BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGIi

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
USTAV POCITACOVE GRAFIKY A MULTIMEDIi

GRANULAR SYNTHESIS IN MUSIC PRODUCTION

GRANULARNI SYNTEZA V HUDEBNi PRODUKCI

BACHELOR'S THESIS

BAKALARSKA PRACE

AUTHOR PAVEL PECINKA
AUTOR PRACE

SUPERVISOR prof. Dr. Ing. JAN CERNOCKY

VEDOUCI PRACE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

Department of Computer Graphics and Multimedia (DCGM) Academic year 2021/2022

Bachelor's Thesis Specification |||||\||H|5|J|2\l|\|\|||\|

Student: Pecinka Pavel

Programme: Information Technology

Title: Granular Synthesis in Music Production
Category: Signal Processing

Assignment:

1. Get acquainted with the principles of HW and SW systems for music production.
2. Get acquainted with the principles of granular synthesis and perform a survey of commercial
and open solutions.
3. Design an algorithm for granular synthesis. Create a prototype in a standard programming
language.
4. Implement as a plugin capable of interfacing with music processing software.
5. Suggest one or several improvements to the current systems, implement and test.
6. Design, perform and evaluate user tests.
Recommended literature:
e TRKAL, Tomés. Softwarovy multiefekt pro postprodukci popularni hudby. Brno, 2017.
Master's Thesis. FIT BUT. 2017
¢ according to supervisor's recommendation
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Cernocky Jan, prof. Dr. Ing.
Head of Department: ~ Cernocky Jan, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: July 29, 2022

Approval date: November 1, 2021

Bachelor's Thesis Specification/25122/2021/xpecin07 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract

The focus of this thesis is on designing and creating a granular synthesis application for
music production. The application is implemented as a VST3 plugin with the use of JUCE
framework and C++ programming language and is capable of interfacing with Digital Audio
Workstations, or DAWs for short, which are programs that serve as a central point for music
producers, where they can create new sounds, mix songs and create audio recordings among
many other things. The plugin is designed as a sampler, able to load a sample file containing
audio data and use this data for further processing and playback. Evaluation of user tests
indicates, that the application can be successfully used for music production as a granular
synthesis instrument.

Abstrakt

Cilem této préace je navrhnout a vytvorit aplikaci pro granuldrni syntézu, vyuzitelnou v
hudbeni produkci. Aplikace je implementovana jako VST3 zasuvny modul s vyuzitim
frameworku JUCE a programovaciho jazyka C++ a je schopna propojeni s programy typu
Digital Audio workstation, zkracené DAW, coz jsou programy slouzici jako centralni bod
pro hudebni producenty, kde mohou mimo jiné vytvaret nové zvuky, provadét mixovani
skladeb a vytvaret zvukové nahravky. Tento zdsuvny modul je navrzen jako sampler a je
schopen nahrat zvukovy soubor obsahujici audio data, kterd dale vyuziva pro dalsi zpra-
covani a nasledné prehravani. Z vyhodnoceni uzivatelského testovani vyplyva, ze je tato
aplikace pouzitelnd pro hudebni produkci jako nastroj pro granularni syntézu.

Keywords
granular synthesis, grain, envelope, music production, signal processing, DAW, Digital Au-
dio Workstation, plugin, effect, synthesizer, sampler, VST, JUCE

Klicova slova
granularni syntéza, zrnko, obalka, hudebni produkce, zpracovani signalt, DAW, plugin,
zasuvny modul, efekt, syntetizér, sampler, VST, JUCE

Reference

PECINKA, Pavel. Granular synthesis in music production. Brno, 2022. Bachelor’s thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor prof. Dr.
Ing. Jan Cernocky

Rozsireny abstrakt

Granularni syntéza je zvukova syntéza, ve které se pouziva koncept zrnka — malé jednotky
zvuku, obvykle 1 az 100 milisekund dlouhé, k vytvoreni dlouhych, rozsihlych zvukovych
kulis. Na tato zrnka se aplikuje amplitudova obéalka, kterda zméni jejich obsah a umozni
jejich rapidni prehravani bez zptsobeni nechténych zvukovych artefaktti. Vse je dosazeno
pomoci téchto zrnek, které samy o sobé nemusi mit zadny zajimavy sonicky obsah, ale
jejich skladdnim na sebe, nebo naopak jejich rozprostienim v ¢ase lze dosdhnout zaji-
mavych zvukovych textur. Takzvané granulizéry jsou virtudlni hudebni nastroje, které
jsou schopné provadét granuldrni syntézu. Tyto programy obsahuji ¢etné ovladaci prvky,
kterymi hudebni producent miize kontrolovat zptisob prehravani, parametry jednotlivych
zrnek jako jejich velikost, amplitudovou obalku a jejich rozestupy.

Amplitude

Time ——»

Figure 1: Pfiklad zrnka. Zdroj: [11]

Vystupem této prace je aplikace Petaldance — granularni syntetizér, implementovany
jako zasuvny modul ve formatu VST3, ktery je schopen propojeni s hostitelskymi aplikacemi
pro hudebni produkci, coz jej umoznuje vyuzivat béhem standardniho procesu tvorby hudby.
Béhem tohoto procesu pracuje hudebni producent v takzvaném digial audio workstation, coz
je pracovisté obsahujici komponenty pro vytvareni skladeb, jejich mixovani a editaci. Tato
pracovisté obsahuji mnoho dalsich pluginu, jakym je vystup této prace, takze je zasadni,
aby byl implementovan jako zasuvny modul, ktery spolupracuje s ostatnimi programy a
nerusil pracovni postup.

Na zavér byly navrzeny a provedeny uzivatelské testy, které mély za kol zhodnotit
vyslednou aplikaci po grafické strance, po strance jednoduchosti a intuitivnosti ovladani a
urcit, zda je tato aplikace vhodnd k pouziti jako nastroj v hudebni produkci. Z vysledku
uzivatelskych testi a recenzi vyplyva, Ze je aplikace vhodna jak pro zacinajici, tak pro

zkusené producenty a s mensSimi vylepsenimi by mohla dle slov recenzentii konkurovat
komerénim feSenim, kterd jsou aktualné dostupnd na trhu.

Granular synthesis in music production

Declaration

I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of prof. Dr. Ing. Jan Cernocky. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

Pavel Pecinka
August 1, 2022

Acknowledgements

I would like to thank prof. Dr. Ing. Jan Cernocky for his advice, consultations, guidance
and help with this thesis and for allowing me to select this custom assignment. I would
also like to thank my family for their support of my studies.

Contents

1 Introduction

2 Music production

2.1 Digital Audio Workstations
2.1.1 FL Studio v o e
2.1.2 Ableton Live

2.2 Pluginso e
2.2.1 VST . . o e
2.2.2 AU . . . e

3 Granular synthesis

3.1 Concept of grains L

3.2 Choosing a grain envelope

3.3 Grain panning e

3.4 Grain playback L

3.5 Synchronous granular synthesiso

4 Plugin market research

4.1 TheMangle
4.2 Fruity Granulizer
4.3 Granulizer 2 e
4.4 Granulator IT e e
4.5 Conclusion e e e e

5 Conceptual design and prototyping

5.1 Conceptual design L
5.2 Static granulizer prototypeo
5.3 Conclusion of prototyping

6 Implementation

6.1 JUCE framework o e

6.2 Petaldance plugin. Lo

6.3 Problems during development L oL

6.4 Improvements on the current systems
7 Testing

7.1 Application testing

7.2 User testS . . v v v v it e e e e e e e

w

© 00 0 =~ Ul

10

11
13
14
14

15
15
18
19
20
21

22
22
23
24

25
25
26
29
29

8 Conclusion
8.1 SUIMIMATY .« « v v v vt e e e e e e e
8.2 Future WOTK . . o v o o e e e e e e e e e

Bibliography

A User review of the application

33
33
33

35

36

Chapter 1

Introduction

Becoming a music producer is more accessible than ever, thanks to the low cost of entry
compared to few decades ago, together with the increasing amount of information that is
shared on this topic. Physical instruments and hardware can be replaced with software
variants that are cheaper or often free, allowing anyone that previously didn’t have means
or space to store the hardware to start this hobby.

This thesis deals with designing and implementing a granular synthesis plugin, that
is capable of interfacing with digital audio workstations or DAWSs for short. DAWSs are
host programs used by music producers where they can record, edit and master songs. The
application is implemented in JUCE framework and C++ programming language as a VST3
plugin — a format used by most of the current digital audio workstations. It is designed
as a sampler, able to load a sample file and use the loaded data for further processing and
playback.

Granular synthesis is a synthesis method that uses the concept of grain — a small unit
of audio data, usually around 1 to 100 milliseconds in duration, to create large and long
soundscapes, sounding as if a reverberation effect was applied, all from these short, indi-
vidually uninteresting grains. This is achieved by different ways of layering these grains on
top of each other or spacing them out, depending on the desired resulting sound texture.
Granular synthesis plugins, often called granulizers, can have numerous adjustable options,
which control different aspects of the grain manipulation, such as the amplitude envelope
applied to grains, amount of grains generated in a specific time frame, direction of the
playback and many more. Capabilities of granular synthesizers are shown in chapter 4.

Chapter 2 focuses on music production, describing currently used digital audio work-
stations and plugins. The concept of granular synthesis is described in Chapter 3, along
with different possible implementations. Plugin market research is conducted in Chapter 4,
showing different granular synthesis plugins available on the market at the time of writing
this thesis. Each of them is tested and analyzed to gain inspiration on which features should
be picked up for the final application and to look out for any flaws that should be avoided in
the final program. Chapter 5 deals with conceptual design for the final plugin and creation
of a prototype in Python language. Chapters 6 and 7 focus on implementation, testing and
user review of the final application.

Chapter 2

Music production

The increase in computing power, happening in the last two decades, enabled people to
access tools that have been locked behind significant upfront costs. Owning or even renting
studio used to be reserved mostly for professionals. Nowadays, anyone with a computer
and interest in learning about music production can try this hobby, profession and passion.
This chapter deals with describing tools for music production used in the current times —
Digital Audio Workstations or DAWs for short and plugins used inside them.

2.1 Digital Audio Workstations

Digital audio workstations are host programs that together with other components, called
plugins, create a virtual studio containing everything a music producer might need for
recording, composing, editing and mixing of music.

FILE EDITADD PATERNS VIEW OPTIONS 10015 HEL? (). g > = Ao 22w wo 1:07:00°

: amy o DEES
' JIROdxe
w

Kik ik TKick | FKick
tassline £3 ik ki Tkick Fkick | T

Ftassline £5 —
Aick

AKick 12 Bassline
ELTS

aFattern 10 P bassli

ETY

Key:

PitCher

Fitther £
breakbeat

amp

Figure 2.1: Digital Audio Workstation FL Studio 20

There are numerous DAWSs on the current market, both paid and free, each with their
own specific workflows, advantages and drawbacks. One of them is going to be analyzed

and described — FL Studio' and Ableton Live’ will be introduced as an alternative. These
two DAWSs were used during the development and testing of the final plugin as is described
in Chapter 7.

2.1.1 FL Studio

FL Studio, formerly known as FruityLoops, is a DAW developed by Image-Line®. FL Studio
comes in four different editions, costing from € 99 up to € 499, but comes with free lifetime
updates [5]. FL Studio 20 can be seen in Figure 2.1. Three core components of this DAW
are a mixer, playlist and piano roll.

The mixer contains tracks into which music producer can assign plugin instruments,
samples or external audio inputs such as microphones. Mixer tracks have slots for effect
plugins such as delay, filter or reverb. Typical examples for a mixer track can be a group
of drums or a vocal. Producer would then apply effects on this track in a specific order,
modifying the resulting output in the final mix [2]. Mixer can be seen in Figure 2.2.

> 4 kg OO Wide

» Fruity Limiter

P S P S S P S S P S S S P
IR TR T T Tl T Tl T T Tt Tl o T R T |

Figure 2.2: Mixer from FL Studio 20

Another part of this DAW is playlist with tracks. Playlist is where the music producer
can arrange the song, specifying when each element starts. Each track can contain a pattern
with MIDI notes, a sample like a vocal track or automation clip, used to automate different
values, such as plugin parameters or sample file attributes like pitch. Playlist can be seen
in Figure 2.3. Individual tracks can be color coded and named for better orientation in the
playlist, allowing users to create organized projects that can then be shared for collaboration
with other artists or producers without the other party having to decipher the contents of
the project [4].

Last notable part of this DAW is a piano roll, which is used to store note information
for playback, as can be seen in Figure 2.4. Music producer manually inserts the notes which
are then triggered by playback, making the plugin, that the notes are drawn for, play with
the corresponding pitch. Additional options include controlling the note velocity, setting
up note sliding and setting portamento effect [3].

FL Studio comes with a wide range of plugin instruments, ranging from virtual pianos,
synthesizers and samplers. FL Studio also comes with a range of built-in effects such as
filters, delays and compressors, built-in instruments, one of which is going to be described
in Chapter 4.2 and other components like Edison — a fully host integrated audio editing,

'FL Studio - https://www.image-1line.com/f1-studio/
2 Ableton Live - https://www.ableton.com/en/shop/live/
3Image-Line - https://www.image-1line.com/

https://www.image-line.com/fl-studio/
https://www.ableton.com/en/shop/live/
https://www.image-line.com/

analyzing and recording tool, useful also in development for inspecting the audio output of
our plugin.

PN QA% @ dx e N3O i Playlist - Arangement » ATS Guitar Rattle

a Diopbeat #2 ANk Armbuld

akick
A Kick #2
3Drumbuild

o
BDropbeat Drops. A Lastfill
ADropbeat #2

- ae
I Lastfill e tomution e Revkick
SDropbeat 13
3 Pianochords
AGuitarp
o B ntrobass
A Noisefall
Guitarp,

A Introbass
3 Dropbass
& Piano APianodun B Pianochords.
A Dropbass #2
HDropbass 43 Pianofx # Reversepiano Penta
A Droplead
A Droplead §2 Strings asingrise 12
AStringrise —
Bstringrise 82 Noise Foisefall
JPianoplay
E L

S Pianadun
W FXBig Reverse i FX Big Reverse

3 Spinner . '

A snareroll Automation

Track 15 - ATS Shaker Rattle

Figure 2.3: Playlist from FL Studio 20

Figure 2.4: FL Studio 20 with a pianoroll open, containing notes. Source: [3]

2.1.2 Ableton Live

Ableton Live is a digital audio workstation developed by Ableton AG*. In comparison to
FL Studio, each new version of this DAW has to be bought again, whereas FL. Studio
guarantees lifetime of free updates after one time purchase. Ableton Live can be seen as a
MacOS alternative to FL Studio, both of them being popular and essentially rival DAWs.
Ableton Live has its own version of FL. Studios mixer, playlist and piano roll, with a different
workflow behind it. Ableton Live 11 can be seen in Figure 2.5.

What's New in Live 11

Recording Audio

Crealing Beats

Playing Software Instruments

Mox for Live

Figure 2.5: Ableton Live 11

Figure 2.6 shows Arrangement view, the Ableton Live 11 oversion of the Playlist from
FL Studio. The individual tracks can be assigned to plugin instruments and MIDI note data
entered on the track, making the instrument play the defined notes during track playback.

e
B Do,

[Womav (o1 Serprverer T

Figure 2.6: Ableton Live 11 Arrange View

“Ableton AG - https://www.ableton.com/en/

https://www.ableton.com/en/

2.2 Plugins

Plugins, in the context of music production and digital audio workstations, are applications
that run inside the host DAW and can be one of various categories. Omne category of
plugins are instruments — this includes software versions of real-life instruments such as
guitars, pianos, drums, software versions of analog synthesizers or instruments that exist
purely as a software, not having a physical, real-life variant such as granulizers. Another
category are effect plugins. Effect plugins are used to modify audio from different sources,
examples of such plugins being filters, delays, reverberation effects and plugins used for
mastering and mixing of tracks, such as compressors and limiters that compress dynamic
range. Third category of plugins could be called utility plugins, or analyzers. These plugins
can be used to inspect the audio quality by displaying the waveform or a spectrogram of the
current playback, record audio or otherwise assist the music producer with tasks different
from general music production.

2.2.1 VST

Virtual Studio Technology, or VST for short, is an interface and a plugin format for both
Windows and MacOS developed and maintained by Steinberg Media Technologies®. It
allows the developer to focus on the plugin functionality and handles the interfacing with
the host application. Currently, VST plugins are supported by almost every DAW on the
market, including FL. Studio and Ableton Live, so it is a prudent choice as a baseline for a
plugin, since an application built on this technology will have far reach and compatibility
from the start. Currently supported and most used version is VST3, which is a rework of
the older versions, with improved performance and new features [13]. These changes made
the VST3 version not backwards compatible, but at the time of writing this thesis, there
is already announcement about discontinuing of support for VST2 in the future, meaning
developers should focus on VST3 plugin development only [14]. This is the reason VST3
plugin format was chosen for the granular synthesis plugin created in this thesis.

1 B

V= 4

Figure 2.7: VST logo. Source: [12]

5Steinberg Media Technologies - https://www.steinberg.net/

https://www.steinberg.net/

2.2.2 AU

Audio Units is a plugin format for plugins on MacOS. It is often times considered as MacOS
counterpart to the VST format. This format is supported by numerous DAWs available on
MacOS, such as Ableton Live, Logic Pro® or GarageBand’.

Audio Units

Figure 2.8: AudioUnits logo. Source: [1]

SLogic Pro - https://www.apple.com/logic-pro/
"GarageBand - https://www.apple.com/mac/garageband/

https://www.apple.com/logic-pro/
https://www.apple.com/mac/garageband/

Chapter 3

Granular synthesis

This chapter deals with description of granular synthesis. Basic concepts are described,
together with different kinds of methods of implementation.

3.1 Concept of grains

The adjective granular in granular synthesis means the signal is processed with a technique
called granulizing. Granulizing is a process where the input signal, in music production
typically audio signal from a DAW or a sample file, is split up into small bits called grains.

Grains are small parts of the original signal, typically in range from 1 to 100 miliseconds
long, but even multiple seconds long grains can be considered, when they have the right
parameters. These grains are then processed further — an amplitude envelope is applied to
each grain along with possible other effects, such stereo panning and then they are played
back [10, 11]. Example of a grain can be seen in Figure 3.1. Chapter 3.2 adresses what
grain envelopes are and which envelope shapes can be considered when trying to select one.

Amplitude

Time ——>

Figure 3.1: Example of a grain. Source: [11]

10

3.2 Choosing a grain envelope

Grain envelope, often times called a window, is an amplitude envelope that is applied to each
generated grain. The process of applying the envelope to a grain is often called windowing.
In general, it can be interchangeably said that the envelope also determines the length of
the grain or that the envelope is created to fit the size of the grain.

In theory, grain envelopes can have any shape, ranging from the shape of a Dirac delta

function:
=0
S(a) = % " (3.1)
0, x#0

all the way up to a rectangular window also known as Dirichlet or a boxcar window,
which doesn’t change the amplitude of the grain at all:

win] =1 (3.2)

Since the process of granulizing is splitting the input signal into grains, it is important
that the envelope starts and ends in a zero value, to prevent non-zero start and end of
playback of the grains. If there was no such amplitude envelope applied (or an envelope
not starting and ending in zero), the playback of such grains could create output full of
unwanted artifacts, such as clicking.

Some simpler envelopes can be described by an ASR (attack, sustain, release) envelope,
which can be seen in figure 3.2.

| 1
I I
I I
| Peal :
: Amphtude |
| |
| |
| |

Attack time+=— Sustain time ——= «Decay time -

Duration

Figure 3.2: Example of an ASR envelope. Source: [9]

Two other grain envelopes frequently appear in literature on the topic of granular syn-
thesis — Hann, or Hanning and Gaussian envelope. Hann envelope can be described as

follows:
w(n) = % . (1 ~ cos (2”](‘; ”)) (3.3)

Where N is the size of the window. Hann window can be seen in Figure 3.3.

11

Hann window

Amplitude
o o =
o © =)

N
IS

e
N)

o
=)
!

o
=
o
N
o
w
o
IS
o

Sample

Figure 3.3: Hann envelope

Gaussian envelope can be described as follows:

w(n) = e (3

Where sigma is the standard deviation.

Gaussian window (0=7)

1.0 1

Amplitude
N o o
IS) ©

e
N)

o
=)
!

o
=
o
N
o
w
o
IS
o

Sample

Figure 3.4: Gaussian envelope

(3.4)

Boxcar window is not of use, at least not in this form. In case of playback of grains with

this envelope, there would be unwanted artifacts such as clicking. The sudden jump from
zero to some is what causes the artifacts and this would happen for each and every grain.
With grains of small sizes, such as 10 milliseconds, this could mean hundreds of unwanted
artifacts per second. Boxcar envelope can be seen in Figure 3.5.

A solution would be to an envelope such as Turkey window, also known as tapered

12

cosine window — an envelope with smoothed out start and end parts. Here the value of
the envelope starts and ends in amplitude 0 and slowly ramps up to maximum amplitude,
before ramping down again. This prevents the creation of artifacts. Turkey window can be
seen in Figure 3.6.

Boxcar window

1.04

1.02 A

1.00

Amplitude

0.98 1

0.96 1

0 10 20 30 40 50
Sample

Figure 3.5: Boxcar envelope

Tukey window

Amplitude
o o
o ©

<
IS

o
N)

o
=)

0 10 20 30 40 50
Sample

Figure 3.6: Turkey envelope

Virtually any grain envelope can be used, as long as it starts and ends in zero amplitude.
The smaller the grain size is, the more pronounced is the effect of the grain envelope on the
resulting sound texture.

3.3 Grain panning

Another parameter of grains is panning. Based on the parameter, grains will output varying
amplitude to either left or right channel. Extreme case of this would be outputting normal
volume to one channel — for example left — and 0 amplitude, so silence, to the right one. By
switching this parameter from grain to grain, either randomly or in an organized manner,
spatial effect occurs. With small sizes of grains and rapid switching of panning parameter
on each of them a wide, surrounding texture of sound happens.

13

3.4 Grain playback

Apart from the size, shape and the content of the grains, the only component missing is the
way of playing the grains. The way the grains are played back is the essence of granular
synthesis. They can be played in the same order as was the original signal or sample, but
for sonically interesting results it’s typically in a different order, examples being reversed
and/or randomised. Additionally, the grains can be layered on top of each other and cross-
faded into each other in order to create interesting sound textures.

There are multiple types of granular synthesis, depending on how they organize the
grains. The focus will be on synchronous granular synthesis.

3.5 Synchronous granular synthesis

Synchronous granular synthesis manages playback in a way, where each grain follows an-
other one, with a specified delay between them. This delay can make the grains stack on
top of each other or make them spaced out from one another, with silence in between. This
delay can be described by a parameter called grain density.

Grain density can be represented as a number of grains per second. The sonic content
of the individual grains is added together, resulting in increased amplitude, change in its
timbre and pitch of the texture. Grain density is affected by the length, or duration of the
individual grains. The greater the grain size, the larger the overlap of individual grains
will be, resulting in completely different sound texture from a setting where small sizes of
grains would be used.

14

Chapter 4

Plugin market research

This chapter contains a description of several granular synthesis plugins that are available
on the market at the time of writing this thesis. The plugins are selected to show what
granulizers can, but don’t have to be capable of, in terms of manipulating the sound and
how they can be controlled. In general, these plugins can have many functionalities, such
as filters, FM synthesizers, LFOs for playback volume modulation and many more built
into them, but the focus will be on the granulizing abilities, omitting the other functions.

The first plugin — The Mangle — will be described in detail, since it is the most unique
out of the selected granulizers and provided the most inspiration for designing the plugin
created in this thesis.

Testing was done by inserting samples of a vocal recording, snare drum hit, sine wave
and a special “ramp* signal into the plugins and observing the output. Description and
waveforms of these samples are in Section 5.2.

4.1 The Mangle

The Mangle' is a VST plugin made by Tom Maisey (Sound-Guru). It has a free, limited
demo version and a paid, unrestricted version which costs £19.99 This plugin works as a
sampler — user selects a sample file, drags and drops it onto the plugin, the sample file gets
loaded and user can start working with the plugin.

The Mangle doesn’t play back the entire sample, instead it generates grains from a static,
selected position in the sample. The plugin displays a waveform of the loaded sample as can
be seen in figure 4.1. There is a horizontal and vertical line creating a crosshair pointing
to a specific spot on the sample. The vertical line signals the position in the sample where
the grains will be generated from. The horizontal line determines volume amplitude of the
grain ranging from 0% to 100%. The plugin also provides visual feedback for each generated
grain as a dot which travels in the direction of the playback and has a size corresponding
to the amplitude of the generated grain, bigger meaning louder, smaller meaning quieter.
Focusing on the Modulators tab, there are five knobs that control the way the grains are
played back:

1. Rate - rate of generating grains, ranging from one grain per 4 seconds to 250 grains
per second

!The Mangle - http: //sound-guru.com/software/mangle/

15

http://sound-guru.com/software/mangle/

2. Pitch - changes the pitch of the grains, ranging from 25% to 1600% of the original
pitch — the change in pitch also alters the playback speed, lower pitch making the
playback slower, higher pitch higher

3. Release - release time of the grain, ranging from 0 to 3 seconds (can be also seen on
the grain envelope at the bottom of figure 4.1)

4. Reverse - a percentage chance that a generated grain will be played in reverse,
ranging from 0% to 100%

5. Pan - ranging from values -1 to +1, it indicates the spatial panning of the played
grains, where negative values mean panning to the left, positive values mean panning
to the right

» {3 vocal (Insert 2

- === THE MANGLE

Medulators

MIDI & Macro

Figure 4.1: The Mangle VST plugin with a loaded sample

Lastly, at the bottom of the figure 4.1 is a grain envelope, which is composed of attack,
sustain and release stages. Each of these stages can be adjusted by sliders located right of
the grain envelope. Attack and release can be set anywhere from 0 seconds to 3 seconds
and sustain can be set from 0 seconds to 4 seconds. Therefore, this plugin can create grains
that are up to 12 seconds long, which further sets it apart from the other plugins, which
usually have much shorter grain sizes.

16

Disadvantages

A few shortcomings of this plugin arised when testing this plugin. One imperfection of this
plugin is in the grain envelope. When one or both of the attack and release parts of the
envelope are set to 0 seconds, the envelope turns into a (half) square wave, which causes
unwanted artifacts in the output signal because the crude envelope distorts it, making the
output sonically unpleasant, which can be described as “clicking*.

Sine wave sample - clean (grain envelope with non-zero attack and sustain)

0.015 N A A

0.010

0.005

AN AV RN RNIRNE

-0.005

o \/ v, \/ v, \/ \

-0.015

Amplitude

0.000 0.002 0.004 0.006 0.008 0.010
Time (seconds)

Figure 4.2: Clean output of the plugin with non-zero attack/release

Sine wave sample - distorted (grain envelope with attack and sustain set to 0 seconds)

\ \\/ \ \\f \ \\f
VULV D
WiIRRIWIR

V; V, V,

0.000 0.002 0.004 0.006 0.008 0.010
Time (seconds)

0.04

0.02

Amplitude

0.00

Figure 4.3: Distorted output of the plugin with square wave grain envelope

Another imperfection arises when setting the Rate knob to produce more than ~100
grains per second. After passing this threshold, the output of the plugin becomes sonically
unpleasant for speech and drum samples. The plugin doesn’t create unwanted artifacts

17

because of the amount of grains, rather it doesn’t produce satisfying output when the grain
rate is set to such speed, at least not with samples that a producer would typically consider
using in music production. Examples of such samples are a recording of speech, singing,
drum hits and natural sounds like dripping water.

4.2 Fruity Granulizer

Fruity Granulizer® is a granular synthesis plugin native to FL Studio® DAW. It is available
for free as a part of all paid versions of FL. Studio, starting at € 89 for the “Fruity“ version,
but can be tried out for free in the FL. Studio trial version.

It works as a sampler and unlike The Mangle, it plays back the entire sample, playing
grains one after each other, until the entire sample has been played in this way. It is quite
simple in comparison to the other selected plugins, as it doesn’t have any visual aspects
apart from displaying the loaded sample waveform and contains just a few control knobs.
Fruity Granulizer also has the ability to perform real-time time stretching.

In comparison to The Mangle, there is no problem with unwanted artifacts being created
by setting “ATTACK* knob to the lowest value. This knob sets both the attack and
decay stages of the grain envelope and because the minimum value that a user can set is
5 miliseconds, this allows the grains to fade in and fade out smoothly, not causing any
artifacts.

TRANSIENTS

-

Figure 4.4: Fruity Granulizer plugin with a loaded sample

*Fruity Granulizer - https://www.image-line.com/f1l-studio-learning/f1-studio-online-manual/
html/plugins/Fruity%20Granulizer.htm
3FL Studio - https://www.inage-1ine.com/f1-studio/

18

https://www.image-line.com/fl-studio-learning/fl-studio-online-manual/
https://www.image-line.com/fl-studio/

Last thing to note about this plugin is the “Transients® section. This section enables
aligning of grains to transients, which can improve output quality on certain sample cate-
gories, like drum samples. User can turn this feature on or off, with the option to autodetect
or process it from the sample slices if there are any [6].

When testing with a snare drum, vocal and a sine wave samples, no measurable artifacts
or sonically unpleasant output was being generated by the plugin, even when trying to set
the plugin controls to extreme values.

4.3 Granulizer 2

Granulizer 2 is a granular synthesis plugin available in VST, VST3 and AU formats,
created by Inertia Sound Systems’. It costs € 80 and has a free trial version that works for
a limited time.

WARP FX

(

SMOOTH DEPTH DIMENSION SPREAD ESHIFT DRY/WET

RATE HIVE AMP

ATTACK

DECAY SUSTAIN RELEASE VOLUME

LostIn Spate

Figure 4.5: Granulizer 2 plugin. Source: [7]

Granulizer 2 is a sampler and similar to Fruity Granulizer, it plays back the entire
sample, unless changed with the added option to select a specific part of the sample only.
This gives the user the advantage of not having to splice the sample if there is a specific
part of the sample that the user wants to generate grains from. Grain envelope can be
changed by adjusting the “Shape* knob, which smoothly transitions from a sharp envelope
shape to a more rounded one and finally a flatter, almost rectangular shape, as can be seen
in figure 4.6. Grain sizes can vary from 10 miliseconds to 300 miliseconds.

During testing, wide sounding, long duration sounds were easy to achieve with sonically
satisfying results. Nevertheless, when trying to create rapid sounds with small grain lengths
and high grain density, the output of the plugin wasn’t satisfying.

“Granulizer 2 - https://www.inertiasoundsystems.com/store/products/granulizer-2/
®Inertia Sound Systems - https://www.inertiasoundsystems.com/

19

https://www.inertiasoundsystems.com/store/products/granulizer-2/
https://www.inertiasoundsystems.com/

SHAPE SHAPE SHAPE SHAPE SHAPE

Figure 4.6: Examples of grain envelopes available in Granulizer 2

4.4 Granulator 11

Granulator II° is a plugin made by Robert Henke”. The plugin itself is free, but comes
exclusively for owners of Ableton Live® DAW (version 9.1 or higher) and Max for Live,
which is included in a Suite version of Ableton Live and costs € 599, but it can be tried
out for free together with Ableton Live trial version.

.—0 Granulator Il . . .1

ilif 451 0004047

c#3 100 ¢ EEEIP

(
m

(ebout.. I8 0 |

Figure 4.7: Granulator 11 plugin

Similar to The Mangle, Granulator II generates grains at a certain rate from a selected
position in the sample, with the added option of a “Spray“ knob, which makes the starting
position of the grains to be selected at random from a specified interval, left or right to
the marked position in the sample. Just like the previous plugins, it contains controls that
change the grain envelope. User has an option to select from four predefined envelope
shapes: standard, decaying/falling, rising and “Noiz“ shape, which is a noise waveform.
These four envelopes can be then modified by “Shape* and “Spike“ parameters, to create
a new, unique envelope shape.

Figure 4.8: Examples of Granulator 2 grain envelopes

SGranulator II - https://roberthenke.com/technology/granulator.html
"Robert Henke - https://roberthenke.com/interviews/bio.html

8 Ableton Live - https://www.ableton.com/en/shop/live/

9Max for Live - https://www.ableton.com/en/live/max-for-live/

20

https://roberthenke.com/technology/granulator.html
https://roberthenke.com/interviews/bio.html
https://www.ableton.com/en/shop/live/
https://www.ableton.com/en/live/max-for-live/

The plugin provides visual feedback to the user by displaying the selected position in
the sample together with a playhead, signalizing current playback position. Despite having
means of creating rapid-firing grain clouds, the audio output doesn’t get unpleasant and no
clipping occurs.

4.5 Conclusion

In conclusion, key features that should be included in the final program were identified
thanks to the market research. Mainly on the visual side, seeing a playhead and being able to
keep track of the current playback position is crucial in deciding which parameters to change
next. All of the problems with researched plugins that surfaced during testing were taken
into consideration and served as indications of what to be wary of during implementation
of the final program.

21

Chapter 5

Conceptual design and prototyping

This chapter will cover description of conceptual design for granular synthesis application
and creation of a static, non-realtime prototype for a granular synthesis application created
in Python programming language.

5.1 Conceptual design

Based on the plugin market research, decision to create a sampler based application was
made. This allows for freedom of choice of the sonic content used for synthesis, by being
able to move to a different position in a file, selecting the part of the sample with the
most interesting resulting playback. Also, by having the entire sample stored and available,
processing or analysis can be done prior to playback.

Synchronous granular synthesis was chosen as a baseline for the algorithm. Our result-
ing application should be able to start generating grains from a specific specific starting
point and move forwards or backwards in the sample file, essentially moving forwards or
backwards in time. The grains should be generated in a linear, synchronized manner, one
after the next with a set delay between them, called spacing. The size and shape of the
envelope should be modifiable, together with option to change the stereo panning of the
individual grains, to allow for spatial effects.

The parameters are as follows:

¢ Grain size - 1 to 100 milliseconds in length
e Grain shape - Hann or Gaussian window

e Grain panning - able to set 0% - 100% of amplitude to either left or right channel,
keeping the other channel intact

¢ Grain spacing - either spacing set in milliseconds or as a percentage of grain length,
allowing overlapping for many grains (will be decided exactly by testing)

As mentioned in the plugin research conclusion, for the final application a waveform
display along with a playhead is crucial, to allow the user to see where the grains are
currently being generated from.

22

5.2 Static granulizer prototype

The prototype was implemented in Python as a jupyter notebook. The goal of creating
the prototype being the testing of different concepts of granular synthesis and evaluating
whether they were understood correctly. By doing so, correct implementation in a different
language could be achieved, regardless of the differences in implementation details.

Four samples/signals were used when working with the prototype. First sample is a ~7
second long recording of a female singer. Waveform of this sample can be seen in figure 5.1.
Speech and singing samples are often used in granular synthesis, since there can be many
interesting textures found in human speech.

Vocal sample

1.00

0.75 H } .I l

050 —

025 —

0.00 — pos——

Amplitude

=025 —

-0.50 I i A A | I ‘-n 11 I T

-0.75 ’

Time (seconds)

Figure 5.1: Vocal sample

The second sample that is used is a ~0.7 seconds long snare drum sample, with the
actual snare drum part being ~0.2 seconds long. Waveform of this sample can be seen in
figure 5.2. Drum samples are often used in granular synthesis with settings of low grain size
together with high grain density in order to create rapid firing sounds. They can also be
used by changing the panning of the grains, to create a feeling of the drum moving around
the listener and being hit rapidly in succession. Most of the content of the sample is in the
first 0.1 seconds, which shows that granular synthesis can make use of really short sounds.

Third sample is a simple ramp signal, shown in figure 5.3, used for better visualization
of changes to a signal made by the granulizers. It was used when testing the granulizers
mentioned in chapter 4, to better understand how exactly some controls work.

Overlap and add methods were tested at first, but after realizing that the type of
synthesis that was the aim of this thesis could be done without this analysis and synthesis
process, this approach was abandoned. Parameters like grain density were tested, grain
overlapping, position randomizing and were also tested.

The last sample is a two second long sine wave, used to detect possible unwanted
distortion/artifacts in the output signal.

Windowing functions from scipy library' were used as envelopes. By multiplying the
grain envelope with a slice of a loaded sample file using Python slicing, grains were created.

"Window functions - https://docs.scipy.org/doc/scipy/reference/signal.windows.html

23

https://docs.scipy.org/doc/scipy/reference/signal.windows.html

Snare sample

0.75

025 tl

8
2 000
£
— 2 RS
0.25 I
-050 — |”
-0.75
-1.00
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7
Time (seconds)
Figure 5.2: Snare drum sample
Ramp signal
1.0
0.8
° 0.6
°
2
§
0.4 /
0.2
0.0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

Time (seconds)

Figure 5.3: Ramp signal

Variable length of these envelopes was used to create grains for all of the samples and the
sound output was both plotted and listened to, to analyze the outcome.

5.3 Conclusion of prototyping

Static prototype cleared up some initial misconceptions about the process of granulizing,
allowing easier implementation of the final application. Block by block (or grain by grain)
approach was envisioned as the solution to this problem and the parameters like random-
ization of position were selected as candidates for implementation.

24

Chapter 6

Implementation

This chapter deals with describing implementation of a granular synthesis plugin in JUCE
framework using C++ programming language and the VST standard. Firstly, the JUCE
framework itself is briefly introduced, followed by the description of the application design.
At the end of the chapter, suggestions for further improvements on the currently available
systems are given.

6.1 JUCE framework

JUCE is a framework for development of multi-platform audio applications, containing
support for Windows, MacOS, Linuz, Android and iOS operating systems. The JUCE
framework also supports development of plugins with VST, AU and AAX formats. The
framework provides the programmer with many different graphical components' to choose
from without the need to design one’s own, such as sliders, scroll bars, buttons, progress

bars and others.

Figure 6.1: JUCE framework logo. Source: [8]

One of advantages of JUCE framework is that it has well written and updated docu-
mentation”, with examples often included. There is also a page with numerous tutorials®
as a part of the documentation, showing different concepts and their execution inside the
framework, which help developers new to this framework to quickly get oriented, since
there are numerous projects that one can use as a baseline. Another valuable resource is

!JUCE: Component Class - https://docs.juce.com/master/classComponent.html
2JUCE documentation - https://docs.juce.com/master/index.html
3JUCE Tutorials - https://juce.com/learn/tutorials

25

https://docs.juce.com/master/classComponent.html
https://docs.juce.com/master/index.html
https://juce.com/learn/tutorials

the JUCE Forum®. Apart from the mentioned JUCE resources, another valuable resource
was KVR audio forum®.

6.2 Petaldance plugin

The main focus of this thesis was creating this application — VST3 plugin called Petaldance.
It is a sampler based plugin, which means that it takes a sample file and the playback data
comes entirely from this loaded sample file. No other input such as microphone or some
other source from DAW is inserted into the plugin.

» {} petaldance (Maste

- l‘i:. £

Drag and drop a sample file here

Grain settings Size Spacing Time Dilation

C)C oy

Effects Position randomizer Panning Sample settings Start position

| Enable looping

Figure 6.2: Petaldance plugin loaded in FL Studio DAW

Upon opening the plugin, the user is greeted by graphical user interface shown in Figure
6.2. The plugin waits for user to drag and drop a .wav or .mp3 sample file on the top section
of the plugin with the text ,Drag and drop a sample file here*. After user drags and drops
a sample file, it will get loaded and stored inside the plugin. After this step, plugin will
look like in Figure 6.3.

At this stage, the plugin is ready for playback, but nothing is happening yet. The plugin
awaits for midi input from the host DAW, provided by the user. This can be achieved either
by pressing keys on computer keyboard (keybinds are specific for each DAW) or by having
connected and configured midi keyboard.

After pressing a key, playback starts happening from the specified position in the sample,
with the playback settings decided by the values of the slider components. During playback,
user can see a playhead indicating the current position in the sample where the grains are
being generated from. The playhead can be seen in Figure 6.4

*JUCE Forum - https: //forum. juce.com/
Skvraudio - https://www.kvraudio.com/

26

https://forum.juce.com/
https://www.kvraudio.com/

» {} petaldance (Mast:

g v

Grain settings Spacing Time Dilation

Effects Position randomizer Panning Sample settings Start position

Enable looping

» {3} petaldance (Maste

g v

Grain settings Spacing Time Dilation

Effects Position randomizer Panning Sample settings Start position

Enable looping

Figure 6.4: Petaldance plugin with a visible playhead during playback

27

Implementation details

Files with the prefix UI* are user interface component classes, containing GUI controls.
Fach of these classes has its own set of controls that it positions inside itself, such as sliders,
plus their settings. These component classes are then contained within, and positioned in
the PluginEditor class, which is the main JUCE graphical class, representing the entire
application window.

For the granulizer functionality, classes Grain and Granulizer are implemented. Grain
class represents grains and instances of this class get created with a specific lifetime, after
which they are destroyed. The Granulizer class contains methods for granulizing the
output.

JUCE’s PluginProcessor class’ is the main audio procesing class. Entire signal pro-
cessing happens inside the processBlock method of this class. This method contains
two parameters — AudioBuffer<float> &buffer and MidiBuffer &midiMessages. The
buffer variable contains any input data, which is not the case of this application, since
it doesn’t accept any input such as a microphone. The second parameter contains MIDI
messages, example being a message signalizing that a certain note was pressed or released.
The MIDI message also contains other information, such as note velocity. This MIDI buffer
needs to be processed in case working with MIDI input is desired, as is the case with this
plugin. The processBlock method gets repeatedly called depending on the buffer size and
the set sample rate that the playback is running on — if the sample rate is set to 44100
Hz and a block size to 441, the method gets called one hundred times a second. Each
MIDI event gets included in the next processBlock call and should be processed inside it,
otherwise it gets output by the plugin as output MIDI message.

In order to affect the sound output, the buffer needs to be filled with the desired
audio data. This is done by looping over the individual samples of this variable and calling
the applyGrainToBuffer method of the Granulizer class. This method takes the grain
parameters, calculates the selected envelope for the current value and stores the result of
the calculations into the buffer, essentially windowing that specific sample. This happens
for every sample of the buffer, for every new buffer that gets created by the processBlock
method as means of audio playback. The grain has to be currently active for it to make
changes to the buffer, which is checked by shouldGrainPlay method of Granulizer class.

Generating of grains is done inside run method of PluginProcessor class. Run is a
method implemented because of PluginProcessor inheriting from the JUCE’s Thread
class”. This allows for use of a thread inside the application. This is crucial, because no
memory allocations, like creation of new grains, should be done on the main audio thread,
for example in the processBlock method. The reason being it could hinder the playback
and cause unexpected artifacts. Once playback starts, one grain is generated and time that
the next grain should start is noted. Time is counted as a number of samples that have been
processed so far and since the AudioProcessor processes exactly the amount of samples
as is the currently set sample rate, this can be used as accurate timer. As mentioned, the
grains are created on this thread. The thread is setup in a way such that it sleeps when
not needed and is awakened by notify() when needed. If no playback was happenning,
pressing a note causes the program to send notify signal to the thread, which starts the first
grain and then sleeps for a duration based on the size of the grain and the grain spacing

5 AudioProcessor class documentation - https://docs.juce.com/master/classAudioProcessor.html
"Thread class - https://docs.juce.com/master/classThread.html

28

https://docs.juce.com/master/classAudioProcessor.html
https://docs.juce.com/master/classThread.html

parameter. In case the note gets released (and no new note started prior to this), the thread
is stopped and all currently existing grains are deleted.

Midi notes are processed to determine whether a sample playback should be happening
or not. This is done simply by incrementing or decrementing num0fPlayedNotes variable
based on the captured note events — . isNoteOn() and .isNoteOff (). In case there is one
or more notes being pressed, the playback of the sample starts from the currently selected
position set by Sample position slider, in the currently chosen direction by Time Dilation
slider, with the grain parameters of Size and Spacing sliders. Once the notes are released,
the playback stops, any currently active grains get deleted and the playback position is set
back to the value before playback.

6.3 Problems during development

During development, multiple problems arised from the differences in the host digital audio
workstations. One such example is the different size of buffer that is processing the audio
output inside processBlock method of JUCE’s AudioProcessor class, which handles sound
output. It is mentioned on the JUCE documentation page of AudioProcessor that the
buffer size can be variable and depends on host. In Ableton 11, stable buffer size of 256
samples was always present. The buffer size in FL. Studio was rapidly changing from 1
up to around 500 samples, each buffer having different size. This can be a non issue or
potentially critical depending on the type of application that needs to be developed. My
solution to this problem was to process the block sample by sample, instead of previously
envisioned and planned processing on block basis, as was done in the prototype.

6.4 Improvements on the current systems

One of the possible improvements on the current granular synthesis systems, that are sample
based or use samples in some way, would be sample file analysis. Since the sample file is
static and the entire content of it is known, various analysis methods could be used to enrich
the grain playback process. For sample containing some form of speech — either spoken or
sung — detection of changes in fundamental frequency can be used. Fundamental frequency
is a frequency the vocal cords are oscillating on thus determining the pitch of the voice.
Decisions could be made with this information to alter the playback, for example changing
the sample file position based on changes of the pitch, when a singer stops holding a note
and changes to another. Such approach of course wouldn’t work with non-speech samples
such as drum hits.

29

Chapter 7

Testing

7.1 Application testing

During development, the plugin was continually tested on operating systems Windows 7 and
Windows 10 and in two digital audio workstations — FIL Studio and Ableton Live. FL Studio
version 12 and 20 was used and Ableton Live version 11 was used. The developement was
done using Visual Studio Community 2019 with the option to attach to a running process,
the process being Ableton Live 11. With Visual Studio attached in this way, it is possible
to set breakpoints, see debug output, observe variables in the watch window and debug
the plugin just like a standalone application. It would be almost impossible to debug the
application without this option. For debug output, the DBG() macro is available to the
programmer and there is a FileLogger' class for more robust logging, both available from
the JUCE framework, so there is no need to write one’s own methods for logging.

» {3} Edison (Mast

Figure 7.1: Plugin Edison

'FileLogger class documentation - https://docs.juce.com/master/classFileLogger.html

30

https://docs.juce.com/master/classFileLogger.html

For the sound output analysis, plugin native to FL Studio called Edison’ was used.
This plugin is an audio recording and editing tool, with both spectral and waveform view,
with the option to zoom all the way to individual samples. The plugin can be seen in
Figure 7.1. This allowed inspection of the output of the plugin in cases when there were
unwanted artifacts.

7.2 User tests

User tests were designed to test the application and to assess satisfaction with the graphical
design, design of the controls and to decide whether it is usable for music production as a
granular synthesis instrument. The survey was done on 7 participants selected from a music
production background — music producers, DJs, performers or hobbyists with interest in
music production. The users were presented with a manual on how to set up the plugin
in order for it to open in a digital audio workstation of their choice, short description on
what the plugin does and description of the controls. An example of control configuration
was given, together with a ~2 minute demonstration video, showing how to work with the
plugin. Users were asked to work with the plugin just as they would when obtaining a new
plugin from the internet and were then asked to provide their feedback by filling out a short
form with questions. The form contained following questions that could be answered either
yes or no:

e Have you worked with a granular synthesis plugin before?
¢ Do you find the graphical design of the application clean looking?
e Do you find the controls of the plugin intuitive?

e Is it obvious where in the sample are the grains currently generated from during
playback? Meaning where is the current playback position?

The next part of the form asked users to rate the appearance, controls and usability of
the plugin on the sound side. A point system was used, with a range from 5 to 1 points,
the more points meaning better rating. The asked questions were:

o Please rate the appearance of the plugin.
o Please rate the control of the plugin.

e Please rate the usability of the plugin in music production on the sound side.

Arithmetic mean of the results of the point system questions can be found in Table 7.1.

Question Point range Point score (mean)
Appearance 5-1 3.86
Control 5-1 4.0
Usability 5-1 4.29
Table 7.1: Results of the user testing survey
’Edison - https://www.image-1line.com/fl-studio-learning/fl-studio-online-manual/html/

plugins/Edison_2.htm

31

http://line.com/fl-studio-learning/fl-studio-online-manual/html/

The survey results indicate that the plugin, despite having room for improvements,
is deemed as easy to use, clean looking granular synthesis instrument that can be used
for music production. The suggestions for improvement from this survey, mentioned in

Appendix A can be used as inspiration for future work.

32

Chapter 8

Conclusion

8.1 Summary

In this work, we have got acquainted with the principles of software systems used for mu-
sic production. We have learned about the principles of granular synthesis and used this
knowledge, together with the findings from market research and creation of a prototype, to
create a virtual instrument that is able to perform granular synthesis. The virtual instru-
ment was implemented as a sampler based VST3 plugin, capable of interfacing with digital
audio workstations such as FL Studio and Ableton Live. A brief look into possibilities of
improving on current granular synthesis systems was taken, with the focus on analyzing the
sample itself. Lastly, user tests were performed and evaluated, resulting in the plugin being
deemed as simple, clean and usable for actual music production. Suggestions for further
improvement and additional features also arised from the user testing, giving inspiration
for future work.

8.2 Future work

Many different ideas came to mind during the plugin market research and during the devel-
opment itself. Other suggestions for improvement come from the performed user tests. One
of the possible improvements that was mentioned in the user tests would be to create a set
of plugin presets. A preset is a set of predefined values for the plugin controls, such as slider
values, or checkbox state in the case of this application. The presets are usually themed for
a specific use — example being a preset for vocal samples with predefined values that set up
the plugin to produce interesting output for this category of sample files. Another potential
improvement could be on the graphical user interface part — to use custom created slider
images that map to the rotary value of the sliders such that they look and feel like knobs
from a real life instrument or a piece of hardware. This could be done with Knobman'— a
freeware image strip design tool used for creating knobs for virtual instruments. Knobman
application with an image strip can be seen in Figure &8.1.

'"Knobman by g200kg - https://www.kvraudio.com/product/knobman-by-g200kg

33

https://www.kvraudio.com/product/knobman-by-g200kg

@t JKnobMan - [Sonatom_bipo kncb]

File Edit Layer Animation Test Help
[l o | [owene | [M menoe | [vovesss | [g voverons | D revee | @ | B |
B zoenvu || Dzsemia || BDzonin |

CenterX:| 0,00

Centerv:| 0,00

& Preferences o
[[louter frame) - |~ e
) [@bese i Type | [l Filled Gircle - SOETERNE _
9 [] Unfold animatonstep: 0 [[2]
[Blbase break
) @i Aspect: 0,00 = ¥ Zoom
) ek Emboss 0,00 [z 7] Separate X
Diffuse Emboss : 0,00 d =
) Wlle frame % x| o500 (2] ~|[10000 |[= .
[Ellbevel Specutar 000 J Y:| 10000 | & x| 10000 [[#
Texture - E
[[@loray vep 0 ¥ Offset
) @lbiack rap Texture Depth 0,00 = < o2 &) =
) Wl bese Texture Zoom: 100,00 B L
v o0 -l o0 E
[Wllpointer Diffusion 0,00 B B i
Colors ¥ Rotation
% [| Keep Direction

Angle:| -19,00 ~|| 000 [[#
¥ Colors
- Alpha: 100,00 100,00 || ¥
L Brightness:| 0,00 - 0,00 4 I

Contrast:| 0,00 > 0,00 4

B @ o) [0

Layer Previt Saturation 0,00 > 0,00 ¥
Hue 0,00 - 0,00
¥ Mask

First Mask
Type | M Rotating -

s Gradient: 0,00 |[Z] M One-way =

< v
oad Done [D: 1_bipo.knob] —

Figure 8.1: Knobman application with an image strip on the right side

34

Bibliography

[1] Audio Units - Licensing and Trademarks - Apple Developer [online]. 2022 [cit.
2022-03-29]. Available at:

https://developer.apple.com/licensing-trademarks/audio-units/.

[2] Mizer Explained [online]. 2022 [cit. 2022-03-20]. Available at: https:

//wwu.image-1line.com/fl-studio-learning/fl-studio-online-manual/html/mixer.htm.

[3] Piano roll [online]. 2022 [cit. 2022-03-20]. Available at: https://www.image-line.com/
fl-studio-learning/fl-studio-online-manual/html/pianoroll.htm.

[4] The Playlist [online]. 2022 [cit. 2022-03-20]. Available at: https://www.image-
line.com/fl-studio-learning/fl-studio-online-manual/html/playlist.htm.

[5] Lifetime Free Updates - FL Studio [online]. 2022 [cit. 2022-03-20]. Available at:
https://www.image-line.com/fl-studio/lifetime-free-updates/.

[6] Fruity Granulizer - Instrument [online]. 2022 [cit. 2022-02-09]. Available at:
https://www.image-line.com/fl-studio-learning/fl-studio-online-manual/html/
plugins/Fruity%20Granulizer.htm.

[7] Granulizer 2 | Inertia Sound Systems [online]. 2022 [cit. 2022-02-11]. Available at:

https://www.inertiasoundsystems.com/store/products/granulizer-2/.
[8] JUCE [online]. 2022 [cit. 2022-04-07]. Available at: https://juce.com/.

[9] OpiE, T. Sound in a Nutshell: Granular Synthesis. Melbourne, AU, 1999. BA
Honours Thesis. La Trobe University.

[10] RoaDs, C. Introduction to Granular Synthesis. Computer Music Journal. The MIT
Press. Summer 1998, vol. 12, no. 2, p. 11-13.

[11] RoaDs, C. Microsound. The MIT Press, 2004. ISBN 9780262681544.

[12] Our Technologies | Steinberg [online]. 2022 [cit. 2022-03-29]. Available at:
https://www.steinberg.net/technology/.

[13] VST 38 SDK: Introduction [online]. 2022 [cit. 2022-03-29]. Available at:
https://steinbergmedia.github.io/vst3_doc/vstsdk/index.html.

[14] VST2 discontinued - Announcements - Steinberg Forums [online]. 2022 [cit.
2022-03-29]. Available at:
https://forums.steinberg.net/t/vst-2-discontinued/761383/2.

35

https://developer.apple
http://line.com/fl-studio-learning/fl-
https://www.image-line.com/
https://www.image-
http://image-line.com/fl-studio/lifetime-free-updates/
https://www
http://image-line.com/fl-studio-learning/fl-studio-online-manual/html/
http://iasoundsystems.com/
https://juce.com/
http://steinberg.net/technology/

Appendix A

User review of the application

This appendix contains feedback collected from the most experienced users testing this
application. They were asked to introduce themselves and provide feedback for the appli-
cation along with any suggestions for improvements. As the feedback was provided in the
Czech language, it was kept in the original form instead of being translated.

Radek Jankt - music producer, artist

Vzhled na prvni pohled nabidne vSe, co od pluginu potfebujeme. Rozmisténi jednotlivych
prvki je prehledné, v pluginu se pri praci dé velmi jednoduse a rychle zorientovat. Ocenuji
jednoduché drag-n-drop pridani samplu, se kterym chci pracovat. Jednotlivé ovladaci prvky
mi nicméné po chvili prisly mozné az moc velké, zabirajici zbyteéné moc prostoru a trochu
vizualné nudné.

Plugin jsem pouzil v DAW Ableton Live 11, kde Sel spustit naprosto bez problémi.
Ocenil jsem, ze plugin s DAW spolupracuje a je mozné jej napriklad namapovat na knoby
a ovladat pomoci hardware zarizeni. Ovladani i diky tomuto mapovani je jednoduché a
intuitivn{ a s pluginem si jde po pridani vhodného samplu velmi pékné pohrat.

Co se tyce funckionality, nabizi plugin spise zakladni moznosti. Chybéla mi zde moznost
nastavit si vice ,start position“ bodt, tedy bodu, ze kterych se za¢ne dany sample prehra-
vat. Pokud by bylo mozné namapovat rizné start position body na ruzné pady ¢i klavesy
na hardware zarizeni, dokazal bych si jeho vyuziti redlné predstavit napiiklad p¥i zivych
vystoupenich. Daéle by uré¢ité zrychleni workflow a piipravy, napiiklad na zminéné live
vystoupeni, pomohla moznost vyuzit nékolika prednastavenych preseti a hlavné moznost
ulozit si vlastni nastaveni a toto nastaveni si poté pozdéji jednoduse otevrit. Pokud by plu-
gin nabizel tyto prvky, je dle mého bez problému srovnatelny s profesiondlnimi placenymi
pluginy stejného zaméreni.

I pres téchto par nedostatki mi vsak plugin prijde realné pouzitelny napriklad pri
nahravani rizné elektronické muziky, ve které se hudebnik neboji experimentovat s vlast-
nimi samply.

Jakub Kopecky - music producer, artist, DJ
Vzhled pluginu je velmi ¢isty/minimalisticky a z ovladdacich prvku je viceméné jasné, k

¢emu slouzi. I vizualizace samplu je pfimocara, jen bych v ni ocenil zndzornéni graint
jako takovych - at si dokazu predstavit, jak bude vysledek znit. Daéle bych také uvital

36

néjaké znazornéni defaultnich pozic vSech slideri + moznost syncu s tempem projektu,
kazdopadné i pres tyto ,neduhy“ si dokazu predstavit prakticka vyuziti tohoto pluginu,
zejména pri experimentaci s riznymi samply, automatizaci apod.

37

