
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

ANIMATION OF AVATAR FACE BASED ON HUMAN
FACE VIDEO
ANIMÁCIA TVÁRE AVATARA NA ZÁKLADE ZÁBEROV ĽUDSKEJ TVÁRE

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MARTIN TAKÁCS
AUTOR PRÁCE

SUPERVISOR prof. Ing. ADAM HEROUT, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Vysoké učení technické v Brně
Faku l t a i n fo rmačn ích techno log i í

Ústav počítačové grafiky a multimédií (UPGM) Akademický rok 2021/2022

Zadání bakalářské práce |||||||||||||||||||||||||
2 5 0 4 0

Student: Takács Martin
Program: Informační technologie
Název: Animace tváře avatara na základě záběrů lidské tváře

Animation of Avatar Face Based on Human Face Video
Kategorie: Počítačová grafika
Zadání:

1. Seznamte se s problematikou detekce lidské tváře a jejích detailních rysů v reálném čase.
2. Seznamte se s problematikou animace modelu lidské tváře (avatara).
3. Experimentujte s dostupnými technologiemi pro rozpoznání rysů tváře ve videu a pro animaci

modelu lidské tváře.
4. Navrhněte systém pro animaci modelu lidské tváře (avatara) na základě pohybů reálného

člověka ve videu.
5. Implementujte navržený systém a optimalizujte jej.
6. Experimentujte s možnostmi provozování vytvořeného systému na mobilním zařízení.
7. Zhodnoťte dosažené výsledky a navrhněte možnosti pokračování projektu; vytvořte plakátek

a krátké video pro prezentování projektu.
Literatura:

• Gary Bradski, Adrian Kaehler: Learning OpenCV; Computer Vision with the OpenCV Library,
O'Reilly Media, 2008

• Richard Szeliski: Computer Vision: Algorithms and Applications, Springer, 2011
• Mark Segal, Kurt Akeley: The OpenGL Graphics System: A Specification (Version 4.6 (Core

Profile) - October 22,2019)
• série knih: Game Programming Gems
• série knih: GPU Gems
• Johnson J.A.: A Survey of Computer Graphics Facial Animation Methods: Comparing

Traditional Approaches to Machine Learning Methods, MSc. thesis, California Polytechnic
State University, San Luis Obispo, 2021

Pro udělení zápočtu za první semestr je požadováno:
• Body 1 až 3, značné rozpracování bodů 4 a 5.

Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/
Vedoucí práce: Herout Adam, prof. Ing., Ph.D.
Vedoucí ústavu: Černocký Jan, doc. Dr. Ing.
Datum zadání: 1. listopadu 2021
Datum odevzdání: 11. května 2022
Datum schválení: 1. listopadu 2021

Z a d á n í b a k a l á ř s k é p r á c e / 2 5 0 4 0 / 2 0 2 1 / x t a k a c 0 7 S t r a n a 1 z 1

https://www.fit.vut.cz/study/theses/

Abstract
This thesis presents an application for animating 3D avatar based on a single camera or
video input of human face in real time. The resulting application consists of three modules -
face tracking, avatar animator, and a server for transferring face data. The face tracking
module computes new transforms for the animation from human face and benefits from
Mediapipe's Facemesh to estimatate the current face geometry. Avatar animator module is a
web-based application for rendering and animating 3D avatars through skeletal animations,
based on the Three.js library. Both modules make use of the continuous bidirectional
communication of websockets through the single server. Performance of the face tracking
module depends on the camera and device on which it is running, but regular web camera
is usually enough for speed of 30+ F P S and animation runs at the speed of 60+ FPS with
multiple avatars.

Main contributions of this project are (a) Calculating transforms from human face is
suitable for the skeletal animations, which are usually easier to create and more accessible
than blend shapes, (b) Using the face tracking and the avatar animator as independent
modules causes that from the single camera/video input it is possible to animate multiple
avatars on different devices.

Abstrakt
Táto bakalárska práca predstavuje aplikáciu pre animovanie 3D avatarov v reálnom čase, na
základe záberov ľudskej tváre z jedinej kamery alebo videa. Výsledná aplikácia pozostáva
z troch modulov - snímanie tváre, animator avatara a sever, ktorý prenáša dáta z modulu
na snímané tváre. Modul snímania tváre vypočítava z ľudskej tváre nové dáta pre animáciu
a využíva pritom Facmesh of Mediapipe pre určovanie obrysov a črtov tváre. Animator
avatara je webová aplikácia pre vykresľovanie a animovanie 3D avatarov, pomocou kostro­
vých animácií, pričom využíva knižnicu Three.js. Obidva moduly využívajú výhody súvislej
obojsmernej komunikácie protokolu websockets, pripojením na jediný server. Výkon mod­
ulu na snímanie tváre záleží od kamery a zariadenia, na ktorom beží, ale bežne dostupná
web kamera obvykle postačuje pre rýchlosť snímania 30+ F P S a animovanie beží na 60+
FPS s viacerými avatarmi.

Hlavným prínosom tejto práce sú (a) Počítanie dát z ľudskej tváre je vhodné pre kostrové
animácie, ktoré sa väčšinou jednoduchšie na vytvorie a sú viac dostupné ako metóda splý­
vania tvarov (angl. blend shapes), (b) Používanie snímania tváre a animátora avatara, ako
nezávislých modulov spôsobuje to, že na základe jediného vstupu z kamery/videa je možné
animovať viacerých avatarov na rôznych zariadeniach.

Keywords
face tracking, 3D character, face animation, skeletal animation, websockets

Kľúčové slová
snímanie tváre, 3D avatar, animácia tváre, kostrové animácie, websockets

Reference
TAKÁCS, Martin. Animation of Avatar Face Based on Human Face Video. Brno, 2022.
Bachelor's thesis. Brno University of Technology, Faculty of Information Technology. Su­
pervisor prof. Ing. Adam Herout, Ph.D.

A n i m a t i o n of Avatar Face Based on H u m a n Face
Video

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of prof. Ing. Adam Herout, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

Martin Takäcs
May 10, 2022

Acknowledgements
I would like to express gratitude to my supervisor prof. Ing. Adam Herout, Ph.D. for his
help, motivation, valuable and honest feedback, and for his patience with my questions that
were sometimes even trivial.

Contents

1 Introduction 4

2 Detection of Human Face, Animation of Avatar, and Interconnection Be­
tween Modules 5
2.1 Related Work and Existing Solutions 5
2.2 Face Tracking Solutions 8
2.3 Mediapipe - Building a Perception Pipeline 9
2.4 Rendering and Animation of 3D Models 12
2.5 Communication of Multi-Platform Modules 15

3 Solution Design 16
3.1 Face Tracking 16
3.2 Avatar Animator 21
3.3 Websocket Server 23

4 Implementation and Evaluation 25
4.1 Implementation Details 25
4.2 Flaws and Drawbacks 29
4.3 Performance Tests 30

5 Installation Guide and User Manual 32
5.1 Installing the Websocket Server 32
5.2 Installing the Face Tracking Module 32

5.3 Installing the Avatar Animator Module 33

6 Conclusions 35

Bibliography 36

1

List of Figures

2.1 Viola-Jones method uses three kinds of rectangle features to detect faces [24].
Two-rectangle features are shown in (A) and (B), (C) shows a three-rectangle
feature, and (D) a four-rectangle feature 7

2.2 Depth map produced by Kinect's depth image stream (on left) and produced
3D mesh of the head (on right) 9

2.3 Example of face detection using Blazeface lightweight model. This model de­
tects faces and returns 6 landmarks. It is also available as a part of Mediapipe. 10

2.4 Mediapipe's graph for Facemesh. Calculators (nodes) use streams as the
input/output to pass data among themselves 11

2.5 Facemesh produces 478 landmarks, which define the face geometry, even
under difficult angle and light conditions 11

2.6 A n example of the skeleton, deforming a mesh, and its bones with their
respective names. A head is the parent for all other bones 13

3.1 The pipeline of my solution for Animation of the avatar face based on the
human face video 17

3.2 Highlighted landmarks - only few landmarks out of total 478 are actually
important for my solution 18

3.3 Rotation of the head around three axes in terms of pitch, roll and yaw angles. 20
3.4 Calculating position of the iris inside the eye. Co-ordinates are [0, 0] - bottom

left, [1, 1] - top right 20
3.5 It is possible for a user to use GUI to select various avatars and backgrounds

as well as to change the light intensity in real-time 22
3.6 Showcase of various backgrounds 22
3.7 Showcase of 8 different avatars 22
3.8 Newly calculated data are sent over the websocket server every frame, which

creates smooth movements of the avatar 23
3.9 Websocket server recieves data from the face tracking module and distributes

them to avatar animators 24

4.1 The resulting window of Face tracking module consists of the input frame,
calculated landmarks, and inference speed 26

4.2 Example of the configuration file for the bandit avatar. It contains, bone
names, bone multipliers and offsets, horizontal and vertical axis for eyes,
scale factor, and camera transforms 28

2

4.3 Example of code to update a particular bone transform with newly ob­
tained data, where the bone_jjaw is the name of the bone deforming the
jaw, base_jaw_rot is the base rotation of jaw right after the model is loaded,
jaw_mul is multiplier specified in the configuration file of the model and
msg.gap are the data obtained from the websocket server (how much is mouth
opened) 29

4.4 After registering a user, the continuity of the websocket connection enables
the server to asynchronously handle messages for each registered user. . . . 29

4.5 Test showing both camera F P S (32) and rendering FPS (60+), while render­
ing 7 different avatars 31

3

Chapter 1

Introduction

This project aims to simplify work of online content creators (e.g. streamers) that want
to hide their true identity, while maintaining the interactivity with their audience through
virtual avatar. As the title suggests, its main purpose is to animate virtual avatar based
on the video input from the camera or the video file, containing the human face in the
image. To achieve this, the system makes use of the Mediapipe's perception pipeline and
FaceMesh solution for estimating the face geometry from the ordinary web camera. Avatar
animator takes advantage of skeletal animations to properly move only those parts of the
avatar that need to be moved, right in the user's web browser. Both face tracking module
and avatar animator module are interconnected through the single websocket server, which
provides continuous bidirectional communication and can broadcast information from the
single face tracking module to multiple avatar animators at the same time.

Hiding behind the virtual avatar was firstly popular in Japan, where in 2017 Project A.I .
with the main character "Kizuna A.I." started the "boom" of virtual youtubers (hereinafter
referred to as vtubers) and, as Nordvall described them, digital multi-space communi­
ties [18].

Vtubers firstly used full-body pose tracking and motion capture for their avatars. Nev­
ertheless, this system required the use of extra hardware, such as multiple R G B D video
capture devices (Kinect) to properly capture motions of the actor behind the avatar. Ever­
growing popularity of this type of content lead to the simplification of this process, with
focusing only on the head and face of the actor.

In this thesis I researched multiple solutions for face tracking and animating the avatar,
as well as for multi-platform communication to take full advantage of independence of
aforementioned modules.

Main contributions of this project are (a) Calculating transforms from human face is
suitable for the skeletal animations, which are usually easier to create and more accessible
than blend shapes, (b) Using the face tracking and the avatar animator as independent
modules causes that from the single camera/video input it is possible to animate multiple
avatars on different devices.

4

Chapter 2

Detection of Human Face,
Animation of Avatar, and
Interconnection Between Modules

The exponentially growing popularity of online content of so called vtubers and forms of
entertainment which require computer vision technologies such as the face and/or pose
tracking or the motion capture leads to the need of simplifying the creation of such forms
of entertainment. Today, all the content creator needs is a software in the computer and/or
an app on their mobile device to replace the image of his real self with the virtual avatar
and to make use of the newest and the yet fastest media processing algorithms.

In this section I will discuss existing solutions and used technologies for the purpose of
tracking the human face and/or animating the virtual avatar, and how two independent
modules could communicate.

2.1 Related Work and Exist ing Solutions

Most companies with this kind of the online entertainment (such as Hololive 1, Nijisanji 2 or
VShoujo 3) use their own software to capture the movement of their actor's head and face
expressions, and to project it on the virtual avatar, but they do not publicly share informa­
tion about it. However, the overall functionality of such software is clear, since some content
creators already partially mentioned it online on their respective accounts/channels4.

The software those companies use, usually consists of two main parts/modules:

• A n application used for capturing the face which usually runs on the mobile device
(typically iPhone) since it has a better camera than most low price web cameras for
computer,

• and a computer program which handles the animation and the rendering of the
virtual avatar.

x h t t p s : //en.hololive.tv/
2 h t t p s : //www.ni j i s a n j i . j p / e n
3 h t t p s : //www.vshojo.com/
4 A simple setup requires only a camera and a software - https://www.wikihow.com/Become-a-Vtuber

5

http://en.hololive.tv/
http://www.ni
http://jisanji.jp/en
http://www.vshojo.com/
https://www.wikihow.com/Become-a-Vtuber

In my solution, I expanded this model by adding the intermediator - the websocket
server. The reason for this is explained later in Section 2.5. In this section I discuss some
of the existing solutions that animate the avatar based on the human face video.

Cao et al. presented in their work [5] a real-time facial animation system based on
3D shape regression of the face. Their system uses a single web camera with resolution
640 x 480 pixels, and records video at the speed of 30 frames per second. At the beginning
the setup step is required. The user performs a set of standard expressions and specific
head poses, and the system captures their face. A set of facial landmarks are automatically
detected in those images. Landmarks can be manually corrected by the user if needed. By
using blend shape model for each image the 3D facial shape is calculated. The user-specific
3D shape regressor is then trained by using those facial shapes and input images.

Every avatar has predefined blend shapes. By performing an expression in front of the
camera, the regressor creates the user-specific 3D mesh. The texture is then applied on
the mesh. Finally, the avatar is animated using blend shape interpolation technique. This
method (morphing) is discussed in Section 2.4.1.

Cao et al. in [4] further improved regression-based algorithm from [5], and proposed
fully automatic approach to facial tracking and animation with a single web camera. Their
approach no longer require the time-consuming calibration step. Contrary to that, it learns
a generic regressor from public image datasets which can be applied to any user. Neverthe­
less, the user identity can not change across frames. Their Displaced Dynamic Expression
(DDE) model is a representation of facial shape that combines a 3D parametric model and
2D landmark displacements.

L i et al. in [13] presented a real-time and calibration-free facial expression capture
framework. The framework uses 3D sensor with the ability to capture dense depth data,
such as Kinect. At the beginning of the face tracking process, the initial scan of the user
with neutral facial expression is captured. This helps to automatically generate generic
linear blend shape expressions. A n adaptive P C A model, based on correctives is used to
rapidly adapts to the expressions of the current user during the tracking. The corrective
shapes are used to learn the distinct look and expressions of the user. This helps to mimic
the user's facial expressions more accurately, since those can differ for each user.

The framework uses a 3D depth map and 40 2D facial landmarks (lip contours, eye con­
tours and eyebrows). Facial landmarks are obtained from the Live Driver (ImageMetrics0).
Live Driver implements a data-driven tracking algorithm that works on any individual,
under any lighting condition.

In [8] Garolera et al. presented a web-based real-time markerless facial retargeting
system. By utilizing the library Beyond Reality Face (B R F) 6 , they were able to track facial
landmarks using only a web camera without depth sensor, right in the web browser. Their
system offers two methods for controlling the avatar's face: facial retargeting and facial rig
with 2D interpolation.

Facial retargeting reproduces user's facial expressions on the avatar, using a single web
camera. Their system uses morphing animation method. Nevertheless, their method is com­
patible with skeletal animations. B R F provides 2D facial landmarks every frame. Their
system then calculate difference between them and landmarks from the pre-initialized neu­
tral face. From the calculated differences the system animates the avatar using blend
shapes.

5http://image-metrics, com/
6 h t t p s : //www.beyond-reality-f ace.com/

l.i

http://image-metrics
http://www.beyond-reality-f
http://ace.com/

Figure 2.1: Viola-Jones method uses three kinds of rectangle features to detect faces [24].
Two-rectangle features are shown in (A) and (B), (C) shows a three-rectangle feature, and
(D) a four-rectangle feature.

Facial rig uses preconfigured expressions of the character which are controlled through
an interface, e.g. a gamepad or a web interface. They defined several facial expressions in
the valence-arousal model [23]. By using the interface, the avatar blends between predefined
expressions.

Weise et al. in [25] primary address ensuring of the robust processing of the low resolu­
tion (640 x 400) and high noise levels of the input data from Microsoft Kinect. The setup
step consists of the user performing a predefined sequence of example facial expressions. By
using Viola-Jones method [24] their system detect the face in the first frame of the setup
step. Figure 2.1 demonstrates the use of simple features to detect face in the Viola-Jones
method. The value of two-rectangle feature is the difference between the sum of pixels
within two rectangular regions. The value of three-rectangle feature is the sum of pixels
of two outside rectangles subtracted from the center rectangle. The value of four-rectangle
feature is the difference between the sum of pixels within white regions and black regions.
Using the Poisson reconstruction the skin texture is generated from the color images.

Their linear P C A model that represents the variations of different human faces in neutral
expression is firstly registered towards the recorded neutral pose. From this, the template
mesh is obtained. The template mesh roughly matches the user's face geometry. The
template is then wrapped to each of the recorded expressions. Additional texture constraints
are added in the mouth and eye regions to improve registration accuracy.

The user-specific blend shapes are reconstructed from three things: a generic blend
shape model, reconstructed example expressions, and approximate blend shape weights.

7

Blend shape weights specify the linear combination of blend shapes for each facial expres­
sion. These weights are manually determined only once and kept constant for all users.

2.2 Face Tracking Solutions

To animate the avatar based on the human face from either camera or video, it is crucial
to correctly detect and track presence of the human face in the input frames. This process
is called the face tracking.

The approach to the human face tracking came a long way in the last decade. It changed
all the way from the omni-directional monocular marker-based head-pose estimation [14] to
the perception pipelines using media processing algorithms and pretrained neural networks
for recognising human face in the image [3, 4, 5, 7, 8, 12, 13, 19, 25].

Several different technological solutions exist for face tracking. I ' l l be discussing them
in this section.

2.2.1 Solutions That Require Special or Additional Hardware

Former solutions for estimating head position require additional hardware, such as a head-
wearable marker structure. This approach is explained by Lichtenauer et al. in [14]. Using
metal frame and passive white markers it can detect markers even under difficult lighting
conditions.

Other solutions that require additional hardware use R G B - D cameras, such as Microsoft
Kinect 2 for additional depth information of the image. As Derkach et al. explained in [7],
methods that operate on 3D data are less sensitive to changes in illumination and viewpoint
than 2D image-based approaches. Their approach use only depth information from user's
camera to estimate head position, as shown in Figure 2.2.

Nevertheless, estimating head position would not be enough to animate the whole face
of the avatar, since data about eyes and mouth would be missing. This project aims to
obtain those data as well as estimating head position, without the use of the additional
equipment, such as Kinect or head-wearable marker structure.

2.2.2 Solutions Based on Pretrained Models for Face Tracking

In my solutions, as explained in Section 3.1, I chose to implement face tracking as a Python
script, running on the desktop. However, to better understand my choice of technology, in
this section I discuss several different technologies that engage in face tracking.

Abadi et al. presented Tensorflow in [1] as a system for large scale machine learning. It
uses a unified dataflow graph to represents the state of the algorithm and its computation.
It can run trained models for inference on various platforms ranging from large datacenters
to mobile devices. As Yuan et al. proposed in [26], a convolutional neural network based
on TensorFlow is suitable for real-time face detection.

Nevertheless, as Smilkov et al. stated in [21], production-quality M L libraries are typ­
ically written for Python and C+-1- developers. The importance of JavaScript community
and web-based applications lead to the development of the Tensorflow.js library. Figure 2.3
shows the example of face detection, using Tensorflow .js' Blazeface detector7.

Both Tensorflow .js and Mediapipe are runtimes used for face tracking on desktops and
on mobile devices. Both runtimes were compared in [10] by Grishchenko et al., using pose

7 h t t p s : //github.com/tensorf low/tf js-models/tree/master/blazef ace

8

Figure 2.2: Depth map produced by Kinect's depth image stream (on left) and produced
3D mesh of the head (on right).

Device Mediapipe (FPS) Tensorfiow.js (FPS)

MacBook Pro 15" 2019
iPhone 11
Pixel 5
Desktop

75 | 67 | 34
9 | 6 | N / A

25 | 21 | 8
150 I 130 I 97

52 | 40 | 24
43 | 32 | 22

14 | 10 | 4
42 I 35 I 29

Table 2.1: Results of comparing Mediapipe and Tensorfiow.js runtimes showing inference
speed. The detailed table of results could be found in [10].

detection. Results, as shown in Table 2.1, have revealed that Tensorfiow.js runs significantly
slower on desktop and Android devices. It has surpassed Mediapipe only on iPhones.

2.3 Mediapipe — Building a Perception Pipeline

Based on the results from Table 2.1, it is clear that Mediapipe is a better solution for this
project, unless we want to use iPhone as a target device. In this section I discuss Mediapipe
in further details.

As Lugaresi et al. explained in [15], Mediapipe is Google's multi-platform open-source
framework for perceptual input processing. Mediapipe connects individual perception mod­
els into maintainable pipelines, which eliminates problems with implementing additional
processing steps or inference models into the perception application that processes sensory
data.

Mediapipe can build a perception pipeline as a graph of modular components, such as
inference models or media processing functions. Graph takes sensory data (video/audio) as

9

Figure 2.3: Example of face detection using Blazeface lightweight model. This model detects
faces and returns 6 landmarks. It is also available as a part of Mediapipe.

an input, and after processing it, outputs the percieved description, such as face landmark
annotations.

Mediapipe's graphs do not define internals of neural networks, as TensorFlow does.
Instead, it specifies pipelines with one or more models embedded. Its pipeline is defined as
a directed graph of components (graph nodes). Each component is a calculator, and it is
possible to define custom calculators.

Calculators are connected via streams, through which data (packet sequences) flows.
Streams maintain their own queues, so the receiving node can process data at its own
tempo. Figure 2.4 demonstrates the graph for face detection8.

Wi th Mediapipe it is fairly easy to build and maintain perception pipeline. Performing
a complicated task in real-time is easier by defining custom calculators, using resources
efficiently and processing media streams in parallel and at different rates.

2.3.1 Facemesh — Estimating the Face Geometry

This section explains the Mediapipe's solution to estimating the 3D geometry of human
face - Facemesh.

As explained in [12] by Kartynnik et al., Facemesh is a solution that estimates facial
surface geometry - 468 landmarks in real time. Landmarks are vectors in 3D space that

8 h t t p s : //github.com/google/mediapipe/blob/master/mediapipe/graphs/f ace_detection/
f ace_detection_mobile_gpu.pbtxt

10

t h ro t t l ed inpu t v i d e o f a c e d e t e c t i o n s rende r d a t a

^ I n p u t V i d e o j -
F l o w

L imi ter
Ca l cu la to r

F a c e
De tec t i on

S h o r t R a n g e
G P U

De tec t i ons
to R e n d e r

D a t a
Ca lcu la to r

A n n o t a t i o n
O v e r l a y

Ca lu la to r

f O u t p u t
A V i d e o

Figure 2.4: Mediapipe's graph for Facemesh. Calculators (nodes) use streams as the in­
put/output to pass data among themselves.

Figure 2.5: Facemesh produces 478 landmarks, which define the face geometry, even under
difficult angle and light conditions

make it easier to copmute transforms for the avatar. By applying attention mesh model 9

and refining landmarks, it is possible to obtain ten additional landmarks around irises.
Facemesh estimates positions of 3D vertices with a neural network. There are 468

vertices in total (478 with irises). Vertices in the mesh are independent from each other
and are arranged in fixed quads. The face areas that tend to differ among humans, such
as nose area, have more point density. A n example of the face detection using Facemesh is
shown in Figure 2.5.

Facemesh takes a single R G B frame with no depth sensor information as an input. After
processing the image, it outputs the complete 3D mesh as a face representation.

The image processing pipeline works as follows:
Firstly, the input frame is processed by a lightweight face detector that, as Bazarevsky et
al. explained in [3], produces 6 facial keypoints (landmarks) and and axis-aligned rectangle.

9 h t t p s : //google, github.io/mediapipe/solutions/f ace_mesh.html#attent ion-mesh-model

11

Produced keypoints are: eye centers, ear tagions, mouth center and a nose tip. This allows
the face detector to estimate the face rotation (roll angle).
Secondly, the obtained rectangle is cropped from the original image and resized to fit as
the input to the mesh prediction neural network (ranging from 128 x 128 to 256 x 256
pixels). The model produces 3D landmark coordinates, which are subsequently mapped
back into the original image coordination system.

Pixel coordinates of the given points in the 2D input image and x and y coordinates of
the vertices are the same. The z coordinates represent the depth relative to the reference
plane. They are re-scaled to maintain a fixed aspect ratio between the span of x and z
coordinates.

In the camera/video input (sequence of frames) the facial crop from the previous frame
is available to be used in the next fame as well. This means that the face detector is needed
only in the first frame or during re-acquisition [12].

2.4 Rendering and Animation of 3D Models

In the present there are two main styles which content creators use for their avatars -
Live2D 1 0 and 3D. Naka gawa described Live2D in [17] as a 2D image that is animated
without requiring any changes. While Live2D provides more unique and unusual art style
for a real-time moving character, 3D avatars provide much more variability and scalability.
Not only for the model of the avatar, but also for the whole scene. 3D avatar looks better
in the 3D scene, while moving picture (Live2D) would fits better in 2D scene.

In this section I discuss popular animating techniques and options for animating 3D
models, such as morphing, skeletal animations and free-form deformation, and how to
render results in the user's web browser.

2.4.1 Animation Techniques

To animate a virtual avatar - to deform its shape over time, Garstenauer and Kurka in [9]
divided animation styles into three methods:

• Morphing - also known as morph target animation or shape blending,

• Skeletal animation - using mesh skinning,

• Free-form deformation.

Free-form deformation (FFD) is usually used on specific parts of character's body,
such as muscles, hair or cloth, to stretch and squash them. To animate a mesh, three-
dimensional grid of control points is placed over the surface, then deformed and the defor­
mation is applied to the underlying surface.

Morphing. Each character have several key shapes defined. Those key shapes are
called morph targets or blend shapes. By applying blend shape interpolation, the character
deform its shape between respective blend shapes. This method was used by Cao et al.
in [5]. Their facial animation system is based on 3D shape regression. Nevertheless, they use
user-specific blend shape models, thus a setup step is required for each new user. A setup
step consists of the user acting a set of standard facial expressions, from which the user-
specific regressor is trained. This could be time-consuming for a new and unexperienced
user.

1 0 h t t p s : //www.Iive2d.com/en/

12

http://www.Iive2d.com/en/

Figure 2.6: A n example of the skeleton, deforming a mesh, and its bones with their respec­
tive names. A head is the parent for all other bones.

Skeletal animation is nowadays the most popular character animation method [9].
This method makes use of the skeleton, also called a rig that consists of bones or joints, as
shown in Figure 2.6. Bones are then used to control vertex groups to deform specific parts
of the mesh. This method is very popular especially in the game development, because of its
variability and it is fairly easy to implement and modify. Skeletal animations could also be
exported and reused by other similar characters. Dai et al. demonstrates the reusability of
skeletal animations in [6], by using B V H (Biovision Hierarchy) 1 1 files, which are commonly
used in motion capture.

2.4.2 Animation in the Web Browser

Ahire et al. stated in [2] that animation data can require a lot of space, which is not suitable
for the browser, unless efficient compression algorithms are applied on the animation file,
so it is possible to rebuild them with minimal information. To process data and render the
model, JavaScript is generally used. Some techniques to compress and transmit both static
and dynamic 3D objects can be extended for animation files. Nevertheless, those techniques
lack uniformity.

A n imperative approach to visualize 3D web graphics in real-time is WebGL. It uses
H T M L 5 canvas element in combination with JavaScript to expose graphics A P I based on
OpenGL ES 2.0. Moreover, it can use G P U based methods, so the deformation of vertices
and fragment values will be computed on the G P U in the shaders.

To actually work with the 3D object in the web browser, several JavaScript libraries
could be used:

n h t t p s : //research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jef f /BVH.html

13

http://cs.wisc.edu/graphics/Courses/

SpiderGL,

• Babylon.js,

• Three.js.

SpiderGL aims to provide an abstraction for developers to use the underlying graphical
capability of WebGL. It supports asynchronous content loading. Nevertheless, it lacks the
support for animations.

Babylon.js is an open source framework supported by Microsoft. It has features, such
as collision detection and physics engine and thus resembles a game engine, but it also
supports key frame animations and skeletal animations.

Three.js is very popular nowadays. The good performance and good abstraction makes
it easier to use than dealing with low level initialization. It can handle morphing animations,
skeletal animations and key frames as well as blending and interpolating among the key
frames. By changing parameters of the bones in the skeleton such as position, rotation
or scale, it is possible to animate characters in real-time. Three.js attempts to bring wide
range of animation features.

2.4.3 File Format of 3D Mode l

Several file formats could be used to load 3D objects in the web browser. Frequently used
file formats are:

. O B J ,

. X3D,

. G L T F .

Wavefront's O B J defines only a 3D geometry in a human readable form, but it does not
support any kind of animation. The only animation that could be achieved with O B J is to
export each key frame as a separate file and then render them in the order of the animation.
This consumes more memory and it is ineffective with real-time skeletal animations.

Extensible 3D (X3D) is the royalty-free open standard. X3D supports Humanoid An­
imation (HAnim 1 2) . HAnim uses a "standard" human models that have a certain joint
hierarchy similar to human skeleton, and it needs an initial or default skeleton pose. To
animate facial expressions, a method very similar to morphing is being used. Kapetanakis
et al. used X3D files in [11] to manage virtual 3D scene in web browsers of connected clients
through the websocket server.

G L Transmission Format (G L T F 1 3) minimazes both the size of 3D assets, and the
runtime processing needed to unpack and use those assets. This file format has been strongly
adopted by JavaScript frameworks such as Three.js and Babylon.js, as well as web-focused
companies such as Google and Facebook. G L T F coulb be saved in both binary and JSON
formats for human readability. It supports morphing as well as skeletal animations. JSON
format for the scene hierarchy makes it very easy to access any object (called a node) in the
scene. Bones are also nodes. This makes it very effective to transform bones in real-time.
G L T F supports Open3DGC encoding, which is designed for fast decoding in JavaScrip [2].

12https://www.web3d.org/working-groups/humanoid-animation-hanim
1 3 h t t p s : //github.com/KhronosGroup/glTF

14

https://www.web3d.org/working-groups/humanoid-animation-hanim

2.5 Communication of Mult i -Pla t form Modules

With fully functional face tracking and avatar animator modules, their only problem is
that they are completely independent modules. They do not even have to run on the same
device. This creates the necessity to transfer data from face tracking module to avatar
animator module.

To transfer data correctly, the intermediator, the middle man is required to connect
two modules and ensure the communication from the face tracking module to the avatar
animator. The intermediator needs to be able to receive data from the face tracking module,
as well to propagate them to all running avatar animators. That means bidirectional
communication is required to both receive data and send data.

2.5.1 Existing Solutions to Communication of Web Browser Applications

The architecture and implementation of my solution will be discussed in the next chapter.
Nevertheless, it is important to be acquainted with what kind of technologies are modules
using, before determining their connection between them.
Face tracking module used in my solution is a python script, while the avatar animator
module is a web browser application, running a JavaScript code. This means that solution
to establishing a connection between them has to be multi-platform.

For a long time, standard H T T P connection was used for the purpose of communi­
cation between the server and client (polling, long-polling and streaming). However, this
brings its drawbacks in bandwidth consumption, latency and usability. They are mainly
caused by large headers used and the request-response model of the H T T P protocol, which
wasn't developed for bidirectional real-time communication. These drawbacks were further
discussed by Srinivasan et al. in [22].

As mentioned in [22], to provide real-time communication between client and server,
browser plug-ins and standalone applications have been used. They are not restricted to
H T T P and could use any network protocol for communication.
The commonly used protocol for standalone applications is T C P . However, it does not pro­
vide any standardized security mechanism, so additional implementation and maintenance
of security solution is required.

As Melnikov et al. explained in [16], the websocket protocol allows for two-way commu­
nication that does not rely on opening multiple H T T P connections (e.g. XMLHttpRequest).
It runs over a single T C P connection and wokrs over standard H T T P ports (80 and 443).
Nevertheless, the design of websockets is not restricted to work over H T T P ports only. Fu­
ture implementations could use a simpler handshake over a dedicated port, which implies
that websocket traffic does not match standard H T T P traffic.

15

Chapter 3

Solution Design

After reviewing possible solutions for tracking facial expressions, animating 3D avatars and
communication between modules I decided to use following technologies:

• Mediapipe's FaceMesh - to track face on the camera or video,

• Three.js - to render 3D scenes in the web browser and to control skeleton of the
avatar,

• Websockets - to provide persistent communication between two modules on different
platforms.

The basic idea is to capture video, recognise human face and estimate its geometry,
calculate transforms for the animation and send those data to the websocket server. From
there those data will be propagated to all connected avatar animators. Those firstly cor­
rectly load the 3D model of the avatar and then animate it based on the obtained data
from the websocket server. The pipeline of my solution is shown in Figure 3.1.

Following sections explain my design of workflow for individual modules in detail.

3.1 Face Tracking

In this section I discuss the design of the face tracking module. How to capture face,
calculate new transforms from landmarks and propagate those changes to the websocket
server.

As explained in [12], FaceMesh returns 468 3D vectors (landmarks)1 from the input
frame. By applying attention mesh model, it returns 478 landmarks, including ten land­
marks around irises. As shown in Figure 3.2, not all 478 landmarks will be necessary to
calculate new transforms of the avatar, because avatars has a very limited number of bones
that could be deformed. It is enough to consider only the most important landmarks, such
as the very top, very bottom and sides of the face, lips, eyes, irises, eyelids, and nose.

After calculating all necessary parameters, they are sent to the websocket server as a
message in the JSON format. The websocket server then broadcasts that message to all
Avatar animators connected to the server as will be explained later in Section 3.3.

From obtained landmarks (vectors) it is possible to calculate how much is the mouth
opened, if the right or left eye blinked, head rotations (roll, pitch, yaw), and the line of
sight. Following sections explain on how to make those calculations.

1 Original image of indexed landmarks on canonical face could be found at https://github.com/google/
mediapipe/blob/master/mediapipe/modules/face_geometry/data

16

https://github.com/google/

Open
Video

Capture

Frame

I

Face L a n d m a r k s

i
Calculate
Important

Transforms

Establish
Connection

with WS
Server

Process m Draw
the Image m Landmarks

Start
Websocket

Server

Register
Clients

List o f c l ien ts

Listen to
—• Incoming

Messages

M e s s a g e

Broadcast
O N d a t a Message

Establish
Connection

with WS
Server

I
Connec t i on

I
Listen to
Incoming

Messages

N e w T r a n s f o r m s -

Load GLTF
Object

I
GLTF

Create
Scene with
New Model

S c e n e

Change
Pose

Send •
Transforms
as JSON
Message

Face Tracking Websocket Server Avatar Animator

Figure 3.1: The pipeline of my solution for Animation of the avatar face based on the
human face video.

17

Figure 3.2: Highlighted landmarks - only few landmarks out of total 478 are actually
important for my solution.

18

3.1.1 Estimating the Head Rotation

The head can rotate around three axes. Rotation around axis x, y and z are called the
pitch, roll and yaw or the nod, rotate and turn, respectively, as shown in Figure 3.3. While
all three of them could be calculated at the same time through rotation matrix, calculating
the roll separately gives better results.

The roll of the head (rotation around y axis) could be calculated very easily. Two
landmarks are all that is needed - the topmost and the lowest landmark of the head. By
subtracting their x coordinates, we get either positive or negative value, which means the
head is tilted to the left or to the right. Zero would mean the head is not rotated around
y axis.

The pitch and yaw of the head are calculated through the rotation matrix which gives
much better and more precise result than the simple euclidean distance between two points.
As explained by Slabaugh in [20], three Euler angles could be obtained from the rotation
matrix. Nevertheless, only two of them are actually needed, since the roll of the head is
calculated differently. General rotation matrix have form as

R
Rii R\2 R13

R21 R22 R23

R31 R32 R33

R:,)Ry{9)Rz{^)

where Rx(<fi), Ry(9) and Rz(tp) are rotations of (ft, 9 and i\) radians around axes x, y and z,
respectively. However, Ry{9) is not needed, since the roll is calculated separately.

3.1.2 Calculating How M u c h is M o u t h Opened

To calculate how much is mouth opened, all is needed is to take the lowest landmark of the
upper lip and the topmost landmark of the bottom lip and calculate the euclidean distance
between them. The euclidean distance is described by Equation 3.1.

d=y/{x2-x1)2 + (y2-yi)2 (3.1)

where (x\,y\) and (^2,2/2) are x and y coordinates of two aforementioned landmarks.

3.1.3 Calculating the Line of Sight

Figure 3.4 shows how to calculate the direction in which are eyes looking. This is done
through calculating an euclidean distance between the most left corner of the eye and the
most right corner, and between the lowest landmark of the eye and the topmost landmark
of the eye.

Then the euclidean distance between the iris and the most left corner of the eye is
calculated. After dividing obtained distances between the most left corner of the eye and
iris and between the most left corner of the eye and the most right corner, we get the value
for the horizontal line of sight on scale of 0 to 1, where 0 is the most left and 1 is the most
right.

The vertical line of sight is calculated similarly - by dividing the euclidean distance
between the lowest landmark of the eye and the iris with euclidean distance between the
lowest landmark of the eye and the the topmost landmark of the eye. The obtained vertical
line of sight is on scale of 0 to 1, where 0 is the lowest and 1 is the topmost.

19

3.1.4 Determining If the User has Blinked

To find out if the user has blinked, four landmarks are needed for each eye - the most
left corner, the most right corner, the topmost and the lowest landmark of the eye. After
calculating the euclidean distance between horizontal points h and between vertical points
v for each eye, we make v to h ratio, as shown in Equation 3.2.

where br and 6; stand for left blink and right blink value, respectively. Those values can
later be compared with a threshold, to determine if the user has blinked.

3.2 Avatar Animator

When data from the real world has been obtained it is possible to animate the virtual avatar
based on those data. The main goal of this project is to do this right in the user's web
browser so no additional application is required and multiple tabs with different avatars
could be opened at the same time.

In this section I discuss the design of the Avatar animator. I start with loading the
avatar, controlling the scene, and finally animating the avatar.

3.2.1 Loading the Avatar

Each avatar needs to be rigged before use, but no animations are required as the avatar will
be animated in real time based on the real world data. Avatar also needs to have named
bones and has to be exported in G L T F file format. Its hierarchical structure allows for easy
traversing of the whole avatar. The only required bone, however, is the head bone, which
is usually one of the most common bones for human avatars, and acts as a parent bone for
every other face-deforming bone (eyes, jaw, etc.).
Other bones - eyeballs, jaw and eyelids are optional and they do not have to be animated,
if the avatar does not have them, since each avatar could be rigged differently.

The rigging of the avatar is usually not the only difference among avatars. The scaling
of the model, bone orientations, and bone names could differ as well. Hence, it is important
to map those things to the avatar. To do that, an external configuration file is needed for
each avatar. This configuration file is a simple JSON file, containing respective values for
each bone name, orientation of some bones, multipliers and offsets for animations, and the
scale factor. Avatar animator would then scale the avatar and deform only those bones that
are mentioned in the configuration file with their respective names.

3.2.2 Control the Scene

After loading the model, scene is configured with lights and a background. Those can
be changed in real-time as mentioned above. Figure 3.5 demonstrate possible changes a
user can make - change light intensity and switch among different backgrounds as well as
among different avatars in real-time, via simple GUI . Those settings are explained later in
Section 4.1.2. In Figure 3.6 is a showcase of different backgrounds and in Figure 3.7 is a
showcase of selectable avatars. User has also full control over the camera and can move
freely in the scene around the avatar as well as zoom in and zoom out.

21

1 Select Avatar n 1

Select Background ^ ^ ^ ^ Q

Frort light intensity 1

Back light intensity

Close Controls

Figure 3.5: It is possible for a user to use GUI to select various avatars and backgrounds
as well as to change the light intensity in real-time.

Figure 3.6: Showcase of various backgrounds.

Figure 3.7: Showcase of 8 different avatars.

22

Figure 3.8: Newly calculated data are sent over the websocket server every frame, which
creates smooth movements of the avatar.

3.2.3 Animating the Avatar

To obtain data which are important for animations, the avatar animator module needs to
be configured as a websocket client. It should connect to the websocket server automatically
and continuously listen to incoming messages. If the connection is lost, the user is notified
and the avatar is not animated anymore, but rests in the last known pose.

After obtaining new data from the websocket server, it is important to update transforms
for each bone that the particular avatar has defined. Thanks to G L T F hierarchical structure,
it is fairly easy to traverse the whole scene to look for the particular bone (bone is also
called an object) by its name. After multiplying new transforms and adding the offset from
the configuration file, the avatar is animated. This is done every frame in the face tracking
module, so the animation is seamless as could be seen in Figure 3.8.

3.3 Websocket Server

With fully functional face tracking and avatar animator modules, their only problem is that
they are completely independent modules. However, this might be an advantage depending
on the point of view. Running the avatar animator module independently from the face
tracking module allows users to run multiple instances of the avatar animator at the same
time and animate them based on the same input data from the face tracking.

To correctly transfer data from the face tracking module to avatar animator modules,
the intermediator is required. In my solution, I chose the websocket server to be the
intermediator. The websocket protocol is a multi-platform protocol that has very simple
Application Programming Interface (API). Its A P I is explained in more detail in [16, 22].
This makes it fairly easy to implement to both the face tracking and the avatar animator
modules.

The websocket server registers all clients that established connection with it and then
broadcasts incoming messages to all registered clients. Even Face tracking module is a
registered client, but it does not handle incoming messages and it only works one way
(from Face tracking module to the websocket server) as shown in Figure 3.9.

23

Avatar Animators

Figure 3.9: Websocket server recieves data from the face tracking module and distributes
them to avatar animators.

The avatar animator works the other way around. It only listens to messages from the
websocket server and never sends data back. That would create unnecessary loops and
those kinds of messages would need to be filtered.

24

Chapter 4

Implementation and Evaluation

4.1 Implementation Details

In this section I describe how I implemented three modules - face tracking (python script),
avatar animator (JavaScript application) and the websocket server (python script).

4.1.1 Script for Capturing the Face

Face tracking module is in fact a python script implemented using python version 3.9.7. It
firstly loads the input mode from arguments. Integer number (0 or greater) indicates the
web camera index, from which the input will be read, since computer can have more than
one camera connected. Anything else will be read as a path to the video file.

Then it opens a camera, using package OpenCV1. The same package is then used to
read every frame (hereinafter referred to as an image) of the video input, and convert color
space of the image from B G R to R G B . Marking the image as not writable will improve
performance.

The image is then processed using the Mediapipe's solution - Facemesh. This solution
is explained in Section 2.3.1. Settings for the facemesh model used in this project are as
follows:

• Maximum number of faces - 1

• Minimum detection confidence - 0.5

• Minimum tracking confidence - 0.5

• Refine landmarks - True

Number of faces is set to 1, since there is only one avatar in each avatar animator, so it
is unnecessary to look for other faces in the image. Confidence values are set to default.
The option to refine landmarks is not set by default. This would mean that processing the
image by the facemesh would return only 468 landmarks, ignoring landmarks defining irises
(5 for each eye). Tracking irises is important to determine the line of sight, as mentioned
in Section 3.1.3.

After processing the image, it is set back to writable and converted back to B G R color
space, for future displaying of the video.

x h t t p s : //opencv.org/

25

http://opencv.org/

Figure 4.1: The resulting window of Face tracking module consists of the input frame,
calculated landmarks, and inference speed.

The processed image returned 478 landmarks defining the face geometry. From those
landmarks are calculated new transforms - data to be sent over to the websocket server.
Those calculations were discussed in Section 3.1. They are calculated with the help of math
and numpy packages. The newly calculated data are asynchronously sent to the websocket
server using asyncio2 package and websockets'^ package to handle the websocket connection
with the server.

After calculating and sending over all necessary data, landmarks are drawn over the
user's face in the image and the inference speed is calculated. This is done strictly for
user's informative purposes. The resulting image is then displayed in a separate window
using OpenCV, as show in Figure 4.1.

4.1.2 Web Browser Application for Animating the Avatar

Avatar animator is a JavaScript module that primarily utilize JS l ibrary/API - Three.js in
cojuction with H T M L canvas element and WebGL. Three.js was explained in more details
in Section 2.4.2. The script starts with creating an empty scene.

Before animating the avatar, the animator needs to connect to the websocket server
from where it listens to incoming messages that contain important data for animating the
avatar. Avatar animator never sends messages back to the server, only listens to them.
When the connection dies, the user is alerted.

As explained in Section 3.2.1, each avatar can have different properties such as the size
or direction of bones. For users to be able to continuously switch among different avatars,
each model needs a configuration file with bone names, multipliers and offsets for bones,

2 h t t p s : //docs.python.org/3/library/asyncio.html
3 h t t p s : //websocket s.readthedocs.io/en/stable/

26

their orientation, scale factor, and camera transforms, as shown in Figure 4.2. Scale factor
defines how much the model should be scaled for proper displaying on the camera. This
configuration file is loaded before the actual model and has JSON file format. A n example
of the configuration file is shown in Figure 4.2. It is important for the configuration file to
have the same name as its respective avatar G L T F file.

To load the G L T F model, the script uses ThreeJS' GLTFLoader'1. After the loading of
the G L T F file - an avatar, it is added to the center of the scene. Base jaw's and eyelids'
rotation values are saved for future animations and the avatar's head is set as a target for
the camera.

Every time a user selects different avatar, the old one is removed from the scene and the
process of loading the configuration file and G L T F file is repeated with the newly selected
avatar.

The scene is equipped with the simple background texture and two lights - in front
of the avatar and in the back. As explained in Section 3.2.2, those settings , as well as
the avatar selection, are managed by the GUI script that utilize dat.GUI5 - a lightweight
graphical user interface for changing variables in JavaScript.

Avatar animator also utilizes most common camera for 3D scenes - perspective camera 6.
The camera takes advantage of orbit controls , for the user to be able to move freely around
the avatar.

Wi th properly loaded object and obtained real world data, the scene is set and the avatar
ready to be animated. This is done every time the data are received from the websocket
server. To animate the avatar, the scene is being traversed to find the bone, which name
corresponds with the name given in the configuration file, and change its rotation around
the axis where necessary. Changing transforms of the bone other than the rotation is not
necessary. Figure 4.3 shows an example of rotating the bone around its x axis.

Head and irises use the offset from the configuration file instead of the base rotation.
Nevertheless, eyelids for blinking animations use base rotation as well to return to their
default state when eyes are opened. Blinking is working with only one avatar (Ruby) in
the current state, because other avatars do not have bones for controlling eyelids. To blink,
the blink value from the data from the websocket message needs to be less than certain
threshold. This threshold was manually set to 0.27. How to calculate blink value was
explained in Section 3.1.4.

Updating bone transforms of the avatar every frame leaves the impression that the
avatar is really moving alongside the user in the real world or in the video.

4.1.3 Websocket Server — Script

The websocket server script was implemented using python version 3.9.7. It uses asyncio
package to handle asynchronous operations, such as handling messages. Websockets package
is used to serve on the specified port and to broadcast messages. By default this port is set
to be 8765.

Firstly, the server is created using parameters - message handler (function) and port
(integer) on which it will operate. Whenever a new message is received by the server, the
message handler process this message.

4 h t t p s : //three j s.org/docs/#examples/en/loaders/GLTFLoader
5 h t t p s : //github.com/dataarts/dat.gui
6 h t t p s : //three j s.org/docs/#api/en/cameras/PerspectiveCamera
7 h t t p s : //three j s.org/docs/#examples/en/controls/OrbitControls

27

1 {

2 "bones": {
3 "bone_jaw": " Jaw",
1 "bone_head": "Head"
5 "bone_eye_L": "EyeL'
6 "bone_eye_R": "EyeR'
7
8 " m u l t i p l i e r s " : {

9 "jaw": -4,
10 "head_rot": 5 ,
11 "head_nod": 5 ,
12 "head_turn": 5 ,
13 "eye_L_V" 1,
11 "eye_L_H" 1,
15 "eye_R_V" 1,
16 "eye_R_H" 1
17 },

18
19 " o f f s e t s " : {
20 "head_rot": 0,
21 "head_nod": 0,
22 "head_turn": 0,
23 "eye_L_V" -2,
21 "eye_L_H" -0.5,
25 "eye_R_V" -2,
26 "eye_R_H" -0.5
27 },

28
29 "axis": {
30 "eye_H": "z",
31 "eye_V": "x"
32 }

33 },

34 "sc a l e _ f a c t o r " : 7,
35
36 "camera_position' : {
37 "x": 0,
38 "y": 12,
39 "z": 10
10 },

11 "camera_offsetY" 8
12 }

Figure 4.2: Example of the configuration file for the bandit avatar. It contains, bone names,
bone multipliers and offsets, horizontal and vertical axis for eyes, scale factor, and camera
transforms.

28

// Jaw
i f (bone_jaw != null) {

scene.getObjectByName(bone_jaw).rotation.x = base_jaw_rot + msg.gap *
j aw_mul

}

Figure 4.3: Example of code to update a particular bone transform with newly obtained
data, where the bone_jaw is the name of the bone deforming the jaw, base_jaw_rot is the
base rotation of jaw right after the model is loaded, jaw_mul is multiplier specified in the
configuration file of the model and msg.gap are the data obtained from the websocket server
(how much is mouth opened).

new connection incomming message connection lost

I S tar t \ I Register! I Handle 1 f Remove i
V s e r v e r / V a user / Imessage/ Vthe user/

incomming message

Figure 4.4: After registering a user, the continuity of the websocket connection enables the
server to asynchronously handle messages for each registered user.

Message handler uses a global set of connected (registered) users (websocket clients).
When there is no entry of the new websocket connection, it is added to the set. Then
every message received from that connection is broadcasted to all registered users. When
the connection with the client is lost, the user entry is removed from the set. Figure 4.4
demonstrates registering users and handling messages.

4.2 Flaws and Drawbacks

The solution I designed and implemented has its own drawbacks, but further work could
increase precision of face tracking and make animations smoother. In this section I discuss
flaws of this solution and potentially undesired behaviours.

4.2.1 Lack of Filtering in the Websocket Server

In current stage of development, the websocket server registers every client that establishes a
connection with it. There is no filtering currently implemented, which means the websocket
server does not verify the identity of the connected client. This could lead to connecting
multiple face tracking modules to the same websocket server, which would create undesired
behaviour as explained in Section 4.3.

29

In the worse case scenario, a completely unrelated client that sends and receive different
kind of messages, could connect to the server. What could follow would depend on the
connected client. It could independently send messages, containing unrelated face data,
which would lead to the same behaviour of the avatar animator as in the case, where two
cameras are connected.
If the client sends different message, not containing face data, the avatar animator would
simply ignore them.
Nevertheless, the unrelated client could only listen to the broadcasted messages and use
obtained face data for unknown purposes.

4.2.2 Jittering of Landmarks

When using Mediapipe's facemesh model for face tracking, landmarks tend to jitter (shake)
from frame to frame. This is a known issue8 of facemesh. Possible solution for this would
be to implement a filter (e.g. Kalman filter) or landmarks smoothing calculator 9 that is
defined in Mediapipe's Face Effect demo app.

4.2.3 Lack of Bones in Skeletons

While using skeletal animations has its advantages, as mentioned in Section 2.4.1, there is
a reason to why most of the existing works use blend shapes instead. Using only few bones
for the whole face can not reproduce a real facial expression. Human face has about 20
skeletal muscles 1 0 that control facial expressions. Few bones (head, jaw, irises and eyelids)
can not control them.

Blend shapes, on the other hand, could reproduce much more expressions using blend
shape interpolation method. It would be enough to create four or eight default blend shapes,
and interpolate among them based on the input from face tracking. However, avatar models
used in this solution are all rigged and optimized for skeletal animations.

4.3 Performance Tests

The primary testing factor was an inference speed measured in frames per second (FPS).
Three modules were tested on Windows 10 device, using A M D Radeon R X 480 G P U ,

Intel Core i7-9700F C P U and two different cameras: Genius WideCam F100 and Xiaomi
Redmi Note 9 Pro's front camera connected via Iriun webcam software1 1.

Both cameras performed similarly, their inference matched at 30 F P S according to the
FPS counter. However, since the Genius camera has wide angle (120°), the face appears to
be smaller in the input image, distance between landmarks is also smaller, and thus making
results of calculations less accurate.

The system is intended to work with a single camera, however, it is possible to have
multiple cameras connected to the websocket server. This creates undesired behaviour of
avatars, because data from both face tracking modules are broadcasted to all connected
avatar animators, and the avatar is moving according to different face tracking module on
each frame.

8 h t t p s : //github.com/google/mediapipe/issues/825
9 h t t p s : //github.com/google/mediapipe/tree/master/mediapipe/calculators/util

1 0https://www.kenhub.com/en/library/anatomy/the-facial-muscles
n h t t p s : / / i r i u n . com/

30

https://www.kenhub.com/en/library/anatomy/the-facial-muscles

Figure 4.5: Test showing both camera FPS (32) and rendering F P S (60+), while rendering
7 different avatars.

As mentioned above, the biggest advantage of this solution in comparison to other
existing solutions is the ability to animate multiple avatars simultaneously. As shown in
Figure 4.5, this ability proved in tests to be working as expected (60+ FPS render speed) 1 2.

Full resolution Screenshot can be found at https://imgur.com/UwGXeRq

31

https://imgur.com/UwGXeRq

Chapter 5

Installation Guide and User
Manual

To install the current version of the project, navigate to https: //github.com/ Junacik99/
bac and clone or download the repository. Steps for installing individual modules are
explained in the following sections.

5.1 Installing the Websocket Server

To install the websocket server on the device, Python version 3.9.7 or later is required.
Make sure you have the correct version of Python installed using command:

python — v e r s i o n
If the correct version of Python is already installed, open command line/terminal and

navigate to the downloaded repository (bac-main). Navigate to the WebSocketServer di­
rectory. From there issue command:

pip i n s t a l l -r requirements.txt
to install all required dependencies. If the face tracking module was installed before the
websocket server, this step can be ignored, because all the dependencies are already in­
stalled.

To run the websocket server from the WebSocketServer directory, issue command:

python websoc.py
After starting the server, you should see the message: Starting websocket server. This

means that the server is running on port 8765 and ready to serve clients. To change the
port for the server, open websoc.py and change value of port to desired port number.

5.2 Installing the Face Tracking Module

To install the face tracking module on the device, Python version 3.9.7 or later is required.
Make sure you have the correct version of Python installed using command:

python — v e r s i o n
If the correct version of Python is already installed, open command line/terminal and

navigate to the downloaded project repository (bac-main). Navigate to the FaceTracking
directory. From there issue command:

32

pip i n s t a l l -r requirements.txt

to install all required dependencies.
To run the face tracking from the FaceTracking directory, issue command:

python FaceTracking.py [mode]

where mode is the optional argument. If mode is an integer number (0 or greater), the face
tracking module will look for the connected camera with index mode. If mode is anything
else, the face tracking module will take it as a path to the input video file. If loading the
video does not work, check the path for any typos and grammar errors, and make sure a
proper version of ffmpeg or gstreamer is installed 1.

If there are more than one argument given, the face tracking module will ignore all but
the first, which will be consider valid mode.

If no arguments are given, then 0 is a default mode and the face tracking module will
try to read input from the default camera.

Attention! By default the address and the port of the websocket server are set
to ws://localhost:8765. To change it, navigate to ws_client.py and change the value of
ws_address.

5.3 Installing the Avatar Animator Module

Avatar animator is already deployed online and publicly available at http: //www.stud.f i t .vutbr.
~xtakac07/. No installation is needed, but the websocket server should be running before
accessing the avatar animator. By default, it looks for the websocket server on localhost,
port 8765. To change it, follow instructions bellow.

To install the avatar animator module on your own device Three, js library is required.
Visit https://threejs.org/ and hit the download button. This will automatically start
the download of the library.

Extract the downloaded zip file and move it to the ModelRender directory of the bac-
main repository. The three.js-master directory should be root directory for build and
examples directories.

To control GUI elements the dat.gui library is required. To download dat.gui clone
the repository from https://github.com/dataarts/dat.gui. If you downloaded zip file,
extract it. Then the cloned or extracted repository has to be moved to the ModelRender
directory, so the dat.gui-master directory contains build directory.

After cloning the repository and inserting Three.js and dat.gui modules inside Model-
Render directory, the avatar animator module is ready to be deployed. To this I recommend
using Visual Studio Code with Live Server extension2. It helps you launch a local server
for development.
Alternatively, it is possible to deploy whole ModelRender directory on a server, such as
https://www.stud.fit.vutbr.cz for V U T FIT students, to access avatar animator func­
tions.

By default, the avatar animator looks for the websocket server on localhost, port 8765.
To change it, open index.js script and change value of ws_address.

x h t t p s : //docs.opencv.org/4.x/dd/d43/tutorial_py_video_display.html
2 h t t p s : //marketplace.visualstudio.com/items?itemName=ritwickdey.LiveServer

33

http://www.stud.f
https://threejs.org/
https://github.com/dataarts/dat.gui
https://www.stud.fit.vutbr.cz
http://visualstudio.com/

Disclaimer I do not own any of the provided assets files and they have been provided
to me for free from online markets. Provided assets:

• Ruby Rose 3

• Old man 4

• Markus 5

• Latifa 6

. R i n 7

. P i l i n 8

• Bandit 9

3 h t t p s : //skf b.ly/6QSUK
4 h t t p s : //www.turbosquid.com/3d-models/free-blend-mode-old-man-rigged/625963
5 h t t p s : //www.turbosquid.com/3d-models/free-blend-mode-markus-sculpt/536148
6https://www.cgtrader.com/free-3d-models/character/woman/latifa-v2-original-vrchat-and-

game-ready
7 h t t p s : //www.cgtrader.com/free-3d-models/character/woman/rin-vrc-avatar
8
9 h t t p s : //www.turbosquid.com/3d-models/basic-bandit-3d-1250561

34

http://www.turbosquid.com/3d-models/free-blend-mode-old-man-rigged/625963
http://www.turbosquid.com/3d-models/free-blend-mode-markus-sculpt/536148
https://www.cgtrader.com/free-3d-models/character/woman/latifa-v2-original-vrchat-and-
http://www.cgtrader.com/free-3d-models/character/woman/rin-vrc-avatar
http://www.turbosquid.com/3d-models/basic-bandit-3d-1250561

Chapter 6

Conclusions

The goal of this thesis was to create a system that would animate the face of the 3D avatar
in real-time based on the input from the camera/video containing human face in the image.

Based on the Mediapipe's perception pipeline and Facemesh solution for estimation of
the human face geometry I was able to calculate transforms of specific bones for the avatar
(head, jaw, eyeballs, and eyelids). JavaScript library Three.js allows for the avatar animator
module to run right in the user's web browser, so no installation is needed. It also allows
for the access to transforms of individual bones of the model, which makes it fairly easy
to create skeletal animations in real-time. Due to the independence of individual modules
- face tracking and avatar animator, and their interconnection via websocket server, it is
possible to animate multiple avatars at the time, based on the single input.

The Mediapipe is multi-platform framework and is compatible with android devices,
but further development is needed to create a standalone mobile application for the face
tracking. In the present it can run devices that have installed Python version 3.9.7 or later.
Nevertheless, since the avatar animator is a web-based application, it can run on mobile
devices. The initial loading of the avatar lasts longer than on device with a powerful G P U ,
such as P C , but the animation is just as smooth as it would be on the computer.

To achieve better and more realistic visual representation of human expressions on the
avatar, the avatar should have more bones for facial control, and additional computations
at the face tracking module would be required as well.

Nevertheless, using skeletal animations has its advantages. There is no need to define
many blend shapes for each model separately. The bone hierarchy remains the same for
most humanoid avatars, and thus could be reused for multiple avatars.

35

Bibliography

[1] A B A D I , M . , B A R H A M , P., C H E N , J. , C H E N , Z . , D A V I S , A . et al. TensorFlow: A
System for Large-Scale Machine Learning. In: 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI16). Savannah, G A : U S E N I X
Association, November 2016, p. 265-283. ISBN 978-1-931971-33-1. Available at:
https://www.usenix.org/conference/osdil6/technical-sessions/presentation/abadi.

[2] A H I R E , A . L . , E V A N S , A . and B L A T , J . Animation on the Web: A Survey.
In: Proceedings of the 20th International Conference on 3D Web Technology. New
York, N Y , USA: Association for Computing Machinery, 2015, p. 249-257. Web3D
'15. DOI: 10.1145/2775292.2775298. ISBN 9781450336475. Available at:
https://doi.org/10.1145/2775292.2775298.

[3] B A Z A R E V S K Y , V . , K A R T Y N N I K , Y . , V A K U N O V , A . , R A V E E N D R A N , K .

and G R U N D M A N N , M . BlazeFace: Sub-millisecond Neural Face Detection on Mobile
GPUs. CoRR. 2019, abs/1907.05047. Available at: http://arxiv.org/abs/1907.05047.

[4] C A O , C , H O U , Q. and Z H O U , K . Displaced Dynamic Expression Regression for
Real-Time Facial Tracking and Animation. ACM Trans. Graph. New York, N Y ,
USA: Association for Computing Machinery, jul 2014, vol. 33, no. 4. DOI:
10.1145/2601097.2601204. ISSN 0730-0301. Available at:
https://doi.org/10.1145/2601097.2601204.

[5] C A O , C , W E N G , Y . , L I N , S. and Z H O U , K . 3D Shape Regression for Real-Time
Facial Animation. ACM Trans. Graph. New York, N Y , USA: Association for
Computing Machinery, jul 2013, vol. 32, no. 4. DOI: 10.1145/2461912.2462012. ISSN
0730-0301. Available at: https://doi.org/10.1145/2461912.2462012.

[6] D A I , H . , C A I , B. , S O N G , J . and Z H A N G , D. Skeletal Animation Based on B V H
Motion Data. In: 2010 2nd International Conference on Information Engineering and
Computer Science. 2010, p. 1-4. DOI: 10.1109/ICIECS.2010.5678292.

[7] D E R K A C H , D., R U I Z , A . and S U K N O , F . M . Head Pose Estimation Based on 3-D
Facial Landmarks Localization and Regression. In: 2017 12th IEEE International
Conference on Automatic Face Gesture Recognition (FG 2017). 2017, p. 820-827.
DOI: 10.1109/FG.2017.104. Available at: https://doi.org/10.1109/FG.2017.104.

[8] G A R O L E R A , E . V . , L L O R A C H , G. , A G E N J O , J . and B L A T , J . Real-time face
retargeting and a face rig on the web.

[9] G A R S T E N A U E R , M . and K U R K A , D.-I. D . G . Character animation in real-time.
Citeseer, 2006.

36

https://www.usenix.org/conference/osdil6/technical-sessions/presentation/abadi
https://doi.org/10.1145/2775292.2775298
http://arxiv.org/abs/1907.05047
https://doi.org/10.1145/2601097.2601204
https://doi.org/10.1145/2461912.2462012
https://doi.org/10.1109/FG.2017.104

[10] G R I S H C H E N K O , I., B A Z A R E V S K Y , V . , B A Z A V A N , E . G. , L I , N . and M A Y E S , J . 3D

Pose Detection with MediaPipe BlazePose GHUM and TensorFlow.js [[online]]. 2021.
Available at: https: //blog.tensorflow.org/2021/08/3d-pose-detection-with-
mediapipe-blazepose-ghum-tfj s.html.

[11] K A P E T A N A K I S , K . , P A N A G I O T A K I S , S. and M A L A M O S , A . G . H T M L 5 and
WebSockets; Challenges in Network 3D Collaboration. In: Proceedings of the 17th
Panhellenic Conference on Informatics. New York, N Y , USA: Association for
Computing Machinery, 2013, p. 33-38. P C I '13. DOI: 10.1145/2491845.2491888.
ISBN 9781450319690. Available at: https://doi.org/10.1145/2491845.2491888.

[12] K A R T Y N N I K , Y . , A B L A V A T S K I , A . , G R I S H C H E N K O , I. and G R U N D M A N N , M .

Real-time Facial Surface Geometry from Monocular Video on Mobile GPUs . CoRR.
2019, abs/1907.06724. Available at: http://arxiv.org/abs/1907.06724.

[13] L i , H . , Y u , J . , Y E , Y . and B R E G L E R , C. Realtime facial animation with on-the-fly
correctives. ACM Trans. Graph. Citeseer. 2013, vol. 32, no. 4, p. 42-1.

[14] L I C H T E N A U E R , J . and P A N T I C , M . Monocular omnidirectional head motion capture
in the visible light spectrum. In:. November 2011, p. 430-436. DOI:
10.1109/ICCVW.2011.6130273.

[15] L U G A R E S I , C , T A N G , J . , N A S H , H . , M C C L A N A H A N , C., U B O W E J A , E . et al.
MediaPipe: A Framework for Building Perception Pipelines. CoRR. 2019,
abs/1906.08172. Available at: http://arxiv.org/abs/1906.08172.

[16] M E L N I K O V , A . and F E T T E , I. The WebSocket Protocol [RFC 6455]. R F C Editor,
december 2011. DOI: 10.17487/RFC6455. Available at:
https: //www.rfc-editor.org/ inf o/rf c6455.

[17] N A K A G A W A , K . The Use of Live2D as an Animation Education Tool. Bulletin of
Kurashiki University of Science and the Arts. 2017, no. 22, p. 15-21.

[18] N O R D V A L L , B . Down the Rabbit Hole: Hololive Myth, community, and digital
geographies. 2021.

[19] S E E M A N N , E. , N I C K E L , K . and S T I E F E L H A G E N , R. Head pose estimation using stereo
vision for human-robot interaction. In: Sixth IEEE International Conference on
Automatic Face and Gesture Recognition, 2004- Proceedings. 2004, p. 626-631. DOI:
10.1109/AFGR.2004.1301603.

[20] S L A B A U G H , G . G. Computing Euler angles from a rotation matrix. Retrieved on
August. 1999, vol. 6, no. 2000, p. 39-63.

[21] S M I L K O V , D., T H O R A T , N . , A S S O G B A , Y . , N I C H O L S O N , C , K R E E G E R , N . et al.
TensorFlow.js: Machine Learning For The Web and Beyond. In: T A L W A L K A R , A . ,
S M I T H , V . and Z A H A R I A , M . , ed. Proceedings of Machine Learning and Systems.
2019, vol. 1, p. 309-321. Available at: https://proceedings.mlsys.org/paper/2019/
file/ld7f7abcl8fcb43975065399b0dle48e-Paper.pdf.

[22] S R I N I V A S A N , L . , S C H A R N A G L , J . and S C H I L L I N G , K . Analysis of WebSockets as the
New Age Protocol for Remote Robot Tele-operation. IF AC Proceedings Volumes.

37

http://tensorflow.org/2021/08/3d-pose-detection-with-
https://doi.org/10.1145/2491845.2491888
http://arxiv.org/abs/1907.06724
http://arxiv.org/abs/1906.08172
http://www.rfc-editor.org/
https://proceedings.mlsys.org/paper/2019/

Firstth ed. 2013, vol. 46, no. 29, p. 83-88. DOI:
https://doi.org/10.3182/20131111-3-KR-2043.00032. ISSN 1474-6670. 3rd IFAC
Symposium on Telematics Applications. Available at:
https: //www. sciencedirect.com/science/axticle/pii/S1474667015343688.

[23] T O I S O U L , A . , K O S S A I F I , J . , B U L A T , A . , T z i M I R O P O U L O S , G. and P A N T I C , M .

Estimation of continuous valence and arousal levels from faces in naturalistic
conditions. Nature Machine Intelligence. Nature Publishing Group. 2021, vol. 3,
no. 1, p. 42-50.

[24] V I O L A , P. and J O N E S , M . Rapid object detection using a boosted cascade of simple
features. In: Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001. 2001, vol. 1, p. I-I. DOI:
10.1109/CVPR.2001.990517.

[25] W E I S E , T., B O U A Z I Z , S., L I , H . and P A U L Y , M . Realtime Performance-Based Facial
Animation. ACM Trans. Graph. New York, N Y , USA: Association for Computing
Machinery. Jul 2011, vol. 30, no. 4. DOI: 10.1145/2010324.1964972. ISSN 0730-0301.
Available at: https://doi.org/10.1145/2010324.1964972.

[26] Y U A N , L . , Q U , Z . , Z H A O , Y . , Z H A N G , H . and N I A N , Q . A convolutional neural
network based on TensorFlow for face recognition. In: 2017 IEEE 2nd Advanced
Information Technology, Electronic and Automation Control Conference (IAEAC).
2017, p. 525-529. DOI: 10.1109/IAEAC.2017.8054070.

38

https://doi.org/10.3182/20131111-3-KR-2043.00032
http://sciencedirect.com/science/axticle/pii/S1474667015343688
https://doi.org/10.1145/2010324.1964972

