
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

DEEPFAKE DETECTION FRAMEWORK
FRAMEWORK PRO DETEKCI DEEPFAKES

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. JAN BERNARD
AUTOR PRÁCE

SUPERVISOR Mgr. KAMIL MALINKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

T BRNO FACULTY I
UNIVERSITY OF INFORMATION |
OF TECHNOLOGY TECHNOLOGY

Master's Thesis Assignment
Institut: Department of Intelligent Systems (UITS)
Student: Bernard Jan, Be.
Programme: Information Technology and Artificial Intelligence
Specialization: Cybersecurity

Title: Deepfake Detection Framework
Category: Security
Academic year: 2022/23

Assignment:

140642

1 Learn about deepfakes (voice and video). Explore the current state of deepfakes detection
methods (voice and video).
Learn about the technologies needed to create web extensions and technologies for creating
scalable server applications.
Learn about existing deepfake detection solutions (e.g. other commercial web browser plug-ins)
Design an extensible framework (server-client or client-only) for deepfakes detection (support for
at least 3 detection methods (voice and video)). Design a web extension for deepfakes detection
that will use this framework. The solution should support multiple browsers and allow the detection
of displayed content and uploaded files.
Implement the tool according to the design.
Test the functionality and reliability of the resulting implementation. Perform testing on at least two
independent publicly available deepfakes datasets.
Discuss usability, detection efficiency and possible extensions.

Literature:
Puspita Majumdar, Akshay Agarwal, Mayank Vatsa, and Richa
Singh, "Facial retouching and alteration detection," in Handbook of Digital Face Manipulation and
Detection, pp. 367 -
387. Springer, 2022
FIRC Anton a MALINKA Kamil. The dawn of a text-dependent society: deepfakes as a threat to speech
verification systems. In: Brno: Association for Computing Machinery, 2022

Requirements for the semestral defence:
Items 1 to 4.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor:
Consultant:
Head of Department:
Beginning of work:
Submission deadline:
Approval date:

Malinka Kamil , Mgr., Ph.D.
Ing. Anton Fire
Hanacek Petr, doc. Dr. Ing.
1.11.2022
17.5.2023
3.11.2022

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract
Deepfake creation has improved a lot i n recent times and hence is a dreaded menace to
society. Deepfake detection methods have also responded w i t h development, but there are
s t i l l not enough good tools available to the general public . This work focuses on creating
a deepfake detection framework that w i l l be easily extended by other detection methods in
the future, yet simple and accessible to the general public.

Abstrakt
Tvorba deepfake se za pos ledn í dobu velmi zlepšila a t u d í ž je o b á v a n o u hroznou pro společnos t .
De tekčn í metody odhaluj íc í deepfake t a k é reagovali rozvojem, ale s tá le nen í š iroké veře jnos t i
d o s t u p n é d o s t a t e č n é m n o ž s t v í kva l i tn ích n á s t r o j ů . Tato p r á c e se zaměřu je na vy tvo řen í
frameworku na detekci deepfake, k t e r ý bude j e d n o d u š e rozš i ř i t lený da l š ími de t ekčn ími meto­
dami v budounu a p ř i t o m j e d n o d u c h ý a d o s t u p n ý široké veřejnost i .

Keywords
deepfake, framework, deepfake detection, containerazation, web browser extension

Klíčová slova
deepfake, framework, detekce deepfake, kontejnerizace, dop lněk webového prohl ížeče

Reference
B E R N A R D , Jan. Deepfake Detection Framework. Brno , 2022. Master 's thesis. Brno
Univers i ty of Technology, Facul ty of Information Technology. Supervisor M g r . K a m i l M a -
l inka, P h . D .

Rozšířený abstrakt
Deepfake je m ó d n í slovo, k t e r é n e m á u s t á l e n o u ž á d n o u technickou definici. J e d n á se o
kombinaci slov, deep a fake. Deep referuje na techniku h l u b o k é h o s t ro jového učen í a fake
zase na tvorbu falešných d ig i tá ln ích médi í .

Tvorba deepfake se za pos ledn í dobu velmi zlepšila, její využ i t í je velké n a p ř í k l a d ve
filmové produkci . Dř íve bylo n u t n é mí t pro tvorbu falešných nebo j inak modif ikovaných dig­
i tá ln ích med i í u r č i t é znalosti nebo schopnosti. B y l y využ ívané n á s t r o j e jako G I P M , Adobe
Photoshop nebo Adobe Afer Effects. Dnes exis tuj í n á s t r o j e p o h á n ě n é u m ě l o u intel igencí ,
k t e r é umožňu j í tvorbu deepfake t é m ě ř komukoliv. Vy tvá řen í deepfake ovšem n e m u s í bý t
použ i t o pouze ke s p r á v n ý m úče lům. Tudíž m ů ž e bý t považováno za o b á v a n o u hroznou pro
společnos t .

J e d n á se o rychle rozvíjející se obor. De t ekčn í metody odhalu j íc í deepfakes t a k é reagovali
rozvojem, ale s tá le nen í š iroké veře jnost i d o s t u p n é d o s t a t e č n é m n o ž s t v í kva l i tn ích n á s t r o j ů .
P r o b l é m e m je velké m n o ž s t v í r ůzných technik pro tvorbu jako jsou face swap, morphing a
m n o h é dalš í . De tekčn í metody jsou vě t š inou schopné efekt ivně detekovat pouze jeden typ
deepfake. Vě t š ina de tekčn ích dnes využ ívá r ů z n é typy features e x t r a k t o r ů s S V M (support
vector machines) k las i f iká torem. Exis tu j í i více „exot ické" p ř í s t u p y j a k o ž t o odhad s rdeční
frekvence z videa.

Proto v z n i k l z á m ě r vy tvo ř i t framework, k t e r ý umožňu je integraci různých de tekčn ích
metod. T í m by by l o d b o u r a n ý p r o b l é m detekce pouze jednoho typu a t a k é by se tento
framework mohl p o u ž í t pro p o r o v n á v a n í s j iž exis tuj íc ími de t ekčn ími metodami. Cí lem
t é t o p r á c e je tvorba p rávě t akového frameworku.

V p r v n í čás t i t é t o p ráce naleznete obecné informace o deepfakes jako jsou po tenc i á ln í
hrozby a b e z p e č n o s t n í r i z ika s popisem již ú spěšných ú t o k ů , r ů z n é typy deepfakes pro hlas,
o b r á z k y a video. B y l t a k é provedena a n a l ý z a t rhu s d o s t u p n ý m i de t ekčn ími nás t ro j i .

V d r u h é čás t i je p o p s a n ý celý proces vývoje frameworku a k l ientské aplikace, k t e r á
m á u m o ž n i t p rác i s frameworkem i b ě ž n ý m už iva t e lům. Proveden by l i de t a i ln í n á v r h
zabývaj ící se h l avn í funkcionalitou i p o d p o r n ý m i sys témy. N á s l e d n ě by l framework podle
tohoto n á v r h u i m p l e m e n t o v á n a t a k é byly in tegrovány n ě k t e r é open source de t ekčn í metody.
Ste jný proces by l ap l ikován i u tvorby kl ientské aplikace.

Framework je n a v r ž e n j a k o ž t o mikroservice aplikace, k t e r á využ ívá kon te jne rový or-
c h e s t r á t o r Kubernetes. V s t u p n í m bodem je A S P . N E T Core R E S T A P I , k t e r é vy tvo ř í žádos t
na zp racován í a poš le j i skrze message brokera Reuqest Processing j e d n o t k á m . Jednotky ob­
sahuj í j edno t l ivé de tekčn í metody a po v y h o d n o c e n í žádos t i v rac í výs ledky zpě t A S P . N E T
Core apl ikaci . Framework u m o ž ň u j e a u t o m a t i c k é škálování na zák ladě p o č t u zas laných
žádos t í , což zaj is t í vysokou dostupnost př i r e l a t i vně n ízkých n ák l ad ech na provoz.

Pro o te s tován í funkčnost i jsou v y t v o ř e n y t ř i t e s tovac í scénáře , k t e r é tes tu j í spolehlivost,
s p o t ř e b u zd ro jů a schopnost p r á c e v za t ížení . B y l y t a k é provedeny testy p řesnos t inte­
grovaných de tekčn ích metod. Framework by l nasazen do Azure A K S a na t é t o instanci
byly provedeny všechny testy. Celkově proš lo frameworkem př i t e s tován í p řes 2200 s o u b o r ů
z pě t i r ůzných deepfake d a t a s e t ů jako jsou A S V 2 0 2 1 , L J Speech, WafeFake, C e l e b D F a
FaceForensics++.

Výs ledky byly vyhodnoceny a p o p s á n y na konci t é t o p r áce . P ř e s n o s t j edno t l i vých
metod p o c h y b n á a u r č i t ě by bylo p ř ínosné vyzkouše t n a t r é n o v a t metody na robus tně j š í ch
datasetech nebo zkusit integrovat j iné . Celkově se výs ledky t e s t ů daj í p roh lás i t za úspěšné ,
p ro tože framework operoval spolehl ivě několik des í tek hodin a by l schopen zpracovat t é m ě ř
veškeré zas lané požadavky . Testy t a k é ověřilu schopnosti šká lova te lnos t i frameworku.

http://ASP.NET
http://ASP.NET

Deepfake Detection Framework

Declaration
I hereby declare that this Master 's thesis was prepared as an original work by the author
under the supervision of M g r . K a m i l M a l i n k a P h . D . The supplementary information was
provided by Ing. A n t o n F i re . I have listed a l l the l i terary sources, publications and other
sources, which were used dur ing the preparation of this thesis.

Jan Bernard
M a y 15, 2023

Acknowledgements
I would like to sincerely thank my supervisor M g r . K a m i l M a l i n k a P h . D . for a l l the advice
and insightful comments. The same thanks go to consultant Ing. A n t o n Fi re .
I also owe a debt of gratitude to my family, especially my parents, friends for their wonderful
support throughout my studies.

Contents

1 Introduction 3

2 Security impacts of deepfakes 4
2.1 H u m a n capabilities of deepfake detection 4
2.2 Potentional risks and impacts 5
2.3 Detect ion tools requirements 7

3 Types of deepfakes 8
3.0.1 Neura l networks 8
3.0.2 Voice deepfakes 9
3.0.3 Image or video deepfakes 10

4 Deepfake detection 13
4.1 Image/Video detection methods 14
4.2 Voice detection methods 14
4.3 Analys is of existing tools for detecting deepfakes 14

4.3.1 Deepware 15
4.3.2 Sensity 16
4.3.3 Other 17

5 Architecture and technologies analysis 19
5.1 Requirements 19
5.2 Containerazation 20
5.3 Framework 21
5.4 Web browser extension 22

6 Framework architecture 23
6.1 Microservice architecture 23
6.2 High-level architecture 24
6.3 A P I Endpoin t 25
6.4 Database 26
6.5 Request processing and processing unit 27
6.6 Moni to r ing 27
6.7 Containerizat ion and scaling 28

7 Client architecture 29
7.1 Web browser plugin 29

8 Framework implementation and deployment 31

1

8.1 A P I e n d p o i n t 32
8.2 Message broker 33
8.3 Processing unit 33
8.4 Moni to r ing 34
8.5 Scalabil i ty 35
8.6 Deployment 36

9 Detection methods integration 38
9.1 AudioDeepFakeDetect ion 39
9.2 fakeVideoForensics 41

10 Client application implementation 42
10.1 Functionalit ies 43
10.2 Communica t ion w i t h framework 43
10.3 Supported browsers 43

11 Test experiment and results 44
11.1 Datasets 44
11.2 Test case 1 - accuracy 45
11.3 Test case 2 - smal l bursts 50
11.4 Test case 3 - congestion 51
11.5 Tests evaluation 52

11.6 Cost analysis 53

12 Conclusion 54

Bibl iography 55

A Contents of the attached media 60

1

Chapter 1

Introduction

Deefake is the buzzword that has no agreed-upon technical definition. It consists of two
words, deep and fake. Deep is referring to deep machine learning, which is used for creating
fake voices, images, or even videos. It is a fast growing technical field of study and could be
a major threat to society. We live i n information era and creation of unrecognizable fake
media affects us a l l . Deepfakes could be found on social media, news portals, etc.

This paper shows some security risks and impacts on many different fields of human
life. There are already many popular videos containing deepfakes on social networks wi th
mill ions of views, but also several successful attacks on biometrics systems. People are not
able to consistently recognize deepfakes. Tha t is why we need to create detection tools to
help anyone wi th problem that is already there.

There are many different deepfake categories from face swap to morphing and more.
Most of the detection methods focus on a single domain, which means that they are capable
of detecting only one deepfake category. There are few tools in the market u t i l iz ing those
detection methods targeting undemanding/inexperienced users, and some of them are not
free to use.

The first two chapters cover general knowledge about deepfakes such as potential risks
and security impacts w i th mention of successful attacks, different types of voice, image, and
video deepfakes. Y o u can read about experimental detection methods and available tools
in the market.

Second and more important part describes process of development deepfake detection
framework and client applicat ion, which is the goal of this work. It starts by specifying
requirements followed by detailed architecture. Archi tecture was designed wi th focus to
easily integrates new detection methods into framework.

Last but not least, the implemented framework containing several open source detection
methods was deployed into Azure A K S cluster and properly tested. The tests were mostly
focused on the testing framework itself, mostly measuring used resources. Integrated detec­
t ion methods were also tested, and a l l the results could be found at the end of this paper.
Whole project is available i n G i thub reposi tory 1 .

x h t t p s : //github.com/PlayerBernyl2/VUT-DIP-Code

3

Chapter 2

Security impacts of deepfakes

The creation of fake media and their detection have been a problem since photography
was invented. D i g i t a l photography or video w i t h tools such as G I M P , Adobe Photoshop or
Adobe After Effects allows more people to create fakes than before, s t i l l some experience
in this area is needed. M e d i a that have been modified or otherwise manipulated are called
synthetic media, and they do not depend on whether it is an analogue or digi ta l medium.
Deepfakes also fall under this category [22]. Deep learning-powered tools allow even more
unexperienced users to easily create trustworthy fakes.

The quali ty of deepfakes reached a level when a trained person or even an experienced
researcher i n this field has a problem of spott ing them. This fast development allows
creating realistically looking assets to art photography or movie production; unfortunately,
it can be used for malicious purposes like creating fake porn videos to blackmai l people or
manipulate public v i a fake news. There are many use cases where deepfakes can be applied.

This is not a discussion about potential technology; deepfakes are already there and their
usage w i l l probably have an increasing trend. Over the last couple months, we could see huge
development and popular i ty explosion around large language models such as C h a t G P T [4].
Deepfakes do not have such publicity, but they have the same potential to change whole
human society as previously mentioned language models. We are not far from using a
pre-trained voice deepfake model powered by some large language model to automatical ly
perform attack itself.

It is put t ing huge pressure on researchers to develop new forensics tools or any technol­
ogy which w i l l prevent malicious usage of deepfakes. A s mentioned before, creating fakes
is not new, and a whole field of study engaged in spott ing fakes and developing techniques
over 15 years. Despite continuous research efforts in the past, the advent of deep learning
changed the rules of the game. [53]

2.1 Human capabilities of deepfake detection

The human abi l i ty to recognize fake media from the originals is i n contradiction to their
quality. Korshunov and Marce l [27] confirmed this in their research. They created a ques­
tionnaire containing several videos, and the subject (interviewee) had to answer after watch­
ing the video whether the person in the video was genuine, fake, or uncertain. The videos
were manual ly divided into six categories (very easy, easy, moderate, difficult, very difficult,
and original).

4

The videos were split into several categories manual ly by the researchers, probably
without using any metrics but based on their experience and feelings. Afterwards, A N O V A
test shows there is an overlap in several categories, so several videos could be moved to a
different category. However, the categories are s t i l l significantly different.

The results of test in fig. 2.1 certainly demonstrate that people's recognition abi l i ty
decreases significantly as the quali ty of deepfakes increases. A l so , the audience of this
test knows they are looking for fakes, otherwise we can expect worse results if there w i l l be
unsuspected audience (e.g., deepfakes on social media). It is quite alarming that the correct
answers in the category of "easy" reach only 71,1 %. The quali ty of deepfake increases over
time, thus it can be expected that human recognition abi l i ty w i l l continue to decrease. [27]

Certain & Correct Certain & Incorrect Uncertain

veryeasy easy moderate drrficult verydifficult original
Video types with different categories of deepfakes very_easy easy moderate difticult very_difficult

(a) Subjective answers (b) A N O V A test

Figure 2.1: Subjective answers and median values w i t h error bars from A N O V A test for
different deepfake categories. Retr ieved from [27].

Another research tested only recognition of audio tracks and they were comparing hu­
mans versus computer program. Attendees had a correct classification between fakes and
origins 67 % after the first several rounds. Thei r accuracy increased while listening and
answering to more tracks, but the value stabilizes at 80 %. O n average, t rained A I performs
about 10 % better than human, but this result highly depends on the difference in learning
and test dataset. S t i l l , it shows that the computer can outperform humans in spott ing
deepfakes. [35]

2.2 Potentional risks and impacts

Humans are not good at recognizing deepfakes, but "why should we be worried?". Almos t
every technology humankind created could be used for good or bad - deepfake is no ex­
ception. There are plenty different deepfake categories, and each has its own attack vector
or use case. Th is section is covering potential risks of those categories and their closer
description w i l l be covered i n chapter 3.

Deepfakes are about gaining someone's trust or influencing h im. For the last couple
of years, there has been an increasing trend of scamming people, mostly v i a phone or
computer [7]. Targeting only one person/v ic t im, for example, to gain their money or
information. Those attacks are getting better and more credible and using deepfake to

5

impersonate close friend of v i c t i m could be next step how to improve it , i f it is not already
happening.

Creat ing "fake news" to influence a large audience is the most common use case of
deepfakes because we live i n an information era. There are many targets of "fake news"
such as rigging elections, demoralizing mi l i t a ry units, or manipula t ing the stock market. In
this case, poli t icians, celebrities, and significant personalities w i l l be used i n deepfakes to
influence the audience. We can only imagine what one person or a high quali ty deepfake
can change w i t h enough media reach. For example, after one tweet from E l o n M u s k about
Tesla's stock, sends shares down more than 10 % almost immediately [47]. [22]

A real example of deepfake is the famous video wi th Barak O b a m a insul t ing Don­
ald Trump, which should spread awareness regarding the fast developing category of new
thread 1 . Several years later another video stating Volod imi r Zelenskyj ta lk ing about sur­
rendering, it was proved that it is a manipulated video, and its purpose was to demoralize
Ukra ine army and make them capi tula te 2 .

There are other videos similar to the video of Barack O b a m a wi th the same purpose,
spreading awareness about deepfake. For example, speech of Czech Republ ic president Miloš
Zeman created by H B O for propagating their new series 3, but also to inform general public
about this technology. We can consider those videos and their goal to be mostly success.
Most people have heard about deepfakes and they are connecting them w i t h those types of
videos. However, many people share deepfakes inadvertently on their social media [2].

Not everyone considered them as a big thread. This is probably because there is no
proof that there was a successful deepfake attack or fake news that influence them directly.
This is the reason why deepfakes could be so dangerous. The video of Volod imi r Zelenskyj
might have had a good chance to be successful, but it was quite fast debunked because of its
terrible quality. People s t i l l should be inform about capabilities of deepfakes, but the target
of the message should be different. Not saying only be careful we can make polit icians say
what we want, but show and provide some tools on how to spot the deepfakes.

Another field where deepfakes could be used is to tr ick biometrics systems to mark
attacker as a different person. This technique is used to gain access to secured equipment,
to bui ld ing or even to appl icat ion (internet banking), etc. Biometrics systems have been
proven not ready to deal w i t h deepfakes [14] [12]. The work describing one of attacks
is called "Mag ic passport" and demonstrates how biometric systems could be vulnerable.
Most systems w i l l require some changes such as adding a new module to the authentication
pipeline, which w i l l be detecting deepfakes [23]. Face or voice biometrics recognition systems
are i n greatest danger. Falsification of documents is related to this topic and there was a
case of smuggling people across borders w i th an official passport containing morphed photos
of two individuals [45].

These cases are only the t ip of the iceberg, and in the future, everyone should ask i f
video on social media wi th film celebrities is real or even worse, i f the evidence i n courts
is trustworthy or not. The solution to this is to use tools capable of detecting deepfakes.
Those tools must be created w i t h caution for unskil led users.

x h t t p s : //www.buzzf eed.com/craigsilverman/obama- jordan-peele-deepf ake-video-debunk-
buzzfeed

2 h t t p s : //www.youtube.com/watch?v=X17yrEV5sl4
3 h t t p s : //www.youtube.com/watch?v=FzMnDwpKJrI

G

http://www.buzzf
http://eed.com/
http://www.youtube.com/watch?v=X17yrEV5sl4
http://www.youtube.com/watch?v=FzMnDwpKJrI

2.3 Detection tools requirements

Now we know that deepfakes could be security threats and there is a need for reliable
detection tools. There is not many detection tool available for users. Most of them are
basically command line scripts which are not for general purpose. More about ind iv idua l
methods could be found in chapter 4.

The user interface should be simple, yet provide a l l relevant information. Generalizing
anything to one number w i l l be great, but not every t ime it is possible. Speaking of detection
methods it should be able to deliver only one number. O n the other hand, it w i l l be nice
to show the user where on the image is the manipulated area.

Nowadays people work w i t h many different types of files. O n l y for audio we can have
W A V , O G G , M P 3 and many more. This means that the detection method support ing only
one file type w i l l not have huge success. There are two types of solution to this problem:
first is to support as many file types as possible natively. The second approach w i l l be to
util ize existing tools to convert input files to one specific format.

In the end how do we compere different detection methods or even the same methods
trained on different datasets. We would have to test each method indiv idual ly and compare
the results. There are some problems that need to be sorted out before we w i l l have a reliable
detection tools i n the market.

7

Chapter 3

Types of deepfakes

There are plenty of methods on how to create deepfakes, and as its name suggests some of
them are based on deep neural networks but not exclusively. Th is section describes most
common types of neural networks used for creating voice, image, or video deepfakes. One
of the most popular types for face deepfakes is Generative adversarial network (G A N) , and
it is used to create completely new faces or face manipulations.

Each method leaves traces i n the medium that can then be detected. This is one way
to recognize deepfakes so understanding process of creation is an advantage. Detect ion is
described i n more detail i n chapter 4.

3.0.1 N e u r a l networks

Neural networks are composited from neurons arranged i n layers, and each layer is connected
sequentially v ia synapses. Synapses are weighed, and the process of finding the proper value
of a l l weights is called a learning neural network. To obtain results from the input of n-
dimensional x process forward-propagation is used to propagate x through each layer. [34]

Input to layer is vector a of values calculated by previous layer or i n case of first layer
x itself. Tha t means result of each layer is also vector calculated by act ivation function
/ (a * W + 6), where / is activation function (Sigmod, R e L U , etc.), a is input vector, W is
matr ix of weights between layers i and i + 1 and b is dimensional bias. Dimensional bias
is a constant offset that helps the network shift the activation function toward the positive
or negative side [1]. [34]

Now let's consider the neural network M as a black box and denote its execution as
M{x) = y. Supervise learning to t ra in M is using paired samples w i t h from (xi,m) and
loss function L is defined. Loss function is to generate a signal at the output of M and
propagate h i m back to find error of each weight in synapses. [34]

Opt imal iza t ion algorithms such as gradient descent are then used to calculate new
weights of M for the number of epochs. A s a result of this process, the network learns the
function M(xi) « yi and is capable of making prediction on unseen data. More detailed
descriptions of this could be found i n the work of Y . M i r s k y and W . Lee [34]. [34]

Next list shows types of neural networks used for generating deepfakes [34]:

• Generative Adversar ia l Networks (G A N) - Consist of two neural networks working
against each other. One layer is generator and second is discriminator. Generator
producing fake features t ry ing to fool discriminator, on the other hand, discriminator
is learning to dist inguish between real sample and fake one.

8

• Encoder-Decoder networks (E D) - Contains at least two networks, encoder and de­
coder. It has narrowed layers towards its center. If encoder En and decoder De are
symmetric and they are trained as De{En{x)) = x, then the network is called autoen-
coder. Generat ing deepfakes using E D trained wi th function De(En(x)) = xg, where
xg is fake generated features. There is possibil i ty to use mult iple different E D chained
after each other or using specific variant of E D called variat ional autoencoder.

• Convolut ional Neura l Network (C N N) - C N N is learning pattern hierarchies in the
data. For deepfakes purposes, it learns filters applied over the input and forming an
abstract feature map as the output.

• Recurrent Neura l Networks (R N N) - R N N can handle variable length data and during
processing it remembers state that can be used i n next i teration. R N N are mostly
used i n audio.

Each architecture has its own subcategories that have smal l modifications or using
some techniques from different architecture. A l l above mentioned neural networks types
are shown in 3.1 and 3.2

Ci Si C2 S2 n 1 112
input feature maps feature mapsfeature mapsfeature maps output

32 X 32 28 X 28 14 X 14 10 X 10 5 x 5

feature extraction classification

Figure 3.1: Archi tecture of convolutional neural network. Retr ieved from [10].

RNN Encoder Decoder CycleGAN
Genet

x^En}-e^\De^xs * « — j f l ^ J • D i s c r i

N e t w o r k s
Generative
Discriminator

Vanilla GAN

Figure 3.2: Basic neural network architectures (R N N , E D , G A N) . Retr ieved from [34].

3.0.2 V o i c e deepfakes

There are three different modalities for speech synthesis: text-to-speech (T T S) , voice
cloning (V C) , and replay attack (R A) [57]. The last one is based on capturing v i c t i m
voice and the replay of i t . It is quite easy and cheap to perform because it only requires
capture and replay device (today we can use for example smartphone) and current methods
for voice recognition s t i l l have accuracy issues [33]. F i rs t two are using Al-synthesis w i th
content regeneration which makes them more indistinguishable for naked ears. [57]

Text to speech (T T S) converts wri t ten text to art if icial speech, on the other hand voice
cloning consumes source voice. B o t h methods produce synthesis voice saying desired phrases

9

specified by the input, high-level diagram how those methods works could be seen on fig. 3.3.
Voice deepfakes are used independently or w i th deepfake video (e.g., full puppet) . Creat ing
synthesis voice is computat ional ly challenging and one of the goals is making real-time voice
cloning. There are several projects that are t ry ing to accomplish t h i s 1 2 .

(Fake Voices) Q Real Voices
Voice Cloning

Text-to-Speech
A

'lll'lll' O Enoxfer I I Decoder

Decoder ~g

(Fake Voices)

Figure 3.3: Text-to-speech and voice cloning data flow diagram. Retr ieved from [57].

3.0.3 Image or v ideo deepfakes

The list of the following deepfakes is based on the work R . Tolosana, et a l . [24]:

• Identity swap - Replacing the face of subject w i th the face of target as shown in fig. 3.4.
There are two different approaches, classical computer graphics-based technique and
deep learning technique. Generally, the process of swap could be described as face
detection, cropping, extraction of intermediate representations, synthesis of new face,
and blending the generated face.

"muw mm

Figure 3.4: Examples of real and fake identity swap images. Retr ieved from [24].

x h t t p s : //github.com/SolomidHero/real-time-voice-conversion
2 h t t p s : //www.resemble.ai/speech-to-speech/

10

http://www.resemble.ai/speech-to-speech/

• F u l l puppet - M e t h o d related to identity swap allows creation of so-called puppet.
One person (master) is source of facial expression and body movements that are
mapped onto target person as shown in fig. 3.5. [22]

TARGET

Figure 3.5: F u l l puppet technique visualisation. Retr ieved from [27].

• Morph ing - It is a type of manipulat ion that is used to create art if icial biometric
face samples. F i n a l face contains resemble biometric information of two or more
individuals . It should be possible to be successfully verified by biometrics systems for
al l individuals who were source for given deepfake. F i g . 3.6 shows an example of a
morphed image.

Real Fake Real

(a) Subject I (h) Face Morphing c) Subject 2

Figure 3.6: Examples of fake morphed identity from Subject 1 and Subject 2. Retrieved
from [24].

• At t r ibu te manipulat ion - Face editing or face retouching technique involves modifying
some attributes such as length or color of hair, color of skin, sex, age, adding glasses
or other artefacts, and more. F i g . 3.7 shows an example of this technique.

Figure 3.7: Examples of real and fake attr ibute manipulat ion category. Retr ieved from [24].

11

• Expression swap - Modi fy ing facial expression of the subject as shown i n fig. 3.8. This
technique could be used as part of full puppet.

8 :

a

Figure 3.8: Examples of real and fake expression swap category. Retrieved from [24].

• A u d i o / t e x t to video - This method relates to expression swap synthesising facial
expression from audio or text. It is also known as lip-sync deepfakes. Diagram in
fig. 3.9 shows how this method works.

Real

, d M l i t > Fake

Input Audio

Input Text

Figure 3.9: Examples of real and fake audio/ text to video fake category. Retrieved from [24].

Creat ing deepfakes nowadays is complex task and many deepfakes is using more tech­
niques so that they could be included into more than one category. Attackers can possibly
create identity swap deepfake and after that apply at tr ibute manipula t ion to this deepfake
to tune final results.

i t mulm i i r f l f c

This is un example vf texi-lv-vidrv
digital face manipulation

12

Chapter 4

Deepfake detection

A s we stated, humans are not good at recognizing deepfakes. Creat ing deepfakes could
leave visible defects (e.g., b lurr ing or misalignment on edges in the image). A . F i re [13]
summarizes the list of features to focus on when spott ing fakes for humans.

• Facia l features - eyes and their movement, eyebrows, glasses, facial expression, hair
and facial hair, skin, lips, teeth

• B o d y features - body posit ion and posture, body movements

• Voice features - unusual tempo, end of words, fricatives, conversation

• General indices - b lurr ing or misalignment on edges, inconsistence noise or audio

This list points to cr i t ical parts where defects, which were created dur ing the creation of
deepfake, could be spotted. Generat ion of deepfakes is getting better, plus other masking
techniques are being used. The big problem for detection is lossless compression, several
chained resizes of an image, appl icat ion of noise, etc. Basically, a l l methods that lead to
some degree of data loss, but without noticeable change for the naked eye or ear. W h e n gen­
eration of deepfakes is not good enough manual post-processing could be used for polishing
results (images - Photoshop, G I M P , etc.).

Machine detection could be divided into two categories: standard algorithms looking
for physical inconsistency and digi ta l integrity, using the same features as F i re described.
Other methods are based on machine learning. The same "masking" techniques listed before
(compression, chained resizes, etc.) have the same effect on machine-based detection. A n y
data loss prevents the usage of reliable methods such as frequency analysis. S t i l l , computers
perform better than humans because they can also use different features (e.g., pixel-level
features), especially neural networks trained for deepfake detection. [53]

The problem of neural networks is that we do not know what it is learnt to detect.
It depends highly on t ra ining dataset. P robab ly the worst case scenario would be only
recognizing suspicious images containing traces after "masking" techniques such as double
compression, noise patterns, etc.

Another problem of detection algorithms is bad generalization. Most of methods are
trained on single domain deepfake (e.g., identity swap), which means they are not able to
recognize deepfake from different category. W h e n methods are trained on mul t i -domain
datasets, accuracy is going down. [29]

13

4.1 Image/Video detection methods

A s stated, before most of methods for deepfake detection are targeting only single do­
main . Th is section w i l l describe examples of proposed detection methods for image/video
deepfakes. There are conventional approaches and also more "exotic".

P. Majumdar , et a l . referring to mult iple detection methods for image retouching
(makeup, filters) and alternation (fully synthetize faces, morphing) [29]. Most of them
use the same pattern which could be described as specific feature extraction followed by
support vector machines (S V M) for classification. One of the methods proposed detection
of images using face patches as input i n the deep Bo l t zmann machine for feature extraction
and S V M for binary classification. Another method uses softmax probabilities as features
for the S V M . Other methods, for example, using convolutional neural networks. [29]

L . Spreeiwers, et a l . made research on using local binary pattern w i t h S V M for morphing
detection [48]. A single L B P histogram contains 59 feature values, which means that for
a 3 x 3 layout, the feature space has 531 dimensions. The S V M classifiers are trained on
between 650 and 1,000 samples. They also stated that E E R increases to above 20 % while
adding Gaussian noise to the deepfakes images.

Non-conventional detection method is heart rate estimation (remote photoplethysmog-
raphy) by J . Fierret [21]. They are t ry ing to estimate heart rate from video by evaluating
frame-by-frame. There are other human physiological processes that could for be used in­
stead heart rate such as b lood oxygen or breath rate. The score oscillates during the video
and final decision is based on the m e a n / m e d i a n / Q C D score.

There are many other methods, and each w i l l have its pros and cons, but as we can
observe, S V M classification wi th large range of different feature extractors. Another rising
group of detectors is using C N N s . There are not many researches using C N N as S V M , but
results seems to be promising as we can see i n researches [44] [36].

4.2 Voice detection methods

Voice detection complicates different languages; it is s imilar story to image/video deepfakes.
There are face swaps, morphing, etc., and for voice there are different languages and dialects.
Voice detection methods also copying trend from image/video detection methods. Support
vector machines (S V M) wi th different feature extractors or C N N s .

Z. A l m u t a i r i and H . Elgibreen refer to mult iple methods [5]. One of them uses the S V M
model w i th R a n d o m Forest to predict synthetic voices based on a feature called Short-
Term Long-Term. In this research, they compared S V M wi th many other classifiers such as
Linear Discr iminant , Quadrat ic Discr iminant , Linear S V M , weighted K-Nearest Neighbors,
and S V M outperforms a l l of them. Other referred work uses combination of two C N N , 1-D
C N N and Siamese C N N . The Siamese C N N contained two identical C N N s that were the
same as the 1-D C N N , but concatenated them using a fully connected layer w i th a softmax
output layer. [5]

4.3 Analysis of existing tools for detecting deepfakes

Tools for deepfake detection are slowly getting from command line tools for experts to
online tools w i th user-friendly interface. There are not many tools of this k ind and some of
them are not free to use. The following lines describe two available tools i n a market.

14

4.3.1 Deepware

The Bosnia and Hercegovina recognize danger of deepfakes, while their parent company re­
searched methods to develop an AI-based antivirus engine. Deepware company was founded
to develop scanner for deepfake recognition.

Deepware provides R E S T A P I wi th web U I 1 , and mobile android applicat ion. The
backend of this project w i th pre-trained models is accessible on their G i t H u b as P y t h o n
command line t o o l 2 .

Scan & Detect Deepfake Videos
Place a video I inkor upload a video

https:// www. exam pie. cam/

Q By submitting dsta yoj are agreeing to Terms of Services and Privacy Policy

SCAN

Figure 4.1: Deepware scanner input form

i_!_i

(T) DIIPfAKI DETECTED

•UIUMIIIJMim

Figure 4.2: Results of Deepware scanner containing probabil i ty of deepfakes from multiple
detection methods

The web applicat ion is stating that the project is i n Beta , but unfortunately the last
commit to the G i t H u b repository was made on 7th of June 2022 reported at the t ime of
wr i t ing this thesis.

The tool provides a simple user interface to scan only videos. The user can input the
l ink to the video (e.g., YouTube) or upload the video file direct ly as shown in fig. 4.1 .
There are many supported video formats. The only l imi ta t ion is the length of the video,
which has to be shorter than 10 minutes.

x h t t p s : //scanner.deepware.ai/
2 h t t p s : //github.com/deepware/deepf ake-scanner

15

Processing of approximately 1 minute long video takes several seconds (3-10 seconds).
Results contains video and audio metadata, results of mult iple detection methods/models,
and descides whether it is a deepfake or not w i th gauge chart of confidence as we can
observe in fig 1.2. To use their R E S T A P I , you need to request authentication token. A P I
provides the same functionality as web U I v ia three methods.

• P O S T /v ideo /scan

. G E T / u r l / s c a n

• G E T /video/repor t

The first two methods execute scan on a video file or l ink and return report I D . Results
report could be retrieved by last method and results are returned as J S O N . Documentat ion
also provides code samples for mult iple programming languages on how to use A P I properly.
The provided A P I can be integrated to other processes like ma i l communicat ion scans or
file upload filters.

Correct
(deepfake / original)

Incorrect
(deepfake / original)

Scan failed

Celeb D F 10/7 0/0 3
FaceForensics+-1- 4/5 1/0 10

Table 4.1: Deepware manual testing results

Deepware d id not provide requested A P I key, so in table 4.1 you can find results of
manual testing. The test contains 40 videos from two different deepfakes datasets (20 from
C e l e b D F and 20 from FaceForensics-l—|-). The dis t r ibut ion between original and deepfakes
videos was 1:1. The accuracy of detection is decent, but from 40 tested files 13 files d id not
go through scan, even repeatedly. It is a very smal l sample, so we leave it to the reader to
draw conclusions.

4 . 3 . 2 S e n s i t y

Sensity is very similar from the user perspective to Deepware. Based on the post on Sensity
blog [46] from 2021 we can explore web U I of their applicat ion. The applicat ion is not
publ ic ly accessible and to obtain access, you need to request i t . Sensity provides more tools
related to cybersecurity, person identification, and verification.

Sensity allows for detection of images and videos by inserting files or referencing them
v ia a U R L l ink as shown i n fig. 4.3. Sensity allows processing of quite smal l group of file
types (png, jpeg, jfif, tiff, mp4, mov). Another l imitat ions are for videos regarding their
size (up to 3 0 M B) , length (up to 10 minutes), and quali ty of videos (up to 1440p). [46]

16

FILE URL

Drag & drop images and videos

Brcwte files

Accepted formats: png. jpeg. Jfif. tiff: mp4h mov Video limits: 30 MB, 10 minutes. 1440p

Figure 4.3: Sensity deepfake detection tool input form. Retr ieved from [46].

The tool is capable of recognize only face swap and fully synthesized faces by G A N . It
is not able to recognize morphed images or other deepfakes. For GAN-genereated faces,
it is sometimes able to classify model generator. If deepfake is recognized tool show how
confident he is, a l l shown i n fig. 4.4. Compared to Deepware, it provides image scans; on
the other hand, it does not have mobile applicat ion.

File: Zu ck2 m p4

Detect ion of

Face swap © ^ Detected

Confidence O

Visual threats:

L Detected

Model Generator O

Figure 4.4: Sensity deepfake detection tool results. Retr ieved from [46].

4.3.3 O t h e r

Below you can find a list of other open source detection methods. These methods usually
require a good knowledge of information technologies and programming to make them work
on your computer. There is no guarantee that these methods really work, but two projects
were selected for integration into the framework arising in this work.

• Video

— dfdc_deepfake_challenge
(https: //github.com/selimsef /df dc_deepf ake_ challenge)

— DeepFake Detect ion
(https: //github.com/dessa-oss/DeepFake-Detection)

— fakeVideoForensics
(https: //github.com/bbvanexttechnologies/f akeVideoForensics)

— Deepstar
(https://www. zerofox.com/deepstar-open-source-toolkit/)

17

https://www
http://zerofox.com/deepstar-open-source-toolkit/

Audio

— AudioDeepFakeDetect ion
(https: //github.com/MarkHershey/AudioDeepFakeDetection)

— specrnet
(https: //github.com/piotrkawa/specrnet)

18

Chapter 5

Architecture and technologies
analysis

The goal of this work is to develop a deepfake detection framework capable of serving
various client applications and an exemplary web browser extension that communicates
wi th framework and clearly displays the results to the user. We already analyze the market
and test existing tools. Because there is no external contracting party defining their need,
we w i l l define requirements by ourselves. Requirements w i l l be divided into two categories,
functional and non-functional requirements. It is important to define not only functional
logic, but also some l imits on processing time, number of users, etc.

5.1 Requirements

A s we already said, the framework has to support mult iple different types of clients (e.g.,
mobile, web), so there needs to be a properly defined communicat ion interface between the
client applications and the framework itself, which w i l l act as server i n this case. Framework
allows dynamic changing detection methods, which means it is able to add, remove, or edit
detection method. This implicates mult iple detection methods at one t ime for voice, image,
and video. E d i t i n g detection method means updat ing the model or parameters.

The platform should support as many file types as possible and adding a new method
should not affect methods already presented in the framework, wi th in supported file types.
Different detection methods have different models depending on their design, so model
management w i l l be wrapped completely into the detection method.

The framework should collect statistics and hardware metrics, but the collection of
personal information should be omit ted. A l l collected metrics w i l l be used for future im­
provements of detection methods and opt imizing operating costs and performance. We
would like to have a short response t ime w i t h as low operating costs as possible. Those two
parameters are i n contradiction, so there has to be some balance between them.

Different cloud services offer their own tools for collecting metrics, but our system
should be operating platform independent. Tha t means framework needs to be consist
of applicat ion, which collects metrics and provides them to other parts of framework, or
person who operates the framework.

F rom a number of users perspective, the platform w i l l handle up to hundreds of users at
one time, and wi th enough resources the framework should handle even more. Scalabil i ty
of computat ional ly intensive parts of the framework w i l l help meet these requirements.

19

The client appl icat ion has to be simple so that anyone can use i t . Users should be able
to upload files or put a l ink to a file. The browser extension allows access to D O M of the
webpage so an optional extension for client appl icat ion w i l l be selection of web element for
detection. App l i ca t ion then retrieve metadata from selected element automatically.

Work ing wi th provided links or elements on specific pages brings several complications
such as authentication. The framework does not have user context, so he is not able to
retrieve a l l data that user has access to. We w i l l not deal w i t h these issues and if the file
cannot be access, the processing request w i l l not be created. It w i l l be one of possible future
improvements to the framework.

Because it should cover a large group of possible users, results have to be easy to
understand and also provides information for experienced users. Last but not least, the
client appl icat ion should enable users to send feedback.

There are several web browsers i n market that cover almost a l l audience, so the de­
veloped browser extension should be portable among mult iple web browsers. Today it is
standard, but it is necessary to mention that the applicat ion should be secured. It w i l l
affect code of framework, client application, and environment itself (hardware, operating
systems, . . .) . A l l work is open-source and accessible on the public G i t H u b reposi tory 1 .

Summary of functional requirements:

• A d d i n g , removing, and edit ing (changing parameters and models) detection methods

• M u l t i p l e detection methods at once

• Col lect ing statistics and feedback

• Detect ion of image, video, and voice

• Detect ion of file, U R L link, or selected H T M L element (optional)

• Understandable presentation of results

• Security

Summary of non-functional requirements:

• Scalabil i ty

• Smal l response time

• L o w operating costs

• Por tab i l i ty of the browser extension among mult iple web browsers (optional)

• Open source

5.2 Containerazation

The framework requires dynamic management of the detection methods. It means that the
framework can contain one or twenty different detection methods. Each method could be
developed using different programming languages or technologies. M o d e l management w i l l

x h t t p s : //github.com/PlayerBernyl2/VUT-DIP-Code

20

be encapsulated and handled by each detection method individualy. This leads to some
isolation of methods wi th a well defined communicat ion protocol.

Scalabil i ty of framework, isolation and resource management, a l l this together w i l l be
reached v i a containerization. There are many technologies dealing wi th containers, such as
Docker, Podman , L X C . W h e n we start counting orchestration wi th automatic scalability,
the number of technologies drops down.

Azure and A W S offer their own container orchestrators: Azu re Container Instances [30],
A m a z o n Elas t ic Container Service [6]. A s already stated, the framework should be operating
platform independent, so looking only for orchestrator supported by a l l c loud providers, we
discover Kubernetes. Google C loud , A W S and Azure support Kuberentes, and no other
alternative supported by a l l of them exist. [30] [6] [17]

Docker is probably the most widely used technology for containerization. P o d m a n is
another containerization technology having similar A P I to Docker. P o d m a n is newer and
has different architecture than Docker which results i n a more secure operation and fewer
resources required for running [3]. B u t s t i l l , we w i l l stick wi th duo Kubernetes and Docker
because of the huge community and good support of Docker i n Kubernetes and also less
concerns about possible issues during development.

5.3 Framework

The framework is a collection of detection methods, an interface for the client applicat ion
(receiving requests, sending report response), and orchestrates/arranges a l l communicat ion.
It w i l l be buil t into several containers and one of the containers w i l l be providing client
application interface. It could be R E S T A P I [42], G r a p h Q L [49] or custom protocol. It is
not a good idea to develop a custom communicat ion protocol, and because of s implic i ty of
interface we w i l l use the most used one, R E S T A P I . For this purpose, we can use a huge
number of different technologies such as A S P . N E T Core, F lusk , Django, Ruby on Rai l s ,
etc. Basical ly a l l named technologies meet defined requirements (response time, number of
users, ect.) because most of them are covered by microservice design and they are able to
run i n containers. Our choice is A S P . N E T Core because it has a huge community, L i n u x
support, many external libraries, open-source development, it is suitable for bigger projects,
and it has good speed of program development [31].

Communica t ion among containers w i l l be through message broker. There are several
alternatives such as Memphis , R a b b i t M Q , or Apache Kafka . A l l of them are open source
and possibly suitable for our use case. The final choice is R a b b i t M Q because of small
resource consumption, a quite large community, and this project is developed since 2007.
Tha t means we can count on future development and updates. [20]

The framework also needs an applicat ion for collecting metrics. Here, we chose Prome­
theus [39] and Grafana [19]. B o t h tools are free to use and open source. Prometheus is
collecting metrics, but it is not a good visualizat ion tool; for this purpose, there w i l l be
Grafana. Grafana provides dashboards where a l l metrics could be presented as graphs, etc.
Reasons why we take Prometheus and Grafana is because they have good cooperation and
R a b b i t M Q has metrics compatible w i th Prometheus [55]. Cap tu r ing resources is performed
by Node Expor ter . It is another open source project from Prometheus, which ensures good
compat ibi l i ty w i th the previously mentioned systems [38].

A l l previously selected technologies also have good support of Kubernetes and in some
cases provide custom Kuberetes operators for easier deployment. More details about it are
provided i n chapter 8.

21

http://ASP.NET
http://ASP.NET

5.4 Web browser extension

Web extension are based on web technologies such as H T M L , C S S , JavaScript , TypeScr ip t ,
etc. Because of por tabi l i ty and good integration, we w i l l choose H T M L , C S S , and Type­
script. Typescript is a strict syntactical superset of JavaScript and adds optional static
typing to the language. It is also compiled into JavaScript [32].

There are several Typescript frameworks that speed up development of applicat ion and
make por tabi l i ty among different browsers easier. Angula r seems to be as good viable
option and it is frontend framework, w i th which we have most experience [16].

Browser extensions are integrated through a standard called "Web app manifest". It is
the definition of manifest file used for integration extensions to browser, now i n version 3.
Standard defines the structure of the manifest that allows the configuration of different
types of capabilities. A l l browsers have par t ia l or full support. Us ing this manifest should
help to integrate the extension w i t h browsers such as Google Chrome, Microsoft Edge, or
M o z i l l a Firefox. [37]

22

Chapter 6

Framework architecture

The architecture must reflect that each detection method could be developed by different
technology stack. We can isolate the detection methods from each other and wrap them
into independent services. We do not need communicat ion among a l l methods because they
do not cooperate or share data. In this case, the microservice architecture meets a l l defined
requirements.

6.1 Microservice architecture

Microservice architecture is the style of developing applications. Example of design can be
observe in fig. 6.1. The microservice allows the applicat ion to be separated into smaller
logical independent parts. The service then has its own realm of responsibility and they
can communicate wi th each other. The use of containers for the deployment of microservice
application is a well-suited option. [18]

Figure 6.1: Microservice architecture of fictitious e-commerce applicat ion

Microservices improve fault isolation that non-functional service should not affect others,
in best case scenario. For example, i f one service contains a memory leak, it is not prop­
agated into other ones. In real cases microservices depend on each other and this might

23

lead to a problem. Another benefit was already mentioned, and it eliminates commitment
to one technology stack. One service has better maintainabi l i ty because it should be small
(better understandability, faster tools, etc.), which leads to more productive development.

This architecture also has several drawbacks. It increases the complexity of the archi­
tectural design and the addi t ional implementat ion of cross-service communicat ion. Here
comes the usage of message brokers. W h e n saving data to the database, there are several
approaches on how this could be implemented. Y o u do not want your database to be bot­
tleneck of your system, so developers in most cases have to deal w i th dis tr ibuted database
systems. [43]

6.2 High-level architecture

The client applicat ion communicates direct ly w i th the R E S T A P I endpoint. It is responsible
for handling requests, preparing and val idat ing data, and selecting which type of processing
should be used. After processing is done, it collects a l l results, stores them i n database,
and distributes them back to the client applicat ion. F i g . 6.2 contains high-level design of a
framework wi th data flow. Numbers represent steps i n which order data flow through the
framework.

E
Client application

0

API Endpoint

Request receiving Results collecting

Voice request
processing

Image request
processing

Video request
processing

3

Figure 6.2: High-level design of whole framework

The architecture separates voice, image, and video detection into an independent units.
Each unit contains a processing queue where the request w i l l be assigned by the A P I
endpoint. The queue is serviced by one or mult iple processing units that contain a l l related
detection methods as shown in fig. 6.3.

24

Requet processing

Procesing queue

T
0

Processing unit Processing unit Processing unit

3

Figure 6.3: Request processing detail

The processing unit works as a parallel pipeline. Closer look at design is i n fig. 6.4.
Some detection methods require input data i n specific format, others not, so the first step
is opt ional data preparation. The next step is the detection method that decides whether
the input data contains deepfake. Detect ion methods are different, so are their results. A s
last step it is need to properly generalize and also normalize resulting values to interval
from 0 (deepfake) to 1 (original).

Processing unit

Controller

• Data preparation Detection method Results • Data preparation Detection method generalization

Data preparation Detection method Results
generalization

Data preparation Detection method
Results

generalization

Figure 6.4: Processing unit pipeline

6.3 A P I Endpoint

A s mentioned before, A P I endpoints communicate direct ly w i th client applicat ion and wi th
backend processing mechanism. Processing takes some time, so client applicat ion creates
request and wait asynchronously to be processed by the framework. The A P I for this
purpose contains detect and request methods.

Detect methods calculates checksum of file and lookup i n database i f there is request
w i th same file checksum. If any request is found, then new request is not created and found

25

request is returned. In case there is no request w i th same checksum new request is created
and stored i n database. T h e n this request is move into next step of processing.

There are other support methods for health check or providing feedback. A l l methods
are described i n following list:

• / p i n g

— G E T / p i n g - healtcheck endpoint

• / detect

— P O S T /detect/f i le - creates request w i th file i n H T T P request body

— P O S T /de tec t / l ink - creates request w i th l ink to file i n H T T P request query
parameters

• / request

— G E T /request /resul ts / - returns results of processed request or empty results i f
request is i n process

• / feedback

— P O S T / feedback/<request_id> - collects user feedback wi th opt ional parameter
request_id

Each detection method has different processing times. There are two options to return
results to user: par t ia l results from the methods already completed or returns only when
everything is completed. Because there is no need to show par t ia l results, the second option
w i l l be used. The framework also calculates the overall score and this requires a l l results
from a l l methods. However should not be much code changes if in future there w i l l be need
of par t ia l results. Calcula t ing the overall score requires considering method deifferences
as well as their domain focus. A single detection method is usually developed to detect
only single domain (e.g., face swap). We leave the exact definition of calculat ion to the
implementation.

The method request/results could be possibly replaced by websockets which w i l l
increase complexity, but on the other hand a client applicat ion could report status of the
running process more precisly. It is another possible extensions to the framework.

6.4 Database

A P I Endpoin t needs to store some data in a database to efficiently manage mult iple re­
quests. It is also not welcome to process the same file repeatedly. B y keeping the results
in the database, it w i l l save computat ional resources and the applicat ion w i l l have min ima l
processing t ime for already processed files. It is also necessary to store the sent feedbacks.
In fig. 6.5, you can see the E R model of the database for this framework.

26

Responses Requests Feedback

PK Ü5
1 PK ID 1 PK ID

FK RequestID Checksum FK RequestID

MethodID Filename Text

Value Status

Type

Figure 6.5: Enti ty-relat ionship model

W h e n any method is added or anyhow changed (e.g., different model) related or a l l
results i n database should be deleted. If we do not delete stored results users w i l l be
getting old results, that is not what we want.

6.5 Request processing and processing unit

A P I Endpoin t placing a l l new requests in the request queue. One of the available processing
units takes the first request form queue. Th is request contains a l l the information such
request ID , data for detection. Message queue i n R a b b i t M Q w i l l be used for this purpose.

Free Control ler takes the message from the queue and distributes it to a l l detection
methods under his administrat ion. Because each detection method is encapsulated into its
own container, it needs communicat ion channel w i th Controller . To make integration of new
detection method easy as possible we use R E S T A P I once again. The detection method
should expose one method called detect on any port that w i l l be placed i n Controller
configuration. Control ler can ca l l this method to pass parameters and start processing.

The first step i n the processing pipeline is opt ional data preparation. The detection
method could be trained only on a specific resolution of the video/image or on a specific
length of the voice sample. Th is means that a data processing unit must be designed for
a given detection method. Prepared data then are picked up by detection method and
evaluated.

After detection, there is opt ional data general izat ion/normalizat ion. Because the results
must be correctly presented to user and the framework must calculate overall score, a l l
results need to be normalized to same interval from 0 to 1. Where zero means detected
file contains deepfake and one means opposite. The results are then pushed to the output
queue.

6.6 Monitoring

One of the requirements was to collect metrics on resource consumption and also metrics
on which to scale the number of processing units. Node exporter was selected as the tool
to collect resource consumption metrics to be run on every node in the cluster. R a b b i t M Q
handles the collection of metrics itself, no addi t ional configuration is required.

Prometheus collects metrics from both of these sources and stores them in its database.
Node exporter collects metrics about C P U ut i l izat ion, R A M consumption, disk ut i l izat ion,
network card ut i l izat ion, etc. R a b b i t M Q collects metrics about the number of messages in
each queue, number of connections and channels, etc. These metrics w i l l be displayed by
Grafana i n their dashboards and Prometheus w i l l be used as a source.

27

6.7 Containerization and scaling

Detection methods have to be containerized, and supported methods relevant to detection
are encapsulated together w i th detection method. Processing unit is consists of controller
and mult iple detection methods and a l l togeather it is creating multicontainer pod.

Scaling can be done vertically or horizontally. Ver t ica l scaling changes the number of
resources, such as C P U cores or the size of R A M . Hor izonta l scaling changes the number of
nodes/units/containers that process a given task. F i g . 6.6 shows the difference. Kubernetes
allows automatic scaling based on the consumed resources. We use horizontal automatic
scaling based on consumed resources for the number of nodes i n the cluster. Second scaling
uses the number of messages in the queue, and i f the number of requests i n the queue
changes up or down, then horizontal scaling adds or reduces the number of processing units
for given queue. [8]

V e r t i c a l Sca l i ng H o r i z o n t a l Sca l i ng
(Scaling up) (Scaling out)

Figure 6.6: Ver t ica l and horizontal scaling comparison. Retr ieved from [8].

The number of messages in queue can be found i n Prometheus, but we need to make
it available to the Kubernetes A P I . To do this we w i l l use the Prometheus adapter; this
is a project that maps defined metrics from Prometheus to messages understood by the
Kubernetes A P I [28]. Then we just need to configure the Hor izonta l P o d Autoscaler to
tu rn scaling on wi th usage of these values. Hor izonta l P o d Autoscaler w i l l scale up when
there are a lot of requests wait ing to be processed in the queue. O n the other hand, to save
costs, it w i l l automatical ly scale down when the peek of requests drops down.

28

Chapter 7

Client architecture

The use case of the client applicat ion is straightforward, so there is no need for use case or
data flow diagrams. The applicat ion w i l l t ry to prepare the file for inspection and send it to
the framework. The next section contains several wireframes of how the client applicat ion
should look like w i th the description.

7.1 Web browser plugin

It should allow the user to insert a file v ia file upload, l ink, or H T M L element containing a
targeted file. In fig. 7.1 we can see selection of insertion types, for file upload the user w i l l
be prompted by system file upload picker. W h e n user pick l ink as input, floating window
w i l l pop up, and user then can insert U R L to file. Those two selections are the same as
other tools i n market also provide. Opt iona l improvement w i l l be element selection which
switches the appl icat ion to interactive mode where user can point to H T M L element and
application w i l l t ry to retrieve metadata of audio, image, or video direct ly from H T M L .

Deepfake detector © Deepfake detector

Element selection

D
File upload

C-D

©

Enter l inkto file you would like to inspect:

(a) Input type selection (b) Link input in floating window

Figure 7.1: Input type selection screens

Because detection framework w i l l contain several detections method we need to show
the result of each method independently. It could be a l i t t le confusing for user so there
w i l l also be overall score which interprets/generalizes a l l the results. The overall score w i l l
indicate the results as a percentage and as emoticon. The palette w i l l contain five emoticons
shown i n fig 7.3. For better understanding there are question marks in the U I that after
mouse hover shows tool t ip w i th description. Whole results screen can be view i n fig. 7.2.

29

Deepfake detector "©I

Overall score: (?)

@ 76 %

Detection method X ©
i i i
0 % 60 % 100 %

Detection method Z ©
i li
0% 98%

Detection method Y ©
i i

Deepfake detectq*

Overall score

©
Detection method 1
Loremipsum dolor sit arret, consectetuer
•dipíscíng elit. Praesent vitae arcu tempor neque
lacinia pretium. Proin in tellus sit arret nibh

sagittis. Pellentesque habitant morbi
tristiq Lie senectLis et netus et malesuada femes ac

Training dataset: XXX

©

Detection method X

I I I
0 % 60 % 100 %

Detection method Z ©
i ii
0% 98%

~ y
(?) Detection method Y (?)

I I I

(a) Results view (b) Tooltip with description of detection method

Figure 7.2: Results view screens

0% 35% 60% 75% 90% 100%

Figure 7.3: Palette of emoticons indicat ing i f inspected file contains deepfake or not

A t the bo t tom of each screen there is an icon that enables the user to the send feedback
from applicat ion. After cl icking on this icon floating window w i l l appear, shown i n fig 7.4.
W h e n user w i l l be sending feedback on the result page, request ID w i l l be added as an
addi t ional parameter to the feedback message.

Deepfake detector

Overall score: CD

©

Enter your feed back:

Submit Stomo

©

Figure 7.4: Feedback form i n floating window

30

Chapter 8

Framework implementation and
deployment

The implementat ion is available i n the public reposi tory 1 . The project is d ivided into three
folders: clients, server, and templates. The clients folder is intended for various imple­
mentations of client applications such as web client, web browser extension, etc. Currently,
only one client is implemented, but other types can be added in the future. The server
folder contains the framework implementat ion and the Kuberentes deployment manifest
files. The last folder contains templates for easy integration of detection methods.

API Endpoint RabbitMQ Prometheus Prometheus adapter Horizontal pod API Endpoint RabbitMQ Prometheus Prometheus adapter
autoscaler

Voice request
processing

Voice detection
method 1

Voice detection
method 3

Voice detection
method 2

Image request
processing

Image detection
method 1

Image detection
method 2

Image detection
method 3

Video request
processing

Video detection
method 1

Video detection
method 2

Video detection
method 3

Figure 8.1: Diagram of implemented framework

The framework was implemented on the previously defined architecture. The archi­
tecture pr imar i ly dealt w i th the main functionality of the framework, but it also covered

x h t t p s : //github.com/PlayerBernyl2/VUT-DIP-Code

31

supporting systems, for example, systems for collecting metrics used for scaling, etc. The
overall implemented framework can be seen i n diagram i n fig. 8.1. The system could be
divided into two parts: processing - A P I Endpoin t , message broker, processing units (white
rectangels), and moni tor ing - metric collector, observability platform, etc. (orange/red
rectangels).

The ind iv idua l parts are described i n more detail in the following sections. The whole
system is designed to work in Kuberentes, the container orchestration tool . The overall im­
plementation involved the development of an A P I Endpoin t and Request Processing Con­
troller. Subsequently, it was necessary to configure other systems, such as message broker,
database, or metrics collector. F ina l ly , it was necessary to integrate the different selected
detection methods; for this purpose a templates were created to make the integration as
simple as possible.

In the following sections, you w i l l see terms related to Kubernetes; you w i l l get an more
detailed overview of them in section 8.6. These are terms such as Kuberentetes object,
operator, or A P I .

8.1 A P I endpoint

The interface for the client applications is a R E S T A P I developed in A S P . N E T Core 7 wi th
E F Core for relational object mapping over the M S S Q L database. The R a b b i t M Q . C l i e n t
nuget package is used to communicate w i th the R a b b i t M Q message broker. The applicat ion
uses a software architecture similar to M V C [26], but without a view implementation. Views
are completely replaced by the client applications, but those are handled separately. A P I
is split into two V i s u a l Studio projects: first contains bussinies logic (controllers, services,
etc.) and second one defines a l l data models. Controllers receive H T T P requests containing
ind iv idua l input parameters that are mapped to objects called viewmodels. W h e n mapping
to a viewmodel or directly after it , validations are performed. These include type checking,
input length, or when uploading a file, checking for pairs of supported extensions and M I M E
Types.

If a l l input data is correct, the query processing can continue. In case of detection,
the file is saved to a shared storage where the A P I endpoint is the only one w i t h write
permissions. Other parts of the framework can only read from this storage. The S H A 2 5 6
checksum of that file is then calculated and compared against the database records. If this
checksum is already i n the database, the request I D containing this checksum is returned
and the file is deleted. W h e n the client queries the results, it gets the answer immediately
because it is already i n the database and the system is not unnecessarily overloaded wi th
recomputation. However, if the checksum is not found i n the database, a new request is
created wi th the status processing and stored i n the database. Subsequently, a message
is sent v ia the message broker forcing the detection of this file. The message contains the
same information as the database request (id, checksum, filename, status, type).

The OutputService class implements a function that handles the background consump­
t ion of messages containing results. W h e n the server starts, it registers an event handler
that is called when a message is received i n the outuput queue. A l l the results are stored
in the database and the status of the processed request is also changed to done. It is also
necessary to delete the detected file from the shared storage. The incoming message con­
tains the request ID and a list of responses, where each ind iv idua l response contains the I D
of the detection method and the resulting value. The list may also be empty, indicat ing an
error or that a single method was unable to process the file. Detect ion methods can only

32

http://ASP.NET

support processing certain file types, so i f no method is able to process the file, the list w i l l
be empty.

The results are issued to the client upon request v i a the /requests/results end-
point. In case the request processing is not complete, an empty response (H T T P 204) is
returned. After (un)successful processing, an object containing the request I D , the overal
score, and a list of results consisting of the detection method I D , the detection method
name, the description, the name of the t ra ining dataset, and the result value is returned
to the client. Information about the detection method is read from the configuration file
appsettings. json based on detection method I D . The client must perform pooling unt i l it
receives the first non-empty response [41]. The client should timeout i n case of a complete
system failure.

Configuration file appsettings. json contains connection strings to database and Rab-
b i t M Q , definition of supported file types and detection methods details.

8.2 Message broker

R a b b i t M Q was selected as the message broker, which is designed for asynchronous messag­
ing. Indiv idual messages are stored in a message queue where producers insert them. The
messages are then read by the consumers. The A M Q P protocol is used for communicat ion,
which defines the structure of messages, their acknowledgement, etc [54].

R a b b i t M Q is designed to send a large number of smal l messages. It would not be
appropriate to send, for example, a whole file in B A S E 6 4 encoding through i t . Therefore,
the file to be detected is stored on shared storage and a message containing the remaining
necessary parameters is sent through the message broker. Consumers are scaled based on
the number of messages i n each queue to handle requests as quickly as possible.

Four different message queues are used for communicat ion: queue_audio, queue_image,
queue_video, and queue_output. O n the basis of the file type, the A P I Endpoin t decides
which queue the request should be placed in . The ind iv idua l queues are then consumed
by the ind iv idua l Controllers in Request Processing units. The results are sent back to the
A P I Endpoin t through the output queue.

The R a b b b i t M Q Cluster Operator provides a simple deployment to Kuberentes by defin­
ing new Kuberentes objects. The complete deployment manifest for R a b b i t M Q includes
configuring the number of container replicas, default credentials, and resource usage l imits .
More details about deployment is i n section 8.6. [56]

8.3 Processing unit

Controller is implemented as a single file P y t h o n script. The same functionality could be
implemented i n C # as well, but for this use case, using a scripting language was more
straightforward. It is a script that receives a request and distributes it among the different
detection methods. Pika package is used to communicate w i th the message broker.

It first establishes a connection and then connects to a given channel for which the Q O S
is set to 1. This indicates that it is able to consume only one message at a t ime. W h e n
call ing the start_consuming function on opened channel, the script starts listening on that
channel for new messages. W h e n a message is being consumed, a new thread is created that
does not prevent the l ibrary from functioning. Pika needs to be be able to send regular
heartbeat messages. [52]

33

The new thread w i l l only start processing the request itself. Since the message sent is in
J S O N format, the request is mapped to a dictionary. Us ing asyncio and aiohttp packages,
the H T T P endpoints of each detection method are called asynchronously. Since everything
is stored in a single pod, the localhost interface is used for this communicat ion. The ports of
each detection method are read by Control ler from an environmental variable that is defined
in the Kubernetes manifest. The H T T P request contains a l l the defined parameters, and as
a result an object containing the detection method id , and value (decimal number). W h e n
detection is complete, the ind iv idua l results are stored in a list, which is converted again
to J S O N and sent to the output queue when a l l methods are finished.

8.4 Monitoring

In order to scale, it is necessary to have metrics on which to scale. Every cloud service
provides some form of monitor ing and metrics collection, but since we don't want to be
dependent on the platform on which the framework w i l l be hosted, we need to configure
the framework to collect metrics on its own. For this case, the Prometheus platform was
chosen.

Prometheus collects the defined metrics and stores them in a t ime series database. It
can store metrics for several years. In our case, our interest was to collect R a b b i t M Q
metrics that can be used for scaling and resource consumption of each cluster node. O n
the basis of the resource consumption, we are able to better allocate resources to different
parts of the framework.

Prometheus provides what is called the Prometheus Operator, which, as w i th Rab­
b i t M Q , simplifies the deployment of this applicat ion. After deploying the operator to a
Kuberentes cluster, it is possible to create objects of type Prometheus. For a description
of the deployment, see 8.6. [40]

The R a b b i t M Q Cluster Operator automatical ly collects metrics, and we only need to
configure A P I for providing compatible metrics to Prometheus. Then only a l l you have to
do is to create new Kuberentes ServiceMonitor object which actually enables these metrics
consumption by Prometheus. The metrics contain data about the number of connections,
the number of open channels, the number of messages in each queue, and much more.
Number of unconsumed messages i n queue was chosen for scaling. This value needs to be
exposed to the Kubernetes A P I , which is not done by default.

To do this, it was necessary to incorporate a Prometheus Adapter that reads the selected
metrics and makes them available to the Kubernetes A P I . More about it is i n section 8.5.

Node Expor te r allows collecting metrics of resource usage of ind iv idua l cluster nodes.
If we configure Node Expor te r container as a DeamonSet i n a cluster, this container is
then deployed to a l l running nodes in the cluster. The container must be configured wi th
access to /proc and /sys v i r tua l L i n u x directories from which it can retrieve ind iv idua l
metrics. Another ServiceMonitor object add these metrics to Prometheus the same way as
for R a b b i t M Q . [11]

Prometheus is a good tool for collecting metrics, but its representation is not very good.
In its web interface, it allows query calls that can be represented, for example, as a graph
or just the current value. Grafana was chosen to represent the data from Prometheus.

Grafana is the only one that requires manual configuration. F i rs t , it is necessary to
access the web interface and enter the default login credentials. After that, a request
to change password w i l l pop up. After the change is made, a new data source must be

34

configured in settings. Select prometheus and enter its domain name i n the kuberentes
cluster, which is "http: //prometheus-service. default. svc. cluster. local".

The user community shared the dashboards created on the official Grafana website,
where it was possible to find the official dashboard for R a b b i t M Q 2 and also the community
dashboard for Node E x p o r t e r 3 . B o t h dashboards provide a representation of a large number
of metrics using charts, etc., which were sufficient for our needs. F i g . 8.2 shows Grafana
web interface wi th Node Expor te r dashboard. It would be possible to create a custom
dashboard containing selected metrics if needed.

tri aa General / Node Exporter Full tr <

Q datasojrce default • Job node-exporter •
ft - Quick CPU / Mem / Disk

, 26.6%

- Basic CPU / Mem / Net / Disk

22:00 C0:00 02:00 04:00 06:00 08:00 10:00 12:00 14:0: 16:00 18:00 2C:O0 9
o
® > CPU/Memory/Net/Disk (Bps

> Memory Mem Info (?5pane(sj

Figure 8.2: Grafana - Noede Expor te r dashboard

8.5 Scalability

The Prometheus Adapter is designed deployment using the H e l m tool , which extends the
capabilities of the kubernetes manifest files. To keep the deployment as simple as possible
and to avoid having to use many different tools, a l l deployment files have been copied from
the Prometheus Adapter repository to the framework repository. W i t h some modifications,
it was possible to get Prometheus adapter working using only Kuberentes manifest files.

Conf igMap object for deploying Prometheus Adapter contains configuration such as
name, which metrics and how they should be published, etc. Pub l ica t ion to Kubernates
A P I was achieved by creating a Kubernetes object of type APIServ ice . Testing whole
integration is possible by using the command [28]:

kubectl get —raw /apis/custom.metrics.k8s.io/vlbeta2

Example results is shown in list. 8.1.
Hor iznota l P o d Autoscaler needs several attributes to work. F i rs t , it is the identification

of the object to be scaled and on what metric [50]. We have defined the name of the
metrics i n the Prometheus Adapter Conf igMap. T h e n we need to specify the m i n i m u m
and m a x i m u m number of replicas and the average value. These values are then used in

2 h t t p s : //graf ana.com/graf ana/dashboards/ 10991-rabbitmq-overview/
3 h t t p s : //graf ana.com/graf ana/dashboards/ 1860-node-exporter-full/

35

http://ana.com/graf
http://ana.com/graf

calculation of number of replicas. In our case, m i n i m u m number of replicas is set to 1
and the m a x i m u m to 3. Average value of the messages i n the queue is set to 2. These
values can be modified according to the needs and environment i n which the framework
w i l l operate. [50]

{
"kind": "APIResourceList",
"apiVersion": " v l " ,
"groupVersion": "custom.metrics.k8s.io/vlbeta2",
"resources": [

{
"name": "jobs.batch/rabbitmq_metrics_audio_queue_depth",
"singularName": "",
"namespaced": true,
"kind": "MetricValueList",
"verbs": [

"get"
]

},

]
}

Lis t ing 8.1: Result of cal l ing the command to get metrics

8.6 Deployment

The deployment of the entire framework is d ivided into several Kubernetes manifest files,
where ind iv idua l Kubernetes objects are defined. These are persistent entities that represent
parts of the system, and each object is of a specific type. The basic types are, for example,
pod, service, deployment, etc. If we want to work wi th these objects, we can only do so
through the Kubernetes A P I . It is possible to define a new A P I in Kuberentes and other
new object types in i t . Th is functionality is used by so-called operators, which are designed
to automate repetitive procedures or to facilitate the deployment of a more complex system
into another. W h e n deploying this solution, it is important to consider that the R a b b i t M Q
Cluster Operator and Prometheus Operator were used. B o t h operators have prepared
manifest file which enables deployed v ia one command. [51]

Two bash scripts were created to make deployment and deletion easier. In deployment
both operators are applied to the cluster and then the whole framework is deployed from
al l manifest files. P u l l i n g a l l images, al locating resources and spinning up containers takes
a while. It can take several minutes to start everything up and because some containers
are started earlier then other ones, it can cause their failuer. Fai led containers w i l l be
automaticly restarted and the whole system then should be fully operational.

To communicate w i th the Kuberentes A P I , you can use kubectl tool , which provides
options for creating or deleting objects, report ing cluster status, or more detailed descrip­
tions of ind iv idua l objects. Some parts of the framework require persistent storage, such
as shared storage for files or databases. For this purpose, Kuberentes provides objects of
type PersistanceVolume and Persis tanceVolumeClaim. Kubernetes allows the creation of
StorageClasses when instal l ing a cluster, which automatical ly create a PersistanceVolume

36

when a request is made to create a Persis tanceVolumeClaim. Different cloud providers
provide different StorageClasses depending on the usage needs (speed, availability, backup,
etc.), and it is possible to modify the configuration of these objects dur ing deployment.
M a n u a l creation of PersistanceVolume without Storage Class is also possible, but requires
more complex setup of the cluster itself or custom storage outside the cluster. We w i l l not
develop this option further.

The deployment of the framework, if we omit the Prometheus Adapter , is d ivided into
ten different manifest files. A m o n g the most important objects created are the deploy­
ment type objects that create ind iv idua l pods. It allows you to set the number of replicas
(automatically using scailing or manually) and can be connected to the Kuberentes load
balancer, etc. Other essential objects types are Service, R a b b i t M Q , Prometheus, possibly
ServiceMonitor , Horizonta lPodAutoscaler and DeamonSet.

For deployment, it is recommended to use the prepared srcipt deploy. sh, but if you need
to manual ly interfere wi th the already deployed framework, you can use the tool "kubectl
apply - f <path>" to apply a specific manifest file or folder. O n the other hand, "kubectl
delete -f <path>" is used for removal.

The Endpoin t A P I and Processing Request Control ler are buil t into a Docker image
using G i thub Ac t ion , which is then published to the G H C R public container registry pro­
vided by Gi thub . A n y change pushed to the main branch of the repository w i l l trigger this
pipeline. These images are configured i n Kuberentes manifests, which makes deployment
of the latest version very easy. If only one component is being updated, such as the A P I
Endpoin t , just stop and start the component again w i t h "kubectl delete" and "kubectl
apply", which w i l l cause the latest version of the container to be downloaded from the
container registry.

37

Chapter 9

Detection methods integration

Integrating the detection method only requires a container w i th an exposed R E S T A P I
endpoint w i th one G E T method (detect) on a specific port. This container image then
needs to be correctly configured in the deployment files. Since this is a multicontainer pod,
it is necessary that each detection method has its own port . There is a sample Dockerfile
and one P y t h o n script w i t h F a s t A P I l ibrary i n the template folder. This script contains
only one G E T method wi th the given parameters mapped from the U R L query parameters
(id, checksum, filename, status, and type). Most of the parameters w i l l probably not be
used; the important one is filename, which is the file for detection saved i n shared storage.

Template contains designed pipeline such as data preparation, detection and results
normalizat ion/general izat ion. If the method evaluates at any step of pipeline that it is
unable to continue processing, either because of the file type or an internal error, it should
correctly terminate the work and return n u l l as the result. If processing is correct, it w i l l
return a detected value between 0 and 1. Result object should also return the ID of the
detection method, which allows the Endpoin t A P I to associate this result w i th a description
of the detection method. This template does not need to be used and can be replaced by
another technology more suitable for certain cases. It is a functional demonstration of how
the integration should work.

- name: dfdf-detection-audio-2
image: path/to/container/registry:main
imagePullPolicy: IfNotPresent
resources:

requests:
memory: "3.25G"
cpu: "500m"

li m i t s :
memory: "3.25G"
cpu: "500m"

volumeMounts:
- name: processingdata
mountPath: /mnt/processingdata
readonly: true

Lis t ing 9.1: Container configuration i n Kubernates manifest

Subsequently, the container must be buil t and published to a registry accessible from
the Kuberentes cluster. Depending on the type of detection method, it must be con-

38

figured i n a given deployment file. The project has three different deployment files ac­
cording to file type: processing-unit-voice .yaml, processing-unit-image .yaml, and
processing-unit-video .yaml. It should be mentioned that the size of the resulting con­
tainer should not be too large. Otherwise, it causes problems wi th the speed of the deploy­
ment itself. If deployment of Request Processing unit is slow, then scaling w i l l not be so
effective. The Docker image must be downloaded from the registry, and this takes some
time; the smaller the image, the less this operation w i l l affect the speed of creating a new
container.

A d d i n g a new container to the list in the "spec.template.spec.containers" section
ensures that it w i l l be part of the pod . Y o u need to define the Docker image, the amount
of resources the container can consume, and you also need to mount a shared repository
where the files for detection w i l l be stored. Storage should be mounted in read-only mode.
In list. 9.1 you can see an example of configuration of one detection method. Controller
needs to know that a new method exists so that the port where A P I is exposed has to
the be added to environmental variable for the Control ler container. The variable is called
„P roces s ingUni t sPo r t s " .

{
"ID": 1,
"Type": 1,
"Name": "Detection Method XX",
"Description": "This i s awsome detection method...",
"TrainingDataset": "Training dataset XYZ"

}

Lis t ing 9.2: Detection method description in appsettings.json

In the last step of the integration, you need to update the appsettings.json file in
the Endpoin t A P I by adding the detection method description. The description includes
the I D , which must be unique, type, name, description, and the name of the t ra ining data
set. The type can take values: 0 = audio, 1 = image, 2 = video. A n example can be seen
in list. 9.2.

9.1 AudioDeepFakeDetection

This project 1 implements different types of models and combines them wi th different feature
extractors. The project provides six different neural network models and three different
feature extraction methods, providing a considerable number of combinations to create
different detection methods. This project was chosen because it offered great potential for
t ry ing different detection methods and the code was relatively easy to understand at first
glance. The project describes well the steps needed to make it work, which led to success
without any problems after replication.

The problem wi th most open source detection methods is that they are scientific pa­
pers and not tools for ordinary users. For opt imizat ion, these tools work wi th batches of
files at a t ime, both i n learning and i n verifying the results. Th is leads to the fact that
these methods cannot verify only one file as a rule. This is not different in the case of
AudioDeepFakeDetect ion. Therefore, it was necessary to start modifying the code. A fork 2

x h t t p s : //github.com/Mar kHershey/AudioDeepFakeDetection
2 h t t p s : //github.com/PlayerBerny!2/AudioDeepFakeDetection

39

of the repository was created in which this change was made. A function was created to
allow only one file to be processed.

The project provided pre-trained models for download, but these were not used. The
datasets used for t ra ining were L J Speech and WaveFake. A more detailed description of
the datasets can be found i n section 11.1. W h e n replicating the experiment, 6 different
detection methods were eventually created. Combinat ions of the most successful models
and feature extractors based on output of their experiment were selected. Each method
was trained for 15 epochs. A l l methods had the highest achieved accuracy of over 90 %
on the test dataset, some even very close to 100 %. The t ra ining results are presented in
tab. 9.1. The first part of the name indicates the name of used model, the second part is
name of the feature extractor, and the last part can take two values: I = i n dis t r ibut ion,
O = out distr ibut ion.

Exper iment Accuracy F l R O C A U C E E R
S h a l l o w C N N _ m f c c _ 0 0.942 0.941 0.9418 0.0743
S h a l l o w C N N _ l f c c _ 0 0.949 0.949 0.9494 0.0647
T S S D _ w a v e _ 0 0.958 0.958 0.9576 0.0462
T S S D _ w a v e _ I 0.997 0.997 0.9969 0.0042
S h a l l o w C N N _ m f c c _ I 0.997 0.997 0.9971 0.0053
S h a l l o w C N N _ l f c c _ I 0.999 0.999 0.9994 0.0008

Table 9.1: AudioDeepFakeDetect ion t ra ining results

The t ra ining and test dataset are created automatical ly from the two provided datasets.
The split was in the simplest possible way, the first part of the data was labelled as t raining,
and the second as testing. The parameter " in_d i s t r ibu t ion" also influenced whether the
dis tr ibut ion of deepfake and originals was 1:1 or 7:1 i n favor of deepfakes. Tra in ing 15 epochs
on the N v i d i a GeForce G T X 1660Ti graphics card took around 9 hours. For example, the
model ShallowCNN_lfcc_I was trained from 8:04 A M to 4:58 P M (final t ime 8:54). A l l
t ra ining logs can be found in the repository in the saved folder.

For the integration, 6 different Docker images had to be created. Prepared templates
were used for this operation. A n automatic bu i ld of the images i n G i t h u b Act ions when
pushing any change to master branch was implemented. The images are then published in
the G H C R container registry and can be embedded in the framework.

This project is buil t on the P y T o r c h l ibrary and the official P y T o r c h Docker image
was used as the base for the image creation. After bui ld ing this image, everything worked
correctly and a l l methods processed the files i n the framework in parallel . However, a
problem arose, downloading the images to a given node. It turned out that the base
P y T o r c h image was several gigabytes in size and wi th the model embedded, downloading
the necessary pip package had a resulting size of 10.59 G B . A l t h o u g h some layers are shared
between images, it took several minutes to ini t ial ize a l l 6 detection methods.

It was necessary to proceed to opt imizat ion. The P y T o r c h Docker image as the base
image was replaced wi th a P y t h o n image. This was because it turned out that P y T o r c h
contained a l l the necessary libraries to run on the graphics card, which were not needed.
P y T o r c h was installed i n the P y t h o n image to run only on the C P U and other minor
optimizations were made, such as clearing the memory cache after instal l ing the package,
etc. Due to these changes, the size was reduced to 1.48 G B . This opt imizat ion reduced the

40

deployment t ime to a m a x i m u m of tens of seconds i n an environment w i th good connectivity
from the cluster to the container registry.

9.2 fakeVideoForensics

The intgeration procedure for this project 3 was the same as in the previous methods, per­
haps a l i t t le simpler. A g a i n , prepared templates were used, and an automated bu i ld was
created using G i thub Act ions w i th image publishing to G H C R container registry.

This method focusses on video detection, but provides no description of how the model
should be trained. The repository probably does not even contain a script that could be
used for this purpose. However, it was possible to use an already pre-trained model . This
project focused on processing only one file, so no code changes were necessary, s t i l l fork 4 of
this repository was created.

The lesson learnt from previous integration of detection methods was to optimize the
image size as a second step. The image created on the first attempt had 4.81 G B . We tried
to use P y T o r c h without the abi l i ty to run on the graphics card, deleting the cache, etc.
The success was not that great in this case, but we s t i l l managed to reduce the image size
to 3.63 G B .

3 h t t p s : //github. com/afuentesf/fakeVideoForensics
4 h t t p s : //github.com/PlayerBernyl2/fakeVideoForensics

41

Chapter 10

Client application implementation

A browser extension is actually a web applicat ion that has minor specifics. A must have is a
„Web app manifest" that specifies what attributes and permissions the extension has. The
basic attributes are name, version, default popup file (application's entrypoint file), etc.
One of the permissions is the abi l i ty to access the D O M on the currently openned/hosted
page. This allows it to read and search for certain elements on the page or even modify
them.

A s the extension does not require any specific permissions i n the base, it is a normal
web applicat ion. If interactive selection of elements on the page is implemented, then the
application would require the use of special browser A P I s .

(DF) A 2

: . . F 1 C-D
Element

s e l e c t i o n
Fi le up load L ink

(a) Input type selection

(b) Results view

Figure 10.1: Web extension implementat ion

(DF) A 2 m

Overall score: Q

© 8 7 . 2 5 % €)

ShallowCNNLFCC ® ShallowCNN LfCC 9
87.2B % 73.48 %

|J '

ShallowCNNMFCC m ©
0.06 % 98.99 %

0 ' 100% 0%

TSSD Wave • TSSD Wave ©
9 9 . 9 9 * 10D%

0% 100 % 0% 10C

The Angula r Mate r i a l framework wi th the Angula r Mate r i a l component l ibrary was used
for implementat ion [15]. This made it possible to quickly create a simple applicat ion that is
visual ly appealing, but its ma in purpose was focused on s implic i ty and understandability.
Y o u can see how applicat ion looks like i n fig. 10.1.

42

10.1 Functionalities

The app provides a l l the proposed functionality, but not a l l potential designed features were
covered. Thus, it is not possible to interactively select an element on the page to detect.
Otherwise, it is possible to upload your own files or l inks. Once the detection is started
the applicat ion displays a loading screen. W h e n the request is processed, the results are
displayed. The implemented applicat ion tr ied to keep the layout and functionality designed
i n wireframes, but it was not always technically possible.

One difference from the design is the use of a dialog box instead of a tool t ip . Angula r
Mate r i a l does not allow tool t ip creation, and the use of another 3rd party l ibrary was
deemed inappropriate for subsequent appl icat ion maintenance. This is a minor change that
is more technical and does not affect the functionality in any way.

The second difference was in moving the but ton to send feedback from the bo t tom of the
application to the top. D u r i n g development, this locat ion was identified as inappropriate
because it obscured the results bars.

10.2 Communication with framework

The most specific part of the implementat ion of the applicat ion was communicat ing wi th
the framework and wai t ing for the detection to complete. The applicat ion uses the so-
called pooling, it is a technique of repeatedly sending messages to the server to retrieve
certain information [41]. The applicat ion resends the message to the R E S T A P I using
the /requests/results method and waits un t i l it receives a non-empty response. Since
processing is expected to take some time, the pause between calls was chosen to be two
second.

In the extreme case, a framework crash could occur, so a timeout should be implemented
to notify user something is wrong. The timeout value was set to 20 min . The timeout should
not really occur and it is a last resort.

This communicat ion could be replaced by websockets i n the future, where resource
wastage would be reduced in some way and the server could notify complet ion as soon as
it receives processed results. Managing websockets is not free, but after implementation, it
would be possible to compare which technique is more efficient.

10.3 Supported browsers

The extension does not use a specific A P I to communicate w i th the browser, making the
application more easily portable between different browsers. The functionality was tested in
Google Chrome (v l l 3) , Microsoft Edge (v l l 3) and M o z i l l a Firefox (v l l 3) . The extension
worked without errors i n a l l browsers w i th one exception. It is not possible to upload a
file i n M o z i l l a Firefox because when the file picker is closed, the extension itself is also
automatical ly closed and the user is unable to view the results page i n this case. Th i s is
b u g 1 , which after a long time might be closed in one of the upcoming versions. Us ing the
l ink to detect it works without any problems.

Using the npm run build command, the project is buil t and in the dist folder, and it
is possible to load the extension in the browser when using browser i n developer mode.

x h t t p s : //bugzilla.mozilla.org/show_bug.cgi?id=1292701

43

Chapter 11

Test experiment and results

Three different test scenarios were created to test the rel iabil i ty of the framework, the re­
sources consumed, the workload, and the accuracy of the detection methods. F ive different
datasets were used to create data for each ind iv idua l test scenario. In total , more than 2200
files were run through the framework during the tests.

The following sections show the C P U load and R A M usage graphs from Grafana, unfor­
tunately, the labels are hard to read in the document. The graphs should have a sufficient
textual description to compensate for this deficiency. Alternat ively, high-resolution images
are available on the included media, where the labels should readbale. In the case of the
C P U load graph, the colors represent the following properties/values: yellow - busy system,
blue - busy user, red - busy lowait, and green - idle. O n the other hand, for R A M usage,
the colors represent: yellow - R A M used, blue - R A M cache + buffer, green - R A M free.
C P U load is i n percentages from 0 to 100 % and R A M usage from 0 to 32 G B .

11.1 Datasets

Five different datasets were used for testing; three audio datasets: L J Speach 1 , WaveFake 2 ,
and A S V 2 0 2 1 3 , and for video: FaceForensics++ 4 and C e l e b D F 0 . Some datasets were used
for t ra ining of detection methods; these data were not used for testing where even possible.
For fakeVideoForensics, it was not possible to verify which dataset data was used for train­
ing, hence the accuracy of the method may be slightly higher i n our tests. To make the
tests more provable, data from a dataset on which no learning was performed were always
used.

For the first test scenario, 500 recordings/videos were selected from a given dataset,
where 250 were deepfakes and 250 were originals. Thus , four sets of 500 files were created.
For stress testing, 75 audio recordings and 25 from the WaveFake and C e l e b D F datasets
were pseudo-randomly selected. In this case, it was not the detection result that mattered,
but the processing t ime and consumed resources.

The A S V 2 0 2 1 dataset contained F L A C recordings, but the detection methods included
in the framework were unable to process this format, so they were converted to W A V format
using the f fmpeg tool .

x h t t p s : //keithito.com/LJ-Speech-Dataset/
2 h t t p s : //github.com/RUB-SysSec/WaveFake
3 h t t p s : //www.asvspoof.org/index2021.html
4 h t t p s : //github.com/ondyari/FaceForensics
5 h t t p s : //github.com/yuezunli/celeb-deepf akef orensics

44

http://www.asvspoof.org/index2021.html

The L J Speech and WaveFake datasets do not achieve high quali ty from today's per­
spective, because L J Speech contains recordings of only one person [25]. WaveFake is then
a dataset generated based on L J Speech applying different generation techniques. Perhaps
this is why the detection methods in AudioDeepFakeDetect ion achieved such high values
during training. Therefore, it w i l l be interesting to see how these detection methods perform
against A S V 2 0 2 1 recordings.

11.2 Test case 1 - accuracy

The first test scenario tests the rel iabil i ty of the framework and the accuracy of each method.
Four iterations of this scenario were performed, where each input data was from one dataset.
One i teration took several hours to perform. Thus, one i teration contained 500 files (250
originals, 250 originals). The files were sent sequentially for detection to the framework,
that means always wai t ing for one file to finish processing before start ing the next one.
For each i tem, the processing time, the results of each detection method, and the file size
were measured. R O C curves wi th A U C values were generated for each i teration and each
detection method.

Four different overall score calculations were also tested, w i th the best one to be selected
and included i n the framework. The first calculat ion used a weighted average, i n which it
pr iori t ized the m i n i m u m value (deepfake) of a l l the resulting ones. The second calculation,
on the other hand, pr ior i t ized the m a x i m u m value (original) using the weighted average.
The th i rd calculat ion took the average value of a l l methods. The last calculation combined
al l the previous three variants, and the calculat ion depended on how many methods were
above 50 % value and how many methods were below it.

Figure 11.1: Test results for L J Speech and WaveFake data

The first i teration was performed wi th data from the L J Speech (250 originals) and
WaveFake (250 deepfakes) datasets. AudioDeepFakeDetect ion automatical ly split data i n a
very pr imit ive way into t ra ining and testing sets. In the case of the „in dis t r ibut ion" type,

45

only one type of deepfake was used to be detected. Thus, we pseudo-randomly selected
data from the testing part of the dataset.

Some methods achieved very decent results; these are the methods that were „out of
dis t i rbut ion". The „in dis t r ibut ion" methods were trained on only one type of deepfake,
which was min imal ly represented i n the test data. The S h a l l o w C N N model trained on
only one type of deepfake was unable to generalize, and its results were very poor. A l l
calculations of the overall score achieved a perfect classifier. Results are shown i n fig. 11.1.

In table 11.2 you can see statistics on the test data and the processing t ime.

Detection method A U C
S h a l l o w C N N _ l f c c _ I 0.313040
S h a l l o w C N N _ l f c c _ 0 0.999808
S h a l l o w C N N _ m f c c _ I 0.289784
S h a l l o w C N N _ m f c c _ 0 0.994016
T S S D _ W a v e _ I 0.641496
T S S D _ W a v e _ 0 0.999760
Overa l l score 1 1.0
Overa l l score2 1.0
Overa l l score3 1.0
Overa l l score4 1.0

Size average 288.3 k B
Size median 299.5 k B
Size m i n i m u m 67.9 k B
Size max imu 445.0 k B
T i m e average 72.9 s
T i m e median 77.9 s
T ime m i n i m u m 16.6 s
T ime m a x i m u m 85.4 s

Table 11.1: A U C values for L J Speech and
WaveFake data

Table 11.2: Test data and processing time
statistics for L J Speech and WaveFake data

The to ta l C P U load exceeded 60 % almost a l l the t ime, of which about 20 % was taken
by system load and the remaining 40 % by applications from user space (see fig. 11.2).
System load is l ikely to include resource management, throt t l ing, context switching, etc.
For R A M usage, we can see spikes reaching up to 30 G B if you include R A M Used and
R A M Cache + Buffer (see fig. 11.3). Memory is always freed up between detection runs,
and we can see that P y T o r c h runs are relatively R A M intensive.

Figure 11.2: C P U load for L J Speech and WaveFake data

46

Memory Basic

Figure 11.3: R A M usage for L J Speech and WaveFake data

The second i teration used the A S V 2 0 2 1 dataset, which is d ivided into three parts [9].
One part is the deepfakes, the second part is the original recordings, and the th i rd part is
the original recordings played back and resampled by the recording device. A l l three parts
were used i n the tests and where the originals and the re-recorded originals were i n a 1:1
ratio.

0.4 0.6 O.E
False P o s i t i v e R a t e

0.4 0.6
False P o s i t i v e R a t e

S h a l l o w C N N _ J f c c J — S h a l l o w C N N m f c c I TSSD W a v e J O v e r a l l scorel O v e r a l l s c o r e 3 O v e r a l l s c o r e 4

— S h a l l o w C N N I f c c O -— S h a l l o w C N N m f c c 0 T S S D W a v e 0 O v e r a l l s c o r e 2

(a) R O C curves of individual detection methods (b) R O C curves of overall score calculation

Figure 11.4: Test results for A S V 2 0 2 1 data

The results are no longer as perfect as in the first i teration (see fig. 11.4a). It could
be said that a l l the detection methods in this case are at the level of a random classifier.
If we compare the two iterations, the TSSD_Wave_0 detection method performs the best.
Fi rs t i teration confirmed results of AudioDeepFakeDetect ion experiment results but second
iteration does not show such good results. We can say that those methods are not par-

47

t icular ly beneficial for real-word applicat ion. H a d these methods been trained on a more
robust dataset, they might have had better results.

Detection method A U C
S h a l l o w C N N _ l f c c _ I 0.410944
S h a l l o w C N N _ l f c c _ 0 0.305408
S h a l l o w C N N _ m f c c _ I 0.517672
S h a l l o w C N N _ m f c c _ 0 0.349888
T S S D _ W a v e _ I 0.309056
T S S D _ W a v e _ 0 0.507360
Overa l l score 1 0.353648
Overa l l score2 0.354896
Overa l l score3 0.376416
Overa l l score4 0.354496

Size average 87.5 k B
Size median 78.5 k B
Size m i n i m u m 19.1 k B
Size max imu 265 k B
T i m e average 49.5 s
T i m e median 76.1 s
T i m e m i n i m u m 16.3 s
T i m e m a x i m u m 96.1 s

Table 11.4: Test data and processing time
statistics for A S V 2 0 2 1 data

Table 11.3: A U C values for A S V 2 0 2 1 data

Interestingly, the calculations of the overall score are not par t icular ly different, and the
best performance overall score is based on a average (see fig. 11.4b). Perhaps i f ind iv idua l
detection methods had performed a l i t t le better, then comparison of the total score calcula­
t ion would be more interesting. In this case, we cannot objectively declare one calculation
to be the best. We think the fourth method might have potential and w i l l therefore be
implemented in the framework.

The video detection method is only one integrated method, so we have no comparison.
We could t ry to compare the results w i th Deepware, but unfortunately we d id not get
access to their A P I . We d id a smal l manual test, but its comparison would not have much
informational value.

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.6 1.0
False Positive Rate False Positive Rate

f a k e V i d e o F o r e n s i c s f a k e V i d e o F o r e n s i c s

(a) CelebDF data (b) FaceForenicscs+-1- data

Figure 11.5: R O C curves for video detection

18

The th i rd i teration was done wi th selected data from the C e l e b D F dataset, and the
fourth i teration from FaceForensics++. This detection method used FaceForenics++ dataset
for learning, but unfortunately nowhere is it described what data were used for t raining.
Therefore, the data selection was again done pseudo-randomly.

The A U C values for the C e l e b D F data were 0.5738 and for the FaceForensics++ data
0.7584. A s mentioned, the result for FaceForensics++ may be a bit biased because we do
not know how much our test data overlap wi th the real t ra ining data. However, a result of
around 60 % could be considered acceptable.

Size average 1893 k B
Size median 1674 k B
Size m i n i m u m 467 k B
Size max imu 5992 k B
T i m e average 153.8 s
T i m e median 145.7 s
T ime m i n i m u m 34.6 s
T ime m a x i m u m 496.8 s

Size average 2031 k B
Size median 1559 k B
Size m i n i m u m 449 k B
Size max imu 10694 k B
T i m e average 389.5 s
T i m e median 305.3 s
T ime m i n i m u m 126.4 s
T ime m a x i m u m 881.7 s

Table 11.5: Test data and processing t ime Table 11.6: Test data and processing time
statistics for C e l e b D F data statistics for FaceForenicscs++ data

Video processing took much longer and is at the l imi t of what is bearable for the average
user. Averaging around three 3 minutes for the C e l e b D F data (see table 11.5) and 6.5 m i n
for FaceForensics++ data (see table 11.6). Yet the videos are no means larger, but very
likely a more efficient codec or more compression is used, and the videos are longer.

O n the C P U and R A M usage graphs (see fig. 11.6, 11.7), we can see that this method is
slightly more efficient in R A M consumption, and hence we do not see the various spikes in
the graph. Since there is no need to solve mult iple detection methods i n parallel in different
containers, the C P U usage by the system is min ima l and 20 % is taken by the detection
method itself.

Figure 11.6: C P U load for C e l e b D F data

49

Memory Sasic

Figure 11.7: R A M usage for C e l e b D F data

A l l files were processed by the framework, w i th a few exceptions where the file was not
processed due to timeout. These were a just couple of videos. Compared to Deepware which
d id not process a large por t ion of the files, from a rel iabi l i ty perspective, the framework
comes out better. The accuracy of the detection is questionable.

11.3 Test case 2 - small bursts

The second test no longer looked at the accuracy of the detection methods, but only at the
resource usage in the workload. In this test, 100 files (25 videos and 75 audio recordings)
were used. These files were shuffled and sent for detection in batches containing 5 files.
Subsequently, a l l files were waited for evaluation before sending another batch.

(a) C P U load of first node (b) C P U load of second node

(c) C P U load of third node (d) R A M usage of first node

Figure 11.8: Resource consumption during test scenario 2

50

It took 2 hours 8 minutes to process a l l files. In graphs in fig. 11.8, we can see that
three nodes were used during the test. Not a l l of them worked a l l the t ime, but this fact
confirms that the scaling works, the load was spread over mult iple nodes, and i n some cases
the processing was done i n parallel . F ive files are borderline to effectively activate scaling,
and these are more likely to be cases where 4 audio recordings and one video were sent for
detection.

This test was repeated one more t ime to test if storing the results in the database would
relieve the load on the system. This t ime the test lasted 2 minutes 41 seconds and according
to the graphs (see fig. 11.9) the system hardly recognized that 100 files were detected.

(a) C P U load (b) R A M usage

Figure 11.9: Resource consumption during test scenario 2 wi th cached results

11.4 Test case 3 - congestion

The last test used the same data as the previous scenario; the database was deleted so
process was unable to use the already calculated results. In this scenario, a l l 100 files were
sent at once to verify how the framework performs under load.

(a) First node (b) Second node

(c) Third node

Figure 11.10: C P U load during test scenario 3

51

We can see that three nodes were activated and that the C P U load of a l l three was
around 80 % for the t ime that the audio and video files were processed. Even though there
were more audio files, the video processing took much longer and we can observe that the
load dropped dramatical ly in the middle, which lasted another few minutes (see fig. 11.10).
A similar trend can be seen for the R A M load (see fig. 11.11).

The framework was able to process a l l 100 files i n a t ime of 19 minutes, 31 seconds.
This is a rapid acceleration over the previous scenario. We can observe that the scaling of
the system is fast and helps the processing speed under load to be very substantially.

(a) First node (b) Second node

(c) Third node

Figure 11.11: R A M usage during test scenario 3

11.5 Tests evaluation

In the first scenario, we can see that the system is not efficiently loaded and resources are
being wasted. A t first glance it may look like this, but each method has access to a l imited
amount of resources, so when the system is under load it w i l l work reliably. Therefore,
sequential u t i l iza t ion is not appropriate.

Kuberentes can be set up to have ind iv idua l containers contend for resources, but this
greatly increased the management overhead of the system and d id not produce a perfor­
mance increase. The resource al location can be easily changed, and certainly the system
could be set up l i t t le bit better based on these tests. It w i l l also depend greatly on the
part icular H W that w i l l be used. S t i l l , the framework works reliably, and especially its
good features w i l l only show up in a real workload.

The system had to run wi th 32 G B of R A M ; otherwise, the audio detection methods
failed because of lack of memory. Each method must have at least 3 G B of memory
guaranteed, better a bit more. A l l methods run i n parallel at the same t ime, which puts a
lot of demands on the host platform. This problem could be fixed by changing the Request
Processing Control ler so that a l l six detection methods do not run in parallel but i n smaller
batches. This would increase the processing time, but it would be possible to run on a
platform wi th only 16 G B of R A M .

52

The video detection method was not very fast i n processing, so recommendation for
use i n the product ion version would not be granted. Some optimizations would need to be
made. A u d i o detection methods on the other hand d id not provide great detection accuracy,
this could be changed by using a more robust dataset for t raining.

Al though the ind iv idua l methods d id not achieve high quality, the implementation and
tests can be declared successful. The framework can perform its work reliably for several
hours and the scaling efficiency becomes apparent under load. A s a result, the framework
is able to handle a large number of files i n a relatively short t ime. The only problem is
the use of more powerful H W when integrating a large number of methods, this could
be par t ia l ly reduced by changing Requrst Processing Conteroller or possibly opt imizing
ind iv idua l methods. The deployment of the framework strongly depends on the integrated
methods and, used hardware.

11.6 Cost analysis

The framework wi th describe detection methods require H W w i t h 32 G B of R A M for its
functionality, and the use of neural networks is a computat ional ly demanding operation. So
min ima l recommendation is to use at least 4 C P U s . In the end, the B8ms v i r tua l machine
was chosen for deployment i n Azure A K S . This machine provides 8 C P U s , 32 G B R A M
and costs $0.38 per hour to operate.

A system w i t h no load needs one such machine, but i f there is a load and scaling is
applied, there may be more of these machines running at the time. In our case, we have set
the m a x i m u m number of nodes to 3. Therefore, if the framework were at 100 % load, an
hour of three of these machines would cost $1.14. The framework also requires external IP,
load balancer, and storage. These items in our case cost a tenth of what v i r tua l machines
cost.

The framwork was tested for several days and scaling was applied at certain stages.
One day cost about $18.8 on average to run this framework. That would work out to a
monthly operation of over $500. In our case, we were using a free cluster that is designed
for development and testing. The standard cluster is chargeable but provides a more stable
environment that is focused on speed, availability, and reliabili ty. The cost of the standard
cluster is $70 6 , so the to ta l cost would be around $600 per month.

If a machine wi th only 16 G B of R A M could be used and more scaling could be ut i ­
lized, savings could be realized while maintaining similar properties. Alternat ively, util ize
a custom H W , where the purchase price of the H W and its potential lifetime, maintenance,
and cost of operation would have to be factored into the price.

'https://azure.mi crosoft.com/en-us/pricing/calculator/?service=kubernetes-service

53

https://azure.mi
http://crosoft.com/en-us/pricing/

Chapter 12

Conclusion

The a im of the work was to study the deepfakes and create a framework that allows the
integration of different detection methods. A client appl icat ion (web extension) which
present the functionality of the framework was also part of the goals.

The topic of deepfake is very broad, and even the assignment of this thesis contained
many different tasks that were successfully completed. In the first part, techniques for
creating and detecting different types of deepfakes were covered. One of the tools was
tested, but unfortunately a comparison wi th the created tool would not provide much
informational value.

The framework was successfully implemented according to the proposed architecture,
from which it d id not deviate i n any way. The development of such a tool was not a simple,
as not a l l things could be tested on a local station. The microservice architecture allowed
for development and testing of ind iv idua l parts, but the overall framework had to be tested
and debugged i n the cloud.

Most of the work was spent developing the framework, which is not visible to the average
user. O n the one hand this is probably correct. The whole system is very complex and
consists of a large number of components, but the user interacts only through the client
applicat ion. O n the basis of the tests, the user should not be able to te l l much difference
when the framework is under load or not.

Personally, I had l i t t le experience w i t h containerization, but this was the first t ime I
came in contact w i th an orchestrator like Kubernetes. In doing this thesis, I gained a lot
of valuable experience i n developing and deploying microserive architectures and container­
izat ion itself. M a n y different technologies have been used, the use of which may have been
questionable at first glance. I hope I have managed to dispel any doubts and explain why
the framework was designed and implemented i n this way.

I would like to end this paper w i t h a quote from A l a n Tur ing that I have remembered
since I first read it:

"Sometimes it is the people no one can imagine anything of who do the things
no one can imagine."

54

Bibliography

[1] What Is the Necessity of Bias in Neural Networks?
[https://www.turing.com/kb/necessity-of-bias-in-11eural-11etworks]. [cit.
2022- 12-29].

[2] A H M E D , S. W h o inadvertently shares deepfakes? A n a l y z i n g the role of pol i t ica l
interest,cognitive a b i l i t y a n d social network size. Telematics and Informatics. 2021,
vol . 57, p. 101508. D O I : https://doi.Org/10.1016/j.tele.2020.101508. I S S N 0736-5853.
Available at:
https: //www. sciencedirect.com/science/axticle/pii/S0736585320301672.

[3] A L E X G A M E L A , R . F . Podman vs Docker: What are the differences?
[https://www.imaginarycloud.com/blog/podman-vs-docker/], [cit. 2023-05-06].

[4] A L E X A N D R A B A R U F F A T I . Chat GPT Statistics 2023: Trends And The Future
Perspectives [https://blog.gitnux.com/chat-gpt-statistics/]. [cit. 2023-05-04].

[5] A L M U T A I R I , Z . and E L G I B R E E N , H. A Review of M o d e r n A u d i o Deepfake Detect ion
Methods: Challenges and Future Directions. Algorithms. 2022, vol . 15, no. 5. D O I :
10.3390/al5050155. I S S N 1999-4893. Available at:
https://www.mdpi.com/1999-4893/15/5/155.

[6] A M A Z O N . Containers at AWS [https://aws.amazon.com/containers/]. [cit.
2023- 05-06].

[7] A M O S , Z A C H A R Y . Hybrid Vishing Attacks Skyrocketing: What to Know [https:
/ / itsupplychain.com/hybrid-vishing-attacks-skyrocketing-what-to-know/].
2022 [cit. 2022-12-28].

[8] C L O U D Z E R O T E A M . Horizontal Vs. Vertical Scaling: How Do They Compare?
[https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling]. [cit.
2023-05-9].

[9] D E L G A D O , H., E V A N S , N . , K I N N U N E N , T . , E T A L . . MVC Framework Introduction

[https://www.asvspoof.org/index2021.html]. [cit. 2023-05-15].

[10] D E O T T E , C . HOW to choose CNN Architecture MNIST [https:
//www.kaggle.com/code/cdeotte/how-to-choose-cnn-architecture-mnist]. [cit.
2023-01-04].

[11] D E V O P S C U B E . How to Setup Prometheus Node Exporter on Kubernetes
[https: //devopscube.com/node-exporter-kubernetes/]. [cit. 2023-05-10].

55

https://www.turing.com/kb/necessity-of-bias-in-11eural-11etworks
https://doi.Org/10.1016/j.tele.2020.101508
http://sciencedirect.com/science/axticle/pii/S0736585320301672
https://www.imaginarycloud.com/blog/podman-vs-docker/
http://blog.gitnux.com/chat-gpt-statistics/
https://www.mdpi.com/1999-4893/15/5/155
http://aws.amazon.com/containers/
http://itsupplychain.com/hybrid-vishing-attacks-skyrocketing-what-to-know/
https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling
http://www.asvspoof.org/index2021.html
http://www.kaggle.com/code/cdeotte/how-to-choose-cnn-architecture-mnist

[12] F E R R A R A , M . , F R A N C O , A . and M A L T O N I , D. The magic passport. In: IEEE

International Joint Conference on Biometrics. 2014, p. 1-7. DOI:
10.1109/BTAS.2014.6996240.

[13] F I R C , A . Applicability of Deepfakes in the Field of Cyber Security. Brno,CZ, 2021.
Diplomová práce. Vysoké učení technické v Brně,Fakulta informačních technologií.
Available at: https://www.fit.vut.cz/study/thesis/23761/.

[14] F I R C , A . and M A L I N K A , K . The dawn of a text-dependent society: deepfakes as a
threat to speech verification systems. In: SAC '22: Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing. Association for Computing
Machinery, 2022, p. 1646-1655. DOI: 10.1145/3477314.3507013. Available at:
https: //www.fit.vut.cz/research/publicat i o n / 1 2 5 9 5 .

[15] G O O G L E . Components [https://material.angular.io/components/categories].
[cit. 2023-05-08] .

[16] G O O G L E . Introduction to the Angular docs [https://angular.io/docs]. [cit.
2023-05-08] .

[17] G O O G L E . What is container orchestration?
[https: / /cloud.google.com/discover/what-is-container-orchestration]. [cit.
2023-05-06] .

[18] G O O G L E . What is Microservices Architecture?
[https: / /cloud.google.com/learn/what-is-microservices-architecture]. [cit.
2023-01-09] .

[19] G R A F A N A L A B S . What is Grafana? [https://grafana.com/oss/grafana/]. [cit.
2023-05-07] .

[20] H A S A N , T. 6 Top Message Brokers for Modern Applications
[https://geekflare.com/top-message-brokers/]. [cit. 2023-05-07] .

[21] H E R N A N D E Z O R T E G A , J . , T O L O S A N A , R . , F I E R R E Z , J . and M O R A L E S , A . DeepFakes

detection based on heart rate estimation: single-and multi-frame. In: Handbook of
Digital Face Manipulation and Detection: From DeepFakes to Morphing Attacks.
Springer International Publishing, 2022, p. 255-273. DOI:
10.1007/978-3-030-87664-7_5. ISBN 978-3-030-87664-7. Available at:
h t t p s : / / d o i . o r g / 1 0 . 1 0 0 7 / 9 7 8 - 3 - 0 3 0 - 8 7 6 6 4 - 7 _ 5 .

[22] H O M E L A N D S E C U R I T Y . Increasing Threat of Deepfake Identites
[https:/ /www.dhs.gov/sites/default /f i les/publications/
increasing_threats_of_deepfake_identities_0.pdf]. 2021 [cit. 2022-12-16] .

[23] I B S E N , M . , R A T H G E B , C , F I S C H E R , D., D R O Z D O W S K I , P. and B U S C H , C . Digital

Face Manipulation in Biometrie Systems. In: Handbook of Digital Face Manipulation
and Detection: From DeepFakes to Morphing Attacks. Springer International
Publishing, 2022, p. 27-43. DOI: 10.1007/978-3-030-87664-7_5. ISBN
978-3-030-87664-7. Available at: h t t p s : / / d o i . o r g / 1 0 . 1 0 0 7 / 9 7 8 - 3 - 0 3 0 - 8 7 6 6 4 - 7 _ 5 .

56

https://www.fit.vut.cz/study/thesis/23761/
http://www.fit.vut.cz/research/publicat
http://material.angular.io/components/categories
http://angular.io/docs
http://cloud.google.com/discover/what-is-container-orchestration
http://cloud.google.com/learn/what-is-microservices-architecture
http://grafana.com/oss/grafana/
https://geekflare.com/top-message-brokers/
https://doi.org/10.1007/978-3-030-87664-7_5
https://www.dhs.gov/sites/default/files/publications/
https://doi.org/10.1007/978-3-030-87664-7_5

[24] I B S E N , M . , R A T H G E B , C , F I S C H E R , D . , D R O Z D O W S K I , P . and B U S C H , C . A n

Introduction to D i g i t a l Face Manipu la t ion . In: Handbook of Digital Face
Manipulation and Detection: From DeepFakes to Morphing Attacks. Springer
International Publ i sh ing , 2022, p. 3-26. D O I : 10.1007/978-3-030-87664-7_5. I S B N
978-3-030-87664-7. Available at: https://doi.org/10.1007/978-3-030-87664-7_5.

[25] I T O , K . and J O H N S O N , L . The LJ Speech Dataset
[https://keithito.com/LJ-Speech-Dataset/]. 2017.

[26] K A A L E L . MVC Framework Introduction
[https://www.geeksforgeeks.org/mvc-framework-introduction/], [cit. 2023-05-15].

[27] K O R S H U N O V , P . and M A R C E L , S. The Threat of Deepfakes to Computer and H u m a n
Vis ions . In: Handbook of Digital Face Manipulation and Detection: From DeepFakes
to Morphing Attacks. Springer International Publ ish ing, 2022, p. 97-115. D O I :
10.1007/978-3-030-87664-7_5. I S B N 978-3-030-87664-7. Available at:
https://doi.org/10.1007/978-3-030-87664-7_5.

[28] K U B E R E N T E S S I G S . Walkthrough [https://github.com/kubernetes-sigs/
prometheus-adapt er/blob/master/docs/walkthrough.md]. [cit. 2023-05-12].

[29] M A J U M D A R , P. , A G A R W A L , A . , V A T S A , M . and S I N G H , R . Facia l retouching and

alteration detection. In: Handbook of Digital Face Manipulation and Detection: From
DeepFakes to Morphing Attacks. Springer International Publ ish ing, 2022, p. 367-387.
D O I : 10.1007/978-3-030-87664-7_5. I S B N 978-3-030-87664-7. Available at:
https://doi.org/10.1007/978-3-030-87664-7_5.

[30] M I C R O S O F T . Azure Container Instances and container orchestrators
[https: //learn, microsoft, com/en-us/azure/container-instances/container-
instances-orchestrator-relationship]. [cit. 2023-05-06].

[31] M I C R O S O F T . Overview of ASP.NET Core [https://learn.microsoft.com/en-us/
aspnet/core/introduction-to-aspnet-core?view=aspnetcore-7.0] . [cit.
2023-05-07].

[32] M I C R O S O F T . TypeScript is JavaScript with syntax for types.
[https://www.typescriptlang.org/]. [cit. 2023-05-08].

[33] M I L L S , A . C , K A E W C H A R U A Y , P. , S A T H I R A S A T T A Y A N O N , P. , D U A N G P U M M E T , S.,

G A L A J I T , K . et a l . Replay At t ack Detect ion Based on Voice and Non-voice Sections
for Speaker Verification. In: I E E E . 2022 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA ASC). 2022,
p. 221-226.

[34] MlRSKY, Y . and L E E , W . The Creat ion and Detect ion of Deepfakes: A Survey. ACM
Comput. Surv. New Y o r k , N Y , U S A : Associat ion for Compu t ing Machinery. 2021,
vol . 54, no. 1. D O I : 10.1145/3425780. I S S N 0360-0300. Available at:
https://doi.org/10.1145/3425780.

[35] M Ü L L E R , N . M . , P i z z i , K . and W I L L I A M S , J . H u m a n perception of audio deepfakes.
In: Proceedings of the 1st International Workshop on Deepfake Detection for Audio
Multimedia. Associa t ion for Compu t ing Machinery, 2022, p. 85-91. D O I :

57

https://doi.org/10.1007/978-3-030-87664-7_5
https://keithito.com/LJ-Speech-Dataset/
https://www.geeksforgeeks.org/mvc-framework-introduction/
https://doi.org/10.1007/978-3-030-87664-7_5
http://github.com/kubernetes-sigs/
https://doi.org/10.1007/978-3-030-87664-7_5
http://ASP.NET
http://learn.microsoft.com/en-us/
http://www.typescriptlang.org/
https://doi.org/10.1145/3425780

10.1145/3552466.3556531. I S B N 9781450394963. Available at:
https: //doi.org/10.1145/3552466.3556531.

[36] N G U Y E N , H . H . , Y A M A G I S H I , J . and E C H I Z E N , I. Capsule-Forensics Networks for

Deepfake Detect ion. In: Handbook of Digital Face Manipulation and Detection: From
DeepFakes to Morphing Attacks. Springer International Publ ish ing, 2022, p. 275-301.
D O I : 10.1007/978-3-030-87664-7_5. I S B N 978-3-030-87664-7. Available at:
https://doi.org/10.1007/978-3-030-87664-7_5.

[37] P E T E L E P A G E , T . S. Add a web app manifest [https://web.dev/add-manifest/].
[cit. 2023-05-08].

[38] P R O M E T H E U S A U T H O R S . Monitoring Linux host metrics with the Node Exporter
[https: //prometheus.io/docs/guides/node-export er/#monit or ing-linux-
host-metrics-with-the-node-exporter]. [cit. 2023-05-9].

[39] P R O M E T H E U S A U T H O R S . What is Prometheus?
[https://prometheus.io/docs/introduction/overview/], [cit. 2023-05-07].

[40] P R O M E T H E U S O P E R A T O R . Getting Started
[https://prometheus-operator.dev/docs/user-guides/getting-started/], [cit.
2023-05-10].

[41] P U B N U B . What is HTTP Long Polling?
[https://www.pubnub.com/blog/http-long-polling/], [cit. 2023-05-14].

[42] R E D H A T . What is a REST APL?
[https: //www.redhat.com/en/topics/api/what-is-a-rest-api]. [cit. 2023-05-06].

[43] R I C H A R D S O N , C . Pattern: Microservice Architecture
[https: //microservices.io/patterns/microservices.html]. [cit. 2023-01-09].

[44] R O Y , R . , J O S H I , I., D A S , A . and D A N T C H E V A , A . 3D C N N Architectures and

Atten t ion Mechanisms for Deepfake Detection. In: Handbook of Digital Face
Manipulation and Detection: From DeepFakes to Morphing Attacks. Springer
International Publ ish ing, 2022, p. 213-234. D O I : 10.1007/978-3-030-87664-7_5. I S B N
978-3-030-87664-7. Available at: https://doi.org/10.1007/978-3-030-87664-7_5.

[45] S C H E R H A G , U . , R A T H G E B , C . and B U S C H , C . Face M o r p h i n g At t ack Detect ion
Methods. In: Handbook of Digital Face Manipulation and Detection: From DeepFakes
to Morphing Attacks. Springer International Publ ish ing, 2022, p. 331-349. D O I :
10.1007/978-3-030-87664-7_5. I S B N 978-3-030-87664-7. Available at:
https://doi.org/10.1007/978-3-030-87664-7_5.

[46] S E N S I T Y T E A M . HOW to Detect a Deepfake Online: Lmage Forensics and Analysis of
Deepfake Videos
[https: / / sensity.ai/blog/deepf ake-detection/how-to-detect-a-deepf ake].
[cit. 2023-01-08].

[47] S H E A D , S. Elon Musk's tweets are moving markets — and some investors are worried
[https:
//www. cnbc.com/2021/01/29/elon-musks-tweet s-are-moving-markets.html].
2021 [cit. 2022-12-28].

58

https://doi.org/10.1007/978-3-030-87664-7_5
http://web.dev/add-manifest/
https://prometheus.io/docs/introduction/overview/
https://prometheus-operator.dev/docs/user-guides/getting-started/
https://www.pubnub.com/blog/http-long-polling/
http://www.redhat.com/en/topics/api/what-is-a-rest-api
https://doi.org/10.1007/978-3-030-87664-7_5
https://doi.org/10.1007/978-3-030-87664-7_5
http://cnbc.com/2021/01/29/elon-musks-

[48] S P R E E U W E R S , L . , S C H I L S , M . , V E L D H U I S , R . and K E L L Y , U . P rac t i ca l Evalua t ion of

Face Morph ing At t ack Detect ion Methods. In: Handbook of Digital Face
Manipulation and Detection: From DeepFakes to Morphing Attacks. Springer
International Publ ish ing, 2022, p. 351-365. D O I : 10.1007/978-3-030-87664-7_5. I S B N
978-3-030-87664-7. Available at: https://doi.org/10.1007/978-3-030-87664-7_5.

[49] T H E G R A P H Q L F O U N D A T I O N . Introduction to GraphQL
[https://graphql.org/learn/]. [cit. 2023-05-06].

[50] T H E K U B E R E N T E S A U T H O R S . Horizontal Pod Autoscaling [https:
//kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/].
[cit. 2023-05-11].

[51] T H E K U B E R E N T E S A U T H O R S . Objects In Kubernetes
[https: //kubernetes.io/docs/concepts/overview/working-with-objects/] . [cit.
2023-05-12].

[52] T O N Y G A R N O C K J O N E S , G. M . R . Introduction to Pika

[https://pika.readthedocs.io/en/stable/]. [cit. 2023-05-10].

[53] V E R D O L I V A , L . M e d i a Forensics and DeepFakes: A n Overview. IEEE Journal of
Selected Topics in Signal Processing. 2020, vol . 14, no. 5, p. 910-932. D O I :
10.1109/JSTSP.2020.3002101.

[54] V M W A R E . AMQP 0-9-1 Model Explained
[https://www.rabbitmq.com/tutorials/amqp-concepts.html]. [cit. 2023-05-10].

[55] V M W A R E . Monitoring with Prometheus & Grafana
[https://www.rabbitmq.com/prometheus.html]. [cit. 2023-05-07].

[56] V M W A R E . RabbitMQ Cluster Operator for Kubernetes
[https: //www.rabbitmq.com/kubernetes/operator/operator-overview.html]. [cit.
2023-05-10].

[57] W A N G , R . , J U E F E I X U , F . , H U A N G , Y . , G u o , Q. , X I E , X . et a l . Deepsonar: Towards

effective and robust detection of ai-synthesized fake voices. In: Proceedings of the
28th ACM international conference on multimedia. 2020, p. 1207-1216.

59

https://doi.org/10.1007/978-3-030-87664-7_5
http://graphql.org/learn/
http://pika.readthedocs.io/en/stable/
https://www.rabbitmq.com/tutorials/amqp-concepts.html
http://www.rabbitmq.com/prometheus.html
http://www.rabbitmq.com/kubernetes/operator/operator-overview.html

Appendix A

Contents of the attached media

training - Logs from training, and trained models for AudioDeepFakeDetect ion
project

results - Test results C S V s , resources consumption graphs

src - Sources codes

clients - Browser extension implementation

server - Framework components and deployment files

api - A P I Endpoin t implementat ion

k8s - Kuberentes deployment manifests files

processing units - Request Processing Control ler implementat ion

tests - Test and graphs plot t ing scripts

templates - Templates for detection methods integration

R E A D M E . m d - Descr ipt ion of how to work wi th framework

xberna l8 .pdf - Th is document

60

