security.com/Magazine’,20E-book/Hacking-%20The}%20Art%200f%
20Exploitation%20(2nd%20ed.%202008) %20-%20Erickson.pdf.

GATLAN, S. FBI: Hackers use badusb to target defense firms with ransomware
[online]. BleepingComputer, Jan 2022 [cit. 30/04/2023]. Available at:
https://www.bleepingcomputer.com/news/security/fbi-hackers-use-badusb-to-
target-defense-firms-with-ransomware/.

GREENBERG, A. Why the Security of USB Is Fundamentally Broken [online]. 2014
[cit. 01/01/2023]. Available at: https://www.wired.com/2014/07/usb-security/.

ILAscu, 1. FBI: Hackers sending malicious USB drives & teddy bears via USPS.
BleepingComputer, May 2020 [cit. 01/05/2023]. Available at:
https://www.bleepingcomputer.com/news/security/fbi-hackers-sending-malicious-
usb-drives-and-teddy-bears-via-usps/.

KERNIGHAN, B. W. The C programming language. 2nd ed.th ed. Englewood Cliffs,
N.J.: Prentice Hall, 1988. ISBN 0-13-110362-8.

45

https://futurism.com/the-byte/usb-condom-juice-jacking
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/angel
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/angel
https://www.securityweek.com/google-releases-tool-block-usb-keystroke-injection-attacks/
https://www.securityweek.com/google-releases-tool-block-usb-keystroke-injection-attacks/
https://boingboing.net/2017/03/02/countermeasures.html
https://repo.zenk-security.com/Magazine%20E-book/Hacking-%20The%20Art%20of%20Exploitation%20(2nd%20ed.%202008)%20-%20Erickson.pdf
https://repo.zenk-security.com/Magazine%20E-book/Hacking-%20The%20Art%20of%20Exploitation%20(2nd%20ed.%202008)%20-%20Erickson.pdf
https://www.bleepingcomputer.com/news/security/fbi-hackers-use-badusb-to-target-defense-firms-with-ransomware/
https://www.bleepingcomputer.com/news/security/fbi-hackers-use-badusb-to-target-defense-firms-with-ransomware/
https://www.wired.com/2014/07/usb-security/
https://www.bleepingcomputer.com/news/security/fbi-hackers-sending-malicious-usb-drives-and-teddy-bears-via-usps/
https://www.bleepingcomputer.com/news/security/fbi-hackers-sending-malicious-usb-drives-and-teddy-bears-via-usps/

[11] KErscHBAUM, F. and PARABOSCHI, S. USBlock: Blocking USB-Based Keypress
Injection Attacks. In: Data and Applications Security and Privacy XXXII.
Switzerland: Springer International Publishing AG, 2018, vol. 10980, p. 278-295.
Lecture Notes in Computer Science. ISBN 9783319957289.

[12] Knoropov, I. The FAT File System [online|. Bristol Community Collage, 2010.
Available at: http://www.c-jump.com/CIS24/Slides/FAT/lecture.html.

[13] Lu, H., Wu, Y., L1, S., LIN, Y., ZHANG, C. et al. BADUSB-C: Revisiting BadUSB
with Type-C. In: 2021 IEEE Security and Privacy Workshops (SPW). IEEE, 2021,
p. 327-338. DOI: 10.1109/SPW53761.2021.00053. Available at:
https://doi.org/10.1109/spw53761.2021.00053.

[14] MOHAMMADMORADI, H. and GNAWALI, O. Making Whitelisting-Based Defense Work
Against BadUSB. In: Proceedings of the 2nd International Conference on Smart
Digital Environment. New York, NY, USA: Association for Computing Machinery,
2018, p. 127-134. ICSDE’18. DOI: 10.1145/3289100.3289121. ISBN 9781450365079.
Available at: https://doi.org/10.1145/3289100.3289121.

[15] NonL, K., KRISSLER, S. and LELL, J. BadUSB - On accessories that turn evil
[online]. Security Research Labs, 2014 [cit. 01/05/2023]. Available at:
https://radetskiy.files.wordpress.com/2014/08/srlabs-badusb-blackhat-v1.pdf.

[16] T1AN, D. J., BATES, A. and BUTLER, K. Defending Against Malicious USB
Firmware with GoodUSB. In: Proceedings of the 31st Annual Computer Security
Applications Conference. New York, NY, USA: Association for Computing
Machinery, 2015, p. 261-270. ACSAC ’15. DOI: 10.1145/2818000.2818040. ISBN
9781450336826. Available at: https://doi.org/10.1145/2818000.2818040.

[17) WILHELM, T. Professional penetration testing : creating and operating a formal
hacking lab [online]. Amsterdam : Boston: Elsevier ; Syngress Publishing, 2010 [cit.
30/04/2023]. ISBN 978-1-59749-425-0. Available at:

https://doc.lagout.org/network/2010_professionnal_testing_lab.pdf.

46

http://www.c-jump.com/CIS24/Slides/FAT/lecture.html
https://doi.org/10.1109/spw53761.2021.00053
https://doi.org/10.1145/3289100.3289121
https://radetskiy.files.wordpress.com/2014/08/srlabs-badusb-blackhat-v1.pdf
https://doi.org/10.1145/2818000.2818040
https://doc.lagout.org/network/2010_professionnal_testing_lab.pdf

Appendix A

Content of SD card

build_rd/ Project build directory. Contains files generated by cmake application.

rubber_ducky/rubber_ducky.uf2 Compiled binary file. The present payload opens
BUT FIT official homepage using firefox browser on Ubuntu operating system.

docs/ Document directory. Contains the project documentation and files used to generate
the thesis document written IXTEX document.

thesis/ Directory with ITEX source files.
configuration.md Help regarding rubber_ducky/config.h macros.
rd_script.md Description of custom language.

rd_server_api.txt Description of packet format and listing of request and response
operational codes.

pico-sdk/ Pico SDK framework. Also contains TinyUSB, IwIP, and CY W43-driver
libraries.

rd_client/ Directory containing parser and client network application source files.
rubber_ducky/ Directory with rubber ducky module header and source files.

keyseqv/ key_seqv_t structure header and source files.

rd_server/ TCP server header and source files.
scripts/ Payloads written in custom language.
tests/ Test files for rd_client.payload module and typing tests.

README.md Project’s README file. Contains installation instructions and program help.

47

	Introduction
	Universal Serial Bus
	History
	USB topology
	Enumeration
	Descriptors
	USB Device Classes and Human Interface Device

	BadUSB
	First appearance
	BadUSB devices and attacks

	Design and Architecture
	Base device
	Custom Rubber Ducky scripting language
	Communication protocol

	Implementation of Rubber Ducky-like device
	Used third-party libraries
	Rubber Ducky device
	USB configuration
	The keyboard
	The mass storage
	The payload

	Wi-Fi Access Point and TCP Server
	Language parser
	Client application
	Summary

	Implementation evaluation
	Malicious payloads
	Testing defense mechanisms
	Selected programs
	Other defense mechanisms available

	Conclusion
	Bibliography
	Content of SD card

