
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ
ÚSTAV MECHANIKY TĚLES, M EC H AT RON IKY A
BIOMECHANIKY

FACULTY OF MECHANICAL ENGINEERING
INSTITUTE OF SOLID MECHANICS, MECHATRONICS AND
BIOMECHANICS

EMBEDDED CONTROL SYSTEM FOR AN
AUTONOMOUS MOBILE ROBOT
VESTAVĚNY ŘÍDICÍ SYSTÉM PRO AUTONOMNÍ MOBILNÍ ROBOT

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

Bc. JAN HRBÁČEK

Ing. JIŔÍ KREJSA, Ph.D.

BRNO 2011

AUTOR PRACE
AUTHOR

VEDOUCÍ PRÁCE
SUPERVISOR

Vysoké učení technické v Brně, Fakulta strojního inženýrství

Ustav mechaniky těles, mechatroniky a biomechaniky
Akademický rok: 2010/2011

ZADÁNÍ DIPLOMOVÉ PRÁCE

student(ka): Bc. Jan Hrbáček

který/která studuje v magisterském navazujícím studijním programu

obor: Mechatronika (3906T001)

Ředitel ústavu Vám v souladu se zákonem ě.l 11/1998 o vysokých školách a se Studijním a
zkušebním řádem V U T v Brně určuje následující téma diplomové práce:

Vestavěný řídicí systém pro autonomní mobilní robot

v anglickém jazyce:

Embedded control systém for an autonomous mobile robot

Stručná charakteristika problematiky úkolu:

Navrhněte embedded řídicí systém pro mobilní robot s těmito parametry:

* podpora běžných průmyslových sběrnic (CAN-bus, EIA-485,..)
* minimálně soft real-time chování
* rozšiřitelnost a modularita

Cíle diplomové práce:

1. Stručná rešerše tématu.
2. Výběr vhodného hardware.
3. Volba vhodného operačního systému.
4. Volba mechanismu meziprocesní komunikace jednotlivých modulů
5. Implementace základních ovladačů sběrnic.

Seznam odborne literatury:

Hristu-Varsakelis, Dimitrios; Levine, William S. (Eds.): Handbook of Networked and Embedded
Control Systems

Vedoucí diplomové práce: Ing. Jiří Krejsa, Ph.D.

Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku 2010/2011.

V Brně, dne 26.10.2010

L.S.

prof. Ing. Jindřich Petruška, CSc.
Ředitel ústavu

prof. PvNDr. Miroslav Doupovec, CSc.
Děkan fakulty

ABSTRACT
The master's thesis deals w i th the design and realization of an embedded control system
for the autonomous mobile robot Advee. The control system forms an abstract ion layer
between the hardware means of the robot and higher control layers tha t handle robot lo­
calization and autonomous navigat ion. Modular system structure has been designed and
inter-process communicat ion mechanism has been chosen. The designed control system
has been then implemented w i th the support for EIA-485 and CAN bus communicat ion
standards.
The architecture of the system has been verified dur ing more than 500 hours of com­
mercial operat ion of the robot prototype equipped w i th the control system.

KEYWORDS
Robotics, contro l , real-t ime

ABSTRAKT
Diplomová práce se zabývá návrhem a realizací vestavěného řídicího systému určeného
pro autonomní mobilní robot Advee. Řídicí systém tvoří vrstvu abstrakce mezi hard­
warovými prostředky robotu a vyššími vrstvami řízení, které provádějí lokalizaci robotu a
plánování pohybu. V rámci návrhu byla vyvinuta modulární st ruktura systému a zvoleny
prostředky mezimodulové komunikace. Navržený systém byl pak implementován včetně
podpory komunikačních standardů EIA-485 a CAN bus.
Zvolená architektura systému se v praxi osvědčila — prototyp robotu Advee řízený pop­
saným systémem má za sebou více než 500 hodin komerčního provozu s min imem poruch.

KLÍČOVÁ SLOVA
Robotika, řízení, real-t ime

HRBÁČEK, Jan. Embedded control system for an autonomous mobile robot mas­
ter 's thesis. Brno: Brno University of Technology, Fakulta strojního inženýrství, Ústav
mechaniky těles, mechatroniky a biomechaniky, 2011. 69 p. Supervised by Ing. Jiří
Krejsa, PhD.

DECLARATION

I declare tha t I have elaborated my master's thesis on the theme of "Embedded

control system for an autonomous mobile robot" independently, under the supervision of

the master's thesis supervisor and w i th the use of technical l i terature and other sources

of informat ion which are all quoted in the thesis and detailed in the list of l i terature at

the end of the thesis.

As the author of the master's thesis I fur thermore declare tha t , concerning the cre­

ation of this master's thesis, I have not infringed any copyright. In particular, I have

not unlawful ly encroached on anyone's personal copyright and I am ful ly aware of the

consequences in the case of breaking Regulation § 11 and the fol lowing of the Copyright

Ac t No 121/2000 Vol . , including the possible consequences of cr iminal law resulted f rom

Regulation §152 of Criminal Ac t No 140 /1961 Vol .

Brno

(author 's signature)

ACKNOWLEDGEMENT
I would like t o thank my thesis supervisor Ing. J in Krejsa, PhD. for his support, supervision

and expert advice dur ing the whole work on the thesis subject. My grat i tude belongs

also to the whole Bender Robotics team for being such great colleagues.

Contents

Introduction 11
Mobile robot Advee 11
Required functionality of the control system 12
Real-Time constraints 13

1 Recherche of existing solutions 14
1.1 Microsoft Robotics Developer Studio 14
1.2 Player/Stage 15
1.3 IPC: Inter-Process Communication 15
1.4 L C M : Lightweight Communications and Marshalling 15

2 Computing platform selection 16
2.1 Hardware means 16
2.2 Operating system 18

2.2.1 VxWorks, QNX, Windows C E etc 18
2.2.2 GNU/Linux 18

3 Modular software conception 21
3.1 Development tools used in lower levels 22
3.2 Folder structure of the control system 23
3.3 Standard module architecture 24

3.3.1 Error reporting library l i b e r r o r 26
3.4 Inter-module communication 27

3.4.1 L C M : Lightweight Communications and Marshalling 28
3.4.2 Naming conventions in communication 31
3.4.3 Communication interface of the modules 31
3.4.4 User-space library libmessaging 32

3.5 List of implemented modules 32
3.6 The watchdog process 33
3.7 Remote diagnostics and simulation support 34

3.7.1 Simulation 36

7

4 Detailed hardware description 37
4.1 Power subsystem 38
4.2 Motion subsystem 39
4.3 Sensory equipment 40
4.4 Computer box 41

4.4.1 TS-7800 peripherals 42

5 EIA-485 subsystem 43
5.1 Bus description 43

5.1.1 Communication protocol 44
5.2 Kernel driver TS-UART 45
5.3 User-space library librs485 46

5.3.1 Device drivers 49
5.4 Driver module driver_rs485a 49

5.4.1 Interruptible waiting 50
5.4.2 Data-polling functionality 51

5.5 Driver module driver_rs485b 52

6 CAN-bus subsystem 53
6.1 Bus description 53
6.2 CANopen higher-layer protocol 54
6.3 Kernel driver lincan 54
6.4 User-space library libcanbus 55

6.4.1 DS-301 standard layer 55
6.4.2 DSP-402 standard layer 55

6.5 Driver module driver_canbus 56

7 Auxiliary subsystems 57
7.1 Power supply control 57

7.1.1 Support for BR-PSC1 in the librs485 57
7.1.2 Driver module driver_power 58

7.2 Fan control 58
7.2.1 User-space library libi2c 59

7.2.2 Driver module driver_aux 60

8 Conclusion 61

Bibliography 63

List of symbols, physical constants and abbreviations 66

List of appendices

A Instructions of current devices

List of Figures

1 Autonomous mobile robot Advee 12

2.1 TS-7800 A R M Single Board Computer [23] 18

3.1 Advee hardware and software modules scheme 22

3.2 Module state transition diagram 24
3.3 C# .NET diagnostic center 35
3.4 Android OS diagnostic center 36

4.1 Simplified schematics of Advee's functional units 37
4.2 Power box with some of power modules fitted 38
4.3 Parts of the Maxon drive system [27] 39
4.4 Berger Lahr IclA N065 Intelligent Compact Drive drawing [3] 40
4.5 TS-CAN1 PC/104 CAN-bus interface board [24] 42

5.1 EIA-485 typical application [26] 43
5.2 Custom EIA-485 /EIA-422 communication protocol message structure 44
5.3 Reception finite state machine diagram 47

8.1 Advee in a real environment (19th International Trade Fair A M P E R
2011) 62

List of Tables

A . l Instruction set of BR-SD1 68
A.2 Instruction set of B R - S O l 68
A.3 Instruction set of BR-SBS1 68
A.4 Instruction set of BR-PSC1 69

10

Introduction

Robotics is an engineering branch where a control system has always played an
irreplaceable role and has dramatically influenced overall performance. Autonomous
robotics has posed even more challenging claims than the "traditional" stationary
industrial robotics — the control systems should serve also as a real system brain
that disposes of certain level of intelligence allowing to solve complex problems.

In order to quallify a system as embedded, it has to be dedicated to perform only
a restricted set of functions and be a natural part of a more complex device. This
demands are very often satisfied rightly in the field of (mobile) robotics — a robotic
control system is usually expected to be robust, reliable and power efficient which
are another common characteristics of an embedded system.

The design of an embedded control system is an extensive task that comprises
a number of decisions. It should start from consideration of mechanic constraints
(that influence e.g. needed sampling rates), continue with selection of suitable hard­
ware means (that would flawlessly interface sensors and actuators) and finish with
software architecture choice (that is mostly discussed hereinafter). One can denote
the design as a complex mechatronic problem.

This thesis should provide a description of such design process — except the
mechanical analysis that is given in [20] and which the thesis builds upon. To
outline concrete parameters of the problem, a brief description of the advertising
robot Advee will be given.

Mobile robot Advee

Advee is an autonomous mobile robot developed in cooperation between the Insti­
tute of Solid Mechanics, Mechatronics and Biomechanics at B U T F M E and Ben­
der Robotics s.r.o. It is designated specifically for presentational and advertising
purposes and providing the user with a rich multimedial experience. Mechanical
construction of the robot is described in [20] and shown on Figure 1. It disposes of
the Ackerman chassis type that provides great stability and power efficiency at the
cost of its nonholonomic constraints.

11

(a) Outer appearance (b) Mechanical construction

Fig. 1: Autonomous mobile robot Advee

The electric equipment of the robot is formed by an eight-cell LiFeYP04 accu
pack powering the whole robot, a set of sensors (16 ultrasonic, 4 infrared, odometry
and a beacon scanner device), a motion subsystem (drive and steering) and human-
interface devices (a large touch monitor, a digital camera and a pair of loudspeakers).

Required functionality of the control system

The submission of this thesis formulates several general demands on the designed
control system that should be met:

• support for standard industrial busses (CAN-bus, EIA-485, ...)

• minimally soft real-time behavior

• extensibility and modularity in design

To master the design process, the thesis should provide a brief recherche on the
theme, describe the hardware and suitable operating system selection process and
choose an applicable inter-process communication mechanism. On these fundaments
basic bus drivers shall be implemented.

12

Real-Time constraints

A real-time system is one with explicit deterministic or probabilistic timing require­
ments [9]. In other words, the system is subject to a constraint on response time
within it should process the request. Depending on the impact of not meeting the
deadline to the system, the individual task or the whole system can be hard or soft
[2]:

• as hard real-time is usually denoted a task or a system for which exceeding
the constraint means a failure

• soft real-time is a task / system whose performace is negatively affected by
missing deadlines — but not critically

This division is however not binary — every application has its specifics and the
degree of tolerance to exceeding time limits strongly varies. This fact is sometimes
expressed by introducing the third, middle level of real-timeness — the firm real-time
category.

The designed control system falls rather to the area of soft real-time computing.
A l l fast processes are distributedly controlled by specialized control units (drive
motor with its control unit, steering compact drive), used sensors cannot be polled
faster than a few times per second and the safety of the robot is guaranteed also for
the case of control system failure. The role of the control system is thus relatively
high-level and the time constraints are measured in milliseconds rather than in
microseconds.

13

Chapter 1

Recherche of existing solutions

One can find a wide variety of existing robotic control system realizations. Some of
these are built without using any framework or library, but such approach it usually
not sustainable for larger projects. Building the control system on the top of a set
of libraries brings both positives and negatives. The positive aspects (using a tested
code as the base, reduction of needed work) commonly outweigh the negative ones
(e.g. possible occurrence of errors in the third party code) so that the utilization of
a framework / library is generally beneficial.

Because each control system is unique, designed for different purposes and with
various motivations (concreteness x abstraction etc.), the requirements posed on the
control framework / library differ as well. A number of systems that can potentially
satisfy these requirements exists; let's focus the core functionality of inter-process
communication (IPC). The libraries differ in the basic communication paradigm
(client-server vs. publisher-subscriber), complexity (encapsulating more IPC meth­
ods, data marshalling etc.) or operating system/programming language support.
A good comparison of several popular IPC libraries targeted for use in robotics is
provided in [10], including popular frameworks such as IPC or Player/Stage.

1.1 Microsoft Robotics Developer Studio

Microsoft Robotics Developer Studio [17] is a representative of the most complex
frameworks. Based on the Concurrency and Coordination Runtime for the .NET
framework, it provides a service-oriented model with multiple transport layer option
and automatic data marshalling and un-marshalling. The framework features also
a rich 3D simulational environment and a number of supported standard hardware
platforms. However, it is limited to be used on Microsoft Windows operating systems
that disqualifies it from further considerations.

14

1.2 Player/Stage

The framework is comprised of three projects [5]: the Player providing network in­
terface layer to a variety of common robot hardware, the Stage project implementing
a multi-body 2D simulation environment and finally the Gazebo project that runs
the simulation in a 3D world. While the framework is probably one of the most
used in the area of mobile robotics, it has been found to not fit the demands of a
robust and scalable embedded system as featuring only a "pull" publisher-subscriber
model over the T C P transport layer and running the complete robot driver software
in a single process.

1.3 IPC: Inter-Process Communication

Another popular library is IPC [22], a part of the C A R M E N toolkit. On the contrary
to the Player it features the better "push" publisher-subscriber model, still using
T C P transport. However, it has been decided to not use the library because of its
need for a central communication server.

1.4 L C M : Lightweight Communications and Mar­
shalling

L C M [10], [11] is a set of libraries designed at the Massachusetts Institute of Tech­
nology. It counts to the most lightweight frameworks (as the name suggests) and
does not provide any simulational environment. However, it features a rich variety
of supported programming languages and operating systems.

15

Chapter 2

Computing platform selection

The heart of the lower-level control system is usualy formed by a reasonably power-
full computer that coordinates the whole functionality. A suitable operating system
that provides abstraction over the hardware means is similarly important as a func­
tional hardware — it enables efficient use of the hardware on one hand and allows
the software to be written in a hardware-independent and modular way on the other
hand.

2.1 Hardware means

Appropriate hardware platform is esential to fulfill demands given by the submis­
sion. It should dispose of sufficient computing power to run both low-level (hardware
drivers) and middle-level (state estimation, motion planning) software with a power
margin reserved for future needs1. In order to minimize further development costs,
the platform should have an easily exploitable support for needed standardized com­
munication busses (at least Ethernet, CAN-bus and EIA-485/422).

The most important feature of the designed system is industrial-grade rugged-
ness and reliability that cannot be achieved without use of reliable hadware instru­
ments. So called Single Board Computers2 (SBCs) embody one of the best achiev­
able reliability — industrially proven components are soldered directly to the board,
minimizing the number of used connectors and sockets that are generally prone to
a mechanical failure. These computers do not excell in computational power, R A M
size or other parameters — often used is for example ISA bus that is something like
a dinosaur among current P C technologies. But when long-term stable operation is
a priority, it is a good choice.

1 Reserve in operational load has positive influence also on the real-time behavior — the oper­
ating system can more easily schedule running tasks.

2Such computers are often found in embedded systems.

16

The class of the computer is thus clear; the next relevant consideration is the
processor architecture. The architecture selection influences important parameters
of the computer as computational power or consumption; there are differences in
floating point calculations implementation or peripherals support. Exceptionally
advantageous is so-called System on Chip (SoC) approach — something like a mature
microcontroller that integrates almost all components of the computer into a single
package; usualy only R A M and non-volatile storage memory are needed externally.

Single board computers are produced mainly using processors of following archi­
tectures:

• x86 — a set of processor families ranging from the famous 32-bit Intel 80386
to recent Intel Core i7; the most widespread PC-class processor architecture
supported by almost every operating system

• ARM (Advanced RISC Machine) — dominant architecture on the mobile and
embedded market for its simplicity and low power demands

• PowerPC — known mainly as the architecture used for a long time by Apple
(before Apple surprisingly switched to x86)

The computer can take virtually any form and size with the smallest ones oc­
cupying space not bigger than a credit card. However, there are several standard
form factors used in embedded computing that are preferable to custom ones —
industrial standardization allows to enrich basic functionality of the computer by
using generic expansion modules. Probably the most used embedded form factor is
PC/104; the standard specifies not only the size and shape but also used computer
bus. In the oldest original version (that is still widely used) this bus is the already
mentioned ISA. Newer mutations feature also PCI and PCI Express busses. Before
choosing the form factor it is practical to verify availablity of peripheral modules
that will be likely exploited (e.g. a CAN-bus interface module).

With all mentioned aspects in mind, the TS-7800 Single Board Computer [23]
manufactured by Technologic Systems in PC/104 form factor has been chosen to
host the control system (Figure 2.1). The board is built upon a 500MHz Marvell
A R M 9 SoC that disposes of a Gigabit Ethernet controller, two USB 2.0 host ports,
two SATA ports and two native serial ports. It features 128MB of D D R - R A M
and 512 M B of high-speed N A N D flash memory extendable using full-size and micro
SD card sockets. Basic peripherals supported directly by the SoC are augmented by
eight serial ports implemented in an on-board F P G A (two of them can be turned into
EIA-485-compliant bus drivers) and five A D C inputs. The board can be optionally
equipped with a real-time clock and a temperature sensor (both used in our case).

17

Fig. 2.1: TS-7800 A R M Single Board Computer [23]

2.2 Operating system
Efficient use of the hardware is conditioned by the choice of a suitable operating
system that provides an interface to user-space programs. The OS should be capable
of at least soft real-time (RT) scheduling to allow the control system to work as
supposed.

2.2.1 VxWorks, QNX, Windows CE etc.

The biggest share on the real-time operating system (RTOS) market is held by
commercial RT operating systems. Systems like the VxWorks can be found in
devices ranging from cell phones to spacecrafts. Their scheduling and other system
qualities are often supported by sophisticated development environments and custom
hardware means ensuring the best compatibility between hardware and software.

However, their price is generally simply to high for anybody else than big com­
panies which effectively disables it from the selection.

2.2.2 GNU/Linux

In the GNU/Linux notation, Linux (called after the founder Linus Torvalds) desig­
nates the kernel and G N U (recursive acronym of GNU's Not Unix) refers to user-
space utilities and libraries provided by the G N U Project. The complete name is
frequently shortened just to Linux — for clarity, "Linux kernel" will be used here to
denote the kernel alone.

18

Linux kernel is monolithic with loadable modules support [15] and provides mul­
titasking capabilities, shared user-space libraries or multistack networking including
IPv4 and IPv6. Itself does not have real-time capabilities — there are generally
two ways to add needed features: the dual kernel approach and making the kernel
natively preemptive.

Dual kernel approach

This method introduces a new kernel (usually a micro- or nanokernel) which runs the
whole non-RT Linux system as a thread with the lowest priority. The communication
between RT and non-RT tasks is commonly possible using shared memory or FIFOs
(First In First Out).

RTLinux [31] Hard real-time microkernel, Linux runs as a fully preemptive process.

Adeos Adaptive Domain Environment for Operating Systems [30] — a kernel patch-
set implementing a nanokernel hardware abstraction layer, thus enabling real­
time behavior and more (virtualization, SMP clustering etc.).

RTAI Real Time Application Interface [21] — comprised of Adeos-based kernel
patchset and supporting services. Unfortunately, ARM9-based MV88F5182
SoC is not supported.

Xenomai [29] A framework providing industrial real-time operating system APIs
under Linux environment to allow simple migration of existing applications
to GNU/Linux. Originally designed to wrap various dual-kernel extensions,
version 3 aims to support also native kernel preemption. It supports the
MV88F5182 SoC but is not known to be used with the selected TS-7800 SBC.

Natively preemptive kernel

The other approach modifies the standard ("vanilla") kernel to enable running both
non-RT and RT tasks. The most important is the RT-Preempt patch:

P R E E M P T _ R T [16] — kernel patchset that makes almost all previously unin-
erruptible system calls preemptible.

The use of Linux-based operating system was probable from the beginning —
due to its high modularity it can be run in a variety of forms ranging from small
embedded applications to multiprocessor supercomputers. The TS-7800 SBC is
primarily designed to operate in conjunction with Linux 3 and the source code of

3Minimalistic BusyBox environment and a full Debian distribution both in OABI and EABI
mutations is supplied by the manufacturer.

19

almost all custom hardware drivers is published by the manufacturer. This leads
to simple adaptability to concrete needs of the application even when the demands
grow over standard capabilities of the system. It brings also feasibility of fixing
potential errors in implementation (our experience with the 9-bit serial port mode
is described in Chapter 5 EIA-485 subsystem).

At present, no real-time augmentation of the Linux kernel has been utilized.
The modified kernel supplied by the manufacturer is compiled with the P R E E M P T
option set — it forces the highest level of preemption that the standard kernel allows
[15]. As [1] shows, the worst case latency is 22 ms (average 50 (xs) which suffices the
current control system demands.

20

Chapter 3

Modular software conception

Development of the software should not only reflect the actual needs but also prepare
ways that will enable future changes and extensions. It is very important to find
a balance between abstraction and specificity — too specific system structure will
not allow easy updating, on the other side too abstract design will be difficult to
understand and implement [7].

Modularity is one of the key parameters that strongly influence adaptability of
the system to unexpected eventualities. In the case of described robot control system
it is achieved in terms of both hardware and software means — hardware compo­
nents are interconnected using shared busses that allow for adding and replacing
individual components as long as defined communication interface is abided. The
principle of software modularity is exactly the same — the modules can be added
or reimplemented on condition of maintaining of specified interfaces.

As illustrated on Figure 3.1, the overall software equipment of the robot is divided
into three layers:

Low level Provides interaction with hardware devices described in previous chap­
ters — basically it translates device-specific data into standard inter-modular
messages and vice versa

Middle level Implements robot state estimation and path planning

High level Handles image processing, printing and user interaction

This thesis deals with the two lower layers; both of them are hosted on the Linux
SBC. However, thanks to used inter-process communication mechanism presented
below the processes can be run on any configuration of computers and even under

21

X

=1

USER
INTERFACE

ESTIMATOR

IMAGE/VOICE
PROCESSING

PLANNER

LCM

cc £2
w m
s 5

cc
LU CO
> IA

-4

cc IA
-4

Q LU

CC
LU CO
> IA

-4

cc IA
-4

Q LU

STEERING
SYSTEM

DRIVE
SYSTEM

cc cc
LU LU
> S cc O
Q 0 .

CC

yj x
> Z>
cc <
Q

CC
LU o o o

o 0
Q 1
Ü I

FANS

POWER
CONTROLLER

BEACON
SCANNER

REAR FRONT FRONT
ULTRASOUND ULRASOUND ODOMETRY

Fig. 3.1: Advee hardware and software modules scheme

different operating systems without any change of communication-related code. A l ­
most every piece1 of developed software functionality is a part of some module — an
independent process communicating with other modules using hereinafter described
mechanisms.

3.1 Development tools used in lower levels

There is a distinct difference in development philosophies between the high-level and
the other software means. The high level runs on a dedicated computer equipped
with a rather multimedia operating system (Windows 7), should provide the cus­
tomer with a rich user experience and its software implements the whole "person­
ality" of the robot. That is why the programming tools used for its development

1This includes all operational software equipment; tools used for debug, maintenance and diag­
nostic purposes naturally do not follow the modular pattern.

22

should enable in particular high level of abstraction from implementation details —
chosen .NET framework with C# as its main language fits these demands very well.

On the contrary, the lower levels should act as a reliable fundament that runs
efficiently to meet real-time deadlines and to not bring another transport delays
into the data flow. C and C++ languages suit these demands well — providing
rather low abstraction over the operating system services allow to use the hardware
economically. Longer time needed to develop and debug a functional program is
paid back by its predictable and reliable behavior.

The development for the TS-7800 SBC is by the manufacturer simplified by
providing a complete bundle for Windows operating systems containing the Eclipse
integrated development environment (IDE) supplemented by the G N U Compiler
Collection (GCC) in a form of cross compilers producing A R M machine code under
the Windows environment. The Eclipse IDE is extended by several plug-ins that
make the development more comfortable (e.g. a remote system support that allows
to connect to the target machine from within the IDE).

Highly important for a collaborative team work on the software is a version
control system. There are dozens of versioning systems, among which several of them
come on force due to their usability and support: Git (developed by Linus Torvalds,
the original author of Linux), Mercurial (initially aimed to supersede BitKeeper used
for Linux kernel versioning) and Subversion (often abbreviated as SVN). Whereas
the architecture of the former two systems is distributed, allowing versioning without
access to the central server too, S V N follows the older client-server paradigm. For
purposes of Advee software development, Subversion has been chosen as being more
user-friendly and supported by GUI clients.

There are three S V N repositories to host different parts of Advee's design —
the H W (hardware; design of the circuitry), F W (firmware; software for microcon­
trollers) and SW (software run on computers and diagnostic smartphones). The
SW repository is divided into four parts: android (diagnostic SW for Android OS),
linux (low- and middle-level code), win (high-level software) and messages (platform-
independent message definition files).

3.2 Folder structure of the control system

There is a folder tree that hosts the control system on single place — binaries, con­
figuration files and logs are placed together which simplifies deployment. The root
folder of the structure is (according to Linux conventions) placed to /opt/advee/.
It contains following subfolders:

bin/ Executable system files — all modules, the watchdog and diagnostic tools

23

INIT STOP

R U N
A.

ERROR

PAUSE - * TERMINATE
JUL

automatic

manual

auto&man

Fig. 3.2: Module state transition diagram

conf/ Configuration files influencing behavior of the system:

modules.txt A list of modules that should be run by the watchdog

srfs.txt Definition of ultrasonic sensors positions and communication IDs

log/ Root folder holding a number of log directories, for example:

2011_05_12_10_58_02/ Directory containing log files for robot opera­
tion started May 12, 2011 at 10:58:02

2011_05_12_14_16_34/ Directory containing log files for robot opera­
tion started May 12, 2011 at 14:16:34

The root directory holds also several shell scripts providing auxiliary functional­
ity, e.g. a script executed periodically by cron that checks whether the watchdog
runs and eventually starts is.

3.3 Standard module architecture

Each module supposed to run on the control system computer has to follow several
conventions that enable uniform handling of the modules by the watchdog module
that guards other modules from misbehavior (it can e.g. restart an unresponsive
module — see Section 3.6 The watchdog process).

Definitions common to all modules can be found mostly in header file advee.h.
Among others it contains definition of states the module can take (INIT, RUN,
PAUSE, STOP, E R R O R and T E R M I N A T E) ; they form a state machine common

24

to all modules. Allowed state transitions are shown on Figure 3.2, meaning of the
individual states is as follows:

INIT First state active after module startup; configuration loading and resources
preparation is accomplished

R U N Operational state of the module; the module executes its functionality

P A U S E Module operation is suspended; other (superior) modules can however
return the module to R U N state

STOP Module operation is manually suspended; the module is prevented to return
to R U N state other than manually

E R R O R The module tries to recover from fault situation

T E R M I N A T E The module shuts down and cleans up used resources

After initializing, the module can enter either R U N or PAUSE mode. STOP
state is accessible using manual commands only — it is currently used to temporarily
disable the path planner when manual driving is needed. The E R R O R state is not
used for now — no complex error recovering is employed. For use in code, the states
are defined as an enumeration type module_state_t:

1 t y p sdef enum m o d u l e . s t a t e . t
2 •c
3 MODULE.STATE.UNKNOWN = 0, //> unknown s t a t e
4 MODULE.STATE.INIT = 1, //> i n i t i a l i z e
5 MODULE.STATE.STOP = 2, //> s t o p p e d
6 MODULE.STATE.RUN = 3, //> r u n n i n g
7 MODULE.STATE.ERROR = 4, //> e r r o r
8 MODULE.STATE.TERMINATE = 5, //> c l e a n up & t e r m i n a t e
9 MODULE.STATE.PAUSE = 6 //> p a u s e d
10 } m o d u l e _ s t a t e _ t ;

Exit codes returned by the modules are subject to standardization as well. De­
fined codes are an extension of the Unix standard determining 0 (zero) as success
and non-zero result as error. Furthermore, values from 1 to 127 are reserved for
custom use; when the process is terminated by a Unix signal, the exit code is the
signal number plus 128. In advee h the custom range is divided into subranges of
general error types:

t y p e d e f enum m o d u l e . e x i t
s

_ t

t
MODULE.EXIT.SUCCESS = 0x00, //> e r r o r - f r e e end
MODULE.EX IT.RESOURCE = 0x10 , //> r e s o u r c e a l l o c a t i o n e r r o r
MODULE.EXIT.DEVICE = 0x20 , //> d e v i c e f a i l u r e
MODULE.EXIT.OTHER = 0x40 //> o t h e r f a t a l e r r o r

} m o d u l e . e x i t . t ;

25

Each general type can then represent a module-specific error by adding a number
from range <1; 16>.

3.3.1 Error reporting library liberror

Operational error reporting is further provided by the liberror support library
loosely inspired by a similar standard function set provided by GLib [6]. It defines
a custom structure type error_t that encapsulates a particular error instance. Each
error can be as usual described by its number and textual form (message). Moreover,
flags representing fatality, type and severity of the error and file path and line number
were the error occurred is provided.

t y p e d e f s t r u c t e r r o r . t
{

i n t number;
c h a r *msg;
c h a r f a t a l ;
e r r o r _ t y p e _ t t y p e ;
e r r o r . s e v e r i t y _ t s e v e r i t y ;
c h a r * f i l e ;
u n s i g n e d l i n e ;

} e r r o r . t ;

Error severity levels are defined through the error_severity_t enumeration:

Notice A debug information that does not mean an error

Warning Unpredicted state of the algorithm that deserves attention

Error A real error situation, the algorithm cannot continue in operation

Similarly, error types can take one of these values:

Unknown Type not specified or not conforming any of the following types

Timeout Communication failure caused by a non-responding device

Resource Unsuccessful use of a system resource (e.g. memory allocation failure)

Device External device related problem

To report an error, two mutations of error_set() function are available: the
original error_set() and error_set_const (). Their behavior differs only in han­
dling of their msg parameter of char pointer type. The former one frees the memory
allocated to hold the message (which is handy if we pass a dynamically generated
message string) and the other does not (that is used when the message string is
statically defined or should not be freed).

26

There is also a function for allocating a new error_t container (error_new()),
for freeing and clearing the error (error_f ree () & error_clear ()), for error prop­
agation / copying (error_propagate ()) and for printing the error_t type to a char­
acter string (dynamically allocated by error_to_string()). When the use of the
L C M library is not prohibited by defining a preprocessor macro N0_LCM, there is
also a function that send the error using standard message type common_error_t
(error_send()).

The library supports two types of automatic error outputs — when the error is
recorded by calling error_set() or error_set_const (), it can be automatically
printed to the standard error output stderr and sent to the L C M message bus.
Behavior of this automatic handling can be set using the function error_set_-
automatic () that accepts a parameter of type error_automatic_t:

t y p e d e f s t r u c t e r r o r . .automat i c _ t
i

e r r o r _ s e v e r i t y _ t p r i n t _ s e v e r i t y ;
i f n d e f NO.LCM

e r r o r _ s e v e r i t y _ t s e n d _ s e v e r i t y ;
c h a r * c h a n n e 1 ;
c h a r * m o d u l e ;
l c m _ t * l c m ;

e n d i f
} e r r o r _ a u t o m a t i c _ t ;

When compiled without the use of L C M , it contains only one field print_-
severity that determines level of severity from which the error will be printed out.
Similarly, there is a field send_severity for use with L C M — in such case also the
pointer to L C M instance, channel and module name have to be set.

3.4 Inter-module communication
Inter-module communication mechanism (or generally inter-process communication,
IPC) belongs to the most important parts of the system. There are several roles
that such mechanism should be playing:

• define unambiguous interface between modules with guaranteed inter-language
and inter-operating-system compatibility

• provide high-throughput and minimal-latency communication channel to allow
obeying real-time constraints

• support multiple platforms — at least Linux and Windows, C and C# .NET

As already stated, whole software equipment of the robot is spread over mini­
mally two computers. This fact disqualifies many traditional IPC methods as for

27

example shared memory, files or pipes. While the computers are interconnected
through Gigabit Ethernet, a solution based on the standard T C P / I P protocol suite
seems to fit well.

After filtering out unsuitable mechanisms, the next decision is conceptual —
choosing the paradigm. Considering that most of the data flowing through the
robot control system is of periodic nature, the publisher-subscriber model suits the
system better. Compared to the client-server paradigm, the publisher-subscriber
model realizes the inter-process communication as a bus shared among all modules
where each module can publish its messages and listen to any other messages. It
can be implemented as "push" or "pull" — the "push" mechanism delivers data
instantly while the "pull" method uses clients asking periodically for any new data
that effectively ruins the concept of a bus. To ensure lowest possible latency, "push"
method has to be used.

Because individual parts of the robot software are written using diverse lan­
guages, it is essential to maintain unambiguity of the communication between dif­
ferent interface implementations. This is best achievable using dedicated message
definition files and programming language specific generators of message-related
code (marshalling, unmarshalling, publishing etc.).

Having all these demands in mind, minimalistic yet powerful LCM [11] has been
chosen as an optimal mechanism for message passing in Advee.

3.4.1 L C M : Lightweight Communications and Marshalling

L C M is a set of libraries developed originally by the MIT D A R P A Urban Challenge
Team for their autonomous vehicle Talos that finished the D A R P A Urban Chal­
lenge in fourth place. It was used as a backbone communication bus for the whole
platform; its qualities can be illustrated on the fact that it managed to interconnect
70 separate modules resulting in average operational traffic of 16.6 M B / s built by
sending 6,775 messages per second.

The library is composed of three main functional blocks:

• message definition using a C-like definition language that can be compiled into
language-native message support files using the lcm-gen tool

• message marshalling/un-marshotting — conversion between native and byte
representation with defined endianness and runtime type safety checking

• communication itself based on U D P multicast

Originally, C /C++, Java, Python and M A T L A B on POSIX systems (Linux, OS
X , Cygwin, Solaris, etc.) were supported [14]. To fit the needs of the control system

28

completely, .NET framework support had to be added. Communication with the
L C M authors led to incorporating the .NET port to the library and participation
on further development of the project.

Message definition

A l l messages have to be defined in a custom definition language that closely resem­
bles the C language. The following code snippet provides definition of the most
frequent message in the system:

1 P a c k a g e c ommon;
2
3 s t r u c t d a t a _ s t a t e _ t
4 •c
5 c o n s t i n t 8 _ t UNKNOWN = 0, INIT = 1 , STOP = 2, RUN = 3, ERROR = 4, «-̂>

TERMINATE = 5, PAUSE = 6;
6
7
Q

i n t 6 4 _ t t i m e s t a m p // UNIX t i m e stamp

O
9 s t r i n g m o d u l e ; // s o f t w a r e module name (e . g . d r i v e r . c a n b u s)
10 i n t 8 _ t s t a t e ; // UNKNOWN , INIT , STOP , RUN, ERROR, TERMINATE
11

The definition begins with optional package specification — this allows to catego­
rize the messages into packages / namespaces known from higher-level programming
languages. The message itself is a complex type, a structure, that is composed of
primitive or other complex data types. A l l types can be also used to define multi­
dimensional, fixed- and variable-dimension arrays.

This thesis however does not intend to be a reference manual of the message
definition language — the details can be found in [10] or [11]. The most recent
information on the library can be found on its Google Code page [14].

Message type specifications are stored in files named same as the type with
extension ".1cm". These files are then fed to the utility lem-gen that converts the
L C M type specification into a language-dependent implementation.

Data marshalling / un-marshalling

The message instance has to be converted into a byte array to be sent through the
network. This is done by generating language- and message-specific support files by
the lem-gen tool.

Used binary data format is extremely compact and efficient — in fact there is
no formating information present in the marshalled message. This is also the reason
why L C M has to have built-in type safety — message definition mismatch between
the source and the recipient would have catastrophic consequences. On the contrary,
L C M is able to detect any discrepancy and report a type error.

29

U D P multicast communication

The primary transport-layer protocol of the L C M communication subsystem is the
User Datagram Protocol (UDP), a standard member of the Internet Protocol Suite.
On the contrary to the Transmission Control Protocol (TCP), this minimalistic
connectionless protocol does not provide any reception acknowledging or congestion
control which makes it extremely powerful. On the other hand, the communication
is on principle unreliable and the order of received datagrams is not guaranteed. The
probability of an error in a properly-cabled Gigabit Ethernet network is however very
low — the authors of the L C M state an estimation of the bit-error rate of 10~ 1 2 [10].

Unlike TCP, U D P is also capable of different routing schemes than the obbligato
unicast. The L C M library employs IP multicast because of its great scalability —
the amount of transmitted data does not grow with growing number of recipients.

TCP-based communication

The TCP-based message transport is not intended for operation; instead, it allows
for processing of log files as quickly as possible while avoiding packet loss.

L C M C # . N E T port

The L C M port for the .NET framework could have been implemented generally in
two ways. The former one included utilization of the C port for Windows completed
just at that time 2 — a wrapper would have to be used to form a layer between the
unmanaged3 L C M binary and the managed .NET world. The latter method is way
more complicated but brings the advantage that the whole code is managed.

While choosing the suitable solution, a combination of two factors was crucial:
the L C M features a native Java implementation and the Microsoft Visual Studio
for .NET 2005 disposes of a Java —> C# conversion wizard. It allows to process the
Java code and allow its structure without the need of a hideous manual rewriting.
Of course Java has slightly different naming conventions and the wizard does not
produce extraordinarily code so that some post-processing is necessary, but the
amount of needed work is greatly reduced.

The architecture mostly matches the Java implementation; the root namespace
is called LCM and contains three subspaces:

L C M . L C M Contains L C M implementation and directly related support classes

LCM.Server A runnable L C M T C P provider host server
2Usage of L C M under windows was possible even before — through the cygwin environment.
3Managed is the CIL byte code running on the .NET virtual machine (CLR)

30

L C M . U t i l At the moment containing only class BitConverter similar to the built-
in System.BitConverter class but with the support for data endianness

The main class LCM does not provide any communication nor marshalling func­
tionality — it just encapsulates the provider list and manages channel subscriptions.
Each provider has to conform to the Provider interface that guarantees uniform ac­
cess to the functionality provided by all provides. The U D P multicast provider is
implemented by the class UDPMulticastProvider. The T C P functionality it pro­
vided by the provider class TCPProvider and the server class TCPServer.

Two more interfaces reside in the main namespace — LCMEncodable defines
functions that every message object has to implement. Similarly, LCMSubscriber
defines the interface of objects that can be subscribed to receive messages. While
this interface is primarily destined for the user code, one standard class implements it
too — it is the MessageAggregator that allows message buffering and synchronous
access.

3.4.2 Naming conventions in communication

It is largely advantageous to define a set of naming conventions also for the com­
munication means — not for operational but debugging and diagnostic purposes.
There are two subjects of conventions — channel names and message type names.

Channel names are built by three uppercase parts concatenated by underscores:
the software-level prefix (LL for low-level, ML for middle-level, HL for high-level, CM
for common and SIM for simulational functionality), channel type identificator (CMD
for command, DATA for synchronous data and EVENT for asynchronous data) and
the name itself. For example, one of the standard messages is the module state
announcement channel CM_DATA_STATE.

The LCM-specified convention for messages naming is very similar except of
being lowercase and the trailing _ t . The SW-level prefices are realized as mes­
sage namespaces (lowlevel, middlelevel, highlevel, common, simulation). The
C language does not support namespaces, the namespace is thus bound using an
underscore too, e.g. the message sent in channel CM_DATA_STATE is denominated
common_data_state_t in C. In languages that support namespaces, the namespace
is utilized: the state message is named common.data_state_t.

3.4.3 Communication interface of the modules

On the top of L C M there are two standard messages defined in package common that
each module has to implement:

31

data_state_t A module state announcement message sent every second

cmd_state_t A command message that tells the module to change its state

Because every module uses liberror for error reporting, it also usually transmits
messages of another standard type common_error_t.

3.4.4 User-space library libmessaging

To support the functionality of the L C M library, another custom library has been in­
troduced: the libmessaging library. Its main purpose is to wrap C-specific message
files generated by the lem-gen tool and compile them to one binary file statically
linkable to executable projects. In addition, the library also implements function
raessaging_get_timestamp() to get int64_t-represented timestamp and defines
several preprocessor macros to simplify subscribing, unsubscribing and handler func­
tions declaration.

3.5 List of implemented modules

The current low- and middle-level functionality is divided into the following modules:

driver_aux Driver of auxiliary devices, currently comprising of the fan controller
only. Future development should bring more helper devices, such as lighting
of the robot of temperature measurement; it will be then decided whether to
place the new functionality also to this module or whether to introduce new
modules (the latter solution is more probable).

driver_canbus CAN-bus devices driver; at the time, only motion-related devices
are interconnected by the C A N bus. As soon as more devices will be moved
to the C A N bus, the driver will be probably renamed to driver_motion.

driver_joydev An obsolete driver formerly used for manual control of the robot
using a joystick / gamepad. The standard joydev kernel driver was utilized.

driver_power Driver communicating with the BR-PSC1 power source controller
through a full-duplex EIA-485 (sometimes denoted as EIA-422) line. It can
get and set the state of all driven power sources; new future will bring current
measuring on almost all channels.

driver_rs485a The first of two half-duplex EIA-485 drivers — the channel A hosts
devices with higher polling frequencies. Both BR-SD1 distance readings con­
centrators and the B R - S O l odometry board are governed by this driver.

32

driver_rs485b The second half-duplex EIA-485 driver that handles slowly polled
devices. Currently only the BR-SBS1 beacon scanner is connected.

estimator Middle-level module that fuses sensory information using the Extended
Kalman Filter and continually updates the estimate of robot position.

planner Another middle-level module that emits motion commands on the basis of
position estimate, goal position, surrounding obstacles and operation mode.

watchdog Subsidiary module that is responsible for running other modules and
guarding their responsiveness; is described in detail in the next chapter.

Modules estimator and planner have not been developed by the author of this
thesis and therefore will not be closely described.

3.6 The watchdog process

As already mentioned above, the state of modules intended to be run is continually
monitored by a process-control module, the watchdog. It is the only control system
process launched on system startup and it handles executing of modules listed in the
configuration file modules .txt. Running of the watchdog is also supervised: a shell
script is being executed as a cron task every minute4 to check that the watchdog
process is running and eventually restart it.

The configuration file modules.txt is a simple text file that contains a list of
module names and executable file names (that are mostly the same as the module
name):

driver_aux bin/driver_aux
driver_canbus bin/driver_canbus

For each listed module it creates a thread that handles only one particular pro­
cess; its workflow is denoted in Algorithm 3.1. The thread runs in an infinite5 loop
that begins with a check whether the process should run (line 2). If positive, it
sets signals actions and tries to send SIGTERM6 to all processes named identically as
the module (line 7). Returned pid differing from -1 means that the module was
running; line 9 guarantees that the module will be killed even if it does not react to

33

Algorithm 3.1 Watchdog process thread algorithm
1: while \terminate do
2: if command = T E R M I N A T E then
3: sleep();
4: continue; {loop until the module should be executed}
5: end if
6: setSignalActionsQ;
7: pid <- sendKill(modM/e, SIGTERM);
8: if pid 7^—1 then
9: killTheProcess(mo<iM/e);

10: end if
11: pid <— executeTheProcess (mo<iu/e);
12: exitCode <— waitFor Result (pid);
13: evaluateExitCode(exz£Code);
14: end while

the termination signal. Then the module process can be executed (line 11); after it
exits, returned exit code is evaluated.

The watchdog defines three phases of module lifecycle: RUNNING, TERMINATING
and TERMINATED. Another thread periodically (every 200 ms) runs through the mod­
ule list and for modules declared as RUNNING checks timestamp of their last status
announcement message. In the case the last message arrived more than two seconds
ago, the algorithm marks the module as TERMINATING and send SIGTERM to the pro­
cess. In next iteration it verifies that the module terminated for real (sets its phase
to TERMINATED in such case) and kills it if not.

Algorithm 3.1 mentions on line 2 pseudocode variable command; in fact it is a field
of the structure watchdog_process_t and its value is set in the handler of L C M
channel CM_CMD_STATE messages — it is the state that other parts of the system the
particular module to be in. Another such field is the state that gets actualized in
the CM_DATA_STATE handler.

3.7 Remote diagnostics and simulation support

Inherent feature of the L C M ' s transport layer (UDP multicast) is that virtually
unlimited number of recipients can subscribe to messages from outside of the system

4The standard Linux cron daemon does not provide sub-minute intervals.
5 Infinite only as long as the watchdog module should run; when its state is set to TEMINATE,

it stops also process threads.
6 A standard POSIX signal that tells the process to shut down.

34

file:///terminate

Fig. 3.3: C# .NET diagnostic center

without any negative impact upon the system itself. It is then easy to implement
a non-obtrusive diagnostic system that can monitor system modules and visualize
important quantities. Currently there are three separate diagnostic applications: for
console, Android-based smartphones and the .NET environment.

The console utility named simply diagnostic_center is the least complex one
and is designed for quick diagnostic operations through a SSH session. It exploits
the well-known ncurses library to easily build a responsive user interface including
a multi-dimensional menu etc. In the default view, a summary of the robot state is
given — its position, actual motion command and proximity sensors readings. The
robot can be also manually driven using keyboard arrows and homing of the steering
servo can be performed. The other view gives an overview of recent error reports in
the system.

Another diagnostic center is written using the C# .NET environment. It features
the most complete overview and control over the robot from all diagnostic centers
and serves as the main debugging tool. Its functionality is divided into six tabs:
motion control, modules list (state viewing and setting), sensory data display, power
subsystem control, middle-level software layer control (Figure 3.3) and error list. In
addition, right side of the window provides a list of recent messages.

35

SfflXä 2 : 1 3 P
• " " « M M

Ü BE m 2:23 m ÜBBe 2 :29PM
Advee Diagnostic Center

0.

d r i v e r . c a n b u s (U N K N O W N)

d r i v e r J o y d e v (U N K N O W N)

d r i ve r_ rs4S5a (U N K N O W N)

d r i v e r _ r s 4 S 5 b (U N K N O W N)

m i d d l e l e v e l (U N K N O W N)

w d t l i nux (U N K N O W N)

m/s

r a d

IP
(a) Map view (b) Modules list (c) Manual motion

Fig. 3.4: Android OS diagnostic center

Most frequently used is the third diagnostic center destined for the Android OS
and written in Java (Figure 3.4). It has been created to provide a practical tool
for manual driving and diagnostics during commercial operation of the robot. It
encapsulates all routinely needed functions ranging from manual motion control to
graphical view of the robot state within a map and modules control.

A communication logger is now being implemented simply by listening to all
messages and writing them to a file, allowing for later playback.

3.7.1 Simulation

As the interface of every module is unambiguously specified by consumed and pro­
duced messages, it is possible to replace any module by its simulation equivalent
without letting know the rest of the system7. This is used to emulate outer envi­
ronment of the robot by replacing the low layer (both software and hardware) by
a SIMLIB-based [18] chassis simulator that runs a dynamic model of the robot in
a given artificial world.

Several experiments have been done with described simulation environment that
have tried to design a new motion planner. The recent approach utilizing a neural
network was published in [13] and [8].

7When simulation speeds higher then real are needed, synchronously running parts of the system
have to be adapted — L C M message package simulation is intended for this use.

36

Chapter 4

Detailed hardware description

While this thesis focuses mainly on the software part of the robot (specifically the
lower two layers), it is necessary to describe the hardware that is interfaced and
driven by the software.

The functionality of the robot can be divided into several subsystems; several
division criterions can be employed, two basic ones are used in this thesis. The
former one is rather logical and is visualized on Figure 4.1 — it partitions the
system according to function, not implementation. This chapter follows the logical
way to give a compact overview of robot sensors, actuators etc. On the contrary,
the thesis is structured "technologically" because the implementation can be better
described in that way.

Touch
monitor

Louspeakers
+ NF amplifier

Sensory
subsystem

—1

Block schematics of electrical components
of the mobile robot Advee

Computing
and control

unit

Computing
and control

unit

"~l
i i i

• t

Power Drive
source subsystem

Accumulators
8xLiFeYP04

signal
power

Fig. 4.1: Simplified schematics of Advee's functional units

37

Fig. 4.2: Power box with some of power modules fitted

Some of the hardware means were available to be bough (e.g. the computers, the
drives with control units etc.) but significant part of the hardware had to be custom
designed. These modules can be easily recognized as their names follow a simple
naming convention: prefix BR- concatenated to a abbreviation of module function.

4.1 Power subsystem

The whole robot is powered by a 8-cell L iYFeP04 battery pack. Each cell provides
capacity of 40 Ah at voltage of 3.65 V (fully charged, operational voltage is lower but
minimally 2.5 V) , which gives total exploitable energy of approximately 1100 Wh.

As some components cannot be run from this relatively high voltage, a modular
power source subsystem was developed. It is comprised of an 8-channel power con­
troller BR-PSC1 (abbreviation of Power Source Controller) and a range of slave
modules (Figure 4.2 shows them in the power box):

BR-PSM1 Power Source Module — complex power source module with over-
current and under-voltage protection built around the LM5116 synchronous
buck controller.

38

BR-PSM2 Simple and cheap power source module for auxiliary purposes; built
using the LM2596 buck converter.

BR-PSS1 Power Source Switch — dual SSR-based switch for power control of the
touch monitor, audio amplifier and computers.

BR-PSS2 Bistable-relay switch used to engage and disengage motor power feed.
An external logical signal PAUSE is provided that can literally pause motion of
the robot in case of any danger. Both bumpers and both BR-SD1 units can
set the signal; a wireless security stop button is considered to be built.

A l l modules except the PSS2 module feature galvanic isolated current sensing
that allow to monitor power consumption of almost all modules. Both power sources
have transient voltage protection.

The Power Source Controller is a key component as it directs the whole power
of the robot. Start-up and halting sequences are implemented to the controller to
achieve deterministic procedure of applying power to individual subsystems. The
start-up procedure proceeds from simple to complex devices — it guarantees that
a slave component is being initialized before a master component.

4.2 Motion subsystem

Motion of the robot is ensured by two actuators: the drive motor and the steering
motor. The selection process of both of them is described in [20]; generally speaking,
power, torque, size, weight and communication interface were lead parameters.

(a) RE-family construction (b) EPOS 70/10

Fig. 4.3: Parts of the Maxon drive system [27]

39

Planetary gear

Motor

Position sensor

Power and control
electronic

Power signal
interface connection

Equipotiential
bonding connection

Field bus connection
CAN out

Field bus connection
CAN in

Fig. 4.4: Berger Lahr IclA N065 Intelligent Compact Drive drawing [3]

The propulsion unit is formed by a Maxon RE50 brushed DC motor with a GP52C
26:1 planetary gearhead and a H E D L 5540 500ppr encoder. It is governed by
a Maxon EPOS 70/10 position controller equipped with CANopen-compliant C A N -
bus interface.

For steering purposes, a Berger Lahr IclA DC024 1-040 Intelligent Compact
Drive is employed. It is an all-in-one device that also features a CANopen-compliant
CAN-bus interface.

4.3 Sensory equipment

Perception of the surrounding environment is supplied to the robot by individual
parts of the sensory subsystem. The middle-level software equipment makes use
of two types of information: data used for position estimating and data used for
obstacle detection.

Position estimates are built by module estimator that runs an Extended Kalman
Filter (EKF) . Input data are again of two types: odometry readings and beacon
responses. Front wheels (that are not driven and thus are not a subject to slippage)
are equipped with incremental rotary encoders (IRCs) that convert rotary motion
to a sequence of impulses. These impulses are decoded and counted by a B R - S O l
(Sensor Odometry) board, polled through a EIA-485 bus and converted to general
speeds by the driver_rs485a. Resulting translational and rotational speed is filled
to a lowlevel_data_odo_t message and placed to the L C M bus.

Absolute position is computed using angular signals from infrared (IR) beacons

40

received by a BR-SBS1 (Sensor Beacon1 Scanner) module. Polling for the data
(EIA-485 bus again) and placing them to a lowlevel_data_beacons_t message is
provided by module driver_rs485b.

Obstacle avoidance of the robot i assured using 16 ultrasonic range finder mod­
ules SRF-08 placed all around the chassis approximately 15 cm above terrain. This
guarantees that even low-profile obstacles are detected and accordingly handled.
The range finders form two groups of eight devices interconnected by a I 2 C bus that
are each managed by a BR-SD1 (Sensor Distance) board. This board also samples
distance readings from two IR range finders Sharp GP2Y0A41 placed in corners of
the robot and measuring the distance to ground. During normal operation, the dis­
tance should remain approximately constant — in case of markedly different results
the motion of the robot is stopped.

The last-instance collision avoidance devices are two bumpers placed in the front
and rear parts of the robot. As being attached movable, four switches on each
bumper activates the PAUSE signal and motion of the robot is interrupted by dis­
connecting the drive motor from power.

Advee also disposes of a HD camera built into his eye and used to find faces in
the picture — this sensor is however fully handled by the high-level computer and
will not be discussed here.

4.4 Computer box

The computational and control "heart" of the robot is enclosed to a acrylic-glass box
that is easily removable from the robot and in case of failure also interchangeable
for a replacement one. Air circulation through the computer box is provided by two
92mm fans — the fans run at circa 20 % of their maximal power due to energetic
efficiency of the used computers.

The computers are formed by the TS-7800 embedded Linux computer and one
or two Mini-ITX form factor high-level computers. Single Zotac IONITX-F-E with
a M 2 - A T X - H V power source and OCZ Agility 30GB SSD disc is currently exploited.
Gigabit Ethernet switch Netgear GS105 provides high-speed interconnection.

The box exposes single power connector (a 12-pin socket Souriau Trim Trio
SMS-QIKMATE) that is used to bring supply voltage to all hosted components. A l l
computers use the full battery voltage (maximally slightly under 30 V) , the switch
and the fans are provided with 12V supply.

1 Do not confuse with bacon — although both of them were essential for Advee's development...

41

Fig. 4.5: TS-CAN1 PC/104 CAN-bus interface board [24]

4.4.1 TS-7800 peripherals

While the TS-7800 single board computer provides almost whole needed interfaces,
there 3X6 3 few peripherals that supply the missing features.

The most important add-on is the TS-CAN1 PC/104 CAN-bus interface board
[24] that utilizes the ISA bus on TS-7800 through the standard PC/104 header. It
provides optically isolated CAN-bus interface with the help of the TJA1050 C A N
transceiver driven by the SJA1000 C A N controller; the SJA1000 is mapped to the
ISA bus using a XC9500XL-family C P L D .

The computer box fans are controlled by a B R - F A N 1 fan controller. It employs
a SMBus-interfaced MAX6615 (Dual-Channel Temperature Monitor and Fan-Speed
Controller with Thermistor Inputs) to measure temperature in two independent
zones and control the fans to keep the temperature at chosen level. The integrated
circuit monitors the fans and outputs logical fitness signal; in addition it can maxi­
mize power of a functional fan in case of the other fan failure.

The TS-7800 board provides the bus interfaces in the form of P C B headers —
modules B R - C O N 1 A and B R - C O N 1 B provide standard bus connectors mount-
able inside the computer box. B R - C O N 1 A exposes 4P4C 2 connectors for two
EIA-485 channels; additionally it provides EIA-422 bus driver for communication
with the power controller. There are also two 10-pin headers providing power con­
trol of up to two Min-ITX computers inside the box. B R - C O N 1 B board features
a DB9 CAN-bus socket and a Maxim 1-Wire bus driver (the 1-Wire bus is planned
to host auxiliary functionalities - temperature measurement or light control).

24P4C denotes a telephone-like connector with 4 positions and 4 contacts; also RJ9, RJ10, RJ22

42

Chapter 5

EIA-485 subsystem

The EIA-485 (formerly RS-485) standard has been exploited already on the pre­
ceding mobile robotic platform Bender 2 as the main communication bus. Because
Advee's circuitry is partly based on modules originating in B2 and because the bus
was well proven, it has been decided to employ the bus also to the new platform.

5.1 Bus description

The standard EIA-485 bus belongs to fundamental communication busses that lay
fundaments of industrial data communication [28]; in fact, it is the base of C A N -
bus physical layer. The bus occurs both in half-duplex (two-wire) and full-duplex
(four-wire) mutations allowing data transfer at rates of lOOkb/s (up to 1200 m) or
even lOMb/s (up to 10 m).

The line is differential — two wires (referred to as A (-) and B (+)1) are used to
carry "single" signal. The resulting logic value is the determined from the voltage
difference between these two wires. Positive difference B — A > 200 mV denotes

1This naming convention is widely broken, using A for the non-inverting (+) and B for the
inverting (-) signal.

Fig. 5.1: EIA-485 typical application [26]

43

logic 1 and is called Mark; negative difference B — A < —200 mV denotes logic 0
and is called Space.

The standard defines the physical media as a twister pair that makes the bus
largely resistent to electromagnetic disturbances. In addition, the twisted pair forms
a balanced line — suitable termination resistors with resistivity equal to the cable
impedance help to suppress reflections that can otherwise cause data corruption.
The typical resistivity of termination resistors is 120

A pair of resistors is also used to define quiescent levels on both wires [19]. This
prevents the wires from floating in the time when there is no device transmitting.
Values in the range of <470; 1000> Vl are usually recommended.

The EIA-422 standard can be thought of as of a simpler version of the EIA-485
destined primarily for point-to-point applications. While only one driver is allowed
on the bus, up to ten receivers can listen.

5.1.1 Communication protocol

Because the EIA-485 standard does not specify any communication protocol, a sim­
ple one has been developed already for utilization on the Bender 2 platform. More
features have been added during the time, the result is depicted on Figure 5.2. Mes­
sage acknowledging is used as well as error detection through a cyclic redundancy
check byte (CRC).

Each device on the bus disposes of its unique address; the address OxFF is re­
served for broadcast purposes. The next byte is the instruction identificator. Again,
two standard values are predefined and implemented in every device: OxFE to get
firmware version and OxFF to reset the device. Meaning of the flag byte is different
for request and response messages. In the request message the slave device can be
asked to resend last message or to not answer with an acknowledge message.

address i nstruction flags length dataO • • • dataN-1 CRC

/ \
request X X X X X X r n x - reserved

r - resend last
n - no response msb lsb

x - reserved

r - resend last
n - no response

response X X X X X X u b u - unknown instruction
b - bad CRC

Fig. 5.2: Custom EIA-485 / EIA-422 communication protocol message structure

44

To reliably mark the start of a message, 9-bit communication mode is employed
— the ninth bit is set for address bytes and cleared for the other bytes. The protocol
provides capacity of up to 255 data bytes limited by byte-range of the length field.
As noted, the data (together with the message header) are secured using the C R C
field. Because the C R C is only one-byte and to prevent bus jamming, it is advisable
to use rather short messages.

5.2 Kernel driver T S - U A R T

Both EIA-485 channels are handled by the extension serial ports implemented in
the on-board F P G A [25]. Each such port is accessed using two 16-bit registers STAT
and DATA. The former one defines parameters of the port (bitrate, 9-bit mode) and
provides transmission / reception flags. The latter serves as data buffer.

While the operation of the TS-UART port is indeed straightforward, the manu­
facturer of the TS-7800 (Technologic Systems Inc.) provides a kernel-space driver
tsuart that maps all ports to standard POSIX char devices listed in /dev. Devices
tttsO to t t t s 9 provide standard 8-bit access, devices tt8s0 to tt8s9 allow to use
the 9-bit mode2.

The driver follows the termios A P I so that the standard system calls can be
employed: openQ, readO, writeO, s e l e c t O or , closeO. For port configura­
tion, the structure termios and functions t c g e t a t t r () and t c s e t a t t r () (defined
in termios.h) are to be used.

The utilization of this driver was however not flawless; as noted above, the
communication protocol uses the 9-bit port mode. The data could be not read
using the 9-bit device while the transmission worked as supposed. It has been found
that the driver mishandles reading from the DATA register. Both devices share the
interrupt number so that both get noticed when some data arrive; however, the
data were read correctly for the (unused) 8-bit device and the 9-bit device found
only empty buffer. A fix incorporating data sharing between devices had to be
implemented; the misbehavior has disappeared. This case shows how advantageous
the open-source development model can be — the user can modify and fix system
components without time-consuming interaction with the manufacturer, particularly
when there is a deadline to meet.

2The 9-bit characters have to be coded into two-byte sequences.

45

5.3 User-space library librs485

The library encapsulates the communication protocol described above and provides
an easy way to extend the support to a new hardware module. Its functionality is
implemented mostly in rs485. c and declared in its header file rs485 .h; each device
type is declared in dedicated files.

To use the EIA-485 bus, one has to establish a connection — this is done by
calling the function rs485_ i n i t (). It accepts the serial port device path, a pointer
to termios structure where the old port configuration should be stored, communi­
cation speed and the obbligato double pointer to the error record:

r s485_ c onne c t i o n . t * r s 4 8 5 _ i n i t (c h a r *dev_name , s t r u c t t e r m i o s * s a v e d , s p e e d _ t »
s p e e d , e r r o r _ t * * e r r)

Firstly it assures GLib threads initialization and allocates a structure of type
rs485_connection_t. The device is then opened and its file descriptor saved to
the connection structure; if this fails, the error is set and the function returns MULL.
When successful, the function continues with port configuration and switching the
peripheral to EIA-485 mode by clearing the 15th bit on address 0xE800000C. Re­
maining fields of the connection structure are the initialized and the structure pointer
is returned. The line is now ready to be used.

Each device on the bus is denoted by its node record of rs485_node_t type. It
contains a pointer to the connection structure, address of the node, actual transmit-
receive operation and more support items:

t y p e d e f s t r u c t r s 4 8 5 _ n o d e _ t
i

r s 4 8 5 _ c o n n e c t i o n _ t * c o n n ; //> c o n n e c t i o n t o t h e bus
i n t a d d r e s s ; //> d e v i c e a d d r e s s
r s 4 8 5 _ t x r x _ d a t a _ t * t x r x ; //> t r a n s m i t - r e c e i v e d a t a and s t a t e
GCond * c o n d ; //> r e s p o n s e w a i t i n g c o n d i t i o n
i n t e r r c n t ; //> C A N b u s - l i k e e r r o r c o u n t (i n c - d e c)
GMutex * l o c k ; //> node d a t a l o c k

} r s 4 8 5 _ n o d e _ t ;

Participation of a device on data traffic on the bus is expressed using a subscrip-
tion record of type rs485_subscription_t. This record is usually filled in a device
initialization function (discussed below) and contains the device address, a pointer
to received message handler function and a v o i d * field used to point to custom
data.

To send a message without waiting for response, function rs485_send_msg() (or
its non-locked variant rs485_send_msg_unsafe()) is to be called. It simply places
the message data to a 16-bit wide buffer array, adds the C R C and writes the data to
the device. Defined enumeration types rs485_req_f lag_t and rs485_resp_f lag_t

46

Fig. 5.3: Reception finite state machine diagram

reflect the flag values for request and response messages, the message is defined as
structure rs485_msg_t holding all fields introduced above as uint8_t or uint8_t *
members:

t y p e d e f s t r u c t r s 4 8 5 _ m s g _ t

i
u i n t 8_t a d d r e ss ;
u i n t 8_t i n s t r ;
u i n t 8_t f l a g s ;
u i n t 8_t l e n g t h ;
u i n t 8_t * d a t a ;
u i n t 8_t c r c ;

} r s 4 8 5 _ msg. t ;

The reception is not that simple. It runs a finite state machine (FSM) inside the
thread created and started by the first call to rs485_subscribe (). The states of
the F S M are enumerated in rs485_recv_state_t and the current state of the FMS
is held as an item the rs485_f sm_t structure. Because of the master-slave nature
of the communication, just one F S M is needed per bus — the F S M structure record
is thus held as a member of the connection structure.

The finite state machine is fed by data gained using the standard call readO;
it is called only in the case that a preceding call to select () tells that there are
pending data. The F S M is driven by the f sm member of the connection structure.
The received bytes are saved to corresponding fields of a statically allocated mes­
sage buffer on dependence of the F S M state. For example, in the INIT state the
automaton waits for a 9-bit word marked with ninth bit set; when such word ar­
rives, the algorithm saves it to the message address field and transitions to the state
INSTR. The state LENGTH can transition either to the state DATA (where the data
words reception takes place) or directly to the state CRC depending on data length.
After receiving the last CRC word, the CRC is computed also from received data
to be compared. The message is then handed over to the handler function pointed
from the corresponding subscription record. The automaton finally transitions to
the INIT state.

The typical usage pattern of the bus from the master device point of view is

47

issuing a request message, waiting for an answer and returning the processed answer.
This approach is implemented by the function rs485_send_rec_msg(). It uses
another structure type to hold its data:

t y p e d e f s t r u c t r s 4 8 5 _ t x r x _ d a t a . .t
i

r s 4 8 5 _ m s g _ t msg; //> mess age buf f e r
c h a r p e n d i n g ; p e n d i n g t x - r x o p e r a t i o n
r s 4 8 5 _ m s g _ s t a t u s _ t s t a t u s ; //> t r a n s m i t - r e c e i v e s t a t e

} r s 4 8 5 _ t x r x _ d a t a _ t ;

The structure member status can take one of the values defined in the enume­
ration rs485_msg_status_t:

t y p e d e f
i

enum r s 4 8 5 _ m s g _ s t a t u s _ t

t
RS4S 35.TXRX_STATE.OK = 1, //> o p e r a t i o n OK
RS4S 35.TXRX.STATE.ERROR = 0, //> s e n d i n g / r e c e p t i o n e r r o r
RS4S 35.TXRX.STATE.TIMEOUT = -1, //> r e s p o n s e t i m e o u t
RS4S 35.TXRX.STATE.BADCRC = -2, //> bad CRC
RS4S 35.TXRX.STATE.UNKINSTR = -3 //> unknown i n s t r u c t i o n

} r s 4 8 5 . . m s g . s t a t u s . t ;

The routine starts with filling the msg container with the request message —
this is fully controlled by the device driver or any other user calling the function
rs485_send_rec_msg(). The function is then called; it sets node's txrx member
with the structure and sends the message in its msg buffer. After successful trans­
mission it begins to wait for the node condition (but maximally for RS485_TIME0UT
milliseconds). In case the waiting does not timeout, the msg buffer is now filled with
the response message and can be processed by the caller of the function.

Whilst the rs485_send_rec_msg() function waits for the condition to assert,
the above described reception F S M processes the response data into a message
structure. The message handler function of the device driver is then called; for
now, this handler is mostly reduced to calling the default handler rs485_handle ()
common to all devices. This function just copies message data to the msg buffer of
the device's txrx structure and signals the condition.

Beyond this basic functionality, the library provides also helper routines for con­
version between a byte array and a standard type (e.g. rs485_bytes_intl6() or
rs485_bytes_intl6()). Also functions wrapping standard instructions of a de­
vice are implemented: function rs485_get_fw_version() allows to fetch firmware
version (instruction OxFE), rs485_reset_node() send reset command to a node
(instruction OxFF) and rs485_reset_bcast () broadcasts the reset request to all
device on the bus (instruction OxFF to address OxFF).

48

http://35.TXRX_STATE.OK

5.3.1 Device drivers

Each device that should be connected to the EIA-485 bus has to have its driver that
forms a wrapper around the functionality of the device. It defines a device structure
type (e.g. sdl_device_t) that contains a pointer to an underlying rs485_node_t
record. The only obligatory function is the message handler whose address is a part
of the subscription record. In fact, this function is mostly reduced to retyping the
universal void pointer to the concrete device record type pointer and passing its
node record to the generic handle function rs485_handle ().

Almost every driver also provides a init function (e.g. s d l _ i n i t ()) and free
function (e.g. sdl_free_device()) to allocate the device record and subscribe to
reception of its messages. However, the freeing is usually not needed as the system
frees allocated memory of a terminated process automatically.

The most frequently used functionality of the driver are the wrapped functions
that provide access to the device features (e.g. sdl_get_srf _data()). The pattern
of writing these functions is almost always the same: the first thing to do is to
define a rs485_txrx_data_t structure and fill its message buffer with the request
message (at least node address and instruction is needed). The T X R X structure is
the handed over to the mentioned function rs485_send_rec_msg() that completely
handles both transmission and reception (and block execution until the reception
is complete or a timeout occurs). Then the status member value of the T X R X
structure is examined the function is terminated if the status is not OK. The response
messages is found in the same message buffer and can be used to extract its data —
the layout of the data is device- and instruction-specific.

A complete overview of implemented instructions and corresponding driver func­
tions for individual devices is given in the Appendix.

5.4 Driver module driver_rs485a

The EIA-485 bus A is the "faster" one as it interconnects devices polled at frequency
of 4 Hz. These modules are two instances if the BR-SD1 distance measurement
board and one B R - S O l odometry board. It is implemented in a single file (as the
whole code has only about 500 lines) structured in the following way:

Inclusions The first thing in the source code are inclusions of all needed header
files. Besides several standard headers, also advee .h, navitools .h3, error .h,
LCM-related and EIA-485-related header files are used.

3The libnavitools library encompasses localization- and navigation-related functionality.

49

Macro definitions Important parameters of the driver (as for example the bus
baud rate, serial port device path etc.) are digestedly defined as preprocessor
macros, which assures that an eventual modification will be done on one place
in the code only.

Type definitions The driver usually needs to hold some structured data — defin­
ing custom data types greatly improves readability of the code. In this case,
a structure type srf _t is defined to hold ultrasonic sensor information loaded
from the configuration file srfs.txt.

Variable declarations The driver uses a number of global variables that are sha­
red among all its functions and thread. E.g. the module state and its mutex,
L C M instance, EIA-485 connection and devices have to be global.

Function prototypes There are two possibilities how to achieve visibility of a func­
tion to another function: to define the former function before the latter or to
use a function prototype. The driver uses a combination of both approaches.

L C M handlers The declaration of L C M handler functions is clarified by using the
LCM_HANDLER macro defined in messaging.h.

Main function The function mainO provides an entry point for the module ex­
ecution. It handles all initialization tasks — it prepares for use the L C M ,
creates notification pipes, loads information about the ultrasonic sensors from
the config file, initializes the EIA-485 bus and all device drivers and creates
the data-polling thread. Then it enters a pseudo-infinite loop where the lcm_-
handleO gets called. As soon as the module approaches its termination, it
cleans up used resources and ends.

Helper functions Several utility functions are needed — the SIGTERM, SIGQUIT
and SIGINT signal handler, a function to safely change the module state etc.

Thread function The function read_thread_run() provides similar functionality
to the thread as function mainO to the whole process — it provides both initial
setup of some specific resources and the pseudo-endless loop that runs for the
rest of the time.

5.4.1 Interruptible waiting

Because the loop in the thread function provides periodic polling, its structure can be
divided into two logic parts: it executes the communication task and then suspends
for a specific amount of time and yields to the system task planner. However, the

50

waiting is highly desirable to be interruptible — in the case that the module receives
an order to terminate, the waiting should break immediately and let the process end
as soon as possible.

This behavior is achieved by using the standard function select () to wait for an
event on a special notification pipe. This waiting has however specified timeout that
end the waiting in case no event happens. The select () function works similarly
to sleep() except it can by interrupted any time by writing a character to the pipe.

The use of a pipe is close to a "hack" — since Linux core version 2.6.27 there
is a specialized resource eventfd that would fit better. It creates an event object
disposing of a file descriptor needed to be used by select (). Unfortunately, the
last version of the modified TS kernel is 2.6.21 so that this resource is not available.

5.4.2 Data-polling functionality

The effective part of the thread loop begins with a check the module is not in the
STOP state: in such case the data polling is skipped and the loop continues with
another iteration.

Both the front and consequently the rear BR-SD1 module can be then asked
for data using the function sdl_get_both_data() that, when successful, allocates
and fills buffers for the ultrasonic and infrared distance readings and returns counts
of gathered readings. The odometry data polled by the function s o l _ g e t _ t i c k s ()
from the only front B R - S O l module is handled similarly.

// f r o n t
c h a r n u m _ s r f = 0, num_sharp = 0;
s d l . s r f _ d a t a _ t * d a t a _ s r f = NULL;
d o u b l e * d a t a _ s h a r p = NULL;
s d l _ g e t _ b o t h _ d a t a (d i s t _ f , &num_srf , & d a t a _ s r f , &num_sharp, 8 d a t a _ s h a r p , fcerr) ;

After the hardware gets polled, it is checked that some data were successfully
gained and the L C M messages are prepared. The distance measurements are put
into a message instance of the type lowlevel_data_srf s_t (both the front and
read readings into one message) and placed to channel LL_DATA_SRFS.

The odometry data have to be processed first — to maintain the chosen level of
abstraction in the robot design, sampled ticks are converted into the form of general
speeds with the help of function speeds_odo2ml defined in l i b n a v i t o o l s . The
translation and rotational speed is then assigned to an instance of the lowlevel_-
data_odo_t and transmitted to channel LL_DATA_0D0.

51

5.5 Driver module driver_rs485b

The "slower" EIA-485 bus B host only one BR-SBS1 beacon scanner module that
is polled for data at 1 Hz. The driver follows principles described hereinbefore so
that its general architecture is almost the same except it currently handles single
module.

The only addition is that the module listens to messages lowlevel_data_-
active_beacons_t on channel LL_DATA_ACTIVE_BEACOMS that carry information
on infrared beacon IDs that should be scanned. The data polling done by function
sbsl_get_beacon_data() is thus once for a while prepended by a call to function
sbsl_set_beacon_ids() that tries to force the beacon scanner to ping specified
beacons.

Gained data are then filled to the lowlevel_data_beacons_t message instance
and published to channel LL_DATA_BEACONS.

52

Chapter 6

CAN-bus subsystem

To enable utilization of industrial-grade components in the development of the mo­
bile robot Advee, at least one of the standard industrial communication field-busses
had to be implemented. Probably the best interoperability among devices made
by various manufacturers is nowadays guaranteed by the Controller Area Network
(CAN) bus. Its standardization is handled by a wide consortium of manufacturers
C A N in Automation (CiA) [4].

6.1 Bus description

The C A N standard accepts several physical layer standards that allow to choose the
most propriate transfer medium for the most of the situations. The most frequently
used is the IS011898-2-conforming physical medium: it defines a two-wire differ­
ential bus with specific impedance of 120 Q similar to the EIA-485 standard. On
the condition of maximal bus data rate of 1 Mb/s the bus can be up to 40 m long.
Commonly for all the physical layer standards, the Non Return to Zero (NRZ) bit
encoding is utilized.

The other layer defined by the C A N bus IS011898 standard is the data link
layer that sits on the top of the physical layer. It is divided into two sublayers: the
Medium Access Control (MAC) and the Logical Link Control (LLC). The former
one provides the lower function related to frame marshalling, error detection or
bit stuffing whereas the latter one handles message filtering, overload control and
recovery management.

The communication is done using so called frames; four types of the frame are
introduced: data frame, remote frame, error frame and overload frame. The protocol
is not byte-oriented — the communication is divided into several groups of bits that
do not have any standard length. The data frame used for the most of the operational

53

data exchange can hold up to 8 data data bytes — this restriction allows for an
efficient hardware implementation and prevents bus contention.

6.2 CANopen higher-layer protocol

As the Controller Area Network defines only a relatively low-level part of the commu­
nication, a higher protocol is needed to provide device standardization means. Tens
of such protocols can be found — with CANopen being one of the most successful
and supported. It is being administered by the C i A organization as well.

CANopen protocol specifies a standard interface of the device that is managed by
several services; the common functionality is mostly specified by the DS-301 stan­
dard. The lifecycle of each device is driven by a standard state machine controlled
by the bus master using the network management (NMT) service. A l l configura­
tion and run-time parameters are implemented as objects identified by a 16-bit ID
and held in the object dictionary. Several index ranges are defined to accommodate
entries of specific meanings.

Full access to the object dictionary is enabled using the service data object pro­
tocol (SDO) — a non-real time acknowledged protocol that allows device configu­
ration. The operational access is done via transmit and receive process data objects
(PDO) — a real-time data service. Additionally, synchronization (SYNC), time
stamp (TIME) and emergency (EMCY) objects are defined.

The C i A also introduces about thirty device and application profiles. As both
devices needed to be interfaced by the control system are motion-related, only the
DSP-402 profile is covered. The specification provides a set of generic default PDOs
available to all drives as well as set of specific default PDOs applicable only to
a specific class of drives as servo drives, frequency inverters or stepper motors [4].

6.3 Kernel driver lincan

The TS-CAN1 PC/104 C A N bus interface card is supported by the lincan kernel
driver, a part of the O C E R A real-time framework [12]. The driver encompasses
the whole communication with the TS-CAN1 card in the kernel space and exhibits
a standard character device (usually /dev/canO for the first device) for utilization
from the user space.

The lincan kernel driver A R M 9 binary is supplied by the manufacturer of the
TS-7800 board. Module loading by the Linux kernel has to enabled in the case that
a different than supplied kernel is employed.

54

6.4 User-space library libcanbus

The user-space library libcanbus interfaces the kernel driver device, implements
the DS-301 and DSP-402 standards and provides custom functionality both for the
EPOS 70/10 controller and the IclA compact drive. Because the library will be
a subject of refactoring and reimplementation soon, its description will be rather
brief.

The implementation is divided by the standards: the base is the bare C A N bus
functionality. The library uses the Virtual C A N A P I (VCA) [12] to wrap the access
to the lincan device. The connection is managed using a custom structure type
canbus_connection_t and handled by self-explanatory functions canbus_init (),
canbus_stop_reception() and canbus_close().

The participation on CAN-bus communication is started by calling canbus_-
subscribeO with filled canbus_subscription_t record. On the contrary to the
EIS-485 support library, the communication is not direct to accommodate higher
layers — so called providers are introduced to formalize the relation between lay­
ers of the library. The basic C A N bus implementation provides functions to send
a message that wraps the vca_send_msg_seq() function. Finally, the function
canbus_msg2str() that prints the formated message into a dynamically allocated
character buffer is implemented.

6.4.1 DS-301 standard layer

The DS-301 CANopen functionality is implemented as a provider by defining the
canbus_provider_t structure. The provider record is filled and passed to the
canbus_subscribe() function in the ds301_init () . A l l messages received by the
basic C A N bus layer are thus handed over to the DS-301 implementation. The layer
further provides its own subscription mechanism that allows the CANopen nodes to
use its functionality.

The present state of the library has a working support for N M T , SDO, PDO and
E M C Y services; the remaining SYNC and T I M E protocols are going to be imple­
mented in a near future. A set of helper function is provided to support conversion
between standard data types and their serialized byte-array form. A number of
standard DS-301-compliant communication objects is also supported — e.g. getting
device status or value of the error register.

6.4.2 DSP-402 standard layer

The DSP-402 support code augments the support of communication objects to some
more DSP-402-related objects — especially the controlword and statusword that are

55

essential for the DSP-402 operation.
Finally, the device drivers are implemented above this layer. These are re­

ally minimalistic as providing only access the functionality needed for purposes of
the robot. The EPOS 70/10 driver consequently implements only a custom func­
tion epos7010_set_target.velocity () to set the target velocity using the default
RPD04. The IclA driver is richer — the driver is operated in a position mode
and the position is by function iclan065_set_target_position() via the default
RPD02. Moreover, a more complex function iclan065_perf orm_homing() pro­
vides homing of the drive using a mechanical homing switch fitted in the robot.

6.5 Driver module driver_canbus

The driver module is functionally very similar to the EIA-485 driver module thor­
oughly described above. The main loop contains one additional operation and that
is checking the L C M motion command message timeout — in case the motion com­
mand does not arrive for longer than one second, a quick stop command is issued to
EPOS 70/10 controlling the propulsion.

The driver also at the time lacks the data-polling thread — no data are currently
polled from the devices. Motion commands are received as lowlevel_cmd_motion_t
messages on channel LL_CMD_M0TI0N and corresponding device driver function gets
called directly in the L C M message handler function.

56

Chapter 7

Auxiliary subsystems

Besides the the main communication busses, which handle sensory data polling
and motion subsystem governing, there are utilitary modules in the control system
that manage resources not directly connected with the robot function — the power
management and computer box cooling.

7.1 Power supply control

As already introduced and described in Chapter 4 Detailed hardware description,
the power subsystem of the robot is managed by the BR-PSC1 eight-channel power
controller. Each channel can be enabled / disabled and the current flowing through
the connected power module can be measured1. The power controller also imple­
ments a boot sequence and a power-off sequence — it guarantees that the master
polling modules will be switched on after all slaves are up and running.

The power controller is communicated with using a dedicated point-to-point
full-duplex EIA-485 link (sometimes denoted also as EIA-422). It provides a largely
noise-proof communication channel that is not threated by jamming or contention
by a malfunctional device — the power management is important enought to qualify
for a dedicated line.

7.1.1 Support for BR-PSC1 in the librs485

The basic structure of the BR-PSC1 device driver is that same as of the other
devices. However, because of the full-duplex, point-to-point nature of the commu­
nication channel the device implements also assynchronous (non-polled) communi­
cation. Because such message can arrive virtually at any time, the driver has to
provide a call-back function that gets call in the case of message reception. This

1 On the condition that the module is equipped with the ACS712-family Hall current sensor.

57

is implemented using a pscl_subscription_t type member of the device struc­
ture pscl_device_t — the subscription holds a handler function pointer for each
message type of the device.

The device-specific message handler function pscl_handle () (that is called from
the reception automaton) then does not simply pass the message to the generic
function rs485_handle() . It firstly checks whether the received message is one of
the message that can come assynchronously — if positive, it further checks that the
T X R X record is empty (this prevents the handler function from "stealing" the data
in case of a synchronous transaction). If these contitions are fulfilled, the message is
considered to be assynchronous, is parsed and the call-back function gets executed.

To support the tranditional synchronous transaction, the driver implements func­
tions pscl_get_pwr_status () to query the power status of individual channels and
pscl_set_pwr_status() to force a channel to a needed state.

7.1.2 Driver module driver_power

The architecture of the driver_power module fully conforms to principles stated in
Chapter 5 EIA-485 subsystem. The difference is that at the time it does not feature
a data-polling thread, all communication is assynchronous. Secondly, a L C M handler
listening to lowlevel_cmd_power_t messages on channel LL_CMD_POWER has been
implemented — it branches its execution according to the device property of the
message. If the target device is the Linux SBC itself, it does not communicate with
the power controller at all: instead it just issues a poweroff or reboot command
depending on the ordered action.

Finally, the the driver implements the psc_paused_handler function that is an
interface to the assynchronous EIA-485 messages reporting the PAUSE signal engage­
ment change. This event is just translated to a L C M message of the lowlevel_-
event_stop_t type and published to channel LL_EVENT_STOP.

7.2 Fan control

A reliable operation of the used computers is among others conditioned also by
keeping their temperature at reasonable levels. The air circulation through the
computer box is forced by two fans governed by the B R-FAN1 module. As its
System Management Bus (SMBus) interface is based on the Inter-Integrated Circuit
(I 2C) bus standard2, the l i b i 2 c library has been developped to simplify fan-control
driver design.

2 The SMBus is in fact more strict than the I 2 C specification to allow detection of common
device failures — e.g. it defines clock timeouts and slave address acknowledging.

58

7.2.1 User-space library libi2c

Encouraged by a manufacturer-supplied reference design of a bit-banged3 SPI bus
driver, it has been decided to implement the I 2 C master library in a similar way.
The TS-7800 platform drivers exhibit the access to the digital input / output (DIO)
pins using memory mapping: the input direction is mapped to offset 0x4 from the
base address 0xE8000000 and output is offset by 0x8. The output is assymetrical
— the logic 1 is held only by a pull-up resistor whereas the logic 0 is achieved by
pulling down the pin by a transistor switch. This enables easy direction change to
intput by setting the propriate output register bit and reading the input register bit.

The library internally provides preprocessor macros to access the SDA and SCL
pins — for SDA it enables both directions of access while the SCL support is cur­
rently limited to writing only.

Similarly to the EIA-485 and CAN-bus libraries, the l i b i 2 c provides functions
i 2 c _ i n i t () to open the memory access and setup the port and i2c_close() to
clean up used resources. Basic operation on the bus are supported: issuing a START
condition (i 2 c _ s t a r t ()) and repeated START condition (i2c_repstart()), a STOP
condition (i2c_stop()), writing a byte to a slave device (i2c_write ()) and reading
a byte from a slave device (i2c_read).

MAX551X driver

The general I 2 C functionality is employed by the MAX551X Dual-Channel Tem­
perature Monitor and Fan-Speed Controller with Thermistor Inputs device driver.
Again it follows conventions used in all developed libraries — the device is denoted
by a custom struture type max551x_device_t holding its bus address and a pointer
to the i2c_connection_t record. Its initialization is provided by max551x_init ()
and freeing by max551x_free functions.

The device driver further provides functions max551x_get_reg() and max551x_-
set_reg() that implement a minimal byte-oriented I 2 C / SMBus protocol.

The device functionality supported by the driver is not complete — only access
to the used registers has been implemented. The temperature measurement channels
1 and 2 can be read using the functions max551x_get_templ () and max551x_get_-
temp2() and corresponding over-temperature (OT) registers can be both read and
written using the function max551x_get_ot_limitl() and others. Device config­
uration byte stored in register 0x02 is made accessible using functions max551x_-
get_config() and max551x_set_config().

3 Bit-banging means a method of emulating serial communication interfaces without use of
dedicated hardware peripherals — the I/O pin states are set purely from the software.

59

Functions max551x_get_conf ig() and max551x_set_conf ig() utilize another
custom data type defined by the driver: max551x_conf i g _ t . Its declaration utilizes
a union of a bit-structure field and a uint8_t field; this approach allows an access to
the whole configuration byte while providing an easy structural access to individual
flags of the configuration:

1 typ< i d e f u n i o n
2 •c
3 s t r u c t
4 {

5 uns i g n e d s p i n u p _ d i s : 1; //> S p i n - u p d i s a b l e : 0 = e n a b l e ; 1 = d i s a b l e
6 uns i g n e d t e m p 2 _ l o c a l 1; //> Temp Ch2 s o u r c e s : 1 = l o c a l ; 0 = r e m o t e 2
7 uns i g n e d p w m _ s t a r t _ e n : i ; //> Min d u t y c y c l e : 0 = 0' l.; 1 = f a n - s t a r t ^

d u t y c y c l e
8 uns i g n e d pwm2_ i n v e r t 1; //> Fan 2 PHM i n v e r t
9 uns i g n e d pwml_ i n v e r t 1; //> Fan 1 PHM i n v e r t

10 uns i g n e d t i m e o u t . d i s 1; //> T i m e o u t : 0 = e n a b l e d ; 1 = d i s a b l e d
11 uns i g n e d p o r : 1; //> POR: 1 = r e s e t
12 uns i g n e d s t a n d b y : 1; //> S t a n d b y : 0 = r u n ; 1 = s t a n d b y
13 > b i t ;
14 u i n t 8 _ t word,
15 } m a x 5 5 l x _ c o n f i g _ t ;

Similarly, the fan configuration read by max551x_get_f an_conf ig () and writ­
ten by max551x_set_f an_conf ig () is defined as the max551x_f an_conf i g_t union
type.

7.2.2 Driver module driver_aux

The auxiliary devices driver module driver _aux is at time used only to handle
the BR-FAN1 fan controller communication. It features the architecture already
known from the other driver modules, including a resources intialization phase,
pseudo-endless L C M handling loop and a data-polling thread. The thread reads out
temperature values, fills them into a lowlevel_data_temperature_t message and
publishes it to channel LL_DATA_TEMPERATURE.

60

Chapter 8

Conclusion

The goal of the thesis was to design and implement a control system that would fit
the needs of the autonomous mobile robot Advee. Both the hardware and software
architecture should have been chosen on the basis of its mechanical construction and
of the sensory / actuator equipment demands.

An industrial-grade A R M 9 single-board computer TS-7800 has been selected to
form the base of the control system. It disposes of almost all peripherals needed
to interface the rest of the electric equipment; its PC/104 form factor allows to
implement missing capabilities by using a standard expansion board. The electrical
interface of the computer is adjusted to the rest of the robot by employing custom
intermediary modules.

The extended host computer provides one CAN-bus interface, two half-duplex
and one full-duplex EIA-485 ports and Dallas 1-Wire support. In addition, up to two
Mini-ITX computers can be controlled and the computer box cooling is governed.

Efficient utilization of the hardware means and is guaranteed by using the manu­
facturer supplied custom GNU/Linux operating system. Several user-space libraries
have been implemented on the top of the operating system to simplify and clarify
the control system development. Detailed information on the software modularity
principles is given.

Communication among the software modules of the system is handled by the
simple yet powerful L C M library developed at the Massachusetts Institute of Tech­
nology. Its only flaw, the absence of a Microsoft .NET implementation, had been
solved by creating the lem-dotnet port that has been then officially adopted to the
L C M project.

The thesis also describes all software equipment that is needed to handle the slave
devices including the sensors connected by the EIA-485 busses and the actuators
networked using the C A N bus. The power management and fan control is introduced
as well.

61

The qualities of the system have been verified during over 500 hours of the robot
operation in various environments. It has been found stable and reliable, still open
to functionality modifications and extensions. The best proof of its stability is that
the robot has been routinely operated by personnel with only a rough knowledge of
the system functionality.

62

Bibliography

[1] A G N E R , S. Linux Realtime-Fähigkeiten. Luzern: Hochschule Luzern, Technik
und Architektur, 2009. Bachelor's thesis.

[2] B E N A R I , M . Principles of Concurrent and Distributed Programming. Second
edition. Addison-Wesley, 2006. ISBN 0-321-31283-X.

[3] Intelligent Compact Drives IclA N065 Catalogue [online]. Berger Lahr
GmbH, 2006. [cited 18 May 2011]. Available from: <http://www.
regulacni-pohony.cz/ftp/Katalog_IclA_N065_GB_10_2006.zip>.

[4] CAN in Automation (OA) [online]. 2011 [cited 23 April 2011]. Available from:
<http://www.can-cia.org/>.

[5] G E R K E Y , B. P., V A U G H A N , R. T. & H O W A R D , A . The Player/Stage Project:
Tools for Multi-Robot and Distributed Sensor Systems. In Proceedings of the
International Conference on Advanced Robotics (ICAR 2003). Coimbra, Por­
tugal, 2003. Pp. 317-323.

[6] GLib Reference Manual [online]. The G N O M E Project, [cited 16 May 2011].
Available from: <http://developer.gnome.org/glib/stable/>.

[7] H R B Ä C E K , J., H R B Ä C E K , R. & V E C H E T , S. Modular Control System Architec­
ture for a Mobile Robot. In FuiS, V . (ed.). Proceedings of the 17th international
conference Engineering Mechanics 2011. Prague: Institute of Thermomechan-
ics, Academy of Sciences of the Czech Republic, 2011. Pp. 211-214. ISBN
978-80-87012-33-8.

[8] H R B Ä C E K , R. Simulation Based Neural Motion Planner Learning. In Proceed­
ings of the 17th Conference STUDENT EEICT 2011 Volume 1. Brno, Czech
Republic, 2011. Pp. 189-191. ISBN 978-80-214-4271-9.

[9] H R I S T U - V A R S A K E L I S , D. k L E V I N E , W. S. (ed.). Handbook of Networked and
Embedded Control Systems. Boston: Birkhäuser, 2005. ISBN 0-8176-3239-5.

63

http://www.?regulacni-pohony.cz/ftp/Katalog_IclA_N065_GB_10_2006.zip
http://www.?regulacni-pohony.cz/ftp/Katalog_IclA_N065_GB_10_2006.zip
http://www.can-cia.org/
http://developer.gnome.org/glib/stable/

[10] H U A N G , A . S., O L S O N , E. & M O O R E , D. Lightweight Communications and
Marshalling for Low Latency Interprocess Communication [Technical Report
MIT-CSAIL-TR-2009-041]. Cambridge, USA, 2009.

[11] H U A N G , A . S., O L S O N , E . & M O O R E , D. L C M : Lightweight Communications
and Marshalling. In Int. Conf. on Intelligent Robots and Systems (IROS).
Taipei, Taiwan, Oct. 2010.

[12] K R Á K O R A , J. , P I S A , P., V A C E K , F. et al. OCERA: Deliverable D7.4 Commu­
nication components [online]. O C E R A Consortium, February 2004. Available
from: <http://www.ocera.org/archive/deliverables/ms4-month24/
WP7/D7.4.pdf>.

[13] K R E J S A , J . & V Ě C H E T , S. Mobile Robot Motion Planner via Neural Network.
In FuiS, V . (ed.). Proceedings of the 17th international conference Engineering
Mechanics 2011. Prague: Institute of Thermomechanics, Academy of Sciences
of the Czech Republic, 2011. Pp. 327-330. ISBN 978-80-87012-33-8.

[14] LCM: Lightweight Communications and Marshalling [online]. 2011, Revised on
2010/11/08 [cited 18 May 2011]. Available from: <http://code.google.
com/p/lcm/>.

[15] The Linux Documentation Project [online]. 2011, Revised on 2010/05/25 [cited
18 May 2011]. Available from: <http://mirrors.kernel.org/LDP/>.

[16] M C K E N N E Y , P. A realtime preemption overview [online]. 2005, Revised on
2005/08/10 [cited 27 December 2010]. Available from: <http://lwn.net/
Articles/146861/>.

[17] Microsoft Robotics Developer Studio [online], [cited 11 May 2011]. Available
from: <http://www.microsoft.com/robotics/>.

[18] P E R I N G E R , P. SIMLIB/C++ - SIMulation LIBrary for C++ [online]. 2010,
Revised on 2010/12/15 [cited 6 February 2011]. Available from: <http:
//www.fit.vutbr.cz/~peringer/SIMLIB/>.

[19] P O U C H A , P. Přenos dat po linkách RS485 a RS422 [online].
1999, Revised on 1999/07/25 [cited 20 March 2011]. Avail­
able from: <http://hw.cz/Teorie-a-praxe/Dokumentace/
ART705-Prenos-dat-po-linkach-RS485-a-RS422.html>.

[20] R I P E L , T. Návrh a realizace konstrukce kolového mobilního robotu. Brno:
Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2010. 61 pp.
Diploma thesis.

64

http://www.ocera.org/archive/deliverables/ms4-month24/
http://code.google.?com/p/lcm/
http://code.google.?com/p/lcm/
http://mirrors.kernel.org/LDP/
http://lwn.net/Articles/146861/
http://lwn.net/Articles/146861/
http://www.microsoft.com/robotics/
http://www.fit.vutbr.cz/~peringer/SIMLIB/
http://hw.cz/Teorie-a-praxe/Dokumentace/ART705-Prenos-dat-po-linkach-RS485-a-RS422.html
http://hw.cz/Teorie-a-praxe/Dokumentace/ART705-Prenos-dat-po-linkach-RS485-a-RS422.html

[21] RTAI - Official Website [online]. 2010, Revised on 2010/02/16 [cited 23 April
2011]. Available from: <https://www.rtai.org/>.

[22] S I M M O N S , R. & J A M E S , D. Inter-Process Communication: A Reference Man­
ual. Carnegie Mellon University, School of Computer Science / Robotics Insti­
tute, August 2001.

[23] TS-7800 Embedded Computer [online]. Technologic Systems, [cited 12 April
2011]. Available from: <http://www.embeddedarm.com/products/
board-detail.php?product=TS-7800>.

[24] TS-CAN1 PC/104 CAN Bus Interface [online]. Technologic Systems, [cited
12 Apri l 2011]. Available from: <http://www.embeddedarm.com/products/
board-detail.php?product=TS-CANl>.

[25] TS-7800 Manual [online]. Technologic Systems, 2009. Revised on 2009/05
[cited 7 May 2011]. Available from: <http://www.embeddedarm.com/about/
resource.php?item=393>.

[26] SN75176A Differential Bus Transciever [online]. Texas Instruments Inc., 1995.
Revised on 1995/05 [cited 2 Apri l 2011]. Available from: <http://focus.
ti.com/lit/ds/symlink/sn75176a.pdf>.

[27] UZIMEX: Špičkové technologie do automatizace a robotizace [online], [cited
27 Apri l 2011]. Available from: <http://www.uzimex.cz/>.

[28] V O J Á Č E K , A . Základní informace o RS-485 a RS-422 pro
každého [online]. 2007, Revised on 2007/07/14 [cited 22 May
2011]. Available from: <http://automatizace.hw.cz/
zakladni-informace-o-rs-485-rs-422-pro-kazdeho>.

[29] Xenomai: Real-Time Framework for Linux [online]. 2011, Revised on
2011/03/08 [cited 23 Apri l 2011]. Available from: <http://www.xenomai.
org/index.php/Main_Page>.

[30] Y A G H M O U R , K . Adaptive Domain Environment for Operating Systems [online],
[cited 27 December 2010]. Available from: <http://opersys.com/ftp/pub/
Adeos/adeos.pdf>.

[31] Y O D A I K E N , V . The RTLinux Manifesto. Proceedings of the 5th Linux Expo
[online]. 1999 [cited 15 May 2011]. Available from: <http://www.yodaiken.
com/papers/rtlmanifesto.pdf>.

65

http://www.rtai.org/
http://www.embeddedarm.com/products/board-detail.php?product=TS-7800
http://www.embeddedarm.com/products/board-detail.php?product=TS-7800
http://www.embeddedarm.com/products/board-detail.php?product=TS-CANl
http://www.embeddedarm.com/products/board-detail.php?product=TS-CANl
http://www.embeddedarm.com/about/resource.php?item=393
http://www.embeddedarm.com/about/resource.php?item=393
http://focus.?ti.com/lit/ds/symlink/sn75176a.pdf
http://focus.?ti.com/lit/ds/symlink/sn75176a.pdf
http://www.uzimex.cz/
http://automatizace.hw.cz/
http://www.xenomai.?org/index.php/Main_Page
http://www.xenomai.?org/index.php/Main_Page
http://opersys.com/ftp/pub/Adeos/adeos.pdf
http://opersys.com/ftp/pub/Adeos/adeos.pdf
http://www.yodaiken.?com/papers/rtlmanifesto.pdf
http://www.yodaiken.?com/papers/rtlmanifesto.pdf

List of symbols, physical constants
and abbreviations

CISC Complete Instruction Set Computer

CLI Common Language Infrastructure

C L R Common Language Runtime

C R C Cyclic Redundancy Check

E K F Extended Kaiman Filter

G C C G N U Compiler Collection

GUI Graphical User Interface

IDE Integrated Development Environment

IPC Inter-Process Communication

IRC Incremental Rotary enCoder

L E D Light Emitting Diode

L i F e Y P 0 4 Lithium Yttrium Iron Phosphate

P C B Printed Circuit Board

RISC Reduced Instruction Set Computer

SoC System on Chip

SSR Solid State Relay

T C P Transmission Control Protocol

U D P User Datagram Protocol

66

List of appendices

A Instructions of current devices

Appendix A

Instructions of current devices

This overview does not mention common intruction for getting the firmware version
(OxFE) and ordering reset of the device (OxFF).

ID Support function Description

0x01 sdl_get_srf_data Read SRF distances as uintl6
0x02 sdl_get_ir_data Read S H A R P distances as uint8
0x10 sdl_get_both_data Read SRF distances as uintl6 and

S H A R P distances as uint8
0x20 sdl_get_pause_src Read last PAUSE source
0x21 sdl_clear_pause_src Clear last PAUSE source

Tab. A . l : Instruction set of BR-SD1

ID Support function Description

0x01 s o l _ g e t _ t i c k s Get IRC ticks in two to eight bytes
0x02 Reset IRC tick counters

Tab. A.2: Instruction set of B R - S O l

ID Support function Description

0x01 sbsl_set_beacon_ids Send request to scan given beacons
0x02 sbsl_get_beacon_data Get beacon measurements
0x03 sbsl_get_debug_data Get debugging information

Tab. A.3: Instruction set of BR-SBS1

68

ID Support function Description

0x01 pscl_get_pwr_status Get channel on/off power status
0x02 pscl_set_pwr_status Set channel on/off power status

Tab. A.4: Instruction set of BR-PSC1

69

