
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

IMPLEMENT RUBBER DUCKIES ON AVAILABLE USB
DEVICES AND MAKE A PRACTICAL TEST
IMPLEMENTACE RUBBER DUCKIES NA BĚŽNĚ DOSTUPNÝCH USB ZAŘÍZENÍCH

A JEJICH PRAKTICKÝ TEST

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR HUNG DO
AUTOR PRÁCE

SUPERVISOR Ing. MAREK TAMAŠKOVIČ,
VEDOUCÍ PRÁCE

BRNO 2023

T BRNO FACULTY I
UNIVERSITY OF INFORMATION |
OF TECHNOLOGY TECHNOLOGY

B a c h e l o r ' s T h e s i s A s s i g n m e n t | | | | | Mill III III ||
147782

Institut: Department of Intelligent Systems (UITS)
Student: Do Hung
Programme: Information Technology
Specialization: Information Technology
Title: Implement Rubber Duckies on Available USB Devices and Make a Practical Test
Category: Security
Academic year: 2022/23

Assignment:

1. Study how the Universal Serial Bus (USB) works and describe it. Next, study and describe how
BadUSB and RubberDucky attacks work.

2. Implement RubberDucky on a Raspberry Pico platform working on platforms Microsoft Windows
10 and later and GNU/Linux with kernel 5.15 and later:

1. The device will behave like a keyboard and execute a desired command in command line
(execute reverse shell, blue screen / kernel panic, otherwise specified command
executable in the command line).

2. The device will behave as a virtual USB Hub with a virtual USB memory and a virtual
Rubber Ducky device with the above specification.

3. Study and find ways to defend against RubberDucky attacks on Microsoft Windows and
GNU/Linux operating systems.

4. Test the functionality of these techniques using your RubberDucky implementation.
5. Evaluate acquired results.

Literature:
• van Woudenberg, J., & O'Flynn, C. (2021). The Hardware Hacking Handbook: Breaking

Embedded Security with Hardware Attacks
• USB Specification 2.0, Dostupne z: https://www.usb.org/document-library/usb-20-specification
• USBCaptchaln: Preventing (un)conventional attacks from promiscuously used USB devices in

industrial control systems
• Hou, Hao-Hsun ; 2018, Method for Preventing BadUSB Attack
• NEUNER, Sebastian, Artemios G. VOYIATZIS, Spiros FOTOPOULOS, Collin MULLINER a Edgar

R. WEIPPL. USBIock: Blocking USB-Based Keypress Injection Attacks. In: Data and Applications
Security and PrivacyXXXII [online]. Cham: Springer International Publishing, 2018, s. 278-295
[cit. 2022-10-20]. ISBN 9783319957289. ISSN 0302-9743. Dostupne z: doi:10.1007/978-3-319-
95729-6J8

Requirements for the semestral defence:
1-2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Tamaskovic Marek, Ing.
Head of Department: Hanacek Petr, doc. Dr. Ing.
Beginning of work: 1.11.2022
Submission deadline: 10.5.2023
Approval date: 3.11.2022

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://www.usb.org/document-library/usb-20-specification
https://www.fit.vut.cz/study/theses/

Abstract
This thesis deals with computer security attack named BadUSB, implements an example
device (Rubber Ducky) and looks for a defense against these types of attack. M y task is
to analyze the functionality of Universal Serial Bus, communication between the host and
device and its shortcomings against BadUSB attacks. For that I implemented a composite
USB device on Raspberry P i Pico using an external open source library TinyUSB. And with
a working prototype I present reader a few possible defense mechanisms against these kinds
of devices and attacks on Microsoft Windows and G N U / L i n u x operating systems. The
contribution of this thesis is to warn people about the weakness of USB's plug-and-play
feature and the danger of connecting unknown USB devices to our computers.

Abstrakt
Tato práce se zabývá problematikou počítačových útoků typu BadUSB, implementací jed­
noho ze zařízení (Rubber Ducky) a následnou obranou proti těmto typům útoků. Mým
úkolem je rozbor funkcionality univerzální sériové sběrnice, komunikace mezi hostem a
zařízením a slabiny proti BadUSB útokům. Za tímto účelem jsem implementoval com-
posite (složené) USB zařízení při použití mikrokontroleru Raspberry P i Pico a externí
open source knihovny TinyUSB. S funkčním prototypem prezentuji čtenáři několik možných
ochranných mechanismů před těmito druhy útoků na operačních systémech Microsoft Win­
dows a GNU/L inux . Tato práce varuje lidi před nevýhodami USB funkce plug-and-play a
nebezpečím při připojování neznámých USB zařízení do našich počítačů.

Keywords
cyber security, USB, Rubber Ducky, BadUSB, Raspberry P i Pico W, TinyUSB, lwIP,
whitelist, pay load, scripting language, embedded device

Klíčová slova
kyberbezpečost, USB, Rubber Ducky, BadUSB, Raspberry P i Pico W, TinyUSB, lwIP, bílá
listina, payload, skriptovací jazyk, vestavěné zařízení

Reference
DO, Hung. Implement Rubber Duckies on Available USB Devices and Make a Practical
Test. Brno, 2023. Bachelor's thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Ing. Marek Tamaskovic,

Rozšířený abstrakt
Univerzální sériová sběrnice neboli zkráceně USB je populární periferie pro připojování
zařízení k počítači. Před vynálezem USB existovalo nespočet periferií s různými tvary
konektorů a protokolů. To dosti omezovalo jak uživatele, kteří mnohdy neměli potřebné
porty na počítači, tak i vývojáře, kteří se museli rozhodovat mezi použitím dostupných
periferií, nebo vytvořením nových. To vedlo k vývoji nové periferie a v roce 1995 byla
představena první specifikace USB rozhraní. Rozhraní podporovalo jak datový přenos, tak
i napájení. Novinku představovala vlastnost "plug-and-play" neboli "připoj a hraj", která
zjednodušila manipulaci s daným zařízením. Po zapojení do počítače je zařízení ihned
rozpoznáno a systém automaticky přidělí potřebné ovladače (drivery).

Bohužel tato jednoduchost a důvěra ve všem, co uživatel připojí do počítače skrze USB
rozhraní, přinesla nový druh malwaru. V roce 2014, na Black Hat konferenci ve Spojených
státech amerických, vědci ze Security Research Labs představili nový škodlivý útok nazvaný
BadUSB. BadUSB je USB zařízení, jehož starý firmware byl přepsán a jenž rozšiřuje vlast­
nost zařízení o novou funkcionalitu (např. klávesnici nebo síťovou kartu). Do zařízení se též
předem naprogramuje skript, který je uložen v nedostupné paměti, a po připojení zařízení
do počítače začne novou funkcionalitu vykonávat. Běžné antivirové programy nedokážou
tento typ útoku detekovat, a proto je tento malware velice nebezpečný.

Tato práce se zaměřuje na implementaci zařízení schopného vykonávat tento druh útoku.
Vychází z USB zařízení vytvořeného skupinou Hak5 jménem Rubber Ducky. K vývoji
byl použit jednočipový počítač Raspberry P i Pico řady W, který obsahuje W i - F i modul.
Implementace je rozdělena do dvou částí: první část je zaměřena na vygenerování firmwaru
pro Raspberry P i Pico a druhá část se zaměřuje na generování (útočných) skriptů a jejich
nahrávání na Raspberry P i Pico zařízení.

Software pro generovaní firmwaru je napsaný v jazyce C a pomocí Pico-SDK, TinyUSB,
lwIP a CYW43-driver knihoven. TinyUSB knihovna obsahuje funkce potřebné k definování
vlastnosti USB zařízení; v tomto případě chceme, aby se zařízení chovalo zároveň jako
klávesnice a zároveň paměťové médium. lwIP knihovna definuje funkce potřebné k vytvoření
T C P serveru pro možnou komunikaci s externím zařízením. A CYW43-driver knihovna
slouží k inicializaci W i - F i modulu na Raspberry P i Pico. Software též povoluje nastavení
automatického vykonávání příkazů stisku kláves ihned po zapojení zařízení do počítače,
nebo možnost opětovného vykonání skriptu pomocí tlačítka CapsLock na klávesnici.

Generování a nahrávání skriptů je napsané v jazyce Python. Uživatelé si vytvářejí svoje
skripty ve speciálně definovaném jazyce. Ty jsou pak předány programu, který provede
lexikální, syntaktickou a sémantickou kontrolu pomocí regulárního výrazu jazyka. Po kon­
trole mohou být data překonvertována bud do C zdrojového souboru, nebo jsou přeposlána
přes T C P spojení bezdrátově.

Druhá polovina práce se zaměřuje na otestování výsledné implementace, rozbor možných
škodlivých skriptů a testování dostupných obranných nástrojů na operačních systémech
Windows a G N U / L i n u x . Mezi programy byly zařazeny USBGuard a Kašpersky Security
Endpoint. Oba programy používají jiný přístup k potlačení útoku. Výchozí nastavení
USBGuardu blokuje všechna nově připojená USB zařízení a pro jeho zprovoznění je potřeba,
aby uživatel manuálně zařízení povolil. Kašpersky program na druhou stranu blokuje jen
zařízení, která se chovají jako klávesnice. Uživateli se po zapojení klávesnice na obrazovce
zobrazí okno, kterým provede autentizaci zařízení.

Hlavním přínosem této práce je upozornění společnosti na tomto druh útoku. Popisuje
jeho myšlenku, jak doopravdy funguje a jak se proti němu bránit. Implementací této práce

chci dát veřejnosti možnost experimentovat s modifikovaným zařízením a pochopit tuto
problematiku.

Implement Rubber Duckies on Available U S B De­
vices and Make a Pract ical Test

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Mr. Marek Tamaskovic. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

Hung Do
May 9, 2023

Acknowledgements
I would like to express my deepest appreciation to my supervisor Mr. Marek Tamaskovic,
for providing me with the opportunity to work on this very interesting topic and for his
advice throughout the writing of my thesis.

Contents

1 Introduction 3

2 Universal Serial Bus 4
2.1 History 4
2.2 USB topology 6
2.3 Enumeration 7
2.4 Descriptors 7
2.5 USB Device Classes and Human Interface Device 9

3 BadUSB 10
3.1 First appearance 10
3.2 BadUSB devices and attacks 11

4 Design and Architecture 13
4.1 Base device 13
4.2 Custom Rubber Ducky scripting language 14
4.3 Communication protocol 18

5 Implementation of Rubber Ducky-like device 22
5.1 Used third-party libraries 22
5.2 Rubber Ducky device 23

5.2.1 USB configuration 23
5.2.2 The keyboard 24
5.2.3 The mass storage 25
5.2.4 The payload 26

5.3 W i - F i Access Point and T C P Server 27
5.4 Language parser 29
5.5 Client application 30
5.6 Summary 32

6 Implementation evaluation 33

7 Malicious payloads 36

8 Testing defense mechanisms 38
8.1 Selected programs 38
8.2 Other defense mechanisms available 41

9 Conclusion 44

1

Bibliography

A Content of SD card

Chapter 1

Introduction

Universal Serial Bus (USB) is the most widely-used connector for modern computer systems.
It has replaced many older interfaces, such as parallel and serial ports, and has become the
standard for connecting devices such as keyboards, mice, printers, and storage devices to
computers. The main selling point of the USB interface was the introduction of a „plug-
and-play" feature which removes the need for the users to configure the device. Upon
connecting the device to the machine, the system automatically recognizes the device and
immediately assigns appropriate drivers.

Unfortunately, as the popularity of the interface grew, new types of malicious attacks
against USB began to emerge. In 2014, a group of researchers from Security Research Labs
announced a new kind of U S B malware called BadUSB. They demonstrated a USB device
with modified firmware that could spoof a keyboard, network card, and display. And this
type of malware is undetectable by conventional antivirus programs.

The main focus of this work is to design and implement this type of device on the
Raspberry P i Pico board, as well as to evaluate what the finished product is capable of.
Numerous defense mechanisms that have been created since the introduction of the malware.
So I tested my device against several of them to see how it performed.

The thesis aims to provide readers with an overview of the BadUSB attack security
issue so that they can better understand what makes them so dangerous, how they work,
and how to defend against them. M y implementation, therefore, gives readers a low-cost
and simple tool to work with the BadUSB device.

3

Chapter 2

Universal Serial Bus

Universal Serial Bus (also known as USB) is a peripheral interface used to connect external
devices to computers. It defines the specifications of cables, sets of protocols, the speed of
data exchange, and the way the host and the device communicate. It can also send power
to devices (for example, to charge smartphones).

In this chapter, we will discuss the interface's history, which dates back to 1995. Then
we analyze how the USB protocol is structured: how does the host learned about the device,
what the communication between the device and the host looks like, and what a USB device
needs to act as a keyboard. A l l the information about USB was drawn from a book USB
Complete by Jan Axelson [4].

2.1 H i s t o r y

Before the invention of the USB peripheral, countless kinds of ports were in any shape
and size. In the past, every peripheral had its own uniquely shaped connector, a protocol
through which it communicated with the computer, and a limited number of devices it
could run at once. And that brought many disadvantages.

First, computer manufacturers had to decide which ports to include in the final moth­
erboard. We could usually find ports like PS/2 for connecting keyboards and mice or V G A
connectors for connecting monitors on the old machines. But what if the user wanted to
attach a device (for example, a scanner or a printer) whose port was not on the machine?
They usually had to go outside, purchase dedicated cards, and manually install them after­
ward. That is something a person without computer experience might have struggled with.
And as for developers, during the development of new computer accessories, they had to
decide whether to use one of the existing interfaces but run into a risk of being stuck with
its original protocols that do not provide enough features the developer needs or design a
new interface which is very expensive.

That led to the development of a new interface. In 1995 a group named USB Imple­
mented Forum (also known as USB-IF) was formed by these seven companies: Compaq,
D E C , I B M , Intel, Microsoft, N E C , and Nortel. They aimed to create an interface with
these goals in their mind:

• Easy to use - The user doesn't need to configure and set up a device.

• Fast - To minimize the delay in communication between the host and device and to
be able to transfer

4

• Reliable - To lower the occurrence of errors and automatic error handling.

• Versatile - Many kinds of peripherals can use the interface.

• Inexpensive - So that the price of a final product can be as low as possible.

• Supported by all operating systems - To let developers effortlessly create new
drivers.

A year later, USB-IF released the first version of the USB interface called U S B 1.0.
The new interface allowed a user to connect different kinds of peripherals, such as printers,
keyboards, mobile devices, and much more, using a single, standardized interface socket.
It also lets the user connect and disconnect a peripheral whenever needed without turning
off a computer. And at last, a feature called „plug-and-play" was introduced. It shows the
simplicity of the USB - the user plugs the device into the computer and can immediately
use i t 1 .

But it wasn't until the introduction of USB 1.1 in 1998 that the interface started to
be widely used. In that year, the new operating system Windows 98 included support for
USB. Version 1.1 also introduced two speeds: Low Speed with 1.5 Mbps and Full Speed
with 12 Mbps.

Over the next 20 years, USB has been constantly being developed. In Apr i l 2000, USB
2.0 came out with a new maximum transfer rate of 480 Mbps. It was called High Speed.
Eight years later, in November 2008, USB-IF released a new specification for USB 3.0
with an even faster transfer speed of 5 Gbps (SuperSpeed USB) . As for the time of writing
this thesis, USB-IF has released the specification for USB4 2.0 with a maximum transfer
rate of 80 Gbps and power delivery of 240 W (48 V , 5 A) .

Host Controller
and

Root Hub

n n n n

T T
ernal I-

A

n n n n

External Hub
A

I

USB Device

H
T T
ernal I-

B

n n

External Hub
B

T J
ernal h

C

n n

External Hub
C

a
USB Device

E
USB Device

u u
USB Device USB Device

Figure 2.1: A n example of USB topology. A red line represents an upstream connection
and blue lines downstream connections.

1 Link to the article about USB history: https://www.intel.com/content/www/us/en/standards/usb-
two-decades-of-plug-and-play-article.html

5

https://www.intel.com/content/www/us/en/standards/usb-

2.2 U S B topology

USB communication requires two components to work: a host machine with USB support
and one or more USB devices. The host machine consists of a USB host controller,
which manages the communication on the bus, and a root hub, which connects external
USB devices and USB hubs to the host machine. Together they detect newly attached
devices and transfer requests from the host to the device. USB protocol supports up to 127
simultaneously connected devices, including hubs.

Every USB hub creates a star-shaped topology. It typically has two, four, or seven
USB ports. Each USB hub has one upstream-facing connector, which the devices use for
communicating with the host, and one or multiple downstream connections, each leading
to the USB sockets, which are the connected devices use to transfer data to the devices.
USB hubs can be connected in series, as shown in Figure 2.1.

Usually, the host machine initiates the USB communication, and the devices are required
to respond to incoming requests. The USB specification defines a list of request calls for
each device class that the host can send to the device. The device's chip must be able to
accept the request and adequately respond to them. That usually requires the device to
move data to a buffer to send it back to the host.

HOST HUB DEVICE

load drives ^ •

New device connected

Device uses "X" speed

Attached

Get speed

Reset device

Get_Descriptor(DEVICE)

_ _
Device descriptor

— •

Set_Address()

Get_Descriptor(CONFIGURATION)

W

û r Configuration descriptors
w

—
Get_Descriptor(INTERFACE)

<---
Interface descriptors

Figure 2.2: USB enumeration process in sequence diagram.

(i

2.3 E n u m e r a t i o n

The interaction between the host and the device starts when the device is connected to
the host machine. The host needs to identify what kind of device has been plugged in.
The process of learning the device's functionality is called enumeration. When the host
detects that a new device has been attached, it starts by requesting what speed the device
supports for communicating. Depending on the version of the USB, it can support low
speed, full speed, high speed, or SuperSpeed. The host sends multiple requests to retrieve
device descriptors and configuration data (more in Section 2.4). Once all information has
been pull, the host assigns an address and loads the device drives. Figure 2.2 depicts the
whole series of events.

2.4 Descr iptors

As mentioned in the previous section, the host uses an enumeration process to get all
descriptors from the device. The descriptors contain crucial information that describes
the capabilities of the device. Each device must have these four descriptors defined:

• device descriptor,

• configuration descriptor,

• interface descriptor,

• and endpoint descriptor.

Other types of descriptors are not required by the host. If a device supports multiple
speeds (full and high speed), it needs to define additional configuration descriptors for each
kind of speed (device_qualifier and other_speed_configuration). Another commonly used
descriptor is a string descriptor, which allows the host to retrieve descriptive text from the
device. Table 2.1 shows a shortened list of descriptor types with their corresponding byte
value used in the Get Descriptor request.

Descriptor type Value
device 0x01

configuration 0x02
string 0x03

interface 0x04
endpoint 0x05

device_qualifier 0x06
other speed_configuration 0x07

Table 2.1: Table of seven most used descriptors and their corresponding identification
byte value. In total, there are 18 descriptor types.

Device descriptor

Device descriptor is the first descriptor requested by the host requests upon connecting the
device to the host machine. It comprises device identification information such as Product

7

ID, Vendor ID, and Serial Number, as well as information that the host needs to get further
data such as Device Class or the number of configurations. The host retrieves this descriptor
using the Get Descriptor request with the parameter byte set to 0x01.

Configuration descriptor

After receiving the device descriptor, the host proceeds to retrieve configuration, interface,
and endpoint descriptors. The configuration descriptor specifies the device's functionalities.
The device can support multiple configurations based on the power use, but only one is
active at a given time. Each configuration holds information that tells the host how many
interface descriptors and endpoint descriptors are present in the response buffer. The host
retrieves this descriptor using Get Descriptor request with the parameter byte set to 0x02.

Interface descriptor

A n interface descriptor tells the host what the device is capable of doing. The descriptor
contains an interface class, subclass, protocol, and number of endpoints. The interface
class2 is what defines the device's functionality. Some interface classes (such as Human
Interface Device class, or shortly HID) require additional descriptors to be defined and sent
to the host. In the case of HID, its descriptor defines the format of a report which is HID
means of transporting data between the host and the device. The interface descriptors
and their subordinate descriptors are usually sent together with a configuration descriptor
request.

Endpoint descriptor

Finally, the endpoint descriptor defines information about the endpoint address. It contains
a direction (IN if data are sent to the host, and O U T if data are received from the host)
and transfer type. There are, in total, four transfer types:

Control This transfer is primarily used for standard requests, such as the Get Descriptor
request.

Interrupt Interrupt transfer is implemented on devices that need data to be sent to the
host as soon as possible. We can associate interrupt transfers with HIDs.

Bulk This transfer is usually used when the transferring speed is not critical, such as
sending data to the printer or reading/writing data to the disk.

Isochronous Isochronous transfer guarantees the delivery of data, but no error correction
is present. It is usually used to transfer audio and video in real-time. The device does
not re-transmit lost or corrupted data.

Every device must have Endpoint 0 configured for control transfer. The endpoint descrip­
tors and their subordinate descriptors are sent together with a configuration descriptor
request.

A n example of the device's descriptor structure can be seen in Figure 2.3.
2 A list of interface classes can be found here: https://www.usb.org/defined-class-codes

8

https://www.usb.org/defined-class-codes

Device
Descriptor Another Configuration Descriptor

Configuration
Descriptor

Interface
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Interface
Descriptor

HID Class
Descriptor

Report
Descriptor

Endpoint
Descriptor

Figure 2.3: A descriptor structure hierarchy of a USB composite device. A green box
marks data that can be retrieved with Get Descr ip tor (device) request and a red box is

retrieved with Get Descr ip tor (configurat ion) request. Yellow boxes highlight the
interface descriptor and its subordinate descriptors and blue boxes mark out endpoint

descriptors.

2.5 U S B Device Classes and H u m a n Interface Device

USB introduced device classes to group devices that provide similar functionality. A l l
cameras are designed to capture a video, and all speakers are made to play music. The
group can be identified by three bytes named: Base Class, SubClass, and Protocol. The
information is stored either in Device descriptor, Interface descriptor, or both 3 .

One of the classes is named Human Interface Device (or HID). Peripherals input devices,
such as keyboards, mice, or game consoles, are included in the class. Each device in this
class must define a report structure to communicate with the host. The host pulls this
structure during the enumeration phase. The report structure is very flexible, and the user
can easily create a new one for its custom device. The host periodically polls from the
device IN endpoint. When the device wants to send data to the host, it creates an instance
of the report filled with given data and sends it as a reply to the poll token. If not defined
differently, the host can send data to the device through the Set Report request using
control transfer (Endpoint 0).

'Defined class codes can be found here: https://www.usb.org/defined-class-codes

9

https://www.usb.org/defined-class-codes

Chapter 3

BadUSB

BadUSB is a computer security attack that targets peripherals that use USB interfaces.
This attack involves modifying a device's firmware to act as a different kind of device, such
as a keyboard or a network card. Unlike the usual USB-related attacks, which involve a
removable storage device to carry harmful executable files and immediately run them upon
plugging into the host machine, BadUSB attacks are immune against antivirus programs
since the actual code is stored inside an inaccessible section of memory.

3.1 F i r s t appearance

BadUSB was initially revealed in 2014 at the Black Hat conference in the USA. Three
security researchers from Security Research Labs, Karsten Nohl, Jakob Lell, and Sascha
Krifiler, presented a collection of proof-of-concept malicious software that highlighted the
security weakness of the USB[8]. They spent months patching the firmware of a thumb
drive by listening to the USB communication using a Wireshark 1 sniffing tool, decoding the
communication, and creating modified firmware. During the conference, they demonstrated
three devices. The first was an infected USB stick used to steal a sudo password on the
Linux systems, the second was a USB thumb drive that changed DNS settings in Windows,
and the third was an Android device that redirected the network traffic. A n original
presentation can be found here [15].

The team also briefly discussed a list of five potential defense ideas:

Whitelist USB devices Only selected USB devices will be allowed to communicate with
the host. Unfortunately, USB devices have no reliable identifier since not all have a
unique serial number. In 2018, Hessam Mohammadmoradi and Omprakash Gnawali
presented a work that deals with this problem[14].

Block critical device classes, block USB completely This will reduce the usability
of the USB interface. And only a few device classes can be used for abuse.

Scan peripheral firmware for malware Very difficult and not always possible.

Use code signing for firmware updates The main problem with this approach is that
billions of old devices that will remain susceptible.

Disable firmware updates in hardware A very simple and effective approach.
1 Link to official homepage: https://www.wireshark.org

10

https://www.wireshark.org

3.2 B a d U S B devices and attacks

In this section, we will discuss in detail some of the attacks that are related to the BadUSB.

Rubber Ducky

Rubber Ducky is a modified USB thumb drive designed by Hak5 group 2. The device
emulates a keyboard. The group created a scripting language called DuckyScript 3 that
is used to create a set of key presses in the form of a payload. The payload is then
compiled and stored on the microSD card of the Rubber Ducky device. Once the device is
connected to the computer, it will immediately execute the pre-defined keypresses. Another
reprogrammable board that can be used for the same purpose is a Teensy USB development
board 4.

BadAndro id

BadAndroid is a modified Android device designed to execute an attack over USB. The
device emulates a network card (USB Ethernet) which will alter the network routing of the
victim's machine. It can change the IP address of the default gateway to the IP address of
the Android device, meaning all the network traffic is routed through the Android device
(man-in-the-middle attack model). Or it can change the entries of the system's DNS server
and, therefore, redirects the communication to the server controlled by the attacker. This
attack requires the Android to be rooted 5.

B a d U S B Cable

BadUSB cables, such as USBNinja, resemble standard USB charging cables but contain a
programmable chip inside. They function similarly to the Rubber Ducky device by emu­
lating a keyboard and carrying a malicious payload 6.

B a d U S B - C

The concept of BadUSB-C was introduced in work by Hongyu L u and his team[13]. The
attack uses the Type-C connection's ability to transfer up to 10 Gb of data per second to its
advantage. They designed a device that functions as a keyboard and a video capture card.
Figure 3.1 below depicts the device's attacking mode. The device can wirelessly transmit
the victim's computer screen content and accept keyboard inputs from the attacker. This
device extends the capabilities of the standard BadUSB device by allowing the attacker to
see the screen content.

Other B a d U S B attacks concepts

A BadUSB device can also deliver an attack during the machine's boot phase. It can
override an existing computer BIOS with the one stored on the device. The machine will

2 Link to the product: https://shop.hak5.org/products/usb-rubber-ducky
3 Link to the documentation: https://docs.hak5.org/hak5-usb-rubber-ducky/duckyscript-tm-

quick-reference
4 Link to official homepage: https://www.pjrc.com/teensy/
5 Link to the source files: https://github.com/tst-zdouglas/BadAndroid
6https://mg.lol/blog/badusb-cables/

11

https://shop.hak5.org/products/usb-rubber-ducky
https://docs.hak5.org/hak5-usb-rubber-ducky/duckyscript-tm-
https://www.pjrc.com/teensy/
https://github.com/tst-zdouglas/BadAndroid
https://mg.lol/blog/badusb-cables/

KEY KEY

Victim's Devices

Commands

Video, Profile,
Attacker's PC y privacy,-

^ ~ USB 3.x Hub
J_ Video output 1" 1IID signals

1
Video Capture J

r
 >

HID Emulator

I ,
^ Video captured "1" Commands

Single Board Computer

((H
\ \ Data

Wi-Fi / GSM module

O Victim's Devices

O Attacker's Remote PC

Fig. 3: Attack Model.

B A D U S B - C

Figure 3.1: BadUSB-C's attack model [13].

then boot into the system inside the USB device. This method allows the attacker to
execute commands before the actual operating system is loaded. The USB device can also
be programmed to brute force the lock screen P I N on an Android phone7. The last example
is the ability to sniff data from the downstream USB traffic. So if a USB thumb drive is
connected to the same hub as the BadUSB device, the device can reconstruct a file that
was transferred to the USB thumb drive sent from the host machine.

7 Link to the payload written in DuckyScript: https://shop.hak5.org/blogs/payloads/android-pin-
brute-force

12

https://shop.hak5.org/blogs/payloads/android-pin-

Chapter 4

Design and Architecture

In this section, we analyze the key features of this project. The goal here is to break
down the whole problem into manageable parts, identify critical issues and come up with
a solution.

Since our device is based on Hak5's Rubber Ducky, it must support its main function­
alities. The device will be able to execute a series of keystrokes that are stored inside its
firmware. The software will provide an easy way to create, generate, and upload these
payloads. Together with a keyboard, the device will also include Mass Storage where the
users can store a shell basic script or executable file, which they can then run on the host
machine.

Figure 4.1: A picture of a Raspberry P i Pico W (the green board) connected to the
computer.

4.1 Base device

When designing a device capable of a BadUSB attack, the first thing to consider is which
device we should work on. The device needs to have a reprogrammable chip. We also wanted
a board that is publicly accessible, inexpensive, and easy to work with. After searching the
current market, we came across Raspberry Pi Pico, which matches our criteria. Raspberry

13

Pi Pico is a small board with an RP2040 microcontroller chip designed by Raspberry Pi
Foundation. Its purpose is to encourage people to learn programming and build hardware
projects without spending much money on the hardware itself. We chose a newer version of
Raspberry Pi Pico model W (seen in Figure 4.1) as it also comes with a built-in CYW43439
wireless chip that supports W i - F i and Bluetooth. That enables us to add a new use case to
our project. And with a well-documented S D K 1 and great support for third-party libraries,
this board is a perfect choice for us.

4.2 C u s t o m R u b b e r D u c k y scr ipt ing language

First, we need to think of a language that we will use to generate new pay loads. The
new language has to be intuitive and easy to write in. Since the only thing the devices can
produce is keystrokes, we need to find a way to represent each key available on the keyboard.
Luckily most (if not all) operating systems come with a keyboard driver preinstalled since
it is a commonly used device. For this reason, we don't need to write a driver for our
keyboard emulator. USB-IF created a table with a list of supported keys and their IDs 2 .
What that means is that we can build our language based on the IDs. That would be great
for the machines as all they have to do is upload it directly to our Rubber Ducky device
without any processing (apart from converting the ID values to bytes). But unfortunately,
that doesn't meet our criteria for the language to be easy to write. After all, typing
Oc 11 17 18 Oc 17 Oc 19 08 3 feels more like writing a cipher message than a payload.

<RD-SCRIPT>

<C0MMENT>
<DELAY>
<DELAY-VALUE>
<SPECIAL-COMBINATION>

<HOLD-VALUE>
<MODIFIERS>
<M0DIFIER>
<SPECIAL-KEY>
<SPECIAL-OR-MACRO>
<PRINTABLES>
<PRINTABLE>

= <COMMENTXRD-SCRIPT> I
<DELAYXRD-SCRIPT> |
<PRINTABLEXRD-SCRIPT> I
<SPECIAL-COMBINATIONXRD-SCRIPT> |
<E0L>

= "#" everything after t h i s i s ignored
= "<DELAY " <DELAY-VALUE> ">"
= p o s i t i v e whole number
= "<" <HOLD-VALUEXMODIFIERSXPRINTABLES> ">" I

"<" <HOLD-VALUEXMODIFIERS><SPECIAL-KEY> ">"
= po s i t i v e whole number "-" | ""
= <M0DIFIER> "-" <MODIFIERS> I " "
= modifier short a l i a s
= "\" <SPECIAL-OR-MACRO>
= special key name | macro name
= <PRINTABLEXPRINTABLES> I " "
= ASCII printable character

Figure 4.2: Language grammar in B N F notation

Another possible way is to map each ID to a key name. That will make it a lot more
human-readable. The only thing left to do is to find a way to tell the device to group a set
of keystrokes. Without this feature, we would not be capable of producing an upper case f
since it takes two keys to be pressed all at once: Shift and f keys.

X SDK stands for Software Development Kit
2The usage table can be found here: https://usb.Org/sites/default/files/hutl_ 4.pdf#chapter . 1 0
3 If you guessed the word intuitive you can call yourself a master of ciphers.

14

https://usb.Org/sites/default/files/hutl_4.pdf%23chapter.10

What I designed is a language inspired by a V I M key notation . Its grammar can be
represented with a B N F notation seen in Figure 4.2.

The language accepts two types of lexical tokens: printable keys and special combina­
tions.

Pr in tab le keys are a group of keys that can produce an ASCII printable character.
In total, there are 95 printable characters in the ASCII table ranging from 32, representing
a space character, to 126, representing a tilde character. However, there are only 48 keys
that directly produce a printable character. The second half of the keys also require a shift
modifier (the exception being a spacebar key which doesn't have a shift counterpart). So a
string He l lo World! produces the following list of keys seen in Figure 4.3:

shift+key_h, key_e, k e y _ l , k e y _ l , key_o, spacebar,
shift+key_w, key_o, key_r, k e y _ l , key_d, shi f t+key_l

Figure 4.3: Hello world! converted to key presses.

One note here: due to the wide variety of different keyboard layouts, the official key
mapping is only compatible with the US layout. That means that if the target's machine
uses a different keyboard layout than the US layout, some keys or key combinations will
produce a different string than expected. So, for example, with our machine's keyboard
layout set to the Czech Q W E R T Z , the following set of keystrokes will produce output that
the user probably didn't want:

Input: page_123.cz
US layout : page_123.cz
CZ layout : page°/ 0+es. cy

Figure 4.4: Comparing outputs between cs-CZ and en-US layout given the same input
string.

A Specia l combina t ion gives the user more control over the key presses. It extends
the functionality by adding features that cannot be executed using only printable keys. The
format of the special combination looks as follows:

"<" [special_combination_content] ">"

Figure 4.5: Special combination's content is wrapped in < and > symbols

There are four features that the user can define within the scope:

• waiting time between the keystrokes,

• pressing non-printable keys,

• pressing keys with modifiers with an option to set a holding time,

• force multiple printable key pressed simultaneously.
4 V I M (which is an acronym to V i IMproved) is a free open-source text editor. It is known among

programmers as a text editor filled with keyboard shortcuts which makes coding and writing much faster
and more efficient. Unfortunately, V I M has a steep learning curve making it not beginner-friendly. The
official documentation for V I M key notation can be found here: https: //vimdoc.sourceforge.net/htmldoc/
intro.html#key-notation

15

http://page_123.cz
http://page_123.cz
http://sourceforge.net/htmldoc/

W a i t i n g t ime or delay tells the device how long it has to wait before sending the next
series of keystrokes to the host. It is crucial, as omitting it, most of the pay loads would fail
since the device usually needs to wait until a GUI element loads or a file is downloaded. The
format of a delay command is defined as follows: <DELAY [delay_in_ms] >. A n example
usage of the delay command can be seen in Figure 4.6.

take <DELAY 5000> dave brubeck

Figure 4.6: In this example the USB device will type „take " string, wait 5 seconds, and
finish by typing the string „ dave brubeck".

Non-pr in tab le keys £1X6 5 ctS the name suggests, keys that don't produce any print­
able characters - in other words, all other keys. Of course, there are some notable excep­
tions. Even though Keypad_l or Keypad_Asterisk keys all produce a printable character
(' 1 ' , ' * ' respectively), they are not considered printable keys. The user has to explicitly
put them in the special combination format to execute them. To differentiate non-printable
keys from printable keys, a \ prefix is attached to the former. Figure 4.7 shows examples of
non-printable keys. The parser doesn't distinguish between uppercase and lowercase letters
(case-insensitive).

<\enter><\SPACEBARx\BackSpace><\arrow_upX\f 12><\numlx\volume_up>

Figure 4.7: Examples of non-printable key presses in custom Rubber Ducky script
language.

Other additions to non-printable keys are supports for modifier keys and holding time.
M o d i f i e r keys are special keys that temporarily alter the action of a Normal key (printable
or non-printable key) when pressed together. There are, in total, eight modifier keys:

• left and right A l t ,

• left and right Contro l ,

• left and right Meta (also known as Windows, Hyper, Super, or Command key depend­
ing on the operating system),

• left and right Sh i f t .

We have already encountered a modifier key when discussing printable keys. When we
press S h i f t key together with Key_s, the shift key changes the action of the s key to
output upper case S instead of the lowercase s it would generally output. We can also
associate modifier keys with keyboard shortcuts, the most famous one being alt+f4 to
close an active window on Windows or c t r l+s to save the content of a file. Modifier keys
usually do not produce any action when pressed alone (the Meta key being an exception), so
they are handled differently when sending keystrokes to the host's machine. In the special
combination format, modifier keys are placed before Normal keys, as seen in Figure 4.2.
Each modifier is identified by the location of the key followed by its starting letter - ' l a '
for Lef t A l t , ' r s ' for Righ tSh i f t, and more. If the user does not specify which one of the
keys is meant, the left one will be chosen implicitly - , m) will trigger LeftMeta, ' c ' will
trigger Lef tCon t ro l , and so on. Each key is then separated with a - separator.

H o l d i n g t ime, as the name suggests, defines how long a group of keys is meant to be
pressed before releasing, measured in milliseconds. The hold delay value is located at the

16

start of the special combination. This field is optional, and the implicit value is set to 0 if
not given.

The last thing the special combination scope supports is pressing multiple printable keys
at once. That is especially useful when the user wants to execute a keyboard shortcut that
contains two or more Normal keys. For example, we can use Visual Studio Code's 5 keyboard
shortcut for closing all files in the editor: Ctrl+k Ctrl+w. The language's equivalent of the
given keystrokes is <c-kw>.

There are some letters that would not work in this format, < and > being the case. For
that, I created a group of macro keys. A M a c r o key is an alias to an existing key. It
can be an alias to either the Normal key or modifier key and is treated the same way as
a non-printable key - it starts with an escape backslash character followed by the macro
name. So we can use <\gt> and <\lt> to produce < and >, respectively.

The last feature of the language is the ability to write comments. The comment grammar
is inspired by scripting programming languages such as Bash or Python. It starts with #
symbol, and the characters that follow this symbol are all ignored by the parser until the
end of the line. There are no multi-line comments support. If the users want to type a #
symbol, they put it into the special combination scope.

The following Listing 4.1 shows an example of a payload that highlights all the grammar
syntax of the language.

==
This i s a s i ng l e l i n e comment

l e t ' s open a te rmina l on Ubuntu us ing i t s keyboard shortcut
and wait 500ms for i t to open
<c-a-t><DELAY 500>

. . . now run a command
echo "he l lo wor ld!"

. . . i t doesn't work :(oh wait we must run i t f i r s t !
<\enter> # yay i t outputs h e l l o world!

l e t s run some c a l c u l a t i o n i n python now
python -c "a = 2<\enter><#> a = 4<\enter>print(a <\lt> 3)"<\enter>

the commands from above should produce something l i k e t h i s
$ python -c "a = 2
a = 4
p r i n t (a < 3)"

now l e t s f i n d the oldest command run on the machine!
hopeful ly 10 seconds w i l l be enough
<10000-\arrow_up><\enter>

that i s the end of our Linux te rmina l s c r i p t i n g 101 t u t o r i a l

5Visual Studio Code is a popular graphical text editor developed by Microsoft that supports extensions:
https: //code.visualstudio.com/

17

http://visualstudio.com/

Listing 4.1: Example payload in custom language.

4.3 C o m m u n i c a t i o n protocol

Since our development board supports W i - F i , we decided to create a communication pro­
tocol and a network application based on it. Let our Rubber Ducky device be the server
and our network application the client. We need to define use cases for each side. What
follows is a list of requests that we want the client to support:

• Notify the device (server) that the client will send a new payload.

• Send to the device a new series of keystrokes.

• Remove the last sent set of keystrokes.

• Retrieve keystrokes from the device.

• Start the stored payload execution.

The server, on the other hand, will have only two types of responses: an O K response,
which signalizes that the request was successfully processed, and an E R R response with
an error message when something unexpected happened while processing the request.

We created a communication protocol on L7 application layer6 with a diagram shown
in Figure 4.8, Figure 4.9, and Figure 4.11. We wanted to simplify the packet's structure
as much as possible. The packet header is 4 bytes long, and the rest being filled with the
packet's content (payload data).

Packet format

0 1 2 3

I OP CODE | RESERVED | PAYLOAD LENGTH |
+ — + — + — + — + — + — + — + — + — + — + — + — + — + — + — + — +

I PAYLOAD DATA |
/ /
+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+

Figure 4.8: Communication protocol's packet format used in the project.

The first byte of the header contains an operational code. It tells the server what
kind of action we are requesting. It also informs the client about the operation's result.
A l l operational codes are analyzed later in this section. The second byte in the header is
reserved due to structure padding in the C programming language [10]. The last two bytes
in the header store the size of the payload data. Two bytes here will give us values
ranging from 0 to 65 535, which should be enough to carry the payload.

Next, we can analyze the request packet structure. Our project supports nine operational
codes, as shown in Figure 4.9. We can divide them into four groups:

6More about Internet Network's ISO/OSI model here: https://www.ietf.org/rfc / r fc l l22.txt

18

https://www.ietf.org/rfc/rfcll22.txt

1. work with the USB device's (server's) inner read-write mode,

2. update device payload,

3. analyze the payload stored on the device,

4. run the payload.

Request

Operation codes and t h e i r values:

I op I opcode I payload I expected
I I name I size I value

I 01 I SET I
I I EDITABLE |

I 02 I GET I
I I EDITABLE |

I 03 I CLEAR DATA I
I I I

I 04 I PUSH DATA I

I 05 I POP DATA I

I 06 I GET DEBUG I
I I CURSOR I
I I I

I 07 I INC DEBUG
I I CURSOR

I 08 I RESET DEBUG I
I I CURSOR I

I 09 I RUN I
I I SEQUENCES I

I 00/01 01

00

00

Od

00

00

I key sequence

I description |
I I

I Enable/disable device I
I read-write mode |

I Check device's |
I read-write mode status I

I Clear device's |
I current payload |

I Send a new key sequence I

00

00 I

00

Remove l a s t key sequence | *

Retrieve a key sequence I
at the debug |

cursor's p o s i t i o n |

Move debug cursor to the I
next key sequence |

I Reset debug cursor's |
I p o s i t i o n |

I T e l l the device to start | **
I executing the payload I

* - device must be set to read-write mode to run t h i s command
** - device must be set to read-only mode to run t h i s command

Figure 4.9: Set of request's operational codes, their payload, and description.

The first two operational codes fall under the first group. Their purpose is to change
or check whether the device is currently in read-write mode. Other actions will depend on
it. SET_EDITABLE (0x01) sends a single-byte payload of 0x00, which will set the device to
read-only mode, or 0x01, which will switch the device to read-write mode. GET_EDITABLE
(0x02) retrieves the current mode present on the device.

The second group's functionality is to alter the payload stored on the device. It is
required for the device to be in read-write mode. Otherwise, the device will respond with

19

an error message, and the action will be ignored. CLEAR_DATA (0x03) action removes the
current payload from the device. PUSH_DATA (0x04) uploads a new key sequence to the
device. The payload should contain the key sequence data already reshaped to the desired
format expected by the device 7. P0P_DATA (0x05) removes the last inserted key sequence.
Users can retrieve it from the server response payload.

0 1 2 3 4 5 6 7

I DELAY | MDFR | RESV | KEY1 | KEY2 |

I KEY3 I KEY4 | KEY5 I KEY6 I LAST |

Figure 4.10: Key sequence format.

The third group contains actions that serve as a debug tool for the user. The debug
cursor always starts at the beginning of the series. A request with GET_DEBUG_CURS0R (0x06)
will retrieve a key sequence that is under the cursor. To get the following key sequence, the
user needs to send INC_DEBUG_CURS0R (0x07) request, which moves the cursor to the next
one (if available). Finally, the RESET_DEBUG_CURS0R (0x08) request moves it back to the
beginning.

The last operation on the list is RUN_SEQUENCES (0x09) request. As the name suggests,
this request will start executing the payload on the device. The only requirement here is
that the device must be in read-only mode.

Now, we can analyze the last two operation codes, which we can see in Figure 4.11.
They are response codes that the server uses to answer incoming requests from the client.
The OK response is generated when the request has been successfully proceeded. It can carry
some data depending on the received request (for example, key sequence data as an answer
to P0P_DATA or device mode when received GET_EDITABLE). The other type of response is
ERR which is generated when an error has occurred during the request processing. This
response will always carry the error message in its payload.

Response

I op I name | payload_len | d e s c r i p t i o n | payload |

I Oa I OK I va r i e s | Request was success fu l ly | data from |
I I I I processed | server |

I Ob I ERR I va r i e s | Request was not c o r r e c t l y | e r ror |
I I I I processed | message |

Figure 4.11: Set of responses, their content, and description.

7The expected format can be seen in Figure 4.10. It is a 13 bytes long structure where waiting delay
occupies the first 4 bytes, followed by a 1 bitmap of modifiers (MDFR), a reserved byte, 6 keyboards key IDs
(see Section 4 .2) , and a LAST byte, which indicates that this key sequence will be the last one in the series.

20

Let's end this section with a data flow diagram showcasing a possible communication
between the server (device) and the client (user) shown below in Figure 4.12:

User Rubber Ducky

Client Server

Create a TCP connection

ACK

CLEAR DATA

ERR (device not in read-write mode)

GET EDITABLE

OK (0x00)

SET_EDITABLE (0x01)

OK

CLEAR_DATA

OK
PUSH_DATA (delay=0, mdfr=0,keys=[ENTER], last=0)

OK
PUSH_DATA (delay=500, mdfr=0,keys=[], last=0)

OK

SET_EDITABLE (0x00)

OK
RUN SEQUENCES

OK

T T

Figure 4.12: Example of the communication between the client and the server. In this
example, the user sends two key sequences to the device: <\enter><DELAY 500>. We can
also see the user making a mistake at the beginning of the communication by sending a

CLEAR_DATA request when the device is still in read-only mode.

21

Chapter 5

Implementation of Rubber
Ducky-like device

The purpose of this section is to familiarize the reader with the actual structure of this
project. The goal here is to show the reader how each section of the software is implemented.
The design from Chapter 4 will serve as our source, and all implemented parts of this project
will be based on it.

The first half of the chapter is dedicated to the Rubber Ducky software, which I wrote
using C programming language. A l l the source codes are present in the rubber_ducky
directory. The second half of the chapter deals with the Rubber Ducky scripting language
and the client application for which I used Python, and the code is located in the r d _ c l i e n t
directory.

5.1 U s e d t h i r d - p a r t y l ibraries

This project was developed using four open-source an S D K and libraries:

pico-sdk The Raspberry P i Pico S D K (henceforth the SDK) provides the headers, libraries
and build system necessary to write programs for the RP2040-based devices such as
the Raspberry P i Pico in C, C++, or assembly language.1

cyw43-driver A n open-source library which implements a driver for CYW43xx W i - F i / B T
SoC. 2

TinyUSB TinyUSB is an open-source cross-platform USB Host/Device stack for embed­
ded systems, designed to be memory-safe with no dynamic allocation and thread-safe
with all interrupt events deferred and then handled in the non-ISR task function.3

lwIP lwIP library is a small independent implementation of the T C P / I P protocol suite.
The focus of the lwIP T C P / I P implementation is to reduce the R A M usage while still
having a full-scale T C P . 4

x https: //github.com/raspberrypi/pico-sdk
2 https: //github.com/georgerobotics/cyw43-driver
3 https: //github.com/hathach/tinyusb
4 https: //github.com/lwip-tcpip/lwip

22

5.2 R u b b e r D u c k y device

This section gives an overview of how the Raspberry P i Pico firmware section is imple­
mented. The class diagram can be seen in Figure 5.1.

memory_disk: static uint8_t**

tud_msc_read10_cb(...): int32_t
tud_msc_write10_cb(...): int32_t
tud_msc_inquiry_cb (...): void
tud_msc_test_unit_ready_cb(...): bool

Hud_msc_capacity_cb(...): void
tud_msc_start_stop_cb(...): bool

>• tud_msc_scsi_cb(...): int32_t

enum interface_t
ITF_NUM_HID=0
ITF_NUM_MSC=1
ITF NUM TOTAL=2

config.h

> #CFG_TUD_HID
KEYPRESS_DELAY_MS
#CFG_TUD_MSC
#WIFI_ENABLE
#WlFI_SSID
WIFI_PSVUD
_TC_SERVER_PORT
DEBUG_CAPS_LOCK
AU TO START_ AFTE R_PL U G G IN
_IN ITIAL_BOOT_DELAY

A UTOM ATA_C ON TEN T
README_CONTENT
AUTOSTART
BYTES_PER_SECTOR
NUM_OF_SECTORS
_REPORT_LENGTH
#FILE_SIZE(_size)
+ is_ejected: bool
- enable_key_seqv: bool

+ get_enable_key_seqv(): bool
+ set_enable_key_seqv(bool): void
+ active_delay(uint32_t): void

I
hid_report: const uint8_t*

+ tud_hid_descriptor_report_cb{...): uint8_t const"
+ tud_hid_get_report_cb(...): uint16_t
+ tud_hid_set_report_cd(...): void
+ tud_hid_report_complete_cb(...): void
+ tud_mount_cbO: void
+ tud_resume_cb(): void

usbdescriptors.c
>• desc_device: tusb_desc_device_t const
^esc_config: tusb_desc_configuration const

^esc_itf_hid: tusb_desc_interface_t const
i-desc_hid: tusb_hid_descriptor_hid_t const
^esc_ep_hid: tusb_desc_endpoint_t const

>• desc_itf_msc: tusb_desc_interface_t const
^esc_ep_msc_in: tusb_desc_endpoint_t const
desc_ep_msc_out: tusb_desc_endpoint_t const

config_buffer: uint8_t *
string_descriptor: char **
desc buffer: uint16 t *

Hud_descriptor_device_cb(...): uint8_t const *
Hud_descriptor_configuration_cb(...): uint8_t const *
Hud_descriptor_string_cb(...): uint16_t const *

CYW43-driver

Figure 5.1: RubberDucky module U M L class diagram.

5.2.1 U S B configuration

In the first part, I needed to configure the USB device for the enumeration process. TinyUSB
library requires tusb_conf ig .h header file, which defines configuration macros, such as
CFG_TUD_ENABLED, to set the device as a „device" and not as a „host" or CFG_TUD_HID,
defining how many HID configurations the device will have, and more. Part of the configu­
ration is moved to conf ig .h header file. This file contains macros that the user can freely
edit, con f ig .h is imported to tusb_conf ig .h afterwards.

Next, I had to configure the Raspberry P i Pico board to behave like a keyboard and mass
storage. As mentioned previously in Chapter 2, the host identifies the USB device's identity
by retrieving its descriptor and configurations. TinyUSB defines 3 callback functions for
that:

1. tud_descriptor_device_cb - A callback function which the host uses to retrieve
device descriptor.

2. tud_descriptor_conf igurat ion_cb - A callback function which the host uses to
retrieve every configuration descriptors present on the device. It also includes interface
descriptors, device class descriptors (if exists), and endpoint descriptors.

23

3. tud_descr iptor_st r ing_cb - A callback function which the host uses to retrieve
string descriptors based on the index.

usb_descr iptors . c defines all three callback functions. I created instances of descrip­
tors with the structures provided by the library and wrote each callback function's logic to
return a pointer to those instances (see an example in Listing 5.1).

/ / device descr ip tor
tusb_desc_device_t const desc_device = {

.bLength = s izeof(tusb_desc_device_t) ,

.bDescriptorType = TUSB_DESC_DEVICE, / / DEVICE constant

.bcdUSB = 0x0110, / / USB1.1

.bDeviceClass = 0x00,

.bDeviceSubClass = 0x00,

.bDeviceProtocol = 0x00,

.bMaxPacketSizeO = CFG_TUD_ENDP0INT0_SIZE,

/ / l i s t of vendors found here: h t tp : / /www. l inux-usb .o rg /usb . ids
.idVendor = OxDODO, / / vendor 's i d (must be unique)
. idProduct = OxCAFE, / / product i d (must be unique wi th vendor)
.bcdDevice = 0x0100, / / ve r s ion

. iManufacturer = 0x01, / / s t r i n g index of manufacture name

. iProduct = 0x02, / / s t r i n g index of product name

.iSerialNumber = 0x00,

.bNumConfigurations = 0x01 / / number of conf igura t ion
};

// . . .

uint8_t const * tud_descriptor_device_cb() {
re turn (uint8_t const *) &desc_device;

}

Listing 5.1: Definition of the device descriptor and its callback function used in
usb_descr ip tors .c .

5.2.2 The keyboard

Since a keyboard is classified as a human interface device (HID), I had to define its report
structure. That is defined in usb_reports. c file. A keyboard report consists of three parts:

1. a modifier bitmap, which is sent to the host,

2. an L E D bitmap, which is received from the host,

3. and up to 6 keycodes, which are sent to the host.

I created a large byte array named hid_report , loaded it with the report byte codes. Then
I defined the required HID callback functions. To ease myself during the testing of the

24

http://www.linux-usb.org/usb.ids

device, I added a debugging feature. If the user turns the Caps Lock L E D on and off, the
device will start executing the payload again. The algorithm is simple and can be seen in
Listing 5.2. In order for this to work, the user needs to set a DEBUG_CAPS_LOCK macro to 1
in the conf ig .h header file.

vo id tud_hid_set_report_cb(uint8_t ins tance , u in t8_t r e p o r t _ i d ,
hid_report_type_t report_type,
u int8_t const* buf fe r , u i n t l 6 _ t bufs ize) {

/ / ignore t h i s request
(void) ins tance;
(void) r epo r t_ id ;
(void) report_type;
(void) buffer ;
(void) bu f s i ze ;

#if DEBUG_CAPS_LOCK
i f (buffer == NULL | | bufs ize <= 0)

re tu rn ;
i f (report_type != HID_REP0RT_TYPE_0UTPUT)

re tu rn ;

/ / reset key sequence af ter the caps lock LED
/ / s tate changes from on to off
i f (caps_lock_led_on && !(buffer [0] & KEYB0ARD_LED_CAPSL0CK)) {

key_seqv_reset_index_counter(false);
i f (!get_enable_key_seqv()) {

set_enable_key_seqv(true);
}

}

caps_lock_led_on = buffer [0] & KEYB0ARD_LED_CAPSL0CK;

#endif
}

Listing 5.2: A snippet of code which implements the payload re-execution.

5.2.3 The mass storage

Mass storage configuration is located, surprisingly, in msec file. TinyUSB library requires
six callback functions to be defined for the mass storage device to run:

• tud_msc_readlO_cb - Returns a content of a memory sector given an address of the
sector.

• tud_msc_writelO_cb - Updates a content of a memory sector given an address of
the sector.

• tud_msc_inquiry_cb - Returns Vendor ID, Product ID, and Product revision number
of the device.

• tud_msc_test_unit_ready_cb - Returns true allowing the host to read and write on
the device.

25

• tud_msc_capacity_cb - Determines a disk size.

• tud_msc_scsi_cb - Defines the logic of other SCSI commands.

Unfortunately, due to Raspberry P i Pico's lack of onboard nonvolatile memory, I had to
write a static file system from scratch. I chose a FAT12 file system since it is one of the
simplest file systems out there, and, for the proof of concept, a sufficient one. The content
of the file system is stored in the memory_disk array, which emulates a physical disk. It
is represented as a two-dimensional array where the first dimension emulates an array of
sectors, and the second being the sector^ itself. The first sector contains a boot table,
the second is a F A T table, the third is a root directory, and the rest of the disk is filled
with file contents. Each part of the file system is described in [12].

5.2.4 The pay load

The keyseqv directory manages both the payloads and its A P I . Each key sequence is
represented by a key_seqv_t structure which can be seen in Figure 5.2. It contains three
members: a delay that will be applied after sending the report to the host, the report
with key presses, and a last i t em flag that tells the device not to send any report after this
one. The whole payload is stored in key_seqvs array and defined in key_seqv_scr ipt . c
source file. This file can be generated by r d _ c l i e n t script.

1
TinyUSB

keyseqv

key_seqv

• key_seqv_index: s i z e j

• key_seqv_index_debug: s i z e j

• read_write: bool

• key_seqv_len: int

*• key_seqv_reset_index_counter(...): void

• key_seqv_increase_counter(...): void

• key_seqv_get_report(...): bool

• key_seqv_debug_report(...): s i z e j

• key_seqv_set_mode(...): void

• key_seqv_is_read_write(): bool

• key_seqv_push_report(...): bool

• key_seqv_pop_report(...): bool

• key_seqv_clear(): bool

• key_seqv_get_len(): int

• key_seqv_run_sequences(): void

key_seqv_script

+ key_seqvs: key_seqv_t [

struct key_seqv_t

+ delay: uint32J

+ report: hid_keyboard_report_1

+ last item: bool

Figure 5.2: Keqseqv module U M L class diagram.

Lastly, the key_seqv. c source file defines all the functions that operate directly with the
key_seqv_t structure. That includes functions that update the payload content through
the server's A P I (more in the next section) and those that are used for executing the pay-
load. The two most important functions here are named key_seqv_increase_counter,

5 A sector is an elementary storage unit. It is the smallest number of bytes that the host can retrieve
from the disk.

26

which moves the cursor index to the following item (key sequence) in the array, and
key_seqv_get_report, which retrieves the current report from the array.

Putting these last two functions together, we can see the pseudocode of the core algo­
rithm of executing the payload in Algorithm 1 shown below:

A l g o r i t h m 1: Payload execution algorithm
Input : cursor, key_seqvs

device initialization:
while true do

process USB device tasks:
retrieve an item from key_seqvs at cursor's position:
i f execution not enabled or item is empty then

delay = 0:
report = empty report:
send a report to host:

else
delay = item.delay:
report = item.report:
send a report to host:
i f report sent successfully then

increase the cursor position in key_seqvs:
wait delay before executing next key sequence:

end
end

end

5.3 W i - F i Access P o i n t and T C P Server

To run a server, we need two things: a port and an IP address of the server. But first, the
Raspberry P i Pico device has to share the same network with the client machine. There
are two ways to achieve this: the device can connect to the local W i - F i during the booting
process or create an access point and let the client connect to its W i - F i network. I chose
to implement the latter one. The advantage of having the device being an access point is
that the server IP address is known - it is the IP address of the network's gateway. The
disadvantage is that I need to implement a D H C P server6 to have a functional network.

For the device to act as an access point, the user needs to set WIFI_ENABLE macro,
network's SSID (or simply a name), and password, all in conf i g . h header file. Once done,
Raspberry's software will call cyw43_arch_enable_ap_mode during the initialization phase.

After the access point is running, the T C P servers for D H C P and our application are
initialized. They are all defined in the rd_server directory seen in Figure 5.3. The source
codes for the D H C P server are taken over from Raspberry P i Pico's example page7. We

6 D H C P (Dynamic Host Configuration Protocol) is a network management protocol used to dynamically
assign an IP address to any device, or node, on a network, so it can communicate using IP (source: https:
//www. techtarget.com/ sear chnetworking/def i n i t ion/DHCP)

7 D H C P server source codes: https://github.com/raspberrypi/pico-examples/tree/master/pico_w/
wifi/access_point

27

http://techtarget.com/
https://github.com/raspberrypi/pico-examples/tree/master/pico_w/

server data t

+ pcb: struct tcp_pcb

network data t

+ mask: ip_addr_t

+ gateway: ip_addr_t

request_process

+ set_editable_pl{...): size_t

+ get_editable_pl{...): size_t

+ clear_data_pl{...): size_t

+ push_data_pl{...): size_t

+ pop_data_pl{...): size_t

+ get_debug_cursor_pl{...): size_t

+ inc_debug_cursor_pl{...): size_t

+ reset_debug_cursor_pl{...): size_t

+ run_sequences_pl{...): size_t

+ unknown_opcode_pl{...): size_t

+ too_big_pl{...): size_t

Iwipopts.h

tcp_server

+ init_server{...): bool

+ close_server{...): void

- accept_cb{...): static err_t

- err_cb{...): static void

- sent_cb{...): static err_t

- poll_cb{...): static err_t

- recv_cb{...): static err_t

- close_connection{...): static err_t

packet_t

+ op_code: uint8_t

+ reserved: uint8_t

+ payloadjen: uint16_t

+ payload: uint8_t [

> 1
keyseqv

Figure 5.3: R D Server module U M L class diagram.

initialize the D H C P server by providing the network's gateway and mask (see Listing 5.3).
There is no DNS server in this network since we only want to create communication between
the USB device and a client's application, and that can be running in the isolated private
network.

i n t main() {
/ / . . .

/ / define network's IP range
s t ruc t network_data_t nd;
IP4_ADDR(ip_2_ip4(&(nd.gateway)), 192, 168, 4, 1);
IP4_ADDR(ip_2_ip4(&(nd.mask)), 255, 255, 255, 252);

dhcp_server_t dhcp_server;
dhcp_server_init(&dhcp_server, &(nd.gateway), &(nd.mask));

// . . .
}

Listing 5.3: A basic network configuration used in the project. In this case, the IP address
of the network is 192.168.4.0/30.

There are two source files that deal with our server application: tcp_server and
request_process. The former defines a T C P socket server using the lwIP library, and
the latter defines functions that process requests. The server waits for the connection.

28

Once it has been established and the server received a request, it extracts its opcode and
calls the corresponding function from request_process. The generated response is then
sent back to the client.

5.4 Language parser

This section describes how the parser of the language, defined in Section 4.2, works. Both
lexical and syntax analysis of the input is done using regular expression in KeySeqvParser
class8. I use groups in the regex pattern (seen in Figure 5.4) to extract data from the input
string. First, the program cycles through the input lines from the file or STDIN. Each line's

«DELAY (\ d +) » I (<((?: (\d+)-)?((?: [a-zA-Z] {1,2}-)*) (\ \)?([~<>\s]+))» I (#.*) I ([—])

Figure 5.4: Language's regex pattern.

content is then passed to the parse_l ine function, where it is normalized and added to the
l o f _keyseqvs list for later processing. The parsing algorithm can be seen in Algorithm 2.

A l g o r i t h m 2: Processing the input

key sequence = empty key sequence:
foreach line in input do

check l i n e string and extract all groups:
foreach group in groups do

i f key sequence is full then
add key sequence to lof_keyseqvs:
initialize empty key sequence:

end
fill data from group to key sequence:

end
/ / s tore the l a s t pending key sequence i f e x i s t s
i f key sequence is not empty then

add key sequence to lof_keyseqvs:
end
set last key sequence item in l o f _keyseqvs to last:

end

The class KeySeqv contains information about a single key sequence. It is the same
structure as a key_seqv_t structure we can find in the Rubber Ducky system (see Sub­
section 5.2.4). The class also contains a to_bytes method which converts the object's
content to a series of bytes that complies with the key sequence byte format described in
Figure 4.10.

Parser module also implements exception classes for each error case in e r ror .py . Fig­
ure 5.5 depicts their hierarchy. A l l exceptions derive from the base class ParserError . Six
lexical and syntax errors with their corresponding class names are listed below:

8This regex pattern was inspired by this project: https:/ /github.com/lydell/vim-like-key-notation

29

https://github.com/lydell/vim-like-key-notation

UnknownModif ierError

NonReadableCharacterError

Shif tToggleWithPrintableKeysError

KeySequenceSizeExceeded Error

SpecialSequenceShiftToggleError UndefinedSpecialKeyNameError

Figure 5.5: Parser exception hierarchy.

NonReadableCharacterError The script contains a character that is not in ASCII en­
coding or is not printable.

SpecialSequenceShiftToggleError Normal keys in special combination uses Sh i f t key
inconsistently.

UnknownModifierError The special combination contains an unknown modifier.

UndefinedSpecialKeyNameError Special key or macro key used in special combination
is not recognized by the program.

KeySequenceSizeExceededError The number of simultaneously pressed keys exceeded
the maximum limit.

ShiftToggleWithPrintableKeysError The use of printable keys and S h i f t key in spe­
cial combination is forbidden.

The whole parser module can be seen in Figure 5.6.

5.5 Cl ient appl ica t ion

There are two modes to run the client application:

CLI mode is a C L I application for creating static payloads. It converts the keystrokes
written in Rubber Ducky language to a C source code. The user can use it to replace
the existing rubber_ducky/keyseqv/key_seqv_script. c file.

Network mode is a C L I application for deploying payloads on the USB device wirelessly
using sockets.

Both frontend applications classes (CliMode and NetworkMode) derive from that base class
BaseMode as seen in Figure 5.6. Both process the input script in the similar way. They create
an instance of KeySeqvParser class and feed it with the input data described in the previous
section. What differentiate them apart is how they handle the processed data. CliMode
generates a new C source code file on the STDOUT or output file if given. NetworkMode, on
the other hand, creates a T C P connection with the server and performs a series of requests
where it sets the USB device to read-write mode, sends PUSH_DATA requests for each key

30

rd_cl ient

verbose: bool

lo f_keyseqvs : Mst[KeySeqv]

((enumerat ions
G r o u p s

t + parse_l ine(. . .) : None

- n e w _ s e q u e n c e _ s t r u d u r e () : None

create_ log(. . .) : None

log_seqv_content (. . .) : None

push_p ress_and_ re leaseO: None

+ dea r_ lo f _keyseqvs () : None

i- se t Jas tQ : None

m a p p i n g s , py

• M O D I F I E R _ M A P : d i d

• M A C R O _ K E Y S : d i d

• S P E C I A L _ M A P : d i d

• N O R M A L _ T O _ K E Y _ M A P : diet

• S H I F T _ T O _ N O R M A L _ M A P : d i d

• M O D I F I E R _ I N D E X _ M A P : list

• K E Y _ T O _ V A L U E _ M A P : d i d

KeySeqv
- delay: int

• modi f iers: l ist[Modif ier]

• keys: l ist[Key]

- last: bool

+ to_bytes(. . .) : bytearray

Z ~ 3
((enumerat ions

K e y
((enumerat ions Modifier

a p p _ m o d e

- p rocess_argsO: dict[str, Any]

+ ge t _modeO: B a s e M o d e

verbose: bool

+ run(...): int

l o g _ m s g (. . .) : None

#d i sp lay_nonve rbose_e r ro r _msg (. . .) : None

in_f: Text IO | Text lOVWapper

out_f: Text IO | Text lOVWapper

N e t w o r k M o d e

in_f: Text IO | Text lOVWapper

host: str

port: int

f o r m a t _ r e c v _ m s g (. . .) : str

f o r m a t _ s e n t _ m s g (. . .) : str

«enunierat ion»
O p e r a t i o n C o d e s

P a y l o a d F o r m a t E r r o r
+ create_pay load(. . .) : bytearray

Figure 5.6: R D Client module U M L class diagram.

sequence stored in KeySeqvParser, then sets the device back to read-only mode, and finish
it off by sending a RUN_SEQUENCES to start executing the payload.

The user can choose the mode by giving the application the corresponding parameter,
-n/—network flag will toggle the network mode. Otherwise, a CLI mode is run by default.
A l l of this is handled in get_mode function in u t i l s . p y (shown in Listing 5.4). Lastly,
the user can also toggle an option to generate logs by adding -v/—verbose flag. That is
handled using Python's standard logging library.

module rd_c l ien t .app_modes .u t i l s

def get_mode() -> BaseMode:
Factory funct ion that returns AppMode based on given arguments.

args = process_args()

re tu rn se lec ted mode
i f a rgs['ne twork '] :

communication wi th RubberDucky us ing network (wi f i)
re turn NetworkMode(args[' input '] , a r g s [' p o r t '] ,

args [' h o s t '] , a rgs ['ve rbose '])
c l i s c r i p t pars ing to C - f i l e source code

31

re turn C l i M o d e (a r g s [' i n p u t '] , a r g s [' o u t p u t '] , args ['verbose '])

Listing 5.4: This snippet of code shows how the frontend mode is chosen.

5.6 S u m m a r y
The diagram in Figure 5.7 below summarizes how the Rubber Ducky and client application
work. The left one shows the steps the Rubber Ducky device needs to execute before
processing the payload. The diagram on the right displays the communication data flow
between the client and the server when the user runs NetworkMode.

enable_key_seqv=1

. J

CRetrieving a key
sequence

/ Sending the key
\. sequence to the host

Client Server request_process

SET_EDITABLE(1)

PUSH_DATA(..

PUSH_DATA{...)

SET_EDITABLE(0)

RUN_SEQUENCES

OK
close connection

decoded request

2 "

decoded request ^ -1-

decoded request

P insert new
key sequence

P insert new
key sequence

decoded request r-

read_write=0

decoded request r-

j |ei key_seqv_index=0
nable_key_seqv=1

Figure 5.7: Rubber Ducky's state machine and client-server communication data flow.

32

Chapter 6

Implementation evaluation

In this section I will briefly evaluate my implementation of the Rubber Ducky device. When
we connect our device to the machine, the operating system immediately recognizes it as
a composite device, and the file system is correctly mounted (shows both „Automata.txt"
and hidden „.README.md" files). We can check it by opening Device Manager on Win­

dows (or running lsusb command on Linux systems). The Vendor ID and Product ID of
the device can be seen in Figure 6.1. Both values correspond to the values specified in
usb_descr ip tors . c source file.

JSB Composite Device Properties

General Driver Details Events

USB Composite Device

Property

Hardware Ids

JSB Mass Storage Device Properties

General Driver Details Events Power Management

USB Mass Storage Device

Property

Hardware Ids

USB\V1D_DODOSPID_CAFE&REV_0100
U 3 B M D_ DODOSPl D_CAFE

U£BWID_DODOSPID_CAFEŮREV_0100ŮMI_01
USBMD DODOSPlD CAFEŮMI_01

HID Keyboard Device Properties

Details Events Power Management

HID Keyboard Device

Property

Hardware Ids

HID\VID_DODOSPID_CAFE&REV_010rjaMI_00
HIDWID_D0O04PID CAFEŮML0O
HID\VIDJ3ODQSUP;00Ot_U;QQQ6
HID_DEVlCE_SYSTEM_KEYBOARD
H ID_ D EV1CE_UP:0001 _U: DO 06
HID_DEVICE

Figure 6.1: Composite device info in Device Manager. OxDODO value for Vendor ID and
OxCAFE value for Product ID.

The algorithm used to generate the payload is designed to produce as few key sequences
as possible (if possible, it will send six keys in one report). Based on the KEYPRESS_DELAY_MS

33

constant, we can test how fast and accurate the device can type. That was tested using the
TUI application t t 1 . We prepared two test payloads: one with regular three paragraphs
long Lorem Ipsum text (2884 characters) and the other with a randomized list of printable
ASCII characters (2800 characters)2. The mass storage driver was disabled for this test case.
Table 6.1 below shows an average typing speed of 20 tests. We can see that the device's ac-

KEYPRESS DELAY MS
L o r e m Ipsum R a n d o m i z e d text

KEYPRESS DELAY MS
W P M A c c u r a c y W P M A c c u r a c y

0 6590.8 99.719 % 2625.05 93.607 %
10 2641.1 99.957 % 1128.5 99.6285 %
20 1321.5 99.981 % 566.1 99.942 %
50 528.95 99.9985 % 226 100 %
80 329.95 100 % 141 100 %

Table 6.1: Typing speed based on the KEYPRESS_DELAY_MS constant value. Testing was
conducted on Fedora Linux 36 (Th i r ty S i x) ; ke rne l 6.2.9 operating system with

A M D Ryzen 7 4700U process and 16 G B of R A M .

curacy decreases as it types faster. Our Rubber Ducky device struggled a lot on the Fedora
system when executing the randomized text at the highest speed, with an average accuracy
of less than 94 %. It made most of the mistakes when the Shift key modifier was not properly
turned on or off. The table also shows that randomized text slowed typing speed by approx­
imately 2.3 times. We later discovered that running the device on a differently configured
system can produce different results. When we ran the randomized text typing test with
the KEYPRESS_DELAY_MS constant set to 0 on Manjaro Linux x86_64; kerne l 5.15.108
with i 3 w m 3 window manager, the average typing speed and accuracy were both higher
(2837.85 W P M and 100 % accuracy).

Next, we evaluate how accurate the delay feature of our device is. We use the time pro­
gram that is available on most Linux operating systems. Our device executes a time sleep 10
command in the shell, waits 2 seconds, and then terminates sleep command with Ctrl+C
key shortcut. The time result is then appended to the output file. We repeat the test 20
times and average the results. What we ended up with is a rough estimate of our wait
time. According to the results, the average time between starting and terminating the
sleep program was 2.02s. We can declare that the wait time of our device is accurate to 2
hundredths of a second.

Lastly, we wanted to see how simple it is, to use the device in a real-world scenario.
We chose to complete the first training map in the racing game T r a c k M a n i a 20204. The
game is completely deterministic, which means that given the same sequence of key presses,
it will produce the same result every time. The map only consists of a downhill and three
turns (left-right-left) before the finish line. For this test, we disabled autostart and enabled
CapsLock debugging features of the device so that we could fully control when we started
running our payload. First, we tried a trial and error method, where every time we wrote or
updated our payload script, we had to compile a new firmware and flash it into our device.
That proved very time-consuming as compiling the code inside the Windows Subsystem

1 Link to the web page: https://github.com/lemnos/tt
2 Both payloads can be found here: https://github.com/hungdojan/elastic-quacker/tree/main/

tests/typing
3 Link to official homepage: https://i3wm.org/
4 Link to official homepage: https://www.ubisoft.com/en-gb/game/trackmania/trackmania

34

https://github.com/lemnos/tt
https://github.com/hungdojan/elastic-quacker/tree/main/
https://i3wm.org/
https://www.ubisoft.com/en-gb/game/trackmania/trackmania

Linux was very slow, and unplugging and plugging the device repeatedly was inconvenient.
So we changed our approach and enabled the W i - F i module in the configuration file. That
improved the user experience significantly because, after that, it only took a single command
to update the payload. We also learned that the hold delay works correctly, as we needed
to hold a w key in order to accelerate the car in the game. In the end, it took us around 20
minutes to finish the script, and we completed the track without the car hitting the wall 5 .

5 A final run can be seen here: https://youtu.be/sDXVFk_Yiyc

35

https://youtu.be/sDXVFk_Yiyc

Chapter 7

Malicious payloads

The chapter analyzes the types of payloads that can be installed on our USB device, specif­
ically the ones that were designed to cause damage to the victim's machine. Most attacks
require access to the command line application (or terminal). Here are a few examples of
payload's notion once access to the command line has been granted:

• update victim's system configuration,

• download and execute a malicious script from the internet, or stored inside the con­
nected device to retrieve sensitive information,

• perform a Denial of Service or BSoD (Blue Screen of Death),

• create a communication backdoor by initializing a reverse shell.

The first item on the list is updating system configuration. The attacker can write a
pay load that, for example, changes the network settings, such as changing the IP address of
the DNS server to redirect the requests to the attacker's server, or creates a new symlink or
alias of a command (for example, alias sudo="sudo rm - r f / ; sudo which will, without
the user's knowledge, delete the root directory when sudo command is called), disable an
antivirus program, firewall, or built-in hardware such as a touchpad or keyboard.

Another possible attack involves downloading malware from the internet and running
it on the victim's computer (or from mass storage). Keylogger software is one example.
Keylogger is an application that runs in the background and captures anything the user
types on the keyboard. The collected keystrokes can be uploaded to the remote server
controlled by the attacker. The attacker can then examine the sent data and extract
the user's login credentials. This type of attack is called Data exfiTtration - a form of
attack that involves transferring unauthorized data from a computer. A keylogger can be a
software program or a physical device (for example, KeyGrabber 1). Other data exfiltration
methods involve redirecting the user to a fake phishing website.

The attacker can also write a payload that will perform a Denial of Service attack or
force a Blue Screen of Death or Kernel Panic. The former attack, Denial of Service,
is an attack that is associated with network security. It aims to prevent access to a service
or resources [6]. One such attack is known as Ping of Death, in which the host machine
is overwhelmed with numerous ping requests to a remote server. Once the server's request
queue is filled, it will begin to drop new incoming requests, making it unresponsive. Blue

x https: //www.keelog.com/keygrabber-keylogger/

36

http://www.keelog.com/keygrabber-keylogger/

Screen of Death (on Windows) and Kernel panic (on GNU/Linux) , on the other hand,
indicate that a fatal error has occurred in the host computer and it is unable to recover
from it. This action may result in the victim losing all unsaved data.

Lastly, the attacker can create a payload to get access to the victim's computer. One
of the techniques is known as reverse shelling, netcat is a command-line interface ap­
plication used by administrators to provide connectivity between two systems. Netcat can
operate in either server (listening) or client (creating a connection) mode. The attacker
starts a listening shell on the victim's machine and uses his/her machine to connect to it
remotely. Unfortunately, the connection will not be established if the victim's computer
has a firewall enabled. This problem can be bypassed by creating a reverse shell. The
attacker runs netcat in listening mode on his/her machine and uses the victim's machine
to connect to it (connecting from the inside out). That will surpass the victim's firewall
since it usually only blocks incoming connections [17].

In 2020 and 2021, the cybercriminal group FIN7 started shipping packages containing
BadUSB devices to US companies. They were loaded with a malicious payload that gave
them access to the victim's network. Once they were in, they deployed the ransomware,
such as BlackMatter or R E v i l , within the network [7] [9].

37

Chapter 8

Testing defense mechanisms

At the time of writing this thesis, there are many available defense programs on the internet.
In this section, I describe how some of them work and whether my device was successful
in breaking past any of them. I used the open-source program USBGuard on G N U / L i n u x
and Kašpersky Endpoint Security program on Windows 10.

8.1 Selected programs

U S B G u a r d 1 is a software framework for implementing USB device authorization policies.
It was developed in 2015 and has been manage by Red Hat Inc. since then. It consists
of two main programs: usbguard-daemon and usbguard. The former is a service that
runs in the background and applies USBGuard policies to each USB device. The service
behavior can be configured by editing usbguard-daemon.conf. The latter is a command
line interface that provides the user with a tool to update the USBGuard policies.

Before I started experimenting, I needed to initialize the service. The instructions
were simple: generate an initial policy file using usbguard generate-pol icy, then start
the service with systemctl s t a r t usbguard.service. It was critical to create the rules
before starting the service. If not, all USB devices would be blocked by the daemon. The
program scans all the USB devices and hubs currently connected to the machine and sets
their target to allow, meaning they are all whitelisted on the host machine. The testing
environment was Fedora Linux 36 (Th i r ty S i x) ; ke rne l 6.2.9.

The program I chose for Windows operating systems is called K a š p e r s k y Endpo in t
Secur i ty 2 . It is a security application that provides computer protection against various
types of threads, networks, or phishing attacks. It contains a list of protection components
such as File Threat Protection, Web Thread Protection, system scan, and more. What we
are interested in is their B a d U S B A t t a c k Prevent ion . It works as follows: when a new
USB device that emulates a keyboard is connected to the computer, the user receives a pop­
up window where he/she/they have to type a 4-digit number displayed on the screen from
the connected device. The testing environment for this application was Windows 10 21H2.

I tested both software in the following way:

1. Enable only HID class on the Rubber Ducky device.

2. Connect the device to the host machine with the installed and running application.
x https: //github.com/USBGuard/usbguard
https://www.kašpersky, com/small-to-medium-business-security/endpoint-windows

38

https://www.ka�persky

3. Observe the application's behavior.

4. Give the USB device access to the system and connect the device again.

5. Enable M S C on the Rubber Ducky device.

6. Connect the device again and observe if something has changed.

The pay load present on the USB device opens a terminal or Powershell and runs the Is
command. I also added a feature where the L E D on the board turns on when the device
starts to execute the payload.

First, I tested the USBGuard software on Fedora. When I connected the Rubber Ducky
device to the machine with USBGuard running, no keystrokes injection happened. In fact,
the device did not finish the enumeration process because the L E D did not turn on. The
system registers that a new device has been connected, but the application immediately
blocks it, as seen in Figure 8.1. After I changed the policy for this particular device, the
status changed to allow, and the payload was executed. Unfortunately, the start of it was
trimmed, and only the Is command was executed (a new terminal did not open). But that
can be resolved by increasing the initial delay.

[root(athinkpadel4 rebulien_fedora]# usbguard watch
[IPC] Connected
[device] PresenceChanged: id=21
event=Insert
target=block
device_rule=block id dQdQ:cafe serial "" name "Rubber Ducky" hash "fYudXdp4d7uuFc0255L+bXvYptG
mtyX+aZZD89zRsbY=" parent-hash "4a4NgfdUaJ043rkCzmWRSeHHR/uUh5+SNsXnhosm9qs=" via-port "1-4" wi
th-interface 03:00:00 with-connect-type "hotplug"
[device] PolicyChanged: id=21
target_old=block
target_new=block
device_rule=block id d0d0:cafe serial "" name "Rubber Ducky" hash "fYOdXdp4d70OFcO255L+bXvYptG
mtyX+aZZD89zRsbY=" parent-hash "4a4NgfdUaJ043rkCzmWRSeHHR/uUh5+SNsXnhosm9qs=" via-port "1-4" wi
th-interface 03:0O:0O with-connect-type "hotplug"
rule_id=4294967294
[device] PolicyApplied: id=21

device_rule=block id dOd0:cafe serial "" name "Rubber Ducky" hash "fYOdXdp<Hd70OFc0255L+bXvYptG
mtyX+aZZD89zRsbY=" parent-hash "4a4NgfdUaJ043rkCzmWRSeHHR/uUh5+SNsXnhosm9qs=" via-port "1-4" wi
th-interface Q3:00:00 with-connect-type "hotplug"
rule_id=4294967294

Figure 8.1: Screenshot of USBGuard logging after a new USB device is plugged in.

USBGuard also gave me the option to update the device's policy permanently. Once I
whitelisted the Rubber Ducky device, it successfully executed the payload. I also tried to
plug it into different ports. I discovered that the policy did not apply to the device if it
was connected to a different USB H U B than previously. And lastly, I updated the device's
firmware to enable M S C . And again, the USBGuard successfully blocked the device and
prevented it from executing the payload.

Kašpersky Endpoint Security program was next to be tested. Upon connecting the Rub­
ber Ducky device, I immediately received a pop-up window, as shown in Figure 8.2. The
device did manage to execute the keystrokes, but nothing happened on the host machine
since it was „stuck" in the pop-up window. The Kašpersky program let me input the num­
bers using my mouse and whitelist the U S B device. Unfortunately, I was unable to locate

39

k K e y b o a r d a u t h o r i z a t i o n - S t a n d a r d k e y b o a r d s : H I D K e y b o a r d D e v i c e —

Keyboard connection detected
Standard keyboards : HID Keyboard Device

To authorize and unlock this keyboard, type the following
code from this keyboard:

1543

|"j"l Invalid code entered. Remaining attempts: 3

Figure 8.2: Pop-up authentication by Kašpersky Endpoint Security program.

the list of whitelisted devices to remove it from the list. Once the device was whitelisted,
it successfully executed the payload just like on the previous test with USBGuard. Inter­
estingly, unlike USBGuard, the Kašpersky application did block all other ports, including
those within the same hub. And it also registered the change of firmware when the MSG
class was enabled. In Figure 8.3 you can see the reports of the program.

Both programs were very effective against keystrokes injection attacks. The USBGuard
was more effective since the device had no real to the system, and all USB-related attacks
would have been suppressed (not only the keystrokes injection attack). The disadvantage
of USBGuard is that it is not very intuitive to control. A l l interactions are done using a
terminal since there is no official GUI application available. So unless the user is familiar
with working with the command line, he/she/they cannot update a device policy 3 .

Kašpersky application, on the other hand, gives users a user-friendly GUI application
with online documentation. Unfortunately, I was able to break through the defense by
sending the authentication P I N through W i - F i . So if the attacker has access to the screen, he
will also gain access to the victim's machine. Another weakness of the Kašpersky application
is that it only covers keystrokes injection attacks. Other types of attacks, such as network
card spoofing, will not be detected.

3There used to be usbguard-applet-qt, but this software is no longer supported. The latest project
that provides user-friendly notification pop-ups related to device presence updates is usbguard-notif ie r
(https: //github.com/Cropi/usbguard-notif ier)

40

0
System audit

(8j Advanced Threat Protection

Behavior Detection

Exploit Prevention

Host Intrusion Prevention

0 Essential Threat Protection

File Threat Protection

Web Threat Protection

Mail Threat Protection

Firewall

Network Threat Protection

BadUSB Attack Prevention

AMSI Protection

Q Security Controls

Adaptive Anomaly Control

Application Control

BadUSB Attack Prevention

Importance: [Q | & ||~[p] | Q. Search

Period: I Day * I < 4/26/2023 [Uli 4/26/2023 H >

Update Save report

Event date I Event Result Device Device path

• Today, 4/26/2023 8:41:29 PM Keyboard not authorized Blocked HID Keyboard Device Standard keyboards St

Today, 4/26/2023 8:24:59 PM Keyboard not authorized Blocked HID Keyboard Device Standard keyboards St

© Today. 4/26/2023 8:12:28 PM Keyboard authorized Allowed HID Keyboard Device Standard keyboards St

• Today, 4/26/2023 8:02:46 PM Keyboard not authorized Blocked HID Keyboard Device Standard keyboards St

© Today. 4/26/2023 8:02:34 PM Task started Task started

[TJ Today, 4/26/2023 8:24:59 PM Keyboard not authorized

Event: Keyboard not authorized
Component: BadUSB Attack Prevention
Device vendor Standard keyboards
Device: HID Keyboard Device
Device path: Standard keyboards
User DESKTOP-221AJ8G\hungd
User type: Active user
Result: Blocked

Figure 8.3: The Kaspersky Endpoint Security reports of the test. The reports are sorted
from the newest to the oldest. We can see that the first connection (at 8:02 P M) was
blocked, then I authorized the device (8:12 P M) , tried a different port (8:24 P M) , and

lastly plugged the device with an updated firmware into the first port (8:41 P M) .

8.2 Other defense mechanisms available

As stated in Chapter 7, most attacks require access to the terminal/command line. So
another way to protect the host machine is by setting a password for running a command
line as an administrator on Windows operating systems. A l l that is needed is to change
the Windows registry 4. The result can be seen in Figure 8.4. As we can see, before we
updated the registry, it was fairly easy to open a terminal (or any other application as an
administrator, as the only thing preventing us from doing so was a „Yes/No" confirmation
button. But the new notification pop-up window requires us to enter the username and
password (or any other type of authentication).

Another defense mechanism was presented in work [16] by Tian with his team called
GoodUSB in 2015. They modified a Linux kernel module that maps USB devices to
specific whitelisted drivers (for example, an audio device such as headphones registered as
a Human Interface Device should only be able to execute a limited number of keys like
Volume Up and Volume Down). Then they introduced a GoodUSB service (called gud),
which sits between the host controller and USB drivers. Upon connecting the USB device to
the computer, the user is asked to identify the device's functionality. If the device is marked
as malicious, GoodUSB service will redirect it to a virtualized USB honeypot where it can
be monitored and analyzed. Otherwise, a driver will be loaded. The GoodUSB architecture
can be seen in Figure 8.5.

4The instructions can be found here: https://www.manageengine.com/device-control/badusb.html

41

https://www.manageengine.com/device-control/badusb.html

User Account Control

Do you want to allow this app to make
changes to your device?

Windows PowerShell

User Account Control

Do you want to allow this app to make
changes to your device?

Ver i f i ed p u b l i s h e r M i c r o s o f t W i n d o w s

To c o n t i n u e , e n t e r a n a d m i n user n a m e a n d p a s s w o r d .

Scan your finger on the fingerprint
reader.

Figure 8.4: The „run as administrator" pop-up window before (on the left) and after (on
the right) the registry value update.

And last defense software I will present here is Cinch, a work by Sebastian Angel and his
team from The University of Texas at Austin and New York University [2]. Their approach
to USB attacks is to create a mediator between a hardware layer host controller and software
layer H C I 5 . The USB data are then transferred through a narrow choke point to be analyzed.
The Cinch architecture can be seen in Figure 8.5. Cinch uses I /O virtualization hardware
to redirect direct memory access and interrupts a red virtual machine. The virtual machine
then encapsulates and sends USB transfers through the Tunnel to another virtual machine
(called Gateway), where it applies all security policies. Once finished, the USB transfer is
then sent to the host's HCI (blue machine).

iGoodUSB Daemon i
I (gud) ;
i C Policy Engine) , -
1 CGraphical Interfaced
] C Device Database)J

I USB Honeypot
I (HoneyUSB) ,
•I (USB Profi led 1

I f USB Monitor)]
I (3 E M U J W J V D I

-|--<3> -
Kernel Virtual Machine

(Host Ctrl Passthrough)

(H o s t Ctrl 2Q

r * * »' t ' 'A
p P P P P P P P
0 0 0 0 O 0 0 0
R Ft R R R R R R
T T T T T T T T
1 2 3 4 5 1 8

Figure 8.5: Cinch (left)[2] and GoodUSB (right)[16] architecture designs side by side.
Both of these pictures were taken from their corresponding papers.

5Host Controller Interface, of HCI, is a register-level interface that enables a host controller for USB
or IEEE 1394 hardware to communicate with a host controller driver in software. Link to the article:
https : //en.wikiped.ia.org/wiki/Host_controller_interf ace_ (USB,_Firewire)

42

http://wikiped.ia.org/wiki/Host_controller_int

Other defense concepts are:

• block the USB device when it starts typing with inhuman speed [11], [3],

• disable firmware updates,

• disable USB drivers on the host machine,

• hardware USB data blocker such as „USB condom" [1] or USG[5],

• and many more...

There are two concepts that occurred to me while I was writing this thesis, and one of them
is related to Section 4.2. The notion is that the majority of keystrokes injection payloads
rely on the standard US Q W E R T Y keyboard. So the operating system can change the
keyboard layout, for example, to CZ D V O R A K , when a keyboard connects. That makes
the payload fail most of the time because each key is mapped to a different output than on
Q W E R T Y . The second idea is to create a mediator that would ignore modifier keys until
the user authenticates the device. Without them, the attacker cannot reliably launch the
desired applications.

Of course, none of the concepts have yet to be implemented. Changing the keyboard
layout may be insufficient and can be bypassed if the attacker guesses the keyboard lay­
out. Furthermore, keyboard layouts only change printable keys, so the attack will remain
unchanged if the payload simply consists of modifier and non-printable keys (for example,
Enter, Tab, and arrow keys). The second approach seems safer, but the idea of authenti­
cating a device upon connecting already exists.

43

Chapter 9

Conclusion

The main objective of this thesis was to create a USB device capable of executing the pre­
defined sequence of keystrokes (payload) which I successfully accomplished. The payload
can be statically generated and compiled with the Raspberry P i Pico's firmware or dynam­
ically deployed after the U S B device is connected to the computer. I created a custom
language with easy-to-understand syntax for developing pay loads. And thanks to Rasp­
berry P i Pico's inclusion of a W i - F i chip, the user can easily control the device wirelessly.
The device can also act as a USB thumb drive if enabled.

The BadUSB threads might be undetectable by antivirus programs, but fortunately, the
community has already developed numerous effective defense strategies that can protect us
against these types of attacks. I tested the implemented device against two programs:
USBGuard and Kašpersky Endpoint Security. Both performed well and successfully sup­
pressed the attack. I also discussed a few other possible defense strategies that are currently
available.

Even though the core functionality is working pretty well, there are more features that
can be added to this project. From supporting simple payloads written in the official
DuckyScript to extending the server's A P I or getting the mass storage fully to work with
external hardware (microSD). There are no limitations to what can and cannot be added.
I wanted to make this project available to everyone, and so I decided to publish the source
code publicly 1 . I hope that this project's development will not end with this thesis.

I created this project for people to experiment and better understand the potential
damage that this attack can cause. Though Rubber Ducky is considered a dangerous
device, in the end, it is up to us how we will use the device. It can help us automate complex
processes and operations that cannot be done by running a script on the computer.

x https: //github.com/hungdojan/elastic-quacker

44

Bibliography

[1] A L S I B A I , N . YOU can apparently use a „USB condom" to protect against the FBI's
latest boogeyman [online]. Futurism, Apr 2023 [cit. 30/04/2023]. Available at:
https: / / f uturism.com/the-byte/usb-condom-juice-jacking.

[2] A N G E L , S., W A H B Y , R. S., H O W A L D , M . , L E N E R S , J . B. , S P I L O , M . et al. Defending

against Malicious Peripherals with Cinch. In: 25th USENIX Security Symposium
(USENIX Security 16). Austin, T X : U S E N I X Association, August 2016, p. 397-414.
ISBN 978-1-931971-32-4. Available at: https://www.usenix.org/conference/
usenixsecurityl6/technical-sessions/presentation/angel.

[3] A R G H I R E , B . Google releases tool to block USB keystroke injection attacks [online].
Mar 2020 [cit. 30/04/2023]. Available at: https://www.securityweek.com/google-
releases-tool-block-usb-keystroke-injection-attacks/.

[4] A X E L S O N , J . USB Complete: Everything You Need to Develop USB Peripherals. 3rd
ed. Lakeview Research L L C , 2005. ISBN 1931448027.

[5] D O C T O R O W , C. USG: An open source anti-badusb hardware firewall for your USB
port. Mar 2017 [cit. 01/05/2023]. Available at:
https: //boingboing.net/2017/03/02/countermeasures.html.

[6] E R I C S O N , J . Hacking: The Art of Exploitation [online]. 2nd ed. Will iam Pollock,
2008 [cit. 30/04/2023]. ISBN 1593271441. Available at:
https://repo.zenk-security.com/Magazine7o20E-book/Hacking-7o20The7o20Art7o20of7,

20Exploitation7.20(2nd7.20ed .7.202008) 7.20-7.20Erickson.pdf.

[7] G A T L A N , S. FBI: Hackers use badusb to target defense firms with ransomware
[online]. BleepingComputer, Jan 2022 [cit. 30/04/2023]. Available at:
https: //www.bleepingcomputer.com/news/security/f bi-hackers-use-badusb-to-
target-defense-firms-with-ransomware/.

[8] G R E E N B E R G , A . Why the Security of USB Is Fundamentally Broken [online]. 2014
[cit. 01/01/2023]. Available at: https://www.wired.com/2014/07/usb-security/.

[9] I L A S C U , I. FBI: Hackers sending malicious USB drives & teddy bears via USPS.
BleepingComputer, May 2020 [cit. 01/05/2023]. Available at:
https: //www.bleepingcomputer.com/news/security/f bi-hackers-sending-malicious-
usb-drives-and-teddy-bears-via-usps/.

[10] K E R N I G H A N , B . W. The C programming language. 2nd ed.th ed. Englewood Cliffs,
N . J . : Prentice Hall, 1988. ISBN 0-13-110362-8.

45

http://uturism.com/the-byte/usb-condom-
https://www.usenix.org/conference/
https://www.securityweek.com/google-
http://ing.net/2017/
https://repo.zenk-security.com/Magazine7o20E-book/Hacking-7o20The7o20Art7o20of7
http://www.bleepingcomputer.com/news/security/f
https://www.wired.com/2014/07/usb-security/
http://www.bleepingcomputer.com/news/security/f

[11] K E R S C H B A U M , F . and P A R A B O S C H I , S. USBlock: Blocking USB-Based Keypress
Injection Attacks. In: Data and Applications Security and Privacy XXXII.
Switzerland: Springer International Publishing A G , 2018, vol. 10980, p. 278-295.
Lecture Notes in Computer Science. ISBN 9783319957289.

[12] K H O L O D O V , I. The FAT File System [online]. Bristol Community Collage, 2010.
Available at: http://www.c-jump.com/CIS24/Slides/FAT/lecture.html.

[13] L u , FL, W u , Y . , L i , S., L I N , Y . , Z H A N G , C. et al. B A D U S B - C : Revisiting BadUSB
with Type-C. In: 2021 IEEE Security and Privacy Workshops (SPW). I E E E , 2021,
p. 327-338. DOI: 10.1109/SPW53761.2021.00053. Available at:
https://doi.org/10.1109/spw53761.2021.00053.

[14] M O H A M M A D M O R A D I , H . and G N A W A L I , O. Making Whitelisting-Based Defense Work
Against BadUSB. In: Proceedings of the 2nd International Conference on Smart
Digital Environment. New York, N Y , USA: Association for Computing Machinery,
2018, p. 127-134. ICSDE'18. DOI: 10.1145/3289100.3289121. ISBN 9781450365079.
Available at: https://doi.org/10.1145/3289100.3289121.

[15] N O H L , K . , K R I S S L E R , S. and L E L L , J . BadUSB - On accessories that turn evil
[online]. Security Research Labs, 2014 [cit. 01/05/2023] . Available at:
https: //radetskiy.files.wordpress.com/2014/08/srlabs-badusb-blackhat-vl.pdf.

[16] T I A N , D. J . , B A T E S , A . and B U T L E R , K . Defending Against Malicious USB
Firmware with GoodUSB. In: Proceedings of the 31st Annual Computer Security
Applications Conference. New York, N Y , USA: Association for Computing
Machinery, 2015, p. 261-270. A C S A C '15. DOI: 10.1145/2818000.2818040. ISBN
9781450336826. Available at: https://doi.org/10.1145/2818000.2818040.

[17] W I L H E L M , T. Professional penetration testing : creating and operating a formal
hacking lab [online]. Amsterdam : Boston: Elsevier ; Syngress Publishing, 2010 [cit.
30/04/2023]. ISBN 978-1-59749-425-0. Available at:
https: //doc.lagout.org/network/2010_prof essionnal_testing_lab.pdf.

46

http://www.c-jump.com/CIS24/Slides/FAT/lecture.html
https://doi.org/10.1109/spw53761.2021.00053
https://doi.org/10.1145/3289100.3289121
http://files.wordpress.com/2014/08/
https://doi.org/10.1145/2818000.2818040
http://lagout.org/network/2010_prof

Appendix A

Content of SD card

build_rd/ Project build directory. Contains files generated by cmake application.

rubber_ducky/rubber_ducky .uf 2 Compiled binary file. The present payload opens
B U T F IT official homepage using f iref ox browser on Ubuntu operating system.

docs/ Document directory. Contains the project documentation and files used to generate
the thesis document written DTgX document.

thesis/ Directory with D T ^ X source files.

conf iguration.md Help regarding rubber_ducky/conf ig .h macros.

rd_script .md Description of custom language.

rd_server_api. txt Description of packet format and listing of request and response
operational codes.

pico-sdk/ Pico S D K framework. Also contains TinyUSB, lwIP, and CYW43-driver

libraries.

rd_client/ Directory containing parser and client network application source files.

rubber_ducky/ Directory with rubber ducky module header and source files.

keyseqv/ key_seqv_t structure header and source files.

rd_server/ T C P server header and source files.

scripts/ Payloads written in custom language.

tests/ Test files for rd_client .payload module and typing tests.

README.md Project's R E A D M E file. Contains installation instructions and program help.

47

