
Palacký University Olomouc
Faculty of Science

Department of Optics

Elementary simulator of single
qubit dynamics

Bachelor’s Thesis

Marcel Drdla
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Abstract

This thesis deals with the implementation of arbitrary operation using a
finite number of logic gates [1]. For example, repeating the rotation by an irra-
tional angle which leads to the realization of any rotation along the given axis.
That is presented through experimental implementation of an elementary quan-
tum simulator for single qubit dynamics, which allows tests of long sequences
of quantum operations. Such sequences result in operations with Hamiltonians
that can correspond to sums or commutators of the Hamiltonians of the compos-
ing operations [2]. Each individual operation is realized as a sequence of state
preparation, state transformation, and state estimation. The basic principle of
the approach was demonstrated by chaining qubit operations with Hamiltonians
σx and σy, in order to create Hamiltonian σz.

A major problem is the applicability of this approach. Various experimental
imperfections accumulate with each repetition of these small transformations.
For example, these imperfections include imperfect retardation of waveplates or
their inaccurate rotation and unstable input optical power. MaxLik reconstruc-
tion method that is used may introduce additional systematic errors in each
step.

In this thesis, we used polarized light to show how to use this approach
to rotate a qubit along z-axis using x- and y-rotations only and studied the
experimental challenges of the introduced method.
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Chapter 1

Introduction

1.1 Elementary simulator of single qubit dynam-
ics

Quantum processing deals with the processing and coding of the quantum in-
formation [3]. Quantum information is coded in quantum bits - shortly qubits.
Qubit differs from normal bits by not being limited to two logical states, logical
states being 0 or 1. Qubits can exist in superpositions of these logical states,
that is why we measure quantum states as probabilities.

Quantum processing requires the ability to transform these states arbitrarily
[4]. A pure qubit could be described as a unit vector in three-dimensional space.
An important category of single-qubit transformation is rotation. We would like
to rotate the qubit arbitrarily, with a free choice of rotation axis and angle. A
crucial principle of universality in quantum information processing [3] is that
an arbitrary operation can be constructed from a finite set of operations.

In this thesis, we illustrate both theoretically and experimentally how to
generate [5] a rotation along an axis from the other two non-commuting opera-
tors that generate rotatiom along other perpendicular. We will be proving the
following formula

eiAδt.eiBδt.e−iAδt.e−iBδt = e[A,B]δt2 +O(δt3), (1.1)

where A and B are the different operations, [A,B] = AB − BA = C is com-
mutator of operations used to create the desired operation C and O(δt3) is an
error that affects to what extent is the sequence of operations identical to the
operation we are replacing [2]. Element δt represents time. For our experiment
δt = γ

N , where γ is arbitrary angle that parametrizes the rotation (for our ex-
periment γ = π

2 ) and γ
N then represents the amount of the operations A and B

that will be executed.
Then equation (1.1) can be written as a sequence of repeating operations

that make the desired operation.

M∏
n=1

(eiA
1
N t.eiB

1
N .e−iA

1
N .e−iB

1
N ) = e[A,B]δt2.M +O(δt3.M), (1.2)

where M is the number of repetitions of the small operation. Meaning that the
larger M is, the more times the left part of the equation is written consecutively.
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The error O(δt3) will then decrease with N →∞. The proof of the equality of
equation (1.1) is done using Taylor series as

eiAδt.eiBδt.e−iAδt.e−iBδt = (1 + iAδt).(1 + iBδt).(1− iAδt).(1− iBδt) =

1 + (AB −BA)δt2 +O(δt3) = e(AB−BA)δt2 +O(δt3). (1.3)

With the Taylor series we get the commutator of used operations and other
elements with t3, which are referred to as error O(δt3). This approximation is
tested on one qubit. That means that the setup will be using just one laser
beam and one detector with other components that are listed in Setup section.

In our experiment we are using Pauli matrices. Our goal is to realize z-
rotations using x- and y- rotations. For example, on Bloch sphere the quantum
state is defined with x, y, z coordinates. To change the coordinates of this
state we can rotate x, y, z axes using Pauli matrices (σ-operations). Each
Pauli matrix rotates one of these axes by π or 180◦ as mentioned before. Then
the state is rotated around the z-axis, but for now we are assuming that this
operation cannot be realized by using the Pauli matrix, which normally allows
this movement (σz). We can refer to it as a forbidden operation. However, we
can still rotate around x and y axis. If the state is rotated around x and y axes,
meaning we use the other two Pauli matrices, the same transformation is done
as if we would use the forbidden operation. So instead of using the forbidden
operation, we are using a sequence of different operations, which we consider to
be the same, with the correct choice of N .

In equation (1.1) operation A = σx and B = σy. The commutator of these
operations is equal to

[σx, σy] =

(
0 1
1 0

)
.

(
0 −i
i 0

)
−
(

0 −i
i 0

)
.

(
0 1
1 0

)
=(

i 0
0 −i

)
−
(
−i 0
0 i

)
=

(
2i 0
0 −2i

)
= 2i.σz. (1.4)

Any operation can be realized using three retardation plates, namely two
quarter wave plates (QWP ) and one half wave plate(HWP ) see Theory (2.16)-
(2.17), in this order

U = QWP (α).HWP (β).QWP (δ), (1.5)

where α, β, δ are rotation angles of corresponding retardation plates and U
is desired operation. Experimental verification of this principle (1.1) can be
realized by using these sigma operations in succession accordingly to the size
of N . That is, however, impossible for large N due to the large number of
components and space. Therefore, we will perform only one partial operation,
measure the output and then set it as a new input for another measurement
and we this will be performed M times. The larger the N is, the smaller the
error O(δt3) gets [2]. However, in the experiment the imperfections accumulate.
Hence our goal is to realize the forbidden operation and finding the optimal N
so that the forbidden operation is as similar as possible to the one that will be
created.

2



Chapter 2

Theory

2.1 Polarization

Let’s assume a monochromatic wave with angular frequency ω, traveling in the
direction of z-axis with velocity v [6]. Then the electric field vector lies in x-y
plane and is described as

E(z, t) = Re{A.e[i(ωt− zv )]}, (2.1)

where A = Ax. ~ex + Ay. ~ey represents the electric field in x and y axes. If we
substitute and expand the vector for electric field into cartesian coordinates we
get the electric field operating in the x-axis and y-axis as

Ex(z, t) = Ax cos[ωt− z

v
+ φ1], (2.2)

Ey(z, t) = Ay cos[ωt− z

v
+ φ2]. (2.3)

If we add squared electric field in x-axis to squared electric field in y-axis we
get the implicit form of ellipse equation

(
Ex
Ax

)2 + (
Ey
Ay

)2 − 2
Ex
Ax

Ey
Ay

cos(δ) = sin2(δ), (2.4)

where δ = φ2 − φ1 represents phase difference.
The Jones or Stokes formalism is used the most commonly for the description

of polarization. We will use Jones formalism which is simpler but describes only
pure states. The general form of Jones vector is then described as

J =

(
Ax
Ay

)
. (2.5)

J†.J = 1 applies to this vector, where † is Hermitian conjugation. Hermitian
conjugation is equal to complex conjugation and transposition in any order.
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Purity γ defines measure, giving information on how much is the polarization
state J mixed [3]. If polarization state has γ = 1 then this is referred to as pure,
meaning all of the light has the same polarization. We can also measure purity
for density matrices defined as

γ = Tr(ρ2) = Tr[(J.J†)2], (2.6)

where Tr is operation trace that gives us sum of elements on the main diagonal
of square matrix.

The basic polarization states are described in Jones formalism in the follow-
ing Table 2.1.

Polarization
state

H V D A R L

Vector
representation

(
1
0

) (
0
1

) (
1√
2
1√
2

) (
1√
2
−1√
2

) (
1√
2
i√
2

) (
1√
2
−i√
2

)

Table 2.1: Demonstration of basic states and their expression in Jones formalism

Density matrix ρ [5], also called density operator, is a general description
of the polarization state. Unlike polarization vectors, density matrices do not
describe just pure states. Density matrix can describe a pure polarization state
or a statistical mixture of them. If we know the Jones vector J that represents
our polarization state, we can transform it into density matrix of size 2x2 as

ρ = J.J† (2.7)

Fidelity is the magnitude of similarity between two density matrices [3]. It is
a test of the probability that one state will be identified as the other. Generally,
fidelity is defined as

F = [Tr[
√√

ρ.σ.
√
ρ]]2. (2.8)

However, for pure states or if at least one of the density matrices is pure
(γ = 1), the equation (2.8) is simplified into

F =
Tr[ρ.σ]

Tr[ρ].T r[σ]
. (2.9)
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To display polarization states we use Bloch sphere.

Figure 2.1: Bloch sphere with the basic Jones vectors shown

The Bloch sphere is a unit sphere in which there are three axes that corre-
spond to certain basic polarization states (Table 2.1). All pure states are located
on the surface of the Bloch sphere. All mixed states, states that have γ < 1, are
located inside the Bloch sphere. If we want to display any polarization state, we
use the Bloch vector ~a = (x, y, z). The coordinates for this vector are obtained
from a density matrix ρ of a particular polarization state.

x = ρ10 + ρ01

y = i.(ρ01 − ρ10)

z = ρ00 − ρ11
(2.10)
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Hammer projection is used for better readability. This projection maps
points on the surface of the sphere on its two-dimensional representation [7],
see Figure 2.2. In further experiments we use this mapping to plot changes of
polarization states.

Figure 2.2: Bloch sphere in Hammer projection

Stokes formalism describes the polarization state of electromagnetic radi-
ation with vector called Stokes vector. Stokes vector contains a set of four
components. First component is purity (2.7) of the polarization state and the
other three values are cartesian coordinates on the Bloch sphere. Therefore, it
is the Bloch vector with the information about purity of particular polarization
state. That means that we can describe any polarization state, even the impure
polarization states. On the other hand, Jones formalism has a simpler form that
is easier to work with.

2.2 Optical retarders

An optical retarder is an optical device that alters the polarization state of
transmitted light wave and introduces a phase shift between the polarization
components. Ideally, retarders do not polarize, cause change in the intensity,
deviate or displace the light beam, they simply change their polarization form.
Special cases of optical retarders are wave plates. Because we are assuming that
all states are pure in our experiment, we can describe these states with Jones
symbolism.
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Wave plates are optical components that manipulate with the polarization
of the transmitted light. General form of the transformation matrix for wave
plates is

T =

(
1 0
0 e−iδ

)
, (2.11)

A special case of wave plates that we will use are half- (HWP) and quarter-
wave plates (QWP). These wave plates are usually made of birefringent material.
This material adds respective delay (retardation) δ to the polarization. This
delay depends on the thickness and rotation of the wave plate. For HWP, the
delay will be δ = π

2 and for QWP it will be δ = π
4 . If we substitute into the

transformation matrix, we get matrices for HWP and QWP as

HWP =

(
1 0
0 −1

)
, (2.12)

QWP =

(
1 0
0 −i

)
. (2.13)

These matrices represent mentioned wave plates, when not rotated. We will
need generally rotated wave plate. We define the rotation matrix as

Rot(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
. (2.14)

Then we get the general rotated wave plates with the use of (2.12),(2.13)
and (2.14) to get the matrix for generally rotated wave plates subsequently

T (α) = Rot(−α).T.Rot(α). (2.15)

And the matrices for HWP and QWP are defined as

HWP (α) =

(
cos(2α) sin(2α)
sin(2α) − cos(2α)

)
, (2.16)

QWP (α) =

(
cos2(α)− i sin2(α) cos(α) sin(α)(1 + i)
cos(α) sin(α)(1 + i) sin2(α)− i cos2(α)

)
. (2.17)
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Another important optical element, that we will use, will be a polarizer.
Polarizer is a polarization filter. That means that polarizer transmits only
polarized light oscillating in one direction. The transmitted light depends on
the rotation of the polarizer. The matrix form of linear polarizer, that transmits
only horizontally polarized light, is the following

P =

(
1 0
0 0

)
. (2.18)

A matrix representation of a rotated polarizer is obtained similarly as in
(2.15),

P (α) = Rot(−α).P.Rot(α),

P (α) =

(
cos2(α) cos(α) sin(α)

cos(α) sin(α) sin2(α)

)
. (2.19)

2.3 Pauli matrices

Pauli matrices are three 2x2 complex matrices that are Hermitian and unitary.
We define them as σ-operations σx, σy and σz. If we plot our initial polarization
state on Bloch sphere and apply one of the operations, two axes on the Bloch
sphere will be mirror-shifted. That means that the last axis is rotated by π.

For example if we use σx operation on transmitted light and the light is
polarized horizontally or vertically, then they will be rotated around the x-axis.
Therefore, the horizontally polarized wave will be vertically polarized and vice
versa. We define sigma operations as

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.20)

These operations can be realized with the use of wave plates. There are
different ways to do these operations because any operation can be realized, as
mentioned in Introduction (1.5), with the use of two QWPs and one HWP .
The simplest way to realize σx operation is using just one HWP rotated to 45◦

using formula (2.16). σy operation is realized as

σy = QWP (
π

2
).HWP (

π

4
).QWP (0). (2.21)
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2.4 Preparation and projection of polarized state

Generally, for the preparation and projection of polarized states we need three
wave plates, two QWPs and one HWP (1.5). In the experiment we use setup
that ensures that the input state is horizontally polarized light. Then we use
one QWP and one HWP in this order which allows us to prepare any arbitrary
polarized state. Subsequent formula represents preparation of the arbitrary
polarized output

OUT = HWP (β).QWP (α).IN, (2.22)

where OUT is polarization we want and IN is horizontally linear polarization
we have coming to the setup. Angles α and β are found by assuming that the
state IN is horizontal and then the plates should transform this state into all
basic polarization states Table 2.1.

The reverse order of the plates is used for projection

OUT = QWP (β).HWP (α).IN, (2.23)

where OUT is the state that we are projecting to and IN is the transformed
state from the setup. For projection, the angles α and β are found by assuming
that the state IN is one of the basic states Table 2.1. Then for each of these
states the angles are found so that the OUT state is horizontally polarized.

To measure a projection of a state A to a state B means to measure the
probability |A†.B|2 [5]. To reveal an unknown polarization state, we use two
wave plates to set the projection state. The unknown state is projected into
all of the Jones vectors from Table 2.1 using angles for wave plates from Table
2.2. The projected state then goes through the polarizer and the intensity is
measured on detector. Then we should have six different intensities where each
corresponds to one of the Jones vectors. From this we can see which states are
mostly contained in the unknown polarization. If the projected state intensity
is biggest for one of the Jones vectors and equal to zero in the opposite to the
biggest one, we can conclude that the unknown state is the Jones vector with
the biggest intensity.

The data coming from our projection are used for a reconstruction of the
unknown state. One of the reconstruction methods of the polarization analysis
is used to obtain the state density matrix ρ.

Preparation Projection
State QWP(α) HWP(β) HWP(β) QWP(α)
H 0◦ 0◦ 0◦ 0◦

V 0◦ 45◦ 45◦ 0◦

D 0◦ 22.5◦ 22.5◦ 0◦

A 0◦ −22.5◦ −22.5◦ 0◦

R −45◦ −22.5◦ 22.5◦ 45◦

L 45◦ 22.5◦ −22.5◦ −45◦

Table 2.2: Angles for wave plates used for preparation and detection in the
experiment
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2.5 State reconstruction

The reconstruction method we are using is called Maximum Likelihood esti-
mation [8] known as MaxLik to reconstruct state density matrix ρ (2.7) from
acquired data in the projection process. The advantage of this method is that it
will always have a physical output. Unfortunately, every reconstruction method
that outputs physical results suffers from systematic errors [9]. For example,
purity and fidelity estimation is biased. This effect is stronger when the to-
mography is limited to a small number of copies. This fact is not very relevant
in our case as in the experiment because we are working with states with the
purity values close to one, and we are working with a strong laser beam.

For the MaxLik method, the unknown state is projected into basic po-
larization states shown in Table 2.1. This then gives us a list of six values
data = [H,V,D,A,R,L], which are the input data to this method. Another in-
put for the MaxLik method is a list of projectors corresponding to the provided
data. From these inputs, a density matrix of the respective unknown state is
reconstructed. The reconstruction algorithm iteratively searches for the quan-
tum state that reproduces the recorded data with the largest quasi-probability
(likelihood).

2.6 Similarity of unitary operations

To compare unitary operations, a conversion from a 2x2 matrix to a 4x4 process
matrix χ, called Choi – Jamio lkowski isomorphism [10, 11] is used. This process
matrix χ is used to describe a unitary operation U and their relation is

χ = (I ⊗ U).(|00〉+ |11〉).(〈00|+ 〈11|).(I ⊗ U)†, (2.24)

where I is identity matrix, ⊗ is the Kronecker product and

|00〉 =


1
0
0
0

 , |11〉 =


0
0
0
1

 , 〈00| = |00〉†, 〈11| = |11〉†. (2.25)

This conversion is used to compare two unitary operations with infidelity
INF , which gives information about the difference between the two operations.

INF = 1− F, (2.26)

where F is fidelity (2.9) measured for the two unitary operations. This compari-
son has the advantage that it can be used to compare even imperfect operations.
Figure 2.3 shows a comparison of unitary operations from equation (1.1), where
as mentioned before A = σx and B = σy. The operations from the left and
right sides are compared using infidelity, which then shows us the error O(δt3)
that decreases with increasing N .
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Figure 2.3: Process infidelity between left and right sides of equation (1.1)

We parametrize a unitary operation with parameters θ, φ1, and φ2 in a fol-
lowing way

U(φ1, φ2, θ) =

(
α −β
β α

)
(2.27)

where α = eiφ1 . cos(θ), β = eiφ2 . sin(θ) and α means complex conjugation. This
parametrization is called the special unitary (SU2) matrix [5].

We would like to correct the experimental operation χexp to achieve better
fidelity with desired operation χthe. To do so, we apply a unitary operation
Uθ,φ1,φ2

on the experimental process matrix to obtain the corrected process
matrix.

χcor = (1⊗ Uθ,φ1,φ2)χexp (1⊗ Uθ,φ1,φ2)
†
. (2.28)

We search for parameters θ, φ1, φ2 that maximize the fidelity F (χcor, χthe). Re-
sulting parameters describe the best corrective unitary operation that we can
use to compensate for errors in the experiment.
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Chapter 3

Experiment

In all experiments, we assume that the input state is horizontally polarized,
which is then transformed into a state with which we perform the required
measurements using a preparation block. Therefore, our task will be to prepare
a diagonal state, which if we applied the right side of the equation (1.1) to it,
it should be transformed into an antidiagonal state. So we will try to carry out
this transformation using the left side of the equation (1.1) which we apply to
the input state according to the chosen N so that we get as close as possible to
this desired antidiagonal system. The similarity between the wanted state and
the transformed is measured with fidelity (2.9).

3.1 Simulation

The simulation is carried in the same way as the experiment will run. The
whole simulation is firstly done in Wolfram Mathematica. This program was
chosen because of its flexibility in calculation of the lines we want to do and its
simple programming language. For further calculations, the script is written in
Python. Partial operations (1.1) that are used to achieve the operation eiσz.δ

(where δ is an arbitrary angle that for us is π
2 ) are performed in the experiment.

Figure 3.1: The visualization of the setup for simulation, where blue blocks
represent QWP and red blocks represent HWP .

The simulation is divided into three basic parts. The first is the input state
preparation, the second is the input state passage through the setup, basic state

12



projection and acquisition of the density matrix with MaxLik (see Theory 2.5)
and finally the third is the searching for the angles to set the output as the new
input state using density matrix.

The input state preparation is realized with two wave plates (2.22) with the
Input state being horizontally linear polarized light that is coming to the setup.

The next block is constructed according to the left side of the equation (1.1),
where A = σx and B = σy. According to the chosen N we use only a part of
these operations. These partial operations can be written as

eiσx,y
π
2

1
N = I. cos(

π

2N
) + iσx,y. sin(

π

2N
), (3.1)

where I is an identity matrix and besides adding the operation, we also add
angle π

2 that represents the full execution of any σ-operation.
With this equation, we try to find a relation between the settings (rotation

angles) of the wave plates that change with different N . These partial operations
are realized by three wave plates, two QWPs and one HWP . Different angles
for the wave plates are tested experimentally and compared with the matrix
that originates from the equation (1.1) until an analytical relation – dependence
and a change with N - is found for the angles. According to chosen N , these
operations can be written as

eiσx
π
2N = QWP (

π

2
).HWP (

(2N + 1).π

4N
).QWP (

π

2
), (3.2)

eiσy
π
2N = QWP (0).HWP (

π

4N
).QWP (

π

2N
), (3.3)

e−iσx
π
2N = QWP (

π

2
).HWP (

(2N − 1).π

4N
).QWP (

π

2
), (3.4)

e−iσy
π
2N = QWP (

π

2N
).HWP (

π

4N
).QWP (0). (3.5)

With these assesed settings for wave plates, the left side of the equation (1.1)
can be written as

eiσx
π
2N .eiσy

π
2N .e−iσx

π
2N .e−iσy

π
2N =

QWP (
π

2
).HWP (

(2N + 1).π

4N
).QWP (

π

2
).QWP (0).HWP (

π

4N
).QWP (

π

2N
).

QWP (
π

2
).HWP (

(2N − 1).π

4N
).QWP (

π

2
).QWP (

π

2N
).HWP (

π

4N
).QWP (0).

(3.6)

With the knowledge of proper settings for any given N , we let the input
state from the first block go through the setup (3.6). The output state given is
then projected into the basic Jones vectors (Table 2.1) using QWP and HWP
(2.23) with the angles shown in Table 2.2. For the resulting intensities from the
projection, the MaxLik method is used, which gives us a density matrix ρ of
the output state. In addition, we calculate purity (2.7) (PUR in script) for this
matrix.
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The last block of the simulation uses the density matrix ρ′ to find such angles
for another cycle of the simulation to change the input state of the new cycle as
the output of the current cycle. We are trying to find a density matrix ρ′ that
is prepared with the following formula

ρ′ = [HWP (i).QWP (q).H].[HWP (i).QWP (q).H]†, (3.7)

where i and q are the angles that we are trying to find, and H is the horizontal
polarization state from Table 1. Then we use two For cycles that run for both
unknown angles from −π

2 to π
2 with step of 0.005 radians. We create two lists,

where one is filled with angles used to create density matrices (3.7) and the
second one is filled with these created matrices. First, we take the second list
and make another list filled with values of fidelity between our created matrices
and the matrix from the second block of our simulation. Then we find the
maximal value of fidelity that should be close to one and find the position of
this maximal value. This position is the same for the other list from which the
density matrix and angles used for creating it are obtained. After that, the
angles are set as the new initial angles for the preparation and the cycle starts
from the beginning. This cycle is repeated M = N2 times (1.2) and the last
block that finds the new initial angles will not be performed.
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Figure 3.2: The simulation script, where yellow represents the initial state prepa-
ration, green second block and orange the finding of new starting angles

The simulation is carried for several different N and reflects the state that
would result from using the right side of the equation (1.1) only. The errors in
Figure 3.3 are plotted using the fidelity (2.9).
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Figure 3.3: Fidelity with desired antidiagonal state

3.2 Setup

The core of our experimental setup consists of polarizers, QWPs, HWPs and
detector assembled in the following Figure 3.4.

Figure 3.4: The visual representation of used setup

As a polarizer we are using a calcite polarizing beam displacer that splits
the beam into two polarizations, horizontal and vertical, where the horizontal is
deflected when passing through the beam splitter and straightened again at the
exit of the beam splitter so that there are two parallel rays. The deflected beam
with horizontal polarization is stopped with a beam stopper, therefore there is
only one beam with vertical polarization. In theory, we assumed horizontally-
polarized state on input, while in the actual experiment, we used a vertically-
polarized state as an input. It is straightforward to take this fact into account.
We only needed to use the correct IN vector in relation (2.22).

Glan-Taylor polarizer is placed before the detector. The source used is a
laser diode with a wavelength of 810 nm from which light is output by means of
an optical fiber. The single-mode optical fiber guides the light to the breadboard
with the experimental setup. The fiber passes through the mechanical fiber po-
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larization controller at the breadboard, which influences the fiber’s polarization.
The light is decoupled into free space using a collimator with an 11-mm effec-
tive focal length. The detector is a free-space PIN diode, which translates the
captured light to a current which is then measured using an ammeter. Using a
50/50 laser splitter, one signal is fed to the setup and the other to a monitoring
detector for measuring laser’s stability. This second beam is measured to see
how the setup influenced the laser’s stability.

Motorized QWPs and HWPs are used for the preparation and projection.
For the block representing the wanted operation, plates in a manual rotation
mounts are used. Motorized plates can be used here as well, however, it is not
necessary as the plates are set at the beginning of each experiment and are no
longer moved afterward.

3.3 Preparing the experiment

At first, we need to prepare the setup, learn how the motorized rotations work
and write script for the experiment. The first setup is therefore intended for
the preparation of the mentioned and there would not be any additional filters
– only QWPs, HWPs, beam splitters and detector.

Instructions on how to build and find the starting angles for retardation
plates can be found in Annexes 5.1. The setup is built (preparation a projection
blocks only) with manual QWPs and HWPs. The starting angles of the wave
plates are found and the testing is performed to assess if the setup is working
as expected. The testing is based on verifying the validity of the angles given in
Table 2.2 by means of preparation and projection of basic Jones states. Then
intensities measured by the detector are used to perform MaxLik method and
to reconstruct a density matrix. The basic density matrix and state matrix are
prepared to find the correct settings for the MaxLik method. Then the manual
retardation plates are replaced with motorized ones and we find their starting
angles. If we want to write the script for our experiment first, we need to know
how to move the motorized rotations. How commands are sent and connected to
the laptop is explained in the manual [12] for motorized rotations. Commands
that are used in the experiment are available in the following Table 3.1.

Command Description Output

xxPAXX
absolute move to

value of XX
returns the target

position value

xxPTXX
motion time in seconds

to move for the value of XX
returns the time

in seconds

xxTP
gets current position of

xx rotation
return value of

the current position

xxMMXX
changes controller’s state for
XX=0 READY to DISABLE,
XX=1 DISABLE to READY

returns the current state
of controller

xxOR
starts execution of

HOME search
—

Table 3.1: Commands in the script used to control rotations where xx-number
of the rotations controller, XX-optional or required value
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With the knowledge of these commands we can write simple program that
sets input state, gets intensities measured on the detector from projections,
saves them and then performs MaxLik method and prints reconstructed matrix
with its purity.

When the script is ready, a laser stability test can be performed. This is
done simply by setting an initial state that is projected into another state for
which we get half the intensity of the laser. We want a different initial state than
a horizontal one because that is the polarization from the laser. Therefore, we
want to transform it so that we know if the retardation plates are not affecting
the polarization state in time. Our initial state is diagonally polarized. The
stability of the laser is shown in Figure 3.5.

Figure 3.5: Laser stability test in time before the final measurements

Because there is not enough physical space for all twelve retardation plates
that will be placed in the middle of our setup, we need to come up with a
different solution. As mentioned in Theory, a section of any unitary operation
can be realized with just two QWPs and one HWP between them. So instead
of placing twelve plates we use only three.

The problem is that we know how the rotation angles change for different N
and that the change is linear (3.2)-(3.5), but we do not know how the rotation
angles change for these three plates only. If we try to find a simple rule for
these three plates, we find that the angles change non-trivially. This is solved
by another script written in Wolfram, that finds appropriate angles for specified
N . Subsequently, for the given N , it creates a matrix of multiplied twelve plates
(3.6) and creates a second matrix of three plates that contain the variables α, β,
γ. Then these matrices are multiplied with six basic Jones vectors and density
matrices are formed from them. Now we have twelve density matrices, six of
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which are created from the known rule for twelve plates and six of them still
incomplete because they contain the variables α, β and γ.

Using fidelity and the prescribed Maximize function, we perform the sum
of six fidelities, which we maximize using this function so that this sum is equal
to six. Maximize function finds suitable variables (α, β, γ) that ensure the
maximum fidelity. Now the script just converts these found angles from radians
to degrees and prints them out.

Figure 3.6: The Wolfram Mathematica script that finds angles for the three
wave plates in Figure 6

With the fact that we know how to rotate the plates for any N , the whole
setup is built again, this time with our three plates that represent the desired
partial operations with additional filters added. The final script that consists
of the same parts described in Simulation, however with certain differences,
is written. There is no block that would simulate the passage of our initial
state through the setup. Before every experiment we need to manually set the
three plates in the middle to the found angles with the script from Wolfram
Mathematica.
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First the script sets the preparation block to the defined angles, then makes
all projections and saves the data from the detector into a list. With this list
the density matrix can be reconstructed using the MaxLik method. Then the
purity is printed out of this reconstructed matrix to ensure its value is close to
one. The last part of the cycle is finding of new initial angles and saving of the
measured data from detector, reconstructed matrix, and its purity. The finding
of the new angles is described in Simulation in the third block.

The only thing that we need to always assign is the first set of angles that
are almost always the angles for diagonal polarization, the name of the file in
which the data will be saved and N for which the measurements are performed.

Figure 3.7: The script used for measurements
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3.4 Simulation of the error

The first thing that is tested is the error O(δt3) from equation (1.1) in Python.
The test consists of comparing the left and right side of this equation as shown
in Figure 2.3 and the found formula (3.6) with the right side of the equation
(1.1) with infidelity (2.27) as shown in Figure 3.8. These Figures are compared
so that the infidelities we draw in them are plotted in one graph where they
perfectly overlapped. If we look directly at these infidelities, we find that they
have exactly the same values for the same N. The corresponding script can be
found in Annexes see Figures 5.12 and 5.13. This infidelity is plotted using
Wolfram Mathematica.

5 10 15 20
N

0.2

0.4

0.6

0.8

1.0
Infidelity

Figure 3.8: The error when comparing right side of the equation (1.1) with the
found formula (3.6)

The data from these two tests are identical, meaning our found formula
directly corresponds to the left side of the equation. The main problem is that
we are comparing unitary operations. These operations cannot be compared as
matrices 2x2 as they are not density matrices. This problem has two solutions.
First one is applying these operations on some polarization state and then the
output vector is converted to density matrix and the two density matrices are
compared with fidelity. However, this solution has one flaw and that is the
chosen vector that can be eigenstate of this unitary operation. To be sure that
this does not happen, it is recommended to use more polarization states and
compare all of these density matrices together. Or the unitary operation can be
converted from size 2x2 to 4x4 using Choi–Jamio lkowski isomorphism (2.24).
This formula is better for comparison of two unitary operations, because it does
not suffer from the previously discussed drawback of the first method.
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3.5 Data from the experiment

The first measurement is done for different number of cycles from 2 to 100
for N = 10 and the state in each step is compared to antidiagonal state with
fidelity (2.9). The initial state that we prepared was diagonaly polarized. These
measurements are done to test out the setup and to find any errors in the script.
With these measurements we found out that some of our projection angles have
been swapped, specifically the D, A states were reversed with R, L see Table
2.1.

Figure 3.9: Fidelity to antidiagonal state with cycle of 80 steps and N = 10,
blue dots represents measured data and orange dashed line theoretical data

These first measurements show that the change does not correspond with
the theory. That is why the error needs to be found. For this purpose the
laser stability is measured. The stability is measured without the retardation
plates and then gradually the plates are added until the setup is fully built again.
Each addition to the setup is measured separately. Therefore, each measurement
represents the development of the laser stability in time and additionally the
transformation of the intensity done by the plates.

The laser’s stability in time is normalized and if the intensity of the laser
ranges from a mean value to 0.5% then the laser is considered stable. Another
stability test is done before the final measurements, see Figure 3.5. The rest of
the stability measurements can be found in Annexes.

As shown in Figure 3.5, the laser is sufficiently stable and therefore it is
excluded as being an influence on experiments. Then before checking if the
retardation plates are influencing the polarization, unitary correction matrix
Ucorr is implemented to compensate the error. This unitary correction is found
using process tomography. The reconstructed density matrix is compared with
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theoretical density matrix of the process using fidelity (2.9) that we maximize.
The theoretical matrix is made using the special unitary group matrix SU2
(2.27), which gives density matrix of size 2x2 and this matrix is then transformed
to size 4x4 with formula (2.24). After the parameters for SU2 matrix are found,
this unitary correction matrix is used to transform the reconstructed density
matrix as seen in following equation

ρprep = Ucorr.ρmeas.U
†
corr, (3.8)

where ρmeas is the measured density matrix and ρprep is the corrected density
matrix.

Following Figures 3.10-3.11 shows the evolution of identity, that means that
the three middle plates should not transform the polarization in any way. The
input state is diagonally polarized.

Figure 3.10: The process of identity evolution without the correction matrix,
where blue point represents theoretical evolution
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Figure 3.11: The process of identity evolution when using a correction matrix,
where blue point represents theoretical evolution

In Figure 3.11 the first five cycles are connected with blue line. As we can
see the state moves towards vertical polarization instead of antidiagonal. The
error is therefore not fully compensated and therefore we look for it further.

The next test is using σx operation. For this operation the initial state
is horizontally polarized, so this operation should mirror shift it to become
vertically polarized and so on.

Figure 3.12: Fidelity to corresponding states for σx operation, where blue is
fidelity with vertical state and red is fidelity with horizontal state

With the correction matrix another identity evolution is measured, this time
with diagonal initial state. The following Figure 3.13 shows the best agreement
with the theory we have achieved so far.
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Figure 3.13: The process of identity evolution with better correction matrix,
where blue point represents theoretical evolution

This correction helps, but the data still does not correspond to theoretical
assumptions. So the next step is getting rid of all retardation plates and one
by one trying out if they are not adding the error or behave differently as they
should. One of our plates is replaced for new one and the setup is built again.
Additionaly, a 750-nm long-pass filter is mounted on the detector to suppress
the influence of the ambient light in the laboratory. The next Figure shows how
the enviromental error is lowered and how the measurement changed.

Figure 3.14: Fidelity to diagonal
state for N = 8

Figure 3.15: The path of the trans-
formations for N = 8
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Figure 3.16: Fidelity to diagonal
state for N = 10

Figure 3.17: The path of the trans-
formations for N = 10

These figures show one of the three measurements we performed for both
N = 8 and N = 10. Fidelity is compared with the initial state and therefore
we do not want to reach the maximum but the minimum of fidelity. But these
measurements still do not agree with the theory and therefore the error has not
been compensated yet.

Normaly in all experiments that use retardation plates, these plates have
small error that is usually not considered. This error arises from a small incli-
nation of the plate in assembly or from manufacturing imperfections. In our
experiment with higher Ns the sequence of measurements gets longer. That
means that we are basically using more and more of these plates and their small
error must now be considered and compensated. Due to lack of time, colleague
Robert Stárek wrote a script in Python that reveals this error and later com-
pensates for it in further measurements. For final measurements his scripts are
used and they can be found in Annexes.

Figure 3.18: Fidelity to antidiago-
nal state for N = 3

Figure 3.19: The path of the trans-
formations for N = 3
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Figure 3.20: Fidelity to antidiago-
nal state for N = 5

Figure 3.21: The path of the trans-
formations for N = 5

Figure 3.22: Fidelity to antidiago-
nal state for N = 6

Figure 3.23: The path of the trans-
formations for N = 6
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Figure 3.24: Fidelity to antidiago-
nal state for N = 9

Figure 3.25: The path of the trans-
formations for N = 9

Figure 3.26: Fidelity to antidiago-
nal state for N = 10

Figure 3.27: The path of the trans-
formations for N = 10

In these figures, there are three paths of transformations, where the dashed
black line represents the ideal theoretical development according to equation
(1.1), the red dots are the measured data and the red line represents calculated
evolution from the measured process matrix.
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Chapter 4

Conclusions and outlook

The first part of the thesis is based purely on simulation of the whole experiment
on the computer. The main result of this part is that we wrote a script that can
simulate the experiment for chosen N . We also wrote a script that simulates
the relation (1.1) where the small operation is implemented using twelve wave-
plates (3.6). We found out that the found formula (3.6) are perfectly matching
the theory so we used them to find the correct angles for the next measurements.

Next part was building the setup and mitigating the systematic experimen-
tal errors. After bulding the setup we run few tests to see if the setup runs
correctly. Later we had to change one of the wave plates. The main problems
we encountered were bad angles for preparation and projection, it is impossible
to influence the polarization that we bring through the optical fiber because it
changes over time and the wrong position of the setup when the plates should
rotate all in one direction. Another mistake is that the MaxLik method when
reconstructing the density matrix may not be accurate enough and therefore
the reconstructed matrix does not completely correspond to the measured data.

In the last part we measured the experiment for few Ns. The the dynamics
was measured and we found that small plate errors that are not normally taken
into account need to be compensated for their repeated use in one measure-
ment. These errors are mainly manifested for a larger value of N because the
measurement sequence is then longer. They manifest themselves because the
partial operations we perform are smaller or as large as the plate error, and
then these performed partial operations are lost and the setup error prevails.
Additionally after the measurement we also need to apply a correction matrix.
After we found and compensated for these errors (and optionally applied the
correction matrix), we achieved more accurate results that are more in line with
the theoretical course of the experiment as shown in Figures 3.18-3.27.

Naturally, there is a space for future improvements. The duration of the
quantum state tomography could be reduced with the help of the LCD modules
for polarization control [13] and using both outputs from the Glan-Taylor po-
larizer. Using both outputs could reduce the number of projection settings in
tomography and provide a means to norm the photocurrent and eliminate the
influence of laser power fluctuations. To avoid the human factor, the waveplates
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that implement the fixed unitary operation should be mounted in motorized ro-
tation stages. It would also allow automatic adjustment of the waveplates for
the compensation of small retardance errors. The search for optimal angles of
waveplates should not be a brute-force search. Instead, we would use an opti-
mization algorithm for better performance, as suggested in the later version of
the control scripts. To mimic the key idea better, we could also consider using
twelve waveplates, instead of just three to implement the rotation operations.
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Chapter 5

Annexes

5.1 Setting up HWP and QWP plates

To find the initial ”0” angle, you need to have a setup built with all the com-
ponents except HWP and QWP plates. We place a polarizer in front of the
detector, which allows the opposite polarization than we have in the setup. In
our case we work with horizontal polarization and therefore the polarizer allows
vertical polarization. Then we add a plate, which we either rotate manually or
using a program, and try to reach the minimum on the detector. We placed
the calibrated waveplate between two crossed linear polarizers in order to find
the zero angular position, which corresponds to the minimum intensity in this
configuration. If we were looking for the maximum, the measuring device may
not be able to detect even small changes around this maximum, which causes
inaccurate finding of the initial angle. After finding this minimum and the cor-
responding angle, leave the plate set at this angle and add another and repeat
the procedure.
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Figure 5.1: Rotation of QWP plate with measured current I on detector

What is important when adding any optical segment to our setup is the
reflection. We must try to direct it so that it points as much as possible to the
point from where we bring the beam. This ensures the perpendicalar incidence
of the beam onto face of the optical component. Another of the problems that
can then affect how our setup works is the direction of rotation of the plates,
which should be unified. The last of the problems is the fast and slow axis of
the plates used. If we rotate the plate by a full 180◦, we find two minimums,
where one of them will be lower than the other. The problem is that we do
not know which of these angles corresponds to the fast and which to the slow
axis. This can cause the angles for preparation and projection to be incorrect
and will create different states than we want. We will eliminate this error only
after the whole setup is built and we can perform tomography for various input
states to know if we are preparing and projecting the set states correctly.
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5.2 Figures
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Figure 5.2: Fidelity to antidiagonal
state for simulation with N = 1,
where red dot represents maximum
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Figure 5.3: Fidelity to antidiagonal
state for simulation with N = 2,
where red dot represents maximum
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Figure 5.4: Fidelity to antidiagonal
state for simulation with N = 3,
where red dot represents maximum
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Figure 5.5: Fidelity to antidiagonal
state for simulation with N = 4,
where red dot represents maximum
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Figure 5.6: Fidelity to antidiagonal
state for simulation with N = 5,
where red dot represents maximum
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Figure 5.7: Fidelity to antidiagonal
state for simulation with N = 6,
where red dot represents maximum
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Figure 5.8: Fidelity to antidiagonal
state for simulation with N = 7,
where red dot represents maximum
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Figure 5.9: Fidelity to antidiagonal
state for simulation with N = 8,
where red dot represents maximum
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Figure 5.10: Fidelity to antidiago-
nal state for simulation with N = 9,
where red dot represents maximum
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Figure 5.11: Fidelity to antidiago-
nal state for simulation with N =
10, where red dot represents maxi-
mum

Figure 5.12: The script for comparring left and right side of equation (1.1)
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Figure 5.13: The script for comparring found formula (3.6) and right side of
equation (1.1)
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