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 Annotation 

 

This thesis investigates the systematics, biogeography, and diversification 

dynamics of a large and ecologically important insect group in SE Asia and the 

Indo-Pacific region: the ants. This study utilizes a multidisciplinary framework 

to elucidate the evolutionary history of selected ant clades with the overall aim 

to shed light on similar ecological and evolutionary processes intervening in 

ant diversity. 
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Introduction 

 

 

One of the major challenges for mankind in the XXI century is a climate 

change and the so-called biodiversity crisis. The rate and magnitude of species 

losses (extinctions) over the last centuries may have even been comparable to 

those of the "Big Five" mass extinction events (Barnosky et al., 2011). Modern 

conservation efforts thus urgently require a multidisciplinary perspective to 

better understand the factors and processes controlling biodiversity dynamics 

and its uneven distribution on Earth. A macroevolutionary component in 

conservation planning needs to be particularly emphasized (Moritz, 2002). It 

represents our best window to previous paleobiodiversity crises that happened 

over millions of years ago, and it contributes with important insights on how to 

anticipate the impact of environmental disturbances on extant ecosystems. 

Accordingly, the study of paleobiodiversity, the responses of ancient taxa to 

paleoenvironmental changes, and the historical biogeography of clades, is not 

only part of basic evolutionary research, but is also a critical task now more 

than ever. 

Tropical islands harbor a large portion of Earth's species diversity, including 

rare and endemic species (Myers et al., 2000). Due to the discrete nature and 

size of islands, populations of endemic species are particularly susceptible to 

drastic and rapid changes in the environment (e.g., climate, landscape, etc). The 

Indo-Australian Archipelago and the oceanic islands of tropical South Pacific 

(Figure 1) together encompasses about one third of the total biodiversity 

recorded on Earth (Keppel et al., 2009). The exceptional pace of habitat 

degradation and species loss make the region a biodiversity hotspot with high 

conservation priorities. However, the origin and maintenance of Indo-Pacific 

biodiversity have rarely been studied under a multidisciplinary framework that 

includes ecology, comparative phylogenetics, historical biogeography, and 

diversification rate estimation, from the perspective of insect evolution. The 

present thesis attempts to provide an alternative view on the radiation and 

biogeography of a large and successful insect lineage, the ants of the Indo-

Pacific. This study aims to bridge towards a better understanding of biodiversity 
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dynamics over space and time using an integrative approach to disentangle the 

abiotic and biotic factors shaping the extant diversity of insular ants. 

 

 

1. Island biogeography 

 

Islands have ever amazed evolutionary biologists due to the outstanding 

array of ecological patterns and biodiversity dynamics encountered in such 

systems. In fact, the foundations of Evolutionary theory (Darwin, 1859) and 

Biogeography (Wallace, 1860; Wilson, 1959, 1961; MacArthur & Wilson, 

1963) have been established through the study of ecological and evolutionary 

processes occurring on islands. The proposal of the equilibrium theory of island 

biogeography (MacArthur & Wilson, 1963, 1967) was a breakpoint in 

ecological biogeography research. For the first time, biologists were able to 

predict biodiversity dynamics and community assembly using a quantitative 

approach to estimate the number of species that an area could support. Briefly, 

the MacArthur-Wilson equilibrium model postulates that species richness on 

island communities are largely regulated by two geographical drivers: 

remoteness and island size. The number of species on one island is therefore 

primarily the result of the number of colonizers (immigration rate as a function 

of island remoteness) and local extinction rate that is inversely correlated with 

island size and population sizes. As a consequence, remote and small islands 

would support far less species diversity than large islands that are close to 

continents (MacArthur & Wilson, 1963). 

However, the equilibrium theory of island biogeography in its original form 

does not take into account the dynamic nature of islands and speciation, thus, it 

is less predictive at evolutionary and geological timescales (Gillespie, 2004; 

Whittaker et al., 2008). Moreover, biotic processes such as competition, niche 

partitioning, or adaptation are neglected, contributing little towards a 

multidisciplinary framework on the study of processes shaping biodiversity 

dynamics over time. Recent expansions of the MacArthur-Wilson equilibrium 

theory (Gillespie, 2004; Whittaker et al., 2007, 2008; Rosindell & Phillimore, 

2011) have considered geological progression and evolutionary and ecological 

responses. These advancements build towards an integrative theory of island 
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biogeography with more realistic predictions: e.g., peak in speciation rate at the 

early stages of island emergence, followed by gradual decline of speciation and 

increased extinction rate as niches become saturated and population sizes 

decline. Nonetheless, the predictions of the extended island biogeography 

theory have rarely been tested on hyperdiverse and ecologically important 

clades such as insects. 

 

 

2. The taxon cycle hypothesis 

 

The taxon cycle is another influential biogeographical concept formalized 

first by E. O. Wilson (Wilson, 1959, 1961). Contrary to the equilibrium theory 

of island biodiversity, the taxon cycle predicts a dynamic interplay between 

ecological and evolutionary forces, and suggests that biodiversity might not be 

at equilibrium (Ricklefs & Cox, 1972; Ricklefs & Bermingham, 2002). The 

cycle can be divided into two major phases: expansions and contractions. At 

early stage, a species with limited geographical range (e.g., primary rainforest) 

expands its ecological niche and habitat preferences (e.g., it readily occupies 

open environments close to the seashore). Such adaptation has been originally 

postulated to be driven by interspecific competition, but certainly other co-

evolutionary forces may be invoked (e.g., antagonism-driven (Ricklefs, 2010)). 

The adaptive shift may lead to ecological release whereby the taxon may 

successfully establish in marginal habitats where competition can be less 

intense than in primary rainforests. Geographical expansion to other islands and 

archipelagos might then be facilitated by such ecological release. However, in 

the long term, widespread populations across islands may phenotypically and 

genetically differentiate because of reduced inter-island gene flow. The 

contraction stage begins, and small, unspecialized populations may compete 

with new expanding taxa, eventually going extinct or surviving as single-island 

endemics specialized to other habitats. The cycle begins again with the 

ecological expansion of those geographically restricted taxa. 

Although geographical data and phylogenetic evidence have supported to 

some extent the expansion and contraction phases postulated by the taxon cycle 

hypothesis (Sequeira et al., 2000; Economo & Sarnat, 2012; Jønsson et al., 
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2014; Economo et al., 2015b), a quantitative assessment of the hypothesis is 

challenging. If indeed the cycles of geographical and ecological expansions 

exist, these may overlap temporarily across lineages and may leave an intricate 

biogeographical pattern. Moreover, stochastic extinction of lineages may erase 

any signal of taxon cycles. In fact, other processes might leave a similar pattern 

predicted by species' expansion and contraction phases, such as recent climatic 

fluctuations, adaptation, and disparate dispersal abilities across lineages (Pregill 

& Olson, 1981; Liebherr & Hajek, 1990). Recent advancements on comparative 

phylogenetics and ancestral state reconstructions, however, have paved the way 

for a quantitative test of the taxon cycle, through the estimation of 

diversification rates, ecological preferences shifts, and historical biogeography. 

Such macroevolutionary input along with ecological studies, including local 

community assembly, may offer more insights on the existence of taxon cycles 

or other biogeographical phenomena acting on insular biota. 

 

 

3. The tropical SE Asia and South Pacific 

 

Biogeographically, SE Asia and the Indo-Pacific might be subdivided into 

five major realms (Figure 1): 1) the Indomalayan (including continental SE 

Asia and the Malay Archipelago), 2) Australian, 3) Melanesian, 4) Micronesian, 

and 5) Polynesian. From these, the Indomalayan realm is the geologically most-

complex region because the formation of most of its terranes and land 

originated during the collision of the Pacific, Sunda, and Australian plates 

(Lohman et al., 2011). Recent advances in SE Asian paleogeographical research 

suggest that subduction around Sundaland resumed at about 45 Ma as a 

consequence of Australia moving rapidly northwards and approaching SE Asia. 

Intense volcanic activity and the reorganization of land and sea have been 

postulated for most of the past 35 Ma, but the approximate timing of emergence 

and the extent of land in most of the Malay Archipelago remain poorly known 

(Hall, 2012, 2013). Although most paleogeographical models agree that 

significant rise of land and orogenic activity happened within the past 10 Ma, it 

is inconclusive based on the recorded geological evidence that there was ever a 

chain of short-lived volcanic islands connecting SE Asia and Australia and New  
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Guinea (Hall, 2001; Baldwin et al., 2012; Stelbrink et al., 2012). However, 

time-calibrated phylogenies suggested that terrestrial faunal interchange 

between the two continents might be as old as 25 Ma (Jønsson et al., 2011; 

Cibois et al., 2014; Georges et al., 2014; Mitchell et al., 2014; Economo et al., 

2015b), indirectly supporting the scenario where ephemeral islands across 

Wallacea may have facilitated stepping-stone dispersal since the Miocene 

epoch (ca. 25 Ma; Figure 2). 

From all islands in the Malay Archipelago, New Guinea is the major centre 

of biodiversity and endemism. New Guinea is the largest tropical island on 

Earth, and due to its complex tectonic history, volcanism, and glaciation events, 

a myriad of landscape and climate types allows the co-existence of diverse life 

forms. The earliest colonization and diversification events of land animals has 

been dated to the beginning of the Miocene epoch (20–25 Ma) (de Boer & 

Duffels, 1996; Sharma & Giribet, 2012; Müller et al., 2013). These dates are in 

agreement with the proto-Papuan archipelago paleogeographical model (Figure 

2), which describes short-lived archipelagos of varying geological origin on the 

northern edge of New Guinea by 25–30 Ma (Jønsson et al., 2011). Nonetheless, 

the major geographical event that triggered species diversification has been the 

rapid orogeny of the Central Range during the past 5–10 Ma (Toussaint et al., 

2014). Although the Australian and Pacific plates converged at about 12–15 

Ma, initiating the Central Range orogeny on the western region and continued 

to the east until about 3 Ma, elevations comparable to present day were attained 

only at about 5 Ma (Hill & Hall, 2003; Cloos et al., 2005). However, 

paleogeographical reconstructions do not entirely agree on where and when 

substantial land emerged and remained above water until present. On one side, 

collisional orogeny forming the extant Papuan Peninsula has been reconstructed 

at about 30–38 Ma (van Ufford & Cloos, 2005). On the other hand, it is 

believed that most present-day land did not formed until about 5 Ma, concurrent 

with the Central Range orogeny (Toussaint et al., 2014). 

Present-day oceanic islands across the Pacific basin emerged above water 

during the late Miocene and Pleistocene (i.e., since about 12–15 Ma) (Neall & 

Trewick, 2008; Gillespie & Clague, 2009; Keppel et al., 2009). In Micronesia, 

the Caroline Islands are the result of volcanism that began about 15 Ma on the 

western archipelagos (i.e., Yap, Palau, and Chuuk) and continued until about 1 

Ma forming Pohnpei and Kosrae on eastern Micronesia. Two models were 
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proposed for the origin of such islands: 1) the hot-spot model, in light of the 

progressive age of islands from east (younger) to west (older), similar to the 

Hawaiian islands (Jarrard & Clague, 1977; Keating et al., 1984); and 2) the 

fracture-induced volcanism, suggesting the uplift of seamounts and islands as 

the result of tectonic subduction of the Pacific and Philippine Sea plates 

(Rehman et al., 2013). On the other hand, in Melanesia, ancient volcanic arcs 

existed across New Guinea, the Solomon Islands, Vanuatu, and Fiji, but it is 

unclear when the land above water appeared, and for how long. The Vitiaz Arc 

Model (Ewart, 1988; Rodda, 1994) suggests short-lived islands extending 

across the area until about 10 Ma, thus facilitating stepping-stone dispersal from 

source regions, namely New Guina, SE Asia, or Australia. 

 

 
Figure 2. Palaeogeography of the Malay Archipelago of Hall (2012, 2013). Distribution of land 

and sea during the Neogene Period (last 25 Ma) remains far from complete understanding. 

Biogeographic patterns may help to clarify the timing of stepping-stone dispersal routes. By the 

transition between the Oligocene and Miocene (ca. 25 Ma), there is evidence of dispersal across 

the Malay Archipelago from vertebrate and arthropod phylogenies. By 10–15 Ma, Australian 

and Pacific plates converged, triggering the exposure of land above sea and the orogeny of New 
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Guinean Central Range. By 5 Ma, substantial land in the Indo-Pacific was exposed and 

remained above water to present day. Maps were downloaded from 

(http://www.searg.rhul.ac.uk). 

 

 

4. The ants 

 

Macroevolutionary research on hyperdiverse clades is critical towards a 

better understanding of tropical biodiversity. The insects represent the largest 

faunal radiation in the history of life on Earth (Grimaldi & Engel, 2005). 

Unfortunately, little is known on the evolutionary history, biogeography, and 

diversification dynamics of Indo-Pacific insects, paradoxically being the largest 

component of biodiversity with key roles in ecosystem balance and the most 

vulnerable to anthropogenic environmental degradation. Within the insects, the 

order Hymenoptera (ants, wasps, bees) are one of the four largest groups, along 

with butterflies and moths, flies, and beetles. The evolutionary success of ants 

(family Formicidae), and social insects in general, is probably the result of its 

ecological dominance and intricate biological interactions with plants, fungi, 

bacteria, and other animals. Ants constitute about 15–30% of the total animal 

biomass in tropical environments (Hölldobler & Wilson, 1990). Moreover, the 

array of intimate ecological interactions as predators, symbionts, and 

decomposers, facilitated co-evolution and may have even promoted spectacular 

diversification on different clades, as for instance the angiosperms (Lengyel et 

al., 2009). 

The about 14,000 described species of ants (estimates of total diversity are 

around 22,000 species) are classified within 16 extant subfamilies (Bolton, 

2016). The tropics harbor the largest portion of ant diversity, while the Malay 

Archipelago and eastern Australia have one the highest concentration of ant 

species on Earth (Janicki et al., 2016). Although the extensive fossil record of 

ants suggests that they evolved for over 100 Ma, ants diversified and became 

ecologically dominant only within the past 50 Ma (Grimaldi & Agosti, 2000; 

LaPolla et al., 2013; Ward, 2014). In fact, molecular phylogenetic approaches 

recovered the origin of extant ants to the early Cretaceous (115–135 Ma) 

(Brady et al., 2006) or to the late Jurassic (139–158 Ma) (Moreau & Bell, 

2013), but the major radiation and increases in diversification rates across major 
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ant clades occurred throughout the Cenozoic (i.e., < 66 Ma; in the four largest 

subfamilies: Myrmicinae (Ward et al., 2015); Formicinae (Blaimer et al., 2015); 

Ponerinae (Schmidt, 2013); and Dolichoderinae (Ward et al., 2010)). 

 

 
Figure 3. Collage of photographs from the ants studied in the present thesis. Frontal and lateral 

views of worker ants are shown, and voucher information is detailed below each ant specimen. 

The genera Nylanderia and Pseudolasius are both members of the Prenolepis genus-group 

(Formicinae: Lasiini) and are studied along with the remaining siter genera Paratrechina, 

Paraparatrechina, Euprenolepis, Prenolepis, and Zatania, in Manuscript III. The systematics 

of Acropyga (Formicinae: Plagiolepidini) and population genetics of the species Acropyga 

acutiventris are studied in Paper I. The biogeography of the spectacular trap-jaw ant 

Odontomachus (Ponerinae: Ponerini) is investigated in Manuscript IV. 
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Aim and objectives 
 

 

In order to bridge towards a better understanding of insect evolution and the 

origin and maintenance of Indo-Pacific biodiversity, this thesis investigates the 

systematics, biogeography, and diversification dynamics of a large and 

ecologically important group: the ants. This study utilizes a multidisciplinary 

framework to elucidate the evolutionary history of selected ant clades with the 

overall aim to shed light on similar ecological and evolutionary processes 

intervening in ant diversity. The thesis' main research objectives are: 

 

1) Construct a novel, well-sampled, molecular dataset for selected Indo-

Pacific ant clades. The thesis includes some of the most comprehensive Indo-

Pacific ant phylogenies to date. The ants' geographical ranges and habitat 

preferences are assembled from public databases and our own field records. 

 

2) Time-calibrate the ant phylogenies to shed light on the origin and 

dispersal routes across the tropical South Pacific. The extensive ant fossil 

record along with cutting-edge statistical approaches are used to infer reliable 

diversification times and rate dynamics. 

 

3) Tempo and mode of ant evolution are evaluated in a multi-layer 

framework: a) biogeographic history elucidates shared dispersal corridors and 

the biodiversity source regions; b) ecological traits shifts (distribution, habitat 

preferences) may have modulated diversification rates; c) speciation driven by 

abiotic and biotic factors are assessed using comparative phylogenetics. 

 

4) Evaluate the taxon cycle and its predictions on Indo-Pacific ants. Well-

sampled, time-calibrated phylogenies permit the elucidation of geographical 

patterns in the context of expansion and contraction phases. The existence of 

taxon cycles, frequencies of cycles, timing of adaptive shifts, and changes in 

habitat preferences, may all be recognized in a phylogenetic context. 
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General material and methods 
 

1. Taxon sampling 

 

Ant sampling in the Indo-Pacific region was carried out during 2002–2013 

using standard methods for ant collection in the field (Agosti et al., 2000): 1) 

hand collecting in all possible habitats; 2) baiting techniques using tuna and 

honey as baits in arboreal vegetation, and ground; 3) Winkler leaf litter 

extraction; 4) and in New Guinea, methodological and exhaustive hand 

collection using 1 to 12 plot systems of 20 m × 20 m at each sampling site. 

Measures of sampling effort for each plot are as follows: 1) for baiting 

technique, at least 20 bait traps on forest floor and 20 bait traps on understory 

vegetation exposed for at least one hour; 2) for leaf litter extraction, at least 1 

m
2
 leaf litter, extracted for 48–72 hours; 3) for direct hand-collection, at least 

four person-hours a day. The total sampling area at each site ranged about 20–

25 km
2
. At some localities in New Guinea (Baitabag, Ohu, Madang Lagoon, 

Weam, Port Moresby), targeted population sampling for this thesis was 

increased outside the surveys plots, to include ants of the genera Acropyga, 

Odontomachus, and those within the Prenolepis genus-group. On those sites, 

plot-based sampling was not possible, and we used direct hand-collecting 

and/or baiting. The collected ants were stored in 70–100% ethanol and 

preliminary sorted by genus in the field. Ants were primarily mounted and 

photographed at the Institute of Entomology, Biology Centre CAS (Czech 

Republic), and all voucher specimens used in the present thesis are deposited in 

the Melanesian Ant Collection (Institute of Entomology, Biology Centre CAS), 

with selected duplicates deposited in the MCZ (Museum of Comparative 

Zoology, Cambridge, MA, USA). 

 

 

2. Dataset collection 

 

All laboratory work was done at the Institute of Entomology, Biology Centre 

CAS. DNA was isolated from two legs or the whole ant specimens, depending 
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on their body sizes, using the Geneaid Genomic Tissue DNA kit (Taiwan). 

DNA amplifications were carried out using 2–3 μl of isolated DNA, 1x of PPP 

Master Mix (Top-Bio, Prague), and 0.4 μM of each forward and reverse 

primers. PCR protocols consisted on 95°C for 5 min, 35 cycles of: 94°C for 30 

sec, 50/55°C for 50 sec and 72°C for 90 sec, and the final extension for 5 min at 

72°C. Annealing temperatures in the PCR protocols varied from 50°C for the 

mitochondrial COI and the nuclear genes wingless and LWR, to 55°C for the 

nuclear genes CAD, EF-1αF1 and EF-1αF2. Primer sequences including the 

universal primers T7promoter and T3 at the beginning of each sequence are 

detailed in Table 1. Standard DNA sequencing on both forward and reverse 

directions was carried out by the company Macrogen (South Korea). DNA 

editing and alignments were done using the program Geneious v. 8, and 

datasets for phylogenetic analyses were generated using the web application 

VoSeq v. 1.7.4 (Peña & Malm, 2012). Voucher information and photographs 

are publicly available at http://www.newguineants.org, DNA sequences were 

deposited in GenBank and in BOLD, http://www.boldsystems.org (ASPNA 

project) databases. All published datasets and phylogenetic trees generated in 

this thesis may be located in the TreeBASE and Dryad repositories. 

 

 

3. Phylogenetic methods 

 

The extensive research collaboration established during the course of the 

present thesis ensured a comprehensive taxon sampling from diverse regions 

across the Indo-Pacific. This allowed the discovery of a significant number of 

cryptic and undescribed ant diversity, but the taxonomic treatment of each 

genus was out of the scope of this study. Preliminary sorting of species was 

based on morphology coupled with molecular information but are not 

definitive, instead it awaits a comprehensive taxonomic review of the Indo-

Pacific ant fauna. Multi-locus, molecular species delimitation were conducted 

using three Bayesian approaches: 1) bGMYC (Reid & Carstens, 2012) and 2) 

bPTP (Zhang et al., 2013) to recover potential boundaries between species; and 

3) BP&P (Yang & Rannala, 2010) to validate a priori species boundaries based 

on morphology and the results from bGMYC and bPTP analyses.  
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← Table 1. List of primer sequences utilized in the present thesis. The universal primers 

T7promoter and T3 (underlined sequences) were used to facilitate DNA sequencing of multiple 

gene markers. The gene marker CAD was amplified in two fragments (Region 1 and Region 2), 

whereas internal primers were developed for the COI gene marker to facilitate amplification of 

degraded samples. 

 

Phylogenetic relationships were evaluated using primarily model-based 

approaches, namely Bayesian Inference (Ronquist et al., 2012) and Maximum 

Likelihood (Stamatakis, 2014). Moreover, time-calibrated species trees and 

concatenated trees were inferred using the multispecies coalescent model 

(Heled & Drummond, 2010) and relaxed clock approaches (Drummond et al., 

2006) as implemented in the software BEAST (Bouckaert et al., 2014). The 

extensive ant fossil record in the literature were revised to obtain the most 

reliable estimate of crown group ages, following best-practice guidelines 

(Parham et al., 2012). In addition, chronograms of the whole ant family and/or 

within ant subfamilies were evaluated to extract secondary calibration points for 

the root of trees or major clades. 

 

 

4. Ancestral state reconstructions 

 

Ancestral geographical ranges of the ants and the relative probabilities of 

distributional shifts were inferred using parameterized biogeographical models 

in a maximum likelihood framework. Extant geographical ranges for each 

species were retrieved from the literature, taxonomically-curated databases 

(AntWeb, 2016), and field notes. The package BioGeoBEARS (Matzke, 2014) 

allows the incorporation of paleogeographical reconstructions as relative 

dispersal rates across areas over time periods. These characteristics allow 

flexible models to be tested on a range of abiotic/biotic factors governing 

biodiversity dynamics. For instance, 1) the rise and fall of geographical barriers 

– mountain orogeny, emergence of volcanic islands; 2) paleoclimatic 

fluctuations – dispersal triggered by sea level drops during glaciations, or 

during major warming events; 3) island sizes over time – explaining diversity 

differences across islands due to increased immigration, speciation, or species-

level carrying capacity as area size increases. 
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Diversification dynamics and distributional shifts might be affected by shifts 

in ecological preferences. Ancestral ecological preferences were inferred in 

BEAST based on extant habitat preferences (e.g., primary rainforests, open 

environments, semi-disturbed forests, coastal scrubs, etc.) and elevation 

occurrences. Habitat information for each species were compiled from the 

literature, public databases, and field annotations. Speciation and extinction 

rates were estimated using software that account for incomplete taxonomic 

sampling (DDD (Etienne et al., 2012), BAMM (Rabosky, 2014), TreePar 

(Stadler, 2011)). Hypotheses of rate shifts were assessed using customized 

models and null-hypotheses of constant-rate diversification, shifts in speciation 

and extinction rates, and ecological limits to species richness. 
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Results and synthesis 
 

 

1. Diversification methods to study biodiversity dynamics over 

time 

 

The variation in species richness observed across clades in the tree of life is 

modulated by speciation and extinction. The interplay between these two 

evolutionary forces governs the dynamics of biodiversity, its generation and 

maintenance, in time and in space (Ricklefs, 2007). The study of diversification 

of lineages in a macroevolutionary framework is thus critical to understand 

patterns of biodiversity (e.g., latitudinal gradients) and in macroecology (e.g., 

community composition) (Morlon, 2014). This premise is followed throughout 

the thesis and is further elaborated in the methodological Paper II (Matos-

Maraví, 2016), where I discuss the importance of phylogenies and the 

estimation of macroevolutionary variables, such as ecological limits to species 

richness, speciation, and extinction rates, in biodiversity research. The issue is 

not new, as it has received much attention theoretically and supported by 

empirical molecular phylogenies (Nee et al., 1992). However, insights from the 

perspective of hyperdiverse groups, such as insects, have scarcely been 

proposed. 

Paper II uses primarily simulations of time-calibrated phylogenies to 

highlight serious shortcomings in recent meta-analyses of time-calibrated 

phylogenies when neglecting extinction and modeling ecological limits to 

species richness. Moreover, incomplete taxonomic sampling, poor preservation 

of fossils, and uncertainties in tree topology and divergence times, add another 

level of complexity when deciphering actual diversification processes in a 

clade. Accordingly, quantitative evaluation of alternative diversification models 

are highly beneficial to unveil the evolutionary and historical processes shaping 

extant species diversity. As a case study, the empirical dataset in Paper II 

focused on the Neotropics as it arguably is the best-studied tropical realm for 

insect evolution. Nonetheless, the conclusions of Paper II are applicable to any 

biogeographical region on Earth, including the Indo-Pacific. 
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A number of diversification hypotheses have been proposed to explain the 

origin of Neotropical diversity (Antonelli & Sanmartín, 2011), including the 

popular rainforest refugia scattered across the Amazon basin (Haffer, 1969). 

The most comprehensive set of published chronograms of any Neotropical 

insect group comes from butterfly studies. Therefore, I utilized them to 

highlight the advantages and limitations of using diversification approaches that 

incorporate extinction and ecological limits, as well as deal with incomplete 

taxon sampling. Contrary to recent butterfly meta-analyses that neglected 

patterns of diversification (Garzón-Orduña et al., 2014), I found evidence that 

butterflies diversified well before the Pleistocene and that any substantial 

increase in speciation in the past 2.6 Ma was detected in butterfly chronograms. 

The main implication for the ant fauna on the Indo-Pacific is that any 

evaluation of the timing of origin and diversification needs to be done in a 

phylogenetic framework. The Pleistocene glacial cycles and sea-level 

fluctuation have been frequently invoked to explain the origin and distribution 

of Indo-Pacific insects, ever since the early work of E.O. Wilson, P.J.M. 

Greenslade, and J.L. Gressitt. But without acknowledging extinction or 

diversity-dependence processes, our interpretations might be seriously mislead, 

even in the light of divergence time estimations. 

 

 

2. Origins of Melanesian ants 

 

The major centre of ant diversity across Melanesia is located on the island of 

New Guinea. Although Australia is the geographically closest continental 

landmass to New Guinea (and potential source of ant lineages), many ant 

groups seem to have spread from SE Asia, and even have reached tropical 

Queensland in Australia (Wilson, 1959). The results of the present thesis along 

with recent molecular phylogenies provide insights on the timing of 

colonization and biogeographic history of Melanesian ants. These studies 

partially confirmed the importance of Asian stocks in the composition of New 

Guinean species diversity, but they also emphasized other sources as significant 

contributors, namely Australia and the New World. Below, a summary of such 

reports in the context of the present thesis is presented: 
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 2.1. Southeast Asian source 

 

In Manuscript III, the biogeographic history and diversification patterns 

within the Prenolepis genus-group (Formicinae: Lasiini) in the Indo-Pacific are 

analyzed. It was suggested that at least six colonization events to Melanesia 

from SE Asia occurred, three of them at the early Miocene (15–25 Ma) whereas 

the remaining three happened at the late Miocene and Pliocene (5–10 Ma). 

Such "colonization waves" into Melanesia might be explained by the 

paleogeographical models suggesting uplift of land as ephemeral islands in the 

Malay Archipelago during the early Miocene (ca. 25 Ma), and the significant 

volcanic activity, which may have uplifted island arcs during the Pliocene (ca. 6 

Ma) (Hall, 1998). Such biogeographical pattern is reinforced by other time 

estimates of faunal interchange between SE Asia and Australia. For instance, 

terrestrial vertebrates might have been able to spread across the Malay 

Archipelago during the early Miocene, perhaps along small, ephemeral volcanic 

islands in the area (Jønsson et al., 2011; Cibois et al., 2014; Georges et al., 

2014; Mitchell et al., 2014). 

The colonization of Melanesia by SE Asian ant lineages seems therefore to 

have been facilitated by the collision between the Australian, the Philippines 

and Pacific plates. Such geological events have likely triggered the uplift of 

landmass, although paleogeographical reconstructions are not clear yet on the 

timing, extent, and duration of volcanic arcs in the Malay Archipelago. In 

addition to the colonization of Melanesia by the Prenolepis genus-group 

(Manuscript III), at least two ant clades (Pheidole (Economo et al., 2015a, 

2015b) and Lordomyrma (Lucky & Sarnat, 2010)) have invaded New Guinea, 

Australia, and the South Pacific from SE Asia, coincidentally at around 15–20 

Ma, whereas other three Pheidole clades appeared to have spread from SE Asia 

at about 5–10 Ma (Economo et al., 2015b). Moreover, the same dispersal route 

have been inferred from the molecular phylogeny of Camponotus maculatus-

like ants (Clouse et al., 2015), although divergence times were not reported in 

that study. 
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 2.2. Australian source 

 

Australian-endemic lineages seem to have spread to New Guinea more 

recently than SE Asian lineages. Molecular phylogenies of Dolichoderinae ants 

largely agree on a late Miocene and Pliocene colonization of New Guinea (ca 

5–10 Ma) (Ward et al., 2010; Lucky, 2011; Boudinot et al., 2016), contrasting 

with the long history of ant diversification throughout the Cenozoic in Australia 

(e.g., the tribe Melophorini (Blaimer et al., 2015)). However, in such cases 

ecological requirements rather than geographical distance may explain the 

timing of dispersal into New Guinea. Most of the Australian lineages that 

invaded New Guinea (e.g., within Dolichoderinae, Leptomyrmex, and 

Iridomyrmex) are associated with subtropical-temperate environments 

(Shattuck, 1992; Lucky & Ward, 2010). On the other hand, the savannah-like 

environment and dry forest areas that could have acted as a dispersal route for 

subtropical-temperate ants may have established geologically recently in 

southern New Guinea (Trans-Fly lowlands, Papuan Peninsula) (Kearns et al., 

2011), aided by the global decrease in temperatures after the mid-Miocene 

climatic optimum (Zachos et al., 2008). In fact, recent dispersal events from 

southern New Guinea to Australia by ants associated with dry environments 

have been reported at about 5 Ma (e.g., Acropyga in Paper I (Janda et al., 

2016), and Odontomachus cephalotes genus-group in Manuscript IV). 

 

 

 2.3. New World source 

 

Although massively separated from Melanesia by the Pacific Ocean, the 

New World may have been the source of several ant lineages. Three alternative 

dispersal hypotheses may explain the disjunct distribution of several ant clades 

on both edges of the Pacific: (a) trans-Antarctica; (b) Boreotropical origin; and 

(c) direct, passive dispersal via Pacific Equatorial currents. 

 

(a) An Antarctic land corridor have connected Australia and southern South 

America until about 30–35 Ma (Sanmartín & Ronquist, 2004), and may have 

facilitated dispersal of cool-adapted ants (Boudinot et al., 2016). However, in 

the case of Melanesian ants, this hypothesis imply an indirect colonization by 
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groups that first arrived to and radiated in Australia, and further dispersed 

northwards to New Guinea. Two Dolichoderinae clades show the 

abovementioned pattern: Leptomyrmex (Lucky, 2011; Boudinot et al., 2016), 

and the large Australasian clade sister to the Neotropical genus Linepithema 

(Ward et al., 2010)(Matos-Maraví et al., in prep.). 

 

(b) The Boreotropical hypothesis has not yet been formally suggested for 

any ant group. Such hypothesis, originally proposed for early Cenozoic 

Northern Hemisphere plants, suggests an ancestral Holarctic distribution of 

tropical and warm-temperate lineages until the mid-Eocene (ca. 39 Ma) (Wolfe, 

1975; Tiffney, 1985). North America and eastern Asia were likely connected by 

a warm Beringian bridge for most of the Eocene, but the rapid cooling event 

during the Oligocene glaciation event might have terminated such dispersal 

corridor at about 34 Ma (Sanmartín et al., 2001). Ant clades that originated in 

the Northern Hemisphere in the Eocene may have been isolated on both sides of 

the Pacific Ocean after the demise of the megathermal boreotropical flora. 

Manuscript IV discusses further alternatives for the the Boreotropical 

hypothesis to explain the disjunct distribution of Odontomachus lineages in the 

New World and the Indo-Pacific. Other possible example of an ant lineage that 

may be explained by this hypothesis is a subclade of the warm-adapted 

Anochetus trap-jaw ants, wherein the split between Neotropical and 

Indomalayan clades is dated at about 35–50 Ma (Larabee et al., 2016). In such 

case, the Antarctic land corridor may have been intolerably cold for these 

tropical/sub-tropical ants. 

 

(c) Direct, long-distance dispersal across the Pacific Ocean have been 

invoked in a number of ant lineages at various geological times throughout the 

Neogene Period (ca. 0–25 Ma). For instance, mid-Miocene dispersal events 

from the New World to the Indo-Pacific has been inferred for Pheidole 

(Economo et al., 2015b) and Odontomachus lineages (Manuscript IV). These 

colonization events coincide with the major Neogene warming event, but more 

studies are needed in order to establish a potential link between global shifts in 

temperatures and ant dispersal along the warm Pacific Equatorial currents. 

Odontomachus simillimus, for instance, seems to have spread directly from the 

Neotropics into Melanesia across the Pacific Ocean as recently as 5 Ma, thus 
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human-mediated dispersal is unlikely to have happened in such case, but a 

trans-Pacific long-distance dispersal (Manuscript IV). Other examples of 

apparent disjunct distribution may be explained by commerce, at least until 

divergence times of closely related taxa are elucidated, as for example a 

Camponotus maculatus-like Pacific lineage that clusters with a New World 

clade (Clouse et al., 2015). 

 

 

3. Regional routes for ant dispersal within the Indo-Pacific 

 

Little is known about the paleogeography of the Pacific volcanic islands. It is 

believed that certain islands of eastern Melanesia, including Vanuatu and Fiji, 

emerged and remained above water since the Miocene (i.e., for the past 25 Ma) 

(Keppel et al., 2009; Economo & Sarnat, 2012). However, the extent of their 

landmasses or the existence of island arcs that temporarily connected them with 

New Guinea or Australia remains speculative. The Vitiaz Arc biogeographic 

hypothesis suggests that the earliest colonization of eastern Melanesia occurred 

by the early to mid-Miocene (15–25 Ma), facilitated by an ancient archipelago 

across proto-Papua, the Solomon Islands, Vanuatu, and Fiji (Ewart, 1988; 

Liebherr, 2005). Such paleogeographic scenario predicts Miocene stepping-

stone fashion dispersal of terrestrial fauna, until the disruption of the island arc 

at about 10 Ma. In Manuscript III, the Vitiaz Arc model is supported by two 

lineages within the genera Nylanderia and Paraparatrechina that reached 

Vanuatu and Fiji at about 11 Ma. Similar biogeographic pattern has also been 

recovered in other ant taxa, namely Lordomyrma (Lucky & Sarnat, 2010) and 

Pheidole (Sarnat & Moreau, 2011; Economo et al., 2015b), which colonized 

and further diversified in the Solomon Islands, Vanuatu, and Fiji at about 9–17 

Ma. 

The exposure of most present land in the Pacific occurred rather recently, in 

the late Miocene and Pliocene (i.e., less than 10 Ma). Palau is the most species-

rich archipelago along Micronesia and Polynesia (Clouse, 2007). Contrary to 

the most accepted assumption that the fauna of Palau is the result of single, 

long-distance dispersal, followed by local diversification (Gressitt, 1984), 

recent evidence from ant molecular phylogenies suggests instead that multiple 
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dispersal from various sources occurred in the past 4–8 Ma. The Philippines 

and New Guinea are the two main sources of Prenolepis genus-group taxa in 

Micronesia (Manuscript III), whereas dispersal from Vanuatu and Australia 

was inferred for Camponotus maculatus-like ants (Clouse et al., 2015). Eastern 

Melanesia (i.e., Vanuatu and Fiji) was re-colonized during the Pliocene by 

younger lineages (ca. 5 Ma) from New Guinea (e.g., Prenolepis genus-group 

(Manuscript III), Odontomachus (Manuscript IV)), Australia (e.g., 

Camponotus maculatus-like ants (Clouse et al., 2015)), and SE Asia (e.g., 

Pheidole (Economo et al., 2015b)), in line with the recent re-exposure of most 

of its land area. Although westward dispersal or migration back to source areas 

has received little support by the taxon cycle hypothesis, such pattern was 

recovered in at least two ant clades. In Camponotus maculatus-like ants 

dispersal was reconstructed from Vanuatu to Micronesia, and back to New 

Guinea (Clouse et al., 2015), whereas Odontomachus simillimus seems to have 

colonized the entire Indo Pacific from Fiji (Janda et al., in prep.), a scenario that 

is consistent with the Neotropical origin of the lineage and subsequent dispersal 

westwards in the Pacific (Larabee et al., 2016)(Manuscript IV). 

 

 

4. Diversification dynamics in New Guinea 

 

The Central Range orogeny in New Guinea is one of the most important 

trigger of insect speciation (Toussaint et al., 2014). Such radiation happened 

relatively rapid (less than 10 Ma) probably by means of allopatric and 

parapatric differentiation. Ant diversification at lower montane habitats began 

at about 10–15 Ma (genus Nylanderia, Manuscript III), when Australia and the 

Pacific plates converged and triggered the initial orogeny of Central Range on 

its western edge. Speciation continued throughout the Miocene and Pliocene on 

montane environments, along and across the Central Range (e.g., the genus 

Odontomachus, Manuscript IV). Nonetheless, further taxon sampling and a 

better understanding of the ants' natural history in New Guinea are necessary 

before attempting to generalize the mechanisms of speciation (e.g., vertical or 

horizontal segregation by competition (Diamond, 1973), narrow habitat 

associations along altitudinal bands (Fjeldså & Lovett, 1997), geographical 
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barriers to gene flow across mountains and valleys (Deiner et al., 2011), etc). 

For lowland ant taxa, strong habitat associations and possible local competitive 

exclusions may have strengthen differentiation among populations, rather than 

the Central Range per se as a significant barrier to gene flow (e.g., in Acropyga 

(Paper I), and in Leptomyrmex (Lucky & Ward, 2010)). Biotic interactions, 

such as ant-plant associations or inter-specific competition, may have also 

enhanced ant radiation in lowland rainforest (Chomicki et al., 2015). For 

instance, the Dolichoderinae genus Philidris seems to have diversified within 

the past 5 Ma (Ward et al., 2010) thanks to its association with myrmecophytes 

(Matos-Maraví et al., in prep.). Community assembly in such case contrasts that 

observed in other ant taxa displaying phylogenetic overdispersion, perhaps 

mediated by strong competition (Plowman et al., in prep.). 

 

 

5. An integrative Indo-Pacific biogeography – ecology, 

evolution, and geography 

 

The taxon cycle hypothesis has been one of the most integrative island 

biogeographic model, coupling ecological (local communities) and evolutionary 

mechanisms (population dynamics) to explain geographical distributions of 

taxa. However, a critical further expansion of the taxon cycle has been recently 

proposed, wherein the phases of expansions/contractions may not only be a 

single-species phenomenon, but also a broader clade-level pattern (Erwin, 

1985; Economo et al., 2015a, 2015b). Such macroevolutionary component was 

not clear in the original proposal of the taxon cycle hypothesis. The expanded 

hypothesis then may predict that shifts in ecological preferences on one lineage 

may eventually lead to ecological release, promoting phenotypic variability and 

differentiation. Nonetheless, such evolutionary innovation may confer an 

ecological advantage for expanding lineages (both geographically and 

ecologically), and may persist even over cladogenetic events. Thus, if further 

speciation occurred, an entire clade might be considered at the expansion phase. 

Widespread clades within Pheidole (Economo et al., 2015b) and Nylanderia 

(Manuscript III), whose members occupy marginal habitats (e.g., coastal 

environments) have been recently reported. In Manuscript III, furthermore, the 
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analyses of diversification rates suggested that not only expanding clades may 

exhibit habitat preference shifts, but also those events may have increased 

speciation rates. Accordingly, shifts in habitat preference (ecological release) 

may not only favour geographical range expansion, as proposed by the original 

taxon cycle hypothesis, but it may also trigger species diversification of 

terrestrial invertebrates. 

 

 

6. Conclusions and perspectives 

 

This thesis represents a step forward to a better understanding of tropical 

insect evolution. Indo-Pacific ants offer a great opportunity to study the origin 

and diversification of taxa on insular landscapes. Standard protocols to collect 

them along with their abundances in tropical localities make the ants accessible 

and preferable study organisms. The good fossil preservation of the ants is 

another advantage when time-calibrating ant phylogenies. Various hypotheses 

on the success and radiation of ants have been proposed, including the 

influential taxon cycle. Cutting-edge methods on ancestral state reconstruction 

and diversification dynamics offer a new avenue to test such hypotheses in a 

multi-layer framework, including: paleogeography, phylogenetics, 

biogeography, and ecology. Nevertheless, this thesis might be considered, along 

with other Indo-Pacific ant biogeographic studies, only the starting point to 

disentangle the complexity of tropical biodiversity. Further ecological, 

behavioral, population genomics studies are needed to unveil the mechanisms 

of diversity generation in the Indo-Pacific. For now, a little bit more is known 

on the timing and how complex was the origin and maintenance of biodiversity 

in SE Asia and the tropical South Pacific. 
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