UNIVERZITA PALACKÉHO V OLOMOUCI

Přírodovědecká fakulta

Katedra geografie

PETROGRAFICKÁ CHARAKTERISTIKA KŘEMITÝCH HORNIN Z TOKU ŘEKY BEROUNKY

Vojtěch Haas

Bakalářská práce

Environmentální rizika a klimatická změna

Prezenční studium

Vedoucí práce: Mgr. Martin Moník, Ph.D.

Olomouc 2024

Bibliografický záznam

Autor:	Vojtěch Haas (R210354)
Studijní program:	Environmentální rizika a klimatická změna (ERIK)
Název práce:	Petrografická charakteristika křemitých hornin z toku řeky Berounky
Title of thesis:	Petrographic characterization of cherts from Berounka River
Vedoucí práce:	Mgr. Martin Moník, Ph.D.
Rozsah práce:	61 stran

- Abstrakt: Předkládaná bakalářská práce se zabývá křemitými horninami z koryta řeky Berounky, které mají laminární až fluidální texturu, a které jsou podobné permokarbonským limnosilicitům z okolí Líní u Plzně. Rešeršní část práce se věnuje křemitým horninám, jejich vzniku a dělení, dále konkrétně chalcedonovým hmotám a limnosilicitům a geologii Berouna a jeho okolí. Praktická část je věnována laboratornímu výzkumu čtrnácti vzorků berounských hornin a dvou vzorků líňských limnosilicitů, který probíhal na Katedře geologie Přírodovědecké fakulty Univerzity Palackého, a vyhodnocení výsledků tohoto výzkumu. Výzkum hornin probíhal za pomocí stereomikroskopu, petrografie výbrusů, měření hustoty a magnetické susceptibility vzorků, prvkové analýzy (pXRF), analýzy rentgenové difrakce (XRD) a mikrosondové (SEM-EDX) analýzy. Z výsledků vyplývá, že berounské hmoty jsou jiným typem horniny než limnosilicity z Líní u Plzně.
- Klíčová slova: Chalcedon, limnosilicit, XRF, barrandien, plzeňská pánev
- Abstract: The presented bachelor thesis deals with siliceous rocks from the Berounka river bed, which have laminar to fluid texture and which are similar to the Permo-Carboniferous limnosilicites from the vicinity of Líně u Plzně. The research part of the thesis is devoted to the quartzite rocks, their origin and division, specifically to

chalcedony masses and limnosilicites and the geology of Beroun and its surroundings. The practical part is devoted to the laboratory research of fourteen samples of Beroun rocks and two samples of Limnosilicites from Linz, which took place at the Department of Geology, Faculty of Science, Palacký University, and the evaluation of the results of this research. The research of rocks was carried out using a stereomicroscope, petrography of rock slices, density and magnetic susceptibility measurements of samples, portable X-ray fluorescence analysis (pXRF), X-ray diffraction analysis (XRD) and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis. The results show that the Beroun masses are a different rock type than the limnosilicites from Líně u Plzně.

Klíčová slova: Chalcedony, limnic chert, XRF, Barrandian, Pilsen basin

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně. Veškerou použitou literaturu a ostatní prameny řádně cituji a uvádím v seznamu použité literatury.

Olomouc 2024

V Olomouci dne

.....

Podpis

Tímto bych chtěl poděkovat vedoucímu bakalářské práce dr. Martinu Moníkovi za příkladné vedení a za veškeré poskytnuté rady, které byly velmi cenné. Věnováno všem, jež mne podporují, včetně členů mé rodiny.

UNIVERZITA PALACKÉHO V OLOMOUCI

Přírodovědecká fakulta Akademický rok: 2022/2023

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

(projektu, uměleckého díla, uměleckého výkonu)

 Jméno a příjmení:
 Vojtěch HAAS

 Osobní číslo:
 R210354

 Studijní program:
 B0532A330035 Environmentální rizika a klimatická změna

 Téma práce:
 Petrografická charakteristika křemitých homin z toku řeky Berounky

 Zadávají ú katedra:
 Katedra geografie

Zásady pro vypracování

Nástin a cíle práce:

Ve štěrkových sedimentech řeky Berounky se přímo v Berouně nacházejí křemité horniny s laminární až fluidální texturou, které poněkud připomínají permokarbonský limnosilicit typu Líně z JZ sousedství Plzně (Přichystal 2013). Daný typ hornin byl ojediněle využíván v pravěku na výrobu štípaných artefaktů. Cílem studenta/ky bude provést analýzu obou hornin na základě pozorování pod stereomikroskopem, petrografie výbrusů a mikrosondové (SEM-EDX) analýzy, přip. jiných. Rozhodne, zda se jedná o jeden materiál, donesený do blízkosti Berouna řekou během kvartéru, či zda jde v případě berounských křemitých hmoto dosud nepopsaný rohovcový materiál.

Rozvržení práce:

- Terénní práce: vzorkování na výchozech a výskytech v Líních u Plzně a v Berouně

- Rešeršní práce: Charakteristika a vznik limnosilicitů

Laboratorní část analýza vzorků zíslaných rohovců pomocí stereomikrosko pu, polarizačního mikroskopu, SEM-EDX, případně jiných metod

 Vyhodnocení výsledků Rozsah grafických prací:

Fotodokumentace, tabulky s výsledky XRF analýz, výsledky spektrální fotometrie a paleontologie, statistické grafy; rozsah dle uvážení studenta/ky, fotografie reprezentativních foslilí

Rozsah textové části:

Cca. 30 stran včetně grafických příloh a seznamu literatury

Rozsah pracovní zprávy: 5 000 – 8 000 slov Rozsah grafických prací: Podle potřeb zadání Forma zpracování bakalářské práce: tištěná

Seznam doporučené literatury:

Hesse, R. 1989: Silica diagenesis: Origin of inorganic and replacement cherts. Earth-Science Reviews 26, 253–284. Luedtke, B. E. 1992: An archaeologist's guide to chert and flint. Archaeological Research Tools 7, University of California. Pfichystal, A. 2013: Lithic raw materials in prehistoric times. Masaryk University, Brno. (včetně daší literatury)

Vedoucí bakalářské práce:

Mgr. Martin Monik, Ph.D. Katedra geologie Datum zadání bakalářské práce: 3. července 2023 Termín odevzdání bakalářské práce: 30. dubna 2024

LS.

doc. RNDr. Martin Kubala, Ph.D. dëkan doc. Mgr. Pavel Klapka, Ph.D. vedoucí katedry

V Olomouci dne 3. července 2023

Obsah

1. Úvod
1.1. Vznik silicitů
1.2. Klasifikace silicitů
1.3. Složení silicitů
1.4. Limnosilicity
2. Geologie 17
3. Materiál 21
4. Metody výzkumu
4.1. Makroskopický popis a měření barevnosti 23
4.2. Měření hustoty 23
4.3. Stereomikroskopie
4.4. pXRF
4.5. XRD analýza
4.6. Magnetická susceptibilita
4.7. Mikroskopie petrografických výbrusů 26
4.8. SEM-EDS (Scanning electron microscopy-energy dispersive spectrometry)
5. Výsledky 28
5.1. Makroskopické pozorování a barevnost 28
5.2. Měření hustoty 29
5.3. Stereomikroskopie
5.4. Mikroskopie petrografických výbrusů 32
5.5. pXRF
5.6. XRD analýza
5.7. Magnetická suscentibilita
5.7. Magneticka susceptionna
5.8. SEM-EDS
5.7 Magneticka susceptionita 58 5.8. SEM-EDS 39 6. Diskuse 41
5.7. Magneticka susceptionita 38 5.8. SEM-EDS 39 6. Diskuse 41 7. Závěr 43
5.7. Magneticka susceptionita 38 5.8. SEM-EDS 39 6. Diskuse 41 7. Závěr 43 8. Summary 44
5.8. SEM-EDS
5.7. Magieticka susceptionita 38 5.8. SEM-EDS 39 6. Diskuse 41 7. Závěr 43 8. Summary 44 9. Seznam použité literatury a internetových zdrojů 45 Literatura 45
5.7. Magneticka susceptionita 39 5.8. SEM-EDS 39 6. Diskuse 41 7. Závěr. 43 8. Summary 44 9. Seznam použité literatury a internetových zdrojů 45 Literatura 45 Internetové zdroje 49

1. Úvod

Ve štěrkových sedimentech řeky Berounky se v Berouně a v jeho okolí nacházejí křemité horniny, jež mají laminární až fluidální texturu, a jež barvou připomínají permokarbonské limnosilicity z oblasti Líní u Plzně v okresu Plzeň-sever. V pravěku byl tento typ hornin (tj. limnosilicity) využíván na výrobu štípaných artefaktů (Přichystal 2013). V případě berounských hornin je pravděpodobné, že se nejedná o proterozoické buližníky, které bývají odlišného zbarvení (Petránek 2016). Buližník neboli lydit je negenetické označení pro usazené křemité horniny proterozoického stáří, jež se vyskytují v Českém masivu, často jako tzv. kamýky. Obsahují černé pruhy, zřejmě částečně organogenního grafitu, díky němuž jsou tmavě zbarveny (Kebert 2019). Berounské hmoty obsahují spíše pruhy červené od hydroxidů železa a hematitu.

Cílem této bakalářské práce je petrograficky charakterizovat berounský křemité hmoty a na základě sady měření zjistit, zda jsou stejné jako jim podobné limnosilicity z oblasti Líní u Plzně, nebo zda se jedná o jiný druh horniny. Pokud by např. platilo, že berounské vzorky jsou hydrotermálního původu, neměly by obsahovat mikrofosilie, neboť jejich vznik nebyl spojen s organikou. Vzorky z Líní u Plzně jsou limnosilicity, u kterých by fosilie, jako např. fragmentární stonky rostlin, mohly být patrné, navzdory vysrážení materiálu z gelu SiO₂ v limnickém prostředí (Hesse 1988). Kromě petrografické charakteristiky chalcedonových hmot z Berouna a z Líní u Plzně, srovnání obou hornin a následného posouzení typu horniny je cílem této práce je určit také původ berounské horniny a typ této chalcedonové horniny.

1.1. Vznik silicitů

Sedimentární horniny jsou jedním ze tří základních typů hornin, spolu s horninami vyvřelými a metamorfovanými. K jejich vzniku dochází při nízkých teplotách a nízkých tlacích na povrchu Země v důsledku usazování větrem a vodou v kapalném či pevném skupenství. Proces vzniku sedimentárních hornin je velmi komplexní, začíná vznikem starších zdrojových hornin a je završen sedimentací (usazením) a diagenezí, tj. procesem, při němž dochází k přeměně usazenin v usazené horniny (Larsen a Chilingarian 1983), nebo jinak, kdy z nezpevněných sedimentů vznikají sedimenty zpevněné. Zkráceně, proces vzniku samotných sedimentárních hornin zahrnuje zvětrávání, jež může být rozděleno na mechanické, chemické a biologické (Ollier 1969), dále transport horniny zajišťovaný proudící vodou, větrem, ledem a gravitací; sedimentaci a diagenezi.

Diageneze vede k rozpuštění a destrukci některých složek sedimentu, ke vzniku nových minerálů v sedimentu, a ke konsolidaci a litifikaci sedimentu v sedimentární horninu (Boggs 2009). Jedním z častých jevů diageneze je proces silicifikace. Hesse (1989) uvádí, že k silicifikaci původně nekřemitých sedimentů dochází u celé řady hornin. Může dojít k prostupné silicifikaci horniny nebo pouze k parciální silicifikaci. Částečné "zrohovcovatění" (*chertification*) postihuje řadu karbonátových hornin z fanerozoika, ale také evapority, pískovce či zkamenělé dřevo. Zdroj křemíku lze podle Hesseho (1988; 1989) rozdělit na organický a anorganický. V případě, že postihuje materiál původně biologického původu u organismů s pevnou schránkou, je třeba, aby se tato schránka vlivem různorodých biologických a environmentálních faktorů rozpustila, aby mohlo dojít k precipitaci křemíku (Butts a Briggs 2010). Anorganická silicifikace je většinou záležitostí hornin hydrotermálně-vulkanického, pedogenního a jezerního původu (Hesse 1989).

Dle Hesse jsou rohovce *s.l.* hojné už v prekambrických rohovcových souvrstvích s železnými pásy (Pettijohn 1975). Vznik těchto rohovcových souvrství mohl být jak organický (LaBerge 1973), tak anorganický (Cloud, 1973). Zároveň vznikaly jak v kontinentálním (fluviálním) prostředí (Garrels, 1987), tak v omezeném či otevřeném mořském prostředí (Holland, 1973; Drever, 1974), při zvětrávání křemitých minerálů, či na kontaktu s podmořskými hydrotermálními průduchy (Obr. 1), v oblastech podmořských středooceánských hřbetů.

Tab. 1 typy rohovců/silicitů dle Hesse (1988; 1989), Tuckera (2001), Přichystala (2013) a Petránka (2016)

Petránek 2016	Hesse 19	88 & 1989	Tucke	Přichystal 2013		
chemogenní	biogenní	rohovce, pazourky	rohovce (inorganické, biochemické, biogenní, vulkanogenní, hydrotermální	'=> vrstevnaté, '=> nodulámí, '=> nemarinní	silicity (rohovce, pazourky)	
biogenní	anorganické, vzniklé nahrazením/zatlače ním (<i>replacement</i> <i>cherts</i>)	silicifikovaná dřeva, rohovce vzniklé zatlačením karbonátů a evaporitů, magadiitové rohovce, lakustrinní rohovce, pedogenní rohovce-silkrety, hydrotermální/vulkan ogenní rohovce, prekambrické rohovce;			minerály SiO2 (včetně zvětralinových a hydrotermálních opálů, chalcedonů a jaspisů)	
diagenetické					klastické křemičité sedimenty (křemence apod.)	
supergenní					ostatní (porcelanity, silicifikované korály apod.)	

1.2. Klasifikace silicitů

Dle Petránka (2007) není dělení silicitů jednotné a definovat jednotlivé druhy silicitů může být obtížné. Jednotlivé klasifikace povětšinou rozdělují skupiny křemitých sedimentárních hornin na základě jejich vzniku. Pro Petránka (2016) jsou možné čtyři způsoby vzniku: chemogenní, biogenní, diagenetické a supergenní. Problémem je, že např. původ středočeských buližníků může být biogenní, hydrotermální, popřípadě i smíšený. Petránkovy (2016) "diagenetické" pazourky jsou zároveň biogenní, protože SiO₂ v nich pochází z rozpuštěných schránek mikroorganismů apod.

V anglosaské literatuře se často obecně mluví o rohovcích i tam, kde se jedná o anorganické silicitové hmoty či produkty zvětrávání (Tab. 1; Hesse 1989; Turq 2001), v české literatuře se v takovém případě spíše mluví o minerálech SiO₂ (Přichystal 2013). Jde například o silkrety, produkty zvětrávání a následné silicifikace v tropickém klimatu. Zevšeobecňujícím termínem pro zejm. mikro- a kryptokrystalické formy SiO₂ jsou v češtině silicity. Jejich specifické variety jsou pak dále členěné, např. (eratické, baltské) organogenní pazourky známé i z území ČR. Specifické hlubokomořské rohovce a vyšším obsahem mřížovců mezi mikrofosiliemi označujeme jako radiolarity, křídové rohovce s jehlicemi živočišných hub jako spongolity

apod. (Přichystal 2013). Nevýhodou termínu silicit je, že se prakticky nepoužívá v anglofonní literatuře, kde je zaměnitelný s pojmem *silicate* (silikát).

1.3. Složení silicitů

Ačkoliv významnou část křemitých silicitů tvoří oxid křemičitý (SiO₂), a příměsi jsou v nich zastoupeny v mnohem menší míře (Hesse 1988), křemité hmoty nejsou homogenní masou. SiO₂ se vyskytuje v různých mikrokrystalických formách (Flörke et al. 2008). Jeho precipitace je v přírodě řízena teplotou, tlakem, pH a nečistotami v roztoku. Obecně platí, že zvýšení teploty, tlaku a pH vedou ke snadnějšímu rozpouštění SiO₂. Nečistoty ve hmotě pak mohou precipitaci zpomalit nebo zrychlit, v závislosti na jejich typu (Luedtke 1992). U biogenních rohovců rozlišuje Calvert (1971) tři fáze vzniku následující po pohřbení horniny: 1) fázi opálu-A křemitých výtoků a bahen, 2) fázi opálu-CT a 3) fázi mikrokřemene a křemenného rohovce. Tímto způsobem dochází například k rekrystalizaci křemíku ve zkamenělém dřevě. Diageneze rohovců, jež nejsou biogenního původu, může probíhat i jinými cestami. (Hesse 1988). Je však patrná vzrůstající krystalinity chalcedonových hmot s jejich stářím (Petránek 2016) – zmíněné proterozoické buližníky jsou např. relativně hrubě zrnité, tj, tvořené makrokřemenem ("makro- či megakřemen" zde označuje fáze křemene rozlišitelné polarizační mikroskopií, ne nutně velkých rozměrů; Hesse 1989.). Rovněž chalcedon, vláknitá forma mikrokřemene, obvykle následuje při rekrystalizaci SiO₂ hmoty po opálu (CT). Obecně ho dělíme na krátce a dlouze vláknitý chalcedon (length slow vs. length fast) dle orientace krystalografické c-osy mikrokrystalů SiO₂ k vláknu chalcedonu, které skládají. Struktury chalcedonu mají oproti makrokřemeni větší porozitu (Luedtke 1992). Pod mikroskopem má chalcedon mnohdy hnědé zbarvení, poněvadž submikroskopické póry v jeho struktuře způsobují rozptýlení světelných paprsků. Rohovce obecně obsahují mnoho vzájemně propojených pórů různých velikostí (Pelto 1956).

Obr. 1 Zdroje SiO₂ v marinním prostředí, odkud může být využit organismy vytvářejícími křemité schránky, uložen jako vrstevnatý rohovec či migrovat do dutin v sedimentu při vytváření hlíz. Podle Hesse 1988)

1.4. Limnosilicity

Zvláštním typem chalcedonových hmot jsou limnosilicity. V pravěku se používaly jako základní nástroje, v období středověku pak byly využívány na výrobu mlýnských kamenů a v 20. století bylo nalezeno jejich využití k tvorbě například hutnického a sklářského dinasu. Od pravěku po současnost bývají také limnosilicity používány pro účely dekorační jako šperky (Ozdín, 2010). Přichystal (2010) definuje limnosilicit jako druh silicitu, který vzniká ve sladkovodním, jezerním prostředí, a často obsahuje fosilní relikty rostlin. Limnosilicity vznikaly sedimentací hornin z termálních pramenů, jež byly bohaté na SiO₂ a srážely se v lakustrinním prostředí (Voľanská, 2016).

Hojně jsou limnosilicity známy například z okolí slovenské obce Banské. Tamní limnosilicity jsou využívány zvláště pro dekorační účely. Limnosilicitová pánev ve Slanských vrších uprostřed neovulkanických hornin neogenního stáří středního a východního Slovenska, je zčásti tvořena uhlím, jílem a postvulkanickými limnosilicity. Tyto limnosilicity se často střídají s andezitovými tufy, a to zvláště v severní části intravulkanitové pánve u obce Banská.

V oblasti se nacházejí různé barevné zóny limnosilicitu: bílá, ocelově šedá, světlohnědá, tmavohnědá a černá (Ozdín 2010).

Chemicky a minerálně nejčastější limnosilicity v okolí Banské jsou makroskopicky bílé, a jsou složeny z homogenní SiO₂ fáze tvořící ostrohranné úlomky, jež byly ztmeleny s dezintegrovaným opálem obsahujícím mnoho drobných otvorů. Pyrity v bílé varietě banského limnosilicitu takřka nejsou přítomny. Šedé banské limnosilicity obsahují velmi malá pyritová zrna a koloidní centra v opálové hmotě. Základní hmota těchto limnosilicitů není zcela zaoblená, nicméně zaoblovat se začíná. Výraznější zaoblení je pak pozorovatelné u černých banských limnosilicitů, u nichž dochází k homogenizaci hmoty SiO₂, a opálového pojiva této hmoty. Otvorů je při pozorování elektronovým mikroskopem u černé variety pozorovatelných méně. U hnědých banských limnosilicitů jsou dosti zastoupena pyritová zrna, zvláště ve středových částech sférických agregátů opálu (Ozdín 2010).

Banské limnosilicity jsou mineralogicky a chemicky dosti čisté, přičemž je tvoří hlavně hydratovaný opál obsahující obvykle 1,8 až 2,5 hmotnostních procent vody (H₂O). Černé limnosilicity z této lokality jsou charakteristické zvýšeným zastoupením železa, a nejvíce variabilní jsou, co se zastoupení železa týče, limnosilicity hnědé, které také železa obsahují nejvíce ze všech barevných forem. Hydroxidy železa zde vznikají rozkladem sulfidů železa. Pyrity se v banských limnosilicitech vyskytují nejčastěji ve framboidální formě, a jsou produktem sirných bakterií v sedimentárních horninách, v nichž se nachází také organická složka. Pyrity framboidálního typu mohou vznikat při diagenetických procesech z SiO₂ gelu, ze kterého precipituje opál (SiO₂.H₂O). Typické je pro banské limnosilicity velká tvrdost a kompaktnost. Využití mají tyto horniny k výrobě upomínkových předmětů nebo popelníků (Ozdín 2010).

Ve vnitrosudetské pánvi permokarbonu jsou limnosilicity k nalezení ve dvou horizontech: v horizontu vernéřovickém, pro který jsou typické šedé vápencové vrstvy o tloušť ce 10 až 15 metrů, přičemž limnosilicit v rámci nich tvoří vrstvy 0,5 až 1 metru mocné (Tásler 1979), a v horizontu Bečkovském, charakterizovaném vrstvami o tloušť ce 30 až 50 metrů s limnosilicitovou výplní až 1 metr širokou, kde limnosilicity tvoří malé konkrece. Na přítomnost tmavých limnosilicitů užívaných k výrobě nástrojů v mezolitických lokalitách polské části Vnitrosudetské pánve upozorňoval archeolog J. Bronowicki (Přichystal 2013).

V oblasti limnických pánví v rámci ČR se limnosilicity dále nacházejí v líňském souvrství plzeňské, a snad i manětínské, kladensko-rakovnické a mšensko-roudnické pánve, tj.

geologicky nejmladších souvrstvích středočeských permokarbonsých pánví. Pro tyto líňské limnosilicity je typická červená barva se žlutými výplněmi. Svrchnokarbonské až spodnopermské limnosilicity líňského souvrství jsou spolu s tufitickými aleuropelity k nalezení ve Zdětínském a Klobouckém horizontu, které jsou tvořeny jezerními a pouštními eolickými sedimenty. Mnou zkoumaná oblast výskytu limnosilicitů je severovýchodní okraj obce Líně, jež se nachází asi 10 kilometrů jihovýchodně od centra Plzně (Řezáč 2006).

2. Geologie

upraveno. V SZ rohu mapy vystupují ryolity aj. vulkanity křivoklátsko-rokycanského pásma.

1:600

:10 000 1:1**00**0

20 000

:50 000

ČTVRTOHORY	_	Sled v Žebrá	v <mark>rstev v pro</mark> kem a Skr	ofilu mezi vjemi
1 navážky, haldy	25 dobrotivské souvrství - černé břidlice		holocón	Polal
2 slatiny, holocén	26 komárovský komplex - čediče (diabasy), tufy	Č	- Holocen	3/4
3 splachové, převážně hlinité usazeniny, holocén	27 železné rudy (ferolity)	V		5
4 říční a potoční písčitohlinité uloženiny, bolocén	28 šárecké souvrství - jílové břidlice	R		
 svahové hlinité a hlinikokamenité uloženiny, holocén-pleistocén 	29 klabavské souvrství - pestré břidlice a droby	H O	pleistocén	
spraše, sprašové hlíny, svrchní pleistocén	30 mílinské a třenické souvrství - silicity a křemenné pískovce	R		· · · · · · · · · · · · ·
říční písčité štěrky, svrchní pleistocén	31 spodní a střední ordovik nerozdělený, převážně pískovce a jílovce	Y Y		12
11 říční písčité štěrky, střední pleistocén	PRVOHORY - kambrium			······································
říční písčité štěrky (pohořelecká a hlinecká terasa), spodní pleistocén	32 ryolity	T	miocén	14 <u>15</u>
3 říční písčité štěrky (skryjská terasa), spodní pleistocén	33 ryolitové tufy	D	křída	16
ŘETIHORY	34 dacity (porfyrické), mladší fáze		karbon	18 17
říční a jezerní písky, štěrky a jíly ("hlavačovské štěrky"), miocén	35 andezity			20 27_21
RUHOHORY - křída	36 tufy andezitu a dacitu			22
5 bělohorské souvrství - prachovitopísčité slínovce (turon)	37 dacity (jemnozrnné), starší fáze	V		
6 perucko-korycanské souvrství - pískovce, prachovce, slepence (cenoman)	38 jinecké souvrství - jílové břidlice,	0	ordovik	24
RVOHORY - karbon	žilné borniny			20
kladenské souvrství - arkózovité pískovce, slepence, prachovce, červený vývoj (westpha) 39 žilné rvolity žulové porfyry	R		27_28
8 kladenské souvrství - arkózovité pískovce,		Y		29 30
RVOHORY - ordovik	40 thave zine forminy			33 32
9 bohdalecké souvrství - jílové břidlice	STAROHORY		kambrium	34 <u>36</u> 35 <u>36</u>
0 zahořanské souvrství - prachovce	41 droby, břidlice			36 37
1 vinické souvrství - jílové břidlice	42 hrubozrnné droby	T		47
Iatenské souvrství - střídání drob a břidlic	43 horniny se skluzovými závalky	A R	svrchni	41 46 46 43
libeňské souvrství - černé břidlice	44 silicity (buližniky)	O H	proterozoikum	47
4 libeňské a dobrotivské souvrství - křemence	45 černé břidlice	OR		4
	46 vápence	Y		-47-2
	47 čediče (spility) a tufy, slabě přeměněné			
	48 předčtvrtohorní zvětraliny na starohorních horninách			

Obr. 3 Geologický řez profilem mezi Žebrákem a Skryjemi, podle Mašek et al. (1997)

Město Beroun leží v oblasti barrandienu, jež se nachází přibližně mezi městy Kralupy nad Vltavou a Domažlice a tvoří velkou část tepelsko-barrandienské oblasti (Obr. 2, 3; Mašek et al. 1997; Petránek 2016). Značná část barrandienu je tvořena nemetamorfovanými až slabě metamorfovanými horninami svrchního proterozoika a horninami spodního paleozoika

(kambria, ordoviku, siluru a devonu). V oblasti na sever až severovýchod Berouna se nachází pás neoproterozoických břidlic, rytmicky se střídajících drob s flyšovým vývojem a masívních těles anchimetamorfovaných drob. Střídají se s chronologicky blíže nerozlišenými prekambrickými bazalty, bazaltickými andesity a jejich alkalickými ekvivalenty a tufy, nanejvýše anchimetamorfovanými. (https://mapy.geology.cz/geo/#).

Prvohorní horniny bohemika, které jsou v oblasti Berouna k nalezení, spadají, jak již bylo zmíněno výše, do prvních čtyř geologických útvarů paleozoika, tedy do kambria, ordoviku, siluru a devonu. Významnými oblastmi s kambrickými horninami jsou příbramsko-jinecká pánev, sádecké souvrství či holšinsko-hořické souvrství (Chlupáč 2002). Kromě řady typů kambrických jílových břidlic, pískovců a slepenců je v širším okolí Berouna významné křivoklátsko-rokycanské pásmo, region kambrických až spodnoordovických vulkanitů a metavulkanitů tvořený ryolity, dacity a jejich nanejvýše anchimetamorfovanými tufy. Vulkanity vystupují podél zlomu ve směru SV–JZ, přičemž mj. nasedají na starší jinecké souvrství jílových břidlic (Obr. 2, 3).

Ordovik na Berounsku sestává ze zelenavých jílovců, jílovitých břidlic, tmavošedých jílovců, prachovců, tmavých břidlic, černošedých jílovců, břidlic, ryolitů, bazaltových tufů, bazaltů a bazaltových pyroklastik, jílovitých břidlic, křemenných pískovců, černých břidlic s železnými rudami a také ze silicitů mílinského souvrství. Podle Berouna je pojmenován i stupeň svrchního ordoviku, beroun, jehož nejstarší horniny jsou v oblasti barrandienu reprezentovány libeňským souvrstvím, zahrnujícím řevnické křemence, jež se ukládaly v mělkovodních oblastech obývaných mořskými živočichy, a libeňské břidlice, které se ukládaly v anoxickém prostředí převážně nevhodném pro život. Za zmínku stojí také bohdalecké souvrství, které reprezentuje naopak nejmladší barrandienské horniny spadající do stupně beroun. Pro toto souvrství jsou typické fosilie trilobitových faun (*Trilobita*), plžů (*Gastropoda*), lasturnatek (*Ostracod*a), mlžů (*Bivalvia*) a ramenonožců (*Brachiopoda*). (Štecl, Vávra 2007).

Silur reprezentují biosparitové vápence, mikritické vápence, vápnité břidlice, místy s vulkanogenní příměsí, dále také granuláty, granulátové a popelové tufy, vulkanické brekcie a bazalty ("diabasy"). Devonské horniny jsou v okolí Berouna reprezentovány prachovci s vložkami pískovců, na jejichž bázi se nacházejí černé vápnité břidlice a bituminózní vápence, dále devonské horniny v oblasti sestávají z biodetritických, biomikritických a mikritotický vápenců, vápnitých břidlic, bazaltů tufů bazaltu, biodetritických vápenců až mikritotických

19

vápenců často s nodulemi rohovců, biodetritických a organogenních vápenců, biomikritových až mikritické hlíznatých vápenců, biodetritických vápenců, mikritických vápenců s vložkami břidlic a dolomitických vápence občasně se vyskytujících s rohovci (https://mapy.geology.cz/geo/#).

V širším okolí Berouna se nacházejí i horniny spadající do středočeského a západočeského mladšího paleozoika, jež jsou karbonského stáří, a jež zahrnují valounové pískovce, slepence, pískovce, prachovce, jílovce, uhelné sloje, brekcie, tufy а tufity (https://mapy.geology.cz/geo/#). Českou křídovou pánev v oblasti mapy (Obr. 2, 3) reprezentují písčité slínovce až spongilitické jílovce, které jsou místy silicifikovány a tvoří opuky, dále též křemenné, glaukonitické a jílovité pískovce a jílovce, uhelné jílovce, uhlí, prachovce, pískovce a slepence. (Mašek et al. 1997). Mladší horniny jsou reprezentovány třetihorními fluviálními a lakustrinními klastickými uloženinami, např. na lokalitě Skočová a Broum, a kvartérními fluviálními a eolickými sedimenty. (https://mapy.geology.cz/geo/#)

Líňský limnosilicit pochází z oblasti českých limnických pánví permokarbonského stáří. Tyto pánve jsou vyplněny hlavně klastickými sedimenty, jako jsou křemenné pískovce, prachovce, jílovce, arkózy, slepence, tufy a tufity a organogenní uloženiny. Významné je zastoupení červenavých hornin, ačkoliv zbarvení hornin v oblasti je pestré a neomezuje se pouze na pouze na tyto barvy (Chlupáč 2002). Toto diverzní zbarvení sedimentů může nepřímo odrážet výkyvy klimatu v dobách, kdy se usazovaly. Ve vlhčích obdobích docházelo k usazování zvláště v periferních částech pánví. V obdobích, jež byla sušší, k usazování těchto sedimentů docházelo i dále ve vnitřních částech pánví (Pešek-Skoček 1999). Plzeňská pánev, ze které konkrétně líňské limnosilicity pocházejí, má maximálně asi devítisetmetrovou mocnost. (Petránek 2016)

3. Materiál

V rámci terénní fáze výzkumu byly nasbírány dvě skupiny vzorků, jedna přímo v Berounce v Berouně (WGS 84: 49.9652633N, 14.0782011E; Obr. 4), ve formě valounů (Obr. 6), druhá u Líní u Plzně (Obr. 7), v lesíku SV od obce (WGS 84: 49.7037411N, 13.2640306E; Obr. 5).

Obr. 4 Místo sběru valounků křemitých hornin z koryta řeky Berounky v Berouně. Snímek ze Sentinel-2 L2A ze dne 27. dubna 2024, upraveno v ArcGIS Pro

Obr. 5 Místo sběru limnosilicitů u obce Líně u Plzně. Snímek ze Sentinel-2 L2A ze dne 27. dubna 2024, upraveno v ArcGIS Pro

Obr. 6 Vzorky Beroun1–11 a Beroun13–15

Obr. 7 Vzorky L1 a L2

4. Metody výzkumu

Vzorky chalcedonových hmot byly odebrány v korytě Berounky v Berouně, pod lávkou na km 34,9 u nástupního místa pro vodáky. Vzorky líňských limnosilicitů byly odebrány 1,2 km SV od náměstí v Líních u Plzně, v lesíku mezi prudce zatáčejícími rameny naučné stezky "Líňská okružní trasa". Následně byly převezeny na Katedru geologie Přírodovědecké fakulty Univerzity Palackého v Olomouci. Celkem bylo shromážděno a analyzováno 14 vzorků berounských chalcedonových hmot (označených Beroun1–11 a Beroun 13–15) a dva vzorky líňských limnosilicitů (označených L1 a L2).

4.1. Makroskopický popis a měření barevnosti

Prvotní fází mé analýzy byl makroskopický popis obou typů hornin, zejména barevnosti a textury. Pro popis barevnosti vzorků byl v první fázi použit Munsellův systém barevnosti hornin (Munsell 2011). Ten měl sloužit jako prvotní určení škály barev limnosilicitů a berounských křemenných hmot a doplněk pro makroskopický popis.

Instrumentální měření barevnosti vzorků následně proběhlo v prostorech Katedry geologie Přírodovědecké fakulty Univerzity Palackého s pomocí příručního spektrálního fotometru s kulovou geometrií SP 62 (X-Rite, USA) pro kolorimetrická měření se spektrální odrazností v rozsahu 400 až 700 nm. Ten umožňuje měřit bělost i stupně šedé, a dále také umožňuje měřit vzorky bez lesku, s leskem a také metamerismu (tj. jev, ke kterému dochází, když se dvě barvy zdají být stejné při jednom osvětlení, nikoliv však, když se osvětlení změní). Spektrální fotometr je napojen na osobní počítač, součástí výbavy je také kolorimetrický software QA-Master1. Cílem zde bylo zjistit, zda existuje rozdíl v barevnosti mezi berounskými a líňskými silicidovými hmotami, který by byl patrný z komponent světlosti (L*) a os a* (-a: zelená – +a: červená) a b* (-b: modrá – +b: žlutá).

4.2. Měření hustoty

Prvním krokem analýzy vzorků bylo měření hustoty. Hustota většiny hornin se pohybuje mezi 1600 kg/m3 (sedimenty) a 3500 kg/m3 (gabro). Hustota hornin je dána součtem veškerých pevných, plynných a kapalných látek v nich obsažených. V rámci hornin stejného typu může být hustota variabilní, např. kvůli rozdílnému proporčnímu zastoupení minerálů nebo kvůli lišícím se podmínkám při vzniku horniny. Hustota křemitých hmot se může lišit v závislosti

na tom, jakým způsobem vznikly. Mackenzie (2003) uvádí, že hustota biogenního křemíku vzniklého v souvislosti s rozsivkami (*Diatomeae*) a živočišnými houbami (*Porifera*) činí 2 g/cm³, ale hustota biogenního křemíku v případě radiolarií se pohybuje mezi 1,7 g/cm³ až 2 g/cm³. Hurd a Theyer (1977) uvádějí, že se stářím se u křemitého materiálu vzniklého biogenně a pohřbeného pod mořským dnem obecně snižuje rozpustnost obsah vody v horninách, a naopak se zvyšuje hustota.

Mnou zkoumané vzorky byly nejprve zváženy na laboratorních váhách v přípravně vzorků Katedry geologie PřF UP s přesností na setinu gramu. Pomocí kádinky s vodou a závěsného lanka byla následně vypočítána hustota jednotlivých vzorků hydrostatickou metodou

$$\rho = \frac{m_1}{m_2}$$

kde m_1 je hmotnost vzorku ve vzduchu a m_2 jeho hmotnost v kapalině. Předpoklad byl, že v případě rozdílného minerálního složení líňských a berounských křemenných hmot by se mohla lišit i jejich hustota.

4.3. Stereomikroskopie

Všech čtrnáct vzorků chalcedonových hmot z koryta řeky Berounky a dva vzorky líňských limnosilicitů byly pozorovány pod vodní imerzí s pomocí mikroskopu Olympus SZXZ v prostorech Katedry geologie Přírodovědecké fakulty Univerzity Palackého v Olomouci.

Voda má větší index lomu než vzduch (index lomu vody je roven 1,33, index lomu vzduchu je za standardních podmínek na úrovni moře 1,0003, ale liší se v závislosti na teplotě, tlaku a vlhkosti) (Polyanskiy 2024), a z tohoto důvodu mohou být na horninovém vzorku pod vodní imerzí pozorovány objekty, minerální inkluze a artefakty, které při běžném pozorování pod polarizačním mikroskopem nejsou dobře viditelné (Brenner et al 2024).

4.4. pXRF

pXRF (*portable y-ray fluorescence*) spektroskopie je široce využívaným a především nedestruktivním nástrojem v laboratořích, umožňující určit prvkové koncentrace (a to včetně koncentrací vzácných prvků) v různých vzorkových materiálech (Sarala 2015). Pro měření pXRF byl využit přístroj Delta-Innov Premium na Katedře geologie Přírodovědecké fakulty

UPOL. Měření probíhalo vždy v módu Geochem po dobu 120s. Data byla exportována jako spektra a kalibrována pomocí mezinárodního standardu NIST610 pro přepočet na hodnoty v ppm. Cílem zde nebylo získat celkový chemismus hornin, ale identifikovat rozdílné zastoupení vybraných stopových prvků mezi líňskými silicity a berounskými chalcedony. Zvolil jsem 10 prvků, které byly zastoupené v obou typech hornin. Kalibrace vždy proběhla dle následujícího vzorce: $\frac{N2/Si2}{N1/Si1} * Si_{standard}$ kdy N2 je inzenzita spektra určitého prvku (např. Ti) měřená pomocí pXRF ve vzorku horniny a N1 je intenzita spektra ve standardu NIST610 SRM měřená pomocí téhož pXRF. Tyto hodnoty jsou respektivně vyděleny intenzitou Sispekter (ve vzorku a v NIST610) a následně vynásobeny obsahem Si ve standardu NIST610, jak je uvedeno pro NIST610 SRM. Tím je získána hodnota určitého prvku ve vzorku horniny v $\mu g/g$ (ppm).

4.5. XRD analýza

Analýza XRD neboli rentgenová difrakce je široce používanou analytickou metodou k hodnocení krystalinity a struktury pevných vzorků hornin. Je užívána k identifikaci minerálů a anorganických sloučenin. (Perkins 2022). XRD poskytuje informaci o relativním zastoupení minerálních fází ve vzorku a je schopná rozlišit alotropní modifikace určitého prvku, tj. např. diamant od grafitu (Herz, Garrison 1998).

Vzorek chalcedonové hmoty z okolí Berouna, Beroun8, a vzorek limnosilicitu z Líní u Plzně L1 byly podrobeny XRD analýze na podzim 2023 na XRD pracovišti Katedry geologického inženýrství Hornicko-geologické fakulty Technické univerzity v Ostravě pomocí difraktometru BrukerAdvance D8 s lineárním polovodičovým detektorem LynxEye a energiově disperzním detektorem SOL-XE. Analýza měla sloužit jako doplněk k ostatním analýzám, zejména s ohledem na kryptokrystalický charakter řady přítomných fází (tj. jejich obtížné rozlišení pomocí optické mikroskopie).

4.6. Magnetická susceptibilita

Magnetická susceptibilita (MS) je bezrozměrná fyzikální veličina charakterizující schopnost vzorku magnetovat ve vnějším magnetickém poli. (Dunlop a Özdemir, 1997). U různých hornin se hodnota magnetické susceptibility liší. Existuje několik typů magnetické

susceptibility, v zásadě může být studovaná látka diamagnetická, paramagnetická či feromagnetická. Podrobněji se rozlišují orbitální diamagnetismus, Curie-Weissův paramagnetismus, van Vleckův paramagnetismus, Pauliho paramagnetismus, Landaův diamagnetismus a paramagnetismus itinerantního momentu závislý na teplotě (Mugiraneza a Hallas, 2022).

Magnetická susceptibilita čtrnácti vzorků chalcedonových hmot z koryta řeky Berounky a dvou vzorků líňských limnosilicitů byla měřena v prostorech laboratoře petrofyziky Katedry geologie Přírodovědecké fakulty Univerzity Palackého v Olomouci za pomocí přístroje KLY-4 Kappabridge. Přístroj měří objemovou magnetickou susceptibilitu (MS_{bulk}). Po zvážení vzorků na laboratorních vahách byla dopočtena hmotností magnetická susceptibilita (MS_{mass}) za užití tohoto vzorce:

 $MS = \frac{\frac{objemová magnetická susceptibilita}{hmotnost * 10}}{1000}$

Hodnoty MS odráží, nakolik lze danou horninu zmagnetizovat, tj. jaké obsahuje množství para-, a zejména feromagnetických minerálů (Dunlop, Özdemir 1997). Ačkoliv jsou chalcedony/rohovce diamagnetické, obsahují obvykle určité množství oxidů železa, mj. feromagnetického magnetitu (Thacker, Ellwood, Pereira 2002). Rozdílný původ líňských a berounských rohovců by se mohl projevit právě v hodnotách MS.

4.7. Mikroskopie petrografických výbrusů

Ze vzorků berounských chalcedonových hmot Beroun1, Beroun9, Beroun 11 a ze vzorku líňského limnosilicitu L1 byly zhotoveny leštěné petrografické výbrusy. Ty byly pozorovány v polarizačním světle pod mikroskopem Olympus BX-50p pro identifikaci jednotlivých minerálních fází, příp. typu přítomného chalcedonu. Zhotovené petrografické výbrusy byly pozorovány na Katedře geologie Přírodovědecké fakulty Univerzity Palackého v Olomouci pod badatelským polarizačním mikroskopem Olympus BX-50p, který je využíván pro pozorování petrografických výbrusů v procházejícím a odraženém světle, a jenž je vybaven digitálním fotoaparátem PixeLINK PL A 642.

Fotodokumentace v polarizovaném světle proběhla pomocí 24,1megapixelového fotoaparátu Canon EOS 2000D a za použití softwaru QuickPHOTO MICRO 3.2. Vybrané výbrusy (Beroun9 a L1) byly následně poprášeny uhlíkovou vrstvou pro analýzu na mikrosondě.

4.8. SEM-EDS (Scanning electron microscopy-energy dispersive spectrometry)

Elektronová (rentgenová) mikrosonda se ve spojení s elektronovou mikroskopií používá k získání informací o chemickém složení horninového vzorku na základě rozkladu rentgenového záření. Lze tak vyhodnotit celé spektrum rentgenového záření, jež je emitováno od povrchu horninového vzorku. Záření je detekováno pevnolátkovým detektorem, odkud signál vniká do multikanálového analyzátoru.

Analýzu EDS provedl J. Kapusta na elektronové mikrosondě Katedry geologie PřF UP. Analyzovány byly petrografické výbrusy vzorku L1 z Líní u Plzně, a vzorku Beroun9 z koryta řeky Berounky v Berouně. Většina přítomných minerálních fází byla analyzována pouze kvalitativně kvůli jejich malé velikosti, případně byly vyfotografovány v odražených elektronech (SEM-BSE). Vybrané fáze pak byly analyzovány EDS spektrometrem. Při této analýze se použilo urychlovací napětí elektronové mikrosondy o 15kV. Proud svazku se rovnal 10 nA. Minerální standardy v přístroji byly Kα linie – diopsid (Mg, Ca), mikroklin (Si, K, Al), elementární mangan (Mn), magnetit (Fe), albit (Na), ilmenit (Ti), chromit (Cr) (Šimíček et al. 2023).

5. Výsledky

5.1. Makroskopické pozorování a barevnost

Berounské křemité hmoty mají až na výjimky zřetelně vrstevnatou (či fluidální) texturu, se střídáním světlejších a tmavších pásků. Mocnost pásků je v řádu max. několika jednotek milimetrů (obr. 9c). I makroskopicky lze někdy v základní hmotě rozlišit hrubší klasty minerálů či hornin (typicky např. vzorek Beroun8), které ale nelze v makroměřítku určit. Nahodile se vyskytující puklinky bývají vyplněné oxidy Fe, které zbarvují i zbytek většiny vzorků do odstínů červené a oranžové (viz níže). Přehled barev v Munsellově škále udává Tab. 2. Vzorek líňského limnosilicitu Líně1 (obr. 7) se poněkud liší absencí vrstevnaté textury. Jde o typicky afanitickou chalcedonovou hmotu bez viditelných klastů. Oproti např. eratickému pazourku, který připomíná svou barvou a ohlazeným povrchem, zde nejsou patrné žádné mikrofosilie. Barva je žlutohnědá (viz Tab. 2). Vzorek Líně2 (obr. 7) je očividně hůře silicifikovaný a jsou zde patrné relikty původního sedimentu, konkrétně klasty do velikosti ca 3mm. Je zde patrný i náznak původní vrstevnatosti, ovšem již v rámci novotvořeného chalcedonu.

Obr. 8 Barevnost obou zkoumaných silicidových hmot dle komponent a* a b* (SPIN D65/10°)

S pomocí Munsellova barevnostního systému byly barvy jednotlivých vzorků identifikovány následovně (popis barev je uveden v angličtině):

Název vzorku	Značka barvy	Popis
Beroun1	5 R 4/2	Grayish red
Beroun2	10 YR 7/4	Pale reddish brown
Beroun3	10 R 5/4	Pale reddish brown
Beroun4	5 R 4/2	Grayish red
Beroun5	10 R 3/4	Dark reddish brown
Beroun6	5 R 4/2	Grayish red
Beroun7	10 R 5/4	Pale reddish brown
Beroun8	10 R 5/4	Pale reddish brown
Beroun9	10 R 3/4	Dark reddish brown
Beroun10	5 YR 5/6	Light brown
Beroun11	5 YR 6/4	Light brown
Beroun13	5 R 5/4	Moderate red
Beroun14	5 4 4/2	Grayish red
Beroun15	10 YR 7/4	Grayish orange
L1	10 YR 4/2	Dark yellowish brown
L2	5 YR 4/4	Moderate brown

Tab. 2 Barvy jednotlivých vzorků podle Munsellova barevnostního systému

Co se týče barvy, v Munsellově barevnostním systému odpovídaly líňské vzorky kategoriím *moderate brown* a *dark yellowish brown*, čtyři berounské vzorky odpovídaly kategorii *grayish red* a tři pak *pale reddish brown*.

5.2. Měření hustoty

Hodnoty hmotností jednotlivých vzorků zvážených na laboratorních váhách mimo vodu, poté hmotnost vody v kádince, hmotnost vody a vzorku do ní ponořeného a vypočtená hustota jednotlivých vzorků jsou zobrazeny v následující tabulce. Výsledné hodnoty jsou poněkud větší u berounských křemitých hmot, zřejmě v důsledku vyšších obsahů železa (Tab. 3; viz níže).

Tab. 3 Hustoty jednotlivých vzorků

	1	2	m3	
	mi (hmotnost	m2 (hmotnost	(nmotnost	
П	(Innotnost vzorku)	(mnotnost vodv)	vouy +	hustota
Beroun1	23,27	448,68	457,73	2,57
Beroun2	42,35	454,77	471,17	2,58
Beroun3	31,66	452,07	464,26	2,60
Beroun4	21,35	449,32	457,64	2,57
Beroun5	32,13	453,92	466,31	2,59
Beroun6	74,82	451,73	479,13	2,73
Beroun7	44,86	453,68	471,13	2,57
Beroun8	88,29	453,26	487,77	2,56
Beroun9	17,27	451,14	457,72	2,62
Beroun10	5,69	452,35	454,65	2,47
Beroun11	16,17	456,4	462,42	2,69
Beroun13	7,17	452,67	455,49	2,54
Beroun14	97,79	454,46	492,01	2,60
Beroun15	78,96	450,09	480,52	2,59
L1	7,58	450,9	453,92	2,51
L2	73,79	450,68	479,97	2,52

5.3. Stereomikroskopie

Horninové vzorků z koryta řeky Berounky a Líní u Plzně byly pozorovány stereomikroskopem ve vodní imerzí (viz Přichystal 2013). Pozorování většinou probíhalo na sbroušené ploše, na které byly též prováděny pXRF a spektrofotometrické analýzy. Z fotografií je dobře patrná barevnostní variabilita berounských hmot, sahající vlivem oxidů Fe od hnědo-žluté po oranžovou a červenou (Obr. 9a-f). Často je patrná fluidální textura po tečení hmoty (zejm. Obr. 11b, d). Jednotlivé laminy jsou patrně tvořené chalcedonem, opálem a drobně krystalickou hmotou, ve které jsou někdy uzavřené vyrostlice (sférulity) krystalické hmoty (převážně asi křemene; Obr. 12d). V některých případech, kdy chalcedon "obtéká" uzavřeninu, by snad mohlo jít o xenolity. Fosilie nebyly zaznamenány. Laminy též bývají zvýrazněné oxidy Fe či Mn, které se vyskytují i v prasklinkách (Obr. 11c). Opakní fáze jsou ovšem jemně rozptýlené i v okolní hmotě. Ve vzorku Beroun1 se nacházejí žilky vyplněné mikrokřemenem (Obr. 10c), pravděpodobně i s příměsi manganu. Mikrokřemenné žilky, obklopené živcem, se vyskytují také u vzorku Beroun9 (Obr. 11c, d). U vzorku Beroun11 byl identifikován muskovit (Obr. 12b), v základní hmotě se také nacházejí klasty živce (Obr. 12d), identifikovány byly také hydroxidy železa (Obr. 17).

Líňský silicit je oproti tomu dosti jednotvárný. Jemnozrnnější vzorek L1 obsahuje pouze nahodilé žilky mikrokřemene odlišující se od okolní kryptokrystalické hmoty. Dále obsahuje radiální chalcedony, které vyplňují dutinky, jež mohly vzniknout v důsledku přítomnosti rostlinných fosilií (Obr. 13b). Bublinky v hmotě jsou občas vyplněny chalcedony (Obr. 18). Vzorek L2 je nedokonale prokřemeněný pískovec, v němž jsou ještě patrné klasty původního sedimentu.

Obr. 9 Vzorky chalcedonových hmot od řeky Berounky a limnosilicit z Líní u Plzně při pozorování stereomikroskopem ve vodní imerzi. a), b) vzorek Beroun1 pod vodní imerzí; pásky oxidů železa, chalcedonů, opálu(?) a úlomky "makrokřemene", c) oxid železa v publině vzorku Beroun8, d) krystalit křemene v základní hmotě vzorku Beroun14, e) krystalit křemene, f) žilka mikrokřemene ve vzorku L1

5.4. Mikroskopie petrografických výbrusů

Petrografických výbrusy byly pozorovány pod badatelským polarizačním mikroskopem Olympus BX-50p, fotografie byly pořízené s pomocí digitálního fotoaparátu PixeLINK PL A 642. Více též na Obr. 18 a Obr. 19 a Tab. 8 v části Přílohy. Ve vzorku Beroun1 se krmě různých forem SiO₂ (chalcedon, makrokřemen – Obr. 11c) vyskytují oxidy Fe a Mn (Obr. 11a, b, d), které vyplňují trhlinky a zvýrazňují střídající se laminy (zejm. Obr. 11b).

Obr. 10 Petrografický výbrus vzorku Beroun1 pod polarizačním mikroskopem. a), b) páskování způsobené koncentrací oxidů železa v křemité hmotě, PPL c) žilka vyplněná mikrokřemenem, XPL d) klasty mikrokřemene v mikrokrystalické křemité hmotě, XPL

Obr. 11 Petrografický výbrus vzorku Beroun9 pod polarizačním mikroskopem, a) oxidy železa prostupující křemitou, devitrifikovanou skelnou hmotu, XPL b) mikrokřemen, XPL c), d) mikrokřemenné žilky obklopené živcem, XPL

Obr. 12 výbrus vzorku Beroun11 pod polarizačním mikroskopem, a) slída vyplňující prasklinku v základní hmotě, XPL b) zvětralé živce v základní hmotě, XPL c) žilka chalcedonu (?) v křemité hmotě, PPL d) klast živce v základní hmotě tvořené mikrokřemenem a jinými, prokřemenělými minerálními fázemi, XPL

Obr. 13 Limnosilicit typu Líně a) radiální chalcedon v základní hmotě, XPL b) radiální chalcedon v dutince (po fosilii?), XPL c) základní křemitá hmota, XPL d) dutinky vyplněné radiálním chalcedonem v základní křemité hmotě, XPL

5.5. pXRF

Prvková analýza ukázala, že se berounské křemité horniny od líňských limnosilicitů odlišují v podstatě v míře zastoupení všech měřených prvků s výjimkou stroncia (Sr) (Tab. 4). Nebyl však proveden test statistické významnosti (např. studentův t-test) pro malý počet limnosilicitů typu Líně.

Vzorek	Ti ppm	Mn ppm	Fe ppm	Ni ppm	Cu ppm	Zn ppm	As ppm	Rb ppm	Sr ppm	Th ppm
Beroun01	347,82	181,37	1720,46	279,06	329,91	265,20	17,12	8,07	46,64	206,50
Beroun02	598,67	301,72	1899,17	385,32	435,78	354,75	25,31	214,61	51,11	283,45
Beroun04	563,18	282,02	3413,65	356,96	411,84	477,83	20,30	158,83	63,32	247,29
Beroun05	555,34	289,43	3423,24	353,08	395,51	346,14	26,95	174,46	64,52	246,78
Beroun06	2786,65	352,76	14547,39	339,18	430,22	337,08	22,24	139,04	74,63	263,54
Beroun07	490,97	258,91	1981,52	329,72	354,34	305,86	19,34	189,70	33,47	223,91
Beroun08	607,52	300,45	2389,59	369,99	442,30	371,37	26,13	222,79	49,67	285,83
Beroun09	559,34	265,56	2091,91	348,68	390,66	339,78	22,59	181,82	31,32	264,71
Beroun10	684,23	292,43	3000,88	366,48	430,53	358,66	18,98	193,96	35,32	269,84
Beroun13	637,99	324,16	12419,22	348,05	433,33	334,30	25,82	142,80	32,08	260,29
Beroun15	452,79	417,92	4502,79	331,04	379,05	324,20	27,72	12,10	35,52	248,41
Beroun14	517,42	253,74	1649,27	332,44	370,25	339,04	20,53	205,93	35,54	258,12
Beroun03	499,43	246,70	1418,08	344,35	399,62	337,87	24,16	188,78	36,81	254,93
Beroun11	627,57	256,50	1737,23	342,42	380,76	334,35	23,39	204,67	42,21	246,97
L1	158,88	175,37	510,31	254,65	283,11	244,91	14,19	7,23	15,02	187,07
L2	345,04	186,08	692,87	260,73	296,33	260,28	15,40	7,99	48,18	187,94

Tab. 4 Výsledky analýzy pXRF přepočítané na ppm

Obzvlášť patrné je v berounských hmotách bohatší zastoupení železa. Nejbohatší jsou v tomto ohledu vzorky Beroun6 a Beroun13, obsahující 14547,39 ppm a 12419,22 ppm Fe (Obr 14).

Obr. 14 Graf zastoupení železa a niklu u berounských křemitých hmot a líňských limnosilicitů. Maximální hodnota na ose x je pro přehlednost nastavena na 4000 ppm.

5.6. XRD analýza

XRD analýza ukázala, že berounské křemité hmoty nejsou tvořené čistým SiO₂. Vzorek Beroun 8 obsahuje z 36,6 % křemen (asi ve formě chalcedonu), z 28,66 % albit, z 31,55 % intermediální mikroklin a z 3,19 % muskovit. Jiné minerální fáze než křemen jsou dobře patrné i v procházejícím světle (Obr. 11c, d) jako mikrokrystalická výplň některých lamin. Jejich identifikace by však bez XRD analýzy byla obtížná. Vzorek líňského limnosilicitu L1 obsahuje z 89,40 % křemen (chalcedon) a z 10,60 % moganit, tj. variantu mikrokrystalického křemene identifikovanou Flörkem et al. (1984). Podle výsledků XRD je tedy berounský chalcedon odlišný, a na rozdíl od chalcedonové hmoty z Líní u Plzně obsahuje zbytky sodných a draselných živců a slídy (Obr. 15, 16).

5.7. Magnetická susceptibilita

U hmotnostní magnetické susceptibility se ukázalo, že berounské silicitové hmoty mají vždy alespoň o řád vyšší MS_{mass} než líňské limnické silicity. V prvním případě jde o jednotky umocněné na 10^{-6} až 10^{-8} , ve druhém o jednotky umocněné na 10^{-9} až 10^{-10} , což patrně souvisí s rozdílnými obsahy železa v obou typech hornin.

	Bulk	Hmotnost	MS
Beroun1	2,84E-05	23,25	1,22E-08
Beroun2	2,36E-05	18,77	1,26E-08
Beroun3	3,23E-05	14,57	2,22E-08
Beroun4	9,57E-05	9,20	1,04E-07
Beroun5	5,26E-05	11,41	4,61E-08
Beroun6	3,10E-03	19,78	1,57E-06
Beroun7	6,65E-05	15,80	4,21E-08
Beroun8	2,67E-04	40,54	6,59E-08
Beroun9	9,12E-05	20,35	4,48E-08
Beroun10	2,14E-05	5,69	3,76E-08
Beroun11	6,06E-05	16,16	3,75E-08
Beroun13	3,18E-05	7,16	4,43E-08
Beroun14	9,07E-05	19,62	4,62E-08
Beroun15	9,49E-05	14,36	6,61E-08
	-1,92E-		-2 55E-00
L1	06	7,54	-2,55E-09
	-2,47E-		-6,55694E-
L2	06	37,67	10

Tab. 5 Hodnoty magnetické susceptibility berounských chalcedonů (Beroun1 – 15) a limnosilicitů typu Líně (L1-2)

5.8. SEM-EDS

Vzorek L1 je v drtivé většině tvořen mikrokrystalickým křemenem (chalcedonem; viz též výše). V SEM bylo možné odlišit partie, kde radiální chalcedon vyplňoval póry, snad po bývalých mikrofosiliích (Obr. 19). Kvalitativně byl identifikován baryt (Obr. 20). Z většiny byl tento vzorek tvořen křemitými hmotami vykrystalovanými z gelu. Chemicky bylo možné analyzovat větší exempláře živců, kdy ve všech případech dominuje draselná komponenta (Tab. 5).

Analyzovaný výbrus vzorku Beroun9 je vyplněn pozůstatky K-živců, které v něm tvoří krupičkovité útvary. Chemicky bylo možné analyzovat větší exempláře, kdy ve všech případech dominuje draselná komponenta (Tab. 6). Kvalitativně byl identifikován xenotim, okolo něhož se nacházely silikáty, nejspíše chalcedon a živec, a zirkon (Obr. 21, 22).

Vzorek - analýza	Beroun9 - 1	Beroun9 - 2	Beroun9 - 3	Beroun9 - 4	Beroun9 - 5
Na ₂ O	0,37	1,39	0,93	0,59	0,37
MgO	0,08	0,08	0,02	0,05	0,08
Al ₂ O ₃	19,46	19,16	18,91	18,88	19,46
SiO ₂	64,77	65,02	65,52	64,40	64,77
K ₂ O	14,70	13,79	14,27	14,27	14,70
CaO	0,14	0,17	0,13	0,12	0,14
TiO ₂	0,08	0,06	0,06	0,04	0,08
FeO	0,08	0,14	0,00	0,13	0,08
SrO	0,50	0,40	0,35	0,54	0,50
sum	100,17	100,27	100,19	99,03	100,17
normaliza	ace na 8 at	omů kyslí	ku ve vzoi	rcové jedn	otce
Na ⁺	0,03	0,12	0,08	0,05	0,03
Mg ⁺²	0,01	0,01	0,00	0,00	0,01
Al ⁺³	1,05	1,03	1,02	1,03	1,05
Si ⁺⁴	2,97	2,98	3,00	2,99	2,97
K ⁺	0,86	0,81	0,83	0,84	0,86
Ca ⁺²	0,01	0,01	0,01	0,01	0,01
Ti ⁺⁴	0,00	0,00	0,00	0,00	0,00
Fe ⁺²	0,00	0,01	0,00	0,01	0,00
Sr ⁺²	0,01	0,01	0,01	0,01	0,01
catsum	4,95	4,97	4,95	4,95	4,95
Or	95,30	85,94	90,36	93,47	95,58
Ab	4,50	13,17	8,95	5,87	3,66
An	0,20	0,89	0,69	0,66	0,76

Tab. 6 Chemické složení živců ze vzorku Beroun9; obsahy oxidů v hmotnostních %, hodnoty apfu přepočteny na osm atomů kyslíku

6. Diskuse

U čtrnácti vzorků křemitých hmot z koryta řeky Berounky, nasbíraných v Berouně, a u dvou vzorků limnosilicitů z Líní u Plzně byla naměřena hustota, byly prozkoumány pod stereomikroskopem a pod elektronovým mikroskopem (SEM). Byla stanovena jejich barevnost pomocí spektrofotometrie, prvkové složení pomocí pXRF a EDX, strukturní analýza rentgenovou difrakcí (XRD) a hmotnostní magnetická susceptibilita pomocí kappamůstku.

Všechna měření kromě spektrofotometrie ukázala, že se vzorky berounských hmot odlišují od vzorků limnosilicitů z Líní u Plzně. V případě spektrofotometrického měření nebylo dosaženo výsledků, které by poukazovaly na významně velký barevnostní rozdíl mezi těmito dvěma typy hornin. Barevnostní odlišení křemitých hmot z koryta řeky Berounky a limnosilicitů z oblasti Líní u Plzně je lépe pozorovatelné pouhým okem, ačkoliv variabilita líňských hmot nemusela být malým vzorkem zcela postižena. Při instrumentálním měření ovšem není barevnostní rozdíl v binárních grafech patrný (Obr. 8). Berounské vzorky obsahují méně SiO₂ než limnosilicity z Líní u Plzně a úměrně větší množství oxidů ostatních kovů, zejména železa (obr. 14). Tím samozřejmě narůstá i MS_{mass} a hustota (Tab. 3, 4). Oxidy Fe nebyly zaznamenány metodou XRD, což je snad způsobeno jejich přítomností ve formě jemně rozptýleného pigmentu. Živce a slídy (pozorované již v polarizačním mikroskopu) byly též rozlišené pomocí XRD.

Vysoké obsahy Fe vypovídají o vulkanogenním či hydrotermálním původu berounských křemitých hmot, jelikož u jemnozrnných rohovců/pazourků bývají jeho obsahy nízké (Hesse 1989). Vrstevnatá textura by mohla naznačovat, že se jedná o sediment, nahrazený hydrotermálním SiO₂. Z oblasti Tění ve strašickém brdském pásmu jsou známy křemenné hmoty obsahující chalcedon, ale v jejich dutinách se může vyskytovat i opál (Vanek 2024). Těně jsou sběratelskou lokalitou oblíbenou u sběratelů geologického materiálu. V podloží této oblasti jsou zastoupeny bazalty a andezity ordovického stáří. To poukazuje na možný hydrotermální původ místních chalcedonů. Je možné, že tyto křemenné hmoty z Tění jsou jakousi analogií berounských chalcedonů. V některých případech mají též páskovanou stavbu. S ohledem na starší výzkumy Hradeckého (2007; 2009) je ale pravděpodobnější, že jde v případě Berouna o produkt výlevů, případně intruzí, ryolitových a dacitových láv, které jsou v oblasti křivoklátsko-rokycanského komplexu barrandienu rozeznatelné pro své růžové, žlutavé nebo světle červené zabarvení a v terénu jsou zastoupeny spolu s ignimbrity

(Hradecký 2007; 2009). Jak křivoklátsko-rokycanský komplex, tak analogický strašický komplex, se datují do svrchního kambria a spodního ordoviku (tremadoku) a jsou mj. asociovány s různými formami oxidu křemičitého (Kachlík, Patočka 1998; Chlupáč 2002). Stáří obou komplexů, určené pomocí radiometrického datování, je zhruba 500 až 475 milionů let. Spadá tedy do furongu, poslední epochy kambria (Dornsiepen 1979) až po spodní ordovik stupně flo (Vidal 1975).

kambrický/spodnoordovický Ačkoliv vulkanismus měl v křivoklátsko-rokycanském komplexu i podobu bazaltových a andezitových výlevů (Waldhausrová 1971; Patočka 1993; Kachlík, Patočka 1998; Hradecký 2007; 2009), SEM-EDX analýza živců provedená na berounských křemitých hmotách v rámci této BP ukazuje právě na zmíněný kyselý vulkanismus. Kyselá sklovitá láva rekrystalovala již v rámci vysokoteplotní devitrifikace skla a následně od kambria/ordoviku do různých forem sférulitů, mikro- a makrokřemene, živců, slíd a opakních minerálů (Hradecký 2007). Proudová laminace, pozorovatelná na většině vzorků, je výsledkem odlišného chemického složení obsažených skel (ibid.). Horniny se dostávaly i do toků čtvrtohorních, příp. třetihorních řek, čímž je dána jejich přítomnost v korytě současného toku Berounky. V rámci terénní fáze BP byly ovšem zaznamenány i dále proti proudu řeky: u hradu Týřov a též na spodnopleistocenní terase v Roztokách (Mašek 1997). Limnické silicity typu Líně zde zastiženy nebyly a zřejmě tedy nebyly říčním tokem z permokarbonské plzeňské pánve transportovány.

Vznik líňských silicitů probíhal odlišně, snad mechanismem, který uvádí Hesse (1989) – poklesem pH v jezerním prostředí došlo k reprecipitaci rozpuštěného (původně detritického) křemene. Hornina je tedy též v zásadě anorganického původu, je ale téměř výlučně tvořená SiO₂, konkrétně chalcedonem či jinou formou mikrokřemene.

7. Závěr

V této bakalářské práci jsem se zabýval křemitými horninami z koryta řeky Berounky a jejího okolí a srovnal je s limnickými silicity od Líní u Plzně. U líňských hmot se jedná o oranžově zbarvené kryptokrystalické chalcedony bez hrubších klastů. Vznikly patrně vysrážením v jezerním prostředí se sníženým pH. Berounské křemité hmoty s laminární až fluidální texturou se od líňských limnosilicitů téměř ve všech pozorovaných a měřených proměnných. Oproti limnosilicitům z Líní u Plzně obsahují řádově vyšší obsahy oxidů železa i dalších kovů. Mají přinejmenším o řád vyšší hmotností magnetickou susceptibilitu, než líňské limnosilicity a o něco vyšší hustotu. Berounská hornina též obsahuje fáze sodných (albit) a draselných (mikroklin) živců, slídy, oxidy Fe a Mn, xenotim a zirkon. Obě hmoty lze zaměnit maximálně na základě podobné barvy – i berounské hmoty jsou často oranžové, hnědé či červené.

S ohledem na starší výzkumy je tedy pravděpodobné, že je tato hornina ztuhlou a rekrystalizovanou ryolitovou/dacitovou lávou z oblasti křivoklátsko-rokycanského vulkanického komplexu z období svrchního kambria až spodního ordoviku. Do štěrků Berounky se tyto odolné horniny dostávaly v průběhu neogénu a kvartéru, spolu např. s proterozoickými buližníky. Od těchto černých lyditů se ale rovněž liší barvou a texturou, což je dáno mj. vysokými obsahy železa u většiny vulkanogenních silicitů a jeho nízkými obsahy u chalcedonů vzniklých v jiném prostředí.

8. Summary

This bachelor thesis focuses on the siliceous rocks from the Berounka river bed that have been collected in Beroun and taken to the Department of Geology in Palacký University in Olomouc along with samples of limnosilicites from Líně u Plzně. The goal of the thesis is to determine whether the siliceous rocks from Beroun are of the same type as the rocks from Líně u Plzně. Using a stereomicroscope, petrography of rock slices, density and magnetic susceptibility measurements of samples, portable X-ray fluorescence analysis (pXRF), X-ray diffraction analysis (XRD) and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis, it has been determined that the rocks are of different types and that there have been different geological processes that led to their development.

The siliceous rocks from the Berounka river bed contain significantly higher amounts of iron, leading to increases of mass magnetic susceptibility and density, as opposed to the limnosilicites from Líně u Plzně that contain a lot more SiO₂ and also contain very low levels of iron. Clay minerals may be the carriers of iron in the rocks from the Berounka river. Practically all analyses have led to the conclusion that these rocks differ. The origin of the rocks from Beroun is likely linked to acidic volcanism which has been proved by the SEM-EDX analysis of the feldspars contained within the rocks. This volcanism took place in early Paleozoic, and the acidic glassy lava later recrystallized during high-temperature devitrification of glass and subsequently from Cambrian/Ordovician into various forms of spherulites, micro- and macrofeldspars, feldspars, micas, micas and other minerals. The layered texture of these rocks may indicate that they are basically sediments that have been replaced by hydrothermal SiO₂.

The limnosilicites from Líně u Plzně likely formed in a different way, as described by Hesse (1989). They formed in lacustrine environment, where the decrease of pH led to the reprecipitation of dissolved (and originally detrital) quartz. While the limnosilicites from Líně u Plzně may contain remnants of fossils, and the microscopic photography shows that some little cavities made probably by fossils have been replaced by radial chalcedony, the siliceous rocks from the Berounka river contain no fossilized remains of organisms.

The different composition and the difference in origin of these rocks prove that they are not the same type of rock but present different siliceous rocks.

9. Seznam použité literatury a internetových zdrojů

Literatura

BOGGS, S. (2009). *Petrology of Sedimentary Rocks (2nd ed.)*. Cambridge University Press. 600 p. ISBN 978-1114189805.

BUTTS, S.H., BRIGGS, D.E.G. (2011). Silicification Through Time. In: Allison, P.A., Bottjer, D.J. (eds) Taphonomy. Aims & Scope Topics in Geobiology Book Series, vol 32. Springer, Dordrecht. Online.

CLOUD, P. (1973). Palaeoecological significance of banded iron-formation. *Economic Geology*, 68: 1135-1143.

DORSIEPEN, U. F. 1979: Rb/Sr whole rock ages within the European Hercynian. A review. – Krystalinikum 13, 33-49. Online.

DREVER, J.T. (1974). Geochemical model for the origin of Precambrian banded iron formations. *Geological Society of America Bulletin*, 85: 1099-1106. Online.

DUNLOP, D.J., ÖZDEMIR, Ö. (1997) Rock Magnetism. *Fundamentals and Frontiers*. Cambridge University Press, Cambridge.

FLÖRKE, O. W., FLÖRKE, U., GIESE, U. (1984). Moganite, a new microcrystalline silica-mineral. *Neues Jahrbuch für Mineralogie, Abhandlungen*, 149: 325-336.

FLÖRKE, O. W., GRAETSCH, H. A., BRUNK, F., BENDA, L., PASCHEN, S., BERGNA, H. E., ROBERTS, W. O., WELSH, W. A., LIBANATI, C., ETTLINGER, M., KERNER, D., MAIER, M., MEON, W., SCHMOLL, R., GIES, H., & SCHIFFMAN, D. (2008a). Silica. *Ullmann's Encyclopedia of Industrial Chemistry*.

GARRELS, R.M. (1987). A model for the deposition of the microbanded Precambrian iron formations. *American Journal of Science*, 287: 81-106. Online.

HERZ, A. v. T., N., GARRISON, E. G. (1998). Geological Methods for Archaeology. viii + 343 pp. New York, Oxford: Oxford University Press. Price £60.00 (hard covers). ISBN 0 19 509024 1. *Geological Magazine*. 1999;136(1):83-108.

HESSE, R. (1988). Diagenesis #13. Origin of chert: Diagenesis of biogenic siliceous sediments. Geoscience Canada, 15(3), 171–192.

HESSE, R. (1989). Silica diagenesis: Origin of inorganic and replacement cherts. *Earth-Science Reviews*, 26(1–3), 253–284.

HOLLAND, H.D. (1973). The oceans: A possible source of iron in iron formations. *Economic Geology*, 68: 1169-1172

HRADECKÝ, P. (2007). Genetické aspekty svrchnokambrického vulkanismu v Křivoklátsko-Rokycanském komplexu. *Zprávy o geologických výzkumech*, 2007, 24-26.

HRADECKÝ, P. (2009). Typy furongských (svrchnokambrických) vulkanitů ve střední části křivoklátsko-rokycanského komplexu. *Zprávy o geologických výzkumech*, 2009, 215-218.

HURD D. C., THEYER F. (1977). Changes in the physical and chemical properties of biogenic silica from the central equatorial Pacific: Part II. Refractive index, density, and water content of acid-cleaned samples. *American Journal of Science*. 277, 1168–1202.

CHLUPÁČ, I. (2002). Geologická minulost České republiky. Academia. 436 p.

KACHLÍK V., PATOČKA, F. (1998) Cambrian/Ordovician intracontinental rifting and Devonian closure of the rifting generated basins in the Bohemian Massif realms. *Acta Universitatis Carolinae*, *Geologica* 42: 57–66

KEBERT, T. (2019) Měkkýši buližníkových suků v CHKO Křivoklátsko a jejich využití ve výuce. Rigorózní práce. Praha: Univerzita Karlova, Pedagogická fakulta, Katedra biologie a environmentálních studií.

KROPÁČ, K., ŠIMÍČEK, D., LEHOTSKÝ, T., & KAPUSTA, J. (2020). Petrografická charakteristika spodnokarbonských ryolitových tufitů Z vrtů v Lomu Výkleky (Moravické Souvrství, Kulmská Pánev Nízkého jeseníku). *Bulletin Mineralogie Petrologie*, 28(2), 331–338. LARSEN, G., & CHILINGARIAN, G. V. (1983). *Diagenesis in sediments and sedimentary rocks:* 2. Elsevier Scientific Publising Company.

LANERGE, G.L. (1973). Possible biological origin of Precambrian iron formations. *Economic Geology*, 68: 1098-1109

LUEDTKE, B. E. (1992). An archaeologist's guide to chert and flint. *Archaeological Research Tools 7*, University of California.

MACKENZIE, F. T. (2005). Sediments, diagenesis, and sedimentary rocks. Elsevier. 425 p. ISBN 0-08-043751-6.

MAIER, W. D., LAHTINEN, R., & O'BRIEN, H. (2015). Mineral deposits of Finland. Elsevier Ltd. 792 p. (POUŽITO: p. 718)

MAŠEK, J. (ed.), STRAKA, J., HRAZDÍRA, P., PÁLENSKÝ, P., ŠTĚPÁNEK, P, HŮLA, P. (1997). Geologická a přírodovědná mapa Chráněné krajinné oblasti a biosférické rezervace Křivoklátsko. Český geologický ústav.

MUGIRANEZA, S., HALLAS, A. M. (2022). Tutorial: a beginner's guide to interpreting magnetic susceptibility data with the Curie-Weiss law. *Communications Physics* 5 (95). Dostupné z: <u>https://www.nature.com/articles/s42005-022-00853-y</u>

Munsell Color (Firm). (2011). Geological rock-color chart: with genuine Munsell color chips. Grand Rapids, MI: Munsell Color

OZDÍN, D., MESIARKINOVÁ, M. (2010). Príčiny sfarbenia limnosilicitov z lokality Banské v Slanských vrchoch (východné Slovensko). *Bulletin mineralogickopetrologického oddělení Národního muzea v Praze*, 18/1, 2010, 89-96.

OLLIER, C. (1969). Weathering. Oliver & Boyd, Edinburgh, 304 str.

PATOČKA, F., VLAŠÍMSKÝ, P. BLECHOVÁ, K. (1993): Geochemistry of early Palaeozoic volcanics of the Barrandian Basin (Bohemian Massif, Czech Republic): implications for palaeotectonic reconstructions. – Jb. Geol., B.–A. 136/4, 873–896.

PELTO, C. R. (1956). A study of chalcedony. *American Journal of Science*, 254(1), 32–50. <u>https://doi.org/10.2475/ajs.254.1.32</u>

PEŠEK, J., SKOČEK, V. (1999). Alluvial-lacustrine red beds in Upper Paleozoic continental basins, Bohemian Massif, Czech Republic. Práce ČGÚ, 11. Praha.

PETRÁNEK, J., BŘEZINA, J., BŘÍZOVÁ, E., CHÁB, J., LOUN, J. a ZELENKA, P. (2016). Encyklopedie geologie, Česká geologická služba, Praha, 349 s.

PETTIJOHN, F.J. (1975). Sedimentary Rocks (3ed ed.). Harper and Row, New York, N.Y., 628 pp. (p. 594)

PRICHYSTAL, A. (2010). Classification of lithic raw materials used for prehistoric chipped artefacts in general and siliceous sediments (silicites) in particular: The Czech proposal. *Archeometriai Műhely* 7(3): 177-182

PRICHYSTAL, A. (2013). Lithic raw materials in prehistoric times of Eastern Central Europe. Masaryk University.

ŘEZÁČ, M. (2006): Příspěvek k petroarcheologii jihozápadních Čech. – In: JOHN, J., KOVÁŘ, M.(eds.): Opracování kamene, Sborník Muzea Středního Posázaví v Ratajích nad Sázavou a Archeologické společnosti při katedře archeologie ZČU v Plzni, 23-27. Plzeň.

SCHOPF, J. W., PACKER, B. M. (1987). Early Archean (3.3-billion to 3.5-billionyear-old) microfossils from Warrawoona Group, Australia. *Science* 237:70-73

TASÁRYOVÁ, Z., HROCH, T., & MANDA Š. (2012). Spodnoordovický vulkanismus strašického/komárovského komplexu a silurský vulkanismus svatojánského vulkanického centra, Barrandien. – Sborn. Západočes. Muz. Plzeň, Přír., 116: 41–52.

TÁSLER, R., ČADKOVÁ, Z., DVOŘÁK, J., FEDIUK, F., CHALOUPSKÝ, J., JETEL, J., ... & ŠETLÍK, J. (1979). Geology of the Bohemian part of the Intra-Sudetic Basin. *Oblastní regionální geologie ČSR*. Ústřední ústav geologický, Praha.

THACKER, P., ELLWOOD, B., PEREIRA, C. (2002). Detecting Paleolithic activity areas through electrical resistivity survey: an assessment from Vale de Óbidos, Portugal. *Journal of Archaeological Science* 29: 563-570.

THOMSON, K. S. (2005). Fossils a very short introduction. Oxford University Press. 147 p.

VIDAL, P., AVRAY, B., CHARLOT, R., FEDIUK, F., HAMEURT, J., WALDHAUSROVÁ, J. (1975). Radiometric age of volcanics of the Cambrian Krivoklat – Rokycany complex, Bohemian massif. – Geologische Rundschau. 64, 2, 563-570

VOLANSKÁ, A. (2016). Aurignacien na východnom Slovensku. Dizertačná práca. Prešovská univerzita v Prešove. Filozofická fakulta., Inštitút histórie.

WOLLAST, R., MACKENZIE, F. T. (1983). The global cycle of silica. *Silicon* geochemistry and biogeochemistry, 39-76. New York: Academic.

WALDHAUSROVÁ, J. (1979). Zpráva o geologickém mapování v měřítku 1 : 10 000 v oblasti V.D. Křivoklát – Červený kámen. – MS Čes. geol. služba, Praha

Internetové zdroje

ALDEN, A. (2020). Densities of Common Rocks and Minerals. ThoughtCo.com is the World's Largest Educational Resource. Dostupné z: <u>https://www.thoughtco.com/densities-of-common-rocks-and-minerals-1439119</u> [cit. 2024-04-13]

BRENNER, M., SCHWARTZ, S., FELLERS, T. J., DAVIDSON, M. W. Water Immersion Objectives. Nikon's MicroscopyU – The source for microscopy education. Dostupné z: <u>https://www.microscopyu.com/microscopy-basics/water-immersion-objectives</u> [cit. 2024-04-02]

Česká geologická služba. Geologická mapa 1 : 50 000. Dostupné z: <u>https://mapy.geology.cz/geo/#</u> (cit. 28. 3. 2024) [cit. 2024-03-28]

EUROLAB | Zkušební a analytická laboratoř. Analýza XRD (rentgenová difrakce). Dostupné z: <u>https://www.laboratuar.com/cs/testler/emc-emi-testleri/xrd-(x-isini-kirinimi)-analizleri/</u> [cit. 2024-03-16]

Geologie.vsb.cz. 3. Post-sedimentární procesy. Katedra geologického inženýrství HGFVŠB-TUO.Dostupnéz:3.http://geologie.vsb.cz/Sedimentologie/textova%20cast/possedimentacni%20proces.htm [cit. 2024-03-02]

JONES, F. (2018). Density. Department of Earth, Ocean and Atmospheric Sciences. The University of British Columbia. Dostupné z: <u>https://www.eoas.ubc.ca/courses/eosc350/content/foundations/properties/density.htm</u> [cit. 2024-02-18]

OTRUBA, V. (2011) Elektronová mikroanalýza. Dostupné z: https://is.muni.cz/el/1431/podzim2014/C7031/um/15_AS_Elektronova_mikroanalyza. pdf [cit. 2024-04-10]

PERKINS, D. (2022). 12 X-ray Diffraction and Mineral Analysis. Mineralogy. Dostupné z: <u>https://opengeology.org/Mineralogy/12-x-ray-diffraction-and-mineral-analysis/</u> [cit. 2024-03-16]

PERKINS, D. (2022). Mineralogy. Dostupné z: <u>https://opengeology.org/Mineralogy/</u> [cit. 2024-05-03]

PETRÁNEK, J. buližník. On-line geologická encyklopedie. Dostupné z: <u>http://www.geology.cz/aplikace/encyklopedie/term.pl?buliznik</u> [cit. 2024-02-17]

PETRÁNEK, J. plzeňská pánev. On-line geologická encyklopedie. Dostupné z: <u>http://www.geology.cz/aplikace/encyklopedie/term.pl?plzenska_panev</u> [cit. 2024-05-03]

PETRÁNEK, J. silicit. On-line geologická encyklopedie. Dostupné z: http://www.geology.cz/aplikace/encyklopedie/term.pl?silicit [cit. 2024-02-15] POLYANSKIY, M. Optical constants of Air. RefractiveIndex.INFO – Refractiveindexdatabase.Dostupnéz:https://refractiveindex.info/?shelf=other&book=air&page=Ciddor [cit. 2024-03-15]

ŠTECL, J., VÁVRA, V. (2007) Barrandien. Multimediální mineralogicko petrografický exkurzní průvodce po území Čech. Dostupné z: <u>https://pruvodce.geol.cechy.sci.muni.cz/regionalni_geol/barrandien.htm</u> [cit. 2024-04-13]

VANEK, M. (2024). Těně. Dostupné z <u>http://www.laskaksutrum.cz/tene/</u> [cit. 2024-05-03]

10. Přílohy

Tab. 6 Data ze spektrofotometrie – vyexportováno z X-Rite X-RiteColor Master

		Standard	Beroun1	Beroun2	Beroun3	Beroun4	Beroun5	Beroun6	Beroun7	Beroun8	Beroun9	Beroun10	Beroun11	Beroun13	Beroun14	Beroun15	Líně02	Líně01
		18.05.2017	15.02.2024	15.02.2024	15.02.2024	15.02.2024	15.02.2024	15.02.2024	15.02.2024	15.02.2024	15.02.2024	15.02.2024	15.02.2024	15.02.2024	15.02.2024	15.02.2024	15.02.2024	15.02.2024
SPIN	Vlnová dé	ka																
	400	28,064	19,224	14,104	10,832	8,527	9,1	6,871	12,787	9,063	7,9	9,763	10,161	13,527	7,279	9,041	11,724	7,483
	410	37,844	19,607	14,875	11,244	8,713	9,231	7,056	13,253	9,38	8,199	10,417	10,818	14,234	7,641	9,448	12,314	7,732
	420	40,515	19,784	15,621	11,548	8,792	9,323	7,15	13,537	9,64	8,404	10,905	11,259	14,685	7,852	9,832	12,82	7,868
	430	40,066	19,939	16,465	11,873	8,916	9,444	7,3	13,898	9,896	8,687	11,618	11,936	15,376	8,198	10,253	13,49	8,093
	440	40,085	19,97	17,41	12,28	9,016	9,551	7,396	14,183	10,155	9,001	12,405	12,649	16,067	8,524	10,703	14,22	8,311
	450	39,679	19,986	18,219	12,569	9,07	9,606	7,479	14,407	10,361	9,212	13,052	13,243	16,629	8,795	10,993	14,663	8,453
	460	39,528	19,91	18,907	12,752	9,072	9,634	7,518	14,491	10,464	9,346	13,519	13,66	16,994	8,981	11,148	14,817	8,451
	470	42,728	19,71	19,418	12,885	9,075	9,59	7,518	14,499	10,531	9,471	13,867	13,959	17,221	9,117	11,187	14,923	8,381
	480	47,572	19,691	19,701	13,007	9,043	9,589	7,559	14,537	10,623	9,573	14,275	14,309	17,526	9,266	11,242	15,029	8,334
	490	49,189	19,476	20,588	13,264	9,069	9,57	7,567	14,674	10,679	9,734	14,776	14,788	17,893	9,433	11,432	15,593	8,383
	500	49,062	19,638	21,348	13,588	9,083	9,656	7,664	14,923	10,849	9,912	15,482	15,446	18,552	9,702	11,731	16,155	8,545
	510	49,199	19,566	22,66	14,048	9,233	9,759	7,752	15,224	11,01	10,25	16,243	16,156	19,256	10,024	12,121	17,204	8,883
	520	50,41	19,824	24,129	14,595	9,332	9,926	7,898	15,631	11,232	10,544	17,257	17,129	20,326	10,449	12,548	18,339	9,387
	530	50,789	19,704	26,079	15,24	9,524	10,093	7,977	16,03	11,452	10,955	18,261	18,097	21,384	10,883	12,983	19,876	10,039
	540	50,984	20,152	27,856	16,082	9,73	10,444	8,195	16,657	11,824	11,477	19,698	19,436	22,902	11,592	13,357	21,269	10,839
	550	51,558	20,005	30,135	17,245	10,169	10,763	8,328	17,388	12,246	12,4	21,317	20,896	24,421	12,49	13,735	23,019	11,689
	560	52,831	20,763	31,974	18,855	10,63	11,502	8,674	18,642	12,944	13,711	23,892	22,976	26,627	14,049	13,976	24,403	12,556
	570	54,052	20,922	34,014	20,645	11,381	12,142	8,874	20,007	13,607	15,571	26,485	24,88	28,401	15,811	14,227	25,81	13,147
	580	56,621	22,052	35,074	22,468	11,991	13,068	9,212	21,728	14,358	17,641	29,216	26,634	30,176	17,833	14,316	26,677	13,585
	590	58,848	22,572	36,213	23,894	12,8	13,657	9,315	23,091	14,915	19,875	31,243	27,866	31,075	19,496	14,541	27,564	13,846
	600	59,396	23,826	36,443	24,862	13,063	14,332	9,538	24,236	15,307	21,513	32,882	28,592	32,05	20,619	14,447	27,96	13,914
	610	59,266	24,352	36,74	25,514	13,435	14,613	9,479	24,908	15,462	22,848	33,813	28,978	32,159	21,276	14,451	28,386	13,875
	620	59,225	25,115	36,734	25,961	13,598	14,915	9,549	25,373	15,53	23,707	34,526	29,217	32,373	21,685	14,338	28,68	13,802
	630	59,28	25,445	36,962	26,405	13,846	15,057	9,521	25,673	15,547	24,517	35,106	29,448	32,296	21,968	14,308	29,105	13,739
	640	59,399	25,917	36,913	26,751	13,97	15,315	9,533	25,949	15,576	25,134	35,631	29,63	32,415	22,254	14,224	29,449	13,713
	650	59,381	26,083	36,992	27,057	14,175	15,457	9,454	26,129	15,562	25,761	36,01	29,741	32,249	22,471	14,178	29,823	13,659
	660	59,665	26,609	37,025	27,429	14,327	15,763	9,514	26,448	15,631	26,414	36,553	29,972	32,529	22,802	14,127	30,252	13,723
	670	59,827	26,928	37,224	27,851	14,699	15,978	9,501	26,761	15,661	27,248	37,179	30,22	32,535	23,108	14,174	30,823	13,806
	680	59,822	27,63	37,264	28,234	14,881	16,365	9,58	27,172	15,731	28,046	37,778	30,456	32,929	23,507	14,114	31,333	13,918
	690	59,559	28,053	37,539	28,673	15,299	16,628	9,53	27,579	15,765	29,018	38,478	30,71	32,957	23,896	14,151	32,034	14,004
	700	59,569	28,791	37,487	28,957	15,468	17,048	9,606	27,944	15,839	29,757	38,963	30,851	33,342	24,194	14,059	32,558	14,133
SPIN																		
A/10°	L*	78,82	53,91	63,2	52,34	40,33	41,76	35,56	52,22	43,48	47,69	58,15	55,91	59,1	46,97	43,87	56,55	41,62
	a*	5,01	6,12	8,98	12,38	7,22	7,92	3,08	10,87	6,12	17,02	15,68	11,3	10,09	14,47	2,01	9,18	5,91
	b*	13,55	3,9	22,35	17,43	7,38	8,09	4,67	12,84	8,6	19,3	25,74	21,49	19,16	19,36	7,47	19,56	11,87
	C*	14,45	7,26	24,08	21,38	10,32	11,32	5,59	16,83	10,56	25,73	30,14	24,28	21,66	24,17	7,74	21,61	13,26
	h°	69,7	32,52	68,12	54,61	45,63	45,6	56,64	49,74	54,56	48,59	58,65	62,26	62,24	53,22	74,94	64,86	63,52
SPIN																		
D65/10°	L*	77,77	53,12	61,25	50,24	39,24	40,55	35,02	50,49	42,44	45,05	55,38	53,76	57,16	44,58	43,3	54,69	40,39
	a* L+	2,04	5,28	6,69	10,66	6,32	6,95	2,5	9,39	5,06	15,04	13,22	9,18	8,27	12,78	1	7,24	5,26
	b* 	12,67	2,51	19,84	14,2	5,56	6,08	3,86	10,09	7,06	15,09	21,78	18,53	16,4	15,66	6,86	16,91	9,91
	C*	12,83	5,85	20,94	17,76	8,41	9,24	4,6	13,78	8,69	21,3	25,48	20,68	18,37	20,22	6,93	18,4	11,22
	h 🎽	80,87	25,44	71,37	53,11	41,34	41,19	57,03	47,08	54,35	45,11	58,75	63,64	63,23	50,78	81,67	66,81	62,05

	TestID	NIST610		Beroun0	1	Beroun0	2	Beroun0	4	NIST610	_2	Beroun	05	Beroun	06	Beround	07	Beroun	08		
Si	1,7	74 1169	66806	1433	81353	1178	58681	1142	62502	1139	69619	1121	62006	1009	54273	1296	72001	1150	58026		
Ti	4,	,5	5464		5296		6575		6588		5545		6276		27565		6443		6425		
Mn	5,	,9 672	6975	95	3371	116	4045	122	4027	669	7293	128	4100	193	4374	99	4259	128	3983		
Fe	6,	,4 1379	7686	12151	35159	7386	27995	17184	53596	1508	8063	16842	53320	79786	198330	10389	35839	9979	34831		
Ni	7,4	48 2541	4696	524	3479	504	3465	523	3419	2660	4654	484	3355	448	2821	563	3638	497	3290		
Cu	8,0	04 3112	3510	225	3176	251	3026	248	3046	3192	3533	240	2902	243	2763	275	3019	254	3037		
Zn	8,6	52 3360	2588	69	2506	319	2418	327	2414	3469	2606	310	2493	392	2125	415	2558	668	2503		
As	10,0	04 734	0	45	0	48	0	41	0	659	0	54	0	39	0	45	0	49	0		
Rb	13,3	32 9961	0	230	0	4411	0	3477	0	9984	0	3789	0	2643	0	4784	0	4528	0		
Sr	14,1	16 9702	0	1069	0	845	0	1115	0	9932	0	1127	0	1141	0	679	0	812	0		
Zr	15,7	78 11523	0	1523	0	6648	0	6418	0	11565	0	6020	0	8202	0	4843	0	6314	0		
Th	9,3	32 2569	1324	100	1413	220	1399	166	1300	2601	1394	167	1287	145	1203	166	1356	174	1395		
	Beroun09		Beroun09 Beroun10		.0	L2		L1		Beroun13	13 Beroun13		3 Beroun15		Beroun15 Beroun		Beroun14_2 NIST610			Beroun03	
	beround																				
Si	1319	63014	1086	58689	1616	90400	1582	95967	956	56321	1237	68613	1285	65858	1173	66327	1185	67149	1195	64033	
Si Ti	1319	63014 6424	1086	58689 7319	1616	90400 5685	1582 171	95967 2779	956 361	56321 6549	1237 304	68613 5993	1285 330	65858 5435	1173 371	66327 6255	1185 292	67149 5444	1195 284	64033 5933	
Si Ti Mn	1319 99	63014 6424 3823	1086 128	58689 7319 3921	1616 97	90400 5685 3843	1582 171 87	95967 2779 3845	956 361 173	56321 6549 4171	1237 304 106	68613 5993 3859	1285 330 833	65858 5435 6288	1173 371 88	66327 6255 3845	1185 292 663	67149 5444 6898	1195 284 101	64033 5933 3609	
Si Ti Mn Fe	99 9464	63014 6424 3823 33113	1086 128 12121	58689 7319 3921 44241	1616 97 3973	90400 5685 3843 15734	1582 171 87 2396	95967 2779 3845 12302	956 361 173 104697	56321 6549 4171 175705	1237 304 106 6928	68613 5993 3859 25371	1285 330 833 38433	65858 5435 6288 74492	1173 371 88 7524	66327 6255 3845 27479	1185 292 663 1551	67149 5444 6898 8420	1195 284 101 6320	64033 5933 3609 22810	
Si Ti Mn Fe Ni	99 9464 516	63014 6424 3823 33113 3367	1086 128 12121 498	58689 7319 3921 44241 3296	1616 97 3973 561	90400 5685 3843 15734 3612	1582 171 87 2396 555	95967 2779 3845 12302 3745	956 361 173 104697 432	56321 6549 4171 175705 3004	1237 304 106 6928 552	68613 5993 3859 25371 3327	1285 330 833 38433 532	65858 5435 6288 74492 3341	1173 371 88 7524 505	66327 6255 3845 27479 3379	1185 292 663 1551 2615	67149 5444 6898 8420 4674	1195 284 101 6320 477	64033 5933 3609 22810 3379	
Si Ti Mn Fe Ni Cu	99 9464 516 228	63014 6424 3823 33113 3367 2913	1086 128 12121 498 261	58689 7319 3921 44241 3296 2990	1616 97 3973 561 249	90400 5685 3843 15734 3612 3170	1582 171 87 2396 555 276	95967 2779 3845 12302 3745 3215	956 361 173 104697 432 211	56321 6549 4171 175705 3004 2888	1237 304 106 6928 552 267	68613 5993 3859 25371 3327 2874	1285 330 833 38433 532 235	65858 5435 6288 74492 3341 2954	1173 371 88 7524 505 253	66327 6255 3845 27479 3379 2906	1185 292 663 1551 2615 3189	67149 5444 6898 8420 4674 3563	1195 284 101 6320 477 229	64033 5933 3609 22810 3379 3028	
Si Ti Mn Fe Ni Cu Zn	1319 99 9464 516 228 479	63014 6424 3823 33113 3367 2913 2487	1086 128 12121 498 261 572	58689 7319 3921 44241 3296 2990 2445	1616 97 3973 561 249 88	90400 5685 3843 15734 3612 3170 2733	1582 171 87 2396 555 276 70	95967 2779 3845 12302 3745 3215 2730	956 361 173 104697 432 211 484	56321 6549 4171 175705 3004 2888 2187	1237 304 106 6928 552 267 480	68613 5993 3859 25371 3327 2874 2558	1285 330 833 38433 532 235 418	65858 5435 6288 74492 3341 2954 2480	1173 371 88 7524 505 253 535	66327 6255 3845 27479 3379 2906 2612	1185 292 663 1551 2615 3189 3450	67149 5444 6898 8420 4674 3563 2562	1195 284 101 6320 477 229 486	64033 5933 3609 22810 3379 3028 2513	
Si Ti Mn Fe Ni Cu Zn As	1319 99 9464 516 228 479 46	63014 6424 3823 33113 3367 2913 2487 0	1086 128 12121 498 261 572 36	58689 7319 3921 44241 3296 2990 2445 0	1616 97 3973 561 249 88 88	90400 5685 3843 15734 3612 3170 2733 0	1582 171 87 2396 555 276 70 44	95967 2779 3845 12302 3745 3215 2730 0	956 361 173 104697 432 211 484 47	56321 6549 4171 175705 3004 2888 2187 0	1237 304 106 6928 552 267 480 54	68613 5993 3859 25371 3327 2874 2558 0	1285 330 833 38433 532 235 418 59	65858 5435 6288 74492 3341 2954 2480 0	1173 371 88 7524 505 253 535 44	66327 6255 3845 27479 3379 2906 2612 0	1185 292 663 1551 2615 3189 3450 775	67149 5444 6898 8420 4674 3563 2562 0	1195 284 101 6320 477 229 486 50	64033 5933 3609 22810 3379 3028 2513 0	
Si Ti Mn Fe Ni Cu Zn As Rb	1319 99 9464 516 228 479 46 4013	63014 6424 3823 33113 3367 2913 2487 0 0	1086 128 12121 498 261 572 36 3987	58689 7319 3921 44241 3296 2990 2445 0 0	1616 97 3973 561 249 88 45 253	90400 5685 3843 15734 3612 3170 2733 0 0	1582 171 87 2396 555 276 70 44 243	95967 2779 3845 12302 3745 3215 2730 0 0	956 361 173 104697 432 211 484 484 47 2817	56321 6549 4171 175705 3004 2888 2187 0 0	1237 304 106 6928 552 267 480 54 54 4690	68613 5993 3859 25371 3327 2874 2558 0 0	1285 330 833 38433 532 235 418 59 279	65858 5435 6288 74492 3341 2954 2480 0 0	1173 371 88 7524 505 253 535 44 4784	66327 6255 3845 27479 3379 2906 2612 0 0	1185 292 663 1551 2615 3189 3450 775 9992	67149 5444 6898 8420 4674 3563 2562 0 0	1195 284 101 6320 477 229 486 50 4234	64033 5933 3609 22810 3379 3028 2513 0 0	
Si Ti Mn Fe Ni Cu Zn As Rb Sr	1319 99 9464 516 228 479 46 4013 556	63014 6424 3823 33113 3367 2913 2487 0 0 0	1086 128 12121 498 261 572 36 3987 584	58689 7319 3921 44241 3296 2990 2445 0 0 0	1616 97 3973 561 249 88 45 253 1227	90400 5685 3843 15734 3612 3170 2733 0 0 0	1582 171 87 2396 555 276 70 44 243 406	95967 2779 3845 12302 3745 3215 2730 0 0 0	956 361 173 104697 432 211 484 484 47 2817 509	56321 6549 4171 175705 3004 2888 2187 0 0 0	1237 304 106 6928 552 267 480 54 4690 665	68613 5993 3859 25371 3327 2874 2558 0 0 0 0	1285 330 833 38433 532 235 418 59 279 659	65858 5435 6288 74492 3341 2954 2480 0 0 0 0	1173 371 88 7524 505 253 535 44 4784 664	66327 6255 3845 27479 3379 2906 2612 0 0 0	1185 292 663 1551 2615 3189 3450 775 9992 9811	67149 5444 6898 8420 4674 3563 2562 0 0 0	1195 284 101 6320 477 229 486 50 4234 664	64033 5933 3609 22810 3379 3028 2513 0 0 0	
Si Ti Mn Fe Ni Cu Zn As Rb Sr Zr	1319 99 9464 516 228 479 46 4013 556 5191	63014 6424 3823 33113 3367 2913 2487 0 0 0 0 0	1086 128 12121 498 261 572 36 3987 584 8098	58689 7319 3921 44241 3296 2990 2445 0 0 0 0 0 0	1616 97 3973 561 249 88 45 253 1227 1330	90400 5685 3843 15734 3612 3170 2733 0 2733 0 0 0 0 0	1582 171 87 2396 555 276 70 44 243 406 1018	95967 2779 3845 12302 3745 3215 2730 0 0 0 0 0	956 361 173 104697 432 211 484 47 2817 509 4247	56321 6549 4171 175705 3004 2888 2187 0 0 0 0 0 0	1237 304 106 6928 552 267 480 54 480 54 4690 665 4822	68613 5993 3859 25371 3327 2874 2558 0 0 0 0	1285 330 833 38433 532 235 418 59 279 659 5929	65858 5435 6288 74492 3341 2954 2480 0 0 0 0 0	1173 371 88 7524 505 253 535 44 4784 664 5040	66327 6255 3845 27479 3379 2906 2612 0 0 0 0 0	1185 292 663 1551 2615 3189 3450 775 9992 9811 11405	67149 5444 6898 8420 4674 3563 2562 0 0 0 0 0	1195 284 101 6320 477 229 486 50 4234 664 4737	64033 5933 3609 22810 3379 3028 2513 0 0 0 0 0	

Tab. 7 pXRF spektra – vyexportováno z přístroje Delta-Innov Premium

Obr. 15 Grafový výstup z XRD analýzy berounské křemité hmoty vzorku Beroun8

Obr. 16 Grafový výstup z XRD analýzy vzorku L1 líňského limnosilicitu.

 Tab. 8 Petrografické protokoly k berounské křemité hmotě a limnosilicitu typu Líně

Protokol k předmětu Metody laboratorního výzkumu zabývající se vzorkem Beroun11:

Jméno: Vojtěch Haas

Obor: Environmentální rizika a klimatická změna

Datum: 31. 5. 2023

<u>Metody laboratorního výzkumu – protokol ze cvičení</u>

<u>Analýza a popis vybrané horniny</u>

Vybraná hornina: křemitá hornina ze štěrkových sedimentů

Lokalita: řeka Berounka, okolí Berouna

Metodický rámec:

Za pomocí níže uvedených přístrojů byla hornina analyzována po stránce minerálního (pozorování okem přes objektiv mikroskopu i chemického složení (chemická analýza).

Pomůcky a přístroje: brusná skla č. 1 a 2, drtič BCD 2, optický polarizační mikroskop Olympus BX-50p s digitální videokamerou PixeLINK PL A 642, fluorescenční mikroskop Olympus BX-41, pila na řezání kamene Struers, ED-XRF Delta Premium

Výčet materiálů:

Minerálními fázemi, které se v tomto vzorku nacházejí, jsou především hydroxidy železa (Fe(OH)_n), hematit (Fe₂O₃) a další opakní minerály (mezi něž částečně spadá i hematit). Nejhojněji zastoupeným materiálem ve vzorku je křemen (Qtz).

Makroskopický popis:

Použitý silicit má celistvou texturu, je jemnozrnný, zbarvení oranžovohnědé.

Příprava vzorku:

Vzorek byl odebrán v okolí Berouna, a převezen do Olomouce. Z křemité horniny byl pomocí pily na řezání kamene Struers uřezán tenký, několikamilimetrový kus a následně byl upravován do roviny brusnými prášky, a pak byl vytvořen výbrus broušením vzorku na podložním sklíčku na tabulových sklech s použitím brusného prášku stupňů 1 a 2. Po zbroušení vzorku na požadovanou tloušťku byl výbrusový preparát dokončen překrytím krycím sklem, které bylo přitmeleno kanadským balzámem. Následně byla provedena analýza fázového složení horniny pozorovatelem (mikroskopicky). Provedena také chemická analýza vzorku na přístroji ED-XRF Delta Premium poté, co byl úlomek horniny ve vibračním mlýnu rozdrcen na analytickou jemnost.

Popis minerálních fází:

Křemen (SiO₂, qtz):

V zobrazení PPL je povrch křemene hladký, reliéf se vůči hydroxidům železa a opakním minerálům propadá, a omezení je xenomorfní. Křemen je ve výbruse bezbarvý, a co se týče pleochroismu, je nepleochroický. Inkluzemi jsou hydroxidy železa, hematit a opakní minerály. Tvar je izometrický, trhliny přítomny nejsou.

V zobrazení XPL můžeme určit interferenční barvy, které dosahují až žlutooranžové I. řádu. Zhášení křemene je undulózní (lze pozorovat postupné vyhasínání).

Hydroxidy železa (Fe(OH)_n) a hematit (Fe₂O₃):

V zobrazení PPL je povrch hladký, reliéf je vystupující vůči křemeni, a co se týče omezení, je materiál xenomorfní. Barva hydroxidů železa a hematitu je tmavě červená. Co se týká pleochroismu, je materiál nepleochroický. Inkluze neobsahuje. Tvar je nepravidelný.

V zobrazení XPL můžeme pozorovat interferenční barvu červenou II. řádu. Zhášení je undulózní (i v případě hydroxidů železa zde lze pozorovat postupné vyhasínání).

<u>Opakní minerály:</u>

Co se jejich omezení týče, jsou opakní minerály v tomto vzorku xenomorfní. Jsou nepleochroické, a inkluze postrádají. Jejich tvar je nepravidelný.

Obr. 17 vzorek Beroun11: a) křemen v PPL, b) hydroxidy železa v PPL, c) hydroxidy železa v XPL, d) hydroxidy železa v PPL, e) hydroxidy železa v XPL, f) hydroxidy železa v PPL, g) hydroxidy železa v XPL, h) hydroxidy železa a opakní minerály v PPL, hydroxidy železa a opakní minerály v XPL

Protokol k předmětu Metody laboratorního výzkumu zabývající se vzorkem L1:

Vybraná hornina: limnosilicit typu Líně

Lokalita: Líně u Plzně, lesík SV od obce

Metodický rámec:

Za pomocí níže uvedených přístrojů byla hornina analyzována po stránce minerálního (pozorování okem přes objektiv mikroskopu i chemického složení (chemická analýza).

Pomůcky a přístroje: brusná skla č. 1 a 2, drtič BCD 2, optický polarizační mikroskop Olympus BX-50p s digitální videokamerou PixeLINK PL A 642, fluorescenční mikroskop Olympus BX-41, pila na řezání kamene Struers, ED-XRF Delta Premium

Výčet materiálů:

Oproti berounskému vzorku Beroun11 mnohem menší zastoupení oxidů železa a větší zastoupení SiO₂. Velmi hojně zastoupeným materiálem ve vzorku je též křemen (Qtz).

Makroskopický popis:

Použitý silicit má celistvou texturu, je jemnozrnný, zbarvení tmavě žlutohnědé.

Příprava vzorku:

Vzorek byl odebrán v lesíku severovýchodně od Líní u Plzně, a převezen do Olomouce. Z křemité horniny byl pomocí pily na řezání kamene Struers uřezán tenký, několikamilimetrový kus a následně byl upravován do roviny brusnými prášky. Poté byl vytvořen výbrus broušením vzorku na podložním sklíčku na tabulových sklech s použitím brusného prášku stupňů 1 a 2. Po zbroušení vzorku na požadovanou tloušťku byl výbrusový preparát dokončen překrytím krycím sklem, které bylo přitmeleno kanadským balzámem. Následně byla provedena analýza fázového složení horniny pozorovatelem (mikroskopicky). Provedena také chemická analýza původního horninového vzorku na přístroji ED-XRF Delta Premium.

Popis minerálních fází:

Vzorek obsahuje téměř výlučně chalcedon, případně jiné formy mikrokřemene. V místě výplní dutin má chalcedon typickou radiální podobu. Nelze vyloučit, že jde o výplň původních mikrofosilií. Pouze pod SEM byl pozorován baryt.

Obr. 18 vzorek L1: a) křemenná hmota v XPL, b) křemitá hmota s opakními minerály a chalcedony v XPL, c) bubliny v křemité hmotě s občasnými chalcedony v XPL d) chalcedony v křemité hmotě v PPL

Obr. 19 Fotografie radiálních chalcedonů ve vzorku limnosilicitu L1 v odražených elektronech (BSE) pod SEM

Obr. 20 Fotografie barytu ve vzorku limnosilicitu L1 v odražených elektronech (BSE) pod SEM

Obr. 21 Fotografie xenotimu ve vzorku berounské křemité horniny Beroun1 v odražených elektronech (BSE) pod SEM

Obr. 22 Fotografie zirkonu ve vzorku berounské křemité horniny Beroun1 v odražených elektronech (BSE) pod SEM